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ON THE UNIQUENESS OF A LIMIT CYCLE FOR
A PREDATOR-PREY SYSTEM*

LII-PERNG LIOUf AND KUO-SHUNG CHENG:

Abstract. The uniqueness of a limit cycle for a predator-prey system is proved in this paper. The method
used is an improvement of the method used earlier by Cheng.
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1. Introduction. Stability analysis for a nontrivial periodic solution of ordinary
differential equations is very rare and difficult to obtain even in a two-dimensional
system. One well-known example is the Lienard equation, in particular, the Van der
Pol equation. See Hartman 16] and Hirsch and Smale [7] for details. For biological
predator-prey systems, Hsu, Hubbell, and Waltman [8], [9] considered the following
competing-predators system:

(t)=rS(t)(l__)_()(Xa_l!t)S(_t_) (X(t)S(t)
+S(t) ] -()\ --z--i-t3 ]’

alWS(t) -D1

( m2S( t) )2(t)=X2(t) a2+S(t)-D
S(0)=So>0, X,(0)=Xio>0, i=1,2,

where Xi(t) is the population of the ith predator at time t; $(t) is the population of
the prey at time t; mi is the maximum growth rate of the ith predator; Di is the death
rate of the ith predator; y is the yield factor of the ith predator feeding on the prey;
and ai is the half-saturation constant of the ith predator, which is the prey density at
which the functional response of the predator is half maximal. The parameters r and
K are the intrinsic rate of increase and the carrying capacity for the prey population,
respectively. Hsu, Hubbell, and Waltman analyzed solutions of this system and found
that the behavior of solutions depends mainly on the two-dimensional system:

(2)

(t) rS(t)(l _S____)) _()(x(t)S(t)]
mS(t) )(t)=x(t) -Doa+S(t)

s(0) So> 0, x(0) Xo> 0,
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868 L.-P. LIOU AND K.-S. CHENG

where r, K, m, y, a, and Do are positive constants. They analyzed system (2) and found
that if h < (K-a)/2, where h a/(b-1) and b re then the unique interior
equilibrium point (h, x*) is unstable. They conjectured that the system (2) has a unique
stable limit cycle in this case. This conjecture was answered affirmatively by Cheng in
[2]. In these examples, symmetric properties are an important ingredient of the proof.
The Van der Pol equations are

9 y (X3 X),
(3)

The isocline 2 =0, i.e., the curve y x3- x, is symmetric with respect to the origin.
This fact is important in the analysis of (3). For the system (2), the isocline =0 is
the curve

(4) x r(y/m)(1 SK)(a + S).

This curve is part of a parabola and hence is also symmetric with respect to the line
S (K-a)/2. The proof of Cheng [2] uses this symmetry property in an essential
way. From the point of view of perturbation theory, there is no reason to believe that
some symmetry properties are indispensable for a stable limit cycle. In this respect, if
we can devise a proof that is valid for a more general "nonsymmetric" system, even
if it is only a slight generalization, we will feel comfortable with it.

The purpose of this paper is to improve our method used in [2] to prove the
uniqueness of a limit cycle for a more general predator-prey system without the
symmetry properties of the isocline. At the end of our proof, we also close a gap in
the original proof given in [2].

2. The equations and statements of the main result. We will consider the following
predator-prey system:

:- x(f(x)- y),

(5) f y(g(x)- h ),

x(0) Xo > 0, y(0) Yo > 0, A > 0.

Note that if g(x)=x and f(x)=(1-x/K)(a+x), then the system (5) is essentially
equivalent to the system (2) up to some irrelevant constants. Our general assumptions
about f(x) and g(x) are:

(i) ge C([0, co)), g(0) =0, g’(x)>0 for all x=>0.
(ii) fe C([0, co)), f(0) =>0, and there exists K>0 such that f(K) =0 and (x-

K)f(x)<O for x K. There exists an a, 0<a<K, such that f’(x)>0 for 0<x<a,
f’(a) =0 and f’(x) <0 for a<x.

