

國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

以奇異值調整法簡化模糊類神經網路

Simplification of Fuzzy Neural Network via
 Singular Value Regulation

 研 究 生：林育民

 指導教授：王啟旭 教授

中 華 民 國 九 十 四 年 十 月

 2

以奇異值調整法簡化模糊類神經網路

Simplification of Fuzzy Neural Network via
Singular Value Regulation

研 究 生：林育民 Student：Yu-Min Lin

指導教授：王啟旭 Advisor：Chi-Hsu Wang

國 立 交 通 大 學
電 機 與 控 制 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Information Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electrical and Control Engineering

October 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年十月

以奇異值調整法簡化模糊類神經網路

學生：林育民

指導教授：王啟旭

國立交通大學電機與控制工程學系﹙研究所﹚碩士班

摘 要

本論文提供一種縮減規則庫的方法來提升模糊類神經網路的效能。其核

心理論為藉由調整由輸入輸出向量構成之模糊類神經網路矩陣的奇異值來改

變輸入輸出之間的關係。我們稱此方法奇異值調整法。此方法可避免隨著輸

出情況的高度複雜化而來之規則庫增加的問題。因此模糊類神經網路將有更

好的效率。另外，因為模糊類神經網路是以小的規則庫來運作，其對應到規

則庫的權重值可以很容易地以最小平方法得到。因此，模糊類神經網路對於

輸出情況的變化將有更迅速的反應。我們藉由幾個例子來分析其誤差。所得

到的結果證實由簡化過的規則庫仍可將精確度維持在很高的水平，因而大幅

提升了模糊類神經網路的效率。

 3

 4

Simplification of Fuzzy Neural Network via
Singular Value Regulation

Student：Yu-Min Lin Advisors：Dr. Chi-Hsu Wang

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT
The main purpose of this paper is to enhance the efficiency of a fuzzy neural network

(FNN) by proposing a new training methodology with rule reduction. The core of this

methodology is to modify the input-output relations by updating the singular value set

associated with the FNN matrix, which is composed of the rule vectors and desired output

vectors. We name it for Singular Value Regulation (SVR). By adopting this method, the

FNN can have a better efficiency owing to it is free from extension of rule base, which often

accompanies with high complexity of the situation described by the desired output. In

addition, updating the weighting factor set associated with the rule base can be easily

determined using least square method since the FNN often performs with a small size of rule

base. Therefore, the FNN can have an instant response of the alternation of the output

situation. Error analysis has been performed with illustrated examples. The outcome shows

that the precision can be well maintained with the simplified rule base so that the efficiency

of FNN is greatly enhanced.

 5

致 謝

能完成這篇論文，首要感謝我的指導教授王啟旭在一年多當中給我的大

力指導。使我能將雜亂的思緒理出頭緒。其次要感謝實驗室裡的同學和我分

享他們的經驗，以及陳益生，蔡瑞昱學長給我學習上的幫助指點。另外要感

謝的人是我的大學時代的導師朱一民教授對我的鼓勵以及給我寶貴的意

見。也要感謝口試委員鄧清政，曾勝滄教授的指點批評。最後感謝我的父母

對我的支持與犧牲奉獻，讓我能順利完成學業。

Contents

摘要 …………………………………………………… 3

Abstract …………………………………………………… 4

致謝 …………………………………………………… 5

Chapter 1 Introduction……………………………………… 9

Chapter 2 Problem Formulation…………………………….. 11

Chapter 3 Singular Value Regulation (SVR)……………….. 15

 3.1 Singular Value Decomposition (SVD)……………... 15

 3.2 Singular Value Regulation (SVR)………………….. 16

 3.3 Improved training strategy…………………………. 21

Chapter 4 Reduction of Rule Base………………………….. 29

Chapter 5 Illustrative Examples………………………….…. 32

Conclusion …………………………………………………………… 45

Reference …………………………………………………………… 46

 6

 7

List of Figures
Figure 1 Configuration of Fuzzy neural network……………….……………. 3

Figure 2 Vector space distribution in the case with large error...….….. 4

Figure 3 Vector space distribution in the case with small error……….. 5

Figure 4 Vector space distribution in the ideal case……………………... 5

Figure 5 Rule base transformed by regulating singular value.…….……..…. 10

Figure 6(a) Feasible paths for navigation……………………….…………...…... 16

Figure 6(b) Output training pattern for the navigated object……………… 17

Figure 6(c) Membership functions for controlling the turning angle and speed 17

Figure 6(d) Configuration of fuzzy neural network in two different cases.. .17

Figure 7(a) Outcome of the generated paths in case1……………………….. 19

Figure 7(b) Outcome of the generated paths in case1…………………….……... 19

Figure 8 A feasible path for car navigation…………………………………... 24

Figure 9 Membership functions defined for generating the feasible

Paths…………………………………………………………………..

25

Figure 10 Paths generated by twenty-seven rules…………………….……. 27

Figure 11 Paths generated by reduced rule base…..………………………. 29

Figure 12 Two general cases for car navigation………….………………… 30

Figure 13 (a) Paths generated from the reduced rule base without tuning… 30

Figure 13 (b) Paths generated from the reduced rule base tuned by removing

Singular value………….…….……………………………………….

31

Figure 14 Comparison of navigated paths generated from tuned rule base
and the original rule base….…………………………………………

31

Figure 15 Advantage of tuning rule base………………….…………………… 33

Figure 16 System identified by reduced rule base……………..………………. 36

Figure 17 Step response of the identified system…………………………… 36

List of Tables
Table 1 Weighting factor set obtained from different algorithms……….. 26

Table 2 Comparison of errors obtained from different algorithms……… 28

Table 3 Singular Values of the FNN matrix associated with the car

navigation problem…………………………………………………

33

Table 4 Rule base set for car navigation problem 34

Table 5 The corresponding weighting factors associated with rules for

car navigation……………………………………………………….

35

Table 6 Correlations between rules and desired outputs associated with

the special case………………………………………………………

40

Table 7 Fuzzy sets associated with system identification of the plant

model…………………………………………………………………

42

Table 8 The corresponding weighting factors associated with rules for

system identification problem…………………………………..….

42

 8

Chapter 1
Introduction

Controlling the relationship between inputs and outputs is an important issue for many

engineering problems, for the reason that it is usually required that some desired output be

presented by a given set of input variables. However the system model may not be well

understood. Thus they may have to be approximated by a given set of input-output training data.

The given training data may result from experiments, real world conditions,…, etc. In recent

years, the FNN (Fuzzy Neural Network) [1] has been developed to generate the desired outputs

with given fuzzy inputs. The major work for building the FNN is defining the fuzzy rule base.

The rule base is also called knowledge base, which is derived from human feeling.

