國立交通大學

應用化學系碩士班

碩士論文

以 IR 研究 3,5-二甲基-1H-吡咯-2-甲酸乙酯構型轉換、氫鍵 自結合現象及 3,5-二甲基-2-乙醯基吡咯氫鍵自結合現象

Infrared Spectroscopy Studies on the Self-Association of 2-Acetyl-3,5dimethylpyrrole and Ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate in Various Solvents

研究生: 陳穎輝

指導教授: 陳振興 博士

中華民國一百年七月

以 IR 研究 3,5-二甲基-1H-吡咯-2-甲酸乙酯構型轉換、氫鍵 自結合現象及 3,5-二甲基-2-乙醯基吡咯氫鍵自結合現象

Infrared Spectroscopy Studies on the Self-Association of 2-Acetyl-3,5dimethylpyrrole and Ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate in Various Solvents

For the Degree of Master

in

Applied Chemistry July 2011 Hsinchu, Taiwan, Republic of China

中華民國一百年七月

以 IR 研究 3,5-二甲基-1H-吡咯-2-甲酸乙酯構型轉換、氫鍵

自結合現象及3,5-二甲基-2-乙醯基吡咯氫鍵自結合現象 學生:陳穎輝 指導教授:陳振興博士

國立交通大學應用化學系碩士班

摘要

利用 IR 光譜研究 3.5-二甲基-2-乙醯基吡咯和 3.5-二甲基-1H-吡 咯-2-甲酸乙酯在溶液中的自結合。3,5-二甲基-2-乙醯基吡咯在稀薄溶 液下呈現順式單體、環狀雙體兩者共存。處理單體 N-H 基吸收度數 據公式 (2-13) 及雙體 N-H 基吸收度數據公式 (2-17), 可得到單、 雙體N-H基伸縮振動總莫耳吸收係數 \mathcal{E}_{m} 、 \mathcal{E}_{d} 及自結合平衡常數K。 3,5-二甲基-1H-吡咯-2-甲酸乙酯在稀薄溶液下呈現順式、反式單體及 雙體三者共存。本實驗室推導新的公式,企圖從線性公式 (2-33) 的 斜率 $P_{\rm C}$ 、截距 $Q_{\rm C}$ 、式 (2-36)的斜率 $P_{\rm t}$ 、截距 $Q_{\rm t}$ 及式 (2-39)的斜率 $P_{\rm d}$ 、截距 $Q_{\rm d}$ 中求取順式、反式單體及雙體 N-H 基的總莫耳吸收係數 $\varepsilon_{\rm C}$ 、 $\varepsilon_{\rm t}$ 、 $\varepsilon_{\rm d}$ 及單體構型轉換平衡常數 K_1 和自結合平衡常數 K_2 。但 是除了雙體總莫耳吸收係數 \mathcal{E}_d 可由 O_d 得到外,其餘並不可得。此由 於 $P_{\rm C}$ 、 $P_{\rm t}$ 、 $Q_{\rm C}$ 、 $Q_{\rm t}$ 相依,可由 Jacobian 函數檢視證明之。為了克服 相依性所帶來這個困境,以 PBE1PBE/6-311++G**計算出 $\varepsilon_{C}/\varepsilon_{t}$,並 與實驗求得的反式、順式單體 N-H 基吸收帶的吸收度 A_{c} 代入 K_{l} = (At/Ac)(εc/εt)中。K1 再代入式 Pc、Pd、Qc及Qt中,即可求出εc、 εt、K2。

當溶劑的介電常數越大,單、雙體 N-H 基的伸縮振動頻率會往 低頻位移,此與 KBM 預測的趨勢相符。隨溶劑介電常數的增加,3,5-二甲基-1H-吡咯-2-甲酸乙酯單體構型轉換標準焓ΔH1^Φ、自結合標準 焓ΔH2^Φ皆減少。當溶劑的介電常數增加使得單、雙體 N-H 基吸收帶 的半高寬變寬。實驗的結果發現,雙體 N-H 基總莫耳吸收係數大於 單體 N-H 基總莫耳吸收係數。G. C. Pimentel 與 T. Ebata 認為這與質 子受體、質子予體之間電荷分佈急劇改變有關,進而使偶極距改變率 dμ/dr 增加所致。本實驗在探討溶劑對單、雙體 N-H 基伸縮振動強度 的影響時套用了 M. I. Nasser 和 E. Hirota 的方法。但溶劑對強度的影 響不是很顯著,因此無法用此方法解釋,但定性來說隨溶劑極性越大, 單、雙體 N-H 基強度越強。

Infrared Spectroscopy Studies on the Self-Association of 2-Acetyl-3,5dimethylpyrrole and Ethyl 3,5-dimethyl-1H-pyrrole-2-car-boxylate in Various Solvents

Student: Ying Huei Chen

advisor: Dr. Jenn-shing Chen

M. S. Program, Department of Applied Chemistry National Chiao Tung University

Abstract

The self-association of 2-Acetyl-3,5-dimethylpyrrole (ADP) and Ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate (EDPC) in various solvents have been studied using infra-red spectra. The molar absorption coefficient of N-H stretching for ADP monomer and ADP dimer are obtained from the equation derived from the concentration dependent integrated absorbance of monomer bands and those of dimer bands, respectively. So does the dimerization constant obtained independently from them. The letter offers an opportunity to check the consistency of the determination.

As for EDPC, the spectra is found that two N-H bands exist in monomer region. This system is a monomer-dimer self-association accompanying a cis-trans inter-conversion in monomer. Our three linear plots respectively for cis, trans monomer and dimer bands are unable to give the molar absorption coefficients of cis and trans monomer N-H stretching $\varepsilon_{\rm C}$, $\varepsilon_{\rm t}$ and cis-trans interconversion constant K_1 , dimerization constant K_2 , except for the molar absorption coefficient of dimer band. To overcome this difficulty, we resort to quantum chemical calculation using PBE1PBE/6-311++G** functional to give the ratio $\varepsilon_{\rm C}/$ $\varepsilon_{\rm t}$. The letter enables us to estimate K_1 from the ratio of integrated absorbance $A_t/A_{\rm C}$. With K_1 known, other parameters K_2 , $\varepsilon_{\rm C}$ and $\varepsilon_{\rm t}$ can be solved. The solvent effect on the frequency shift, band width, band intensity and enthalpy of dimerization are also discussed.

誌謝

在這研究所求學過程中經過了許多波折,感謝我的指導 教授陳振興博士,在課業與學業上循循善誘的教導。且教導 我們許多做人處事的道理。也感謝台大蘇志明教授在理論計 算上的幫忙,且不辭辛勞的聽我們報告。並且提供許多寶貴 的意見,使我們受益良多,因此在此感謝您為本實驗室付出 的一切。而我還要感謝王念夏教授及松為宏幸教授的指導。 並且感謝口試委員裘性天教授、蘇志明教授,能夠抽空幫我 們口試。

在求學過程中也要感謝本實驗室的學長葉于榮、同學廖 先德及林偉智在我遇到挫折時不時給我鼓勵,並且在研究上 給我許多意見。也要感謝我的學長隆哥、馬哥及同學阿強、 汐容、鼎緯、學弟黃崇偉在我失意時給我許多鼓勵,且豐富 我的生活。也感謝我的球伴中哥。

最後也感謝我的爸爸媽媽及家人,在我生活中給我鼓勵, 並且一路上支持我,也感謝女友這一路上來的鼓勵。

真的十分感謝那些幫助我的人,有你們真好。無限感 激。

總目錄

中文摘要	I
英文摘要	III
誌謝	IV
總目錄	V
圖目錄	VII
表目錄	XXIII

第一章 緒論	1
1.1 氫鍵簡介	1
1.2 氫鍵結合常見模式	6
1.3 如何利用紅外光譜來研究氫鍵	20
1.4 其他研究氫鍵的方法	23
第二章 自紅外光譜資料求得單、雙體自結合平衡常數及應用公式之	
推導	27
2.1 摘要	27
2.2 單、雙體平衡不隨伴構型轉換其應用公式之推導	32
2.3 單、雙體達平衡隨伴構型轉換平衡之應用公式推導	37
第三章 3,5-二甲基-2-乙醯基吡咯和 3,5-二甲基-1H-吡咯-2-甲酸乙酯	
在不同溶液中的氫鍵自結合現象的探討	47
3.1 摘要	47
3.2 實驗	49
3.2.1 儀器設備	49
3.2.2 實驗藥品	50
3.2.3 實驗步驟	51
3.3 IR 實驗部份: 單、雙體平衡不隨伴構型轉換	53
3.3.1 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶液	53
3.3.2 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶液	67
3.3.3 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶液	81
3.3.4 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶液	95
3.3.5 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶液	109
3.4 IR 實驗部分:單、雙體達平衡隨伴構型轉換平衡	123
3.4.1 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶液	123
3.4.2 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶液	141
3.4.3 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶液	159
3.4.4 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶液	177

3.4.5 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶液	195
第四章 實驗光譜參數、熱力學參數及理論計算結果的探討	213
4.1 證明 3,5-二甲基-2-乙醯基吡咯的雙體為環狀雙體	213
4.2 在不同溶劑下溶質特定官能基伸縮振動頻率的探討	216
4.3 在不同溶劑下單體自結合標準焓的探討	230
4.4 在不同溶劑下對單體半高寬的影響	233
4.5 氫鍵及溶劑效應對總莫耳吸收係數的影響	
第五章 結論	274
附錄 A 自結合使溶液呈現非理想性的說明	278
A.1 分子在非理想液體情形	248
附錄 B 理論計算部份	280
B.1 摘要	280
B.1.1 密度泛函理論 (Density Functional Theory, DFT)	
B.1.2 多體微擾理論	
B.2 理論計算 3,5-二甲基-1H-吡咯-2-甲酸乙酯的結果	
B.3 敏感度分析	292
參考文獻	298

圖目錄

圖	1.1	自結合氫鍵能量範圍。	2
圖	1.2	自結合平衡常數 $K = 2 \cdot K = 10 \cdot K = 30$ 及 $K = 60$ 時, $\eta $ 與 $[B]_0$	F
E	1 2	依仔關係。	J
回回	1.5	水的目結合模式	.10
回	1.4	小日后合成八本痘, a、D 后神似一立力痘, C 形成三氓后神,	11
国	15	U	. 11
回	1.5	不日后 加 凸 从 随 a 从 徑 任 后 稱 凸 从 随 U 小 从 徑 任 后 稱 臼 从 融 。	12
呂	16	<u>危</u> 。	13
画	1.0	□ M G M B M C M B M C M B M C M B M C M B M C M B M C M B M C M C	14
画圖	1.7	DNA 錐股螺旋雨修多核苷酸鏈示音圖	15
圖圖	1.0	自煙哈白結合成雙體可能的結構	17
圖圖	1.10	的嘧啶白丝合成雙體可能的結構	18
圖	1.11	腺嘌呤自結合成雙體最適 (ontimal) 的結構	.19
圖	1.12	腔固醇的結構圖	.20
圖	1.13	膽固醇溶於四氯化碳溶劑下 OH 基的紅外光譜圖,溫度控制	
-		在 23°C, 濃度分別為 0.014M、0.0019M、0.0039、0.0061 及	
		0.2M •	.21
圖	1.14	膽固醇單體莫耳吸收係數 ε_m 對總濃度 c 作圖	.22
圖	2.1	3,5-二甲基-2-乙醯基吡咯於環己烷系統在 15℃下,濃度	
		0.0049 mol L ⁻¹ 時所測得順式單體及雙體紅外光譜,及其適解	
		圖。	.28
圖	2.2	3,5-二甲基-1H-吡咯-2-甲酸乙酯於環已烷系統在 15℃下,濃	
		度為 $0.0263 \text{ mol } L^1$ 時所測得單體順式、反式及雙體紅外光	
		譜,及其適解圖。	.29
圖	3.1	3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,15℃時所測得	
		N-H 基的 IR 光譜圖。 無因次化 B 的配置濃度由上到下分別	
		為:0.0215、 0.0178、0.0140、 0.0103、0.0065。	.54
圖	3.2	3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中在 15℃無因次	
		化B的配置濃度為0.0234 時所做的 N-H 基適解譜線。	.54
圖	3.3	3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,不同溫度下的	
		單體位移 $v_{\text{NH}}^{\text{obs}}$ 對 $\frac{D-1}{2D+1}$ 作圖,其中D為正辛烷的介電常數。	. 59

圖 3.4	3,5-二甲基-2-乙醯基吡咯於正辛烷溶劑中A _d A ⁻² 對co作圖。其	
	四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼	-
回つて	$-)318$ K \circ	59
圖 3.5	由公式 (2-13) 所得之 3,5-二甲基-2-乙醯基吡咯溶於止辛烷	
	溶劑 Ψ 的線性圖。其四組溫度分別為:(-■-)288K, (-●-)298K,	c 1
FO	$()308K$, $()318K \circ$	61
圖 3.6	由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於止辛烷	
	溶劑甲的線性圖。其四組溫度分別為:(-■-)288K,(-●-)298K,	<i>c</i> 1
	(-▲-)308K ', (-▼-)318K °	61
圖 3.7	3,5-二甲基-2-乙醯基吡咯於正辛烷溶劑中 van't Hoff 圖。此	
-	處平衡常數 K 為單雙體自結合常數的幾何平均值。	64
圖 3.8	$3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,A_m 對 c_0作圖。$	
	其四組溫度分別為: ()288K, ()298K, ()308K, (- ▼	
	-)318K。理論線可以由公式 (3-3) 得到。	64
圖 3.9	3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中, A _a 對co作圖。	
	其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼	
	-)318K。理論線可以由公式 (3-6) 得到。	65
圖 3.10	3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,在15℃時所測	
	得 N-H 基的 IR 光譜圖。無因次化 B 的配置濃度由上到下分	
	別為: 0.0180、0.0147、0.0115、0.0084 、 0.0051。	68
圖 3.11	3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中在 15℃ 無因次	
	化B的配置濃度為 0.0147mol L ⁻¹ 時,所做的 N-H 基適解譜	
	線。	68
圖 3.12	3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,不同溫度下的	
	單體位移 $v_{\text{MH}}^{\text{obs}}$ 對 $\frac{D-1}{2}$ 作圖,其中 D 為正庚烷的介電常數。	
	2D+1	72
图 3 13	35 田其 -2 7	75
圖 5.15	$J,J= = 2^{-1} - 20 = 2^{$	
	四組///2月/////////////////////////////////	73
国 3 1 /	-)510K。	75
回 3.14	田公式 $(2-13)$ 川村之 $3,3 + $	
	谷劑 〒 的 咏 住 画 ° 共 臼 紐 益 反 分 剂 為 · (- ■-)200 K / (- ■-)290 K /	75
图 3 15	()500K, (-+-)510K。 	75
圖 5.15	田公式 $(2-17)$ 川村之 $5,5$	
	(4月) 町 (11四) 六日(紅(四)(27) 小(何)(-■-)200氏) (-▼-)270氏)	75
图 3 16	(,500A / (-▼-,510A ~	75
回 3.10	J,J-一丁至-2-山脑至心哈尔正厌沉谷削于 Vall L TOLL 回。此 虎亚街告報 V 为 留锥 蹦 台 4 人 告報 4 3 经 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70
	一一一次一个人的一个一个一个人的一个人的"你们是这些,我们就是我们的问题。""你们是我们的问题,你们就是我们的问题。""你们是我们是我们的问题。""你们是我们的问题。""你们是我们的问题。""你们是我们的是我们的是我们的是我们的是我们的是我们的是我们的是我们的是我们的是我们	/ð

- 圖 3.20 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶劑中在 15℃ 無因次
 化 B 的配置濃度為 0.0049 時所做的 N-H 基適解譜線。..........82
- 圖 3.21 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中,不同溫度下的 單體位移 v_{NH}^{obs} 對 $\frac{D-1}{2D+1}$ 作圖,其中D為環已烷的介電常數。

- 圖 3.24 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶劑中的線。其四組溫度分別為:(-■-)288K, (-●-)298K, (-●-)308K, (-♥-)318K。

- 圖 3.28 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,在15℃時
 所測得 N-H 基的 IR 光譜圖。無因次化 B 的配置濃度由上到
 下分別為: 0.0196 、 0.0162 、0.0129、0.0093、0.0061。......96
- 圖 3.29 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中在 15℃ 無因 次化 B 的配置濃度為 0.0146 時所做的 N-H 基適解譜線。96

- 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,不同溫度下 圖 3.30 單體位移 $v_{\text{NH}}^{\text{obs}}$ 對 $\frac{D-1}{2D+1}$ 作圖,其中D為四氯乙烯的介電常數。
- 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中A,A-2對co作 圖 3.31 圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K,

- 由公式 (2-13) 所得之 3.5-二甲基-2-乙醯基吡咯溶於四氯 圖 3.32 乙烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●
- 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於四氯 圖 3.33 乙烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●
- 圖 3.34 3.5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中 van't Hoff 圖。此處平衡常數 K 為單雙體自結合常數的幾何平均值。...106
- 3,5-二甲基-2-乙醯基吡咯於四氯乙烯溶劑中,A_對co作圖。 圖 3.35 其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式 (3-3) 得到。......106
- 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中, Aa對山作 圖 3.36 圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。理論線可以由公式 (3-6) 得到。......107
- 3.5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,在15℃時 圖 3.37 所测得 N-H 基的 IR 光譜圖。無因次化 B 的配置濃度由上到 下分別為: 0.0196、0.0163、0.0132、0.0100及 0.0067。 110
- 圖 3.38 3.5-二甲基-2-乙醯基吡咯於三氯乙烯溶劑中在 15℃ 無因次 化 B 的配置濃度為 0.0067 時所做的 N-H 基適解譜線。 110
- 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,不同溫度 圖 3.39 下單體位移 v_{NH}^{obs} 對 $\frac{D-1}{2D+1}$ 作圖, D為三氯乙烯的介電常數。...115
- 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中 $A_d A_m^{-2}$ 對 c_o 作 圖 3.40 圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K,
- 由公式 (2-13) 所得之 3.5-二甲基-2-乙醯基吡咯溶於三氯 圖 3.41 乙烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●
- 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於三氯 圖 3.42 乙烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●

- 圖 3.43 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中 van't Hoff 圖。此處平衡數 K 為單雙體自結合常數的幾何平均值。120

- 圖 3.47 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中在15℃無因次化溶質配置濃度為 0.0159 時所做的 N-H 基適解譜線。

- 圖 3.52 由公式 (2-33) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 正辛烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-)298K, (-▲-)308K, (-▼-)318K。
- 圖 3.53 由公式 (2-36) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 正辛烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-)298K, (-▲-)308K, (-▼-)318K。
- 圖 3.54 由公式 (2-39) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 正辛烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-)298K, (-▲-)308K, (-▼-)318K。

- 圖 3.58 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中在 15℃ 無因次化溶質配置濃度為 0.0184 時所做的 N-H 基適解譜線。
- - 其中D為正庚烷的介電常數。......150

- 圖 3.64 由公式 (2-36) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 正庚烷溶中所得線性圖。其四組溫度分別為: (-■-)288K, (-●
 -)298K, (-▲-)308K, (-▼-)318K。
- 圖 3.65 由公式 (2-39)所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 正庚烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-)298K, (-▲-)308K, (-▼-)318K。
- 圖 3.66 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中 van't Hoff 圖。K1為構型轉換的平衡常數。......156

圖	3.69	3,5-二甲基-1H-吡咯-2-甲酸乙酯於甲基環己烷溶劑中在
		25℃無因次化溶質配置濃度為 0.0184 時所做的 N-H 基適解
		譜線。160
圖	3.70	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中,不
		同溫度下的順式單體吸收峰位置V ^{obs} 對(D-1)/(2D+1)作圖,
		其中 D 為甲基環已烷的介電常數。168
圖	3.71	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中,不
		同溫度下反式單體吸收峰位置V ^{obs} 對(D-1)/(2D+1)作圖,其
		中 D 為甲基環已烷的介電常數。168
圖	3.72	3,5-二甲基-1H-吡咯-2-甲酸乙酯於甲基環己烷溶劑中A _t A _c -1
		對 co 作圖。所得線性圖。其四組溫度分別為: (-■-)288K, (-
		•-)298K · (-▲-)308K · (-▼-)318K °
圖	3.73	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中
		A _d A _c ⁻² 對c _o 作圖。所得線性圖。其四組溫度分別為:(-■-)288K,
		(- •-)298K · (- ▲-)308K · (- ▼-)318K •
圖	3.74	由公式 (2-33) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
		甲基環已溶劑中所得線性圖。其四組溫度分別為: ()288K,
		(- •-)298K [•] (- ▲-)308K [•] (- ▼-)318K [•] 173
圖	3.75	由公式 (2-36) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
		甲基環己烷溶劑中所得線性圖。其四組溫度分別為: (-■
		-)288K ', (- •-)298K ', (- ▲-)308K ', (- ▼-)318K °
圖	3.76	由公式 (2-39) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
		甲基環己烷溶劑中所得線性圖。其四組溫度分別為: (-■
_		-)288K , (-•-) 298K , (-▲-)308K , (-▼-)318K °
邑	3.77	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環己烷溶劑中
Π	2 70	van't Hoff 圖。 K_1 為單體構型轉換的平衡常數。1/4
宣	3.78	3,5-二甲基-IH-吡咯-2-甲酸乙酯溶於甲基壞乙烷溶劑甲
ছা	2 70	Van t HOII 圖。 K_2 為順式 單體目結合的平衡常數。1/5
直	3.79	3,3
图	3 80	為.0.0264、 0.0250、 0.0169、 0.0158 及 0.0005°
回	5.80	3,5-一下至-III-北谷-2-下酸乙酯水浆乙烯合剂下在 I5 C 恶
		四天记俗頁配且很反為 0.0205 两川 歐的 11-11 至過 件 暗 歐 178
圖	3.81	3.5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶劑中,不同溫
•		度下的順式單體最大吸收峰位置 v_c^{obs} 對 $(D-1)/(2D+1)$ 作圖,
		其中D為環已烷的介電常數。

圖 3.82	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中,不同溫	
	度下的反式單體最大吸收峰位置 v _i ^{obs} 對(D-1)/(2D+1)作圖,	
	其中D為環己烷的介電常數。	.186
圖 3.83	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶劑中A _t A _c 1對	
	c _o 作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲	
	-)308K,(-▼-)318K。	.187
圖 3.84	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶劑中 $A_d A_c^2$ 對	
	co作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲	
	-)308K,(-▼-)318K。	.187
圖 3.85	由公式 (2-33) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於	
	環已烷溶劑中所得線性圖。其四組溫度分別為: ()288K,	
	(- •-)298K ', (-▲-)308K ', (-▼-)318K °	. 191
圖 3.86	由公式 (2-36) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於	
	環已烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,	
	(- •-)298K ', (-▲-)308K ', (-▼-)318K °	. 191
圖 3.87	由公式 (2-39) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於	
	環己烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,	
	(- •-)298K [•] (- ▲-)308K [•] (- ▼-)318K [•]	.192
圖 3.88	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中 van't	
	Hoff 圖。 K_1 為構型轉換的平衡常數。	.192
圖 3.89	3,5-二甲基-1H-吡咯-2-甲酸乙酯於環已烷溶劑中 van't Hoff	
-	圖。K2為順式單體自結合的平衡常數。	.193
圖 3.90	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中,	
	15℃時所測得 N-H 基的 IR 光譜圖。無因次化溶質配置濃度	100
回 201	分別為:0.0207、0.0171、 0.0135、0.0099 及 0.0065。	. 196
圖 3.91	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑甲,在	
	15 U 黑因次化浴質配直蒎度為 0.0099 時所做的 N-H 基週解	100
图 2 0 2	譜線。 25 - 田甘 111 山中 7 田歌フ北京林田与フ塔京刻中·ブロ	. 190
回 3.92	5,5-一十至-1H-叱哈-2-十酸乙酯浴於四氯乙烯溶劑十,个问	
	温度下的順式車館吸收咩位直 V_c 對 $(D-1)/(2D+1)$ 作圖,兵	204
图 2 0 2	中 D 為四氟乙烯的介電吊數。	.204
回 3.93	5,5-一 中 基-1H- 吡咯-2- 甲酸乙酯於四氯乙烯溶劑中, 不问温	
	度下的反式単體吸收峰位直 V_i $\to t(D-1)/(2D+1)$ 作圖, 兵中	204
回 201	D為四氯乙烯的介電常數。	.204
回 5.94	3,3-一 甲 基-1H-吡咯-2-甲酸乙酯於四氯乙烯溶劑 甲 A _t A _c 對	
	c ₀ 作圖。其四組溫度分別為: (-■-)288K, (-●-)298 K, (-▲	• • •
	-)308K,(-▼-)318K。	.205