(iii) g(x*)= ,, y* =f(x*), and 0 < x* < a.
(iv) (d/dx)(xf’(x))/(g(x)-A))<O for x <x* and x> )*, where )* =f- of(x*)

and f fl(o,,,), f=fl(,.).
The phase plane of (5) under assumptions (i)-(iv) is roughly as shown in Fig. 1.

We consider only the case x* < a. In the case a < x* < K, the equilibrium point (x*, y*)
is locally asymptotically stable. We refer to Cheng, Hsu, and Lin [3] for global stability
analysis.

Note that if

g(x)=x,

f(x)=F(x)+eH(x),

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



UNIQUENESS OF A LIMIT CYCLE 869

<0
<0

>0

x*

FIG.

then g and f satisfy assumptions (i)-(iv) if e > 0 is sufficiently small where

F(x)-(1-x)(b+x)

and H(x) is a C function satisfying

H’(x)>-O for 0<x< a,

1-b
H’(x) <= O fora<x,a-

2

In fact,

-,
x\ x-h / (x_h)_{[2(x-A +2A(a-t)]-e[(x-A)xH"(x)-AH’(x)]}.

Thus if (a ,t is reasonably large, we can allow e to be reasonably large and the isocline

y=F(x)+eH(x)

can be quite unsymmetric with respect to the line x a.
Our main result follows.
THEOREM 1. Under the assumptions (i)-(iv), (5) posseses a unique limit cycle which

is globally stable.

3. Proof of Theorem 1. We need some lemmas.
LEMMA 1. The solutions x(t), y(t) of (5) are positive and bounded.
LEMMA 2. The unique interior equilibrium point (x*, y*) of (5) is a source.
LEMMA 3. Let F be a nontrivial closed orbit of (2). Then

F c {(x, y): 0 < x < K, 0 < y}.
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870 L.-P. LIOU AND K.-S. CHENG

Let L, R, H, and J be the leftmost, rightmost, highest, and lowest points of F, respectively.
Then

L {(x, y)" 0 < x < x*, y =f(x)},

R e {(x, y): x* < x < K, y =f(x)},

Ue{(x,y)’x=x*,y>y*},

J {(x, y)" x x*, 0 < y < y*}.

The proof of Lemma 1 is given in Albrecht et al. [1]. Lemma 2 follows from a
straightforward calculation and Lemma 3 is easy enough. Hence we omit all the proofs
of these lemmas.

Before we state and prove our next lemma, we define a transformation T from
(0, a) x (0, m) to (a, K) x (0, m),

(6)
T(x, y)=--- Tl(X, y), T2(x, y))

(f-i ofl(x),y),

where fl and f2 are the restriction of f on (0, a) and (a,K), respectively. From
assumption (ii), it is easy to see that T is a one-to-one transformation.

Now, we can state our main lemmas.
LEMMA 4. Let F be a nontrivial closed orbit of (5). F meets the vertical line x a

at points A and B with y-coordinates YB > YA. (See Fig. 2.) Let the image of arc BHLJA
of F under the transformation T be. Then arc -7, intersects arc of
F at exactly two points P (xl, Yl) and Q (x2, Y2) with Yl >f(xl) and y: <f(x).

P’ _f

H
H’

a 2* K

FIG. 2

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



UNIQUENESS OF A LIMIT CYCLE 871

Furthermore, let P’= (x, y)= T-(P) and Q’= (x_, y)= T-(Q). Then

(7) 0>
xf(x) >_ xf’(x)
g(x)-A g(x)-A’

(8) 0>
xf(x.) >-_ x2f’2(x2)
g(x) A g(x)- A

Proof. Consider the function

g(s)
(9) V(x, y) I d.

Then

(10)
dV(x(t),y(t))

dt
[g(x(t)) A ][f(x(t)) y( t)].

