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Simplification of Fuzzy Neural Network via
Singular Value Regulation

Student : Yu-Min Lin Advisors : Dr. Chi-Hsu Wang

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT
The main purpose of this paper is to enhance the efficiency of a fuzzy neural network

(FNN) by proposing a new training Jmethodology with rule reduction. The core of this
methodology is to modify the input-output relations. by updating the singular value set
associated with the FNN matrix, which is composed of the rule vectors and desired output
vectors. We name it for Singular-Value-Regulation (SVR). By adopting this method, the
FNN can have a better efficiency owing.to it is free from extension of rule base, which often
accompanies with high complexity of the situation described by the desired output. In
addition, updating the weighting factor set associated with the rule base can be easily
determined using least square method since the FNN often performs with a small size of rule
base. Therefore, the FNN can have an instant response of the alternation of the output
situation. Error analysis has been performed with illustrated examples. The outcome shows
that the precision can be well maintained with the simplified rule base so that the efficiency
of FNN is greatly enhanced.
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Chapter 1

Introduction
Controlling the relationship between inputs and outputs is an important issue for many
engineering problems, for the reason that it is usually required that some desired output be
presented by a given set of input variables. However the system model may not be well
understood. Thus they may have to be approximated by a given set of input-output training data.
The given training data may result from experiments, real world conditions,..., etc. In recent
years, the FNN (Fuzzy Neural Network) [1] has been developed to generate the desired outputs
with given fuzzy inputs. The major work for building the FNN is defining the fuzzy rule base.
The rule base is also called knowledge base, which is derived from human feeling.
Theoretically, to have a large set of training data is essential for dealing with all the possible
situations precisely. However, it will .cause a wvast rule base. Apparently, the generating
efficiency will be much decreased using such.a vast.rule base due to high redundancy of rules
frequently exists when dealing certain simple cases. Therefore, the reduction of rule base
becomes a critical issue. Some related worksthas-been done in previous papers. In [2], two
strategies are proposed in dealing with.the foundation of fuzzy rules: 1) rule generation by
refinement, 2) rule reduction by merging. The former discusses the necessity of each rule, and
the latter discusses rule expansion technique that enlarges the valid boundaries of rules and in
turn reduces the rule base. A novel approach in [3] is also proposed to perform vector selection
based on the analysis of class regions, which are generated by a fuzzy classifier. The exception
ratio is a vital concept in [3] to determine the necessity of rules. The definition of exception
ratio is the degree of overlaps in the class regions. The idea of using the exception ratio for
feature evaluation derives from the fact that given a set of features, a subset of features that has
the lowest sum of the exception ratios has the tendency to contain the most relevant features,
compared to the other subsets with the same number of features [3]. The approach to minimize
the rule base is to reduce the exception ratio. Another popular method for reducing the
redundancy of rules is performing singular value decomposition (SVD), which has been

discussed in [4, 5]. However, it may be time consuming suppose the redundancy of rules is high



since redundant rules are taken into account during the training process instead of being

eliminated initially.

Though reduction of rule base improves the efficiency of FNN, it also reduces the certain
conditions given from human beings so that the FNN becomes more constrained in dealing with
some specific cases. In other words, it is difficult to well concern all the possible situations
concurrently with keeping high precision. Furthermore, we may not sure whether the specific
rules are valid to be removed or not owing to insufficiency of knowledge and uncertainty of
information. Thus we propose an advance approach to well tune the rule base such that the
FNN can deal with multiple situations with a simpler rule base. The idea of this approach is
derived from the concept of singular value decomposition (SVD), and thus the analysis of
singular values via performing SVD is vital for analyzing its performance. Some examples are
fully illustrated to yield satisfying results such as the model car navigation and nonlinear
system identification problems in [1,7]. The outcome.shows that by adopting this approach, the
precision can be well maintained with much simpler rule base so that the efficiency is much

improved.

10



Chapter 2

Problem Formulation
The topic of this paper is relevant to improving the efficiency of Fuzzy Neural Network (FNN),

which has the configuration shown in Figure 1[1].

A

layer 1 =layer-ll layer' Il layer IV
e = U
PREMISE CONSEQUENCE

Figure 1 Fuzzyneural network (FNN)
There are four layers in this structure. The inputvariable is fed into the first layer, then operated
by the mappings Ai(X1), Ax(X2).... Ak(Xk) in the second layer. The nodes of third layer are
corresponding to different rules, which are derived from multiplying the products fuzzy
mapping associated with each rule. Thus the value of rule at a certain sampling instant is

derived from the following equation:
k
r(t) :H Ai(Xi (t)) 1)
i=1

Where Ai(xi(t)) represents the fuzzy mapping associated with the i" input variable, and t denotes
the sampling instant. The third layer is also called hidden layer. The fourth layer is the output
variables. The transition from layer three to layer four is via the simple two layer neural network
with the weighting factor to be decided. The output variable is utilized to approximate the

desired output. The way we attempt to find out the output of FNN is to find out the appropriate