圖 3.95	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中A _d A ⁻²
	對 c₀ 作圖。其四組溫度分別為: ()288K, ()298K, (-▲
	-)308K,(-▼-)318K。
圖 3.96	由公式 (2-33) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
	四氯乙烯溶中所得線性圖。其四組溫度分別為: (-■-)288K,
	(- •-) 298K [,] (- ▲-)308K [,] (- ▼-)318K [,]
圖 3.97	由公式 (2-36) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
	四氯乙烯溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
	(- •-) 298K [,] (- ▲-)308K [,] (- ▼-)318K [,]
圖 3.98	由公式 (2-39) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
	四氯乙烯溶劑中所得線性圖。其四組溫度分別為:(-■-)288K,
	(- •-)298K [,] (-▲-)308K [,] (-▼-)318K [,]
圖 3.99	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中 van't
	Hoff 圖。K1為構型轉換的平衡常數。
圖 3.100	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中 van't
	Hoff 圖。 K_2 為順式單體自結合的平衡常數。
圖 4.1	3,5-二甲基-2-乙醯基吡咯溶於不同溶劑中及四組不同溫度下
	的單體最大伸縮振動頻率位置v _{NH} 對(D-1)/(2D+1)做圖,其中
	D為介電常數。其四組溶劑分別為: (-○-)正庚烷, (-■-)正辛烷,
	(-▲-)環己烷,(-×-)四氯乙烯。
圖 4.2	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於不同溶劑中及四組不同
	溫度條件下,反式單體的最大伸縮振動頻率位置VNH對
	(D-1)/(2D+1)做圖,其中D為介電常數。其五組溶劑分別為: (-
	▼-)正庚烷,(-△-)正辛烷,(-●-)甲基環己烷,(-□-)環己烷,(-
	■-)四氯乙烯。
圖 4.3	3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於不同溶劑中及四組不同
	溫度條件下,順式單體的最大伸縮振動頻率位置 V _{NH} 對
	(D-1)/(2D+1)做圖,其中D為介電常數。其四組溶劑分別為:
	(-▼-)正庚烷,(-△-)正辛烷,(-●-)甲基環己烷,(-□-)環己烷,
7.4	(-■-)四氯乙烯。
圖 4.4	15℃下溶質3,5-二甲基-2-乙醯基吡咯ADP溶於不同溶劑中,
	雙體 N-H 基 敢大伸縮頻率位 置對 $(D-1)/(2D+1)$ 做圖,其中 D
	為介電常數。四組溶劑分別為: (-●-)正庚烷, (-■-)正辛烷,
	(-▲-)埌��烷, (-×-)四氯乙烯。

圖 4.5	15℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同	
	溶劑中, 雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做	
	圖,其中D為介電常數。四組溶劑分別為:(-◆-)正庚烷,(-■	
	-)正辛烷,(- ◆-)甲基環己烷,(- ▼-)環己烷,(- ×-)四氯乙烯。	
		.220
圖 4.6	25℃下溶質3,5-二甲基-2-乙醯基吡咯ADP溶於不同溶劑中,	
	雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1) 做圖,其中 D	
	為介電常數。四組溶劑分別為: (-◆-)正庚烷,(-■-)正辛烷,	
	(-▲-)環己烷,(-×-)四氯乙烯。	.221
圖 4.7	25℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同	
	溶劑中, 雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做	
	圖,其中D為介電常數。四組溶劑分別為:(-●-)正庚烷,(-■	
	-)正辛烷,(-◆-)甲基環已烷,(-▼-)環已烷,(-×-)四氯乙烯。	
		.221
圖 4.8	35℃下溶質3,5-二甲基-2-乙醯基吡咯 ADP 溶於不同溶劑中,	
	雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1) 做圖,其中 D	
	為介電常數。四組溶劑分別為: (-●-)正庚烷,(-■-)正辛烷,	
	(-▲-)環己烷,(-×-)四氯乙烯。	.222
圖 4.9	35℃下溶質3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同	
	溶劑中, 雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做	
	圖,其中D為介電常數。四組溶劑分別為:(-●-)正庚烷,(-■	
	-) 正辛烷, (- +-) 甲基環己烷, (- ▼-) 環己烷, (-×-) 四氯乙烯。	
		.222
圖 4.10	45℃下溶質3,5-二甲基-2-乙醯基吡咯ADP溶於不同溶劑中	,
	雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1) 做圖,其中 D	
	為介電常數。四組溶劑分別為: (-●-)正庚烷, (-■-)正辛烷,	
	(-▲-)環已烷,(-×-)四氯乙烯。	.223
圖 4.11	45℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不	
	同溶劑中,雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1) 做	
	圖,其中D為介電常數。四組溶劑分別為:(-◆-)正庚烷,(-■	
	-)正辛烷,(- ◆-)甲基環己烷,(- ▼-)環己烷,(- ×-)四氯乙烯。	
		.223
圖 4.12	溶質 3,5-二甲基-2-乙醯基吡咯 ADP 溶於正辛烷溶劑中,雙	
	體 N-H 基最大伸縮振動頻率位置對(D-1)/(2D+1)做圖,其中	
	D為介電常數。	.224
圖 4.13	溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於正辛烷溶	
	劑中,雙體 N-H 基最大伸縮振動頻率位置對(D-1)/(2D+1) 做	
	圖,其中D為介電常數。	.225

- 圖 4.19 在溫度 35℃下 3,5-二甲基-2-乙醯基吡咯單體 N-H基的半高 寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、 (-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。
- 圖 4.20 在溫度 45°C下 3,5-二甲基-2-乙醯基吡咯單體 N-H 基的半高 寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、 (-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。 .236
- 圖 4.21 在溫度 15℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環已烷、(-○-)正庚烷及(-■-)正辛烷。......237
- 圖 4.22 在溫度 25℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。......237
- 圖 4.23 在溫度 35℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環已烷、(-○-)正庚烷及(-■-)正辛烷。.....238
- 圖 4.24 在溫度 45℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。......238

- 圖 4.25 在溫度 15℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為:(-◄-)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。.....239
- 圖 4.26 在溫度 15℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖,其溶劑分別為:(-◄-)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。.....240
- 圖 4.27 在溫度 25℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為:(-◄-)四氯乙烯、(-◊-)
 環己烷、 (-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。.....240
- 圖 4.29 在溫度 35℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<-)四氯乙烯、(-◇-)
 環已烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。.....241
- 圖 4.30 在溫度 35℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<-)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。.....242
- 圖 4.31 在溫度 45°C下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為: (- <-)四氯乙烯、(- <-)
 環已烷、(-△-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。......242
- 圖 4.32 在溫度 45°C下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<-)四氯乙烯、(-◇-)
 環已烷、(-△-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。.....243

- 圖 4.51 在固定溶劑甲基環已烷條件下 3,5-二甲基-1H-吡咯-2-甲酸
 乙酯順式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。.....254
- 圖 4.52 在固定溶劑甲基環己烷條件下 3,5-二甲基-1H-吡咯-2-甲酸
 乙酯反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。.....254

- 圖 4.56 在固定溶劑四氯乙烯條件下 3,5-二甲基-1H-吡咯-2-甲酸乙
 酯反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別
 為: (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。........256

圖	4.69	將 $\frac{A_s}{A_{s,r}}$ 對 $(\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ 做圖。以正庚烷當參考溶劑	,
		溶質 EDPC 在正庚烷溶劑下的反式單體 N-H 基吸收帶總莫	
		耳吸收係數當作參考強度,正庚烷的介電常數當作參考介電	0
		溶劑分別為:(-◆-) 四氯乙烯、(-▲-)環己烷、(-◆-)甲基環己烷、	
		(-■-)正辛烷。實線部份以式 (4-15)當作理論線	.271
圖	4.70	將 $\frac{A_s}{A_{s,r}}$ 對 $(\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ 做圖。以正庚烷當參考溶劑	,
		溶質 ADP 在正庚烷溶劑下環狀雙體 N-H 基吸收帶總莫耳吸	
		收係數當作參考強度,正庚烷的介電常數當作參考介電。溶	
		劑分別為:(-◆-)三氯乙烯、(-▲-)四氯乙烯、(-◆-)環己烷、(-■	
		-)正辛烷。實線部份以式 (4-15)當作理論線	.272
圖	4.71	將 $\frac{A_s}{A_{s,r}}$ 對 $(\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ 做圖。以正庚烷當參考溶劑	,
		溶質 EDPC 在正庚烷溶劑下的環狀雙體 N-H 基吸收帶總莫	
		耳吸收係數當作參考強度,正庚烷的介電常數當作參考介電	0
		溶劑分別為:(-◆-) 四氯乙烯、(-▲-)環己烷、(-●-)甲基環己烷、	
		(-■-)正辛烷。實線部份以式 (4-15)當作理論線	.273
圖	A.1	自結合平衡常數為 K=2、K=10、K=30 及 K=60 時,η	
		與[B]o依存關係。	.279
圖	B .1	Onsager 定義分子的模型。	.282
圖	B.2	Tomasi´s 定義分子的模型。	.282
圖	B.3	由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-	
		吡咯-2-甲酸乙酯順式單體較穩定構型。	.286
圖	B.4	由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-	
		吡咯-2-甲酸乙酯順式單體較不穩定構型。	.287
圖	B.5	由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-	
		吡咯-2-甲酸乙酯反式單體較穩定構型。	.287
圖	B.6	由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-	
		吡咯-2-甲酸乙酯反式單體較不穩定構型。	.288
圖	B.7	由理論計算 B3LYP/6-31+G**的結果,3,5-二甲基-1H-吡咯	
		-2-甲酸乙酯的雙體為環狀雙體。	.288

表目錄

表 1.1	利用氫鍵所測得分子間氫鍵熱力學參數值	3
表 3.1	在不同温度下,3,5-二甲基-2-乙醯基吡咯在正辛烷溶劑中,	
	改變不同起始濃度時,單體及雙體最大吸收位置、半高寬及	
	單體、雙體總吸收度。	.55
表 3.2	3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,在不同溫度下	
	所求得知單體總莫耳吸收係數 Em、雙體總莫耳吸收係數 Ed、	
	單體自結合平衡常數 K,以及由不同溫度下之平衡常數作	
	$van't$ Hoff 所求得的單雙體自結合之標準焓 ΔH° 及標準熵 ΔS° 。	
		.66
表 3.3	在不同溫度下,3,5-二甲基-2-乙醯基吡咯溶在正庚烷溶劑中,	
	改變不同起始濃度時,單體及雙體最大吸收位置、半高寬及	
	總吸收度。	. 69
表 3.4	3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,在不同溫度下	
	所求得知單體總莫耳吸收係數 Em、雙體總莫耳吸收係數 Ed、	
	單體自結合平衡常數 K,以及由不同溫度下之平衡常數作	
	$van't$ Hoff 所求得的單雙體自結合之標準焓 ΔH° 及標準熵 ΔS° 。	
	1896	. 80
表 3.5	在不同溫度下,3,5-二甲基-2-乙醯基吡咯溶在環已烷溶劑中,	
	改變不同起始濃度時,單體及雙體最大吸收位置、半高寬及	
	總吸收度。	.83
表 3.6	3,5-二甲基-2-乙醯基吡咯溶於環己烷溶劑中,在不同溫度下	
	所求得知單體總莫耳吸收係數 Em、雙體總莫耳吸收係數 Ed、	
	單體自結合平衡常數 K,以及由不同溫度下之平衡常數作	
	$van't$ Hoff 所求得的單雙體自結合之標準焓 ΔH° 及標準熵 ΔS° 。	
		.94
表 3.7	在不同温度下,3,5-二甲基-2-乙醯基吡咯溶溶在四氯乙烯溶	
	劑中改變不同起始濃度時,單體及雙體最大吸收位置、半高	
	寬及總吸收度。	.97

- 表 3.8 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,在不同溫度 下所求得知單體總莫耳吸收係數 ε_m、雙體總莫耳吸收係數 ε_d、 單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 van't Hoff 所求得的單雙體自結合之標準焓ΔH^e及標準熵ΔS^e。
- 表 3.10 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,在不同溫度 下所求得知單體總莫耳吸收係數 ε_m、雙體總莫耳吸收係數 ε_d、 單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 van't Hoff 所求得的單雙體自結合之標準焓ΔH^o及標準熵ΔS^o。

第一章 緒論

1.1 氫鍵簡介

人類的 DNA 含有遺傳訊息的分子,而 DNA 是由一個雙股螺旋 所組成,要能穩固它的構型,最大的推手便是氫鍵。蛋白質是由胺基 酸所構成,它具有四級結構。1951 年 Pauling 和 Corey¹ 根據一些簡單 化合物,例如:胺基酸、二胜肽的 X 射線晶體圖,提出了多胜肽結構, 例如α螺旋 (α-helix)、β折疊 (β-pleated sheet),它們是蛋白質主要 的二級結構。我們頭髮主要蛋白α角蛋白也幾乎由α螺旋組成,其胜 肽鍵間以氫鍵結合。其他如 DNA 自組成奈米管的奈米技術²和治療 腫瘤藥物甚至到藥物化學³也都涉及到氫鍵,因此研究氫鍵是重要的 課題。

α-螺旋與β-折疊是以 N-H···C=O 氫鍵結合,來達到穩定結構作 用。缺乏β-折疊的蛋白質容易大量的形成纖維狀聚合體 (aggregate), 造成神經性衰退及疾病⁴。

氫鍵可表示為 A-H···B,其中 A 為高電負度的原子(如: N、 O、 F),B 為含有孤立電子對的高電負度原子或含有 π 電子雲的未飽和系統 (如芳香族化合物)的條件為。當一個質子提供者 (proton donor) 接 近另一個質子接受者 (proton acceptor) 時,有利於形成氫鍵。通常氫 鍵依作用能 ε 強弱可分為三種:強氫鍵 ($\varepsilon > 10 \, kcal \, / \, mol$)、中氫鍵 ($\varepsilon = 3-10 \, kcal \, / \, mol$)、弱氫鍵 ($\varepsilon < 3 \, kcal \, / \, mol$)⁵。

1968 年 A. S. N. Murthy 研究自結合氫鍵能量範圍⁶,如圖 1.1 所 示。我們可以藉由圖了解,當 N-H 或 O-H 與質子接受者形成的氫鍵, 此類通常能形成較強的氫鍵。若是由 S-H 或 C-H 與質子接受者形成 的氫鍵,則是弱氫鍵。

圖 1.1 自結合氫鍵能量範圍。

[引自 ref. 6, A. S. N. Murthy and C. N. R. Rao, Appl. Spectrosc. Rev. 2, 69 (1968).]

Vinogradov⁷將不同氫鍵的結合方式,及熱力學參數做一個整理, 如表 1.1。此結果亦與 Murthy 的結果符合。我們可以將實驗求得的氫 鍵能量與 Vinogradov 和 Murthy 的結果相互對照,以檢驗是否符合。 表 1.1 利用氫鍵所測得分子間氫鍵熱力學參數值

Type of H bond	system	Phase or	$-\bigtriangleup G^{\Theta}$	-∆H ⁰	-∆S [⊕]	method	ref
		solvent	Kcal/mol	kcal/mol	kcal/mol		
—ноо=с	Cholesterol-triacetin	CCl ₄	0.63	4.3	-	IR	8
—HOO=C	Acetic acid	vapor		7.3±0.5	1.81±2.0	IR	9
—ноо	Water-dioxane	CCl ₄		3.3-3.7	-	PMR	10
—ноо	Phenol-dioxane	dioxane	C	4.87		IR	11
	Phenol-triethylamine	CCl4	2	8.56		IR	11
N	Methamol- triethylamine	vapor	890	7.6±0.5		IR	12
HNO=C	γ -butyrolactam	CCl ₄	1.66	3.5±0.4	6.2	IR	13
	2-pyridone	CCl ₄	2.63	4.4±0.4	6.0	IR	14

一般而言,在沒有強的分子間作用力,例如氫鍵、電荷轉移 (charge transfer)的情況下,隨分子量增加,分子的溶沸點增加。如果 有分子間存在自結合,它會使分子的表現分子量 (apparent molecular mass)增加,且會比相近分子量但不具氫鍵的化合物有更高的溶、沸 點⁷。因此它的蒸氣壓會較無氫鍵但相同分子量的小,因此若要達到 跟無氫鍵化合物一樣蒸氣壓,就必須增加溫度以提供動能,克服氫鍵 的影響。

我們從依數性質觀點來探討自結合如何造成非理想溶液¹⁵,因依 數性質只與粒子個數有關而與粒子物種無關,在單雙體共存情況下總 粒子濃度 $[B]_0^{\circ}$ 為單體濃度[B]與雙體濃度 $[B_2]$ 的和。另一方面由於質量 結算 (material balance),單體經由氫鍵自結合成雙體,B的配置濃度 (prepared concentration) $[B]_0$ 則為[B]與2 $[B_2]$ 的和。因此在沒有自結合 情形下 $[B_2]=0$,總粒子濃度會等於B的配置濃度,則 $[B]_0'=[B]_0$,這 是假設在理想溶液的情形。但是當自結合存在時 $[B]_0'<[B]_0$,使溶液 呈現非理想性,其偏離理想溶液值可由 $\eta=1-\frac{[B]_0'}{[B]_0}$ 量度之。由附錄A 求得

$$\eta = \frac{1}{2} - \frac{1}{1 + \sqrt{1 + 8K[B]_0}}$$
(1-1)
(A-5)

由公式 (1-1) 將η對[B]₀做圖得到結果如圖 1.2。

圖 1.2 自結合平衡常數 $K = 2 \cdot K = 10 \cdot K = 30$ 及 K = 60 時, $\eta \oplus [B]_0$ 依存關係。

從圖 1.2 發現,在極稀釋溶液下η≅0,表示溶液是接近理想溶液情形。 當有自結合產生時, η隨著濃度及自結合平衡常數 K 的增加而增加, 溶液越偏離理想。

1.2 氫鍵結合常見模式

之前實驗室利用紅外光譜研究具有立體障礙的醇類 2,2-二甲基 -3-乙基-3-戊醇 (2,2-dimethyl-3-ethyl-3-pentanol)¹⁶,在溶液下透過分 子間氫鍵,產生自結合模式。由於立體障礙的關係,該分子不易透過 線性結合的方式形成多體,而大部分為單雙體平衡。

無立體障礙的醇類,例如:一級醇類、 二級醇類等,容易以線 性方式自結合成多體。1947年 O. Redlick^{17,18}認為雙體、三體、四體... 等是以線性方式結合,以 $B_n + B = B_{n+1}$ 表示, B為單體、 B_n 為 n 體 ((n)-mer)、 B_{n+1} 為 n+1 體 ((n+1)-mer),平衡常數表示成 $K_{n(n+1)} = \frac{[B_{n+1}]}{[B_n][B_n]}$, n = 1, 2, 3...。將 $K_{1(2)}$ 、 $K_{2(3)}$ 、... $K_{n(n+1)}$ 值都令成一樣。1976 年 G. öjelund¹⁹ 利用 M. Davies^{20,21}的方法研究醯胺 (amide) 的自結合,作者亦假設雙 體、三體、四體...等是以線性方式結合。單體自結合成雙體的平衡常 數為 K_2 ,此定義與 $K_{1(2)}$ 是相同的,前述形成 n+1 體的平衡常數 G. Öjelund 表示為*K*_{n+1},而不再沿用*K*_{n(n+1)}。但是 M. Davies 與 O. Redlick 的假設最大的不同在於, M. Davies 假設 $K_2 < K_3 = K_4 = ... = K_n = \overline{K}$ 。由 於作者假設醯胺 (amide) 的自結合是以線性方式結合,因此每個 n 體 (n-mer) 皆有一個未鍵結成氫鍵的 N-H 基,可以將未鍵結 N-H 基 總濃度[B]_f表示成[B]_f = $\sum_{n=1}^{\infty} [B_n]$, $[B_n]$ 為n 體濃度, 醯胺的總濃度[B]_t可 以表示成

$$[B]_t = [B]_b + [B]_f$$

 $[B]_b$ 為鍵結成氫鍵 N-H 基的濃度。由平衡常數的定義 $K_{n+1} = \frac{[B_{n+1}]}{[B_1][B_n]}$,

我們可以由規律性從中找出 n 體濃度的表示式如下

$$K_{2} = \frac{[B_{2}]}{[B]^{2}} \qquad [B_{2}] = K_{2}[B]^{2}$$

$$K_{3} = \overline{K} = \frac{[B_{3}]}{[B_{2}][B]} = \frac{[B_{3}]}{K_{2}[B]^{3}} \qquad [B_{3}] = \overline{K}K_{2}[B]^{3}$$

$$K_{4} = \overline{K} = \frac{[B_{4}]}{[B_{3}][B]} = \frac{[B_{4}]}{K_{3}K_{2}[B]^{4}} \qquad [B_{4}] = \overline{K}^{2}K_{2}[B]^{4} \qquad (1-3)$$

$$[B_n] = \overline{K}^{n-2} K_2[B]^n$$
$$= \left(\frac{K_2}{\overline{K}^2}\right) \left(\overline{K}[B]\right)^n$$
$$n = 2, 3, \dots$$

作者定義總濃度[B], 為[B], = $\sum_{n=1}^{\infty} n[B]_n$,因此可以將公式 (1-3) 的[B]_n通 式代入整理成

$$[B]_{t} = \sum_{n=1}^{\infty} n[B]_{n} = [B] + (\frac{K_{2}}{\overline{K}^{2}}) \sum_{n=2}^{\infty} n(\overline{K}[B])^{n}$$
$$= (\frac{K_{2}}{\overline{K}^{2}}) \sum_{n=1}^{\infty} n(\overline{K}[B])^{n} - (\frac{K_{2}}{\overline{K}})[B] + [B]$$
(1-4)

由數學式知 $\sum_{n=1}^{\infty} nx^n = x(1-x)^{-2} \dot{a} |x| < 1$ 時。因此要代此數學式之前我們必須確認 $K_3[B]$ 是否小於1,我們可以依 $[B_n] = (\frac{K_2}{\overline{K}^2})(\overline{K}[B])^n$ 判別,當假設 $K_3[B] > 1$ 則在 $n \approx \infty$ 時, $[B_n] \approx \infty$ 。此結果不合理,因此可以判斷 $\overline{K}[B] < 1$ 。
我們將數學式代入式(1-4)整理成

$$[B]_{t} = [B] + (\frac{K_{2}}{\overline{K}^{2}})[B]\{(1 - \overline{K}[B])^{-2} - 1\}$$
(1-5)

我們知 $[B]_f = \sum_{n=1}^{\infty} B_n$,可以將式 (1-3) 中 B_n 的通式代入,整理成

$$[B]_{f} = \sum_{n=1}^{\infty} [B_{n}] = [B] + (\frac{K_{2}}{\overline{K}^{2}}) \sum_{n=2}^{\infty} (\overline{K}[B])^{n}$$

$$= (\frac{K_{2}}{\overline{K}^{2}}) \sum_{n=0}^{\infty} (\overline{K}[B])^{n} - (\frac{K_{2}}{\overline{K}})[B] + [B] - 1$$

$$= \frac{1}{1 - x} \quad \underline{E}[B] = \frac{1}{1 - x} \quad \underline{E}[B] = 1$$

$$[B]_{f} = [B] + \frac{K_{2}[B]^{2}}{1 - \overline{K}[B]} \qquad [\overline{K}[B]] < 1$$

$$(1-6) \quad \underline{E}[B] = (B) + \frac{K_{2}[B]^{2}}{1 - \overline{K}[B]} \qquad (1-7)$$

最後將式 (1-2)、(1-5) 及 (1-7) 整理得

$$\frac{[B]_b^{1/2}}{[B]_f - [B]_b} = K_2^{1/2} + \overline{K} \frac{[B]_f [B]_b^{1/2}}{[B]_f - [B]_b}$$
(1-8)

將 $\frac{[B]_{b}^{1/2}}{[B]_{f} - [B]_{b}}$ 對 $\frac{[B]_{f}[B]_{b}^{1/2}}{[B]_{f} - [B]_{b}}$ 作圖,由斜率、截距可以求出單體自結合成 雙體的平衡常數 K_{2} 、多體的平衡常數 \overline{K} 。從光譜資料我們可以估算 出[B]_f如下

$$[B]_{f} = \frac{\varepsilon_{app} - \varepsilon_{b}}{\varepsilon_{f} - \varepsilon_{b}} [B]_{t}$$
(1-8)

 ε_{app} 為 N-H 表觀 (apparent) 吸收係數, ε_b 為 N-H 基鍵結成氫鍵吸收係 數, ε_f 為單體 N-H 基吸收係數。由 ε_{ann} 對 x 作圖, x 為溶質莫耳分率, 外插到x=0得到 ε_{t} 。當外插到x=1時,可得到 ε_{b} 。如此可以計算出[B]_t, 進而由[B],=[B],-[B],求得[B],。作者假設在x=1(純溶質)時所有 N-H 基皆會皆會鍵結成氫鍵。若依結合的方式只是以線性為前提,推 斷所有溶質分子將會聚合成一條很長的線性多體,突顯其矛盾,因此 利用此法所得 ɛ, 將有極大誤差。O. Redlick 與 M. Davies 的方法可以求 得各種平衡常數,進一步估算出熱力學參數,但將所有多體的平衡常 數都假設成一樣是不合理的,因此得到的熱力學參數就變得較不可靠。 如果系統具多體,會使得系統變複雜化,要準確求出多體的平衡常數 是不可能,所以我們降低實驗的濃度,目的是簡化系統的複雜性,控 制系統主要以單、雙體存在,此方式才能求得單體自結合成雙體平衡 常數。

在 1957 年 H. S. Frank²² 研究水的自結合構型,水分子與水分子 之間透過氫鍵自結合成水分子的多聚體 (cluster),如圖 1.3。

[弓] 自: ref. 22, H. S. Frank and W. Y. Wen, Discuss. Faraday Soc. 24, 133 (1957).]