Theoretically, to have a large set of training data is essential for dealing with all the possible

situations precisely. However, it will cause a vast rule base. Apparently, the generating

efficiency will be much decreased using such a vast rule base due to high redundancy of rules

frequently exists when dealing certain simple cases. Therefore, the reduction of rule base

becomes a critical issue. Some related works has been done in previous papers. In [2], two

strategies are proposed in dealing with the foundation of fuzzy rules: 1) rule generation by

refinement, 2) rule reduction by merging. The former discusses the necessity of each rule, and

the latter discusses rule expansion technique that enlarges the valid boundaries of rules and in

turn reduces the rule base. A novel approach in [3] is also proposed to perform vector selection

based on the analysis of class regions, which are generated by a fuzzy classifier. The exception

ratio is a vital concept in [3] to determine the necessity of rules. The definition of exception

ratio is the degree of overlaps in the class regions. The idea of using the exception ratio for

feature evaluation derives from the fact that given a set of features, a subset of features that has

the lowest sum of the exception ratios has the tendency to contain the most relevant features,

compared to the other subsets with the same number of features [3]. The approach to minimize

the rule base is to reduce the exception ratio. Another popular method for reducing the

redundancy of rules is performing singular value decomposition (SVD), which has been

discussed in [4, 5]. However, it may be time consuming suppose the redundancy of rules is high

 9

since redundant rules are taken into account during the training process instead of being

eliminated initially.

Though reduction of rule base improves the efficiency of FNN, it also reduces the certain

conditions given from human beings so that the FNN becomes more constrained in dealing with

some specific cases. In other words, it is difficult to well concern all the possible situations

concurrently with keeping high precision. Furthermore, we may not sure whether the specific

rules are valid to be removed or not owing to insufficiency of knowledge and uncertainty of

information. Thus we propose an advance approach to well tune the rule base such that the

FNN can deal with multiple situations with a simpler rule base. The idea of this approach is

derived from the concept of singular value decomposition (SVD), and thus the analysis of

singular values via performing SVD is vital for analyzing its performance. Some examples are

fully illustrated to yield satisfying results such as the model car navigation and nonlinear

system identification problems in [1, 7]. The outcome shows that by adopting this approach, the

precision can be well maintained with much simpler rule base so that the efficiency is much

improved.

 10

Chapter 2
Problem Formulation

The topic of this paper is relevant to improving the efficiency of Fuzzy Neural Network (FNN),

which has the configuration shown in Figure 1[1].

x1

x2

XK

y1

y2

yp

1

2

m

r1

Aij

W11

W12

W21

W22

Wmp

Wm2

Wm1

W2p

layer I layer II
PREMISE

layer III layer IV
CONSEQUENCE

rm

r2

W1p

Figure 1 Fuzzy neural network (FNN)

There are four layers in this structure. The input variable is fed into the first layer, then operated

by the mappings A1(x1), A2(x2)…. Ak(xk) in the second layer. The nodes of third layer are

corresponding to different rules, which are derived from multiplying the products fuzzy

mapping associated with each rule. Thus the value of rule at a certain sampling instant is

derived from the following equation:

1

() (())
k

i i
i

r t A x t
=

= ∏ (1)

Where Ai(xi(t)) represents the fuzzy mapping associated with the ith input variable, and t denotes

the sampling instant. The third layer is also called hidden layer. The fourth layer is the output

variables. The transition from layer three to layer four is via the simple two layer neural network

with the weighting factor to be decided. The output variable is utilized to approximate the

desired output. The way we attempt to find out the output of FNN is to find out the appropriate

 11

weighting factor associated with each rule followed by combining them as the following form:

 1 1 2 2 3 3() = () () () ()m mf t w r t w r t w r t w r t+ + + + (2)

Where f(t) is the generated output of FNN, and ri(t) represents the ith rule. Apparently, the

output is supposed to be linearly dependent on the given rule set under the convention shown in

(2). However, this is usually not the real case. This means the linear relation between rules and

desired output is usually an approximation of the real situation. Thus, the desired output d(t)

should be expressed as:

1 1 2 2 3 3() () () () () ()m md t w r t w r t w r t w r t e t= + + + + + (3)

Compare (2) and (3), the desired output belongs to the vector space whose rank is higher than

that of the vector space spanned by rule base. The phenomenon is illustrated in the following

figure:

Figure 2 Relationship of rule base, desired output, error and output of FNN.

The error is minimized as the generated output is the orthogonal projection of desired output,

which is composed of products of the rule base and the optimal weighting factor set that

obtained from least square method [8], which can be described as the following equation:

() 1T
dw RR Rv

−
= (4)

Where

vd = [d(t1), d(t2), d(t3),……., d(tn)]T (5)

1 1 1 2 1 3 1 4 1

2 1 2 2 2 3 2 4 2

3 1 3 2 3 3 3 4 3

1 2 3 4

() () () () ()
() () () () ()
() () () () ()

() () () () ()......

n

n

n

m m m m m n

r t r t r t r t r t
r t r t r t r t r t

R r t r t r t r t r t

r t r t r t r t r t m n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ×

 (6)

 12

Obviously, the least square error decreases suppose that the rule base is getting closer to the

vector space where the desired output belongs, which can be shown in the following figure:

Figure 3 Case with smaller error. The vector space where the desired output belongs is closer to that

spanned by rule base compared with the case in figure 2.

From the above illustration, the error decreases with reducing the inconsistence of vector

spaces. This implies that the error disappears provided that the desired output and the rule

vectors are merged into the same vector space, such as shown in the following figure:

Figure 4: The relationship between desired output and rule base in the ideal cases.

Thus, the key issue to be concerned is rank of vector space where the following vectors belong:

 13

() () ()

() () ()

() () ()

() () ()

1 1 1 1 2 1

2 2 1 2 2 2

1 2

1 2

T
n

T
n

T
m m m m n

T

d j j j j n

v r t r t r t

v r t r t r t

v r t r t r t

v d t d t d t

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

⎡ ⎤= ⎣ ⎦

 (7)

Where r1~rm are rule vectors, and vdj represents the jth desired output number. P and m represent

the number of rules and number of desired outputs respectively. n is assumed to be far larger

than p+m, i.e., n>>p+m. It is known that the rank can be found by inspecting the singular

values of matrix comprising the vectors to be analyzed. Consequently, we set a matrix built

from the vectors in (7), such as:

11 1 1 1 1

21 2 1 2 2

31 3 1 3 3

1 1

()() () ()
()() () ()
()() () ()

()() () () ()

p m

p m

p m

p nn n m n

d td t r t r t
d td t r t r t
d tG d t r t r t

d td t r t r t n p m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

× +

 (8)

We name the matrix in (8) FNN matrix owing to it is adopted frequently in this paper. The

redundancy of singular values of FNN matrix demonstrates the linearity between rule vectors

and desired output vectors. Ideally, vdj (j =1~p) are exactly linearly dependent on v1~vm, which

implies p redundant vectors exist in the FNN matrix so that it contains p zero singular values.