11



weighting factor associated with each rule followed by combining them as the following form:

f(t) =wr(t) + w,r,(t) + wyr(t) +---+ w,r, (t) (2
Where f(t) is the generated output of FNN, and ri(t) represents the i" rule. Apparently, the
output is supposed to be linearly dependent on the given rule set under the convention shown in
(2). However, this is usually not the real case. This means the linear relation between rules and
desired output is usually an approximation of the real situation. Thus, the desired output d(t)
should be expressed as:

d(t) = wn(t) + woh(t) + wn(t) +---+ w,r, (t)+e(t) (3)
Compare (2) and (3), the desired output belongs to the vector space whose rank is higher than

that of the vector space spanned by rule base. The phenomenon is illustrated in the following

figure:
Desired oupu Error
Rule bas Ot
of FNN

Figure 2 Relationship of rule base, desired output, error and output of FNN.
The error is minimized as the generated output is the orthogonal projection of desired output,
which is composed of products of the rule base and the optimal weighting factor set that

obtained from least square method [8], which can be described as the following equation:

w= (RRT )_1 Rvy (4)
Where
vg = [d(t), d(tp), d(t3),....... , d(tn)]T (5)
) ) nt) nt) ... n(t,) |
Lt) nt) nlt) o) ... n(t,)
R=|nt) nt) n) nE) ... n(t,) (6)
_rm (t'l) rm (tZ) rm (t3) I’m (t4) """ rm (tn)_mx n
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Obviously, the least square error decreases suppose that the rule base is getting closer to the

vector space where the desired output belongs, which can be shown in the following figure:

Figure 3 Case with smaller error. The vector space where the desired output belongs is closer to that
spanned by rule base compared with the casein figure 2.

From the above illustration, the error decreases-with:reducing the inconsistence of vector
spaces. This implies that the error ‘disappears provided that the desired output and the rule

vectors are merged into the same vector space, such'as shown in the following figure:

Rule base

Figure 4: The relationship between desired output and rule base in the ideal cases.

Thus, the key issue to be concerned is rank of vector space where the following vectors belong:

13



v, = [n() n() - rn@)H]
o [nE) n) e ne)]

- T )
m I:rm (tl) M (tz) M (tn )]

<
Il

Vi [dj(tl) d;(t,) - dj(tn)]T
Where ri~ry are rule vectors, and vg; represents the j™ desired output number. P and m represent
the number of rules and number of desired outputs respectively. n is assumed to be far larger
than p+m, i.e., n>>p+m. It is known that the rank can be found by inspecting the singular

values of matrix comprising the vectors to be analyzed. Consequently, we set a matrix built

from the vectors in (7), such as:

_dl(tl)"'dp(tl) rl(tl) """ I (t1)_
dl(tz)"'dp(tZ) rl(tz) """ rm(tz)
G= dl(t3)“'dp(t3) R ra(ts) (8)

[0+ Bl )N ety (W 4 my

We name the matrix in (8) FNN matrix owing'to it is adopted frequently in this paper. The
redundancy of singular values of FNN matrix demonstrates the linearity between rule vectors
and desired output vectors. Ideally, vgj (j =1~p) are exactly linearly dependent on vi~vy,, which
implies p redundant vectors exist in the FNN matrix so that it contains p zero singular values.
However in real situation, trivial singular values instead of zero singular values are found. This
implies the linearity is changed with replacing these trivial singular values by zeros, which is
the main idea of the proposed approach in this paper. The approach will be discussed in detail

in the following chapter.
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Chapter 3

Singular Value Regulation (SVR)
Singular Value Decomposition (SVD) will be discussed first in this chapter. Then Singular
Value Regulation (SVR) based on SVD, will be addressed next. A tuning algorithm based on

singular value regulation (SVR) will also be proposed in this chapter.

3.1 Singular Value Decomposition (SVD)

The core of tuning approach proposed in this paper is relevant to singular values. Consequently,
Singular Value Decomposition (SVD) is an essential approach to be analyzed first. The
fundamental of singular value decomposition (SVD) is to express the analyzed vector set in
terms of the eigenvectors belonging to .thie matrix consists of all the vectors in the analyzed
vector set [9~14]. Here, the vectors to be analyzed are rule vectors and desired output vectors.
Suppose we have p desired outputs (X1-Xp) and m-rules (Xp+1, Xp+2, ..., Xp+m), COMbined together

in an FNN matrix G such as
G = |:X1 X2 Xp ;Xp+l'“ Xp+m:| (9)
' nx(p+m)

Because the new basis is composed of the eigenvectors of G, we have to find the left
eigenvectors u; (1 x n row vector) and right eigenvectors v; ((p+m) x 1) column vector such as:
G'Gv,.= o’V
uGG' = u o/’

T
V. = [V. V. e VL ]
i il i2 i(p+m) be(prm)

(10)
u = [u, u, Up ..
Where ;. (i=1~p+m) are the singular values of G. Actually, the validity of finding the left and
right eigenvectors of FNN matrix G via the equations shown in (10) implies the existence of
following equation:

G=UXV' (11)

Where U and V are composed of u; (i =1~n) and v; (i =1~p+m) respectively. }'is the diagonal

15



matrix composed of singular values of FNN matrix G. We focus our concern on v; because it is
associated with the column vectors of G which are going to be analyzed. The component of all

the data set on the eigenvector v; can be shown as:

X o= VX HVi X etV Xoim (12)

or

*

x = Gv, (13)
Where “+” denotes transformed vector set derived form expressing the original vectors in terms
of new basis (i.e., the set of eigenvectors of G). It is obvious that G'G is a symmetric matrix so
that its normalized eigenvectors (i.e., vi) forms an orthonormal set. Consequently, we can have
the following (14) from (10) and (13):

X = ViTGTGVi: GiZViTViz Gi2: ||X.*||2 (14)

*

X
From (14), the importance of singular value can be analyzed from its associated transformed

vector. This fact will be adopted extensively-in-the following sections.