水分子因無立體障礙,所以容易自結合成鏈狀、網狀、甚至是環狀的多聚體。而 S. W. Benson²³也研究水的自結合,推斷水容易形成 八聚體和環狀四聚體的結構,如圖 1.4、圖 1.5。

[引自 Figure 1 in ref. 23, S. W. Benson and E. D. Diebert, J. Am. Chem. Soc. **114**, 4269 (1992).]

a) Polar Tetramer

b) Non-Polar Tetramer

圖 1.5 水自結合成四聚體 a 具極性結構四聚體 b 不具極性結構四 聚體。

[引自 Figure 2 in ref. 23, S. W. Benson and E. D. Diebert, J. Am. Chem. Soc. **114**, 4269 (1992).]

不僅僅分子間會形成氫鍵,在分子內也可能產生氫鍵。當一分子 同時具有質子提供者與質子接受者時,且兩者處於有利形成氫鍵的空 間位置時,就有機會形成分子內氫鍵。典型分子內氫鍵質子提供者的 H與質子接受者距離約在 1.4 到 2.5Å 之間⁷。2-氯苯酚²⁴、乙二酸²⁵ 及 1.2-乙二醇²⁶這類的化合物就是典型具分子內氫鍵的分子。以 2-氯苯酚為例子,由於 OH 鍵與鄰位的氯很接近,因此有利於形成分子 內氫鍵。 醋酸與內醯胺 (lactam) 這一類的化合物因溶質同時具有質子提供者與質子接受者,當兩分子接近時,分子與分子之間容易自結合形成環狀雙體如下圖 1.6 為內醯胺自結合成環狀雙體²⁷。

Scheme 1

圖 1.6 內醯胺自結合成雙體圖

[弓] 自 scheme 1 in ref. 27, N. A. prokopenko, I. A. Bethea, C. J. Clemens, 4th, A. Klimek, K. Wargo, C. Spivey, K. Waziri and A. Grushow, Phys. Chem. Chem. Phys. **4**, 490 (2002).]

9

1953年 J. D. Watson 和 F. H. C. Crick²⁸利用 X 射線的衍射資料研 究去氧核醣核酸 (Deoxyribose Nucleic Acid),建立了 DNA 的三維模 型,也提出了 DNA 是一雙股螺旋的結構,如圖 1.7

[引自 ref. 28, J. D. Watson and F. H. C. Crick, Nature 171,737 (1973).]

DNA 的雙股螺旋是由兩條平行的多核苷酸鏈所組成,其圍繞同 一中心軸。而一條鏈上的鹼基透過氫鍵與另一條鏈上的鹼基連接,形 成鹼基對,分子間透過氫鍵產生異結合,以達到穩定結構的目的。A、 T、G 和 C 分別表示腺苷 (adenosine)、胸苷 (thymidine)、鳥苷 (guanosine) 和胞苷 (cytidine)。A 與 T 配對,能形成兩個氫鍵,G 與 C 配對,能形成三個氫鍵²⁹,如圖 1.8。

圖 1.8 DNA 雙股螺旋兩條多核苷酸鏈示意圖

[引自 Figure 3-11 in ref. 29, D. Voet, J. G. Voet and C. W. Pratt, *Foundamentals Of Biochemistry* (John Wiley & Sons, New York, 1999).]

兩條鏈的鹼基透過氫鍵來穩定 DNA 的結構。沿著螺旋的長軸每轉一圈含有 10 個鹼基對,螺距為 3.4 nm。

在DNA 雙股螺旋的例子中不同鹼基對透過氫鍵產生異結合,事 實上鹼基對之間亦會產生自結合。2001 年 M. Furukawa³⁰利用掃描 穿隧式顯微鏡 (scanning tunneling microscope) 研究 DNA 中鹼基分 子的自結合,並配合半經驗分子軌域計算 (semiempirical moleculr orbital),推斷鳥嘌呤 (guanine)、腺嘌呤 (adenine) 和胞嘧啶 (cytosine) 具有穩定雙體結構存在。其自結合以環狀雙體存在,如圖 1.9、圖 1.10、圖 1.11

[弓] 自 Figure 2 in ref. 30, M. Furukawa, H. Tanaka and T. Kawai, J. Chem. Phys. **115**,3419 (2001).]

[弓] 自 Figure 2 in ref. 30, M. Furukawa, H. Tanaka and T. Kawai, J. Chem. Phys. **115**,3419 (2001).]

圖 1.11 腺嘌呤自結合成雙體最適 (optimal) 的結構

[引自 Figure 2 in ref. 30, M. Furukawa, H. Tanaka and T. Kawai, J. Chem. Phys. **115**,3419 (2001).]

1.3 如何利用紅外光譜來研究氫鍵^{8,16,27,31,32}

利用紅外光譜能夠偵測分子的振動頻率,研究氫鍵通常會著重在 觀察質子提供者 A-H 的伸縮振動頻率。若質子提供者 A-H 與質子接 受者 B 形成氫鍵,紅外光譜可同時偵測到單體 A-H 的振動及雙體或 多體受氫鍵影響的 A-H 振動。通常後者較前者頻率為低,半高寬亦 較寬。雙體的總吸收係數也較單體大,可以由以上幾點來確認是否有 氫鍵形成。

在 1968 年 F. S. Parker⁸也利用紅外光譜研究膽固醇 (cholesterol) 的自結合。膽固醇的結構如下圖 1.12 所示

圖 1.12 膽固醇的結構圖

膽固醇的 OH 基屬於二級醇,並無立體障礙的結構,因此當我們 增加膽固醇的濃度時,溶質易聚集成雙體、甚至是多聚體。如紅外光 譜圖 1.13 所示。

圖 1.13 膽固醇溶於四氯化碳溶劑下 OH 基的紅外光譜圖,溫度控制在 23℃,濃度分別為 0.014M、0.0019M、0.0039M、0.0061M及 0.2M。

[引自 Figure 1 in ref. 8, F. S. Parker and K.R. Bhaskar, Biochemistry 7, 1286 (1968).]

當膽固醇的濃度在 0.014M 時,幾乎只有單體,濃度 0.039M 以 下時,自結合產生雙體,但濃度過高即出現多聚體。實驗濃度必須控 制在濃度 0.039M 以下。F. S. Parker⁸ 也利用 Liddel 和 Becker³² 在 1957 年所使用極限斜率的方法如圖 1.14

圖 1.14 膽固醇單體莫耳吸收係數 Em 對總濃度 c 作圖

[引自 Figure 2 in ref. 8, F. S. Parker and K.R. Bhaskar, Biochemistry 7, 1286 (1968).]

在極稀濃度下, ε_m 對濃度 c 作圖外插到濃度為 0 得到單體莫耳吸收係數 ε_m^0 ,並求其極限斜率 $(\frac{d\varepsilon_m}{dc})_{c\to 0}$,最後代入 Liddel 和 Becker³² 公式

$$\left\lfloor \frac{d\varepsilon_{\rm m}}{dc} \right\rfloor_{c \to 0} = -2K_d \varepsilon_{\rm m}^{\rm O} \tag{1-9}$$

可以求得單雙體自結合平衡常數 K_d 。將不同溫度下求得的自結 合平衡常數作 van't Hoff 圖得到自結合標準焓, ΔH^{Θ} 。

我們在利用紅外光譜時也容易遇到一些情形,造成光譜複雜化的 原因²⁹,包括倍頻 (overtone)、費米共振 (Fermi resonance)、氫鍵和 其他分子間作用,合併吸收峰及產生多體。

倍頻(overtone)指官能基基本(fundamental)振動頻率大約兩 倍的地方出現吸收峰。兩個基本頻率在波數v₁和v₂,偶而在(v₁+v₂)頻 率位置會有合併吸收峰(combination bands)。產生多體也會使多體 的吸收峰混合在一起,要將每一個吸收峰分離出來並確認之,確實是 一件難事。費米共振(Fermi resonance)為當在倍頻或合併吸收位置附 近,遇到分子本身的有基本吸收頻率時,則會分成兩個強度幾乎相同 的兩個峰,位於預期頻率的兩側,稱為「費米雙峰」(Fermi doublet)。

1.4 其他研究氫鍵的方法

過去有許多研究氫鍵方法,包括了核磁共振^{33,34}、 紫外光/可見 光³⁵、紅外光譜^{16,27,31,36}、X-Ray 繞射³⁷等。其中又以紅外光譜與核 磁共振的方法最廣為使用。1963 年 B. G. Somers 和 H. S. Gutowsky³⁸ 利用 NMR 研究 2-異丙基酚溶於四氯化碳中的自結合現象。作者利用 M. Saunders 和 J. B. Hyne³⁷ 在 1958 年所推導的公式 $\left(\frac{d\delta_{obs}}{dc}\right)_{C\to 0} = 2K(\delta_d - \delta_m)$ 可以求得自結合平衡常數 K,將觀測到 OH 的 化學位移 δ_{obs} 對濃度 c 作圖,外插至濃度為無限稀釋時,其截距為單 體位移 $\delta_m \circ \delta_d$ 與多體化學位移 δ_p 差不多,因此可以寫成 $\delta_p \approx \delta_d$, δ_p 為 純 (pure) 醇類 O-H 鍵 H 的化學位移。以上結果代入 M. Saunders 的 公式可以得到單雙體自結合平衡常數 $K \circ 基本 \pm \delta_{obs}$ 對濃度作圖這條 曲線在低濃度時是非線性的,且隨著濃度變化,易造成截距的誤差。 若利用不準確的單體位移 δ_m 所求出的雙體位移 δ_d 與自結合平衡常數 K的誤差將會更大。

在1985年J.S.Chen³⁹利用 NMR 研究單雙體自結合,假設系統 是以單體、雙體模是存在,A+A=A₂,A 為單體、A₂為雙體。NMR 觀測到 N-H 的化學位移 δ_{obs} 是由單體的化學位移 δ_m 、雙體的化學位移 δ_d 加權平均所貢獻,可表示成 $\delta_{obs} = f_m \delta_m + f_d \delta_d$, $f_m \sim f_d$ 分別為單體、 雙體莫耳分率。單體、雙體莫耳分率以化學位移形式表示為

$$f_m = \frac{\delta_d - \delta_{obs}}{\delta_d - \delta_m} \qquad \qquad f_d = \frac{\delta_{obs} - \delta_m}{\delta_d - \delta_m} \qquad (1-10)$$

單雙體自結合平衡常數 K 可以由單、雙體莫耳分率表示成

$$K = \frac{[A_2]}{[A]^2} = \frac{f_d}{2[A]_0 f_m^2}$$
(1-11)

[A]。為A的配置濃度, [A]、[A]分別為單體、雙體濃度。由公式 (1-10)
 代入公式 (1-11) 中,取平方根整理成

$$\delta_{\text{obs}} = \delta_{\text{d}} - \left(\frac{\delta_{\text{d}} - \delta_{m}}{2K}\right)^{\frac{1}{2}} \left(\frac{\delta_{\text{obs}} - \delta_{m}}{[A]_{\Omega}}\right)^{\frac{1}{2}} = \delta_{\text{d}} - \left(\frac{\delta_{\text{d}} - \delta_{m}}{2K}\right)^{\frac{1}{2}} X$$
(1-12)

將X定義為 $X = \left(\frac{\delta_{obs} - \delta_m}{[A]_0}\right)^{\frac{1}{2}}$,若猜 δ_m 可以得到X值,依公式 (1-12) 將 δ_{obs} 對X作圖,由斜率及截距便可以求得雙體化學位移 δ_d 、自結合平衡常 數K。

已知 $f_m + f_d = 1$,因此可以代入公式 (1-11) 改寫成

$$f_{\rm d} = \frac{\left[1 + 8K[{\rm A}]_{\rm O}\right]^{\frac{1}{2}} - 1}{\left[1 + 8K[{\rm A}]_{\rm O}\right]^{\frac{1}{2}} + 1} \tag{1-13}$$

由 NMR 觀測到 N-H 的化學位移 δ_{obs} 可以寫成 $\delta_{obs} = \delta_m + f_d(\delta_d - \delta_m)$,若 猜一 K 值,可以得到 f_d 。將 δ_{obs} 對 f_d 作圖,可以由斜率、截距得到單 體、雙體化學位移 δ_m 、 δ_d 。由此方法可以決定出單、雙體化學位移及 自結合平衡常數。

我們比較紅外光譜與核磁共振光譜,從紅外光譜法研究氫鍵的優點在於掃描速度夠快,可以直接由紅外光譜偵測到單體、雙體甚至是 多體的伸縮振動吸收峰,我們可以藉由控制溫度濃度的方式避免多體 形成。而核磁共振法觀測到的化學位移δ_{obs},是由單體、雙體或多體 等化學位移的加權平均值,無法確認是否有多體存在,若產生多體將 與實驗假設為單雙體模式並不符合,無法得到正確的自結合常數K。 以 3-甲基-3-戊醇 (3-methyl-3-pentanol) 這分子為例,雖然利用 NMR 可以求出自結合平衡常數 K值,但從紅外光譜偵測,此化合物明顯 有多體的吸收峰出現,而 NMR 並無法偵測出來。紅外光譜在定量分 析上也有限制,通常吸收度要低於 1.5,才能遵守 Beer's law。而用 NMR 偵測低濃度的化合物時,靈敏度較差,因此通常會在較高濃度 下量測,但濃度越高越容易產生多體,這也使得實驗在定量上容易有 誤差。若實驗能配合 IR 光譜,將能確認在高濃度時是否有多體產生, 使實驗結果更為可靠。

第二章 自紅外光譜資料求得單、雙體自結合平衡常數及應

用公式之推導

2.1 摘要

本實驗利用紅外光譜研究分子的自結合,由於紅外光譜掃描的速 度很快,可以同時偵測到單體、雙體及多體的吸收峰。無立體障礙醇 類或醯胺類在高濃度時,容易聚合成多體,為了簡化系統的複雜性, 控制溶質在適當的濃度下,主要以單、雙體存在。本實驗室以紅外光 譜研究化合物3,5-二甲基-2-乙醯基吡咯(2-Acetyl-3,5-dimethylpyrrole, ADP)及3,5-二甲基-1H-吡咯-2-甲酸乙酯(Ethyl3,5-dimethyl-1Hpyrrole-2-carboxylate, EDPC)分子的自結合,其結構如下圖

溶質 ADP 與 EDPC 在不同溶液下,透過分子間氫鍵產生自結合。ADP 與 EDPC 單體本身吡咯環上的 N-H 基與 C=O 基中間的 C-C 鍵會因

旋轉形成順、反兩式異構物。溶質 ADP 的紅外光譜圖中只觀察到單、 雙體吸收峰,如圖 2.1。

圖 2.1 3,5-二甲基-2-乙醯基吡咯於環已烷系統在 15℃下,濃度
 0.0049 mol L⁻¹時所測得順式單體及雙體紅外光譜,及其適解
 圖。

經由理論計算 PBE1PBE /6-31++G **的結果確認 ADP 單體部分 只有一種順式單體,且確認其雙體為環狀雙體。類似的結構也得知順 式單體是比較穩定的結構⁴⁰。溶質 EDPC 的紅外光譜圖可以觀察到 單體部分有順式、反式兩吸收峰,如圖 2.2。

 圖 2.2 3,5-二甲基-1H-吡咯-2-甲酸乙酯於環己烷系統在 15℃下,濃度為 0.0263 mol L⁻¹時所測得單體順式、反式及雙體紅外光 譜,及其適解圖。

1896

雖然兩化合物的結構極為相似,但紅外光譜圖卻明顯有差異。 ADP 這化合物並無觀測到反式單體吸收峰。可以推斷 ADP 在溶液中 幾乎以順式單體存在,反式單體的居量小,以致於無法觀測到反式單 體吸收峰。

研究 ADP 這化合物,屬於順式單體與環狀雙體自結合的模式。 由適解紅外線光譜所得到單、雙體總吸收度隨溶質濃度改變的資料, 套入本實驗室在 2004 年所發表的方法¹⁶。依照此篇方法推導出式 (2-10) 及 (2-14),可以求出單體總莫耳吸收係數 *ε*_m、雙體總莫耳吸 收係數 *ε*_d 及自結合平衡常數 *K* 值。其中 *K* 值可以由單體及雙體推導 出的兩個公式得到,且公式之間的參數不會互相影響,因此可以相互 印證,檢驗實驗值是否可靠。

溶質 ADP 順式單體具有質子提供者與質子接受者,容易與另一 順式單體自結合形成環狀雙體的模式,而其他類似的結構亦是以環狀 雙體存在⁴¹⁻⁴⁴。ADP 單、雙體平衡表示如下。

研究 EDPC 自結合,是屬於順式單體與雙體自結合,隨伴順、反 式之間互轉的模式。我們試著推導新的公式,以求得構型轉換平衡常 數K₁及自結合平衡常數K₂。由推導的公式發現,並無法直接由斜率、 截距求得熱力學及光譜參數,因此利用 Jacobians 方法檢驗其條件的 相依性,最後證明出條件是相依。退而求其次,藉由理論計算 PBE1PBE/6-31++G**能得到順式、反式吸收係數比 $\frac{\varepsilon_c}{\varepsilon_t}$, ε_c 為順式單 體在吸收帶之總莫耳吸收係數, ε_t 為反式單體在吸收帶之總莫耳吸收 係數。進而代入 $K_1 = \frac{A_t}{A_t} \frac{\varepsilon_c}{\varepsilon_t}$ 中,求得構型轉換平衡常數 K_1 。再代入式 (2-27)、式 (2-30)和式 (2-33),求出順式單體吸收係數 ε_c 、反式單 體吸收係數 ε_t 、單雙體自結合平衡常數 K_2 ,而 ε_d 可以由雙體公式的截 距 $Q_d = 2/\varepsilon_d c^{\Theta}$ 求出, c^{Θ} 為標準狀態濃度 (standard state concentration) 定為1mol/L。

2.2 單、雙體平衡不隨伴構型轉換其應用公式之推導

利用紅外光譜圖偵測溶質 3,5-二甲基-2-乙醯基吡咯,只有單體、 雙體吸收峰,因此能確認系統主要以單、雙體存在。當溶質溶在溶液 中自結合達平衡時,其反應以方程式表示為

$$B + B \underset{\leftarrow}{\rightarrow} B_2 \tag{2-1}$$

 $(\mathbf{0}, \mathbf{1})$

B為單體, B_2 為雙體。單體自結合平衡常數K表示為

$$K = \frac{\alpha_{B_2}}{a_B^2} = \frac{\gamma_{B_2}}{\gamma_B^2} \frac{\frac{[B_2]}{c^{\Theta}}}{(\frac{[B]}{c^{\Theta}})^2} = \frac{c_{B_2}}{c_B^2}$$

$$C_{B_2} = \frac{[B_2]}{c^{\Theta}} \qquad C_B = \frac{[B]}{c^{\Theta}}$$
(2-2)
(2-3)

 $a_{B_2} \cdot a_B \beta N 為 雙體、單體活性, \gamma_{B_2} \cdot \gamma_B \beta N 為 雙體、單體活性係數,$ $[B_2] \cdot [B] \beta N 為 雙體、單體濃度。在稀釋溶液下,接近理想溶液,$ $\gamma_{B_2} \approx \gamma_B \approx 1$,而 c^{Θ} 為標準狀態濃度 (standard state concentration) 定為 $1 \mod/L$,其目的使 $[B_2]/c^{\Theta}$ 和 $[B]/c^{\Theta}$ 單位無因次 (dimensionless) 化。 $c_{B_2} \cdot c_B \beta N$ 為無因次化雙體、單體濃度。經由質量結算 (material balance)

$$[B]_{0} = [B] + 2[B_{2}] \tag{2-4}$$

 $[B]_0 為 B 的配置濃度。將式 (2-4) 左右同除<math>c^{\Theta}$ 將並整理成

$$\frac{[B]_{\rm O}}{c^{\Theta}} = \frac{[B]}{c^{\Theta}} + \frac{2[B_2]}{c^{\Theta}} = c_{\rm O} = c_{\rm B} + 2c_{\rm B_2}$$
(2-5)

$$c_{\rm o} = \frac{[B]_{\rm o}}{c^{\Theta}} \tag{2-6}$$

 c_0 為無因次化 B 的配置濃度。式 (2-2) 改寫成 $c_B = \frac{c_{B_2}}{K c_B}$, 並由和比定 理知

$$\frac{c_B}{1} = \frac{2c_{B_2}}{2Kc_B} = \frac{c_0}{1+2Kc_B}$$
(2-7)
 $\frac{1}{2} \frac{2}{2Kc_B} = \frac{c_0}{1+2Kc_B}$
(2-7)
 $\frac{1}{2} \frac{c_0}{c_B} = 2Kc_B + 1$
(2-8)
 $\frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{Kc_B}$
(2-9)

溶質在稀薄溶液中,遵守比爾定律 (Beer-Lambert's law)。吸收度 A(v) 可表示成

$$A(\tilde{\mathbf{v}}) = \varepsilon(\tilde{\mathbf{v}}) b[B] = \varepsilon(\tilde{\mathbf{v}}) b c_B c^{\Theta}$$
(2-10)

其中 $A(\tilde{v})$ (無單位) 為單一波數下 $\tilde{v}(單位:cm^{-1})$ 之吸收度, $\varepsilon(\tilde{v})$

(單位:L cm⁻¹ mol⁻¹)為單一波數 v之莫耳吸收係數,兩者皆隨 v改變,b (單位:cm)為光徑長度, [B] (單位: mol L⁻¹)為溶質體積莫耳濃度。

分子之單體 N-H 基伸縮振動在吸收帶的總吸收度 A'_m (單位: cm^{-1}) (integrated absorbance)可表示成

$$A'_{m} = \int A_{m}(\tilde{v}) d\tilde{v} = \int \varepsilon_{m}(\tilde{v}) d\tilde{v} b[B] = \varepsilon_{m} b[B] = \varepsilon_{m} b c_{B} c^{\Theta}$$
(2-11)

 $\varepsilon_m = \int \varepsilon_m(\tilde{v}) d\tilde{v} (\tilde{u} d\tilde{u} : L cm^2 mol^{-1}) 為單體在吸收帶總莫耳吸收係$ $數 (integrated molar absorption coefficient), <math>A_m(\tilde{v}) (m \tilde{u} d\tilde{u})$ 為在該波 數 \tilde{v} 下單體之吸收度。但為了計算方便將式 (2-8) 在單位光徑長度 (optical path) 所測得單體吸收帶的總吸收度為 A_m , 所以將之改寫成

$$A_m = \frac{A'_m}{b} = \varepsilon_m [B] = \varepsilon_m c_B c^{\Theta}$$
(2-12)

再把式 (2-12) 代入式 (2-8) 中,整理得到

$$\frac{c_{\rm o}}{A_{\rm m}} = \frac{2K}{\varepsilon_{\rm m}^2 (c^{\Theta})^2} A_{\rm m} + \frac{1}{\varepsilon_{\rm m} c^{\Theta}}$$
(2-13)

定溫下改變 B 的配置濃度[B]₀,由紅外光譜偵測,我們可以得到 單體 N-H 基伸縮振動在此吸收帶的吸收度 A_m 。依式 (2-13) 以 $Y = c_0 / A_m 對 X = A_m 做線性圖,可以得到斜率 <math>P_m = 2K / \varepsilon_m^2 ([B]^{\Theta})^2$ 及 截 距 $Q_m = 1 / \varepsilon_m c^{\Theta}$ 。其 $c^{\Theta} = 1 \mod / L$,由截距可以求得 ε_m ,再代入斜率中 可以得到自結合平衡常數K,為了區別由雙體公式求得的K值,我們 將之寫成K'₄。

同理,分子之雙體 N-H 基伸縮振動在吸收帶的總吸收度 A'_{d} (單 位:cm⁻¹) (integrated absorbance)

$$A'_{d} = \int A_{d}(\tilde{v}) d\tilde{v} = \int \varepsilon_{d}(\tilde{v}) d\tilde{v} b[B_{2}] = \varepsilon_{d} b[B_{2}] = \varepsilon_{d} bc_{B_{2}} c^{\Theta}$$
(2-14)

 $\varepsilon_d = \int \varepsilon_d(\tilde{v}) d\tilde{v}$ (單位: L cm⁻² mol⁻¹)為雙體在吸收帶之總莫耳吸收係數 (integrated molar absorption coefficient), $A_d(\tilde{v})$ (無單位) 為在該波數 \tilde{v} 下雙體之吸收度。但由於為了計算方便將公式 (2-11) 在單位光徑長 度 (optical path) 所測得雙體吸收帶的總吸收度為 A_d ,所以將之改寫 成

$$A_d = \frac{A'_d}{b} = \varepsilon_d [B_2] = \varepsilon_d c_{B_2} c^{\Theta}$$

(2-15)

由式 (2-2) 知 $c_B = \sqrt{\frac{c_{B_2}}{K}}$,並代入公式 (2-9) 中整理得

$$\frac{c_0}{c_{B_2}} = 2 + \frac{1}{\sqrt{K c_{B_2}}}$$
(2-16)

將式 (2-15) 代入式 (2-16) 中整理成

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1}{\sqrt{K \,\varepsilon_{\rm d} c^{\Theta}}} \,A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}} \tag{2-17}$$