Let the period of F be -. We have

dV(x(t), y(t))
(11) Jo dt

On the other hand, we have

(12)

dt =0.

dV(x( t), y( t))
dt

at= [g(x( t)) A ][f(x( t)) y( t)] dt

v (f(x)- y) dy.
Y

Let 1) be the interior of the domain bounded by arc BHLJA and line x a and
lI2 be the interior of the domain bounded by arc BRA and the line x a. Also, let
’--’1 [’-J ’2 and l’l T(I). From the definition of T it is easy to see arc lies
above F and arc J’A lies below F. Hence either

(13) BH’L’J’Affltl2=(empty) and lI2cl)

or

S =- BH’L’J’A f’) ’2 # "
We now show that the assumption ’2 CS " leads to a contradiction. From (11) and
(12), we have

(14)

dV(x(t), y(t))
0=

dt
dt

r l
[f(x) y] dy

Y

I faf’(X) dx dy (Green’s theorem)
Y

=f(a f’(x---) dxdy+ f la f’(X)
dxdy

Y Y

f fa f(x----2) dxdy+ II f(x)dx dy.
Y Y
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872 L.-P. LIOU AND K.-S. CHENG

Now let T" fa lI be the transformation defined in (6). Let

Then

Hence (x, y)= T-l(u, v) and

(15)

The Jacobian of T-1 is

O(x,y)
(u, v)

T(x,y)=(u,v).

u =ffa ofl(x)

X =f?l of(u)

y--v.

(f-a)’(f(u))" f(u) 0
0 1

(16)
(f-a),(fi(u)), f;_(u).

But since f(u) < 0 and (f[-1)’(f2(u)) > 0, we have

O(x,,,,,,y)(17)
O(u, v)

=-(f?’)’(f2(u)) f(u).

Hence, we have from (17)

(18)

But

(19)

IIll f(x---)dxdy= f ffft f’(f?lof2(u))
y v

[-(f?l)’(f2(u))’f’(u) dudv

=--ffa f;(f(lA(u))’(f?l)’(f2(u))’f(tt)

d
f;(f?l oA(u)) (f?l),(f2(u))=_z(f of-l(z))

du dr.

From (18) and (19), we obtain

f la f(x----) dx dy I fa f(u)

(20)
y v

=-fro, f(x)y
Combining (13), (14), and (20), finally we have

f dV(x( t), y( t))
dt0 o dt

=Ira f(x----) dxdy+ Ifa f_(x)

(21) :-IIa ’(Xdxdy+Iffa ,(x,
Y Y

> 0 (recall thatf(x) < 0).
This is a contradiction. Hence S BH’L’J’A .

z=f2(u)

du dv

dx dy (identify u x, v y).
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UNIQUENESS OF A LIMIT CYCLE 873

Let S denote the closure of S and let P (Xl, Yl) and Q (x2, Y2) be the "highest"
and "lowest" points of S, respectively. Then, P is the highest point and Q is the lowest
point where arc BH’L’J’A enters the region ’2 from the outside of f2. It is easy to
see that yl> y2. First,we assume that y>f(xl). Let (dy/dx) and (dy/dx)p be the
slopes of arcs BH’L’J A and at point P, respectively. Since arc enters

12 from the outside of 122 at point P, we have

But we have

(23)
dy) y(g(xl) h

e--xl(f(xl)--yl)
Y(g(Xl)--A)
Xl(f2(Xl)--Yl)’

and

(24)

P (u,o)=(Xl,y1)

__( )d(ff ofl(x))(x,y)=(x{,y[)=T-’(x,,y,)

y(g(x)-A)
(f-l)’(f(x)) fi(xl) xi (fl(xl)-Yl)"

Since

(25) fl (xl) =fl(f-’ f2(Xl) =f2(xl),

(26) Yl =Y,

and

(27)
(f;)’(A(x;))" f.(f; fl(xl)) (f;)’(fl(xl))" f(x)

--’1.

We have from (24), (25), (26), and (27)

(28) dy) yi(g(xl)- A
x p=Xi(f2(Xl)-- yl) (1/f(xl))

Thus from (22), (23), and (29) we obtain

(29) 0>
yl(g(xl) A)

>
y(g(xl) A)

x(f2(xl)-Yl)-Xl "f/(xl)" (fE(Xl)-Yl) (1/f(xl))

Finally we get

(30) O>
xlf;(xl)

>
Xlf(x1)

g(xl)- A g(Xl)- A
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874 L.-P. LIOU AND K.-S. CHENG

Now the arc PR satisfies the following differential equations"