3.2 Singular Value Regulation

As previously mentioned, the maximum rank of FNN matrix G in (8) is m, provided that rule
base and desired output are in the same vector space. However, this is not true in real situations.
We can only assume that rule base and desired outputs are approximately in the same vector
space in real situations. Therefore, we cannot fully neglect the contribution of insignificant
singular values of FNN matrix G because they do not exactly equal to zeros. The key technique
for singular value regulation (SVR) algorithm is to force insignificant singular values of FNN
matrix G defined in (8) to zeros such that desired outputs are in the vector space spanned by
rule base. Therefore desired outputs can be exactly expressed as a sum of products of weighting
factors and their associated rules, such as shown in (2).

The overall procedure for regulating singular values is induced as the following algorithm:

Algorithm1: Tuning FNN via Singular Value Regulation (SVR)

16



The FNN shown in Figure 1 has k input fuzzy variables, {x1(t), x2(t),..., Xx(t)}, and p desired
outputs {di(t), do(t) , ..., dp(t)} with m fuzzy rules {ri(t), r2(t), ..., rm(t)}.
Given: Input training data: {xa(t;), X2(t; ),..., X«(ti ) }.

Desired outputs: {d(t;), do(ti) , ..., dp(ti)}

Rule base: {ri(ti), r2(ti) , ..., rm(t)}.

Where t; denotes the i sampling instant (i=1~n).

Goal: Tune the FNN so that the actual outputs can be as close as possible to the desired outputs.

Step 1: Construct a matrix denoted G whose column vectors consist of sample values of rules
and desired outputs, which is the FNN matrix.
Step 2: Perform singular values decomposition on G. That is to transform G as the following
form:
G= UxV'
Where U, X, V are defined in{11)!
Step 3: Create another matrix = from X by replacing the p least significant singular values of =
with zeros and keeping the rest m singular values-of . untouched.
Step 4: Create another FNN matrix G’ by using W, 2, V' (derived from Step2 and Step3) such
as:
G= UzVv'
The column vectors in FNN matrix G’ are the tuning result, which consists of tuned rule
vectors and desired output vectors.
Step 5: Find the weighting factors associated with the tuned rule vectors obtained in Step 4 by
Eqg. (6), which is based on least square method.
Step 6: Find the desired outputs by summing the products of rules and their associated

weighting factors.

The core of the above algorithm is regulating singular values, which has the impact on the

vector space shown in following figure:

17



Figure 5: Rule base transformed by regulating singular values.
Figure 5 shows that the rule base is tuned by regulating singular values. The effect can be

expressed as adding a deviation on each sample value of rules. That is:

L) > n@)+ALE), n) > n)+AR®), - 6) > E)+AL ) (i=1~n)

dl(ti)_>dl(ti)+Arl(ti)’ dz(ti)_)dz(ti)"'Adz(ti): dp(ti)_)dp(ti)+Adp(ti) (i:1~n)

Where n, m, p denote the number sampling instants, rules,/and desired outputs respectively. The
deviations (i.e., Ar(t), Ar(t), --- Ar.(t)") are utilized to modify the originally defined rule
base (i.e.,r(t), nt) - r,(t)) while the ENNis dealing with some special situations that
cannot be well performed via the original rule base. The tuning approach makes the rule base
and desired outputs merge into the same vector space so that the desired outputs are exactly
linear combinations of rules. That is, the desired outputs are exact the combinations of rules and
the optimal weighting factor set obtained from Least Square Method. Thus, the error between
actual output of FNN and desired output exactly depends on the deviations resulting from

regulating singular values, which are:
Ady(t), Ad,(t), - Adp(ti) (i=1~n)

To be specific, suppose we wish to approximate the desired outputs (i.e., X1, X2,..., Xp) Via the
linear combination of rule vectors, (i.e, Xp+1, Xp+2,-.., Xp+m) @S precisely as possible. That is, we

expect the error defined in the following equation to be small.

18



(15)
Where w; are the weighting factors to be determined and e is the error. Since the error is not zero,
X1 Is “approximately” linearly dependent on rule base (i.€, Xp+1, Xp+2, ..., Xp+m). After performing
SVD on FNN matrix G and removing the p least significant transformed vectors x; , we have the
new vector set which is deviated from the original ones, such as:

X =X +AX; i=12,.,p+m.

Where x; represents the vector obtained by removing the projection of x; on xi* (i = m+1~m-+p)
defined in previous section. Ax (i = 1~p+m) are the deviations between original vectors and
tuned vectors. However the removal of these x; reduces the rank of FNN matrix G by p. This
implies that any column vector in G can be an “exact” linear combination of the other column

vectors. Then we can have:
X, =Y WX (j=Llypyi=p+1~p+m) (16)
i=2

The above (16) represents the relationshipsibetween rules and desired output of FNN; w;*(i=
p+1~p+m) are weighting factors to-be determined. From (15) and (16), it is obvious that the
error is exact equal to the deviation hetween x;rand-x; resulting from removal of singular values
oi (i =m+1~m+p). We can analyze the deviation by-defining the norm of FNN matrix G defined

in (9) via the result derived from (14), i.e.,

prm % p+m %
el 01| (et @)

i=1

From (14) and (17), the percentage error for FNN matrix G resulting from removal of certain

singular value can be described as follows:

2 *112
Percentageerror (i) = pfmT‘ __x (18)

p+m

200 2%l
k=1

k=1

Actually, the removed part of the specific vector x; is only part of [IXi']l. To be more specific, we

examine the error associated with specific vector x; (i.e., AXq.,) from the following

equations:
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- ~
Z O qUiqVy T 0 naUimenyV(manyj
q=1
>
o, u, V.. + o u Vv :
q“2qVqj m+1¥2(m+1)V (m+1)j o (19)
X, = | T = X;+ AXj(mi
m
Z O qUngVg T O mtUnminy)Vime1yj
—q=1 dnx1
Where
- _
Z 0 qU1qVy;
g=1
O miaUimen)Vim1) n
A _ O-m+lu2(m+1)v(m+l)j XI _ Z JqUZqqu (20)
Xj(m+1) - . , i = a1
OmitUnminyVmsn)j |, 0 .
Z O qUngVy;
- q=1 Jdnxl
Thus we have:
2 FallioN >
ij(m+l) = O Viem.1) (21)

