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摘  要 

 
為了達到一個低成本高效率的太陽能電池，全矽堆疊式太陽能電池具有

很大的潛力，藉由不同能隙的矽奈米晶體薄膜(例如: Si/SiO2矽奈米晶體薄

膜)堆疊於單晶矽太陽能電池可減少熱損耗的發生，以提高整體之效率。

Si/SiO2矽奈米晶體薄膜導性深受 SiO2阻障層的影響，為了提升該矽奈米晶

體薄膜導電性，我們在阻障層中加入一些缺陷，去創造額外的路徑以提供載

子傳輸。我們利用拉曼光譜去分析該缺陷對結晶以及矽奈米晶體尺寸的影響，

並利用 X光繞射分析去對尺寸做進一步的驗證，接著使用光激發光譜去探討

阻障層對於缺陷態的變化，最後再藉由電性的量測探討該矽奈米晶體薄膜傳

輸機制。 
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Abstract 
 

In order to achieve low cost and high efficiency solar cells, all silicon 
tandem solar cells made of Si nanocrystal (Si NC) thin films with different 
bandgaps (such as Si/SiO2 Si NC thin films) stacking on crystalline Si solar 
cells are proposed. The solar cells can greatly reduce thermalization loss. 
However, Si/SiO2 Si NC thin films exhibit low conductivity because of 
poor conductivity of SiO2 barrier layers. In this thesis, we created 
additional transportation paths by increasing the defects of barrier layers. 
We studied effects of the defects on the crystallization and dimension of Si 
NC thin films by Raman spectra and XRD. In addition, we analyzed the 
influences of the defects on optical properties of Si NC thin films by PL 
spectra. Finally, we discussed a possible carrier transportation mechanism 
from electrical results.  
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The Fig. 1.1 shows the top ten problems for next fifty years. Energy and 

environment issues are top 1 problem and top 4 one of the world, respectively. It 

suggests that research and development of green energies (renewable and 

eco-friendly energies) is the front burner. There are lots of green energies (such as 

wind power, tide power, geothermal heat, solar energy) have been interested. Solar 

energy is much more potential green energy because of inexhaustible power from the 

sun and less limitation on the locations. It is promising to use solar energy to replace 

fossil fuels completely in the future with advancing technologies.      

 

1.2  Solar cells 

The first photovoltaic device (also called a solar cell) was created at Bell 

Laboratories in 1883 by Charles Fritts. However, solar cells had not drawn attention 

until the oil crises broke out in following decades. Recently, solar cells are greatly 

interested because of not only energy issues but also environmental issues such as 

increasing sea level resulted from the worse green house effect. 

The illustration of structure and operation of solar cells are shown in Fig. 1.2  
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Fig. 1.2 : The illustration of structure and operation of solar cells 

http://www.icembed.com/info-17526.htm 

 

According to the efficiency as a function of cost, solar cells can be classified into 

three generations as the shown in Fig. 1.3. 
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quiet cheaper than that of first generation solar cells. On the other hand, the efficiency 

of second generation solar cells is less than that of first generation solar cells. Other 

main features of second generation solar cells is their flexibility and light-weight which 

makes lots of application innovations such as flexible solar panel. For achieving solar 

cells with high efficiency which is potential to be larger than efficiency limit of solar 

cells with single bandgap (31%) and low manufacturing cost, a wide range of promising 

solar innovations including polymer solar cells, nanocrystalline cells, and dye-sensitized 

solar cells (third generation solar cells) are being studied. Even if third generation solar 

cells are superior to the others, third generation solar cells are still in the research phase.  

1.3  Silicon based tandem solar cells  

1.3.1 Power Loss Paths  

There are five power loss paths in standard single junction solar cell, including 

thermalization loss, junction loss, contact loss, recombination loss and non-absorption 

loss as shown in Fig. 1.4.  
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embedded in dielectric matrices cascaded with silicon-based solar cells is one of the 

proposed solar cell structures to achieve super high energy conversion efficiency due to 

its flexibility in energy band-gap engineering. 

 

1.3.2 Quantum Confine Effect  

Behavior of particle waves confined in an infinite quantum well can be explained 

by three-dimensional time-independence Schrödinger’s equation can be express by          

              
)()()()(

2
2

→→→

Ψ=Ψ+Ψ∇− rErrVr
m
h

                     (1.1)                

We can obtain that allowance energy states are discrete and they depend on width of the 

quantum well. The phenomenon is the quantum confinement effect. For particle-waves 

confined in nanoparticles covered in materials with finite barrier heights, similar energy 

states can be obtained, as expressed by eq. 1.2. 