However in real situation, trivial singular values instead of zero singular values are found. This

implies the linearity is changed with replacing these trivial singular values by zeros, which is

the main idea of the proposed approach in this paper. The approach will be discussed in detail

in the following chapter.

 14

Chapter 3
Singular Value Regulation (SVR)

Singular Value Decomposition (SVD) will be discussed first in this chapter. Then Singular

Value Regulation (SVR) based on SVD, will be addressed next. A tuning algorithm based on

singular value regulation (SVR) will also be proposed in this chapter.

3.1 Singular Value Decomposition (SVD)

The core of tuning approach proposed in this paper is relevant to singular values. Consequently,

Singular Value Decomposition (SVD) is an essential approach to be analyzed first. The

fundamental of singular value decomposition (SVD) is to express the analyzed vector set in

terms of the eigenvectors belonging to the matrix consists of all the vectors in the analyzed

vector set [9~14]. Here, the vectors to be analyzed are rule vectors and desired output vectors.

Suppose we have p desired outputs (x1~xp) and m rules (xp+1, xp+2, …, xp+m), combined together

in an FNN matrix G such as

1 2 1
()

p p p m
n p m

G x x x x x+ +
× +

⎡ ⎤
= ⎢

⎣ ⎦
⎥

⎤

 (9)

Because the new basis is composed of the eigenvectors of G, we have to find the left

eigenvectors ui (1 × n row vector) and right eigenvectors vi ((p+m) × 1) column vector such as:

[]

2

2

1 2 ()
1 ()

1 2 1

T
i i i
T

i i i

T

i i i i p m
p m

i i i in n

G Gv v

u GG u

v v v v

u u u u

σ

σ

+
× +

×

=

=

⎡= ⎣ ⎦

=

 (10)

Where σi. (i=1~p+m) are the singular values of G. Actually, the validity of finding the left and

right eigenvectors of FNN matrix G via the equations shown in (10) implies the existence of

following equation:

G=U∑VT (11)

Where U and V are composed of ui (i =1~n) and vi (i =1~p+m) respectively. ∑ is the diagonal

 15

matrix composed of singular values of FNN matrix G. We focus our concern on vi because it is

associated with the column vectors of G which are going to be analyzed. The component of all

the data set on the eigenvector vi can be shown as:

 *
1 1 2 2 ()i i i i p m p mx v x v x v x+ += + + + (12)

or
*
i ix Gv= (13)

Where “*” denotes transformed vector set derived form expressing the original vectors in terms

of new basis (i.e., the set of eigenvectors of G). It is obvious that GTG is a symmetric matrix so

that its normalized eigenvectors (i.e., vi) forms an orthonormal set. Consequently, we can have

the following (14) from (10) and (13):
* * 2 2 * 2|| ||T T T T
i i i i i i i i ix x v G Gv v v xσ σ= = = = (14)

From (14), the importance of singular value can be analyzed from its associated transformed

vector. This fact will be adopted extensively in the following sections.

3.2 Singular Value Regulation

As previously mentioned, the maximum rank of FNN matrix G in (8) is m, provided that rule

base and desired output are in the same vector space. However, this is not true in real situations.

We can only assume that rule base and desired outputs are approximately in the same vector

space in real situations. Therefore, we cannot fully neglect the contribution of insignificant

singular values of FNN matrix G because they do not exactly equal to zeros. The key technique

for singular value regulation (SVR) algorithm is to force insignificant singular values of FNN

matrix G defined in (8) to zeros such that desired outputs are in the vector space spanned by

rule base. Therefore desired outputs can be exactly expressed as a sum of products of weighting

factors and their associated rules, such as shown in (2).

The overall procedure for regulating singular values is induced as the following algorithm:

Algorithm1: Tuning FNN via Singular Value Regulation (SVR)

 16

The FNN shown in Figure 1 has k input fuzzy variables, {x1(t), x2(t),…, xk(t)}, and p desired

outputs {d1(t), d2(t) , …, dp(t)} with m fuzzy rules {r1(t), r2(t), …, rm(t)}.

Given: Input training data: {x1(ti), x2(ti),…, xk(ti)}.

Desired outputs: {d1(ti), d2(ti) , …, dp(ti)}.

Rule base: {r1(ti), r2(ti) , …, rm(ti)}.

Where ti denotes the ith sampling instant (i=1~n).

Goal: Tune the FNN so that the actual outputs can be as close as possible to the desired outputs.

Step 1: Construct a matrix denoted G whose column vectors consist of sample values of rules

and desired outputs, which is the FNN matrix.

Step 2: Perform singular values decomposition on G. That is to transform G as the following

form:
TG U V= Σ

Where U, Σ, V are defined in (11).

Step 3: Create another matrix Σ’ from Σ by replacing the p least significant singular values of Σ

with zeros and keeping the rest m singular values of Σ untouched.

Step 4: Create another FNN matrix G’ by using U, Σ’, VT (derived from Step2 and Step3) such

as:
' ' TG U V= Σ

The column vectors in FNN matrix G’ are the tuning result, which consists of tuned rule

vectors and desired output vectors.

Step 5: Find the weighting factors associated with the tuned rule vectors obtained in Step 4 by

Eq. (6), which is based on least square method.

Step 6: Find the desired outputs by summing the products of rules and their associated

weighting factors.

The core of the above algorithm is regulating singular values, which has the impact on the

vector space shown in following figure:

 17

Figure 5: Rule base transformed by regulating singular values.

Figure 5 shows that the rule base is tuned by regulating singular values. The effect can be

expressed as adding a deviation on each sample value of rules. That is:

()1 1 1 2 2 2() () (), () () (), () () () 1~i i i i i i m i m i m ir t r t r t r t r t r t r t r t r t i n→ +∆ → +∆ → +∆ =

()1 1 1 2 2 2() () (), () () (), () () () 1~i i i i i i p i p i p id t d t r t d t d t d t d t d t d t i n→ +∆ → +∆ → +∆ =

Where n, m, p denote the number sampling instants, rules, and desired outputs respectively. The

deviations (i.e., are utilized to modify the originally defined rule

base (i.e.,) while the FNN is dealing with some special situations that

cannot be well performed via the original rule base. The tuning approach makes the rule base

and desired outputs merge into the same vector space so that the desired outputs are exactly

linear combinations of rules. That is, the desired outputs are exact the combinations of rules and

the optimal weighting factor set obtained from Least Square Method. Thus, the error between

actual output of FNN and desired output exactly depends on the deviations resulting from

regulating singular values, which are:

1 2(), (), ()i i mr t r t r t∆ ∆ ∆)i

i1 2(), (), ()i i mr t r t r t

1 2(), (), () (1~)i i p id t d t d t i n∆ ∆ ∆ =

To be specific, suppose we wish to approximate the desired outputs (i.e., x1, x2,…, xp) via the

linear combination of rule vectors, (i.e, xp+1, xp+2,…, xp+m) as precisely as possible. That is, we

expect the error defined in the following equation to be small.