Compare (14) and (21), the deviation of Xj-is-reduced by a coefficient Vij2 compared with the
removed singular values oi. This confirms that the error associated with desired output can be
kept small in performing singular value regulation. However, for multiple desired outputs case,
the removed singular values tends to have more effect on precision since the error caused by

removing singular values should be updated as:

m+p m+p -

2.,2 *
D> olvior Y xRy (23)
i=m+1 i=m+1

Apparently, the number of desired output should be reduced for high precision requirement.
However, it may be conflict with real situations. Thus we propose an improved training strategy,

which will be discussed in the following section.
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3.3 Improved Training Strategy

The above (23) demonstrates that the error grows up with increasing the quantity of desired
outputs. Thus, the extension of rule base may be essential for maintaining high precision. To be
specific, consider the following two training cases:

Case 1: Generating the desired outputs via tuning a large size of rule base

G’G’..-’O',--.G’Guiaui’-..’Gui

- v - e
m singularvalues p singular values

Case 2: Generating the desired outputs via tuning a small size of rule base

0,0,-::0, 0,0,*,0,,0y

- S - A
m singularvalues p singular values

Where m and p are number of rules and number of desired outputs respectively. oy represent
the unimportant singular values. In case 1, the least p significant singular values are safe to be
eliminated since m >> p. While the error in'case.2 is considerable due to some of important
singular values may be treated as zeros. However, for high efficiency requirement, case 2 is the
better choice due to the rule base to be-considered is smaller. Thus our objective is to reduce the
number of desired outputs to be generated.  This can be accomplished by replacing the

convention of FNN matrix as the following form:

_dl(tll) rl(tll) rm(tll)

dl(tln) r;I.(r'.ln) rm(t’ln)
d2(t21) rl(tzl)"' Fn (t21)

dz(:[Zn) rl(th) I (;:Zn)

d p (tpl) rl(tpl)' Ty (tpl)

4 ) 1ultan) T o)) ()

By utilizing the convention of FNN matrix shown above, the error is much reduced since it is

simply determined from the weight of the least significant singular value. Based on this

21



advantage, the desired output can be generated from a much simpler rule base so that the
quantity of training data and weighting factors to be deal with can be much reduced.
Furthermore, the extraction of dominant rule base does not have to be performed since the rule

base has been kept small. Thus the efficiency of FNN is indeed improved.

By adopting the improved training strategy, Algorithml should be modified, as shown in the
following Algorithm 2.

Algorithm2: Tuning FNN via SVR algorithm with improved training strategy
The FNN shown in Figure 1 has m fuzzy rules {ri(t), ra(t), ..., rm(t).with p desired outputs {d;(t),
da(t), ..., dp()}.
Given: Desired outputs: { di(t;), da(t;i), da(tii),..., dp(t;i) }
Rule base: {ru(t;), ra(ti) , ..., rm(i)}.
Where tj; denotes the i™ (i=1~n) sampling instant associated with j™ desired output.

Goal: Tune the FNN so that the actual outputs can be as close as possible to the desired outputs.

Step 1: Construct the associated FNN matrix G;which is:
_dl(tll) rl(til) rm(tn)_

dl(tln) r1(1"1n) rm(tln)
d2(t21) rl(tzl)"' rm(t21)

dZ(;:Zn) r;I.(th) I (izn)

dp (tpl) rl(tpl)' Ty (tpl)

_dp(tpn) rl(tpn)' “ (tpn)_pnx(m +1)

Step 2:Perform singular value decomposition on G. This is to transform G into the following
form:

G= UxV'

22



Where U, Z, V are defined in (11).
Step 3:Create another matrix = from = by replacing the least significant singular value of =
with zero and keeping the rest singular values of £ untouched.
Step 4: Reconstruct G’ by using U, 2, V' (derived from Step 2 and Step 3) such as:

G = UzV’

The column vectors in FNN matrix G’ are the tuning result, which consists of tuned rule

vectors and the desired output vector.
Step 5: Find the weighting factors associated with the tuned rule vectors obtained in Step 4 by
least mean square (LMS) method.
Step 6: Find the desired outputs by summing the products of rules and their associated

weighting factors.

The performance of Algorithm 1 and Algorithm 2 is.compared in the following example.

Example: Controlling the speed and-turning angle with respect to the positions for a navigated
object via FNN.

In this example, a car will be navigated on the-feasible paths, which depends on the obstacle
distribution. We wish to utilize the FNN to control the angle and speed of the navigated object
such that it can run along the feasible path smoothly. Thus, speed and turning angle of the
navigated object are the outputs to be generated by FNN. It is obvious that speed decreases as
the turning angle increases. The turning angle depends on how large the distance between the
obstacle and the navigated object, and therefore it depends on its position. The feasible paths

are shown in Figure 6(a).
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Figure 6(a) The feasible paths for navigation. They originate from (0,200), (0,175), (0,150), (0,130), (0,110)
respectively. The values of speed and turning angle corresponding to positions sampled from

these paths will be generated by FNN.

