國立交通大學 應用化學系碩士班 碩士論文

利用衝擊波管研究三重態亞甲基與氫氣和氧氣的高溫反應動力學

Kinetic Study of the Reactions of ${}^{3}CH_{2}$ with H₂ and

O₂ at High Temperature

1896

指導教授:王念夏 博士

學生:李佩芳

中華民國一百年七月

利用衝擊波管研究三重態亞甲基與氫氣和氧氣的高溫反應動力學 Kinetic Study of the Reactions of ³CH₂ with H₂ and O₂ at High Temperature

中華民國一百年七月

利用衝擊波管研究三重態亞甲基與氫氣和氧氣的高溫

反應動力學

學生:李佩芳

指導教授:王念夏 博士

國立交通大學應用化學系碩士班

摘要

我們利用活塞型衝擊波管-原子共振吸收光譜(ARAS)技術來研 究1800 K至2000 K溫度範圍之三重態亞甲基³CH₂的反應動力學。 以電腦程式模擬適解由實驗測得之碘原子、氫原子以及氧原子的濃度 變化,進而得到在該反應條件下,二碘甲烷熱解之第二步驟速率常數 (k₃₋₂)、³CH₂+H₂與³CH₂+O₂在高溫下的反應速率常數(k₃₋₈與k₃₋₁₂) 以及反應途徑分支比。所得到的二碘甲烷熱解的速率常數 Ln (k3.2/ cm³ molecule⁻¹ s⁻¹) = -(17.28 ± 0.79) -(30.17 ± 1.40) × 10³ / T 這是關 於二碘甲烷熱解反應所做的第一組實驗量測,在此之前,並未有實驗 組進行此實驗。此次實驗所得到 ${}^{3}CH_{2} + H_{2}反應速率常數Ln(k_{3.8}/cm^{3})$ molecule⁻¹ s⁻¹) = -(22.0 ± 1.9) - (7.8 ± 3.7) × 10^3 / T, 為高溫範圍內的 第一組實驗量測數據,並與本實驗室之前發表的 0.48 ppm CH₃OH + 1000 ppm H2熱解實驗中的理論計算值極吻合:我們亦得到 CH3 + H2 反應速率常數 Ln ($k_{3.9}$ /cm³ molecule⁻¹s⁻¹) = -(16.8 ± 2.4) - (21.0 ± 4.7)×10³/T 則與之前的文獻數據吻合。³CH₂+O₂本研究量得之反應 之速率常數為 k₃₋₁₂(T) = $(2.84 \pm 0.12) \times 10^{-11} \exp[-(755 \pm 33)/T) cm^3$ molecule⁻¹s⁻¹和 Vinckier 與 Debruyn 所報導的 k₃₋₁₂(T) = $(2.2 \pm 1.1) \times 10^{-11} \exp[(-1.5 \pm 0.3) \text{ kcal mol}^{-1}/\text{RT}]$ 經外插至高溫後相當符合本次實驗 結果。有關 ³CH₂ + O₂ 反應途徑,我們參照之前 Moore 實驗組的文獻 資料結合此次實驗結果得到以下反應途徑分枝比: CO + OH + H途徑: 0.3, CO₂+2H途徑: 0.15, CH₂O + O 途徑: 0.3, CO₂+H₂途徑: 0.25。

Kinetic Study of the Reactions of ³CH₂ with H₂ and O₂ at High Temperature

Student : Pei-Fang Lee

Adviser: Dr. N. S. Wang

M. S. Program, Department of Applied Chemistry National Chiao Tung University

ABSTRACT

A diaphramless shock tube coupled with atomic resonance absorption spectrophotometry (ARAS) was employed to study the kinetics of the reactions of triplet methylene with oxygen and hydrogen between 1800 and 2000 K.

We obtained Ln ($k_{3.2}$ / cm³ molecule⁻¹ s⁻¹) = - (17.28 ± 0.79) - (30.17 ± 1.40) × 10³ / T, the second step rate constants of the CH₂I₂ thermal decomposition, in this temperature range . This is the first experimental result reported on the CH₂I₂ thermal decomposition.

For the reaction ${}^{3}\text{CH}_{2} + \text{H}_{2}$, Ln (k_{3-8} / cm^{3} molecule⁻¹ s⁻¹) = - (22.0 ± 1.9) - (7.8 ± 3.7) × 10³ / T was yielded in this study. Present experimental results are found to be consistent with the calculations from our previous work of 0.48 ppm CH₃OH + 1000 ppm H₂ thermal decomposition. We also determined the rate constants for CH₃ + H₂ reaction , Ln (k_{3-9}/cm^{3} molecule⁻¹ s⁻¹) = - (16.8 ± 2.4) - (21.0 ± 4.7) × 10³ / T , which agrees with previous references. k_{3-12} (T) = (2.84 ± 0.12) × 10⁻¹¹ exp[-(755 ± 33)/T) cm³ molecule⁻¹ s⁻¹ is the total rate constant for

³CH₂ +O₂ determined in this study. Our results agree with that of Vinckier and Debruyn when extrapolation at high temperature. k_{3-12} (T) = $(2.2 \pm 1.1 + 1.1 + 10^{-11} \exp[(-1.5 \pm 0.3) \text{ kcal mol}^{-1}/\text{RT}]$ that predicted by Vinckier 與 Debruyn. After combining the result of this work and Moore et al. the branching fractions for this reaction were obtained as follow : CO + OH + H channel : 0.3 , CO₂ + 2H channel : 0.15 , CH₂O + O channel : 0.3 , CO₂ + H₂ channel : 0.25 .

很開心完成了碩士班充實的學業,兩年來,學術上所做的研究、 周遭發生的事、遇到的人,都讓我獲益良多。感謝許多人的幫忙,讓 此篇論文能夠順利完成,首先,最感謝的是我的指導教授王念夏老師, 感謝王老師在研究方向、觀念統整、架構組織…等提供許多建議,在 此獻上最深的謝意。同時,也非常感謝來自日本的松為宏幸教授,一 位善良温暖的老爺爺,在實驗上遇到瓶頸的時候,總是給予我信心與 鼓勵,對於實驗上的問題,總是不厭其煩的指導以及提供解決問題的 建議,另外,感謝口試委員林明璋院士與李英裕博士對本論文疏漏處 之指正,使之更加完備。當然,還要感謝學長稚偉、鼎緯、勃學、穎 輝以及學姊雯妃對於我提問的問題總是不厭其煩的解答,同窗其峰兩 年多來的討論與鼓勵,還有林明璋實驗室的學長姊們以及鎮全和威宇 學弟,總能帶給實驗室愉快的氣氛;感謝他們為我碩士班的兩年時光, 留下許多美好的回憶。當然,不能忘記的,還有我的好朋友喬欣,謝 谢妳總在我沮喪難過的時候安慰我,給我鼓勵。

最後,特別將本文獻給我最愛的爸爸和姊姊,感謝你們無怨無悔 及無時無刻的關懷照顧,給予我無限的力量與支持,願以此與你們共 享。

v

總目錄

		頁次
中文摘要		i
英文摘要		iii
謝誌		V
總目錄		vi
表目錄		vii
圖目錄		viii
第一章	緒論	1
1-1	文獻統整與研究動機	1
1-2	參考文獻	6
第二章	實驗裝置與實驗步驟	7
2 - 1	實驗裝置	7
2-1-1	衝擊波的特性	7
2-1-2	衝擊波管	9
2 - 2	偵測系統	12
2-2-1	微波共振燈	. 12
2-2-2	真空紫外單光儀	.13
2-2-3	訊號放大器	. 14
2-2-4	示波器	14
2-3	樣品配置	15
2-3-1	無水二碘甲烷	15
2-3-2	配置樣品	15
2-4	溫度和濃度計算	17
2-5	實驗條件	18
2-6	參考文獻	. 19
第三章	結果與討論	27
3-1	CH ₂ I ₂ 熱解	27
3-1-1	碘原子校正曲線	28
3-1-2	CH2l2熱解實驗結果與討論	31
3 - 2	³ CH ₂ +H ₂ 反應研究	33
3-2-1	氫原子校正曲線	33
3-2-2	³ CH ₂ +H ₂ 熱解實驗結果與討論	35
3 - 3	³ CH ₂ +O ₂ 反應研究	37
3-3-1	³ CH ₂ +O ₂ 反應機構探討	37
3-3-2	³ CH ₂ +O ₂ 熱解實驗結果與討論	39
3-4	參考文獻	44

表目錄

		頁次
表 1-1	³ CH ₂ +O ₂ 速率常數文獻值比較表	4
表 2-1	常用微波共振燈放射之紫外原子光譜線	26
表 3-1	不同濃度 C2H5I 熱解實驗之條件	49
表 3-2	0.1 ppm CH ₂ I ₂ 熱解的實驗條件	53
表 3-3	在 1560-2010 K 之溫度範圍, 0.1 ppm CH ₂ I ₂ 熱解的實	驗所
	得之總反應速率常數值 k3-2	54
表 3-4	不同濃度 C2H5I 熱解實驗之條件	56
表 3-5	在 1356-1437 K 之溫度範圍,(0.2、0.4ppm) ³ CH ₂ +300	Oppm
	H2實驗條件與所得之反應速率常數值 k3-8、k3-9	67
表 3-6	使用於 ³ CH ₂ +H ₂ 、 ³ CH ₂ +O ₂ 模擬中新納入的反應機制]
		77
表 3-7	在 1804-2050 K 之溫度範圍, (0.2、0.4ppm) ³ CH ₂ +100	Oppm
	O2實驗條件與所得之反應速率常數值 k3-12	82
表 3-8	不同濃度 C2H5I+100ppmO2 熱解實驗之條件9	3
表 3-9	在 1803-2003 K 之溫度範圍, 0.2ppm ³ CH ₂ +100ppm ()2實
	驗條件	94

圖目錄

頁次 ³CH₂ + O₂反應速率 k₃₋₁₂ 各實驗組的量測值與 GRI 3.0 版的 圖 1-1 模擬結果之比較..... 3 ³CH₂ + H₂ → CH₃+H 反應速率 k_{3.8} 各實驗組的量測值比較 圖 1-2 5 圖 2-1 入射衝擊波與反射衝擊波時間與位置的關係圖21 圖 2-2 圖 2-3 壓電變化偵測器(壓電材料)的構造及相關電路圖..... 22 圖 2-4 圖 2-5 圖 2-6 圖 2-7 不同濃度 C2H5I 熱解的吸收度對時間作圖(1)......46 圖 3-1 圖 3-2 圖 3-3 圖 3-4 圖 3-5 圖 3-6 2010 K, 0.1 ppm CH₂I₂ 熱解實驗結果......52 圖 3-7 CH₂I + M → ³CH₂+M 反應速率 k₃₋₂之 Arrhenius 圖...........55 圖 3-8 圖 3-9 1628 K C₂H₅I 熱解實驗圖58 在 1624-1664 K 之溫度範圍,不同濃度 C2H5I 熱解的吸收 圖 3-10 3-11 在 1556-1572 K 之溫度範圍,不同濃度 C₂H₅I 熱解的吸收 圖 度對時間作圖......60 在1431-1464 K 之溫度範圍,不同濃度 C₂H₅I 熱解的吸收 圖 3-12 度對時間作圖......61 在1330-1386 K 之溫度範圍,不同濃度 C2H5I 熱解的吸收 圖 3-13 圖 3-14 在吸收度(A)大於 1.48 下, 氫原子校正曲線............ 64 圖 3-15 在吸收度(A)小於 1.48 下, 氫原子校正曲線........... 65 圖 3-16