 18

 (15)

Where wi are the weighting factors to be determined and e is the error. Since the error is not zero,

x1 is “approximately” linearly dependent on rule base (i.e, xp+1, xp+2,…, xp+m). After performing

SVD on FNN matrix G and removing the p least significant transformed vectors xi
*, we have the

new vector set which is deviated from the original ones, such as:

 ' ; 1, 2,..., .i i ix x x i p m= +∆ = +

Where xi
’ represents the vector obtained by removing the projection of xi on xi* (i = m+1~m+p)

defined in previous section. ix∆ (i = 1~p+m) are the deviations between original vectors and

tuned vectors. However the removal of these xi
* reduces the rank of FNN matrix G by p. This

implies that any column vector in G can be an “exact” linear combination of the other column

vectors. Then we can have:

* '

2

(1 ~ , 1 ~
m

j i i
i

)x w x j p i p p m
=

= = = +∑ + (16)

The above (16) represents the relationships between rules and desired output of FNN; wi*(i=

p+1~p+m) are weighting factors to be determined. From (15) and (16), it is obvious that the

error is exact equal to the deviation between xi
’ and xi resulting from removal of singular values

σi (i =m+1~m+p). We can analyze the deviation by defining the norm of FNN matrix G defined

in (9) via the result derived from (14), i.e.,

1 1
2 2

*

1 1

p m p m

i
i i

G x σ
+ +

= =

⎛ ⎞ ⎛
⎜ ⎟ ⎜= =
⎜ ⎟ ⎜
⎝ ⎠ ⎝
∑ ∑ 2

i

⎞
⎟
⎟
⎠

 (17)

From (14) and (17), the percentage error for FNN matrix G resulting from removal of certain

singular value can be described as follows:
2 *

2 *

1 1

|| ||()
|| ||

i i
p m p m

k k
k k

xPercentageerror i
x

σ

σ
+ +

= =

= =

∑ ∑

2

2
 (18)

Actually, the removed part of the specific vector xj is only part of ||xi
*||. To be more specific, we

examine the error associated with specific vector xj (i.e., (1)j mx +∆) from the following

equations:

 19

1 1 1 (1) (1)
1

2 1 2 (1) (1) '
1 (1)

1 (1) (1)
1 1

m

q q q j m m m j
q

m

q q q j m m m j
qj j j m

m

q n q q j m n m m j
q n

u v u v

u v u v
x x

u v u v

σ σ

σ σ

σ σ

+ + +
=

+ + +
= +

+ + +
= ×

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥

+⎢ ⎥
= =⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎣ ⎦

∑

∑

∑

x+ ∆ (19)

Where

1
1

1 1 (1) (1)

1 2 (1) (1) 2'
1(1)

1 (1) (1) 1

1 1

,

m

q q q j
q

m m m j m

m m m j q q q j
qj m j

m n m m j n m

q n q q j
q n

u v
u v
u v u v

x x

u v
u v

σ
σ
σ σ

σ
σ

=
+ + +

+ + +
=+

+ + + ×

= ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∆ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑

∑

 (20)

Thus we have:

2 2 2
(1) (1)j m i i mx vσ+ +∆ = (21)

Compare (14) and (21), the deviation of xi is reduced by a coefficient vij
2 compared with the

removed singular values σi
2. This confirms that the error associated with desired output can be

kept small in performing singular value regulation. However, for multiple desired outputs case,

the removed singular values tends to have more effect on precision since the error caused by

removing singular values should be updated as:

2 2

1

m p

i i
i m

vσ
+

= +
∑ , or * 2 2

1

|| ||
m p

i
i m

ix v
+

= +
∑ (23)

Apparently, the number of desired output should be reduced for high precision requirement.

However, it may be conflict with real situations. Thus we propose an improved training strategy,

which will be discussed in the following section.

 20

3.3 Improved Training Strategy

The above (23) demonstrates that the error grows up with increasing the quantity of desired

outputs. Thus, the extension of rule base may be essential for maintaining high precision. To be

specific, consider the following two training cases:

Case 1: Generating the desired outputs via tuning a large size of rule base

sin sin

, , , , , , ,ui ui ui

m gularvalues p gular values

σ σ σ σ σ σ σ

Case 2: Generating the desired outputs via tuning a small size of rule base

sin sin

, , , , , , ,ui ui

m gularvalues p gular values

σ σ σ σ σ σ σ

Where m and p are number of rules and number of desired outputs respectively. σui represent

the unimportant singular values. In case 1, the least p significant singular values are safe to be

eliminated since m >> p. While the error in case 2 is considerable due to some of important

singular values may be treated as zeros. However, for high efficiency requirement, case 2 is the

better choice due to the rule base to be considered is smaller. Thus our objective is to reduce the

number of desired outputs to be generated. This can be accomplished by replacing the

convention of FNN matrix as the following form:

111 11 1 11

1 1 1 1 1

2 21 1 21 21

2 2 1 2 2

1 1 1 1

1

()() ()

() () ()
() () ()

() () ()

() () ()

() () () (1

m

n n m n

m

n n m n

p p p m p

p pn pn m pn

r td t r t

d t r t r t
d t r t r t

G d t r t r t

d t r t r t

d t r t r t pn m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦)× +

By utilizing the convention of FNN matrix shown above, the error is much reduced since it is

simply determined from the weight of the least significant singular value. Based on this

 21

advantage, the desired output can be generated from a much simpler rule base so that the

quantity of training data and weighting factors to be deal with can be much reduced.

Furthermore, the extraction of dominant rule base does not have to be performed since the rule

base has been kept small. Thus the efficiency of FNN is indeed improved.

By adopting the improved training strategy, Algorithm1 should be modified, as shown in the

following Algorithm 2.

Algorithm2: Tuning FNN via SVR algorithm with improved training strategy

The FNN shown in Figure 1 has m fuzzy rules {r1(t), r2(t), …, rm(t).with p desired outputs {d1(t),

d2(t) , …, dp(t)}.

Given: Desired outputs: { d1(tji), d2(tji), d3(tji),..., dp(tji) }

Rule base: {r1(tji), r2(tji) , …, rm(tji)}.

Where tji denotes the ith (i=1~n) sampling instant associated with jth desired output.

Goal: Tune the FNN so that the actual outputs can be as close as possible to the desired outputs.

Step 1: Construct the associated FNN matrix G, which is:

111 11 1 11

1 1 1 1 1

2 21 1 21 21

2 2 1 2 2

1 1 1 1

1

()() ()

() () ()
() () ()

() () ()

() () ()

() () () (1

m

n n m n

m

n n m n

p p p m p

p pn pn m pn

r td t r t

d t r t r t
d t r t r t

G d t r t r t

d t r t r t

d t r t r t pn m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦)× +

Step 2:Perform singular value decomposition on G. This is to transform G into the following

form:
TG U V= Σ

 22

Where U, Σ, V are defined in (11).