(dy) _y(g(x)-h)(31) xx x(f2(x) y)

and the arc PL’ satisfies

h- (,,)=(,y)

y’(g(x’)-A)
(32) (f;1)’(f(x’)). f[(x’), x" (f(x’)-y’)

y(g(x’)-A)
x’(f2(x) y) (1/f6(x)) f(x’)

as in (24)-(28).
From (31) and (32) we have

dy) _g(x)-h yf(x)
(33) ’- xf(x) "f2(x)- y

dy) _g(x’)-A yfz(x)
(34) -x ’- x’f;(x’) "f2(x)- y"

__<g(x)-A
xf(x)

g(x’) A yf(x)

From the assumption (iv) and (30), we have

g(x’) A g(x) A g(xl) A
(35) ,f< --_<

x (x’) x;f;(x) Xlf(x1)
for all x < x (hence x’ < x).

Hence we have

g(x)- A yf(x)
xf2(x) f2(x) y

for all x < x.
From a well-known comparison theorem we get

x’f;(x’) f2(x) y

(36) y(x)’F > y(x)pL for x < x < XL,,

where xv is the x-coordinate of L’.
This proves that if y >f(x), then the arc BH’L’ intersects the arc BR only at the

point P.
Now ass_____._.._ume thaty<f(x2). Let (dy/dx)’0 and (dy/dx)0 be the slopes of

arcs BH’L’J’A and BRA at the point Q (x, y), respectively. Then since y <f(x),
it is obvious that

(37, 0<(d) _-<(xY)
Q Q

By arguments similar to those in (23)-(28), we have

(dy) =y2(g(x2)-A)
Q x2(f2(x2)--Y2)

(38)
g(x2)- A YEfz(x2)
x2f(x2) f2(x2) y2

(dy)’ =g(x_)-A yEf(x2)
(39)

xf(x_) "f(x)- y"
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UNIQUENESS OF A LIMIT CYCLE 875

Hence from (37), (38), and (39) we obtain

x2f(x2)
(40) 0 >

x_f,(x2) >_

g(x) A g(x2) A

By arguments similar to those in (31)-(36), we can prove that if y2<f(x2), then the
arcL intersects the arc only at the point___Q. From the above conclusion, P
cannot be one of the intersection points of arcs L’J’A and RA. Hence we conclude that

(41) y >f(x,), y2 <f(x2)

and P and Q are the only intersection points of arcs BH’L’J’A and BRA. Hence (30)
and (40) hold. This completes the proof of the lemma. [3

LEMMA 5. Let F be a nontrivial closed orbit of (5) as described in Lemma 4. Define
h(x, y) x(f(x) y), k(x, y) y(g(x) A ).

Then

(42) r DiV (h, k) dt i (Oh(x’ Y) +Ok(x’ Y---2)) dt < O.
Ox Oy

Proof. From the definitions of h and k, we have

ok(x, y)
(43) Oh(x,y)+

Ox Oy
(f(x) -y) + (g(x) A + xf’(x).

But since F is a closed orbit, we have

and

Thus

[f(x)- y] dt r dt 0
X

[g(x) A dt ; dt= O.

(44) r DiV h, k) dt r Xf’(x) dt.

We divide the integration along F into integration along several arcs, that is, we let

Consider the integration along Q’A first. The arc Q’A of F can be parametrized by
(x, y(x)), where x_-< x -<_ a. Hence

f f
(46)

A
X(t)f’(x(t)) dt jxsf(x:(x) dx

f’ fI(x)
sf,(x)-y,(x)

dx.

Now let

u f;l fl(X), x e [x’, a]
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876 L.-P. LIOU AND K.-S. CHENG

or

x=f? of2(u), ue[a, x2].
Then

(47)

(48)

dx= I,, f(f?l f).(u)) (f?l)’(f(u)) f(u)

x2f2(u) yl(f-1f2(u))

I f(x)
dx.XfE(x y(f f(x))

du

We parametrize the arc AQ of F by (x, y2(x)), where x E [a, x2]. Then

Ia( Ia<2 f’(x)
x( t)f’(x( t)) at=

f(x) y2(x)

=Io f;(x)’%

f(x)- y2(x)
dx.