圖 3-17 校正曲線之溫度參數 f_T66

圖	3-18	2044 K, 0.4 ppm CH ₂ I ₂ +300 ppm H ₂ 熱解實驗結果與模擬 結果68
圖	3-19	1958 K, 0.4 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 结果 69
圖	3-20	1952 K, 0.4 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 4 里 70
圖	3-21	2041 K, 0.2 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 结果 71
圖	3-22	2002 K, 0.2 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 結果
圖	3-23	1938 K, 0.2 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 結果
圖	3-24	1902 K, 0.2 ppm CH ₂ I ₂ +300 ppm H ₂ 熱解實驗結果與模擬 結果
圖	3-25	1855 K, 0.2 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 結果 75
圖	3-26	1801 K, 0.2 ppm CH ₂ I ₂ + 300 ppm H ₂ 熱解實驗結果與模擬 結果 76
圖	3-27	³ CH ₂ + H ₂ → CH ₃ +H 反應速率 k ₃₋₈ 之 Arrhenius 圖78
圖	3-28	³ CH ₂ + H ₂ → CH ₃ +H 反應速率 k ₃₋₈ 與逆反應速率 k ₋₃₋₈ 之比較 圖
圖	3-29	CH3 + H2 → CH4+H 反應速率 k3-9之 Arrhenius 圖 80
圖	3-30	³ CH ₂ + O ₂ → Products 之位能圖
圖	3-31	2055 K, 0.4 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氫原子 偵測)與模擬結果
圖	3-32	1954 K, 0.4 ppm CH ₂ I ₂ + 100 ppm O ₂ 熱解實驗結果(氫原子 偵測)與模擬結果
圖	3-33	1858 K, 0.4 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氫原子 偵測)與模擬結果
圖	3-34	2005 K, 0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氫原子 偵測)與模擬結果
圖	3-35	1938 K, 0.2 ppm CH ₂ I ₂ + 100 ppm O ₂ 熱解實驗結果(氫原子 值測)與模擬結果
圖	3-36	1902 K, 0.2 ppm CH ₂ I ₂ + 100 ppm O ₂ 熱解實驗結果(氫原子 值測) 與模擬結果 88
圖	3-37	1858 K, 0.2 ppm CH ₂ I ₂ + 100 ppm O ₂ 熱解實驗結果(氫原子 值測) 與模擬結果 89
圖	3-38	1804 K, 0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氫原子

		偵測)與模擬結果	90
圖	3-39	³ CH2+O2反應速率 k3-12之 Arrhenius 圖	91
圖	3-40	氧原子校正曲線	.92
圖	3-41	2003 K, 0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氧	【原子
		偵測)與模擬結果	95
圖	3-41	1940 K,0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氧	【原子
		偵測)與模擬結果	96
圖	3-43	1903 K, 0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氧	【原子
		偵測)與模擬結果	97
圖	3-44	1857 K, 0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氧	【原子
		偵測)與模擬結果	98
圖	3-45	1803 K, 0.2 ppm CH ₂ I ₂ +100 ppm O ₂ 熱解實驗結果(氧	【原子
		偵測)與模擬結果	99

第一章 緒論

利用燃燒所產生的熱能供給人類所需已有悠久的歷史,從利用火 烹煮食物開始,到現今的內燃機及火力發電,讓所有的交通工具和電 器能夠運行,帶給人類生活無窮之便利。然而燃燒過程中發生的化學 反應及產物往往帶來相當深遠的影響。現今石化燃料是最為普遍的能 源,石化燃料燃燒後,有害氣體的產生,造成了空氣污染,伴隨而來 的人體呼吸道病變、酸雨的形成,直至全球性的影響。所以研究高溫 的化學反應,一方面,可以讓我們了解某些特定污染物產生的途徑。 並藉此結果提供減少或避免污染物質的解決方法。另一方面,其結果 亦可幫助我們了解使用那些方法可以提昇燃燒的效能,以達成最有效 率的能量轉換。

1-1 文獻的統整與研究動機

本實驗室所使用之衝擊波管相對於傳統衝擊波管具有控溫精準 之優勢,每次溫差為個位數絕對溫度,極佳的溫度再現性,使我們在 分析上,可取其平均值,因此降低訊/雜比,增加靈敏度及數據可信 度。另外,配合原子共振吸收系統對 H、O、I 等原子有極佳之偵測 極限,可達 10¹¹ atom/cm³,所以可適用於低濃度之樣品,能避免二次 反應帶來的干擾。藉此再現性佳及高偵測極限的實驗條件,本實驗室 曾進行 0.48 ppm、 10 ppm、100 ppm、以及 1000 ppm 的甲醇熱解實 驗¹⁻²。³CH₂為不飽和碳氫化合物熱解過程中的一個重要的產物,其 相關反應有: 3 CH₂ + H₂ → products、 3 CH₂ + O₂ → products,其中,關 於反應 3 CH₂ + O₂ → products,過去雖有多組實驗組 ${}^{3.8}$ 進行量測,如 圖(1-1)所示,而所有的文獻數據亦列在表(1-1)中,但在高溫下的反應 速率及反應途徑分枝未有可靠且可用的文獻數據,與使用 GRI 3.0 版 所得的模擬結果亦未有所符合。而反應 3 CH₂ + H₂ → CH₃ + H,從過 去的文獻資料中 ${}^{9.13}$ 可知僅有低溫範圍的實驗數據資料,如圖(1-2)所 示,而在高溫下的反應速率未有可用的數據;於此,吾等將利用二碘 甲烷在高溫下熱解產生 3 CH₂,並深入研究反應 3 CH₂ + O₂、 3 CH₂ + H₂ , 以期能得可靠結果來解決上述問題。同時亦研究 CH₂I₂ 的熱解動力 學。

本篇論文主要是探討三重態亞甲基 ³CH₂ 在高溫下的反應動力學, 利用衝擊波管提供瞬間的高溫狀態,藉由原子共振吸收光譜法(ARAS) 來偵測氧原子、碘原子以及氫原子的濃度變化,測得 CH₂I₂ 熱解、³CH₂ +O₂、³CH₂ + H₂在高溫下的反應速率常數以及反應途徑分支比。

表(1-1): CH2+O2 速率常數文獻值比較表

溫度/K	總壓/Pa	$A_0 / 10^{-12(a)}$	Ea/R	實驗法 ^(b)	文獻
293	13.33-680	3.24 ± 0.26		FP/IR	Ref. 3
298	$133-1.2 \times 10^5$	1.2		FP/UV-Vis	Ref. 4
300 -1000		41	3141.9	combustion modeling	Ref. 5
233 - 433	151 - 191	14.5 3.32	2114.8 508.5	EB/LMR	Ref. 6
300 - 2500		40		combustion modeling	Ref. 7
1000 -1800	$5.07 \times 10^4 - 1.01 \times 10^5$	374	6027.2	FP/UV-Vis	Ref. 8

^a 單位: cm³ molecule⁻¹ s⁻¹

^b FP: Flash Photolysis

IR: Infrared spectroscopy

UV-Vis: Ultraviolet and Visible spectroscopy

EB: Electron Beam

LMR: Laser Magnetic Resonance

1-2 參考文獻

- Lu, K. W.; Matsui, H.; Huang, C.-L.; Raghunath, P.; Wang, N.-S.; Lin, M.C. J. Phys. Chem. A 2010, 114, 5493.
- Hsu, D. W.; Matsui, H.; Huang, C.-L.; Raghunath, P.; Wang, N.-S.; Lin, M.C. J. Phys. Chem. A 2011
- Darwin, D. C.; Young, A. T.; Johnston, H. S.; Moore, C. B. J. Phys. Chem. 1989, 93, 1074.
- Pilling, M. J.; Robertson, J. A. J. Chem. Soc. Faraday. Trans. 1 1977, 73, 968.
- Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, Th.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J. T.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 2005, 34, 1059.
- 6. Bley, U.; Temps, F.; Wagner, H. Gg.; Wagner, H. Gg.; Wolf, M. Ber Bunsenges. Phys. Chem. 1992, 96, 1043.
- 7. Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15, 1087.
- 8. Dombrowsky, Ch.; Hwang, S. M.; Rohrig, M.; Wagner, H. Gg. Ber Bunsenges. Phys. Chem. 1992, 96, 194.
- 9. Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data. 1986, 15, 1087
- 10. Gesser, H.; Steacie, E. W. R. Can. J. Chem. 1956, 34, 113.
- 11. Darwin, D.C.; Moore C. B. J. Phys. Chem, 1995, 99, 13467-13470.
- 12. Pilling, M. J.; Robertson, J. A. J. Chem. Soc. Faraday. Trans. 1 1977, 73, 968.

13. Brown, W.; Bass, A. M.; Pilling, M. J. Chem. Phys. 1970, 52, 5131.

第二章 實驗裝置與實驗步驟

2-1 實驗裝置

對於如何製造一個均勻且高溫的環境,在研究高溫動力學來說 是一件相當重要的事。此次用以研究³CH2 一系列反應的高溫實驗系 統為活塞型衝擊波管-原子共振吸收光譜系統 (diaphragmless shock tube-atomic resonance absorption spectroscopy, ST-ARAS),本實驗室的 活塞型衝擊波管具極佳的再現性,在分析上,可取其平均值,增加數 據可信度。另外,配合原子共振吸收系統對 H、O、I 等原子有極佳 之偵測極限,可達10¹¹ atom/cm³,所以能適用於低濃度之樣品,可避免 二次反應帶來的干擾。圖(2-1)為整個系統的構造圖。1.2 此系統大致可 以分為兩個部份:一.衝擊波管,主要利用活塞型的衝擊波管提供研 究所需的高溫環境。衝擊波管中尚包括衝擊波速度偵測裝置,其主要 儀器包含壓力變化偵測器與計時器。二 偵測系統,包含微波共振燈、 真空紫外單光儀、光電倍增管、訊號放大器及示波器。實驗原理與儀 器的運作方式將在接下來的幾個小節作介紹。

2-1-1 衝擊波特性

在此利用圖(2-2)來說明穩定狀態入射衝擊波、反射衝擊波與位置 (x)、時間(t)相對應的關係。由流體動力學理論的推導可以讓我們了 解衝擊波過後,氣體分子的熱力學狀態之變化情形以及利用衝擊波原 理可將一系統加熱到多高的溫度。在衝擊波的傳導過程中,氣體必須 遵守三大守恆定律式(質量、動量及能量守恆),藉助三大守恆式, 可以推導出 Rankine-Hugoniot 方程式組:

$$\rho_1 u_1 = \rho_2 u_2 = \phi_m \tag{2-1}$$

$$\rho_1 u_1^2 + P_1 = \rho_2 u_2^2 + P_2 = \phi_i \tag{2-2}$$

 $\frac{u_1^2}{2} + E_1 + \frac{P_1}{\rho_1} = \frac{u_2^2}{2} + E_2 + \frac{P_2}{\rho_2} = \frac{\phi_e}{\phi_m}$ (2-3) 其中 H 是單位質量之焓 (enthalpy), $H = E + (P/\rho)$, $m\phi_m \cdot \phi_i \mathcal{B}\phi_e$ 分別代表的是質量、動量及能量之通量, $m\rho$ 為密度、u為衝擊波的 速度, P 為壓力, E 為能量, 下標 I 和 2 分別代表衝擊波通過前和通 過後的氣體分子之狀態。Rankine-Hugoniot 方程式, 皆有其代表的物 理意義, 分子進入與脫離這個衝擊波作用的區域形成穩定狀態, 即分 子在衝擊波作用前後質量為恒定; 由此公式推導求得氣體分子的起始 狀態(下標 1)與反射衝擊波通過後(下標 5)的熱力學狀態的比值:

$$\frac{P_{5}}{P_{1}} = \left[\frac{\left(\frac{3\gamma-1}{\gamma-1}\right)M_{1}^{2}-2}{M_{1}^{2}+\frac{2}{\gamma-1}}\right]\left[\frac{\left(\frac{2\gamma}{\gamma-1}\right)M_{1}^{2}-1}{\frac{\gamma+1}{\gamma-1}}\right]$$
(2-4)

$$\frac{T_{5}}{T_{1}} = \frac{\left[\left(\frac{3\gamma - 1}{\gamma - 1}\right)M_{1}^{2} - 2\right]\left[2M_{1}^{2} + \frac{3 - \gamma}{\gamma - 1}\right]}{\left(\frac{\gamma + 1}{\gamma - 1}\right)^{2}M_{1}^{2}}$$
(2-5)