2
2

22

2
n

ma
En

πh
=      ,     )( 2222

zyx nnnn ++=              (1.2) 

where nx, ny, nz are integers and equal to 1 for the ground state square box. 

 Discrete energy levels depend on the dimension of nanoparticles and barrier 

height between nanoparticles and materials which cover around them. Fig. 1.5 shows 

wave functions of different size of nanoparticles with a fixed barrier height and those of 

different barrier height with a fixed size of nanoparticles. As a result, we can control 

effective Eg by tuning the dimension of Si NC and changing materials of barrier layers. 
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of Si quantum can be controlled by adjusting the flow of gas sources or different 

reactant gas sources. J. I. Wong et al. prepared their Si NC thin films by implanting Si 

ions into SiO2 thin films. [5] First, the SiO2 thin films were grown with O2 and H2 in 

high temperature furnace. Then Si ions were implanted with different dose and energy 

into the SiO2 thin films. Finally, thermal annealing was carried out for NCs formation. 

Eun-Chel Cho et al. made their Si NC thin films by sputtering. [6] First, multiple 

alternative layers of amorphous Si rich oxide (SiOx, x<2) and stoichiometric SiO2 as 

presusor thin films were deposited by cosputtering with SiO2 and Si targets and 

sputtering with a SiO2 target, respectively. Then Si NC thin films were obtained after 

the precursor thin films annealing at high temperature such as 1100℃ for 1 hr. The 

dimension and density of Si NCs can be controlled by adjusting the thickness and Si 

content of amorphous Si rich oxide.  

One of important applications of Si NC thin films is photovoltaic devices. Martin 

A. Green et.al, demonstrate that the efficiency of solar cells using Si NCs embedded in 

SiO2 is up to 10%. [6] Although this is a big progress in solar cells using Si NC thin 

films, the efficiency is still far away the theoretical values predicted using detail balance 

limit. The poor performance can be attributed to large power loss in the solar cells such 

as poor carrier collection efficiency results from low conductivity of SiO2.  

Although defects in SiO2 resulted from amorphous SiO2 [7] can offer 
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transportation paths for carriers, the conductivity of Si NC thin films for photovoltaic 

devices is not high enough. In order to further reduce power loss from poor carrier 

collection efficiency, many results has been published. For Si/SiO2 multilayer structures, 

carriers are easily blocked by in the direction perpendicular to the thin films because of 

higher barrier height. Conductivity can be enhanced effectively if the barrier height is 

reduced. Lateral contact was introduced to enhance the carrier transportation. [7] When 

carries transport parallel to the barrier, the effective barrier height will be lower than 

transport through the barrier layers. Hence, conductivity can be enhanced for the lateral 

contact. [8] B. Berghoff et al. proposed a Si/SiOx multilayer structure to improve the 

conductivity. [9] Si NC thin films formed by annealing precursor thin films using a 

Si/SiOx structure leads to the precipitation of excess from SiOx layers to Si layers. The 

morphology of SiOx layers were changed after annealing, and he ultrathin SiO2 layers 

formed. Thus the barrier height is reduced due to the thinner SiO2 layers. Hence, 

conductivity can be enhanced due to the lower barrier height caused by thinner SiO2 

layers. In addition, the dopant concentration of Si NC thin films and barrier height 

between Si NCs and barrier layers also affect the conductivity of Si NC thin films. X. J. 

Hao et al. made boron-doped Si NC thin films by RF co-sputtering with Si, SiO2 and 

boron targets. The boron concentration was controlled by adjusting the power applied to 

the boron target. It was demonstrated that the resistivity of Si NC thin films decreases 
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by increasing the power applied to the boron target. In other words, the resistivity 

decreases by increasing the boron concentration of Si NC thin films. [10] Gavin 

Conibeer et al. fabricated Si NCs embedded in Si3N4 to increase the conductivity 

because of lower barrier compared to SiO2. [11]  

 

1.5  Motivation 

In this work, we added additional silicon in barrier layers (SiO2 layer) to form 

defect states. The defect states in barrier layers can offer additional transportation sites 

for photo-generated carriers, and thus increase the conductivity of the Si nanocrystal 

thin films. Therefore, it is expected that the conversion efficiency of the solar cell can be 

enhanced effectively due to the enhancement of thin films conductivity. 