Combining (47) and (48), we obtain

(IX+ fA<)(x(t)f’(x(t))) dt

f f(x)[y(x)-yl(f-1 of(x))] dx

But for x E (a, x2), we have

f(x) < O, y2(x)-yl(f( f2(x)) > 0,

fz(x) y2(x) > O, f2(x) y,(f?l f2(x) > 0.

Hence

(49)

(5O)

=I’ fl(x) y3(x)

Let x=f[ off(u) or u =f-i off(x). Then from (50)

x(t)f’(x(t))) dt

(IQ,A+ IA<) (x(t)f’(x(t))) dt < O"

Next we parametrize arc BP’ of F by (x, y3(x)) and arc PB by (x, y4(x)). Then

f’(x)
(x( t)f’(x( t))) dt

f(x) y3(x)

(51)

fl(f?’ oA(u)) (f?’)’(A(u))f(u)

=Io f;_(u)x’f2(u) y3(f-lo f(u))

=I. f(x)Xl

f2(X y3(’----fTio f(x))

du

du
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UNIQUENESS OF A LIMIT CYCLE 877

Now from the parametrization of arc PB, we have

(52)
fen Ix" f’(x)

(x( t)f’(x( t))) dt
f(x) y4(x)

Ia f(X)x’f2(x)--y4(x)
Combining (51) and (52) we obtain

(53)

(j+ I,)(x(t)f’(x(t))) dt

--Ja f(x)[y3(f?l f2(x))--y4(x)]
dx

0.

> x, i.e x2 > (The case x < x can be treated inNow let us assume that xl =Xl.

Ll={(x,y).x=x <
1, Y.<=Y=Y},

L {(x, y)" y y, x2 x

We parametrize the arc P’LQ’ by (hl(y),y) and let the domain bounded by the
arc P’LQ’, L and L1 be denoted by D1. Then we have

(54)

(x(t)f’(x(t)))dt

f xf’(x)
p-=, y[g(x)- A x=hl(y)

xf’(x)--(IO,-t-I2-t-I,)(y[g(x)__A]’) dy

y[g(x)

I tfD 1 d (_-"_-’f#(5).)Iyxf’(x)-f\g(x)-A dxdy-
el y[g(x) A ]

xf;(xl)
y[g(x)- A]

dy (by assumption (iv)).

Now we can consider the integration along the arc QRP. Let LI TL, L TL and
let D be the domain bounded by the arc QRP of F, L, and L;. Then

(55)

pgP 4 . y[g(x)

Li _;_ y[g(x) A]
dy

1 d xf’(x)
dx dy +o2-fx g(x)- A y[g(xl)- A

ll Xlf2(Xl)
< dy.

y[g(xl)- A

the same manner.) Let
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Combining (54) and (55), we have

+ (xf’(x)) dt <
g(xl)-A g(xi)-A --f

(56)
<0 (by (7)).

Combining (49), (53), and (56), we have

(57) v Div (h, k) dt:(v xf’(x) d, <0.

This completes the proof of this lemma. []

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. From Lemma 1, the solutions are positive and bounded.
From Lemma 2, the equilibrium point (x*, y*) is a source. Hence there exists a closed
orbit. But from Lemmas 3, 4, and 5, each closed orbit must be stable. But two adjacent
periodic orbits cannot be positively stable on the sides facing each other (Coddington
and Levinson [4, Thm. 3.4, p. 397]). Hence the closed orbit is a unique limit cycle. It
is easy to see that this limit cycle is also globally stable, that is, nonequilibrium solutions
will tend to this cycle eventually. This completes the proof of Theorem 1. []

Remark. In the proof of Lemma 5, we introduce the line segments L and L. In
the original proof of Cheng [2], we use the line segment P’Q’ instead. Hadeler pointed
out to us that P’Q’ may intersect the orbit F [5]. This is the gap (in [2]) mentioned
in the Introduction.

Acknowledgments. K.-S. Cheng thanks K. P. Hadeler for pointing out the gap
referred to in the above remark. Both authors express thanks to Paul Waltman and
Sze-Bi Hsu for their constant interest in this problem and their kind encouragement.
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