The position (x, y) of the car can be described as:

X(tk) = X(trer) + Vit ) (ti = tica) cosO(ty-1)

y(t) = yftic1) + V(ti-1) (tk = tk1)-sinO(ty.1)
Where t, denotes the k™ sampling instant and-v-is-speed of car. 0 is defined as the angle between
direction of navigated object and the“horizontal axis (i.e., x axis), and the turning angle is
defined as the angle deviation between two sampling instants (i.e., 6(tx)- 6(tk-1)). Thus we have
the training pattern shown in Figure 6(b)
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Figure 6 (b) Output training pattern for the navigated object Output 1: deviations of angles between two
sampling instants. Output 2: Speed at certain sampling instant / Maximum speed among all the
sampled speeds.
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The membership functions for generating the desired outputs are shown in Figure 6(c).

0 a0 100 150 200

0 a0 100 150 200 250 300 350 400
X

Figure 6(c) Membership functions A(x), A(y) for controlling the turning angle and speed of navigated
object.

In this example, we will compare the performance of Algorithm 1 and Algorithm 2 with two

different cases. In case 1, the two desired outputs (i.e., speed and turning angle) are generated

from Algorithm 2, which resets only the least significant singular value to zero to yield the

desired output. While in case 2, they are generatedsfrom” Algorithm 1 with resetting two least

significant singular values. Thus, the configurations-of FNN in different cases are:

Figure 6(d) configuration of fuzzy neural network. Case 1: configuration of FNN containing one output
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consists of training patterns of outputl and output2 (i.e., y = [ylzyz} ). Case 2: Configuration of FNN

containing two outputs.

The weighting factors obtained in two different cases are shown in Table 1.

Table 1 Weighting factors found from different algorithms7

The Case C
asel
Output combing Case2

Weighting outputl and

factors output2 Outputl Output2
W, -1.28560035 -0.74242182 0.65811067
W, -0.83026591 -1.47290053 -1.28442388
Ws -0.03244928 -1.31901729 -0.06365498
W, 0.451646332 -0.38325317 0.80117971

outcome for the two desired outputs (i.e: turning-angle and speed) generated by FNN are

shown in Figure 7
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Case 1: Output generated by FNN with algorithm 2.
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Case 2: Outputs generated by FNN with algorithm 1.

Figure 7(a) Output generated by FNN with different algorithms
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Figure 7(b) Outcome of the generated path.
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Figure 7(b) shows the real paths by using the two set of weighting factors obtained from
different algorithms.

Table 2: Comparison of errors in case 1 and case 2

Error
Case 1 Case 2

. Output 1 4.64x10*
1.33x10°

Output 2 3.71x10™

From Table 2, it is obvious that the performance of FNN applied with Algorithm 2 (i.e., case 1)
is more advantageous than that applied with Algorithml (i.e., case 2) in dealing with multiple

desired outputs when the precision is strictly required.
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Chapter 4

Reduction of Rule Base
To define a large size of rule base may not be avoided in real applications since the desired
outputs usually vary case by case. Thus for generating some simple desired outputs, the
efficiency is quite low due to lots of redundant rules is taken into account. Thus it is essential to
extract the dominant rules from the large rule base given initially since the other rules reduce
efficiency much but have no distinct effect on precision. It has been shown that after tuning the
rule base by removing singular value, the error depends on the weight of the square of removed
singular values o? which equals the magnitude of ||x; |- Thus the objective is to reduce the
weight of removed vector. To derive the method for realize this objective, we should explore the
fundamental of singular value decomposition (SVYD). That is, the performance of SVD is a
unitary transformation, so that the norm of FININ.matrix.G is conserved [9, 10], as described by

the following equation:

m+p

m+p
ok SHll =20

2

(24)

X;

Where m and p denote number of rules and number of desired output respectively. It is known
that by performing SVD, the dominance of the most significant vector is maximized, because it
lies on the direction where the data has the most intensive distribution [9~14]. This implies that
the dominance of the most significant vector increases with the correlations between the given
vectors. From (24), increasing the dominance of significant vector accompanies with reducing
the significance of the other ones. Thus we can obtain a trivial vector suppose that the
correlations between the original vectors are highly correlated with each other. Thus the
criterion for reduce the weight of removed vector x; is to increase the value of <u «irUg > ,
where u, and u, represent the unit vectors of rule vectors and desired output vector
respectively. Actually, the condition implies that the direction of the trivial vector is far from
that of all the original vectors {xi X2 X3 ,..., Xp+m} Since the original vector set has little

component distributing on this direction. Thus the procedure for determining the dominant rule
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base can be described by the following Algorithm 3.
Algorithm3: Determination of dominant rule base
The FNN shown in Figure 1 has m fuzzy rules {ri(t), ro(t), ..., rm(t)}.with p desired outputs
{da(), da(t) , .., dp(D)}-
Given: Desired outputs: di(ti), da(ti), ds(ti),..., dp(ti)
Rule base: {ri(ti), ra(t) , ..., rm(t)}.
Where t; denotes the i sampling instant (i=1~n)
Threshold of correaltion between rule and desired output: Ctr.
Threshold of precsion index Ptr.
Goal: Determine the dominant rule base from the given rule base for generating the specified
desired output d(t;)
Step 1: Compute the correlation between.each-normalized desired output and rule vector in the

given rule base. That is, to compute the vialugs:
<uri'udj>(i =l=m j=1= p)
The notation “u” represents the unit vector.