上式中,M為馬赫數(mach number), γ 為熱容量 C_p/C_v 的比值, 詳細的原理可參考本實驗室前次研究之文獻^{3,4}。

2-1-2 衝擊波管
依其功能及其構造我們可將衝擊波管分成低壓反應區、高壓驅動
區和真空抽氣系統三個部份,分別敘述如下:
(a)低壓反應區(或稱為被驅動區)
此區由內徑 7.6 公分,長度約 5.9 公尺的不鏽鋼管所組成。不鏽

田區自徑,5 公方,6 反复約3.5 公尺的水蹦點皆所盈成,小蹦
 翻答的內側經過電子鍍膜處理,表面極為光滑不易吸附雜質,有利於
 達到高度真空。在距離不鏽鋼管末端 3、20、30、及 40 公分處,裝
 置了四個壓力變化感知器,用以偵測衝擊波的速度。不鏽鋼管的末端
 以 SIUV 石英窗口隔絕大氣保持真空,必要時可將光解雷射光由此導
 入。此區是待測物進行反應的地方,當衝擊波進入此區後,會壓縮其
 內的待測氣體,而產生高溫。

由上一節的實驗原理可知,低壓反應區不鏽鋼管長度的選擇與研究的溫度範圍有關。衝擊波管產生的溫度範圍,是由衝擊波的速度所

決定。以本系統而言,可以研究的溫度範圍約在1000-4500K。 (b)高壓驅動區

此區主要由主活塞、副活塞[圖(2-1)中綠色的區域]和兩個高壓氣 室[圖(2-1)中黃色與藍色的區域]所構成。主活塞的功能是分隔高壓驅 動區和低壓反應區。副活塞的功能是協助主活塞能更快速的向後退, 造成均匀的衝擊波。它是藉由黃色氣室與藍色氣室間的壓力差,控制 活塞的運動,產生衝擊波。而控制活塞運動的程序是,首先利用 V2 的進氣閥將高壓的氦氣灌入黃色的高壓氣室中,此時副活塞會將黃色 氣室分隔成兩個部分。因為 V1 進氣閥與 V2 進氣閥之間有一導管相 通,所以打開 V1 進氣閥時,藍色氣室與黃色氣室的壓力會自動平衡, 高壓會迫使主活塞緊緊的壓住低壓區的衝擊波管,達到分離高壓驅動 區與低壓反應區的效果。此時我們再藉由 V2 進氣閥增加高壓氣室的 壓力,直到我們所需的壓力值。待達到所需的壓力後,關閉 V1、V2 進氣閥,此時黃色與藍色氣室完全隔離。最後再將 V3 洩氣閥打開, 黄色氣室的壓力驟然變小 ,使副活塞快速的向後退。亦使得藍色氣 室的高壓氣體便將主活塞瞬間地推開,並進入低壓區,形成衝擊波往 低壓反應區行進,壓縮其內的反應氣體。

(c)真空抽氣系統

衝擊波管的真空度是以一渦輪分子幫浦(turbo molecular pump;

Varian, Turbo-V 700HT, 700 L/s)及一乾式漩渦真空幫浦 (dry-scroll vacuum pump; Varian, Triscroll 300, 250 L/m)的組合來維持。衝擊 波管在抽氣 30 分鐘後真空度可達 5.0×10⁻⁷ Torr, 如再加熱管壁, 並持續抽氣三小時, 可達終極壓力 2.5×10⁻⁷ Torr。

在衝擊波管的實驗中,衝擊波速度的偵測是相當重要的,因為所 有的實驗條件如:壓力、濃度、及溫度,皆必須藉助它來換算求得, 因此速度偵測的精確性對整個實驗的結果有相當大的影響。

本實驗的速度偵測系統是由裝設的位置在距離衝擊波管末端40、 30、20、及3公分處的四個壓力變化感知器 S1-S4及三個時間計數器 (time counter, Tabor Electronic LTD, model 6010)所組成。壓力變 化感知器的構造及相關電路如圖(2-3)所示。當衝擊波抵達偵測器所在 的位置時,衝擊波會壓縮反應區內的氣體,造成壓力的突然升高,氣 體分子撞擊緊貼管壁的壓電裝置,引發其觸發電晶體(FET 2SK30) 送出 0.5-5.0 V 的信號,此信號可觸發時間計數器。此時如果能測出 兩個壓力變化感知器所送出之訊號的時間差,即可求出入射衝擊波前 進的速度。三個時間計數器分別量測衝擊波通過壓力變化感知器 S1 與 S2、S2 與 S3、及 S3 與 S4 的時間差[如圖(2-1)所示],進而求出每 一區間的衝擊波速度,將之平均即為所求。不過要注意的一點是,當 三個區域所得的時間差(每走 10 或 17 cm 所花的時間),彼此之間大 於 5%的差異時,則表示此衝擊波之行進有問題,因而此次實驗所得的結果不可採用。

2-2 偵測系統

2-2-1 微波共振燈

微波共振燈在訊號偵測系統扮演的角色是當作偵測光源,其原理 為利用氦氣為載流氣體,以微波裂解(microwave discharge)前驅物 分子而產生激發態的原子,並放出該原子的特性光。表(2-1)列出一系 列常用的紫外原子光譜線。1

本實驗使用氫、碘及氧原子共振螢光做為偵測系統光源。

氫原子的共振螢光:先將 1%氫氣和 99%氦氣混合,在工作壓力 3.6 Torr 的條件下以 60W 的功率微波裂解產生激發態的氫原子,接著 激發態的氫原子放出波長 121.6nm 的特性螢光。

碘原子的共振螢光:先將 0.8% 12和 99.2%氦氣混合,在工作壓力 10.0 Torr 的條件下以 60W 的功率微波裂解產生激發態的碘原子,接 著激發態的碘原子放出波長 178.3nm 的特性螢光,其裝置如圖(2-4) 所示。

氧原子的共振螢光:將內含約1%氧氣及99%氦氣的混合氣體,在 工作壓力8Torr左右的條件下,以60W的功率微波裂解氧分子,產 生的激發態氧原子可在130.22、130.49、130.6nm 放出特性螢光 $({}^{3}S_{1} \rightarrow {}^{3}P_{2} \times {}^{3}S_{1} \rightarrow {}^{3}P_{1} \times {}^{3}S_{1} \rightarrow {}^{3}P_{0})$ 。但是由於目前使用之單光儀解析 度為 1.4nm,所以其放光光譜無法區分此三重態之譜線,而僅能觀察 到共振螢光在波長範圍 130.22–130.60nm 之間所形成的寬廣譜帶 (broad band),目前所觀測的中心波長為 130.2nm。

2-2-2 真空紫外單光儀

上述共振螢光經過直徑 12.7mm、厚度 2mm 的氟化鎂(MgF₂)平面 窗口後,進入衝擊波管中反應區,經由反應產生的氫、碘或氧原子吸 收後再通過另一側相同的氟化鎂平面窗口離開衝擊波管,進入單光儀 (Acton Research Corporation, model VM-502, 1200 G/mm)分光, 後再由光電倍增管偵測。由單光儀的線性色散的倒數(reciprocal linear dispersion)方程式: **1896**

 $D^{-1} = d/nF$ (2-6)

其中 d 為光柵之刻痕間距 (groove spacing), n 為干涉級數 (order of the diffraction), F 為反射鏡焦距,推算得到其線性色散的倒數 D⁻¹ = (1 mm/1200 gr)/(1×208 mm)=4 nm/mm。由於進行實驗時單光儀入 口及出口狹縫寬度皆為 350 µm,由上式得到的結果可以推算得到單 光儀之解析度為 4×0.35 = 1.4 nm。在氟化鎂平面窗口和單光儀之間放 置一中心孔洞大小 5mm×30mm 的 PE 膜,由於 PE 膜會將氫原子放光

完全吸收,故只有由中心狹縫穿過的光可以被 PMT 偵測;放置此 PE 膜狹縫之目的是為了減少觀測區域,如此可避免反射衝擊波通過觀測 區時,波前後低/高溫之欲偵測原子濃度同時被觀測到而造成的干擾, 在示波器上產生偵測原子的訊號呈現延遲的狀態會被改善。

2-2-3 訊號放大器

光電倍增管所得的電流可利用訊號放大器作進一步的訊號增大。 本實驗所用的訊號放大器有兩種,分別是電流放大器(Stanford Research Systems,SR570; low-noise current preamplifier)及電壓放 大器(Stanford Research Systems,SR560; low-noise preamplifier)。 PMT 所得的電流會先經電流放大器放大,並將電流訊號轉為電壓的 訊號。目前電流放大器 SR570 的設定為放大倍率:2 μA/V; filter type: low-pass 12 dB; bandwidth.: 1 MHz; gain mode: low-noise。而轉換 所得的電壓訊號會再由電壓放大器作進一步的訊號放大。而目前電壓 放大器 SR560 的設定為放大倍率:5; filter type: low-pass 12 dB; bandwidth.: 1 MHz; gain mode: low-noise; coupling: DC。

2-2-4 示波器

共振螢光變化的訊號最後會被傳送到示波器上,由其捕捉瞬間的 信號波形,利用電腦擷取波形變化進而得到濃度衰減速率常數值。本 實驗中使用 Tektronix TDS 380 之數位示波器(digital real time oscilloscope),解析度 8 bit,取樣速度為 2 GS/s,頻寬為 400 MHz。 而實驗時示波器之設定為:horizontal scale time scale:100 µs/格; vertical scale:500 mV/格;coupling:DC;trigger level:780 mV;coupling: DC;trigger source:Ext.。本實驗是以最後一個壓力變化偵測器送出 的電壓訊號,當作訊號觸發來源。當衝擊波到達此偵測器時,其可觸 發示波器開始運作。

2-3 樣品的配製

2-3-1 無水 CH2I2 的製備方式

本實驗所使用的 CH₂I₂,純度為 99%(Aldrich 生產),進行實驗時 亦必須先進行上述除水的步驟。如圖(2-5)所示,一開始將 CH₂I₂ 置入 瓶裡,利用液態氮使 CH₂I₂ 凝固, CH₂I₂ 凝固之後將上方的氣體利用 真空系統抽走,將不純物抽走之後再讓瓶中的溫度回到室溫。重複此 步驟二到三次,即完成純化步驟的起始樣品

2-3-2 樣品配置系統的使用

樣品配製系統如圖(2-6)所示,由六個不鏽鋼樣品瓶及三個電容式 壓力計(MKS 211BA-25000B、211BA-00010B、622A-000625398) 所組成。在加熱烘烤所有樣品瓶及管件,並且利用渦輪分子泵浦對系 統抽氣。經過八小時後,真空度可達 3.0×10⁻⁷ Torr 左右。