Step 3:Create another matrix Σ’ from Σ by replacing the least significant singular value of Σ

with zero and keeping the rest singular values of Σ untouched.

Step 4: Reconstruct G’ by using U, Σ’, VT (derived from Step 2 and Step 3) such as:
' ' TG U V= Σ

The column vectors in FNN matrix G’ are the tuning result, which consists of tuned rule

vectors and the desired output vector.

Step 5: Find the weighting factors associated with the tuned rule vectors obtained in Step 4 by

least mean square (LMS) method.

Step 6: Find the desired outputs by summing the products of rules and their associated

weighting factors.

The performance of Algorithm 1 and Algorithm 2 is compared in the following example.

Example: Controlling the speed and turning angle with respect to the positions for a navigated

object via FNN.

In this example, a car will be navigated on the feasible paths, which depends on the obstacle

distribution. We wish to utilize the FNN to control the angle and speed of the navigated object

such that it can run along the feasible path smoothly. Thus, speed and turning angle of the

navigated object are the outputs to be generated by FNN. It is obvious that speed decreases as

the turning angle increases. The turning angle depends on how large the distance between the

obstacle and the navigated object, and therefore it depends on its position. The feasible paths

are shown in Figure 6(a).

 23

Figure 6(a) The feasible paths for navigation. They originate from (0,200), (0,175), (0,150), (0,130), (0,110)

respectively. The values of speed and turning angle corresponding to positions sampled from

these paths will be generated by FNN.

The position (x, y) of the car can be described as:

x(tk) = x(tk-1) + v(tk-1) (tk – tk-1) cosθ(tk-1)

y(tk) = y(tk-1) + v(tk-1) (tk – tk-1) sinθ(tk-1)

Where tk denotes the kth sampling instant and v is speed of car. θ is defined as the angle between

direction of navigated object and the horizontal axis (i.e., x axis), and the turning angle is

defined as the angle deviation between two sampling instants (i.e., θ(tk)- θ(tk-1)). Thus we have

the training pattern shown in Figure 6(b)

Figure 6 (b) Output training pattern for the navigated object Output 1: deviations of angles between two

sampling instants. Output 2: Speed at certain sampling instant / Maximum speed among all the

sampled speeds.

 24

The membership functions for generating the desired outputs are shown in Figure 6(c).

Figure 6(c) Membership functions A(x), A(y) for controlling the turning angle and speed of navigated

object.

In this example, we will compare the performance of Algorithm 1 and Algorithm 2 with two

different cases. In case 1, the two desired outputs (i.e., speed and turning angle) are generated

from Algorithm 2, which resets only the least significant singular value to zero to yield the

desired output. While in case 2, they are generated from Algorithm 1 with resetting two least

significant singular values. Thus, the configurations of FNN in different cases are:

:

x1

x2

y

r1

A11

W1

W2

W3

r2

r4

r3

W4

A12

A21

A22

:

x1

x2

y1

r1

A11

W11

W21

W31

r2

r4

r3

W41

A12

A21

A22

W12

W22

W32

W42

y2

Figure 6(d) configuration of fuzzy neural network. Case 1: configuration of FNN containing one output

 25

consists of training patterns of output1 and output2 (i.e., 1 2y yy ⎡ ⎤
⎢ ⎥⎣ ⎦=). Case 2: Configuration of FNN

containing two outputs.

The weighting factors obtained in two different cases are shown in Table 1.

Table 1 Weighting factors found from different algorithms7

The

outcome for the two desired outputs (i.e., turning angle and speed) generated by FNN are

shown in Figure 7

Case2

 Case

Weighting

factors

Case1

Output combing
output1 and

output2 Output1 Output2

W1

W2

W3

W4

-1.28560035

-0.83026591

-0.03244928

0.451646332

-0.74242182

-1.47290053

-1.31901729

-0.38325317

0.65811067

-1.28442388

-0.06365498

0.80117971

Case 1: Output generated by FNN with algorithm 2.

 26

Case 2: Outputs generated by FNN with algorithm 1.

Figure 7(a) Output generated by FNN with different algorithms

Case 1

Case 2

Figure 7(b) Outcome of the generated path.

 27

Figure 7(b) shows the real paths by using the two set of weighting factors obtained from

different algorithms.

Table 2: Comparison of errors in case 1 and case 2

Error
Case 1 Case 2

1.33×10-6
Output 1 4.64×10-4

Output 2 3.71×10-4

From Table 2, it is obvious that the performance of FNN applied with Algorithm 2 (i.e., case 1)

is more advantageous than that applied with Algorithm1 (i.e., case 2) in dealing with multiple

desired outputs when the precision is strictly required.

 28

Chapter 4
Reduction of Rule Base

To define a large size of rule base may not be avoided in real applications since the desired

outputs usually vary case by case. Thus for generating some simple desired outputs, the

efficiency is quite low due to lots of redundant rules is taken into account. Thus it is essential to

extract the dominant rules from the large rule base given initially since the other rules reduce

efficiency much but have no distinct effect on precision. It has been shown that after tuning the

rule base by removing singular value, the error depends on the weight of the square of removed

singular values σi
2

, which equals the magnitude of ||xi
*||2. Thus the objective is to reduce the

weight of removed vector. To derive the method for realize this objective, we should explore the

fundamental of singular value decomposition (SVD). That is, the performance of SVD is a

unitary transformation, so that the norm of FNN matrix G is conserved [9, 10], as described by

the following equation:

22 *

1 1

m p m p

i
i i

G x x
+ +

= =

= =∑ ∑ i

*

 (24)

Where m and p denote number of rules and number of desired output respectively. It is known

that by performing SVD, the dominance of the most significant vector is maximized, because it

lies on the direction where the data has the most intensive distribution [9~14]. This implies that

the dominance of the most significant vector increases with the correlations between the given

vectors. From (24), increasing the dominance of significant vector accompanies with reducing

the significance of the other ones. Thus we can obtain a trivial vector suppose that the

correlations between the original vectors are highly correlated with each other. Thus the

criterion for reduce the weight of removed vector xi is to increase the value of ,x i du u ,

respect y. Actually, the condition implies that the direction of the trivial vector is far from

that of all the original vectors {x x x ,…, x } since the original vector set has little

component distributing on this direction. Thus the procedure for determining the dominant rule

where and represent the unit vectors of rule vectors and desired output vector

ivel

1, 2, 3 p+m

xiu du

 29

base can be described by the following Algorithm 3.

Algorithm3: Determination of dominant rule base

The FNN shown in Figure 1 has m fuzzy rules {r1(t), r2(t), …, rm(t)}.with p desired outputs

d1(ti), d2(ti), d3(ti),..., dp(ti)

ant (i=1~n)

utput: Ctr.