Step 2: Find the set consists of rules ry (k =1, 2,---m) satisfying the following relation:

<urivudj>>Ctr (j=1~p)

Step 3: Check if the least square error (LSE) is below the preset threshold. That is:
LSE < Ptr
If the above condition exists, the selected rules exactly constitute the rule base;
otherwise, go to step 4
Step 4: Construct the FNN matrix G associated with the given rule vectors selected in step2 and

desired output vectors, such as
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dy(t)--d, () (L))
dl(tz)"'dp(tZ) rl(tz) """ rs(tz)
G= dl(ts)"'dp.(tﬁ) rl(t3) """ rs(ta)

[0 (t)- o) () L) s p4s)

Where the number rules in the rule set found in step 2 is denotes as s
Step 5 Tune the selected rules by resetting the least significant p singular values of FNN matrix

defined in step 4 to zeros. The tuned rule base is the desired rule base.

The above algorithm may be effective in dealing with a small group of desired outputs with high
correlation, whereas it may be disadvantageous in dealing with large number of desired outputs,
especially when these desired outputs .are little correlated with each other. To be specific,
suppose the dominant rule base for desiredoutputs.(ds,-dz, ds,..., dy ) are (Ry, Rz, Rs,..., Rp)
respectively. It is obvious that the dominant rule base for generating all the desired outputs is
quite large provided that these ‘rule “baser(Riy Rz Rs,..., Rp) are little in common
(i.e, R NR; < RorR(i# j)). Thatis,
R <<RUR,U...UR, (i=1~p)

Where R; represents the dominant rule base corresponding to the i desired output, and the
number of total desired output is p. Consequently, the extension of rule base may be essential
suppose that we want to precisely generate all the desired outputs simultaneously, however, it is
time consuming for dealing with large size of rule base. Thus, when dealing with large quantity
of desired outputs that are little in common, Algorithm 2 is the better choice, since the output can
be precisely generated via fewer rules by applying this algorithm. Absolutely, the convention of

FNN matrix should be replaced by the convention defined in Algorithm 2.
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Chapter 5

Illustrative Examples
In this chapter, we will show the advantage of SVR algorithm in simplifying the rule base. The

car navigation and system identification problems are taken as examples for illustration.

Example 1: Navigation of Model Car [1]

In this example, the car will be navigated along a predefined path confined by the boundary
walls. The position of car is specified by x, y, and z is the angle between the direction of cat and
the horizontal axis (i.e., X axis). We set x, y, zas input variables, so that the input training data are
the values of x, y and z corresponding to the position on the desired path. The criterion for
defining the desired path is to prevent the, car.from bumping into the boundary walls. For
instance, the path shown in Figure 8 is:feasible among-all the possible situations so that we can

let it be the desired path for the car navigation.
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Figure 8 A feasible path for car navigation
The output training data are obtained from sampling the values of angles at the positions next to
the position (i.e., X(t), y(t)) where the car is located (i.e., z(txs1)).Where t; represents the k™
sampling instant. The membership functions constructing the rules of FNN are shown in Figure
9:
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Figure 9 Membership functions A(x), A(y), A(z) for generating the desired path shown in Figure 8.
We wish to utilize the FNN to generate all the desired paths with the same tuned weighting
factors. The rule base obtained from the membership functions in Figure 9 is roughly derived
from human feeling so that it may contain redundant rules. In the following paragraph, both of
the outcomes obtained from the original rule base and that obtained from the reduced rule base
will be shown

Casel: Paths generated from the original rule base (twenty-seven rules).
The square singular values belonging to the associated FNN matrix are listed as follows

Table 3 Square of singular values of the associated FNN matrix

82.27785494343895 0.00001985099054 0.00000000044913
5.24968494199168 0.00001856865610 0.00000000025627
1.67374902813030 0.00000539945881 0.00000000016226
0.25320269522639 0.00000419872013 0.00000000000427
0.04431626435280 0.00000028517688 0.00000000000339
0.01542454876520 0.00000010746623 0.00000000000018
0.00200855604145 0.00000006766903 0.00000000000014
0.00055397135821 0.00000005653205 0.00000000000000
0.00019773748329 0.00000000146113
0.00016438555941 0.00000000065496
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effect on total vector set. This implies that the performance of FNN would be satisfying using
the given rule base.

Table 4 Rule base defined from membership functions in Figure 9.

Input variable
X y z
ariable number
0 1 2
Rule number

1 0 0 0
2 0 0 1
3 0 0 2
4 0 1 0
5 0 1 1
6 0 1 2
7 0 2 0
8 0 2 1
9 0 2 2
10 1 0 0
11 1 0 1
12 1 0 2
13 1 1 0
14 1 1 1
15 1 1 2
16 1 2 0
17 1 2 1
18 1 2 2
19 2 0 0
20 2 0 1
21 2 0 2
22 2 1 0
23 2 1 1
24 2 1 2
25 2 2 0
26 2 2 1
27 2 2 2
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Where 0, 1, 2 represent small, medium, large respectively. Correspondingly, Ajj represents the i
( = 0~2) membership function associated with i (i = 0~2) input variable. The rules are
products of membership functions defined in Figure 9. Three membership functions are set for
each input variable as shown in Figure 9. Thus we have 27 rules, which are defined in Table 4.

The weighting factor associated each rule defined in Table 4 are listed in Table 5.