定溫下改變 B 的配置濃度 $[B]_0$,由紅外光譜觀測,可以得到雙體在此 吸收帶的總吸收度 A_d ,再代入式 (2-17)。因此以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 做線性圖,可以得到斜率 $P_m = 1/\sqrt{K\epsilon_d c^{\Theta}}$ 及 截距 $Q_m = 2/\epsilon_d c^{\Theta}$ 。其 $[B]^{\Theta} = 1 \mod/L$,所以由截距可以求得 ϵ_d ,再代入斜率中可以得到自結 合平衡常數 K,為了區別由單體公式求得的 K 值,我們將之寫成 K_d 。 由自由能 $\Delta G = - \operatorname{RT} \ln K$ 知,若求得自結合平衡常數,就可以求得 其自由能。單體公式及雙體公式可以求得 $K'_d \cdot K_d$,因此可以得到 $\Delta G'_d$ 、 ΔG_d ,我們取其算術平均當作系統的標準自由能 $\Delta G^{\Theta} = \frac{\Delta G'_d + \Delta G_d}{2}$ 。標 準自由能亦可以整理成 $\Delta G^{\Theta} = - \operatorname{RT} \ln (K'_d K_d)^{1/2} = \Delta H^{\Theta} - T\Delta S^{\Theta}$,由此式可 知,若將單雙體公式 (2-10) 求出的自結合平衡常數 K'_d 及由雙體公式 (2-14) 求出的自結合平衡常數 K_d ,取幾何平均當作觀測值,可以進

一步求得標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。

重複之前的方法,在不同溫度下測量,就可以得到不同溫度下的 自結合平衡常數 K。依 van't Hoff 公式, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$, 以 Y = $\ln K$ 對 X = $\frac{1}{T}$ 作線性圖,得到斜率 $-\frac{\Delta H^{\Theta}}{R}$ 及截距 $\frac{\Delta S^{\Theta}}{R}$ 。透過斜率、截距我 們可以分別求出單雙體自結合的標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。 2.3 單、雙體達平衡隨伴構型轉換平衡之應用公式推導

溶質 EDPC 溶於溶劑中,存在著兩種平衡,分別為當兩個順式單 體自結合成雙體其存在著單、雙體平衡及吡咯環上 N-H 基與 C=O 基 之間的 C-C 鍵旋轉產生的順、反異構物達平衡。以下為順式單體與 反式單體達平衡,其方程式表示為

$$B_{\rm C} \stackrel{\rightarrow}{\leftarrow} B_{\rm t}$$
 (2-18)

 $B_{\rm c}$ 、 $B_{\rm t}$ 分別表示順式單體、反式單體。其構型轉換平衡常數 $K_{\rm t}$ 可表

 α_{Bt} 、 α_{Bc} 分別為反式單體、順式單體活性, γ_{Bt} 、 γ_{Bc} 分別為反式單體、 順式單體活性係數, $[B_t]$ 、 $[B_c]$ 分別為反式單體、順式單體濃度。在 稀釋溶液下,接近理想溶液, $\gamma_{Bt} \approx \gamma_{Bc} \approx 1$,而 c^{Θ} 為標準狀態濃度 (standard state concentration) 定為 $1 \mod/L$,其目的使 $[B_t]/c^{\Theta}$ 和 $[B_c]/c^{\Theta}$ 單位無因次化。 c_{Bt} 、 c_{Bc} 分別為無因次化反式單體、順式單體 濃度。兩順式單體自結合成雙體,單、雙體達平衡表示為

$$2B_{\rm C} \stackrel{\rightarrow}{\leftarrow} B_2 \tag{2-21}$$

B_c、B₂分別表示順式單體、環狀雙體。其單體自結合平衡常數K₂表示為

$$K_{2} = \frac{\alpha_{B_{2}}}{a_{B_{c}}^{2}} = \frac{\gamma_{B_{2}}}{\gamma_{B_{c}}^{2}} \frac{\frac{[B_{2}]}{c^{\Theta}}}{(\frac{[B_{C}]}{c^{\Theta}})^{2}} = \frac{c_{B_{2}}}{c_{B_{c}}^{2}}$$

$$c_{B_{2}} = \frac{[B_{2}]}{c^{\Theta}} \qquad c_{B_{c}} = \frac{[B_{C}]}{c^{\Theta}}$$
(2-22)
(2-22)
(2-23)

 $a_{B_2} \times a_{B_c}$ 分別為雙體、順式單體活性, $\gamma_{B_2} \times \gamma_B$ 分別為雙體、順式單 體活性係數, $[B_2] \times [B_c]$ 分別為雙體、順式單體濃度。在稀釋溶液下, 接近理想溶液, $\gamma_{B_2} \approx \gamma_{B_c} \approx 1$, 而 $[B]^{\Theta}$ 為標準狀態濃度 (standard state concentration) 定為 $1 \mod L$, 其目的使 $[B_2]/c^{\Theta}$ 和 $[B_c]/c^{\Theta}$ 單位無因次 化。 $c_{B_2} \times c_{B_c}$ 分別為無因次化雙體、順式單體濃度。另一方面由質量 結算 (material balance)

$$[B]_{O} = [B_{C}] + [B_{t}] + 2[B_{2}]$$
(2-24)

(2, 24)

式中[B]。為溶質的配置濃度。將式(2-24)左右同除式[B]⁶ 並整理成

$$\frac{[B]_{\rm O}}{c^{\Theta}} = \frac{[B_{\rm C}] + [B_{\rm t}] + 2[B_{\rm 2}]}{c^{\Theta}} = c_{\rm O} = c_{B_{\rm C}} + c_{B_{\rm t}} + 2c_{B_{\rm 2}}$$
(2-25)

 c_0 為無因次化溶質的配置濃度。將式 (2-19) 及式 (2-22) 改寫為

$$\frac{1}{c_{B_c}} = \frac{K_1}{c_{B_t}} = \frac{2K_2 c_{B_c}}{2c_{B_2}}$$
(2-26)

由和比定理及式 (2-25),將式 (2-26)寫成

$$\frac{1}{c_{B_c}} = \frac{1 + K_1 + 2K_2c_{B_c}}{c_{B_c} + c_{B_t} + 2c_{B_2}} = \frac{1 + K_1 + 2K_2c_{B_c}}{c_0}$$
(2-27)

把式 (2-27) 第一項及第三項移項得

$$\frac{c_{0}}{c_{B_{c}}} = 1 + K_{1} + 2K_{2}c_{B_{c}}$$
將式 (2-19) 代入式 (2-28) 中
$$\frac{c_{0}}{c_{B_{t}}} = \frac{1 + K_{1} + 2K_{2}c_{B_{c}}}{K_{1}}$$
(2-29)

把式 (2-28) 左右兩式同除 c_{Bc} 並將式 (2-22) 代入整理成

$$\frac{c_0}{c_{B_2}} = \frac{1+K_1}{c_{B_c}K_2} + 2 = \frac{1+K_1}{K_2^{1/2}c_{B_2}^{1/2}} + 2$$
(2-30)

由比爾定理 (Beer-Lambert's law) 知

$$A_{C}' = \int A_{C}(\tilde{v})d(\tilde{v}) = \int \varepsilon_{C}(\tilde{v}) \, d\tilde{v} \, b[B_{C}] = \varepsilon_{C} b[B_{C}] = \varepsilon_{C} bc_{B_{C}} c^{\Theta}$$
(2-31)

$$\varepsilon_{c} = \int \varepsilon_{c}(\tilde{v}) d\tilde{v}$$
 (單位: L cm⁻² mol⁻¹) 為順式單體在吸收帶之總莫耳

吸收係數 (integrated molar absorption coefficient), $A_c(\tilde{v})$ (無單位)為 在該波數 \tilde{v} 下順式單體之吸收度,分子之順式單體 N-H 基伸縮振動 在吸收帶的總吸收度 A'_c (單位:cm⁻¹) (integrated absorbance)。

為了計算方便將式 (2-31) 在單位光徑長度 (optical path) 所測 得順式單體吸收帶的總吸收度為 A_c,將之改寫成

$$A_{\rm C} = \frac{A_{\rm C}'}{b} = \varepsilon_{\rm C} [B_{\rm C}] = \varepsilon_{\rm C} c_{B_{\rm C}} c^{\Theta}$$
(2-32)

將式 (2-32) 代入式 (2-28) 中,得到順式單體公式

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2(c^{\Theta})^2} A_c + \frac{1+K_1}{\varepsilon_{\rm c}c^{\Theta}}$$
(2-33)

同理,由比爾定律,反式單體 N-H 基伸縮振動吸收度可寫成

$$A'_{t} = \int A_{t}(\tilde{v})d(\tilde{v}) = \int \varepsilon_{t}(\tilde{v}) \, d\tilde{v} \, b[B_{t}] = \varepsilon_{t} b[B_{t}] = \varepsilon_{t} b \, c_{Bt} c^{\Theta}$$
(2-34)

 $\varepsilon_t = \int \varepsilon_t(\tilde{v}) d\tilde{v}$ (單位: L cm⁻² mol⁻¹) 為反式單體在吸收帶之總莫耳吸收 係數 (integrated molar absorption coefficient), $A_t(\tilde{v})$ (無單位)為在該波 數 \tilde{v} 下反式單體之吸收度。分子之反式單體 N-H 基伸縮振動在吸收 帶的總吸收度 A_t (單位:cm⁻¹) (integrated absorbance)。

但為了計算方便我們將式 (2-34) 在單位光徑長度 (optical path) 所測得反式單體吸收帶的吸收度為A, 所以將之改寫成

$$A_{t} = \frac{A_{t}'}{b} = \varepsilon_{t}[B_{t}] = \varepsilon_{t}c_{Bt}c^{\Theta}$$
(2-35)

將式 (2-35) 及式 (2-32) 代入式 (2-29) 中,得到反式單體公式

$$\frac{c_{\rm o}}{A_{\rm t}} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}}$$
(2-36)

同理,由比爾定律,分子雙體 N-H 基伸縮振動吸收度可寫成

$$A'_{d} = \int A_{d}(\tilde{v})d(\tilde{v}) = \int \varepsilon_{d}(\tilde{v}) \, d\tilde{v} \, b[B_{2}] = \varepsilon_{d}b[B_{2}] = \varepsilon_{d}bc_{B_{2}}c^{\Theta}$$
(2-37)

 $\varepsilon_d = \int \varepsilon_d(\tilde{v}) d\tilde{v}$ (單位:L cm⁻² mol⁻¹) 環狀雙體在吸收帶之總莫耳吸收係 數 (integrated molar absorption coefficient), $A_d(\tilde{v})$ (無單位)為在該波數 \tilde{v} 下雙體之吸收度,分子之環狀雙體 N-H 基伸縮振動在吸收帶的總 吸收度 A'_d (單位:cm⁻¹) (integrated absorbance)。

但由於為了計算方便我們將式 (2-37) 在單位光徑長度 (optical path) 所測得雙體吸收帶的吸收度為 A_a,所以將之改寫成

$$A_{\rm d} = \frac{A'_{\rm d}}{b} = \varepsilon_{\rm d} \left[B_2 \right] = \varepsilon_{\rm d} c_{B_2} c^{\Theta}$$
(2-38)

將式 (2-38) 代入式 (2-30) 中, 整理得到雙體公式

$$\frac{c_{\rm o}}{A_d} = \frac{1+K_1}{K_2^{1/2}\varepsilon_d^{1/2}(c^{\Theta})^{1/2}} A_d^{-1/2} + \frac{2}{\varepsilon_d c^{\Theta}}$$
(2-39)

將推導出的式 (2-33)、式 (2-36)、式 (2-39) 統整如下:

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2(c^{\Theta})^2} A_c + \frac{1+K_1}{\varepsilon_{\rm c}c^{\Theta}}$$
(2-33)

$$\frac{c_{\rm O}}{A_{\rm t}} = \frac{2K_2}{K_1\varepsilon_{\rm C}\varepsilon_{\rm t}(c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1\varepsilon_{\rm t}c^{\Theta}}$$
(2-36)

$$\frac{c_0}{A_d} = \frac{1+K_1}{K_2^{1/2}\varepsilon_d^{1/2}(c^{\Theta})^{1/2}} A_d^{-1/2} + \frac{2}{\varepsilon_d c^{\Theta}}$$
(2-39)

目的是利用這幾個方程式的斜率、截距,求得 $K_1 \times K_2 \times \varepsilon_c \times \varepsilon_t \mathcal{Q} \varepsilon_d$ 。 我們利用軟體適解可以得到 $A_c \times A_t \wedge A_d$,分別是順式單體、反式單體 及環狀雙體在吸收帶的吸收度。由順式單體公式 (2-33) 知,當 $Y = c_0 / A_c 對 X = A_c 作線性圖時,可以得到斜率 P_c = 2K_2 / \varepsilon_c^2 (c^{\circ})^2, 截距$ $Q_c = (1+K_1) / \varepsilon_c c^{\circ}$ 。但與單雙體平衡不隨伴構型轉換的模式中式(2-13) 不同的是,藉助斜率 P_c 及截距 Q_c 無法直接得到 $K_1 \times K_2 \times \varepsilon_c$,因只有 兩個條件三個未知變數。

同理,由反式單體公式 (2-36) 知,當Y= c_0/A_t 對X= A_c 作線性 圖,可以得到斜率 $P_t=2K_2/K_1\varepsilon_c\varepsilon_t(c^{\Theta})^2$,截距 $Q_t=(1+K_1)/K_1\varepsilon_tc^{\Theta}$ 。但無 法藉助斜率 P_t 及截距 Q_t 直接得到 $K_1 \times K_2 \times \varepsilon_c \, \mathcal{Q} \varepsilon_t$,因只有兩個條件四 個未知變數。由雙體公式 (2-39) 知,當Y= c_0/A_d 對X= $A_d^{-1/2}$ 作線性圖, 可以得到斜率 $P_d=(1+K_1)/K_2^{1/2}\varepsilon_d^{1/2}(c^{\Theta})^{1/2}$,截距 $Q_d=2/\varepsilon_dc^{\Theta}$,且知 ε_d 是獨 立的光譜參數,並由截距求得 ε_d 。但無法由斜率 P_d 直接得到 $K_1 \times K_2$, 因只有一個條件兩個未知變數。總觀式 (2-33) 、 (2-36) 、 (2-39) 由 三個方程式有六個條件理論上是可以解出熱力學參數K₁、K₂及光譜 參數 ε_c 、 ε_t 及 ε_d ,但這六個條件中只有 ε_d 是可以直接由 Q_d 求得,其餘 的五個條件並無法直接求得 K_1 、 K_2 、 ε_c 及 ε_t ,因此猜想這些條件是 否相依。

由雙體公式 (2-38) 截距 Q_d 可以直接得到 ε_d ,但自斜率 P_d 無法求 出 K_1 、 K_2 ,雙體公式斜率 P_d 又可以由 Q_c 、 Q_d 及 P_c 將它給取代掉 ($P_d = Q_c Q_d^{1/2} / P_c^{1/2}$),所以只需檢視 Q_c 、 Q_t 、 P_c 及 P_t ,看這幾個條件是 否相依,因此參考了Jacobian⁴⁵ 的方法處理相依、獨立的問題。

先將已有的條件 $Q_c \cdot Q_i \cdot P_c 及 P_i$ 對變數 $\varepsilon_c \cdot \varepsilon_i \cdot K_1 \ \mathcal{D} K_2$ 取 Jacobian, 若 Jacobian 得到的結果是不為 0 的解,則表示函數是獨立的 (functional independent)。但若行列式得到的結果是 0 ,則表示函數 是相依的 (functional dependent)。由式 (2-33) 及式 (2-36) 斜率截距 如下

$$P_{\rm C} = \frac{2K_2}{\varepsilon_{\rm C}^2 (c^{\Theta})^2} \qquad Q_{\rm C} = \frac{1+K_1}{\varepsilon_{\rm C} c^{\Theta}}$$

$$P_{\rm t} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} \quad Q_{\rm t} = \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}} \qquad (2-40)$$

將函數 $Q_{c} \cdot Q_{t} \cdot P_{c} \mathcal{D} P_{t}$ 對變數 $\varepsilon_{c} \cdot \varepsilon_{t} \cdot K_{1} \mathcal{D} K_{2}$ 的 Jacobian 為
$$\mathbf{J} = \begin{vmatrix} \frac{\partial P_{\mathrm{C}}}{\partial \varepsilon_{\mathrm{C}}} & \frac{\partial Q_{\mathrm{C}}}{\partial \varepsilon_{\mathrm{C}}} & \frac{\partial P_{\mathrm{t}}}{\partial \varepsilon_{\mathrm{C}}} & \frac{\partial Q_{\mathrm{t}}}{\partial \varepsilon_{\mathrm{C}}} \\ \frac{\partial P_{\mathrm{C}}}{\partial \varepsilon_{\mathrm{t}}} & \frac{\partial Q_{\mathrm{C}}}{\partial \varepsilon_{\mathrm{t}}} & \frac{\partial P_{\mathrm{t}}}{\partial \varepsilon_{\mathrm{t}}} & \frac{\partial Q_{\mathrm{t}}}{\partial \varepsilon_{\mathrm{t}}} \\ \frac{\partial P_{\mathrm{C}}}{\partial K_{\mathrm{1}}} & \frac{\partial Q_{\mathrm{C}}}{\partial K_{\mathrm{1}}} & \frac{\partial P_{\mathrm{t}}}{\partial K_{\mathrm{1}}} & \frac{\partial Q_{\mathrm{t}}}{\partial K_{\mathrm{1}}} \\ \frac{\partial P_{\mathrm{C}}}{\partial K_{\mathrm{2}}} & \frac{\partial Q_{\mathrm{C}}}{\partial K_{\mathrm{2}}} & \frac{\partial P_{\mathrm{t}}}{\partial K_{\mathrm{2}}} & \frac{\partial Q_{\mathrm{t}}}{\partial K_{\mathrm{2}}} \end{vmatrix}$$

(2-41)

$$J = \frac{2}{\varepsilon_{c}^{2}(c^{0})^{2}} \times \frac{1}{\varepsilon_{c}c^{0}} \times \frac{2}{\varepsilon_{t}\varepsilon_{c}K_{1}(c^{0})^{2}} \times \frac{1}{K_{1}\varepsilon_{t}c^{0}} \times M$$

$$M = \begin{vmatrix} -\frac{2K_{2}}{\varepsilon_{c}} & -\frac{-(1+K_{1})}{\varepsilon_{c}} & -\frac{K_{2}}{\varepsilon_{c}} & 0 \\ 0 & 0 & -\frac{K_{2}}{\varepsilon_{t}} & -\frac{-(1+K_{1})}{\varepsilon_{t}} \\ 0 & 1 & -\frac{K_{2}}{K_{1}} & -\frac{H_{1}}{K_{1}} \\ 1 & 0 & 1 & 0 \end{vmatrix}$$

$$(2-42)$$

$$\overline{P}_{R}R \stackrel{*}{\underset{c}{\mathcal{X}}} (2-42) = \underline{\pi} \stackrel{*}{\underset{c}{\mathcal{B}}} \stackrel{*}{\underset{c}{\mathcal{B}}} \stackrel{*}{\underset{c}{\mathcal{B}}} \frac{2}{\varepsilon_{c}^{2}(c^{0})^{2}} \times \frac{1}{\varepsilon_{c}c^{0}} \times \frac{2}{\varepsilon_{c}^{2}\varepsilon_{c}K_{1}(c^{0})^{2}} \times \frac{1}{K_{1}\varepsilon_{c}c^{0}} \times \frac{-1}{\varepsilon_{c}} \times \frac{-1}{\varepsilon_{t}} \times N$$

$$N = \begin{vmatrix} 2K_{2} & (1+K_{1}) & K_{2} & 0 \\ 0 & 0 & K_{2} & (1+K_{1}) \\ 0 & 1 & -\frac{K_{2}}{K_{1}} & -\frac{1}{K_{1}} \\ 1 & 0 & 1 & 0 \end{vmatrix}$$

$$(2-43)$$

我們再將行列式 N 降解,以簡化行列式並求其解

$$J = \frac{2}{\varepsilon_{c}^{2}(c^{\Theta})^{2}} \times \frac{1}{\varepsilon_{c}c^{\Theta}} \times \frac{2}{\varepsilon_{t}\varepsilon_{c}K_{1}(c^{\Theta})^{2}} \times \frac{1}{K_{1}\varepsilon_{t}c^{\Theta}} \times \frac{-1}{\varepsilon_{c}} \times \frac{-1}{\varepsilon_{t}} \times S$$

$$S = 2K_{2} \begin{vmatrix} 0 & K_{2} & (1+K_{1}) \\ 1 & \frac{-K_{2}}{K_{1}} & \frac{-1}{K_{1}} \\ 0 & 1 & 0 \end{vmatrix} - (1+K_{1}) \begin{vmatrix} 0 & K_{2} & (1+K_{1}) \\ 0 & \frac{-K_{2}}{K_{1}} & \frac{-1}{K_{1}} \\ 1 & 1 & 0 \end{vmatrix}$$

$$+ K_{2} \begin{vmatrix} 0 & 0 & (1+K_{1}) \\ 0 & 1 & \frac{-1}{K_{1}} \\ 1 & 0 & 0 \end{vmatrix}$$

$$= 2K_{2}(1+K_{1}) - K_{2}(1+K_{1}) - K_{2}(1+K_{1}) = 0 \qquad (2-44)$$

觀察式 (2-44) 的結果知道,此行列是為 0,所以我們得到函數 是相依的 (functional dependent)。由已知的條件 $Q_c \times Q_t \times P_c \mathcal{B} P_t$ 並 無法求得 $K_1 \times K_2 \times \varepsilon_c \mathcal{B} \varepsilon_t$,因此本研究想利用實驗數據配合理論計算 的方式,設法得到構型轉換平衡常數 K_1 ,目的是希望能夠利用其解出 的 K_1 求得其它的變數。式 (2-19) 知 $K_1 = c_{Bt}/c_{Bc}$,由比爾定律 Beer-Lambert's law

$$A = \varepsilon b[B] = \varepsilon bc_B[B]^{\Theta}$$
(2-45)

將式 (2-45) 代入式 (2-19) 中得到

$$K_1 = \frac{A_t}{A_C} \frac{\varepsilon_C}{\varepsilon_t}$$
(2-46)

由紅外光譜適解的資料,可以得到順式單體及反式單體吸收度A_c、 A_c。且藉由台大蘇志明教授的幫忙,能利用理論計算的方式求出順式 與反式的總莫耳吸收係數比 $\varepsilon_c / \varepsilon_t$ 。這樣一來能求出構型轉換平衡常數 K_1 ,並將得到的 K_1 代入式 (2-33)、式 (2-36)、式 (2-39)中以求得順式單體吸收係數 ε_c 、反式單體吸收係數 ε_t 、單雙體自結合平衡常數 K_2 。

第三章 3,5-二甲基-2-乙醯基吡咯和 3,5-二甲基-1H-吡咯-2-

甲酸乙酯在不同溶液中的氫鍵自結合現象的探討 3.1 摘要

3,5-二甲基-2-乙醯基吡咯 (2-Acetyl-3,5-dimethylpyrrole, ADP) 及 3,5-二甲基-1H-吡咯-2-甲酸乙酯 (Ethyl3,5-dimethyl-1H-pyrrole-2carboxylate, EDPC) 兩個吡咯衍生物,其結構類似,如下所示

但紅外光譜都顯現前者只有單一種單體,而後者順、反兩式單體共存。 且由理論計算 PBE1PBE/6-31++G**的結果證實 ADP 的構型為順式單 體。而我們研究此類化合物的自結合,並改變溶劑種類及溫度,目的 是希望探討溶劑效應和溫度效應對溶質自結合的影響。

由 ADP 與 EDPC 理論計算 PBE1PBE/6-31++G**的結果知,兩者 的雙體皆是由兩順式單體自結合成環狀雙體。ADP 與 EDPC 其順式 單體自結合成雙體平衡表示如下

順式單體

ADP R=CH₃ EDPC $R = OC_2H_5$

溶質 N-H 基與另一溶質 C=O 基形成氫鍵,因此其環狀雙體具有兩個 氫鍵。而由理論計算 PBE1PBE/6-31++G**的結果,環狀結構其本身 的偶極距很小,可以推測其受溶劑介電係數的影響亦較小。溶質 ADP 與 EDPC 因吡咯環上的 N-H 基與 C=O 基之間的 C-C 鍵會內轉,造 成順式、反式兩種構型。但從理論計算及紅外光譜偵測的結果,ADP 只具有順式單體。另一溶質 EDPC 從紅外光譜偵測卻明顯具有順式、 反式單體 N-H 基的吸收峰。因此雖然兩結構相似,但官能基 R 的不 同也可能影響溶質的構型轉換。EDPC 的系統不僅具有單體自結合也 隨伴順、反式單體平衡。EDPC 順、反式單體平衡可表示成:

反式單體

順式單體

為集中 ADP 和 EDPC 的自結合研究時,要考慮到溶劑的選擇,以非 極性或低極性不會與溶質產生特殊作用力的溶劑為主。且溶劑在此化 合物的 N-H 基吸收範圍,不能有其他吸收峰的干擾,否則會影響樣 品掃描的結果,使背景訊號無法扣除乾淨,光譜會造成干擾。