在配製稀薄濃度之混合氣體時,我們採取逐次稀釋的方式。即先 配製一瓶濃度較高(通常是 1000 ppm)的混合氣體,然後再利用此 高濃度的樣品稀釋成所需濃度(依本實驗約 0.2 到數百 ppm)之氣體 樣品。配製樣品的步驟如下:

以在1號鋼瓶中配製 3000 Torr 的 1000 ppm CH₂I₂ 為例,首先關閉除 了 V12 與 V14 號以外的閥,隨後打開 V3 與 V4 閥,將 30 Torr 的 CH₂I₂ 灌入鋼瓶1中,關閉 V4 閥,靜置 30 分鐘左右後,打開 V9 閥,利用 真空幫浦將氣體抽掉,當真空度到達 5.0×10⁻⁷ Torr 時, 關閉 V9 閥, 再次打開 V4 閥,灌入 3 Torr 的 CH2I2於1號鋼瓶中,待壓力到達預 定值後,關閉 V3 與 V4 閥,並打開 V9 閥,將鋼瓶外區域的氣體抽 掉,在(圖 2-6)中以藍色區塊表示,當真空度再次到達 5.0×10⁻⁷ Torr 時,關閉 V9與 V14 閥,打開 V2 閥,將 3000 Torr 高純度的 Ar 灌入 藍色區域的管中,然後關 V2 閥,開 V3 閥,此時藍色區域的高壓 Ar 氣體,會向1號鋼瓶擴散,待壓力接近平衡時,關V3 閥,再次打開 V2 閥將高壓 Ar 氣體灌入藍色區域的管中, 關 V2 閥, 開 V3 閥, Ar 再次灌入鋼瓶中,如此反覆數次,值到鋼瓶的壓力到達 3000 Torr 為 止,然後將其靜置一晚,待其混合均勻,如此即可得 1000 ppm 的 CH_2I_2 樣品。接下來我們可以利用上述步驟將高濃度氣體樣品稀釋成所需的

濃度。本實驗所使用的各類高純度氣體如下: Ar: 99.9995 %, He: 99.9995 %(均為 AGA Specialty Gas 生產), O₂: 99.999 %, H₂: 99.9995 % 。所配置的混和氣體濃度範圍如(圖 2-7)所示。

2-4 温度及濃度的計算

在衝擊波管的研究中,反應區的壓力、濃度與溫度皆由流體力學 相關方程式所換算求得,只要能正確的估計馬赫數的數值,就可以求 得壓力、濃度與溫度等物理量,而入射衝擊波的馬赫數就是入射衝擊 波速度 u_1 和聲速 a_1 的比值。在衝擊波管的實驗中,聲速 a_1 值係由氣 體動力學理論求得: $a_1 = (\gamma R_s T_1)^{1/2}$ (2-7) 其中 $\gamma = C_P/C_V$,因為本實驗係以Ar 作為介質,故單原子分子 $\gamma = 5/3$ 。 R_s 為單位重量(kg)的氣體常數,Ar 的 $R_s = 8.314/0.039984 = 207.9$ m²s⁻²K⁻¹,可得:

$$a_1 (Ar) \cong 18.62 T_1^{1/2} \text{ m s}^{-1}$$
 (2-8)

在298 K時,利用上式求得以Ar為介質之聲速應為18.62×298^{1/2}=321 m s⁻¹。在 1605 K 時利用上式求得以 Ar 為介質之聲速應為 18.62×1605^{1/2}=745.96 m s⁻¹。

衝擊波的速度則由實驗直接量測,藉由計時器所偵測到的時間差,

我們可得知衝擊波在衝擊波管的行進速度 u₁,再依式 M₁=u₁/a₁即可 求出入射衝擊波行進速率之馬赫值,再將馬赫值代入方程式(2-4)-(2-5) 便可求出反射衝擊波後,氣體分子的壓力(P₅)及溫度(T₅)。我們只要固 定驅動區和被驅動區的壓力比例,就能使入射衝擊波的馬赫數恒定, 而達到控制溫度的效果。因此使用本實驗系統,我們可以讓反應在特 定的濃度和溫度下進行。

(b) ³CH₂ + H₂反應

反應區初始壓力(P₁): 30.0 - 42.5 Torr

驅動區壓力(*P*₄): 2500 - 2625 Torr

壓縮後反應區溫度(T₅): 2050 - 1800 K

 $[CH_2I_2]_0$: (0.13 - 0.17) × 10¹³ molecule cm⁻³

 $[H_2]_0$: (190 - 250) × 10¹³ molecule cm⁻³

[Ar] : (6.3 - 8.4) × 10¹⁸ molecule cm⁻³ •

2-6 參考文獻:

- 1. Koshi, M.; Yoshimura, M.; Fukuda, K.; Matsui, H.; Saito, K.; Watanabe, M.; Imamura, A.; Chen, C. J. Chem. Phys. **1990**, *93*, 8703.
- Hsiao, C.-C.; Lee, Y.-P.; Wang, N.-S.; Wang, J. H.; Lin, M. C. J. Phys. Chem. A 2002, 106, 10231.
- Lu, K. W.; Matsui, H.; Huang, C.-L.; Raghunath, P.; Wang, N.-S.; Lin, M. C. J. Phys. Chem. A 2010, 114, 5493.
- Hsu, D. W.; Matsui, H.; Huang, C.-L.; Raghunath, P.; Wang, N.-S.; Lin, M. C. J. Phys. Chem. A 2011

圖(2-1):衝擊波管實驗系統。系統包含活塞型衝擊波管、速度偵測裝置、偵測系統、及數據處理系統。

圖(2-2):入射衝擊波、反射衝擊波與位置(x)、時間(t)相對應的關係圖

圖(2-7): CH₂I₂相關實驗所配置的混和氣體濃度範圍

表(2-1):本次實驗所使用之微波共振燈放射之紫外原子光譜線

atom	vacuum wavelength / nm	transition	A/s^{-1}	i.c.s/ cm^2
Ι	178.276	$^{2}P_{3/2} \rightarrow ^{2}P_{3/2}^{0}$	2.71×10^{8}	3.43×10 ⁻³
Ι	183.038	$^{2}P_{3/2} \rightarrow ^{2}S$	1.60×10^{7}	0.21×10 ⁻³
Н	121.566	${}^{4}P_{5/2} \rightarrow {}^{2}P_{3/2}^{0}$	6.2648×10^8	3.6838×10 ⁻³
Н	121.567	$^{2}P_{1/2} \rightarrow ^{2}S$	6.2649×10 ⁸	3.6839×10 ⁻³
0	130.217	${}^3S_1^0 \rightarrow {}^3P_2$	3.41×10^{8}	2.30×10 ⁻³
0	130.486	${}^3S_1^0 \rightarrow {}^3P_1$	2.03×10^{8}	1.38×10 ⁻³
0	130.603	${}^3S_1^0 \rightarrow {}^3P_0$	6.76×10 ⁷	0.46×10 ⁻³

8

A (A factor) : inverse of lifetime

(from NIST Atomic Spectroscopy Databases)

i.c.s (integrated cross section): 積分吸光截面積

(from NIST Atomic Spectroscopy Databases)

26

第三章 結果與討論

我們利用活塞型衝擊波管-原子共振吸收光譜(ARAS)技術在高溫 (1800-2050 K)下來研究 ³CH₂的相關反應:

(a)熱解極低濃度(0.1 ppm)之 CH_2I_2 ,測量反應 $CH_2I \rightarrow {}^{3}CH_2 + I$ 的 熱解速率常數。

(b)熱解極低濃度(0.2 ppm、0.4 ppm)之 CH₂I₂與 300 ppm H₂混合
 氣體,並利用模擬適解法(modeling fit method)來獲得 ³CH₂ + H₂
 的反應速率常數。

(c)熱解極低濃度(0.2 ppm、0.4 ppm)之 CH_2I_2 與 100 ppm O_2 混合 氣體,並利用模擬適解法(modeling fit method)來獲得 ${}^{3}CH_2 + O_2$ 的反應速率常數以及反應途徑分支比。

3-1 CH₂I₂(Diiodomethane)熱解實驗

找到一個可靠的 ${}^{3}CH_{2}$ 來源,是研究 ${}^{3}CH_{2}$ 相關反應動力學 的首要關鍵步驟;在本實驗中,我們使用 $CH_{2}I_{2}$ 做為熱解得到 ${}^{3}CH_{2}$ 的前驅物($CH_{2}I_{2} + M \rightarrow {}^{3}CH_{2} + 2I + M$),不同於過去在 shock tube 之高溫研究中,ketene ($CH_{2}CO$)是常被選擇作為得到 CH_{2} 的前驅 物,但是其需在較高之溫度範圍,並不適合本研究(T < 2000 K)。 更重要的是,由於 $CH_{2}I_{2}$ 在各領域上的應用性,增加了研究相關 反應的價值, CH₂I₂其應用性如下所述:

- 1. CH₂I₂在有機合成方面的多變用途。
- 2. CH₂I₂可作為 CVD 的起始材料;在固體表面上的 C-H 薄膜沉 澱。
- CH₂I₂ 是在大氣中與 O₃ 反應產生沿海微粒(coastal particle)的 主要來源。

因此,了解 CH₂I₂ 的熱穩定性以及中間產物 CH₂I 對於上述反應 機制是相當重要的。然而,過去對 CH₂I₂ 的熱解反應動力學卻沒 有可靠且有用的研究參考資料,這也是本論文研究動機之一。接 下來將依序討論 CH₂I₂ 熱解(3-1 節)、³CH₂+H₂反應(3-2 節) 及 ³CH₂+O₂反應(3-3 節)的實驗結果。 1896 3-1-1 碘原子濃度校正曲線

CH2I2熱解反應如下:1-6

 $CH_2I_2 + M \rightarrow CH_2I + I + M$ (3-1) $\triangle H^0_{298} = 51.1 \text{ kcal mol}^{-1}$

 $CH_2I + M \rightarrow {}^{3}CH_2 + I + M$ (3-2) $\triangle H^{0}_{298} = 64.4 \text{ kcal mol}^{-1}$

可藉由偵測碘原子濃度之變化,得到反應之速率常數值。首先要建構 碘原子之偵測技術,在波長178.3nm(I:²P_{3/2}→²P⁰_{3/2}),得其濃度 校正曲線,再利用碘原子共振吸收光譜(ARAS)的吸收度(A)變化來得 到碘原子濃度隨時間變化的情況。由於共振吸收的測量方法靈敏度不 高,吸收度必須夠大至足以觀察訊號的變化量。然而,Beer-Lambert law(吸收度與濃度成線性關係)是適用於低濃度的碘原子的條件,因為 高濃度的碘原子已經使得吸收度(A)與濃度偏離了線性關係,因此必 須校正碘原子的吸收度和碘原子濃度之間的關係。

 $C_2H_5 + M \rightarrow C_2H_4 + H + M$ (3-5)

C₂H₅I在高溫下會經由式(3-3)迅速的熱解產生C₂H₅自由基⁷。在高溫環 境下,有90%的C₂H₅I會經由式(3-3)熱解產生碘原子⁸,因此在衝擊波 實驗中反射衝擊波通過後熱解產生的碘原子濃度可以由C₂H₅I的起始 濃度算出(×0.9),因此利用已知濃度之C₂H₅I分子熱解實驗之吸收度來 校正碘原子濃度:

$$A(t) = \ln[I_0/I(t)]$$
 (3-6)