The main purpose of this thesis is to investigate the characterization and electrical 

properties after increasing Si content in barrier layers. 
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Chapter 2 Fabrication of Si Nanocrystal thin film 

In this chapter, we introduce all the fabrication process of our samples. The process 

flow is shown in Fig. 2.1.  

 

Fig. 2.1 : Process flow of Si nanocrystal thin film 

2.1  Substrate Clean 

The beginning step as shown in Fig. 2.1 is substrate clean.  Si wafers will be 

cleaned by RCA clean shown in Table 2.1. The main purpose of RCA clean is to remove 

the particle and native oxide on the wafers. And in the cleaning process of quartz, we 

use aceton and deionized water with ultrasonic cleaner to remove the organic 

contaminates on the quartz. 
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Table 2.1 : RCA clean process of substrate 

 

 

2.2  Precusor Thin Film Deposition  

Precusor thin films of Si NC thin films compose of superlattice structures using 

two different materials such as Si/SiO2. All precursor thin films were deposited by radio 

frequency (RF) magnetron sputtering as shown in Fig. 2.2. SiO2 target and P type Si 

target with the resistivity about 0.005 Ωcm ~ 0.02 Ωcm were adopted. Silicon rich 

silicon oxide thin films were obtained using cosputtering of Si and SiO2 targets. We 

modified the power of targets to control the composition of depositing thin films and the 

duration of shutters to tune the thickness of the each thin film.  
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Fig. 2.2 : Operation of magnetron sputtering and co-sputtering. 

 

Fig. 2.3 shows the multilayer structures of presusor thin films. For active layers, 

we deposited pure Si layer and high silicon rich oxide (HSRO) layer with the Si 

concentration about 82.3%, and for barrier layers, we deposited pure SiO2 layer and low 

silicon rich oxide (LSRO) with the Si concentration about 32.8%. The thickness of 

active layers and that of barrier layers are 4 nm and 2 nm, respectively.  
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2.4  Remove Thermal Oxide after Annealing Process 

After annealing process, a thick thermal oxide layer was formed on the top and 

bottom of samples due to residual oxygen in the furnace. The thermal oxide layers make 

an influence on the collection efficiency of photo-generated carriers. In order to reduce 

the influence of the thermal oxide layers, we removed top side oxide layers by reactive 

ion etching (RIE) and bottom side oxide layers by buffered oxide etch (BOE).  

 

2.5  Metal Deposition 

Finally, contact electrodes were deposited on samples for the electrical properties 

measurement. In our work, the Si NC thin film is P type due to the Si target with B 

doping and the substrate is n type. Therefore, we deposited Au on the top of samples 

and Al on the bottom of samples in order to reduce the influence of contact. 
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Chapter 3 Characterization of Si NC Thin Films 

 

In order to understand the characteristics of our Si NC thin films, measuring 

micro-Raman spectra, X-ray diffraction (XRD) pattern and photoluminescence (PL) 

spectra of our Si NC thin films were measured. Micro-Raman spectra can offer 

crystalinity and dimension of Si NC thin films. We can obtain crystalization phases and 

dimension of Si NC thin films. From PL spectra, we can analyze quantum confined 

related radiative signals and other radiative defect states. 

     

3.1  Analysis of Si NC thin films by High Resolution 

Confocal-Raman Microcscope  

3.1.1 Fundamental of Confocal Raman Microscope 

Confocal-Raman Microscope is a powerful characterization technique for various 

semiconductor and insulator materials. It’s based on the Raman effect, which is the 

inelastic scattering of photons and molecules [12].  

We analyzed our samples by high resolution confocal Raman microscope (Lab 

RAM HR Raman Microscope), and we used a diode pumped solid state (DPSS) laser 

with 488nm wavelength. The illuminated spot size is about 10 um in diameter and the 

power of the laser is about 7mW. Si substrate was used to calibrate the crystalline signal 
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Fig. 3.2 : 24 pairs multilayer structure of (a) Si/SiO2 (b) Si/LSRO (c) HSRO/SiO2 (d) 

HSRO/LSRO after high temperature annealing process. 

 

Table 3.1 : List of Raman spectra with different multilayer structure. 