- 3.2 實驗:
- 3.2.1 儀器設備:
- 使用紅外線光譜儀型號為 Digilab Excalibur HE Series FTS3100, 解析度可至2 cm⁻¹,外接 Thermo NESLAB RTE17 恆溫控制水槽 以控制樣品槽溫度,溫度誤差為±1°C。
- 2. Omega Model HH22 (Type J-K thermocouple) 電子溫度計。
- Buck Scientific CaF₂ 樣品槽(cell, 光徑分別為 0.5mm)。此 CaF₂ 樣品槽的優點為不受潮解。
- Mettler Toledo AB104 及 Ohaus Explorer E10640 電子天平, 精密度 可至小數點第四位。

- 5. Hamilton 微量注射針筒(1mL, 0.5mL 及 0.25mL)。
- 6. Mitsuba 1mL 針筒及 Maru-Kyu 注射針頭。
- 7. Nichiden-Rika Glass 10ml 及 50ml 玻璃瓶。
- 8. Kimble Glass 4ml Vial (小玻璃瓶) 含中空塑膠瓶蓋。
- 9. Chem Glass white septum stopper (血清栓) 。

3.2.2 實驗藥品

1.3,5-二甲基-2-乙醯基吡咯: MAYBRIDGE 藥廠,純度 97%。

- 2. 正辛烷(n-octane): Tedia 藥廠,純度 98%。
- 3. 正庚烷(n-heptane): ECHO 藥廠, HPLC級, 純度 99.8%。
- 4. 四氯乙烯(tetrachloroethylene): Tedia 藥廠, HPLC/Spectro 級, 純度 99.98%。
- 5. 三氯乙烯(trichloroethylene): J. T. Baker 藥廠, 純度 99.99%。
- 6. 環己烷(cyclohexane): Tedia 藥廠,純度 99.95%。
- 7. 甲基環己烷(methylcyclohexane): Tedia 藥廠,純度 99.96%。

3.2.3 實驗步驟:

1. IR 溶液配置

- (1)用電子天平先秤空的10mL 樣品瓶及血清栓重,並扣除空瓶及血清 栓重量後,再秤所需之溶質置於相同的樣品瓶內。
- (2)以1 mL 之微量注射針筒分次吸取適量的溶劑注入樣品瓶中作為母液,再秤溶劑重量,並利用血清栓將樣品瓶封住。
- (3)以 molality (m)為單位先計算欲配置的溶液濃度。根據欲配置的濃度,以 0.25 mL 微量注射針筒吸取適量的母液注射於 4 mL 的小玻璃瓶中(已先扣除空瓶及血清栓重)後秤重,吸取適量的溶劑置於相同的小玻璃瓶中後秤溶劑重量,以配置較稀的溶液。所配置的藥品濃度皆以 molality (m)為單位,非 molarity (M)。因 molality 不隨溫度改變,且較容易求得。
- (4) 查出所欲測量不同溫度下的溶劑密度,將 molality (m)轉換為 molarity (M),當作溶質的配置濃度。

2. IR 實驗操作:

(1) 先將控溫槽調整至固定的溫度,需注意循環水中的水位是否足夠。 樣品槽的真實溫度以外接電子溫度計讀出為準,因控溫槽與樣品 槽連接的部分會有熱損失。須等到樣品槽的溫度達到熱平衡時才 可開始實驗。

- (2) 溫度平衡後,先測只有純溶劑的吸收作為背景(background),再 測量扣除背景後樣品的吸收光譜,掃描次數128次。背景與樣品 的掃描次數需設定在相同的次數,以避免背景的訊號沒有完全扣 除乾淨。樣品槽光徑範圍為 0.5mm。樣品槽為封閉式系統,實驗 過程中以環已烷清洗,再用氮氣吹乾。
- (3)將實驗所測得的光譜以.SPC的檔名儲存,再由 Galactic 公司的軟 體 GRAMS32 AI,利用高斯—勞倫茲(Gauss-Lorentz)混合適解分佈 曲線公式將 NH 基不同吸收位置但重疊的吸收峰分離出來並分別 求出最大吸收位置、總吸收度及半高寬。

3.3 IR 實驗部份:單、雙體平衡不隨伴構型轉換

3.3.1 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶液

3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶液,此系統分別在 15℃、 25℃、35℃及 45℃等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M)是根據正辛烷在不同溫度下的密度為參考數據⁴⁶ (15℃:0.70673,25℃:0.69912,35℃:0.69139,45℃:0.68354 g mL⁻¹)。 定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基,因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 p。圖 3.1 為 15 ℃ 時, 無因次化 B 的配置濃度分別為 0.0215、0.0178、0.0140、0.0103 及 0.0065 時溶質的 NH 基 IR 吸收光譜。

圖 3.2 為 15 ℃時, 無因次化 B 的配置濃度為 0.0234 時。將 NH 基的順式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,並利用高斯—勞倫茲(Gauss-Lorentz) 混合適解分 佈曲線公式所分離之圖形。其中由較高吸收頻率至較低吸收頻率分別 為單體 N-H 基吸收峰及雙體 N-H 基吸收峰。

表 3.1 為在四種不同溫度下,測量十組濃度後所得之單體及雙體 的最大吸收位置、半高寬以及總吸收度。

圖 3.1 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,15℃時所測得
 N-H基的 IR 光譜圖。無因次化 B 的配置濃度由上到下分別
 為:0.0215、 0.0178、0.0140、 0.0103、0.0065。

圖 3.2 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,在15℃時無因 次化 B 的配置濃度為 0.0234 時所做的 N-H 基適解譜線。

表 3.1 在不同溫度下,3,5-二甲基-2-乙醯基吡咯在正辛烷溶劑中, 改變不同起始濃度時,單體及雙體最大吸收位置、半高寬及 單體、雙體總吸收度。

T=15°C	單體吸收峰			雙體吸收峰		
C _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0065	3449.5	9.0	14.5	3284.1	39.3	166.3
0.0084	3448.5	9.4	16.9	3283.8	39.9	224.4
0.0103	3448.8	9.2	18.9	3283.8	39.7	284.0
0.0121	3449.3	9.3	20.8	3284.0	39.3	341.2
0.0140	3448.8	9.2	22.5	3283.7	39.2	402.4
0.0159	3449.4	9.2	24.2	3283.9	39.3	464.1
0.0178	3449.0	9.2	25.8	3283.7	39.2	526.3
0.0196	3449.0	9.5	27.2	3283.9	39.4	585.7
0.0215	3448.6	9.5	28.6	3283.9	39.4	648.7
0.0234	3448.6	9.4	29.9	3283.6	39.3	712.0
					5	
T=25°C		單體吸收	峰		雙體吸收	峰
C _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	-1				
	(0111)	(cm^{2})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0065	3449.8	9.1	(cm^{-1}) 17.7	(cm ⁻¹) 3285.5	(cm ⁻¹) 41.0	(cm^{-1}) 147.7
0.0065 0.0087	3449.8 3449.3	9.1 9.0	(cm ⁻¹) 17.7 21.6	(cm ⁻¹) 3285.5 3284.9	(cm ⁻¹) 41.0 40.0	(cm ⁻¹) 147.7 201.1
0.0065 0.0087 0.0107	3449.8 3449.3 3449.0	9.1 9.0 9.1	(cm ⁻¹) 17.7 21.6 24.4	(cm ⁻¹) 3285.5 3284.9 3284.8	(cm ⁻¹) 41.0 40.0 40.4	(cm ⁻¹) 147.7 201.1 268.4
0.0065 0.0087 0.0107 0.0126	3449.8 3449.3 3449.0 3448.7	9.1 9.0 9.1 9.1	(cm ⁻¹) 17.7 21.6 24.4 26.5	(cm ⁻¹) 3285.5 3284.9 3284.8 3284.6	(cm ⁻¹) 41.0 40.0 40.4 40.2	(cm ⁻¹) 147.7 201.1 268.4 324.1
0.0065 0.0087 0.0107 0.0126 0.0144	3449.8 3449.3 3449.0 3448.7 3449.6	9.1 9.0 9.1 9.1 9.1 9.2	(cm ⁻¹) 17.7 21.6 24.4 26.5 28.5	(cm ⁻¹) 3285.5 3284.9 3284.8 3284.6 3285.1	(cm ⁻¹) 41.0 40.0 40.4 40.2 40.2	(cm ⁻¹) 147.7 201.1 268.4 324.1 374.9
0.0065 0.0087 0.0107 0.0126 0.0144 0.0163	3449.8 3449.3 3449.0 3448.7 3449.6 3448.5	9.1 9.0 9.1 9.1 9.1 9.2 9.3	(cm ⁻¹) 17.7 21.6 24.4 26.5 28.5 31.6	(cm ⁻¹) 3285.5 3284.9 3284.8 3284.6 3285.1 3284.8	(cm ⁻¹) 41.0 40.0 40.4 40.2 40.2 40.2 40.9	(cm ⁻¹) 147.7 201.1 268.4 324.1 374.9 446.1
0.0065 0.0087 0.0107 0.0126 0.0144 0.0163 0.0183	3449.8 3449.3 3449.0 3448.7 3449.6 3448.5 3448.9	9.1 9.0 9.1 9.1 9.2 9.3 9.2	(cm ⁻¹) 17.7 21.6 24.4 26.5 28.5 31.6 33.1	(cm ⁻¹) 3285.5 3284.9 3284.8 3284.6 3285.1 3284.8 3284.8	(cm ⁻¹) 41.0 40.0 40.4 40.2 40.2 40.9 40.3	(cm ⁻¹) 147.7 201.1 268.4 324.1 374.9 446.1 501.3
0.0065 0.0087 0.0107 0.0126 0.0144 0.0163 0.0183 0.0203	3449.8 3449.3 3449.0 3448.7 3449.6 3448.5 3448.9 3449.0	9.1 9.0 9.1 9.1 9.2 9.3 9.2 9.3	(cm ⁻¹) 17.7 21.6 24.4 26.5 28.5 31.6 33.1 34.9	(cm ⁻¹) 3285.5 3284.9 3284.8 3284.6 3285.1 3284.8 3284.8 3284.8	(cm ⁻¹) 41.0 40.0 40.4 40.2 40.2 40.9 40.3 40.2	(cm ⁻¹) 147.7 201.1 268.4 324.1 374.9 446.1 501.3 559.7
0.0065 0.0087 0.0107 0.0126 0.0144 0.0163 0.0183 0.0203 0.0223	3449.8 3449.3 3449.0 3448.7 3449.6 3448.5 3448.5 3448.9 3449.0 3449.0	9.1 9.0 9.1 9.1 9.2 9.3 9.2 9.3 9.3	(cm ⁻¹) 17.7 21.6 24.4 26.5 28.5 31.6 33.1 34.9 36.9	(cm ⁻¹) 3285.5 3284.9 3284.8 3284.6 3285.1 3284.8 3284.8 3284.8 3284.8 3285.3	(cm ⁻¹) 41.0 40.0 40.4 40.2 40.2 40.9 40.3 40.2 40.1	(cm ⁻¹) 147.7 201.1 268.4 324.1 374.9 446.1 501.3 559.7 619.7

接續表 3.1

T=35°C	-	單體吸收	峰	1	雙體吸收	峰
C _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0058	3449.6	9.1	19.7	3286.2	41.8	108.8
0.0075	3448.8	9.2	23.3	3285.9	41.8	152.1
0.0090	3449.3	9.0	26.1	3286.6	42.6	191.8
0.0107	3449.1	9.3	29.2	3286.2	41.8	238.1
0.0122	3449.6	9.3	31.6	3286.4	41.9	279.8
0.0139	3449.5	9.2	34.2	3286.3	41.5	328.1
0.0155	3449.5	9.1	36.6	3286.6	41.9	374.2
0.0171	3450.2	9.1	38.8	3287.2	42.1	420.9
0.0188	3449.0	9.3	41.1 C	3286.2	41.4	471.3
0.0207	3449.5	9.3	43.5	3286.5	41.5	527.6
	E			8	E	

T=45°C	單	體吸收峰	¥ 1.2	96	雙體吸收	峰
C _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.0066	3449.4	9.2	25.3	3287.6	42.3	106.6
0.0082	3449.9	9.2	29.4	3287.7	42.5	143.4
0.0098	3449.8	9.5	33.1	3287.6	43.9	181.9
0.0110	3449.5	9.3	35.7	3287.6	43.5	211.7
0.0127	3449.5	9.4	39.3	3287.3	42.9	255.1
0.0143	3449.5	9.2	42.4	3287.8	43.4	296.8
0.0161	3449.2	9.2	45.7	3287.2	42.2	344.8
0.0174	3449.6	9.3	48.0	3287.4	42.5	380.0
0.0193	3449.6	9.3	51.2	3287.2	42.1	432.1
0.0204	3449.5	9.2	53.0	3287.2	42.2	462.6

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在凝狀態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時須 考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 47,48 可知,利 用紅外光譜偵測到特定官能基伸縮振動頻率位置與溶劑介電常數的關 係為 $v^{obs} = v^{o} - C \frac{(D-1)}{(2D+1)}$ 。其中 v^{obs} 為觀測到特定官能基最大吸收峰位置, v_{o} 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為 溶劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到正辛烷的介電常數參考數據 以及系統於四種溫度下的介電常數值(15℃:1.9545,25℃:1.9415, 35℃:1.9285,45℃:1.9155)。將在溶液下觀察到單體的 N-H 基最大 伸縮振動頻率 v_{MH}^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y = -131.25X + 3474.5,結 果如圖 3.3 所示。其中截距為 3474.5 cm⁻¹ 代表外插到 D = 1 的狀態,即 溶質於真空狀態下 N-H 基的伸縮振動頻率 v_{MH}^{0} 。

由表 3.1 知定溫下單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的單體最大吸收頻率位置做 平均。且將四個溫度下的 (D-1) (2D+1) 值整理如下

正辛烷	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.1944	0.1928	0.1912	0.1895
$v_{_{NH}}^{obs}$ / cm ⁻¹	3448.9 ± 0.1	3449.1 ± 0.2	3449.4 ± 0.2	3449.6 ± 0.1

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-2) 並利用比爾定理將自結合平衡常數K整理成
$$K = \frac{c_{B_2}}{c_B^2} = \frac{\left[\frac{B_2}{c}\right]}{\left(\frac{B}{c^{\Theta}}\right)^2} = \frac{A_d}{A_m^2} (\frac{\varepsilon_m^2}{\varepsilon_d}) c^{\Theta} = \frac{A_d}{A_m^2} \times \text{constant}$$
(3-1)

已知定溫下單、雙體的總莫耳吸收係數 \mathcal{E}_m 、 \mathcal{E}_d 及單體自結合平衡常數 K 為定值。因此由式 (3-1) 知,在固定溫度下 A_m^2/A_d 也為定值,不隨 初始濃度 c_0 改變。如圖 3.4 為 A_m^2/A_d 對無因次化 B 的配置濃度 c_0 做圖。

圖 3.3 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,不同溫度下的 單體位移 v_{NH}^{obs} 對 $\frac{D-1}{2D+1}$ 作圖,其中D為正辛烷的介電常數。

圖 3.4 3,5-二甲基-2-乙醯基吡咯於正辛烷溶劑中A²_m/A_d對c_o作圖。 其四組溫度分別為:(-■-)288K, (-♡-)298K, (-×-)308K, (-▼ -)318K。

由式 (2-13) 及式 (2-17) 得到的結果如下

$$\frac{c_{\rm o}}{A_{\rm m}} = \frac{2K}{\varepsilon_{\rm m}^2 (c^{\Theta})^2} A_{\rm m} + \frac{1}{\varepsilon_{\rm m} c^{\Theta}}$$
(2-13)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1}{\sqrt{K \varepsilon_{\rm d} c^{\Theta}}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-17)

利用式 (2-13) 及式 (2-17) 可分別求出單體吸收係數 ε_m 、由單體公式 求出的自結合平衡常數 K'_d 、雙體吸收係數 ε_d 及由雙體公式求出的自結 合平衡常數 K_d ,且由單體與雙體得到的自結合平衡常數取幾何平均, 當做實驗所得決定值。

圖 3.5 為利用表 3.1 中定溫度下,單體在吸收帶的總吸收度 A_m ,代 入單體的公式 (2-13),並以 $Y = c_o / A_m$ 對 $X = A_m$ 作線性圖,可得到斜率 $P_m = 2K / \varepsilon_m^2 (c^{\Theta})^2$,截距 $Q_m = 1 / \varepsilon_m c^{\Theta}$ 。

圖 3.6 利用雙體公式,將表 3.1 中定溫度下,雙體在吸收帶的總吸 收度代入式 (2-17) 中,以Y= c_0 / A_d 對X= $A_d^{-1/2}$ 作線性圖,可得到斜率 $P_d = 1/\sqrt{K \varepsilon_d c^{\Theta}}$,截距 $Q_d = 2/\varepsilon_d c^{\Theta}$ 。

圖 3.5 由公式 (2-13) 所得之 3,5-二甲基-2-乙醯基吡咯溶於正辛烷 溶劑中的線性圖。其四組溫度分別為:(-■-)288K,(-●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.6 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於正辛烷
 溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●-)298K,
 (-●-)308K, (-▼-)318K。

由公式 (2-13) 及公式 (2-17) 的斜率、截距,可以求得熱力學參 數 ε_{n} 、 ε_{d} 及光譜參數K,將其列於表 3.2 中。將不同溫度下自結合平衡 常數K值做 van't Hoff 圖, ln $K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$,以Y=ln K對 X= $\frac{1}{T}$ 做 線性圖,得到斜率- $\frac{\Delta H^{\Theta}}{R}$ 及截距 $\frac{\Delta S^{\Theta}}{R}$,因此由斜率、截距可以分別求出 單雙體自結合的標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。圖 3.7 為 ln K對 $\frac{1}{T}$ 做 van't Hoff 圖。 由斜率、截距,得到單體自結合的標準焓 ΔH^{Θ} 及標準矯 ΔH^{Θ} 及標準熵 ΔS^{Θ} 分別為 -42.6 kJ mol⁻¹與-95.3 J mol⁻¹K⁻¹並列於表 3.2。

從表 3.2 觀察,當溫度升高時,會使自結合平衡常數 K 值變小, 因此確認單體自結合為一種放熱反應。本實驗也利用單體、雙體公式 求得單、雙體總吸收度理論線 A_m、A₄,並將實驗適解得到的 A_m、A₄與 理論值做圖。將單體公式 (2-13) 乘 A_m,並移項整理成

$$A_{\rm m}^2 + \frac{\varepsilon_{\rm m} c^{\Theta}}{2K} A_{\rm m} - \frac{\varepsilon_{\rm m}^2 c_{\rm O} (c^{\Theta})^2}{2K} = 0$$
(3-2)

將式 (3-2) 因式分解得到 Am 的理論線。

$$A_{\rm m} = \frac{2\varepsilon_{\rm m} c_{\rm o} c^{\Theta}}{\left(1 + 8Kc_{\rm o}\right)^{1/2} + 1}$$
(3-3)

在雙體公式 (2-17) 中, 令 $A_d^{1/2} = A'_d$ 所以 $A_d = A'_d^2$ 。將式子整理成

$$A_{d}^{\prime 2} + \frac{\varepsilon_{d} (c^{\Theta})^{1/2}}{2(K\varepsilon_{d})^{1/2}} A_{d}^{\prime} - \frac{\varepsilon_{d} c^{\Theta} c_{O}}{2} = 0$$
(3-4)

把式 (3-4) 因式分解得到 A'a

$$A'_{d} = \frac{\varepsilon_{d} (c^{\Theta})^{1/2}}{4 (K \varepsilon_{d})^{1/2}} (\sqrt{1 + 8K c_{O}} - 1)$$
(3-5)

將式 (3-5) 代入 $A_d = A'^2_d + n$,整理得到 A_d 的理論線。

$$A_{\rm d} = \frac{\varepsilon_{\rm d} c_{\rm o} c^{\Theta}}{2} \left(\frac{(1 + 8Kc_{\rm o})^{1/2} - 1}{(1 + 8Kc_{\rm o})^{1/2} + 1} \right)$$
(3-6)

圖 3.8、3.9 分別為單體總吸收度 A_m對無因次化 B 的總濃度 c₀ 作圖 及雙體總吸收度 A_d對無因次化 B 的總濃度 c₀ 作圖。A_m 的理論線可由式 (3-3) 求得, A_d 的理論線可由式 (3-6) 求得。

圖 3.7 3,5-二甲基-2-乙醯基吡咯於正辛烷溶劑中 van't Hoff 圖。此 處平衡常數 K 為單雙體自結合常數的幾何平均值。

圖 3.8 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,A_m對c_o作圖。 其四組溫度分別為:(-■-)288K,(-◆-)298K,(-▲-)308K,(-▼ -)318K。理論線可以由公式(3-3)得到。

圖 3.9 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中, A_d對c_o作圖。 其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式 (3-6) 得到。

總莫耳吸收係數 Eq、單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 vanit Hoff 所求得的單 3,5-二甲基-2-乙醯基吡咯溶於正辛烷溶劑中,在不同溫度下所求得知單體總莫耳吸收係數 Em、雙體 表 3.2

雙體自結合之標準焓AH^o及標準熵AS^o。

		:			
	通解單體吸收	に 度所求之値	過解雙體吸收	女度所求之値	
					$K=(K_{\rm d}K'_{\rm d})^{1/2}$
涧 庚	平衡常數 K'a	$\varepsilon_{\rm m}/{\rm Lcm}^{-2}~{ m mol}^{-1}$	平衡常數 Ka	$\varepsilon_{\rm d}/{\rm Lcm}^{-2}{ m mol}^{-1}$	
15°C	601.3 ± 19.5	7458.2 ± 129.9	559.6±39.3	73964.5 ± 760.1	580.1 ± 31.7
25°C	295.6 ± 8.9	6933.4 ± 62.8	297.5 ± 3.5	73828.0 ± 192.0	296.5 ± 6.8
35°C	176.5 ± 3.7	6827.8 ± 26.5	190.4 ± 10.1	72674.4 ± 127.1	183.3 ± 7.4
45°C	100.6 ± 3.7	6722.7 ± 32.3	110.7 ± 6.3	72306.6 ± 249.0	105.5 ± 6.3
單雙體自結合	済之標準焓∆H [●] /kJ п	$nol^{-1} = -42.6 \pm 1.5$			
單雙體自結合	於之標準熵∆S ^o / J mc	$1^{-1}K^{-1} = -95.3 \pm 4.9$			

3.3.2 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶液

3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶液,此系統分別在 15℃、 25℃、35℃及 45℃等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M)是根據正庚烷在不同溫度下的密度為參考數據 ⁴⁶ (15℃:0.69052,25℃:0.68212,35℃:0.67357,45℃:0.66486gmL⁻¹)。 定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基 ,因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ 。圖 3.10 為 15 ℃時,無因次化 B 的配置濃度分別為 0.0180、0.0147、0.0115、0.0084 及 0.0051 時溶質的 NH 基 IR 吸收光譜。

圖 3.11 為 15 ℃時,無因次化 B 的配置濃度為 0.0147 時,將 NH 基的順式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,並利用高斯—勞倫茲(Gauss-Lorentz) 混合適解分 佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收頻率分別 為單體 N-H 基吸收峰及雙體 N-H 基吸收峰。

表 3.3 為在四種不同溫度下,測量十組濃度後所得之單體及 雙體的最大吸收位置、半高寬以及總吸收度。

圖 3.10 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,在15℃時所測得 N-H基的 IR 光譜圖。無因次化 B 的配置濃度由上到下分別為:0.0180、0.0147、0.0115、0.0084、0.0051。

 圖 3.11 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中在 15℃ 無因次 化 B 的配置濃度為 0.0147mol L⁻¹時,所做的 N-H 基適解譜 線。

表3.3 在不同溫度下,3,5-二甲基-2-乙醯基吡咯溶在正庚烷溶劑中, 改變不同起始濃度時,單體及雙體最大吸收位置、半高寬及 總吸收度。

T=15°C		單體吸收	峰	,	雙體吸收	5峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0051	3449.3	9.3	12.4	3285.1	40.8	133.8
0.0068	3449.2	9.4	14.6	3285.0	40.4	188.1
0.0084	3449.2	9.7	16.6	3285.0	41.4	240.5
0.0101	3449.2	9.5	18.4	3285.2	40.8	297.1
0.0115	3449.3	8.9	19.8	3284.5	39.2	344.4
0.0130	3449.3	9.1	21.2	3284.2	39.3	395.5
0.0147	3449.3	8.9	22.7	3285.1	39.2	453.9
0.0164	3449.3	9.1	24.1	3285.2	39.4	512.7
0.0180	3449.3	8.9	25.4	3284.9	39.2	568.5
0.0193	3449.3	8.9	26.4	3284.1	39.1	613.9
					5	
T=25°C		單體吸收	峰		雙體吸收	、峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.0061	3449.6	9.1	19.3	3286.2	40.8	136.0
0.0071	3449.2	8.8	21.2	3285.5	40.4	165.4
0.0090	3450.0	9.0	25.0	3285.9	41.5	224.2
0.0104	3449.4	9.0	27.4	3285.6	41.2	265.3
0.0117	3449.6	9.1	29.0	3285.7	40.5	304.9
0.0130	3449.3	8.9	30.7	3285.3	40.0	341.3
0.0148	3449.9	9.0	33.0	3285.7	40.3	399.8
0.0163	3449.2	9.0	35.1	3285.5	40.2	449.7
0.0177	3449.9	9.0	37.0	3285.9	40.3	499.8
0.0192	3450.0	9.1	39.0	3285.8	41.8	547.6