式(3-6)中,It代表的是反射衝擊波通過後,在時間t時光電倍增管所測 得的光强度。在實驗中,我們發現,It相較於Io強度明顯地變小了, 此乃反射衝擊波通過後C₂H₅I分子因高溫而裂解產生碘原子,產生的 碘原子會吸收碘原子共振燈的放光使得光電倍增管測到的光強度變 弱。藉由Io與It值,我們即可知道碘原子在此濃度下的吸收度A(t)大小。 由此,在吾人欲研究的溫度範圍(1363-2015 K)內,我們可以利用不 同起始濃度的C₂H₅I(0.135、0.3、0.5 ppm; 0.6-5×10¹² molecule/cm³) 熱解產生不同對應濃度的碘原子並得到其吸收度(A),進而得到碘原 子濃度與吸收度(A)之間的關係。圖(3-1)至圖(3-3)是1363至2015 K溫 度範圍內不同濃度的CoHsI熱解產生的碘原子之吸收度與時間關係圖, 本實驗選取時間軸為零時(即反射衝擊波通過後C2H5I開始熱解)的吸 收度作為該濃度下碘原子的吸收度。其實驗條件列於表(3-1)中,圖 (3-4)為不同碘原子濃度(= $0.9 \times [C_2H_5I]_0$)對吸收度A(t)作圖。可以看 出各個不同的起始濃度的數據點,其分布有重疊的部分,而且接續成 一條完整的校正曲線。然而要由不同的起始濃度得到相同或者近似的

ρ₅(高溫時的濃度),其驅動區和被驅動區的分壓必然不相同最終達到 的溫度也一定不同。在此溫度1363 – 2016 K範圍內所有吸收度(A)對 應碘原子濃度關係圖,得到的校正曲線如下式:

$$[I] / 10^{13} \text{atom} / \text{cm}^3 = (5.357\text{A}^3 - 0.902\text{A}^2 + 0.730\text{A})$$
(3-7)

得到上述校正曲線後,往後的實驗只要將所得的吸收度 A(t)代入 方程式(3-7)中,即可推算出各個時間點碘原子的濃度,進而得到 動力學資訊。

3-1-2 CH₂I₂熱解實驗結果與討論

接下來我們在1560-2010 K之溫度範圍中進行 0.1 ppm CH₂I₂ 的熱解實驗,結果示於圖(3-5)、(3-6)與(3-7)中,實驗條件列於 表(3-2)中。接著利用適解分析求出 CH₂I 熱解產生 ³CH₂的反應 速率常數值 k₃₋₂:

 $CH_2I_2 + M \rightarrow CH_2I + I + M$ (3-1)

$$CH_2I + M \rightarrow {}^{3}CH_2 + I + M$$
(3-2)

其中,在溫度高於1500K以上的實驗條件下(本實驗溫度:1550-

2010 K), CH₂I₂ 熱解之第一步驟(3-1)之速率遠大於反應(3-2), 因此量測所得為反應(3-2)之速率常數值。在此溫度範圍所測得之 速率常數值,如表(3-3)所列,在(0.09-7.86)×10⁻¹⁵ cm³ molecule⁻¹ s⁻¹,其 Arrhenius 關係如圖(3-8)所示:

Ln (k_{3-2} / cm³ molecule⁻¹ s⁻¹) = - (17.28 ± 0.79) - (30.17 ± 1.40) × 10³ / T (I)

這是關於 CH₂I₂ 熱解反應所做的第一組實驗量測,在此之前,並未有 實驗組進行此實驗。

所得之反應速率常數值 $k_{3,2}$, 將被應用於後續之 ${}^{3}CH_{2} + H_{2}$ (3-2 節)及 ${}^{3}CH_{2} + O_{2} Q 應 (3-3 節)的模擬適解中。同時,此熱解反應也對$ $於後續之 <math>{}^{3}CH_{2} + H_{2} Q {}^{3}CH_{2} + O_{2} Q 應提供溫度範圍選擇上的重要資$ $訊,若 CH_{2}I_2 能完全熱解得到 <math>{}^{3}CH_{2}$ (即[${}^{3}CH_{2}$] = $[CH_{2}I_{2}]_{0}$),則所觀察 到的碘原子濃度[I] 則必須要等於兩倍的二碘甲烷起始濃度[CH_{2}I_{2}]_{0}, 即[I] / $[CH_{2}I_{2}]_{0} = 2$,其結果如圖(3-5)、圖(3-6)、圖(3-7)所示,在 1560 K 時,得到的 I 原子濃度僅約與 $[CH_{2}I_{2}]_{0}$ 相當,表示 CH_{2}I_2 並未完全 熱解,但在 1848 K 及 2010 K 時,則觀察到 CH_{2}I_{2} 完全熱解。由此得 知以 CH_{2}I_{2} 為 ${}^{3}CH_{2}$ 前驅物之實驗的溫度範圍必須高於 1800 K,上述 結果也顯示,次級反應 CH_{2}I_2 → CHI + HI 、CH_{2}I_2 → CH_{2} + I_{2} 以及 CH_{2}I → CH + HI 在此反應系統中並不重要。 **3-2** ³CH₂+H₂反應研究

3-2-1 氫原子濃度校正曲線

當完成了 0.1 ppmCH₂I₂ 的熱解實驗後,繼續在 CH₂I₂ 能完全 熱解得到 ³CH₂ 的溫度範圍(1800 – 2050 K)下,進行 ³CH₂+H₂反 應之動力學研究,其反應途徑如下:

 $C_2H_5I + M \rightarrow C_2H_5 + I + M$ (3-3)

$$\rightarrow \qquad C_2H_4 + HI + M \qquad (3-4)$$

 $C_2H_5 + M \longrightarrow C_2H_4 + H + M$ (3-5)

 C_2H_5I 在高溫下會經由式(3-3)迅速的熱解產生 C_2H_5 自由基⁷,而 C_2H_5 會

立刻熱解成C₂H₄和H,如式(3-5)。在高溫環境下,有90%的C₂H₅I會經 由前述反應熱解產生氫原子8,因此在我們的實驗中反射衝擊波通過 後熱解產生的氫原子濃度為[C₂H₅I]₀×0.9。圖(3-9)所示為一典型的 C_2H_5I 分子熱解前後光電倍增管訊號強度變化圖,實驗條件為6.03 ppm C_2H_5I/Ar 混合氣體,低壓被驅動區(P_1)和高壓驅動區(P_4)壓力分別為60 和2160 Torr,最終溫度為1351 K;圖(3-9)中I₀代表的是入射衝擊波到 達偵測區前,氫原子微波共振燈光源經偵測區後由光電倍增管所量測 的光強度值;It代表的是反射衝擊波通過後,在時間t時光電倍增管所 测得的光强度。我們可以發現,L相較於Lo強度明顯地變小了,此乃 反射衝擊波通過後C2H5I分子因高溫而裂解產生氫原子,產生的氫原 子會吸收氫原子共振燈的放光使得光電倍增管偵測到的光強度變弱。 藉由I₀與I_t值,我們即可知道氫原子在此濃度下的吸收度A(t)大小,A(t) = ln[I₀/I(t)]。依此,在本研究的溫度範圍(1800-2050 K)內,我們可以 利用不同濃度的 C_2H_5I (0.5 - 6.03 ppm)熱解產生不同濃度的氫原子並 得到其吸收度(A),進而得到氫原子濃度與吸收度(A)之間的關係。圖 (3-10)至圖(3-13)所示為1330至1664 K溫度範圍內不同濃度的C₂H₃I熱 解產生的氫原子吸收度與時間之關係圖,由於C2H5I熱解產生的氫原 子會繼續和其他的自由基反應使得其濃度(即吸收度(A))呈現減少狀 熊,所以我們外插選取時間軸為零時(即入射衝擊波通過後C₂H₃I開始

熱解)的吸收度作為該濃度下氫原子的吸收度。表(3-4)列出 1330-1664K溫度範圍內C₂H₅I熱解數據,圖(3-14)為不同氫原子濃度(= 0.9×[C₂H₅I]₀)對吸收度A(t)作圖。在此溫度1330-1664 K範圍內所有氫 原子濃度對應吸收度(A)作圖,得到的校正曲線在不同之A值範圍下分 列如下,並示於圖(3-15)及(3-16)中:

3-2-2 ³CH₂+H₂ 實驗結果與討論

表(3-5)匯整了(0.4 ppm、0.2 ppm) $CH_2I_2 + H_2(300 \text{ ppm})$ 高溫反應實 驗條件以及依模擬實驗結果所得之 ${}^{3}CH_2 + H_2 \rightarrow {}^{2}CH_3 + H 與 CH_3 + H_2$ $\rightarrow CH_4 + H 反應速率常數值。不同溫度下的實驗結果和模擬值如圖$ (3-18)-圖(3-26)所示,此次模擬所使用的反應機制除了有 GRI 3.0 版中 的反應機制⁹,還加上新的反應機制(例如:依本次 CH₂I₂ 熱解實驗所得 的反應機制),如表(3-6)所示,一併應用於實驗結果之模擬。在模擬 實驗結果時,氫原子之產生依反應時間先後分別來自(3-8)及(3-9),由 此可得到其 k 值,以圖(3-18)為例, CH₂I₂/H₂高溫熱解所產生的氫原 子一開始是來自於反應 ${}^{3}CH_{2} + H_{2} \rightarrow {}^{2}CH_{3} + H$, 直到 ${}^{3}CH_{2}$ 消耗至濃度 趨近於零, CH3 未開始消耗減少前(時間大約為150µs), 在這個反應 時間範圍內我們藉由不斷修正模擬中³CH₂+H₂→²CH₃+H的反應速 率常數 k3-8,以使模擬所得之[H]能與實驗值有最佳之符合程度。而當 CH3 開始消耗減少後(時間為 150µs 以後),實驗所測得之氫原子是來 自於反應 $CH_3 + H_2 \rightarrow CH_4 + H$ 所生成的氫原子,在此時段則不斷修正 $CH_3 + H_2 \rightarrow CH_4 + H$ 的反應速率常數值,直到模擬值能與實驗值有最 佳之符合,所得即為k3.9。以下為所得之反應速率常數值: Ln (k_{3-8} / cm³ molecule⁻¹ s⁻¹) = - (22.0 ± 1.9) - (7.8 ± 3.7) × 10³ / T (II)

Ln ($k_{3.9}$ /cm³ molecule⁻¹ s⁻¹) = - (16.8 ± 2.4) - (21.0 ± 4.7) × 10³ / T (III)

最後,把所得之反應速率常數值 k₃₋₈與其他實驗組¹⁰⁻¹⁵的結果做 比較,如圖(3-27)所示。本實驗所得是在高溫範圍內的第一組實驗量 測數據,並與本實驗室之前發表的 0.48 ppm CH₃OH + 1000 ppm H₂熱 解實驗,所發表的理論計算值極吻合¹⁰。其他實驗組除研究溫度較低 外 ¹²⁻¹⁵, 一致性也不佳;特別的是, 若將反應 $CH_3 + H \rightarrow CH_2 + H_2$ (即 $CH_2 + H_2 \rightarrow CH_3 + H$ 的逆反應) 的速率常數值 $k_{.3.8}$,依本次實驗結果 配合平衡常數計算得之,如圖(3-28)所示,可以發現到,與 $CH_3 + H +$ $M \rightarrow CH_4 + M$ 速率常數值比較之下,反應 $CH_3 + H \rightarrow CH_2 + H_2$ 在高 溫燃燒反應系統中為較重要的次級反應。同樣的,也將我們實驗所得 的反應速率常數值 $k_{3.9}$ 與其他實驗組 ¹⁶⁻¹⁹ 的結果做比較,如圖(3-29) 所示,與之前的文獻數據差異並不大。