 

 

It is obvious that the FHWM of Raman peaks decrease with increasing Si content 
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in barrier layers. It indicates dimension of NC can enlarge when Si content of barrier 

layers is increased. By comparing the measured FWHM and that calculated shown in 

Fig. 3.1, we can roughly obtained the dimension of our Si NC thin films. The dimension 

of both Si/SiO2 and Si/LSRO multilayer structures is about 4~6 nm and that of 

HSRO/SiO2 and HSRO/LSRO multilayer structures is about 2.5 nm. For multilayer 

structures with LSRO barrier layers, the estimated dimension of NC is larger than that 

of multilayer structures with SiO2 barrier layers. The enlargement of the dimension can 

attribute to release of stress and/or increase of Si content in Si NC thin films. However, 

using peak position to estimate the dimension of our Si NC thin films shows a contrary 

manner because of a stress effect resulted from a thermal extension difference between 

Si and SiO2. The stress effect cab be expressed as a follow equation : 

                    w ൌ w଴ ൅ Δw ൌ w଴ ൅ ሺଵ.଼଼ୡ୫షభ

ୋPୟ
ሻ ൈ P                (3.2) 

where P in GPa and w in cm-1. Although peak positions are not suitable to estimate the 

dimension of Si NC thin films, we can observe that peak positions of multilayer 

structures with LSRO barrier layers are closer to those calculated using the phonon 

confinement effect because of the release of stress. 
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3.2  Analysis of Si NC thin films by X-Ray Diffraction 

3.2.1 Fundamental of XRD Analysis 

XRD is a nondestructive technique for structural characterization of crystalline 

materials. In XRD, an X-ray beam with a 1.54 Å wavelength is incident onto samples 

and is diffracted by the plane of atoms of samples. Diffraction peaks can be observed if 

there are constructive interferences generated. The condition for constructive 

interferences is given by the Bragg ‘s law : 

                            λ ൌ 2dsinθ                         (3.3) 

where d is the spacing between atomic planes, λ is the X-ray wavelength and θ is 

the angle between atomic planes and the incident beam. [15] In addition to 

crystallization phases, we can also estimate the dimension of NC according to the 

Scherrer formula expressed as a follow equation:  

                          L ൌ ୩஛
୼ଶ஘ሺ୰ୟୢሻ.ୡ୭ୱ஘

                        (3.4)  

where λ is the X-ray wavelength, 2θ is the Bragg diffraction angle, k is the constant 

close to 0.9 and Δ2θ is the integral breadth of the Bragg peak which can be 

expressed :  

                            breadth ൌ FWHM

஗మ
ಘାሺଵି஗ሻమ√ౢ౤మ

ಘ

                    (3.5) 

where η is the number adopted as 0.5. [16] 
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3.3  Analysis of Si NC thin films by PL Spectroscopy 

3.3.1 Fundamental of PL Spectroscopy 

PL spectroscopy is a contactless, nondestructive method of measuring the 

electronic structures of materials. When light is incident onto samples, where it is 

absorbed and imparts excess energy into the materials. The excess energy can be 

dissipated by the samples through the emission of light, or luminescence. We can realize 

the information of various important material properties from the emission of the light. 

 The instrument to measure PL spectroscopy of Si NC thin films is Lab RAM HR 

Raman Microscope. We also use a laser on diode pumped solid state (DPSS) with a 

488nm wavelength. The illuminated spot size is about 10 um in diameter and the power 

of laser is about 7mW. Si substrate is used to calibrate the laser signal at 488 nm before 

measuring PL spectroscopy. All PL spectra are measured at room temperature (RT). 

 

3.3.2 Experimental Results and Discussions 

Figure 3.4 shows the PL spectra of our Si NC thin films. It is obvious that 

wide-ranged PL spectra are obtained. In other words, samples are probably with poor 

size distribution. However, the room RT-PL spectra of our Si NCs thin films are not 

only related to three-dimensional quantum confinement effect [17] but are determined 

by surface/interface-related defects, surface/interface passivation, [18] oxidation effects 
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larger that of Si NC thin films with SiO2 barrier layers. No PL peak less than 700nm is 

obtained in Si NC thin films using a HSRO/SiO2 multilayer structure. That is, PL peak 

less than 700nm attribute to defect states caused by LSRO barrier layers. However, PL 

peak less than 700nm is also observed in Si NC thin films using a Si/SiO2 multilayer 

structure. The PL peak is probably resulted from the smaller Si NCs, a transition region 

between Si and SiO2, or similar defect states as observed in Si NC thin films using a 

HSRO/SiO2 multilayer structure. Although the origin of PL peak less than 700nm is not 

well understood, it can be enhanced and/or generated in the Si NC thin films with 

LSRO barrier layers. Moreover, it is expected that the defect states can create additional 

transportation paths for photo-generated carriers, and thus increase the conductivity of 

Si NC thin films.     