接續表 3.3

T=35°C		單體吸收	峰		雙體吸收	_ 峰
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0068	3449.6	9.1	23.5	3286.7	42.1	139.1
0.0083	3449.1	9.0	26.7	3286.4	41.9	177.1
0.0099	3449.7	9.2	30.7	3286.9	42.6	223.5
0.0117	3449.3	9.1	34.3	3286.7	42.2	272.6
0.0136	3449.8	9.3	37.7	3287.0	42.6	332.7
0.0154	3450.0	9.2	40.4	3287.0	41.8	377.5
0.0170	3449.8	8.9	43.0	3287.2	43.7	436.6
0.0187	3450.7	9.1	44.9	3287.8	41.6	487.2
0.0204	3449.6	9.2	46.5	3286.7	41.4	537.5
0.0220	3450.1	9.1	49.3	3287.5	42.9	592.4
				8	E	
T=45°C		單體吸收	峰 1 9	96 /	雙體吸收	、峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)	(cm^{-1})
0.0064	3450.7	9.2	26.6	3288.4	44.3	104.6
0.0081	3449.8	9.2	31.1	3288.1	43.2	143.0
0.0097	3449.5	9.2	34.8	3287.7	42.6	179.1
0.0113	3449.7	9.3	39.6	3287.7	43.5	227.1
0.0129	3450.7	9.1	42.7	3288.7	43.0	266.5
0.0146	3449.6	9.2	46.2	3287.7	42.6	308.3
0.0162	3449.7	9.2	49.2	3288.0	42.7	353.0
0.0178	3449.7	9.2	52.8	3287.7	43.3	403.1
0.0195	3449.8	9.3	54.9	3287.9	42.4	443.6
0.0210	3449.8	9.2	57.6	3287.8	42.3	491.2

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為v^{ost} = v^o - C (D-1)/(2D+1)</sub>,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置,v_o 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到正庚烷的介電常數參考數據 以及系統於四種溫度下的介電常數值(15℃:1.931,25℃:1.917, 35℃:1.903,45℃:1.889)。將在溶液下觀察到單體的 N-H 基伸縮 振動頻率 v_{NH}^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-114.67X+3471.3,結果如 圖 3.12 所示。其中截距為 3471.3 cm⁻¹代表外插到 D=1 的狀態,即溶 質於真空狀態下 N-H 基的伸縮振動頻率 v_{NH}^{0} 。

由表 3.3 知定溫下單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的單體最大吸收頻率位置做 平均,且將四個溫度下的 (D-1) (2D+1) 值整理如下

正庚烷	15°C	25°C	35°C	45°C
(<i>D</i> -1)/(2 <i>D</i> +1)	0.1915	0.1897	0.1879	0.1861
$v_{\rm m,obs}/{\rm cm}^{-1}$	3449.3 ± 0.1	3449.6 ± 0.1	3449.8 ± 0.2	3449.9 ± 0.2

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-2) 並利用比爾定理將自結合平衡常數K整理成
$$K = \frac{c_{B_2}}{c_B^2} = \frac{\left[\frac{B_2}{c}\right]}{\left(\frac{B}{c^{\Theta}}\right)^2} = \frac{A_d}{A_m^2} (\frac{\varepsilon_m^2}{\varepsilon_d}) c^{\Theta} = \frac{A_d}{A_m^2} \times \text{constant}$$
(3-1)

已知定溫下單、雙體的總莫耳吸收係數 \mathcal{E}_m 、 \mathcal{E}_d 及單體自結合平衡常數 K 為定值。因此由式 (3-1) 知,在固定溫度下 A_m^2/A_d 也為定值,不隨 初始濃度 c_0 改變。如圖 3.13 為 A_m^2/A_d 對初始無因次化B的配置濃度 c_0 做 圖。

圖 3.12 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,不同溫度下的 單體位移 v^{obs}對 <u>D-1</u> 作圖,其中 D 為正庚烷的介電常數。

圖 3.13 3,5-二甲基-2-乙醯基吡咯於正庚烷溶劑中A²_m/A_d對c_o作圖。 其四組溫度分別為: (-■-)288K, (-♡-)298K, (-×-)308K, (-▼ -)318K。

由式 (2-13) 及式 (2-17) 得到的結果如下

$$\frac{c_{\rm o}}{A_{\rm m}} = \frac{2K}{\varepsilon_{\rm m}^2 (c^{\Theta})^2} A_{\rm m} + \frac{1}{\varepsilon_{\rm m} c^{\Theta}}$$
(2-13)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1}{\sqrt{K \varepsilon_{\rm d} c^{\Theta}}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-17)

利用式 (2-13) 及式 (2-17) 可分別求出單體吸收係數 ε_m 、由單體公式 求出的自結合平衡常數 K'_a 、雙體吸收係數 ε_d 及由雙體公式求出的自結 合平衡常數 K_a ,且由單體與雙體得到的自結合平衡常數取幾何平均, 當做觀察值。

圖 3.14 為利用表 3.3 中定溫度下,單體在吸收帶的總吸收度 A_m , 代入單 體 公式 (2-13),以 Y = c_0 / A_m 對 X = A_m 作圖,可得到 斜率 $P_m = 2K / \varepsilon_m^2 (c^{\Theta})^2$,截距 $Q_m = 1 / \varepsilon_m c^{\Theta}$ 。

圖 3.15 利用雙體公式,將表 3.3 中定溫度下,雙體在吸收帶的總吸收 度代入式 (2-17) 中,以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 作圖,可得到斜率 $P_d = 1/\sqrt{K \varepsilon_d c^{\Theta}}$,截距 $Q_d = 2/\varepsilon_d c^{\Theta}$ 。

圖 3.14 由公式 (2-13) 所得之 3,5-二甲基-2-乙醯基吡咯溶於正庚烷 溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.15 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於正庚烷
 溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●-)298K, (-●-)308K, (-▼-)318K。

由公式 (2-13) 及公式 (2-17) 的斜率、截距,可以求得熱力學參數 ε_m 、 ε_d 及先譜參數K,將其列於表 3.4 中。將不同溫度下自結合平衡常數K值做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$,以 Y=ln K對 X= $\frac{1}{T}$ 做線性 圖,得到斜率- $\frac{\Delta H^{\Theta}}{R}$ 及截距 $\frac{\Delta S^{\Theta}}{R}$,因此由斜率、截距可以分別求出單雙 體自結合的標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。圖 3.16 為 ln K 對 $\frac{1}{T}$ 做 van't Hoff 圖, 由 斜率、截距得到單體自結合的標準焓 ΔH^{Θ} 及標準熵 ΔS^{Θ} 分別為 -44.7 kJ mol⁻¹與-102.4J mol⁻¹K⁻¹並列於表 3.4。

從表 3.4 觀察,當溫度升高時,會使自結合平衡常數 K 值變小, 降低自結合的形成,因此確認單體自結合為一種放熱反應。本實驗也 利用單體、雙體公式求得單、雙體總吸收度理論線 A_m、A_a,並將實驗 適解得到的 A_m、A_a與理論值做圖,如圖 3.17、3.18。單、雙體理論線 的公式如下

$$A_{\rm m} = \frac{2\varepsilon_{\rm m} c_{\rm O} c^{\Theta}}{\left(1 + 8Kc_{\rm O}\right)^{1/2} + 1}$$
(3-3)

$$A_{\rm d} = \frac{\varepsilon_{\rm d} c_{\rm O} c^{\Theta}}{2} \left(\frac{(1 + 8Kc_{\rm O})^{1/2} - 1}{(1 + 8Kc_{\rm O})^{1/2} + 1} \right)$$
(3-6)

圖 3.17、3.18 分別為單體總吸收度 A_m對無因次化 B 的總濃度 c_o作 圖及雙體總吸收度 A_d對無因次化 B 的總濃度 c_o作圖。 A_m的理論線可由 式 (3-3) 求得, A_d的理論線可由式 (3-6) 求得。

圖 3.16 3,5-二甲基-2-乙醯基吡咯於正庚烷溶劑中 van't Hoff 圖。此 處平衡常數 K 為單雙體自結合常數的幾何平均值。

圖 3.17 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,A_m對c₀作圖。 其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式(3-3)得到。

圖 3.18 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,A_d對c_o作圖。 其四組溫度分別為:(-■-)288K,(-●-)298K,(-▲-)308K,(-▼ -)318K。理論線可以由公式(3-6)得到。
總莫耳吸收係數 Ed、單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 vanit Hoff 所求得的單 3,5-二甲基-2-乙醯基吡咯溶於正庚烷溶劑中,在不同溫度下所求得知單體總莫耳吸收係數 Em、雙體 表 3.4

雙體自結合之標準焓AH^o及標準熵AS^o。

	適解單體吸收	女度所求之值	適解雙體吸收	女度所求之值	$K = (K_{\rm d}K'_{\rm d})^{1/2}$
漫漫	平衡常數 K'a	$\varepsilon_{\rm m}/{\rm Lcm^{-2}~mol^{-1}}$	平衡常數 Ka	$\varepsilon_{\rm d}/{\rm Lcm^{-2}}{ m mol^{-1}}$	
15°C	656.0 ± 15.2	7602.2 ± 84.8	609.7 ± 29.4	78155.5 ± 591.2	632.4 ± 23.8
25°C	265.9 ± 7.3	7546.0 ± 49.1	260.9 ± 12.6	77851.3 ± 996.2	263.4 ± 10.3
35°C	164.8 ± 8.1	7303.0 ± 67.3	177.9 ± 8.6	76306.8 ± 1252.2	171.2 ± 8.4
45°C	100.3 ± 3.3	7207.2 ± 31.0	107.8 ± 2.2	74266.6 ± 1558.0	103.9 ± 2.8
單雙體自結合	含標準焓∆H^o/kJ 1	$nol^{-1} = -44.7 \pm 4.5$			
單雙體自結合	き之標準熵∆S ⁰ /Jmu	$0^{-1}K^{-1} = -102.4 \pm 15.0$			

3.3.3 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶液

3,5-二甲基-2-乙醯基吡咯溶於環已烷溶液,此系統分別在 15℃、 25℃、35℃及 45℃等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M)是根據正庚烷在不同溫度下的密度為參考數據 ⁴⁶ (15℃:0.78202,25℃:0.77313,35℃:0.76409,45℃:0.75489 g mL⁻¹)。 定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基 ,因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ 。圖 3.19 為 15 ℃時,無因次化 B 的配置濃度分別為 0.0176、0.0142、0.0110、0.0081 及 0.0045 時溶質的 NH 基 IR 吸收光譜。

圖 3.20 為 15℃時,無因次化 B 的配置濃度為 0.0049 時,將 NH 基的順式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,並利用高斯—勞倫茲(Gauss-Lorentz) 混合適解分 佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收頻率分別 為單體 N-H 基吸收峰及雙體 N-H 基吸收峰。

表 3.5 為在四種不同溫度下,測量十組濃度後所得之單體及雙體 的最大吸收位置、半高寬以及總吸收度。

圖 3.19 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中,在15℃時所測得 N-H基的 IR 光譜圖。無因次化B的配置濃度由上到下分別為:0.0176、0.0142、0.0110、0.0081、0.0049。

圖 3.20 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶劑中,在15℃時無因 次化 B 的配置濃度為 0.0049 時所做的 N-H 基適解譜線。

表3.5 在不同溫度下,3,5-二甲基-2-乙醯基吡咯溶在環已烷溶劑中, 改變不同起始濃度時,單體及雙體最大吸收位置、半高寬及 總吸收度。

T=15°C	 _	單體吸收	峰		雙體吸收	5峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)	(cm^{-1})
0.0049	3447.3	7.8	12.5	3283.3	44.0	105.8
0.0064	3447.4	7.8	14.6	3283.9	44.0	151.5
0.0081	3447.3	7.8	16.8	3283.4	43.9	201.4
0.0097	3447.4	7.8	18.7	3283.6	44.0	255.4
0.0110	3447.3	7.8	20.3	3283.5	44.0	294.6
0.0127	3447.2	7.9	22.0	3283.6	44.0	349.8
0.0142	3447.3	7.9	23.7	3283.3	43.8	402.1
0.0159	3447.4	7.9	25.3	3284.0	44.0	451.3
0.0176	3447.4	7.9	27.0	3283.4	44.0	509.0
0.0189	3447.4	8.0	28.2	3283.6	44.0	555.7
T=25°C		單體吸收	峰 1 0	96	雙體吸收	、峰
c_{0}	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.0064	3447.6	8.0	17.8	3284.5	44.7	128.6
0.0082	3447.7	8.0	20.5	3285.7	44.6	176.2
0.0099	3447.7	8.0	22.6	3285.4	44.6	222.3
0.0117	3447.7	8.0	25.3	3284.8	44.6	275.9
0.0135	3447.6	8.1	28.6	3284.6	44.7	331.7
0.0152	3447.7	8.1	30.6	3284.9	44.6	378.5
0.0173	3447.6	8.1	32.8	3284.9	44.7	453.3
0.0190	3447.7	8.0	35.0	3284.4	44.8	504.7
0.0207	3447.6	8.2	36.3	3284.3	44.6	558.8
0.0227	3447.7	8.3	38.4	3284.4	44.7	629.9

接續表 3.5

T=35°C	-	單體吸收	峰	,	雙體吸收	、峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0065	3447.8	8.1	21.1	3286.3	45.8	103.4
0.0081	3447.9	8.1	24.7	3286.3	45.5	140.9
0.0097	3447.9	8.1	28.0	3285.8	45.6	180.6
0.0115	3447.9	8.2	31.4	3286.2	45.5	227.0
0.0137	3447.8	8.2	35.2	3286.2	45.4	286.1
0.0151	3447.8	8.2	37.6	3286.0	45.4	324.7
0.0170	3447.9	8.2	40.6	3286.1	45.5	378.2
0.0183	3447.9	8.2	42.5	3286.1	45.5	415.4
0.0201	3448.0	8.3	45.2	3286.8	45.6	467.7
0.0223	3447.9	8.3	48.2	3286.3	45.6	532.7
				0		
T=45°C		單體吸收	峰	0.	雙體吸收	、峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.0056	3448.4	8.3	21.0	3286.1	46.9	63.4
0.0073	3448.5	8.4	25.6	3287.0	46.4	94.4
0.0092	3448.3	8.3	30.4	3286.9	46.4	132.3
0.0107	3448.4	8.3	33.9	3287.4	46.4	164.1
0.0127	3448.5	8.4	38.3	3287.2	46.5	208.5
0.0144	3448.3	8.4	41.8	3287.6	46.4	247.7
0.0162	3448.4	8.4	45.3	3286.9	46.4	290.6
0.0181	3448.4	8.4	48.8	3287.1	46.3	336.9
0.0199						
0.01//	3448.4	8.4	52.0	3287.2	46.4	382.0

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為 v^{abs} = v^o - C $\frac{(D-1)}{(2D+1)}$,其中 v^{abs} 為觀測到特定官能基最大吸收峰位置, v_o 為溶質在真空狀態時特定官能基的最大吸收位置, C 為常數, D 為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到環已烷的介電常數參考數據 以及系統於四種溫度下的介電常數值(15°C:2.031,25°C:2.015,35 °C:1.999,45°C:1.983)。將在溶液下觀察到單體的 N-H 基伸縮振動 頻率 v_{NH}^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y = -173.6X + 3482.7,結果如圖 3.21 所示。其中截距為 3482.7 cm⁻¹ 代表外插到 D = 1 的狀態,即溶質於真 空狀態下 N-H 基的伸縮振動頻率 v_{NH}^{0} 。

由表 3.5 知定溫下單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的單體最大吸收頻率位置做 平均,且將四個溫度下的 (D-1) (2D+1) 值整理如下

環己烷	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.2036	0.2018	0.1998	0.1979
$\nu_{m,obs} / cm^{\text{-}1}$	3447.3 ± 0.1	3447.7 ± 0.2	3447.9 ± 0.1	3448.4 ± 0.2

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-2) 並利用比爾定理將自結合平衡常數K整理成
$$K = \frac{c_{B_2}}{c_B^2} = \frac{\left[\frac{B_2}{c}\right]}{\left(\frac{B}{c^{\Theta}}\right)^2} = \frac{A_d}{A_m^2} (\frac{\varepsilon_m^2}{\varepsilon_d}) c^{\Theta} = \frac{A_d}{A_m^2} \times \text{constant}$$
(3-1)

已知定溫下單、雙體的總莫耳吸收係數 \mathcal{E}_m 、 \mathcal{E}_d 及單體自結合平衡常數 K 為定值。因此由式 (3-1) 知,在固定溫度下 A_m^2/A_d 也為定值,不隨 初始濃度 c_0 改變。如圖 3.22 為 A_m^2/A_d 對初始無因次化B的配置濃度 c_0 做 圖。

圖 3.21 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中,不同溫度下的 單體位移 v^{obs}對 <u>D-1</u> 作圖,其中 D 為環已烷的介電常數。

圖 3.22 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中A²_m/A_d對c₀作圖。 其四組溫度分別為: (-■-)288K, (-○-)298K, (-×-)308K, (-▼ -)318K。

由式 (2-13) 及式 (2-17) 得到的結果如下

$$\frac{c_{\rm o}}{A_{\rm m}} = \frac{2K}{\varepsilon_{\rm m}^2 (c^{\Theta})^2} A_{\rm m} + \frac{1}{\varepsilon_{\rm m} c^{\Theta}}$$
(2-13)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1}{\sqrt{K \varepsilon_{\rm d} c^{\Theta}}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-17)

利用式 (2-13) 及式 (2-17) 可分別求出單體吸收係數 ε_m 、由單體 公式求出的自結合平衡常數 K'_a 、雙體吸收係數 ε_a 及由雙體公式求出的 自結合平衡常數 K_a ,且由單體與雙體得到的自結合平衡常數取幾何平 均,當做實驗所得決定值。

圖 3.23 為利用表 3.5 中定溫度下,單體在吸收帶的總吸收度 $A_{\rm m}$, 代入單體公式 (2-13),以 $Y = c_{\rm o} / A_{\rm m}$ 對 $X = A_{\rm m}$ 作圖,可得到斜率 $P_{\rm m} = 2K / \varepsilon_{\rm m}^2 (c^{\Theta})^2$,截距 $Q_{\rm m} = 1 / \varepsilon_{\rm m} c^{\Theta}$ 。

圖 3.24 利用雙體公式,將表 3.5 中定溫度下,雙體在吸收帶的總 吸收度代入式 (2-17) 中,以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 作圖,可得到斜率 $P_d = 1/\sqrt{K \varepsilon_d c^{\Theta}}$,截距 $Q_d = 2/\varepsilon_d c^{\Theta}$ 。

圖 3.23 由公式 (2-13) 所得之 3,5-二甲基-2-乙醯基吡咯溶於環已烷 溶劑中的線圖。其四組溫度分別為:(-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.24 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶劑中的線。其四組溫度分別為:(-■-)288K, (-●-)298K, (-●-)308K, (-♥-)318K。

由公式 (2-13) 及公式 (2-17) 的斜率、截距,可以求得熱力學參 數 ε_m 、 ε_d 及光譜參數K,將其列於表 3.6 中。將不同溫度下自結合平衡 常數K值做 van't Hoff 圖, ln $K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$,以 Y=ln K對 X= $\frac{1}{T}$ 做 線性圖,得到斜率- $\frac{\Delta H^{\Theta}}{R}$ 及截距 $\frac{\Delta S^{\Theta}}{R}$,因此由斜率、截距可以分別求出 單雙體自結合的標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。圖 3.25 為 ln K對 $\frac{1}{T}$ 做 van't Hoff 圖,由斜率、截距得到單體自結合的標準焓 ΔH^{Θ} 及標準熵 ΔS^{Θ} 分別為 -42.0 kJ mol⁻¹與-99.4J mol⁻¹K⁻¹並列於表 3.6。

從表 3.6 觀察,當溫度升高時,會使自結合平衡常數 K 值變小, 降低自結合的形成,因此確認單體自結合為一種放熱反應。本實驗也 利用單體、雙體公式求得單、雙體總吸收度理論線 A_m、A_a,並將實驗 適解得到的 A_m、A_a與理論值做圖,如圖 3.26、3.27。單、雙體理論線 的公式如下

$$A_{\rm m} = \frac{2\varepsilon_{\rm m} c_{\rm O} c^{\Theta}}{\left(1 + 8Kc_{\rm O}\right)^{1/2} + 1}$$
(3-3)

$$A_{\rm d} = \frac{\varepsilon_{\rm d} c_{\rm o} c^{\Theta}}{2} \left(\frac{(1 + 8Kc_{\rm o})^{1/2} - 1}{(1 + 8Kc_{\rm o})^{1/2} + 1} \right)$$
(3-6)

圖 3.26、3.27 分別為單體總吸收度 A_m對無因次化 B 的總濃度 c_o作 圖及雙體總吸收度 A_d對無因次化 B 的總濃度 c_o作圖。 A_m的理論線可由 式 (3-3) 求得, A_d的理論線可由式 (3-6) 求得。

圖 3.25 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中 van't Hoff 圖。 此處平衡常數 K 為單雙體自結合常數的幾何平均值。

圖 3.26 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中,A_m對c_o作圖。 其四組度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式(3-3)得到。

圖 3.27 3,5-二甲基-2-乙醯基吡咯溶於環已烷溶劑中, A_d對c_o作圖。 其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式 (3-6) 得到。

總莫耳吸收係數 Ed、單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 van't Hoff 所求得的單 3,5-二甲基-2-乙醯基吡咯溶於環己烷溶劑中,在不同溫度下所求得知單體總莫耳吸收係數 Em、雙體 表 3.6

雙體自結合之標準焓AH^o及標準熵AS^o。

	適解單體吸收	文度所求之値	適解雙體吸小	女度所求之值	V_ (V V)1/2
					$\mathbf{v} = (\mathbf{v}_{d} \mathbf{v}_{d})$
運展	平衡常數 K'a	$\varepsilon_{\rm m}/{ m Lcm}^{-2}~{ m mol}^{-1}$	平衡常數 Ka	$\varepsilon_{\rm d}/{\rm Lcm}^{-2}~{ m mol}^{-1}$	
15°C	261.6 ± 5.8	5460.3 ± 27.5	251.5 ± 10.9	8 1466.4 ± 1009.4	256.5 ± 8.8
25°C	149.9 ± 7.1	5363.7 ± 44.4	153.7 ± 6.6	7 9936.0 ± 1246.9	151.8 ± 6.8
35°C	80.0 ± 2.7	5306.2 ± 20.4	89.7 ± 2.2	78957.8 ± 1190.0	83.4 ± 2.5
45°C	52.3 ± 2.1	5297.2 ± 126.0	57.1 ± 1.2	73692.0 ± 1547.3	54.6 ± 1.8
單雙體自結合	♪之標準焓ΔH ^Φ / kJ r	$nol^{-1} = -42.0 \pm 1.9$			
單雙體自結合	♪之標準熵∆S ⁰ / J mu	$1^{-1}K^{-1} = -99.4 \pm 6.2$			

3.3.4 3.5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶液

3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶液,此系統分別在15℃、 25℃、35℃及 45℃等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M)是根據正庚烷在不同溫度下的密度為參考數據 ⁴⁶ (15℃:1.628,25℃:1.6132,35℃:1.5974,45℃:1.5815 g mL⁻¹)。 定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基 ,因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ 。圖 3.28 為 15 ℃時,無因次化 B 的配置濃度分別為 0.0196、0.0162、0.0129、0.0093 及 0.0061 時溶質的 NH 基 IR 吸收光譜。

圖 3.29 為 15℃時,無因次化 B 的配置濃度為 0.0146 時,將 NH 基的順式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,並利用高斯—勞倫茲(Gauss-Lorentz) 混合適解分 佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收頻率分別 為單體 N-H 基吸收峰及雙體 N-H 基吸收峰。

表 3.7 為在四種不同溫度下,測量十組濃度後所得之單體及雙體 的最大吸收位置、半高寬以及總吸收度。

95

圖 3.28 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,在15℃時 所測得 N-H 基的 IR 光譜圖。無因次化 B 的配置濃度由上到 下分別為:0.0196、0.0162、0.0129、0.0093、0.0061。

 圖 3.29 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中在 15℃ 無因 次化 B 的配置濃度為 0.0146 時所做的 N-H 基適解譜線。

表 3.7 在不同溫度下,3,5-二甲基-2-乙醯基吡咯溶溶在四氯乙烯溶 劑中改變不同起始濃度時,單體及雙體最大吸收位置、半高 寬及總吸收度。

T=15°C		單體吸收	峰	,	雙體吸收	5峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0061	3444.1	14.2	28.6	3281.5	49.0	78.2
0.0078	3444.1	14.5	34.0	3281.6	49.0	116.0
0.0093	3444.9	14.6	37.6	3282.3	48.8	145.2
0.0112	3444.6	14.2	43.2	3281.6	49.3	188.3
0.0129	3444.3	14.4	48.2	3281.5	49.3	237.4
0.0146	3443.9	14.5	52.8	3281.2	49.0	271.0
0.0162	3444.7	14.5	56.2	3281.7	49.2	311.0
0.0179	3444.1	14.3	60.1	3281.2	49.5	352.2
0.0196	3444.2	14.5	62.9	3281.0	49.3	397.9
0.0214	3444.8	14.5	66.5	3281.4	49.5	442.1
T=25°C		單體吸收	峰		雙體吸收	、峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.006	3444.6	14.0	28.5	3282.4	51.0	62.9
0.0073	3444.6	14.1	33.3	3281.9	50.8	87.2
0.0091	3444.4	14.2	38.1	3282.1	50.5	118.4
0.0107	3444.3	14.0	43.2	3282.3	50.5	147.6
0.0121	3444.3	14.1	46.1	3282.1	50.3	176.0
0.0136	3444.4	14.2	50.2	3282.2	50.1	208.8
0.0152	3445.0	14.1	55.4	3282.5	50.5	247.9
0.0167	3444.3	14.1	60.1	3281.8	50.6	280.8
0.0183	3444.5	14.0	63.2	3281.3	50.6	308.2
0.0198	3444.9	14.2	66.6	3282.8	50.1	350.8