3-3 ³CH₂+O₂反應研究

3-3-1 ³CH₂+O₂反應機構探討

我們在1800-2050 K進行了 CH2I2/ O2 熱解實驗,來研究 3 CH2 + O2

→ products 之反應動力學。此反應可能的途徑如下:

 $\triangle H^{0}_{298}$ (kcal mol⁻¹)

$^{3}\mathrm{CH}_{2} + \mathrm{O}_{2} \rightarrow \mathrm{CO} + \mathrm{OH} + \mathrm{H}$	(3-12a)	44
$\rightarrow CO_2 + 2H$	(3-12b)	19
\rightarrow H ₂ CO + O	(3-12c)	41
$\rightarrow CO_2 + H_2$	(3-12d)	-63
$\rightarrow CO + H_2O$	(3-12e)	-71
\rightarrow HCO + OH	(3-12f)	31
\rightarrow HOCO + H	(3-12g)	10

$$\rightarrow$$
 CH(O)OH (3-12h) -77.8

 \rightarrow Dioxirane (3-12i) 0

△H⁰₂₉₈表示與 Dioxirane (CH₂O₂)的相對位能值。圖(3-30)所示為其可 能之反應途徑位能圖²⁰,首先就以過去的文獻資料對上述的反應途徑 做個歸納:

- Vinckier 與 Debruyn²¹ 在 1979 年曾以 Flow Tube/Mass Spectrometric 在 O₂+C₂H₂ 實驗中(T = 295 - 600 K, P = 2.5 Torr)研究此反應,並 觀察到 CHO + OH 生成,而非 CO₂+ 2H 及 CO₂+ H₂, 亦無生成 CHOOH,由此推論(3-12)之主要反應途徑為(3-12f)而非(3-12b)、 (3-12d)、(3-12g)。
 Moore 實驗組²² 在 1994 年曾以雷射光解 CH₂CO 配合 IR diode laser 吸收 在 298 K 及 1-25 Torr 研究此反應,得到不同的產物/分 枝比為: CO: 0.34 ± 0.06 (3-12a); CO₂: 0.40 ⁺ ^{0.09}/_{-0.07} (3-12b), CH₂O;
- 在簡單碳氫化合物的 combustion modeling 中所使用的反應機制 (如 GRI-mech 3.0 版), CH₂ + O₂的主要反應途徑是(3-12a)、 (3-12b)和(3-12c)。

0.16±0.04 (3-12c)以及非直接證據之 OH: 0.30±0.05。

如同本論文之緒論所述,過去雖有多組實驗組研究 ${}^{3}CH_{2} + O_{2} \rightarrow$ products 反應,但在高溫下的反應速率及反應途徑分枝未有可靠且可

用的文獻數據。

3-3-2 ³CH₂+O₂ 實驗結果與討論

此次實驗分別以 0.4 及 0.2 ppm CH₂I₂與 100 ppm O₂,在 1804 – 2505 K 熱解,並分別以偵測氫及氧原子之變化配合以模擬方式得到動 力學資料。

(a) 由偵測氫原子所得結果

表(3-7)所列為由偵測氫原子變化並配合模擬適解所得 ³CH₂+O₂ → products 的反應速率常數k₃₋₁₂及產生H之途徑之k值。 實驗結果和模擬值分示於圖(3-31)-圖(3-38),此次模擬所使用的反應機 制與(3-2節)相同,使用GRI 3.0版中的反應機制再納入新的反應機制, 如表(3-6)所列。所得反應速率常數值為: 6

 $k_{3-12}(T) = (2.84 \pm 0.12) \times 10^{-11} \exp[-(755 \pm 33)/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (IV) k_{3-12} 與其他實驗組^{21,23-28}的結果比較於圖(3-39)中。其中 Vinckier 與 Debruyn²¹所報導的 $k_{4-12} = (2.2 \pm \frac{1}{0.8}) \times 10^{-11} \exp[(-1.5 \pm 0.3) \text{ kcal}$ $\text{mol}^{-1}/\text{RT}]$ 經外插至高溫後相當符合本次實驗結果。此次實驗所得是在 高溫範圍內的第一組一致性佳的實驗量測數據,Wagner 實驗組²⁸ 的

數據,雖然也是在高溫範圍內(1000-2000 K),但一致性卻不佳,原因可能是因為,其實驗使用 30-80 ppm [CH₂]₀ 及 0.2-3% O₂,在此

高濃度的條件下,必須要考慮到複雜的次級反應,而本實驗使用極低 濃度的[³CH₂]₀,避免了此困擾。

本研究的一重要工作為決定氫原子的產率 ,以圖(3-31)為例,氫 原子濃度變化為先上升而後遞減的趨勢,取其峰值為氫原子的產 率:[H] / $[CH_2I_2]_0 = 0.3 - 0.4$,我們藉由不斷修正模擬中產生 H之途徑 之分枝比,直到模擬值能與實驗值有最佳之符合。比對之前的文獻數 據,在 Moore 實驗組²²的文獻資料中指出 OH 的產率為 0.3,而 OH 來自途徑(3-12a)及(3-12f),其中途徑(3-12f)所產生的 HCO 在大於 1800 K 的溫度下能迅速熱解產生 H 以及 CO: $^{3}CH_2 + O_2 \rightarrow HCO + OH$ (3-12f) HCO → CO + H (3-12f) 而在高壓條件下(本次實驗約 2 atm),與途徑(3-12a)相比,途徑(3-12f)

更為一個主要產生氫原子之途徑。另一個產生氫原子的主要途徑可能 是(3-12g),因為 Moore 實驗組²²的文獻資料中亦指出 CO₂的產率為 0.4,途徑(3-12g)所產生的 HOCO 在高溫下也能迅速熱解產生 H 以及 CO₂:

 $^{3}CH_{2} + O_{2} \rightarrow HOCO + H$ (3-12g)

 $HOCO \rightarrow CO_2 + H$ (3-14)

所以,產生 H 之途徑包含了途徑(3-12a)、(3-12b)、(3-12f)和(3-12g), 以這些途徑進行模擬,得到與實驗值有最佳符合的分枝比: ($\phi_{3-12a} + \phi_{3-12f}$ +2 ϕ_{3-12b} +2 ϕ_{3-12g})=0.58 ± 0.05,比對 Moore 實驗組²²的文獻資料,OH 和 CO₂的產率分別為 0.3 及 0.4,得到 $\phi_{3-12a} + \phi_{3-12f} = 0.3$, $\phi_{3-12b} + \phi_{3-12g}$ =0.15, $\phi_{3-12d} = 0.25$ 。

(b) 由偵測氧原子所得結果

圖(3-40)為氧原子濃度校正曲線,乃利用不同起始濃度的 C₂H₅I (0.3、0.5 ppm)與 300 ppm O₂ 熱解,藉由 C₂H₅I 熱解產生的 H 與 O₂ 反應來產生不同濃度的氧原子所得,即[O]= $0.9 \times [C_2H_5I]_0$ 。其反應 如下: C₂H₅I \rightarrow C₂H₄+H+I **1896** (3-5) H+O₂ \rightarrow OH+O (3-15)

實驗條件列於表(3-8),此校正曲線之最佳表示式如下:

$$[O] /10^{13} \text{atom/cm}^3 = (10.703 \text{A}^3 + 15.012 \text{A}^2 + 1.0623 \text{A})$$
(3-16)

往後的實驗中,只要將所得的吸收度 A(t)代入式(3-16)中,即可得到 各個反應時間點氧原子的濃度。

我們藉由偵測氧原子之變化配合模擬方式得到 3CH2 + O2 反應途

徑分枝比(\$3-12c。以下為在氫原子偵測結果模擬中, 已建構的反應途徑, 並也將應用於氧原子的偵測結果之模擬。

$${}^{3}\mathrm{CH}_{2} + \mathrm{O}_{2} \rightarrow \mathrm{CO} + \mathrm{OH} + \mathrm{H}$$
 (3-12a)

$$\rightarrow CO_2 + 2H$$
 (3-12b)

上述途徑(3-12f)及(3-12g),我們將分別包含於途徑(3-12a)及 (3-12b)中,因其所生成的 HCO 及 HOCO 在大於 1800 K 的溫度下(此 次實驗溫度 1800-2003 K)能迅速熱解產生 H + CO 以及 CO₂ + H,產物 與途徑(3-12a)及(3-12b)相同。產物中沒有產生氫原子或氧原子的途徑, 如途徑(3-12d)及(3-12e)或其他途徑,我們把這些途徑總稱為途徑 (3-12x),所以我們以途徑(3-12a)、(3-12b)、(3-12c)和(3-12x)應用 於氧原子的偵測結果之模擬。由上節所述,依氫原子變化模擬所得的 反應速率常數值 k₃₋₁₂ 與反應途徑分枝比:($\phi_{3-12a} + \phi_{3-12f} + 2\phi_{3-12b} + 2\phi_{3-12g}$) = 0.58 ± 0.05,在模擬氧原子濃度變化時被設定為限制條件, 必須將其值固定。圖(3-41)-圖(3-45)為 ³CH₂ + O₂ 偵測氧原子變化所得 的實驗結果和模擬值,其實驗條件列於表(3-9)中,最後依模擬得到與 實驗值有最佳符合的分枝比 ϕ_{3-12c} =0.3 - 0.4,這個結果大約為 Moore 實驗組²²文獻資料中所觀察到的CH₂O的產率(即分枝比 ϕ_{3-12c})為0.15 - 0.2 的兩倍。 (c)總結

依 Moore 實驗組 ²² 之報導: OH 及 CO 的產率為 0.3,即 ϕ_{3-12a} + $\phi_{3-12f} = 0.3$ 以及 CO₂ 產率為 0.4,即 $\phi_{3-12b} + \phi_{3-12d} + \phi_{3-12g} = 0.4$,結合此次實驗結果,得到以下反應途徑分枝比。 CO + OH + H 途徑: $\phi_{3-12a} + \phi_{3-12f} = 0.3$ CO₂ + 2H 途徑: $\phi_{3-12b} + \phi_{3-12g} = 0.15$

CH₂O+O 途徑: \$\$\overline{9.12c}\$ = 0.3

CO₂+H₂ 途徑: \$\$\overline{9.12d}\$ = 0.25

其他途徑: \$ 3-12e , \$ \$ 3-12h 等 =0

不過,這裡需要注意到的是,上述結論是根據許多的假定而得到的

,以下還有兩點是需要再多加考慮以及研究探討:

1. 氧原子的偵測結果,其S/N不夠良好,以致於不能得到一個明確

的結果來判斷反應途徑分枝比\$3-12c,整個反應系統的研究以及改進,仍在進行中。

2. Moore 實驗組²² 的文獻資料中,CO、OH及 CO₂ 的產率是建立在 室溫以及低壓(20 Torr Ar)的實驗條件下,我們不能確保是否在本 次實驗的高溫(1800-2000 K)以及高壓(2 atm)的實驗條件下,CO、

OH及CO2的產率是否依然相同。

3-4 參考文獻:

- 1. Seetula, J. A. Phys. Chem. 2002, 4, 455
- Lias, L. G.; Liebman, J. E.; Holmes, J. H.; Levin, R. D.; Mallard, W. G., J. Phys. Chem. Ref. Data. 1989, 17, (suppl. 1)
- 3. Rusic, et al. J. Phys. Chem. Ref. Data. 2005, 34, 537
- 4. Kudchadker, S. A.; Kudchadker, A. P. J. Phys. Chem. Ref. Data. 1976, 5, 529-530.
- 5. Furuyama, S.; Golden, D. M.; Benson, S.W., J. Phys. Chem. 1968, 72, 4713-4715.
- 6. Carson, A. S.; Laye, P. G.; Pedley, J. B.; Welsby, A. M. *J. Chem. Thermodyn.*, **1993**, *25*, 261-269.
- Michael, J. V., Su, M.-C. And Sutherland, J. W. J. Chem. Phys. A 2004, 108, 432.
- 8. Akira Miyoshi; Noboru Yamauchi; Keishi Kosaka; Hiroyuki Matsui. *J. Phys. Chem. A.* **1999**, *103*, 46.
- Smith, G. P.; Golden, D. M.; Frenklach, M.; Moriarty, N. W.; Eiteneer, B.; Goldenberg, M.; Bowman, C. T.; Hanson, R. K.; Song, S. Gardiner, W. C. Jr.; Lissianski, V. V.; Qin, Z. <u>http://www.me.berkeley.edu/</u> gri-mech
- 10. Lu, K. W.; Matsui, H.; Huang, C.-L.; Raghunath, P.; Wang, N.-S.;

Lin, M. C. J. Phys. Chem. A 2010, 114, 5493.