Goal: D from the given rule base for generating the specified

Step 1:

{d1(t), d2(t) , …, dp(t)}.

Given: Desired outputs:

Rule base: {r1(ti), r2(ti) , …, rm(ti)}.

Where ti denotes the ith sampling inst

Threshold of correaltion between rule and desired o

Threshold of precsion index Ptr.

etermine the dominant rule base

desired output d(ti)

 Compute the correlation between each normalized desired output and rule vector in the

given rule base. That is, to compute the values:

, (1 ~ri dju u i , 1 ~)m j p=

The notation “u” represents the unit vector.

Step 2

=

: Find the set consists of rules rk ()1,2,k m= satisfying the following relation:

, (1 ~ri dju u C tr j p> =)

Step 3: Check if the least square error (LSE) is below the preset threshold. That is:

LSE Ptr<

If the above condition exists, the selected rules exactly constitute the rule base;

Step 4:

otherwise, go to step 4

 Construct the FNN matrix G associated with the given rule vectors selected in step2 and

desired output vectors, such as

 30

11 1 1 1 1

21 2 1 2 2

31 3 1 3 3

1 1

()() () ()
()() () ()
()() () ()

()() () () ()

p s

p s

p s

p nn n s n

d td t r t r t
d td t r t r t
d tG d t r t r t

d td t r t r t n p s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ × +

Where the number rules in the rule set found in step 2 is denotes as s

Step 5 Tune the selected rules by resetting the least significant p singular values of FNN matrix

defined in step 4 to zeros. The tuned rule base is the desired rule base.

The above algorithm may be effective in dealing with a small group of desired outputs with high

correlation, whereas it may be disadvantageous in dealing with large number of desired outputs,

especially when these desired outputs are little correlated with each other. To be specific,

suppose the dominant rule base for desired outputs (d1, d2, d3,…, dp) are (R1, R2, R3,…, Rp)

respectively. It is obvious that the dominant rule base for generating all the desired outputs is

quite large provided that these rule base (R1, R2, R3,…, Rp) are little in common

(i.e., (i j i j)R R R or R i j≠∩). That is,

1 2 (1 ~i p)R R R R i p<< =∪ ∪…∪

Where Ri represents the dominant rule base corresponding to the th desired output, and the

suppose that we want to precisely generate all the desired outputs simultaneously, however, it is

time consuming for dealing with large size of rule base. Thus, when dealing with large quantity

be precisely generated via fewer rules by applying this algorithm. Absolutely, the convention of

FNN matrix should be replaced by the convention defined in Algorithm 2.

 i

number of total desired output is p. Consequently, the extension of rule base may be essential

of desired outputs that are little in common, Algorithm 2 is the better choice, since the output can

 31

Chapter 5
Illu es

In this chapter, we will show the advantage of m in simplifying the rule base. The

car navigation and system identific s examples for illustration.

strative Exampl
 SVR algorith

ation problems are taken a

Example 1: Navigation of Model Car [1]

In this example, the car will be navigated along a predefined path confined by the boundary

, y, and z is the angle between the direction of cat and walls. The position of car is specified by x

the horizontal axis (i.e., x axis). We set x, y, z as input variables, so that the input training data are

the values of x, y and z corresponding to the position on the desired path. The criterion for

defining the desired path is to prevent the car from bumping into the boundary walls. For

instance, the path shown in Figure 8 is feasible among all the possible situations so that we can

let it be the desired path for the car navigation.

Figure 8 A feasible path for car navigation

The output training data are obtained from sampling the values of angles at the positions next to

the position (i.e., x(tk), y(tk) Where tk represents the kth) where the car is located (i.e., z(tk+1)).

sampling instant. The membership functions constructing the rules of FNN are shown in Figure

9:

 32

Figure 9 Membership functions A(x), A(y), A(z) for generating the desired path shown in Figure 8.

We wish to utilize the FNN to generate all the desired paths with the same tuned weighting

fac ed tors. The rule base obtained from the membership functions in Figure 9 is roughly deriv

from human feeling so that it may contain redundant rules. In the following paragraph, both of

the outcomes obtained from the original rule base and that obtained from the reduced rule base

will be shown

 Case1: Paths generated from the original rule base (twenty-seven rules).

The square singular values belonging to the associated FNN matrix are listed as follows

trix

5.2496849

3

025627

Table e existence o singular values, which have nominal

Table 3 Square of singular values of the associated FNN ma

82.27785494343895 0.00001985099054 0.0000000004491

4199168 0.00001856865610 0.00000000

1.67374902813030

0.25320269522639

0.04431626435280

0.01542454876520

0.00200855604145

0.00055397135821

0.00019773748329

0.00016438555941

0.00000539945881

0.00000419872013

0.00000028517688

0.00000010746623

0.00000006766903

0.00000005653205

0.00000000146113

0.00000000065496

0.00000000016226

0.00000000000427

0.00000000000339

0.00000000000018

0.00000000000014

0.00000000000000

 3 demonstrates th f numerous trivial

 33

effect on total vector set. This implies that the performance of FNN would be satisfying using

 Variable number

Rule number
0 1 2

the given rule base.

Table 4 Rule base defined from membership functions in Figure 9.

Input variable
x y z

1 0 0 0

2 0 0 1

3 0 0 2

4 0 1 0

5 0 1 1

6 0 1 2

7 0 2 0

8 0 2 1

9 0 2 2

10 1 0 0

11 1 0 1

12 1 0 2

13 1 1 0

14 1 1 1

15 1 1 2

16 1 2 0

17 1 2 1

18 1 2 2

19 2 0 0

20 2 0 1

21 2 0 2

22 2 1 0

23 2 1 1

24 2 1 2

25 2 2 0

26 2 2 1

27 2 2 2

 34

Where 0, 1, 2 represent small, medium, large respectively. Correspondingly, Aij represents the jth

 = 0~2) membership function associated with ith (i = 0~2) input variable. The rules are (j

products of membership functions defined in Figure 9. Three membership functions are set for

each input variable as shown in Figure 9. Thus we have 27 rules, which are defined in Table 4.

The weighting factor associated each rule defined in Table 4 are listed in Table 5.

Table 5 Weighting factor associated with each rule

Rule 1~9 Rule 10~18 Rule19~27

-0.7

3.649 313 -0.7 575

23

-1.44 869

5571907837368 0.73363731354769 -3.887558201076

28526212

-1.30427508117294

0.03623954020896

0.00178423256134

0.05897749993184

-3.15560891193539

-0.84900405057501

3.14336213428962

3617434143

0.38102407422188

0.01399107323513

-0.02049810344030

0.02514866212161

-1.50142999664931

1.67238543093995

-1.63329345274953

428673043

-1.07923508586419

0.10170459483365

-0.04851905055454

-0.03263706582737

0.24361646489375

1.44908269164601

-2.35704795920322

The output genera gted by FNN is shown in the following fi ure:

Figure 10. Paths of different cases generated by 27 rules Case1: Path originating from the origin. Case2:

Path originating from y = 80 Case3 Path originating from y =100

 35

The result shown in Figure 10 shows that the paths with different initial conditions are

lly generated from the FNN with the same weighting factor successfu set. The error between the

desired output and actual output generated from twenty-seven rules are trivial (i.e., 8.65×10-5).