接續表 3.7

T=35°C	-	單體吸收	峰		雙體吸收	峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0062	3445.4	14.1	30.3	3284.1	51.6	52.5
0.0081	3445.0	14.0	36.5	3283.9	51.3	80.3
0.0100	3444.2	14.1	44.0	3283.0	51.4	114.1
0.0116	3444.5	14.2	49.1	3283.3	50.9	142.1
0.0135	3444.4	14.0	54.3	3283.0	51.2	171.6
0.0154	3445.3	14.0	58.9	3283.9	51.4	206.7
0.0171	3444.2	14.0	65.3	3282.7	51.4	244.6
0.0190	3444.5	14.1	70.3	3282.8	51.5	280.4
0.0207	3444.7	14.1	75.2	3282.9	51.6	318.4
0.0229	3445.2	14.1	80.5	3283.4	51.5	362.9
				0		
T=45°C		單體吸收	峰	0	雙體吸收	、峰
c_{0}	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.0061	3444.7	14.1	29.1	3284.8	52.7	30.6
0.0079	3444.8	14.0	36.2	3284.0	53.1	47.4
0.0093	3445.5	14.1	41.1	3285.2	52.6	60.6
0.0108	3445.8	14.1	47.0	3285.0	52.9	77.3
0.0124	3445.2	14.0	53.1	3284.9	52.7	101.9
0.0140	3444.8	14.1	58.2	3284.1	52.5	128.1
0.0156	3444.8	14.0	62.6	3284.4	52.5	144.9
0.0171	3445.2	14.1	67.0	3284.8	52.4	167.9
0.0186	3445.8	14.1	72.0	3285.2	52.4	181.2
0.0203	3445.1	14.1	77.0	3284.9	52.2	206.8

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為v^{ost} = v^o - C (D-1)/(2D+1)</sub>,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置,v_o 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到四氯乙烯的介電常數參考數 據以及系統於四種溫度下的介電常數值(15 °C : 2.32,25 °C : 2.3,35 °C : 2.28,45 °C : 2.26)。將在溶液下觀察到單體的 N-H 基伸縮振動頻 率 v_{NH}^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y = -138.3X + 3476.7,結果如圖 3.30 所示。其中截距為 3476.7 cm⁻¹代表外插到 D = 1 的狀態,即溶質於真 空狀態下 N-H 基的伸縮振動頻率 v_{NH}^{o} 。

由表 3.7 知定溫下單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的單體最大吸收頻率位置做 平均,且將四個溫度下的 (D-1) (2D+1) 值整理如下

四氯乙烯	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.234	0.232	0.230	0.228
$v_{m,obs}/cm^{-1}$	3444.4 ± 0.1	3444.5 ± 0.1	3444.7 ± 0.2	3445.2 ± 0.2

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-2) 並利用比爾定理將自結合平衡常數K整理成
$$K = \frac{c_{B_2}}{c_B^2} = \frac{\left[\frac{B_2}{c}\right]}{\left(\frac{B}{c^{\Theta}}\right)^2} = \frac{A_d}{A_m^2} (\frac{\varepsilon_m^2}{\varepsilon_d}) c^{\Theta} = \frac{A_d}{A_m^2} \times \text{constant}$$
(3-1)

已知定溫下單、雙體的總莫耳吸收係數 \mathcal{E}_m 、 \mathcal{E}_d 及單體自結合平衡常數 K 為定值。因此由式 (3-1) 知,在固定溫度下 A_m^2/A_d 也為定值,不隨 初始濃度 c_0 改變。如圖 3.31 為 A_m^2/A_d 對初始無因次化B的配置濃度 c_0 做 圖。

圖 3.30 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,不同溫度下 單體位移 v^{obs}對 <u>D-1</u> 作圖,其中D為四氯乙烯的介電常數。

圖 3.31 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中A²_m/A_d對c_o作 圖。其四組溫度分別為: (-■-)288K, (-♡-)298K, (-×-)308K, (-▼-)318K。

由式 (2-13) 及式 (2-17) 得到的結果如下

$$\frac{c_{\rm o}}{A_{\rm m}} = \frac{2K}{\varepsilon_{\rm m}^2 (c^{\Theta})^2} A_{\rm m} + \frac{1}{\varepsilon_{\rm m} c^{\Theta}}$$
(2-13)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1}{\sqrt{K \varepsilon_{\rm d} c^{\Theta}}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-17)

利用式 (2-13) 及式 (2-17) 可分別求出單體吸收係數 ε_m 、由單體公式 求出的自結合平衡常數 K'_d 、雙體吸收係數 ε_d 及由雙體公式求出的自結 合平衡常數 K_d ,且由單體與雙體得到的自結合平衡常數取幾何平均, 當做實驗所得決定值。

圖 3.32 為利用表 3.7 中定溫度下,單體在吸收帶的總吸收度 $A_{\rm m}$, 代入單體公式 (2-13),以 $Y = c_{\rm o} / A_{\rm m}$ 對 $X = A_{\rm m}$ 作圖,可得到斜率 $P_{\rm m} = 2K / \varepsilon_{\rm m}^2 (c^{\Theta})^2$,截距 $Q_{\rm m} = 1 / \varepsilon_{\rm m} c^{\Theta}$ 。

圖 3.33 利用雙體公式,將表 3.7 中定溫度下,雙體在吸收帶的總 吸收度代入式 (2-17) 中,以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 作圖,可得到斜率 $P_d = 1/\sqrt{K \varepsilon_d c^{\Theta}}$,截距 $Q_d = 2/\varepsilon_d c^{\Theta}$ 。

圖 3.32 由公式 (2-13) 所得之 3,5-二甲基-2-乙醯基吡咯溶於四氯乙 烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-● -)298K, (-▲-)308K, (-▼-)318K。

圖 3.33 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●-)298K, (-●-)308K, (-▼-)318K。

由公式 (2-13) 及公式 (2-17) 的斜率、截距,可以求得熱力學參 數ε_m、ε_d及光譜參數 K,將其列於表 3.8 中。

將不同溫度下自結合平衡常數 K 值做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$,以Y=lnK對 X= $\frac{1}{T}$ 做線性圖,得到斜率- $\frac{\Delta H^{\Theta}}{R}$ 及 截距 $\frac{\Delta S^{\Theta}}{R}$,因此由斜率、截距可以分別求出單雙體自結合的標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。圖 3.34 為 lnK對 $\frac{1}{T}$ 做 van't Hoff 圖,由斜率、截距得到單體 自結合的標準焓 ΔH^{Θ} 及標準熵 ΔS^{Θ} 分別為-34.9 kJ mol⁻¹與-83.5 J mol⁻¹K⁻¹ 並列於表 3.8。

從表 3.8 觀察,當溫度升高時,會使自結合平衡常數 K 值變小, 降低自結合的形成,因此確認單體自結合為一種放熱反應。本實驗也 利用單體、雙體公式求得單、雙體總吸收度理論線 A_m、A_a,並將實驗 適解得到的 A_m、A_a與理論值做圖,如圖 3.35、3.36。單、雙體理論線 的公式如下

$$A_{\rm m} = \frac{2\varepsilon_{\rm m} c_{\rm O} c^{\Theta}}{\left(1 + 8Kc_{\rm O}\right)^{1/2} + 1}$$
(3-3)

$$A_{\rm d} = \frac{\varepsilon_{\rm d} c_{\rm o} c^{\Theta}}{2} \left(\frac{\left(1 + 8Kc_{\rm o}\right)^{1/2} - 1}{\left(1 + 8Kc_{\rm o}\right)^{1/2} + 1} \right)$$
(3-6)

圖 3.35 為單體總吸收度 A_m 對無因次化B的總濃度 c_0 作圖, A_m 的理論線 可由式 (3-3) 求得。圖 3.36 為雙體總吸收度 A_d 對無因次化B的總濃度 c_0 作圖, A_d 的理論線可由式 (3-6) 求得。

圖 3.34 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中 van't Hoff 圖。 此處平衡常數 K 為單雙體自結合常數的幾何平均值。

圖 3.35 3,5-二甲基-2-乙醯基吡咯於四氯乙烯溶劑中,A_m對c₀作圖。 其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式 (3-3) 得到。

圖 3.36 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,A_d對c_o作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。理論線可以由公式(3-6)得到。

體總莫耳吸收係數 Eq、單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 van t Hoff 所求得的 3,5-二甲基-2-乙醯基吡咯溶於四氯乙烯溶劑中,在不同溫度下所求得知單體總莫耳吸收係數 Em、雙 表 3.8

單雙體自結合之標準焓AHT及標準摘AST。

	通鮮早體吸生	女茂所永之値	適解雙體吸出	女 皮 所 永 之 値	$K=(K_{d}K'_{d})^{1/2}$
平衡常	數 K' _d	$\varepsilon_{ m m}/ m Lcm^{-2}$ mol ⁻¹	平衡常數 Ka	$\varepsilon_{\rm d}/{\rm Lcm^{-2}}{ m mol^{-1}}$	
70.3	± 2.6	7204.6 ± 27.0	66.6 ± 2.0	75018.8 ± 2200.7	68.4 ± 2.3
47.9	± 3.1	6584.1 ± 31.6	51.9 ± 1.4	69808.0 ± 1925.5	49.9 ± 2.4
29.5 ±	1.6	6174.0 ± 18.6	32.6 ± 0.9	68329.4 ± 1967.9	31.0 ± 1.3
17.8 ±	: 0.5	5637.9 ± 78.8	17.5 ± 0.1	65061.8 ± 520.4	17.6 ± 0.4
之標準焓1	$\Lambda H^{0} / \mathrm{kJ}_{1}$	$mol^{-1} = -34.5 \pm 3.8$			
之標準協	∆S ^o / J ma	$ol^{-1}K^{-1} = -83.9 \pm 12.4$			

3.3.5 3,5-二甲基-2-乙醯基溶於三氯乙烯溶液

3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶液,此系統分別在15℃、 25℃、35℃及 45℃等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M) 是根據正庚烷在不同溫度下的密度為參考數據 ⁴⁶ (15℃:1.474,25℃:1.458,35℃:1.442,45℃:1.426gmL⁻¹)。定義 m=(溶質莫耳數/mol)/(溶劑重量/kg),M=(溶質莫耳數/mol)/(溶液體 積/L)。(體基莫耳濃度/M)=m×(溶劑重量/kg)/(溶液體積/L),而在稀 薄溶液中,假設溶液體基約等於溶劑體基,因此其轉換公式 M≈m× (溶劑重量/kg)/(溶劑體基/L)=m×溶劑密度 ρ 。圖 3.37 為 15℃時,無 因次化 B 的配置濃度分別為 0.0196、0.0163、0.0132、0.0100 及 0.0067 時溶質的 NH 基 IR 吸收光譜。

圖 3.38 為 15℃時,無因次化 B 的配置濃度為 0.0067 時,將 NH 基的順式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,並利用高斯—勞倫茲(Gauss-Lorentz) 混合適解分 佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收頻率分別 為單體 N-H 基吸收峰及雙體 N-H 基吸收峰。

表 3.9 為在四種不同溫度下,測量十組濃度後所得之單體及雙體 的最大吸收位置、半高寬以及總吸收度。

圖 3.37 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,在 15℃時 所測得 N-H 基的 IR 光譜圖。無因次化 B 的配置濃度由上到 下分別為: 0.0196、0.0163、0.0132、0.0100 及 0.0067。

圖 3.38 3,5-二甲基-2-乙醯基吡咯於三氯乙烯溶劑中在 15℃ 無因次 化 B 的配置濃度為 0.0067 時所做的 N-H 基適解譜線。

表 3.9 在不同溫度下,3,5-二甲基-2-乙醯基吡咯溶在三氯乙烯溶劑 中,改變不同起始濃度時,單體及雙體最大吸收位置、半高 寬及總吸收度。

T=15℃		單體吸收	峰		雙體吸收	5峰
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0067	3442.9	21.8	46.5	3284.4	74.3	30.4
0.0083	3443.2	21.9	56.6	3285.5	73.1	44.6
0.0100	3443.0	21.8	66.0	3285.3	71.5	60.0
0.0115	3443.5	21.8	74.4	3283.2	68.9	80.5
0.0132	3443.0	21.7	81.4	3283.4	69.8	96.0
0.0147	3443.2	21.8	88.9	3283.9	68.9	118.8
0.0163	3443.1	21.7	97.5	3282.7	69.8	134.4
0.0179	3443.1	21.8	105.2	3282.8	68.9	162.4
0.0196	3443.1	21.8	113.3	3282.6	68.5	180.0
0.0210	3443.4	21.9	120.7	3283.1	68.9	203.3
					IE	
T=25°C		單體吸收	峰		雙體吸收	、峰
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})
0.0062	3444.0	21.7	45.0	3285.0	72.5	21.3
0.0078	3443.8	21.7	55.4	3284.2	69.0	31.1
0.0094	3444.0	21.6	65.6	3284.8	66.5	44.5
0.0109	3443.6	21.5	75.4	3284.6	66.6	56.2
0.0125	3443.6	21.5	84.5	3284.2	65.7	68.3
0.014	3443.8	21.6	93.2	3284.6	66.6	86.4
0.0156	3443.8	21.7	102.1	3284.5	65.8	101.7
0.017	3443.4	21.5	109.4	3284.6	66.5	124.3
0.0201	3443.9	21.6	125.4	3285.1	65.8	169.1

接續表 3.9

T=35°C	<u>'</u>	單體吸收	峰		雙體吸收	5峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0054	3444.3	21.2	40.3	3287.5	74.3	9.6
0.0068	3444.4	21.2	50.0	3286.4	72.0	15.5
0.0082	3443.5	20.9	59.0	3283.8	70.0	21.3
0.0096	3443.9	20.9	68.0	3284.7	70.0	28.9
0.0109	3444.4	20.8	77.1	3284.4	70.1	34.2
0.0123	3443.9	21.1	85.2	3285.5	69.2	42.7
0.0137	3444.1	21.1	94.1	3285.4	68.8	54.2
0.0151	3444.5	21.0	103.1	3284.9	68.8	66.9
0.0164	3443.9	21.1	111.4	3285.4	69.4	76.8
0.0178	3444.4	20.9	120.1	3285.3	69.1	86.8
	E			Ő	E	
T=45°C	-	單體吸收	峰 1 2	96 /	雙體吸收	5峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)	(cm^{-1})
0.0059	3444.3	21.2	43.5	3289.7	74.6	8.0
0.0074	3445.0	21.2	54.1	3288.3	72.5	11.7
0.0088	3444.7	21.2	63.8	3287.4	72.1	15.9
0.0102	3444.4	21.2	73.6	3287.4	69.6	22.2
0.0116	3444.2	21.2	82.4	3287.0	70.8	28.5
0.0131	3444.7	21.2	92.1	3286.9	71.9	37.9
0.0145	3444.5	21.2	102.0	3286.7	69.7	43.4
0.0160	3444.6	21.4	111.2	3287.5	71.6	50.4
0.0174	3444.7	21.3	119.9	3286.6	71.1	56.1
0.0187	3444.6	21.1	127.8	3286.1	68.4	67.0

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為v^{ost} = v^o - C (D-1)/(2D+1)</sub>,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置,v_o 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到三氯乙烯的介電常數參考數 據以及系統於四種溫度下的介電常數值(15℃:3.4224,25℃:3.3984, 35℃:3.3744,45℃:3.3504)。將在溶液下觀察到單體的 N-H 基伸 縮振動頻率 v_{NH}^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y = -390.7X + 3563.9,結果 如圖 3.39 所示。其中截距為 3563.9 cm⁻¹ 代表外插到 D = 1 的狀態,即 溶質於真空狀態下 N-H 基的伸縮振動頻率 v_{NH}^{0} 。

表 3.9 知定溫下單體最大伸縮振動頻率不太隨濃度改變,將系統 溫度分別為 15℃、25℃、35℃及 45℃時的單體最大吸收頻率位置做平 均,且將四個溫度下的 (D-1) (2D+1) 值整理如下

三氯乙烯	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.30879	0.3076	0.3064	0.3052
$v_{m,obs}$ / cm ⁻¹	3443.1 ± 0.2	3443.7 ± 0.1	3444.1 ± 0.2	3444.6 ± 0.02

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-2) 並利用比爾定理將自結合平衡常數K整理成
$$K = \frac{c_{B_2}}{c_B^2} = \frac{\left[\frac{B_2}{c}\right]}{\left(\frac{B}{c^{\Theta}}\right)^2} = \frac{A_d}{A_m^2} (\frac{\varepsilon_m^2}{\varepsilon_d}) c^{\Theta} = \frac{A_d}{A_m^2} \times \text{constant}$$
(3-1)

已知定溫下單、雙體的總莫耳吸收係數 \mathcal{E}_m 、 \mathcal{E}_d 及單體自結合平衡常數 K 為定值。因此由式 (3-1) 知,在固定溫度下 A_m^2/A_d 也為定值,不隨 初始濃度 c_0 改變。如圖 3.40為 A_m^2/A_d 對初始無因次化B的配置濃度 c_0 做 圖。

圖 3.39 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,不同溫度下 單體位移 v^{obs} 對 <u>D-1</u> 作圖,D為三氯乙烯的介電常數。

圖 3.40 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中A²_m/A_d對c_o作 圖。其四組溫度分別為: (-■-)288K, (-○-)298K, (-×-)308K, (-▼-)318K。
由式 (2-13) 及式 (2-17) 得到的結果如下

$$\frac{c_{\rm o}}{A_{\rm m}} = \frac{2K}{\varepsilon_{\rm m}^2 (c^{\Theta})^2} A_{\rm m} + \frac{1}{\varepsilon_{\rm m} c^{\Theta}}$$
(2-13)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1}{\sqrt{K \varepsilon_{\rm d} c^{\Theta}}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-17)

利用式 (2-13) 及式 (2-17) 可分別求出單體吸收係數 ε_m 、由單體公式 求出的自結合平衡常數 K'_d 、雙體吸收係數 ε_d 及由雙體公式求出的自結 合平衡常數 K_d ,且由單體與雙體得到的自結合平衡常數取幾何平均, 當做實驗所得決定值。

圖 3.41 為利用表 3.9 中定溫度下,單體在吸收帶的總吸收度 A_m , 代入單體公式 (2-13),以 $Y = c_0 / A_m$ 對 $X = A_m$ 作圖,可得到斜率 $P_m = 2K / \varepsilon_m^2 (c^{\Theta})^2$,截距 $Q_m = 1 / \varepsilon_m c^{\Theta}$ 。

圖 3.42 利用雙體公式,將表 3.9 中定溫度下,雙體在吸收帶的總 吸收度代入式 (2-17) 中,以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 作圖,可得到斜率 $P_d = 1/\sqrt{K \varepsilon_d c^{\Theta}}$,截距 $Q_d = 2/\varepsilon_d c^{\Theta}$ 。

圖 3.42 由公式 (2-17) 所得之 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中的線性圖。其四組溫度分別為:(-■-)288K, (-●-)298K, (-●-)308K, (-▼-)318K。

0.18

 $A_{\rm d}^{-1/2}$ / cm

0.24

0.30

0.36

0.0002

0.0000

0.00

0.06

0.12

由公式 (2-13) 及公式 (2-17) 的斜率、截距,可以求得熱力學參 數ε_m、ε_d及光譜參數 K,將其列於表 3.10 中。

將不同溫度下自結合平衡常數 K 值做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$,以Y=lnK對 X= $\frac{1}{T}$ 做線性圖,得到斜率- $\frac{\Delta H^{\Theta}}{R}$ 及 截距 $\frac{\Delta S^{\Theta}}{R}$,因此由斜率、截距可以分別求出單雙體自結合的標準焓 ΔH^{Θ} 及熵 ΔS^{Θ} 。圖 3.43 為 lnK對 $\frac{1}{T}$ 做 van't Hoff 圖,由斜率、截距得到單體 自結合的標準焓 ΔH^{Θ} 及標準熵 ΔS^{Θ} 分別為-33.5 kJ mol⁻¹與-94.1J mol⁻¹K⁻¹ 並列於表 3.10。

從表 3.10 觀察,當溫度升高時,會使自結合平衡常數 K 值變小, 降低自結合的形成,因此確認單體自結合為一種放熱反應。本實驗也 利用單體、雙體公式求得單、雙體總吸收度理論線 A_m、A_a,並將實驗 適解得到的 A_m、A_a與理論值做圖,如圖 3.44、3.45。單、雙體理論線 的公式如下

$$A_{\rm m} = \frac{2\varepsilon_{\rm m}c_{\rm O}c^{\Theta}}{\left(1 + 8Kc_{\rm O}\right)^{1/2} + 1}$$
(3-3)

$$A_{\rm d} = \frac{\varepsilon_{\rm d} c_{\rm o} c^{\Theta}}{2} \left(\frac{\left(1 + 8Kc_{\rm o}\right)^{1/2} - 1}{\left(1 + 8Kc_{\rm o}\right)^{1/2} + 1} \right)$$
(3-6)

圖 3.44 為單體總吸收度 A_m對無因次化 B 的總濃度 c_o作圖, A_m的理論線 可由式 (3-3) 求得。圖 3.45 為雙體總吸收度 A_d對無因次化 B 的總濃度 c_o作圖, A_d的理論線可由式 (3-6) 求得。

圖 3.43 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中 van't Hoff 圖。 此處平衡數 K 為單雙體自結合常數的幾何平均值。

圖 3.44 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,A_m對c_o作圖。 其四組溫度分別為: (-■-)288K, (-◆-)298K, (-▲-)308K, (-▼-)318K。理論線可以由公式 (3-3) 得到。

圖 3.45 3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,A_a對c_o作圖。 其四組溫度分別為:(-■-)288K, (-●-)298K, (-▲-)308K, (-▼ -)318K。理論線可以由公式 (3-6) 得到。

3,5-二甲基-2-乙醯基吡咯溶於三氯乙烯溶劑中,在不同溫度下所求得知單體總莫耳吸收係數 Em、雙 體總莫耳吸收係數 Ed、單體自結合平衡常數 K,以及由不同溫度下之平衡常數作 van't Hoff 所求得的 表 3.10

單雙體自結合之標準焓AHP 及標準熵AS。

	適解單體吸り	女度所求之值	適解雙體吸收	女度所求之值	$K = (K_{\rm d} K'_{\rm d})^{1/2}$
通便	平衡常數 K'a	$arepsilon_{ m m}/ m Lcm^{-2}~mol^{-1}$	平衡常數 Ka	$\varepsilon_{\rm d}/{\rm Lcm^{-2}}{ m mol^{-1}}$	
15°C	14.5 ± 0.9	8102.6±15.2	13.1 ± 0.4	69104.0 ± 450.4	13.7 ± 0.7
25°C	8.9 ± 0.2	8008.7 ± 47.1	10.0 ± 0.4	67225.1 ± 846.1	9.4 ± 0.3
35°C	5.4 ± 0.3	7806.7 ± 54.9	5.7 ± 0.1	65514.3 ± 585.8	5.5 ± 0.2
45°C	3.8 ± 0.2	7698.4 ± 28.0	3.8 ± 0.1	63694.3 ± 1836.9	3.8 ± 0.1
單雙體自結合	含標準焓ΔH^Φ/kJ 1	$mol^{-1} = -33.5 \pm 1.8$			
單雙體自結合	☆之標準熵∆S ⁰ / J m	${ m ol}^{-1}{ m K}^{-1}=$ -94.1 \pm 6.0			

3.4 IR 實驗部分:單、雙體達平衡隨伴構型轉換平衡

3.4.1 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶液

此系統分別在 15° C、 25° C、 35° C及 45° C等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M) 是根據正辛烷在不同溫 度下的密度為參考數據⁴¹(15° C:0.7067, 25° C:0.6991, 35° C:0.6914, 45° C:0.6835 g mL⁻¹)。定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L),而在稀薄溶液中,假設溶液體基約等於溶劑體基 , 因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ。 圖 3.46 為 15 °C時,無因次化溶質的配置濃度分別為 0.0192、0.0159、 0.0128、0.0093 及 0.0059 時溶質的 NH 基 IR 吸收光譜。

圖 3.47 為 15 ℃時,無因次化溶質的配置濃度為 0.0159 時,將 NH 基的順式單體、反式單體及雙體吸收之重疊部分,以 Galatic 出品 的 PeakSolve GRAMS32 AI 軟體,利用高斯—勞倫茲(Gauss-Lorentz)混 合適解分佈曲線公式所分離之圖形。其中由較高吸收頻率至較低吸收 頻率分別為反式單體、順式單體吸收峰及雙體吸收峰。