- 11. Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data. 1986, 15, 1087
- 12. Gesser, H.; Steacie, E. W. R. Can. J. Chem. 1956, 34, 113.
- 13. Darwin, D.C.; Moore C. B. J. Phys. Chem, 1995, 99, 13467-13470.
- 14. Pilling, M. J.; Robertson, J. A. J. Chem. Soc. Faraday. Trans. 1 1977, 73, 968.
- 15. Brown, W.; Bass, A. M.; Pilling, M. J. Chem. Phys. 1970, 52, 5131.
- Bryukov, M. G.; Slagle, I. R.; Knyazev, V. D. J. Phys. Chem. A 2001, 105, 3107.
- 17. Moller, W.; Mozzhukhin, E.; Wagner, H. Gg.; Ber Bunsenges. Phys. Chem. 1986, 90.
- Baeck, H. J.; Shin, K. S.; Yang, H.; Quin, Z.; Lissianski, V.; Gardiner, W. C. J. Phys. Chem. 1995, 99, 15925.
- 19. Sutherland, J. W.; Su, M.-C.; Michael, J. V. Int. J. Chem. Kinet. 2001, 33, 669.
- 20. Chen, Bozhen; Huang, Mingbao; Su, Hongmei; Kong, Fan'ao, ACTA. *Physico. Chemica. Sinica.* **2000**, *16*, 869.
- 21. Vinckier, C.; Debruyn, W. J. Phys. Chem. 1979, 83, 2057.
- 22. Alvarez, R. A.; Moore, C. B. J. Phys. Chem. 1994, 98, 174.
- Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, Th.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J. T.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 2005, 34, 1059.
- Darwin, D. C.; Young, A. T.; Johnston, H. S.; Moore, C. B. J. Phys. Chem. 1989, 93, 1074.
- 25. Bley, U.; Temps, F.; Wagner, H. Gg.; Wolf, M. Ber Bunsenges. Phys. Chem. 1992, 96, 1043.
- 26. Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15, 1087.
- 27. Pilling, M. J.; Robertson, J. A. J. Chem. Soc. Faraday. Trans. 1 1977, 73, 968.
- Dombrowsky, Ch.; Hwang, S. M.; Rohrig, M.; Wagner, H. Gg. Ber Bunsenges. Phys. Chem. 1992, 96, 194.
- 29. Kumaran, S. S.; Su, M.-C.; Michael, J. V. Int. J. Chem. Kinet. 1997, 29, 535.

表 3-1:溫度範圍 1363K 至 2016 K 內,碘原子校正曲線實驗之條件。								
C ₂ H ₅ I(ppm)	P1(driven) ^a	P4(driver) ^a	馬赫數	T1(K)	T5(K)	$\rho_5(C_2H_5I)^b$	$\rho_5(Ar)^{c}$	
0.135	60.00	2155	2.345	298	1364	0.138	10.26	
0.3	60.00	2155	2.346	298	1366	0.308	10.27	
0.5	60.00	2155	2.339	298	1359	0.512	10.23	
					$T_{avg} = 1363K$			
0.135	46.00	2003	2.434576	298	1461	0.111	8.185	
0.3	46.00	2003	2.440304	298	1467	0.246	8.205	
0.5	46.00	2003	2.434576	298	1461	0.409	8.185	
					$T_{avg} = 1463K$			
0.135	41.00	2004	2.529583	298	1567	0.102	7.581	
0.3	41.00	2004	2.527529	298	1565	0.227	7.575	
0.5	41.00	2004	2.523429	298	1560	0.378	7.563	
					$T_{avg} = 1564K$			
0.135	32.00	1903	2.62343	298	1676	0.083	6.124	
0.3	32.00	1903	2.625644	298	1679	0.184	6.129	
0.5	32.00	1903	2.62122	298	1674	0.306	6.12	
					$T_{avg} = 1676K$			
0.135	41.20	2612	2.763222	298	1846	0.111	8.256	
0.3	41.20	2612	2.76077	298	1843	0.247	8.25	
0.5	41.20	2612	2.758322	298	1840	0.412	8.243	
					$T_{avg} = 1843K$			
0.135	33.70	2537	2.894314	298	2012	0.095	7.014	
0.3	33.70	2537	2.899709	298	2019	0.211	7.025	
0.5	33.70	2537	2.897009	298	2016	0.351	7.019	
					$T_{avg} = 2016K$			

a:單位為 Torr

b:單位為 10¹³ molecule/cm³

c:單位為 10¹⁸ molecule/cm³

圖(3-6):溫度 1848 K 下 0.1ppm CH₂I₂ 的熱解實驗結果

表 3-2:溫度範圍 1560K 至 2010 K 內,0.1ppm CH ₂ I ₂ 熱解實驗之條件。								
CH_2I_2 (ppm)	P1(driven) ^a	P4(driver) ^a	馬赫數	T1(K)	T5(K)	$\rho_5 \operatorname{CH}_2 I_2{}^b$	$\rho_5(Ar)^{c}$	
0.1	33.70	2537	2.894	298	2012	7.01	7.01	
0.1	33.70	2537	2.892	298	2009	7.01	7.01	
0.1	33.70	2537	2.894	298	2012	7.01	7.01	
					$T_{avg} = 2010K$			
0.1	41.20	2612	2.761	298	1843	8.25	8.25	
0.1	41.20	2612	2.766	298	1849	8.26	8.26	
0.1	41.20	2612	2.766	298	1852	8.27	8.27	
					$T_{avg} = 1848K$			
0.1	41.00	2004	2.523	298	1560	7.56	7.56	
0.1	41.00	2004	2.519	298	1556	7.55	7.55	
0.1	41.00	2004	2.517	298	1554	7.54	7.54	
					$T_{avg} = 1560$			

189

6

a:單位為 Torr

- b:單位為 10¹¹ molecule/cm³
- c:單位為 10¹⁸ molecule/cm³

表(3-3):反應 $CH_2I + M \rightarrow {}^{3}CH_2 + I + M$ 不同溫度下的反應速率

常數值

T/K	$[CH_2I_2]_0^a$	[Ar] ^b	k ₃₋₂ /cm ³ molecule ⁻¹ s ⁻¹
1556	7.55	7.55	8.65×10 ⁻¹⁷
1648	6.07	6.07	3.93×10 ⁻¹⁶
1649	6.07	6.07	3.28×10 ⁻¹⁶
1761	8.82	8.82	1.23×10 ⁻¹⁵
1763	8.83	8.83	1.46×10 ⁻¹⁵
1843	8.25	8.25	2.52×10 ⁻¹⁵
1849	8.26	8.26	3.33×10 ⁻¹⁵
1852	8.27	8.27	2.84×10 ⁻¹⁵
1848	8.26	8.26	2.66×10 ⁻¹⁵
2012	7.01	7.01	7.86×10 ⁻¹⁵
2013	7.01	7.01	7.33×10 ⁻¹⁵

a:單位為 10¹¹ molecule/cm³

b:單位為 10¹⁸ molecule/cm³

Ln (k_{3-2} / cm³ molecule⁻¹ s⁻¹) = - (17.28 ± 0.79) - (30.17 ± 1.40) × 10³ / T

表 3-4:溫度範圍 1326K 至 1671 K 內,不同濃度 C ₂ H ₅ I 熱解實驗之條件。								
C ₂ H ₅ I(ppm)	P1(driven) ^a	P4(driver) ^a	馬赫數	T1(K)	T5(K)	$\rho_5(C_2H_5I)^b$	$\rho_5(Ar)^{c}$	
0.50	32.10	1906	2.619	298	1671	0.31	6.13	
1.50	32.00	1902	2.610	298	1661	0.91	6.10	
3.00	32.00	1904	2.604	298	1653	1.82	6.08	
6.03	32.00	1903	2.619	298	1671	3.69	6.11	
					$T_{avg} = 1664K$			
0.50	41.10	2201	2.584	298	1630	0.39	7.76	
1.50	41.00	2202	2.575	298	1620	1.16	7.71	
3.00	41.10	2201	2.575	298	1620	2.31	7.73	
6.03	41.00	2209	2.582	298	1628	4.66	7.73	
					$T_{avg} = 1624K$			
1.50	37.00	1902	2.529	298	1567	1.03	6.84	
3.00	37.30	1902	2.537	298	1577	2.08	6.92	
	S				$T_{avg} = 1572K$			
0.50	41.00	2002	2.535	298	1575	0.38	7.60	
0.50	46.00	1906	2.521	298	1558	0.42	8.48	
1.50	41.00	2002	2.527	298	1566	1.14	7.57	
3.00	41.00	2004	2.526	298	1563	2.27	7.57	
6.03	41.00	2004	2.316	298	1570	4.57	7.59	
					$T_{avg} = 1566K$			
0.50	46.00	2012	2.465	298	1495	0.41	8.29	
1.50	46.10	2004	2.438	298	1465	1.23	8.22	
3.00	46.00	2002	2.434	298	1461	2.46	8.19	
6.03	46.00	2003	2.440	298	1466	5.01	8.32	
6.03	46.00	1903	2.410	298	1434	4.88	8.10	
					$T_{avg} = 1464K$			
0.50	54.00	2202	2.408	298	1432	0.48	9.50	
1.50	54.00	2203	2.397	298	1420	1.42	9.45	
3.00	54.20	2205	2.397	298	1420	2.85	9.49	
6.03	54.10	2202	2.387	298	1440	5.76	9.55	
					$T_{avg} = 1428K$			
0.50	50.00	2007	2.375	298	1397	0.43	8.67	
1.50	52.00	2002	2.349	298	1370	1.34	8.91	
3.00	51.00	1999	2.349	298	1370	2.62	8.74	

6.03	50.00	2004	2.384	298	1406	5.25	8.70
					$T_{avg} = 1386K$		
0.50	60.00	2149	2.313	298	1331	0.51	10.1
1.50	60.00	2155	2.308	298	1326	1.51	10.1
3.00	60.10	2152	2.309	298	1331	3.04	10.1
6.03	60.00	2154	2.318	298	1337	6.11	10.1
					$T_{avg} = 1331K$		

a:單位為 torr

- b:單位為 10¹³ molecule/cm³
- c:單位為 10¹⁸ molecule/cm³

圖(3-9): C₂H₅I 熱解實驗中,光電倍增管偵測之信號強度(經放大器放 大)隨時間之變化圖。低壓被驅動區(P₁)與高壓驅動區(P₄)分別為41 torr 及 2209 torr;初始溫度: 298 K,最終溫度: 1628 K。I₀代表的是 入射衝擊波到達偵測區前,氫原子微波共振燈光源經偵測區後,由光 電倍增管所測得的光強度;I_t代表的是反射衝擊波通過後,在時間 t 時光電倍增管所測得的光強度。(a)為 6.03 ppm C₂H₅I/Ar 混合氣體, (b) 為純 Ar 的空白測試(blank test)。