However, the efficiency may not be satisfying since we have set large quantity of rules in the

FNN. Thus, we may wish to accomplish the navigation task by generating the desired output

via fewer rules with slightly reduction of precision so that the generating efficiency can be

much increased. Consequently we will adopt Agorithm3 to extract the dominant rule base. The

overall procedure is listed as follows:

Case2: Paths generated from the reduced rule base.

et

hreshold of correlation (Ctr) = 0.93

The rule are listed as follows:

0.8738 0.8811 0.8876 0.9058 0.9161 0.9258 0.9198 0.9306

L

Threshold of precision index (Ptr) = 10-3,

T

correlations between desired output and each

Rule 1~ Rule 9

 0.9385

Rule 10~ Rule 18

0.8401 0.8500 0.8596 0.8612 0.8729 0.8845 0.8754 0.8868 0.8977

Rule 19~ Rule 27

0.8833 0.8916 0.8992 0.9111 0.9216 0.9316 0.9203 0.9293 0.9374

The correlations corresponding to rule 8, 9, 24, 27 are larger than the preset threshold (Ctr) so

that they will be selected.

at the selected rules are sufficient to satisfy the precision bound.

e set of the selected four rules. The membership

The least square error (LSE) = 9.87×10-4 < Ptr

The above data shows th

Therefore, we can let the rule base be th

functions for constructing them are listed as follows:

Rule 8: A00, A11, A21.

 36

Rule 9: A00, A11, A22.

Rule 24: A22, A11, A22.

Rule 27: A02, A12, A22.

ip functions constructing these rules are:

A00, A02, A11, A12, A21, A22

minated since only six of the

predefined nine membership funct ndant membership functions to be

.9458

ing with the car navigation problems

Thus all the membersh

The fact shows that three membership functions can be eli

ions are utilized. The redu

eliminated are A01, A10, A20.

The weighting factor set corresponding to the rule base is: -

-1.9119 4.2080 -0.0002 -0

The following figure shows the performance of FNN in deal

with smaller size of rule base.

Figure 11 Paths in three different cases are generated by the FNN with four rules. Case1: Path

originating from the origin. Case2: Path originating from y = 80 Case3: Path originating from

The resu

Next, we will try to generate the paths originating from both the upper corner and bottom

y =100

lt shows that the desired path can be successfully generated using only a few rules.

corner via the same reduced rule base, as shown in the following figure:

 37

Figure 12: Two general cases of navigated paths.

In order to cope with all the possible situations, the reduced rule base should be properly tuned

such that we can always obtain the satisfying result in different situations by the FNN.

Therefore, we have to retrieval the training data from all the valid paths. The corresponding

weighting factor set obtained from least mean square method is:

-1.3375 2.9379 -0.0002 -0.6561

The outcome is shown in the following figure:

Figure13: (a) The approximated paths in different cases generated by the FNN without tuning the rule

base by regulating singular values. Case 1: path originating from (0,177). Case 2: path

originating from (0,130). Case 3: path originating from (0,30). Case 4: path originating from

(0,75).

 38

Figure13: (b) The approximated paths in different cases generated by the FNN with tuning the rule base

by regulating singular values. Case 1: path originating from (0,177). Case 2: path originating

from (0,130). Case 3: path originating from (0,30). Case 4: path originating from (0,75).

In comparison with Figure 13(a) and (b), the tuning approach is not essential if the precision is

not strictly required. However, for some special cases, the error will be tremendous suppose that

the desired paths are generated from the rule base without tuning by regulating singular values,

such as the ones shown in Figuer14:

Figure 14: Two special cases of navigated paths generated by the FNN. Case 1: path originating from

(100,200). Case 2: path originating from (300,0). The paths shown with dot lines are

generated from the rule base without tuning by regulating singular values, while the paths

shown with solid lines are generated from the rule base tuned by regulating singular values.

The outcome shows that the FNN obviously fail in generating the desired output via the

 39

originally given rule base owing to the conditions specified by the desired output and rule base

quite mismatch with each other. That is, all rules defined in the rule base are little correlated

with the desired output, as shown in the following table:

Table 6

Correlations between rules and

desired output

Rule 1 0.0064

Rule 2 0.0098

Rule 3 0.0079

Rule 4 0.0104

Under this circumstance, the vector space where desired output vector belongs is close to the

null space of the vector space spanned by rule base. Thus, the least square error (LSE) is close

to the square norm of desired output vector, (i.e., ||x1||2). However, after tuning the mismatched

rule base via regulating singular value, the error exactly depends on the projection of desired

output vector (i.e., x1) on the removed vector (i.e., xm+1
*). We name the error for regulating error

(RE). Apparently, RE is much smaller than LSE since RE is only a small proportion of ||x1||2.

That is:

() () ()2 22 * * *
1 1 2 mx Cx Cx Cx += + + +

2

1

Where ()2*
iCx represents the projection of x1 on *

ix (i =1~m+1), and

()2*
1mCx RE+ =

We can examine the fact from the error between the generated paths of FNN and desired paths

(i.e., RE = 6.21×10-5, LSE = 0.89). The result shows that the performance of FNN is indeed

improved since both the error and rule base can be kept small. The outcomes obtained from the

tuned rule base and that obtained from the rule base without tuning are compared in the

following figure:

 40

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

0.001 0.01 0.1 1

Least Square Error(LSE)

Regulating
Error
(RE)

Figure 15 Advantage of tuning the rule base. The data are relevant to the cases shown in Figure 13 and

14. The increase of RE is quite smaller compared with that of LSE, which depends on the

correlation between rules and desired output.

Figure 15 shows that the precision can be well maintained provided that the output is generated

from the tuned rule base. Thus the rule base is certainly kept small since we only have to

modify the given rule base without setting new rules for generating the output that is little

correlated with the original rule base.

Example 2: System identification of a plant model [7]

In this example, the system of a first-order nonlinear plant is going to be identified. The plant to

be identified is of the following form:

(1) [(), ()y k g y k u k]+ =

Where the unknown function has the following nonlinear form:

31
1 2 22

2

(,)
1

xg x x x
x

= +
+

and u(k) = sin (2πk/25) + sin(2πk/10). The series-parallel identification model is:

ˆ(1) [(), ()y k f y k u k+ =]

Where is in the form of output of fuzzy neural network with two fuzzy input variables whose

Gaussian membership functions are defined in the following Table 7:

f̂

 41

Table 7

Center and width for fuzzy sets of x1

 Center Width
A00 0.5 0.5
A01 0 0.3
A02 3 0.4
A03 5 0.6

Center and width for fuzzy sets of x2

Center Width
A10 -2 0.6
A11 0 0.6
A12 1 0.6
A13 2 0.6

Case 1: System identified by 16 rules.