 

Table 3.2 : Defect states of RT-PL spectra of with different multilayer structure. 
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Chapter 4 Electrical Properties of Si NC Thin Films 

In this chapter, we focus on electrical properties of our Si NC thin films. We 

deposited Au on P type thin films and Al on N type Si substrate for ohmic contact. 

Current-voltage (I-V) curves of Si NC thin films are analyzed by HP 4156 

semiconductor parameter analyzer. Photocurrent of Si NC thin films is measured under 

illumination with a halogens lamp (1500 lux). 

 

4.1  Experiment Result and Discussions 

As shown in Fig. 4.1, conductivity of Si NC thin films using Si/SiO2 and 

HSRO/SiO2 multilayer structures is very low, and their photocurrents are also not 

distinct from currents without illumination. In other words, Si NC thin films using 

Si/SiO2 and HSRO/SiO2 multilayer structures have poor photovoltaic properties because 

of low conductivity of SiO2 barrier layers. On the contrary, Si NC thin films using 

Si/LSRO and HSRO/LSRO multilayer structures not only show higher current without 

illumination but also perform better photovoltaic properties. This can be ascribed to the 

effect of LSRO barrier layers which reduce stress to enlarge Si NC, thin the thickness of 

SiO2 barrier layers, and provide additional transportation paths for carriers.  
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Chapter 5 Conclusion and Future Work 

5.1  Conclusion 

In this thesis, LSRO barrier layers are introduced to enhance carrier transportation. 

We deposited four 24 bilayers multilayer structures, including Si/SiO2, HSRO/SiO2, 

Si/LSRO and HSRO/LSRO, which the total thickness of thin films is 146 nm. In Raman 

spectra, we observe the crystallization of Si NC thin films and estimate the dimension of 

Si NC. the dimension of Si NC is also calculated by XRD analysis. The dimension is 

about 4~6 nm for Si NC thin films using Si as active layers and 2.5 nm for those using 

HSRO as active layers. The values are consistent with those estimated by Raman 

spectra. In PL spectra, a PL peak around 650 nm is defect states caused by LSRO barrier 

layers, which can offer additional transportation paths for carriers. I-V characteristics of 

Si NC thin films are improved when LSRO instead of SiO2 as barrier layers is. The 

transportation mechanism of Si NC thin films using Si/SiO2 and HSRO/SiO2 multilayer 

structures dominates by Schottky emission, and that of Si NC thin films using Si/LSRO 

and HSRO/LSRO multilayer structures belongs to Poole-Frenkel emission. the barrier 

height of LSRO multilayer. Barrier heights are 0.72 eV and 0.88 eV for Si NC thin films 

using Si/LSRO and HSRO/LSRO multilayer structures, respectively. In spite of barrier 

height lowering which probably makes an impact on the quantum confinement effect of 

Si NC thin films, not only conductivity improvement of Si NC thin films but also the 
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quantum confinement effect of Si NC thin films are obtained in our cases.  

 

5.2  Future Work 

Even if Si NC thin films have been studied for decades, many issues still debate. 

The stress of Si NC thin films affects their crystallinity and dimension, which in turn 

makes influence on the Eg of Si NC thin films. We will change our annealing process 

such as laser annealing to reduce the stress effect. Because of amorphous phase of SiO2 

barrier layers, lots of the defects states can be found in the Si NC thin films. The 

nonradiative defect states can trap photogenerated carriers and thus degrade the 

performance of Si NC thin films. Many studies on the defect states have been published, 

but identification and origin of the defect states are not so clear so far. Here we observe 

an addition PL peak due to LSRO as barrier layers, which an indirect evidence of 

additional transportation paths for carriers but we still need a direct evident to proof our 

ideals. Thus we will pay much attention on identification and origin of three states 

observed in the PL spectra. Although the conductivity of Si NC thin films has been 

increased, it still high enough for photovoltaic applications. We can further increase the 

conductivity by impurity doping such B doping. It is expected that the performance of 

Si NC thin films will be further boosted by impurity doping such B doping, using other 

barrier materials such as SiNx . 
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