Table 5 Weighting factor associated with each rule

Rule 1~9

Rule 10~18

Rule19~27

-0.75571907837368
3.64928526212313
-1.30427508117294
0.03623954020896
0.00178423256134
0.05897749993184
-3.15560891193539
-0.84900405057501
3.14336213428962

0.73363731354769
-0.73617434143575
0.38102407422188
0.01399107323513
-0.02049810344030
0.02514866212161
-1.50142999664931
1.67238543093995
<1.63329345274953

-3.88755820107623
-1.44428673043869
-1.07923508586419
0.10170459483365
-0.04851905055454
-0.03263706582737
0.24361646489375
1.44908269164601
-2.35704795920322

The output generated by FNN is shown in the following figure:

Paths In different sifuations generaled by the same FNN
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Figure 10. Paths of different cases generated by 27 rules Casel: Path originating from the origin. Case2:

Path originating from y = 80 Case3 Path originating from y =100
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The result shown in Figure 10 shows that the paths with different initial conditions are
successfully generated from the FNN with the same weighting factor set. The error between the
desired output and actual output generated from twenty-seven rules are trivial (i.e., 8.65x10®).
However, the efficiency may not be satisfying since we have set large quantity of rules in the
FNN. Thus, we may wish to accomplish the navigation task by generating the desired output
via fewer rules with slightly reduction of precision so that the generating efficiency can be
much increased. Consequently we will adopt Agorithm3 to extract the dominant rule base. The

overall procedure is listed as follows:

Case2: Paths generated from the reduced rule base.
Let
Threshold of precision index (Ptr) = 107,
Threshold of correlation (Ctr) = 0.93
The correlations between desired output and each rule are:listed as follows:

Rule 1~ Rule 9
0.8738 0.8811 0.8876 0.9058 0.9161+ 0.9258 -0.9198 0.9306 0.9385
Rule 10~ Rule 18
0.8401 0.8500 0.8596 0.8612 0.8729 0.8845 0.8754 0.8868 0.8977
Rule 19~ Rule 27
0.8833 0.8916 0.8992 0.9111 0.9216 0.9316 0.9203 0.9293 0.9374

The correlations corresponding to rule 8, 9, 24, 27 are larger than the preset threshold (Ctr) so
that they will be selected.

The least square error (LSE) = 9.87x10™ < Ptr

The above data shows that the selected rules are sufficient to satisfy the precision bound.
Therefore, we can let the rule base be the set of the selected four rules. The membership
functions for constructing them are listed as follows:

Rule 8: Ago, A1, A
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Rule 9: Ago, A11, Ax.
Rule 24: Az A1, Ax.
Rule 27: Aoz, A1z, Ags.
Thus all the membership functions constructing these rules are:
Ao, Aoz, A1, Arz, Aza, Az
The fact shows that three membership functions can be eliminated since only six of the
predefined nine membership functions are utilized. The redundant membership functions to be
eliminated are Ao1, A1o, Azo.
The weighting factor set corresponding to the rule base is: -
-1.9119 4.2080 -0.0002 -0.9458
The following figure shows the performance of FNN in dealing with the car navigation problems

with smaller size of rule base.
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Figure 11 Paths in three different cases are generated by the FNN with four rules. Casel: Path
originating from the origin. Case2: Path originating from y = 80 Case3: Path originating from
y =100

The result shows that the desired path can be successfully generated using only a few rules.

Next, we will try to generate the paths originating from both the upper corner and bottom

corner via the same reduced rule base, as shown in the following figure:
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Figure 12: Two general cases of navigated paths.
In order to cope with all the possible situations, the reduced rule base should be properly tuned
such that we can always obtain the satisfying wesult in different situations by the FNN.
Therefore, we have to retrieval the training, data fromall the valid paths. The corresponding
weighting factor set obtained from least:mean square method is:
-1.3375 2.9379 -0.0002 -0.6561
The outcome is shown in the following. figure:

Navigated paths in different sifuafions
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Figurel3: (a) The approximated paths in different cases generated by the FNN without tuning the rule
base by regulating singular values. Case 1: path originating from (0,177). Case 2: path
originating from (0,130). Case 3: path originating from (0,30). Case 4: path originating from
(0,75).
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Navigated paihs in different sifuations
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Figurel3: (b) The approximated paths in different cases generated by the FNN with tuning the rule base
by regulating singular values. Case 1: path originating from (0,177). Case 2: path originating
from (0,130). Case 3: path originating from (0,30). Case 4: path originating from (0,75).

In comparison with Figure 13(a) and (b),the tuning.approach is not essential if the precision is

not strictly required. However, for some special cases, the error will be tremendous suppose that

the desired paths are generated from-the rule base without tuning by regulating singular values,

such as the ones shown in Figuerl4:
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Figure 14: Two special cases of navigated paths generated by the FNN. Case 1: path originating from
(100,200). Case 2: path originating from (300,0). The paths shown with dot lines are
generated from the rule base without tuning by regulating singular values, while the paths
shown with solid lines are generated from the rule base tuned by regulating singular values.

The outcome shows that the FNN obviously fail in generating the desired output via the
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originally given rule base owing to the conditions specified by the desired output and rule base
quite mismatch with each other. That is, all rules defined in the rule base are little correlated
with the desired output, as shown in the following table:

Table 6

Correlations between rules and

desired output

Rule 1 0.0064
Rule 2 0.0098
Rule 3 0.0079
Rule 4 0.0104

Under this circumstance, the vector space where desired output vector belongs is close to the
null space of the vector space spanned hy:rule base::Thus, the least square error (LSE) is close
to the square norm of desired output vector, (i {[%.[|?):-However, after tuning the mismatched
rule base via regulating singular value; the error-exactly-depends on the projection of desired
output vector (i.e., X;) on the removed vector-(i.e., xm+1*). We name the error for regulating error
(RE). Apparently, RE is much smallerthan LSE since'RE is only a small proportion of ||x|*.
That is:

||x1||2 = (fo)2 +(Cx; )2 Foen +(Cx* )2

m+1

Where (Cxi*)zrepresents the projection of x; on X (i =1~m+1), and

*

(cx,.) = RE

We can examine the fact from the error between the generated paths of FNN and desired paths
(i.e., RE = 6.21x10°, LSE = 0.89). The result shows that the performance of FNN is indeed
improved since both the error and rule base can be kept small. The outcomes obtained from the
tuned rule base and that obtained from the rule base without tuning are compared in the

following figure:
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Figure 15 Advantage of tuning the rule base. The data are relevant to the cases shown in Figure 13 and
14. The increase of RE is quite smaller compared with that of LSE, which depends on the
correlation between rules and desired output.