0.97 ; (e)0.93, 0.95 ; (f)0.38, 0.52 ; (g)0.34, 0.48 •

子濃度下(即[H] = $0.9 \times [C_2H_5I]_0$)的吸收度。[H](10^{13} molecule cm⁻³)及 對應之A值分別為(a)5.50, 1.87; (b)4.73, 1.78; (c)2.74, 1.63; (d)2.36,

1.57 ; (e) 1.36, 1.16 ; (f) 1.21, 1.08 ; (g) 0.46, 0.61 ; (h) 0.39, 0.53 \circ

$$f_T = 147.8 / T + 0.931$$

 $f_T = 147.8 / T + 0.931$

表(3-5):1801-2044 K 溫度範圍內 ${}^{3}CH_{2} + H_{2}$ 熱解實驗條件和反應速率

常數值

$0.4 \text{ ppmCH}_2\text{I}_2 + 300 \text{ppmH}_2 + \text{Ar}$									
T/K	P ^a	[Ar] ^b	[CH ₂ I ₂] ^c	[H₂] ^d	k ₃₋₈ /cm ³ molecule ⁻¹ s ⁻¹	k ₃₋₉ /cm ³ molecule ⁻¹ s ⁻¹			
2044	1.75	6.29	0.252	1.89	4.87×10^{-12}	1.98×10^{-12}			
1958	1.99	7.45	0.298	2.23	4.06×10^{-12}	6.36×10^{-13}			
1852	2.09	8.27	0.313	2.48	2.67×10^{-12}	6.33×10^{-13}			
0.2 ppmCH ₂ I ₂ + 300ppmH ₂ + Ar									
2041	1.86	6.69	0.134	2.01	E 57.25×10^{-12}	1.96×10^{-12}			
2002	1.88	6.90	0.138	2.07	7.43×10^{-12}	1.78×10^{-12}			
1938	2.01	7.62	0.152	2.29	5.81 × 10 ⁻¹²	1.31×10^{-12}			
1902	2.01	7.77	0.155	2.36	4.78×10^{-12}	7.29×10^{-13}			
1855	1.86	6.69	0.134	2.47	4.82×10^{-12}	4.79×10^{-13}			
1801	1.88	6.90	0.138	2.53	4.66×10^{-12}	6.13×10^{-13}			

a:單位為 atm.

- b:單位為10¹⁸ molecule/cm³
- c:單位為 10¹³ molecule/cm³
- d:單位為 10¹⁵ molecule/cm³

$^{3}CH_{2} + H_{2}$								
	Reaction	$A/cm^3mol^{-1}s^{-1}a)$	n ^{a)}	E _a / cal mol ^{-1 a)}	Remarks			
A1	$CH_2I_2+M=>CH_2I+I+M$	2.62×10^{15}		39438	Ref. 29			
A2	$CH_2I+M => CH_2+I+M$	1.88×10^{16}		59909	This work			
A3	CH ₃ +H ₂ =CH ₄ +H	6.86×10 ³	2.74	9414.0	Ref. 9			
A4	CH ₂ +H ₂ =CH ₃ +H	4.41×10^{5}	2.30	4190.2	Ref. 9			

表(3-6):³CH₂+H₂實驗模擬新納入之反應機制:

a) : $k=A T^n \exp(-Ea / RT)$

- -----: TST calc. without Eckert Correction (Ref. 10)
- - :TST calc. with Eckert Correction (Ref. 10)
- : Ref 11, A : Ref . 12, : Ref. 13, : Ref. 14, : Ref. 15

----: k -3-8 (Ref. 9)

表(3-7):1804-2050 K 溫度範圍內 ³CH₂+O₂ 實驗條件和反應速率常

數 k₃₋₁₂(偵測氫原子)

0.4 ppm CH ₂ I ₂ + 300ppm H ₂ + Ar									
T/K	P ^a	[Ar] ^b	[CH ₂ I ₂] ^c	[O ₂] ^d	k ₃₋₁₂ /cm ³ molecule ⁻¹ s ⁻¹	[Σαk _H /k ₃₋₁₂] *			
2055	1.77	6.30	0.252	6.30	1.96×10 ⁻¹¹	0.56			
1954	1954 1.98 7.44 0.298 7.44 1.13×10 ⁻¹¹ 0.58								
1858	1858 2.1 8.28 0.313 8.28 1.88×10 ⁻¹¹ 0.50								
0.2 ppm CH ₂ I ₂ + 300 ppm H ₂ + Ar									
2005 1.91 7.01 0.14 7.00 1.60×10 ⁻¹¹ 0.66									
1938	2.01	7.62	0.152	7.62	1.58×10 ⁻¹¹	0.56			
1905	2.04	7.87	0.157	7.87	1.90×10 ⁻¹¹	0.56			
1855	2.09	8.24	0.165	8.24	1.88×10 ⁻¹¹	0.66			
1804	1804 2.07 8.43 0.169 8.43 1.75×10 ⁻¹¹ 0.64								
a·平位為 aun, ··平位為 ro molecule/cm ³ , c:單位為 10 ¹³ molecule/cm ³ , d:單位為 10 ¹⁴ molecule/cm ³ *:k _H 表示可產生氫原子的途徑的速率常數									
$^{3}CH_{2} + O_{2} \rightarrow \text{products}$ (3-12)									
$\rightarrow CO + OH + H \qquad (3-12a)$									
$\rightarrow CO_2 + 2\Pi \tag{3-120}$									
\rightarrow HCO + OH \longrightarrow CO + OH + H (3-12f)									
\rightarrow HOCO + H $\xrightarrow{\text{T>1800K}}$ CO ₂ + 2H (3-12g)									
α:表示氫原子的產生率,α=1 for(3-12a)、(3-12f)									
$\alpha = 2$ for (3-12b) (3-12g)									
$k_{3-12}(T) = (2.84 \pm 0.12) \times 10^{-11} \exp[-(755 \pm 33)/T) \text{ cm}^3 \text{ molecul}^{-1} \text{ s}^{-1}$ (IV)									

$$\phi_{3-12a} + 2\phi_{3-12b} + \phi_{3-12f} + 2\phi_{3-12g} = 0.56$$

圖(3-32):溫度1954 K 下 0.4ppm CH₂I₂+100ppm O₂的熱解實驗結果與

模擬值。—: 實驗值, : 模擬值, ...: 模擬值, P:1.98atm, [Ar]=7.44×10¹⁸ molecule cm⁻³, [CH₂I₂]=2.98×10¹² molecule cm⁻³ $\phi_{3-12a} + 2\phi_{3-12b} + \phi_{3-12f} + 2\phi_{3-12g} = 0.58$ 1896

圖(3-37):溫度1858 K 下 0.2ppm CH₂I₂+100ppm O₂的熱解實驗結果與

模擬值。 _____: 實驗值 , ____: 模擬值 , ____: $\phi_{2.09atm}$, $[Ar]=8.24\times10^{18}$ molecule cm⁻³, $[CH_2I_2]=1.65\times10^{12}$ molecule cm⁻³ $\phi_{3-12a}+2\phi_{3-12b}+\phi_{3-12f}+2\phi_{3-12g}=0.66$

圖(3-39): ${}^{3}CH_{2} + O_{2} \rightarrow \text{products} 反應速率常數 k_{3-12} 之 Arrhenius 圖 k_{3-12}(T) = (2.84 ± 0.12) × 10^{-11} \exp[-(755 ± 33)/T) cm^{3} \text{ molecul}^{-1} s^{-1}$ ○: 本次實驗結果 ——: Ref. 21 , ——: Ref. 23 , □: Ref. 24 , ----: Ref. 25 ……: Ref. 26 , ▲ : Ref. 27 , ——: Ref. 28

C ₂ H ₅ I ^a	O_2^{a}	P1(driven) ^b	P4(driver) ^b	馬赫數	T1(K)	T5(K)	$\rho_5(C_2H_5I)^c$	$\rho_5(Ar)$
0.30	300	47.50	2675	2.646	298	1703	0.28	9.16
0.50	300	47.50	2675	2.643	298	1700	0.46	9.15
						$T_{avg} = 1702K$		
0.30	300	42.50	2625	2.729	298	1804	0.25	8.43
0.50	300	42.50	2625	2.727	298	1801	0.42	8.42
						$T_{avg} = 1803K$		
0.30	300	38.70	2587	2.811	298	1905	0.24	7.87
0.50	300	38.70	2587	2.813	298	1908	0.38	7.86
						$T_{avg} = 1907K$		
0.30	300	37.20	2572	2.838	298	1937	0.23	7.62
0.50	300	37.20	2572	2.839	298	1941	0.38	7.62
						$T_{avg} = 1939K$		
0.30	300	33.70	2537	2.886	298	2002	0.21	6.99
0.50	300	33.70	2537	2.889	298	2005	0.35	6.91
				4		$T_{avg} = 2004 K$		
0.30	300	32.20	2522	2.916	298	2041	0.20	6.74
0.50	300	32.20	2522	2.913	298	2037	0.34	6.69
						$T_{avg} = 203\overline{9K}$		

- a:單位為 ppm
- b:單位為 torr
- c:單位為 10¹³ molecule/cm³
- d:單位為 10¹⁸ molecule/cm³

表 3-9:溫度範圍 1803K 至 2003K 內,不同濃度 ³CH₂+O₂熱解實驗之條件(偵

測氧原子)。

		1	r	r.				
$C_2H_5I^a$	$O_2^{\ a}$	P1(driven) ^b	P4(driver) ^b	馬赫數	T1(K)	T5(K)	$\rho_5(C_2H_5I)^c$	$\rho_5(Ar)^d$
0.20	100	42.50	2625	2.727	298	1801	0.168	8.42
0.20	100	42.50	2625	2.729	298	1804	0.169	8.43
						$T_{avg} = 1803$		
0.20	100	41.00	2610	2.771	298	1855	0.165	8.23
0.20	100	41.00	2610	2.773	298	1858	0.165	8.24
						$T_{avg} = 1857$		
0.20	100	38.70	2587	2.808	298	1902	0.157	7.86
0.20	100	38.70	2587	2.811	298	1905	0.157	7.87
						$T_{avg} = 1904$		
0.20	100	37.20	2572	2.839	298	1941	0.152	7.62
0.20	100	37.20	2572	2.836	298	1938	0.152	7.62
				EISI		$T_{avg} = 1940$		
0.20	100	33.70	2537	2.886	298	2002	0.139	6.99
0.20	100	33.70	2537	2.889	298	2005	0.140	7.00
						$T_{avg} = 2003 K$		

1896

a:單位為 ppm

b:單位為 torr

c:單位為 10¹³ molecule/cm³

d:單位為 10¹⁸ molecule/cm³

— (模擬值): k₃₋₁₂=(IV)

$$k_{3-12a}=0.58 \times k_{3-12}$$
, $k_{3-12b}=0 \times k_{3-12}$, $k_{3-12c}=0 \times k_{3-12}$, $k_{3-12x}=0.42 \times k_{3-12}$