We define training space as –100< k <100 and retrieval one thousand training data points from the

defined training space. The obtained singular values of the associated singular values are listed

as follows:

Table 8 Singular values of the matrix consists of rules and desired output

6.19322235099177

0.05865327981720

0.00000617453351

0.00000000750532

0.00000000163361

0.00000000054607

0.00000000039161

0.00000000022078

0.00000000016806

0.00000000000617

0.00000000000520

0.00000000000213

0.00000000000042

0.00000000000014

0.00000000000009

0.00000000000000

0.00000000000000

The high redundancy of singular values shown in Table 8 demonstrates that too many redundant

rules are set for identifying the system. This implies that only a few rules among the given rule

set are essential for identifying the plant model. Thus will adopt Algorithm 3 to extract the

dominant rules.

Case 2: System identified by reduced rule base.

We apply Algorithm 3 to determine the dominant rules for identifying the system such that the

rule base can be reduced as the set consists of these dominant rules. The procedure is listed as

follows.

Let

 42

Threshold of precision index (Ptr) = 10-3

Threshold of correlation (Ctr) = 0.06

The correlations between the desired output and each rule are listed as follows:

Rule1 ~Rule8

-0.2848 -0.2621 -0.2493 -0.2414 -0.0123 0.0014 0.0108 0.0116

Rule9 ~Rule16

-0.0139 0.0355 0.0629 0.0623 -0.0315 0.4037 0.3858 0.3714

The marked values corresponding to rule 11, 14, 15, 16 are larger than the preset threshold (Ctr).

Thus rule 11, 14, 15, 16 will be selected. The membership functions for constructing them are

listed as follows:

Rule 11: A02, A13.

Rule 14: A03, A11.

Rule 15: A03, A12.

Rule 16: A03, A13.

Thus all the membership functions for constructing these rules are:

A02, A03, A11, A12, A13,

The fact shows that three membership functions can be eliminated since only five of the

predefined eight membership functions are utilized. The redundant membership functions to be

eliminated are A00, A01, A10.
The least square error (LSE) = 9.68×10-3 > Ptr

Due to the error exceeds the preset precision bound, we have to tune the selected rules by

removing the trivial singular value of the associated FNN matrix.

The square of singular values of the FNN matrix are listed as follows:

5.34295850306414 0.00026015790148 0.00000007638967 0.00000012271620 0.0000000044133

After removing the least significant singular value, the obtained weighting factor set

corresponding to the rule base is:

0.000424 -0.004345 0.289796 2.018651

The approximation of system output and the real system output are shown as follows:

 43

Figure 16. Case2: System identified by 4 rules.

* : generated output of FNN. _: system output

After tuning the rule base, the least square error is 3.38×10-7 which is quite smaller than the

preset threshold. Next, we will replace the original sinusoidal input by the step input to see if

the output can match the step response of this system. The result is shown in the following

figure:

Figure 17 Step response of the system identified by four rules. Dashed line: generated output of FNN.

Solid line: desired output

The least square error is 9.38×10-4. The result shows that the theoretical system output is much

close to the generated output of FNN. The phenomenon confirms that the system performance

can be replaced by the FNN with a simpler rule base.

 44

Conclusion
The methodology for enhancing the fuzzy neural network in coping with various relations

between the fuzzy inputs and outputs has been presented in this paper. The result shows that the

FNN is able to precisely generate the desired output in many complicate situations via a small

size of rule base that is well tuned by regulating singular values. Because the rule base is kept

small, the generating efficiency is much higher so that the FNN is able to efficiently confront a

variety of complicate situations in the real world applications. In addition, to update the

weighting factor set becomes an easier task so that the FNN may also be applied in dealing with

the situation that occurs instantly. To sum up, regulating singular values approach enables FNN

to deal with complicate inputs and outputs relations more efficiently, as illustrated in this paper.

 45

Reference
[1] C. H. Wang, W. Y. Wang, and T. T. Lee, “Fuzzy B-Spline membership function (BMF) and

its application in fuzzy-neural control,” IEEE Trans. System, Man, Cybernetics”, Vol.25,

pp.841-851, 1995.

[2] T. Sudkamp, A Knapp, and J. Knapp, “Model generation by domain refinement and rule

reduction,” IEEE Trans. System, Man, Cybernetics – Part B: Cybernetics”, Vol.33, Issue.1.

pp.45-55, Feb.2003.

[3] R. Thawonmas, and S. Abe, “A novel approach to vector selection based on analysis of class

regions”, IEEE Trans. System, Man, Cybernetics– Part B: Cybernetics, Vol.27, No. 2, pp.

196-207, April 1997.

[4] Y. Yam, P.Baranyi, and C. T. Yang, “Reduction of fuzzy rule base via singular value

decomposition,” IEEE Trans. Fuzzy System, Vol.7, pp.120-132, April 1999.

[5] C. W. Tao, “A Reduction Approach for Fuzzy Rule Bases of Fuzzy Controllers,” IEEE Trans.

System, Man, Cybernetics - part B: Cybernetics, Vol. 32, pp, 1-7, 2002.

[6] Simon Haykin, “Neural network”, Hamilton, Ontario, Canada: Prentice Hall, 2nd ed, 1999.

[7] C. H Wang, H. Lei, and C. T. Lin, “Dynamical optimal learning rates of a certain class of

fuzzy neural network and its application with genetic algorithm,” IEEE Trans. System, Man,

Cybernetics – Part B: Cybernetics, Vol. 3, pp. 467-475, June 2001.

[8] Edwin K.P Chong, and Stanislaw H. Zak, “An introduction to optimization” John Wiley,

2001.

[9] L. I. Smith, “A tutorial on principal component analysis”, handout. February 26, 2002.

[10] K .I. Diamantaras and S. Y Kung, “Principal Component Neural Networks Theory and

Applications” John Wiley & Sons Inc. 1996

[11] Agresti Alan,“Categorical data analysis” John Wiley & Sons. 1990

[12] Lewis Paul J,“Multivariate data analysis in industrial practice＂ Research Studies Press

1982.

[13] Pavlidis, Theodosios, T. Pavlidis,“Structural pattern recognition＂Springer-Verlag, 1977

[14] Batchelor, Bruce G., edited by Bruce G.. Batchelor.“Pattern recognition: idea in practice,

Plenum Press, 1978.

 46

	College of Electrical Engineering and Information Science
	Electrical and Control Engineering
	Table 3 Square of singular values of the associated FNN matr
	Table 5 Weighting factor associated with each rule