Figure 15 shows that the precision can be:well'maintained provided that the output is generated

from the tuned rule base. Thus the rule base is certainly kept small since we only have to

modify the given rule base without setting new rules for generating the output that is little

correlated with the original rule base:

Example 2: System identification of a plant model [7]
In this example, the system of a first-order nonlinear plant is going to be identified. The plant to
be identified is of the following form:
y(k+1) = g[y(k),u(k)]
Where the unknown function has the following nonlinear form:

il ~+ X,
1+x,

and u(k) = sin (2zk/25) + sin(2zk/10). The series-parallel identification model is:

g(X11 Xz):

yk+) = flyk),uK)]

Where f is in the form of output of fuzzy neural network with two fuzzy input variables whose

Gaussian membership functions are defined in the following Table 7:
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Table 7

Center and width for fuzzy sets of x; Center and width for fuzzy sets of x,

Center Width Center Width
Aoo 0.5 0.5 Ao -2 0.6
Ao1 0 0.3 An 0 0.6
Ao 3 0.4 A 1 0.6
Aoz 5 0.6 A1z 2 0.6

Case 1: System identified by 16 rules.
We define training space as —-100< k <100 and retrieval one thousand training data points from the

defined training space. The obtained singular values of the associated singular values are listed

as follows:

Table 8 Singular values of the matrix.consists of rules and desired output
6.19322235099177 0.00000000039161 0.00000000000042
0.05865327981720 0.00000000022078 0.00000000000014
0.00000617453351 0.00000000016806 0.00000000000009
0.00000000750532 0.00000000000617 0.00000000000000
0.00000000163361 0.00000000000520 0.00000000000000
0.00000000054607 0.00000000000213

The high redundancy of singular values shown in Table 8 demonstrates that too many redundant
rules are set for identifying the system. This implies that only a few rules among the given rule
set are essential for identifying the plant model. Thus will adopt Algorithm 3 to extract the

dominant rules.

Case 2: System identified by reduced rule base.

We apply Algorithm 3 to determine the dominant rules for identifying the system such that the
rule base can be reduced as the set consists of these dominant rules. The procedure is listed as
follows.

Let
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Threshold of precision index (Ptr) = 107
Threshold of correlation (Ctr) = 0.06
The correlations between the desired output and each rule are listed as follows:
Rulel ~Rule8
-0.2848  -0.2621  -0.2493 -0.2414 -0.0123 0.0014  0.0108 0.0116
Rule9 ~Rulel6
-0.0139 0.0355  0.0629 0.0623 -0.0315 0.4037  0.3858 0.3714

The marked values corresponding to rule 11, 14, 15, 16 are larger than the preset threshold (Ctr).
Thus rule 11, 14, 15, 16 will be selected. The membership functions for constructing them are
listed as follows:
Rule 11: Aoy, Az,
Rule 14: Aoz, Ay
Rule 15: Ags, A1z,
Rule 16: Ags, Ass,
Thus all the membership functions for constructing these rules are:

Az, Ao, Ars, Az, Aug
The fact shows that three membership functions<can be eliminated since only five of the
predefined eight membership functions are utilized. The redundant membership functions to be
eliminated are Ao, Aoz, A1o.
The least square error (LSE) = 9.68x10%> Ptr
Due to the error exceeds the preset precision bound, we have to tune the selected rules by
removing the trivial singular value of the associated FNN matrix.
The square of singular values of the FNN matrix are listed as follows:
5.34295850306414  0.00026015790148  0.00000007638967  0.00000012271620  0.0000000044133
After removing the least significant singular value, the obtained weighting factor set
corresponding to the rule base is:
0.000424 -0.004345 0.289796  2.018651

The approximation of system output and the real system output are shown as follows:
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Figure 16. Case2: System identified by 4 rules.

* . generated output of FNN. _: system output
After tuning the rule base, the least square error is 3.38x107 which is quite smaller than the
preset threshold. Next, we will replace the original:sinusoidal input by the step input to see if

the output can match the step response of-this system.<The result is shown in the following

figure:
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Figure 17 Step response of the system identified by four rules. Dashed line: generated output of FNN.
Solid line: desired output

The least square error is 9.38x10™. The result shows that the theoretical system output is much

close to the generated output of FNN. The phenomenon confirms that the system performance

can be replaced by the FNN with a simpler rule base.
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Conclusion

The methodology for enhancing the fuzzy neural network in coping with various relations
between the fuzzy inputs and outputs has been presented in this paper. The result shows that the
FNN is able to precisely generate the desired output in many complicate situations via a small
size of rule base that is well tuned by regulating singular values. Because the rule base is kept
small, the generating efficiency is much higher so that the FNN is able to efficiently confront a
variety of complicate situations in the real world applications. In addition, to update the
weighting factor set becomes an easier task so that the FNN may also be applied in dealing with
the situation that occurs instantly. To sum up, regulating singular values approach enables FNN

to deal with complicate inputs and outputs relations more efficiently, as illustrated in this paper.
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