表 3.11 為在四種不同溫度下,測量十組濃度後所得之順式、反式 單體及雙體的最大吸收位置、半高寬以及總吸收度。

 圖 3.46 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中,15℃時 所測得 N-H 基的 IR 光譜圖。無因次化溶質配置濃度分別 為:0.0192、0.0159、 0.0128、 0.0093 及 0.0059。

圖 3.47 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中在15℃無因次化溶質配置濃度為 0.0159 時所做的 N-H 基適解譜線。

表 3.11 在不同溫度下,3,5-二甲基-1H-吡咯-2-甲酸乙酯溶在正辛烷 溶劑中,改變不同無因次化溶質濃度時,順式單體、反式單 體及雙體最大吸收位置、半高寬及總吸收度。

T=15°C	順式	單體吸收		反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0059	3462.4	8.8	27.3	3482.0	7.9	6.5
0.0080	3461.8	8.8	34.0	3481.2	7.9	8.2
0.0093	3462.4	8.7	37.8	3481.7	8.0	9.1
0.0112	3461.8	8.9	42.9	3481.2	7.9	10.3
0.0128	3461.5	8.7	46.9	3480.8	8.1	11.3
0.0143	3461.6	8.7	50.6	3480.9	7.9	12.1
0.0159	3461.9	8.8	54.2	3481.3	7.9	13.0
0.0176	3461.6	8.7	57.9	3480.9	8.0	13.9
0.0192	3462.1	8.7	61.2	3481.4	8.0	14.6
0.0206	3461.9	8.6	64.0	3481.2	8.0	15.3

			18	96
T=15°C	雙	體吸收	 怿	
C _O	最大 吸收位置	半高寬	總吸收度	
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	
0.0059	3313.4	32.2	82.4	
0.0080	3313.1	32.3	127.6	
0.0093	3313.6	31.8	157.7	
0.0112	3312.5	32.1	203.2	
0.0128	3312.3	32.0	243.4	
0.0143	3312.6	32.1	281.9	
0.0159	3312.2	32.1	323.9	

32.5

32.0

32.0

0.0176

0.0192

0.0206

3312.2

3312.6

3312.3

369.5

413.2

451.8

接續表 3.11

T=25°C	順式	單體吸收		反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0057	3462.5	8.9	27.8	3482.1	8.1	7.0
0.0077	3462.0	9.0	35.0	3481.5	8.1	8.9
0.0094	3461.1	8.9	40.5	3480.7	8.1	10.2
0.0111	3462.5	9.1	45.5	3482.0	8.1	11.4
0.0127	3462.7	9.1	50.0	3482.2	8.2	12.6
0.0143	3461.8	9.1	54.2	3481.4	8.1	13.6
0.0159	3462.1	9.0	58.3	3481.4	8.1	14.7
0.0176	3462.1	9.0	62.4	3481.4	8.1	15.6
0.0193	3462.5	8.9	66.3	3481.9	8.1	16.8
0.0210	3462.1	8.9	70.0	3481.5	8.1	17.8

0.0193	3462.5	8.9	66.3	3481.9	8.1
0.0210	3462.1	8.9	70.0	3481.5	8.1
T=25°C	雙	體吸收	¥ 1 9	96	
C ₀	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)		
0.0057	3314.8	33.2	67.0		
0.0077	3314.5	33.3	105.0		
0.0094	3312.9	33.3	140.3		
0.0111	3314.3	32.9	177.5		
0.0127	3314.4	32.9	214.4		
0.0143	3313.3	33.2	252.0		
0.0159	3313.3	33.1	290.5		
0.0176	3313.9	33.2	332.8		
0.0193	3313.7	33.2	375.9		
0.0210	3313.6	33.2	419.9		

接續表 3.11

T=35°C	順式	單體吸收		反式	單體吸收	 文峰
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0075	3462.9	9.1	36.9	3482.4	8.4	9.5
0.0091	3463.1	8.9	42.7	3482.5	8.4	11.0
0.0110	3463.0	8.9	49.2	3482.3	8.3	12.8
0.0127	3462.3	9.0	54.7	3481.6	8.3	14.3
0.0143	3462.3	8.9	59.4	3481.8	8.4	15.3
0.0161	3462.4	8.9	64.6	3481.8	8.3	16.6
0.0180	3462.2	9.0	69.9	3481.6	8.3	18.3
0.0195	3461.9	8.9	73.6	3481.2	8.4	19.2
0.0211	3462.8	8.9	77.9	3482.1	8.4	20.1
0.0236	3462.2	9.0	84.3	3481.4	8.3	21.8

0.0211	3462.8	8.9	77.9	3482.1	8.4
0.0236	3462.2	9.0	84.3	3481.4	8.3
					113
					' IE
T=35°C	雙	體吸收峰	<u>18</u>	96	
C	最大	坐古空	物皿收亩		
c_0	吸收位置	十回見	總双收反		
(毎 留 仕)	(am^{-1})	(1)	$\left(-\frac{1}{2} \right)$		
(無単位)	(cm)	(cm)	(cm)		
0.0075	3315.2	33.5	81.8		
0.0091	3315.4	33.7	110.1		
0.0110	3314.7	33.2	145.6		
0.0127	3314.5	33.3	179.9		
0.0143	3314.5	33.7	213.3		
0.0161	3314.5	33.8	252.5		
0.0180	3314.4	33.8	294.2		
0.0195	3314.1	33.8	329.7		
0.0211	3314.9	33.6	366.6		
0.0236	3314.7	33.5	425.8		

接續表 3.11

T=45°C	順式	單體吸收	 佐峰	反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0058	3462.6	9.0	32.3	3482.0	8.6	9.0
0.0082	3463.0	9.1	43.0	3482.4	8.6	11.9
0.0098	3462.6	9.1	50.0	3482.1	8.6	13.5
0.0115	3462.6	9.2	56.5	3482.1	8.6	15.4
0.0133	3463.2	9.1	63.5	3482.6	8.6	17.6
0.0150	3462.8	9.1	69.2	3482.2	8.6	18.9
0.0167	3462.1	9.2	74.8	3481.5	8.6	20.6
0.0185	3462.6	9.1	81.2	3482.1	8.6	22.4
0.0202	3462.5	9.1	86.8	3481.9	8.6	23.9
0.0218	3463.0	9.1	91.2	3482.4	8.7	25.1

0.0202	5402.5	9.1	00.0	5461.9	0.0
0.0218	3463.0	9.1	91.2	3482.4	8.7
					ΊΕ
T=45°C	雙	體吸收	牟 1 8	96	
c _o	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)		
0.0058	3315.8	34.1	37.7		
0.0082	3316.3	34.1	67.3		
0.0098	3315.5	34.1	89.8		
0.0115	3316.0	34.6	115.4		
0.0133	3316.5	34.1	145.0		
0.0150	3315.7	34.2	173.2		
0.0167	3315.2	34.2	205.4		
0.0185	3315.5	34.7	236.7		
0.0202	3315.4	34.5	268.9		
0.0218	3315.8	34.4	301.2		

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為 $v^{obs} = v_o - C \frac{(D-1)}{(2D+1)}$,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置, v_o 為溶質在真空狀態時特定官能基的最大吸收位置, C為常數, D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到正辛烷的介電常數參考數據 以及系統於四種溫度下的介電常數值(15℃:1.9545,25℃:1.9415, 35℃:1.9285,45℃:1.9155)。將在溶液下觀察到順式單體的 N-H 基 伸縮振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-173.65X + 3495.7,結果 如圖 3.48 所示。其中截距為3495.7 cm⁻¹代表外插到 D=1 的狀態,即溶 質於真空狀態下順式單體 N-H 基的伸縮振動頻率 v_c^0 。將在溶液下觀察 到反式單體的 N-H 基伸縮振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-178.03X + 3515.9,結果如圖 3.49 所示。其中截距為3515.9 cm⁻¹代表外 插到 D=1 的狀態,即溶質於真空狀態下反式單體 N-H 基的伸縮振動 頻率 v_c^0 。

由表 3.11 知定溫下順式、反式單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15 ℃、25 ℃、35 ℃及 45 ℃時的順式、反

129

式單體最大吸收頻率位置做平均,將四個溫度下的(D-1) (2D+1) 值整理如下

正辛烷	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.1944	0.1928	0.1912	0.1895
\mathbf{v}_t^{obs} / cm ⁻¹	3481.3 ± 0.1	3481.6 ± 0.2	3481.9 ± 0.2	3482.1 ± 0.1
v_c^{obs} / cm ⁻¹	3461.9 ± 0.1	3462.2 ± 0.2	3462.5 ± 0.2	3462.7 ± 0.1

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場*R* (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-19) 並利用比爾定理將順式、反式構型轉換平衡常數 K₁ 整理成

$$K_{1} = \frac{c_{B_{t}}}{c_{B_{c}}} = \frac{\frac{[B_{t}]}{c^{\Theta}}}{\frac{[B_{c}]}{c^{\Theta}}} = \frac{\frac{A_{t}}{\varepsilon_{t}}}{\frac{A_{c}}{\varepsilon_{c}}} = \frac{A_{t}}{A_{c}} (\frac{\varepsilon_{c}}{\varepsilon_{t}}) = \frac{A_{t}}{A_{c}} \times \text{constant}$$
(3-7)

已知定溫下反式單體、順式單體的總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_t 及順式單體自結合平衡常數 K_1 為定值。因此由式 (3-7) 知,在固定溫度下 A_1 / A_c 也為定值,不隨初始濃度 <math>c_0$ 改變。如圖 3.50 為 A_1 / A_c 對初始無因次化 B 的配置濃度 c_0 做圖。

整理式 (2-22) 並利用比爾定理將自結合平衡常數 K2 整理成

$$K_{2} = \frac{c_{B_{2}}}{c_{B_{c}}^{2}} = \frac{\frac{[B_{2}]}{c^{\Theta}}}{(\frac{[B_{C}]}{c^{\Theta}})^{2}} = \frac{\frac{A_{d}}{\varepsilon_{d}}c^{\Theta}}{(\frac{A_{C}}{\varepsilon_{C}})^{2}} = \frac{A_{d}}{A_{C}^{2}}(\frac{\varepsilon_{C}^{2}c^{\Theta}}{\varepsilon_{d}}) = \frac{A_{d}}{A_{C}^{2}} \times \text{constant}$$
(3-8)

已知定溫下順式單體、雙體的總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_d$ 及順式單體自結 合平衡常數 K_2 為定值。因此由式 (3-8) 知,在固定溫度下 A_d / A_c^2 也為 定值,不隨初始濃度 c_0 改變。如圖 3.51 為 A_d / A_c^2 對初始無因次化 B 的 配置濃度 c_0 做圖。

圖 3.48 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中,不同溫 度下的順式單體最大吸收峰位置 v^{obs} 對(D−1)/(2D+1)作圖, 其中D為正辛烷的介電常數。

圖 3.49 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中,不同溫 度下的反式單體最大吸收峰位置 v_t^{obs} 對(D−1)/(2D+1)作圖, 其中 D 為正辛烷的介電常數。

圖 3.50 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中A_tA_c⁻¹對 c_o作圖。所得線性圖。其四組溫度分別為: (-■-)288K, (-● -)298K, (-▲-)308K, (-▼-)318K。

圖 3.51 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中A_dA_c⁻²對 c_o作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲ -)308K, (-▼-)318K。

將公式 (2-33)、公式 (2-36)、公式 (2-39) 整理如下

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2(c^{\Theta})^2} A_c + \frac{1+K_1}{\varepsilon_{\rm c}c^{\Theta}}$$
(2-33)

$$\frac{c_{\rm o}}{A_{\rm t}} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}}$$
(2-36)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1 + K_{\rm 1}}{K_2^{1/2} \varepsilon_{\rm d}^{1/2} (c^{\Theta})^{1/2}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-39)

由於我們無法利用式 (2-33)、式 (2-36) 及式 (2-39) 的斜率與截距求 得順式、反式總莫耳吸收係數、構型轉換平衡常數 K₁及單雙自結合平 衡常數 K₂。退而求其次,利用實驗配合理論計算的方式,將構型轉換 平衡常數 K₁求出,以解出光譜參數 ε_c、ε_t及熱力學參數 K₂。光譜參數 ε_d 是獨立變數,可以由式 (2-39) 得到。透過式 (3-7) 如下

$$K_1 = \frac{A_t}{A_C} \frac{\varepsilon_C}{\varepsilon_t}$$
(3-7)

經由軟體可以適解紅外光譜資料,得到順式、反式單體吸收度 A_c 、 A_t , 且藉由台大蘇志明教授的幫忙,能利用理論計算的方式求出順式與反 式的總吸收係數比 $\varepsilon_c / \varepsilon_t$,因此構型轉換平衡常數 K_1 即可求出。將得 到的 K_1 代入式 (2-33)、式 (2-36)、式 (2-39)中求得順式單體吸收係 數 ε_c 、反式單體吸收係數 ε_t 、雙體吸收係數 ε_d 、順式單體自結合平衡 常數 K₂。

圖 3.52 為利用表 3.11 中定溫下,順式單體在吸收帶的總吸收度 A_c ,代入順式單體的公式 (2-33),並以 $Y = c_0 / A_c$ 對 $X = A_c$ 做線性圖。 圖 3.53 為利用表 3.11 中定溫下,反式、順式單體在吸收帶的總吸收 度 A_i 、 A_c ,代入反式單體的公式 (2-36),並以 $Y = c_0 / A_i$ 對 $X = A_c$ 做線 性圖。圖 3.54 為利用表 3.11 中定溫下,雙體在吸收帶的總吸收度 A_d , 代入雙體的公式 (2-39),並以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 做線性圖。

把熱力學參數、光譜參數列於表 3.12 中。將不同溫度下的構型轉換平衡常數 K_1 、單體自結合平衡常數 K_2 做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$ 。以Y= $\ln K$ 對 X= $\frac{1}{T}$ 做線性圖,得到斜率 $-\frac{\Delta H^{\Theta}}{R}$ 及 截距 $\frac{\Delta S^{\Theta}}{R}$ 。因此由斜率、截距可以分別求出單體構型轉換的標準焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 、順式單體自結合的標準焓 ΔH_2^{Θ} 及熵 ΔS_2^{Θ} 。

圖 3.55 為 $\ln K_1$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.12 可以看出,由單體構型轉換平衡常數值求出的焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 分別為 3.33 kJ mol⁻¹ 與 0.37 J mol⁻¹ K⁻¹。當溫度升高時,會使單體構型轉換平衡常數 K_1 值變大, 增加溫度使得順式單體獲得的能量越多,使之能克服能障轉成反式構型,增加了反式的居量。由求出的焓知,順式單體轉成反式單體為吸熱反應。

圖 3.56 為 $\ln K_2$ 對 $\frac{1}{T}$ 做 van t Hoff 圖。表 3.12 可以看出,單體自結

合平衡常數值求出的焓ΔH^θ及熵ΔS^θ分別為-28.7kJmol⁻¹與 -59.0Jmol⁻¹K⁻¹。如表 3.12,當溫度升高時,會使順式單體自結合平衡 常數K₂值變小,降低自結合的形成,因此確認由氫鍵形成的自結合為 放熱反應。

 圖 3.52 由公式 (2-33) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於 正辛烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

 圖 3.53 由公式 (2-36) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於 正辛烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

 圖 3.54 由公式 (2-39) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於 正辛烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-)298K, (-●-)308K, (-♥-)318K。

圖 3.55 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中 van't Hoff 圖。K₁為構型轉換的平衡常數。

圖 3.56 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正辛烷溶劑中 van't Hoff 圖。K₂為順式單體自結合的平衡常數。

TIM

3.12	3,5-1	-甲基-1H-吡咯-2-甲	酸乙酯溶於正辛烷>	溶劑中,在不同溫月	度下所求得知順式員	目體總莫耳吸收係
	數 Ec、	反式單體總莫耳吸	收係數 Ei、雙體總計	莫耳吸收係數 Ed、單	L體自結合常數 K2	、單體構型轉換平
	衡常數	ξK_1 ,以及由不同溫	度條件下之平衡常	數所求得的構型轉表	条的標準反應焓∆H1	●及標準熵∆S1 [●] 及
	單體自	結合之標準焓∆H2 ⁹	及標準熵∆S2 [●] 。			
		構型轉換平衡常	單體自結合平衡	順式單體吸收係	反式單體吸收係	雙體吸收係數

表

	構型轉換平衡常	單體自結合平衡	順式單體吸收係	反式單體吸收係	雙體吸收係數
遛废	K_1	K_2	$\varepsilon_{\rm C}/{\rm Lcm}^{-2}~{\rm mol}^{-1}$	$\varepsilon_{\rm t}/{\rm Lcm^{-2}}{ m mol^{-1}}$	$\varepsilon_{\rm d}/{\rm Lcm^{-2}}{ m mol^{-1}}$
15°C	0.261 ± 0.004	122.6 ± 0.5	9169.7 ± 21.0	8477.1 ± 42.6	76365.0 ± 53.8
25°C	0.273 ± 0.001	94.6 ± 0.6	9035.8 ± 36.4	8343.5 ± 100.6	76365.0 ± 53.8
35°C	0.284 ± 0.002	65.2 ± 0.9	8943.2 ± 58.4	8173.2 ± 136.1	73909.8 ± 205.4
45°C	0.298 ± 0.003	39.3 ± 0.3	8825.4 ± 62.2	8124.1 ± 112.9	72046.1 ± 509.5
構型轉換的標	需準反應焓∆H1 ^e /kJ	$mol^{-1} = 3.33 \pm 0.13$			
構型轉換的標	菁準反應熵∆S1 ^e / J m	$10^{-1} \mathrm{K}^{-1} = 0.37 \pm 0.04$			
單體自結合的	り標準反應焓△H2 [●] /	kJ mol ⁻¹ = -28.7 ± 3.5	27		
單雙體自結合	於之標準熵ΔS2 ^θ /Jm	$10^{-1} \text{ K}^{-1} = -59.0 \pm 11.$	8		

3.4.2 3.5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶液

此系統分別在 15° C、 25° C、 35° C及 45° C等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M) 是根據正庚烷在不同溫 度下的密度為參考數據 ⁴¹(15° C:0.6905, 25° C:0.6821, 35° C:0.6736, 45° C:0.6649 g mL⁻¹)。定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基, 因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ。 圖 3.57 為 15° C時, 無因次化溶質配置濃度分別為 0.0216、0.0168、0.0128、 0.0095 及 0.0058 時溶質的 NH 基 IR 吸收光譜。

圖 3.58 為 15℃時,無因次化溶質的配置濃度為 0.0184 時,將 NH 基的順式單體、反式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,利用高斯—勞倫茲(Gauss-Lorentz)混合 適解分佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收頻 率分別為反式單體、順式單體吸收峰及雙體吸收峰。

表 3.13 為在四種不同溫度下,測量十組濃度後所得之順式、反式 單體及雙體的最大吸收位置、半高寬以及總吸收度。

 圖 3.57 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中,15℃時 所測得 N-H 基的 IR 光譜圖。無因次化溶質配置濃度分別 為:0.0216、 0.0168、 0.0128、 0.0095 及 0.0058。

圖 3.58 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中在 15℃ 無因次化溶質配置濃度為 0.0184 時所做的 N-H 基適解譜 線。

表 3.13 在不同溫度下,3,5-二甲基-1H-吡咯-2-甲酸乙酯溶在正庚烷 溶劑中,改變不同無因次化溶質濃度時,順式單體、反式單 體及雙體最大吸收位置、半高寬及總吸收度。

T=15°C	順式單體吸收峰			反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0058	3462.5	8.5	26.1	3481.9	8.1	6.4
0.0077	3462.3	8.6	31.9	3481.8	7.9	7.8
0.0095	3462.3	8.6	37.1	3481.7	7.9	9.1
0.0112	3461.8	8.6	41.5	3481.1	8.0	10.3
0.0128	3462.2	8.5	45.2	3481.5	8.0	11.1
0.0147	3462.0	8.5	49.0	3481.3	8.0	12.1
0.0168	3462.2	8.4	54.1	3481.4	8.0	13.3
0.0184	3462.1	8.5	57.4	3481.4	8.0	14.3
0.0203	3462.2	8.5	61.0	3481.4	8.1	15.3
0.0216	3461.9	8.5	63.2	3481.1	8.0	15.5

1896	
遭吸收峰	
半高寬 總吸收度	

C ₀	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0058	3313.0	32.1	73.7
0.0077	3313.7	32.3	110.7
0.0095	3313.2	32.2	148.3
0.0112	3312.7	32.4	185.4
0.0128	3312.9	32.2	223.6
0.0147	3312.8	32.1	266.2
0.0168	3313.5	31.9	316.3
0.0184	3312.8	32.2	353.4
0.0203	3313.4	32.0	402.7
0.0216	3312.7	32.1	435.2

T=15°C

接續表 3.13

T=25°C	順式單體吸收峰			反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0065	3463.3	8.6	30.0	3482.9	8.0	7.7
0.0085	3463.2	8.6	36.6	3482.5	8.2	9.4
0.0103	3462.8	8.5	41.9	3482.1	8.2	10.8
0.0121	3462.8	8.6	47.2	3482.2	8.2	12.3
0.0138	3463.1	8.6	51.4	3482.4	8.1	13.3
0.0156	3462.8	8.6	55.7	3482.1	8.1	14.3
0.0175	3462.0	8.6	60.5	3481.3	8.2	15.4
0.0192	3462.5	8.6	64.1	3481.7	8.0	16.9
0.0213	3462.5	8.7	68.5	3481.8	8.2	17.7
0.0228	3463.4	8.6	71.5	3482.5	8.3	18.5

0.0213	3462.5	8.7	68.5	3481.8	8.2
0.0228	3463.4	8.6	71.5	3482.5	8.3
T=25°C	雙	體吸收山	<u>峰 1 👷</u>	96	
C ₀	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)		
0.0065	3315.1	33.3	74.5		
0.0085	3315.0	33.5	110.3		
0.0103	3314.8	33.3	145.1		
0.0121	3314.0	33.2	182.5		
0.0138	3314.9	33.1	217.7		
0.0156	3314.1	33.6	257.1		
0.0175	3313.6	33.0	299.4		
0.0192	3314.6	32.7	338.5		
0.0213	3313.9	33.0	387.3		
0.0228	3315.1	32.8	423.0		

接續表 3.13

T=35°C	順式單體吸收峰			反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0058	3463.2	8.8	29.4	3482.6	8.3	7.9
0.0075	3463.2	8.8	35.8	3482.6	8.4	9.7
0.0093	3463.2	8.9	42.5	3482.6	8.3	11.5
0.0111	3463.2	8.7	48.3	3482.6	8.4	13.0
0.0128	3463.2	8.8	53.5	3482.6	8.4	14.4
0.0145	3463.2	8.9	58.3	3482.6	8.4	15.9
0.0163	3463.2	8.8	63.7	3482.6	8.4	17.5
0.0181	3463.2	8.9	68.6	3482.6	8.4	18.6
0.0200	3463.2	8.8	73.6	3482.6	8.4	19.6
0.0220	3463.2	8.7	78.2	3482.6	8.4	21.1

0.0000					
0.0200	3463.2	8.8	73.6	3482.6	8.4
0.0220	3463.2	8.7	78.2	3482.6	8.4
				8	17
T=35°C	雙	體吸收的	¥ 1 <u>8</u>	96	
C	最大	业古空	纳四此府		S
ι_0	吸收位置	十回見	總效收及		
(血留仕)	(am^{-1})	$\left(am^{-1}\right)$	(am^{-1})		
(無単位)	(CIII)	(cm)	(cm)		
0.0058	3315.4	34.4	49.5		
0.0075	3315.9	34.5	74.4		
0.0093	3315.1	34.8	102.8		
0.0111	3315.4	34.4	133.6		
0.0128	3315.7	34.5	164.5		
0.0145	3316.0	34.4	197.4		
0.0163	3315.9	34.3	231.7		
0.0181	3314.8	34.3	268.4		
0.0200	3315.7	34.1	308.1		
0.0220	3315.4	34.3	349.8		

接續表 3.13

T=45°C	順式單體吸收峰			反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0063	3463.6	8.8	34.3	3483.5	8.6	9.7
0.0085	3463.6	8.8	44.4	3483.1	8.7	12.5
0.0101	3463.6	8.7	51.1	3483.3	8.7	14.4
0.0120	3463.6	8.8	58.5	3483.2	8.7	16.4
0.0136	3463.6	8.8	64.6	3482.3	8.7	18.3
0.0153	3463.6	8.8	70.5	3483.1	8.7	19.8
0.0171	3463.6	8.7	76.0	3483.1	8.7	21.8
0.0189	3463.6	8.8	82.6	3482.9	8.7	23.6
0.0204	3463.6	8.8	87.6	3482.4	8.7	24.8
0.0221	3463.6	8.8	92.8	3483.1	8.7	26.2

0.0204	3463.6	8.8	87.6	3482.4	8.7
0.0221	3463.6	8.8	92.8	3483.1	8.7
T=45°C	雙	體吸收的	<u> </u>	96	
c _o	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})		
0.0063	3317.3	34.6	37.2		
0.0085	3317.0	34.3	61.2		
0.0101	3317.3	34.8	81.4		
0.0120	3316.9	34.3	106.7		
0.0136	3316.4	35.0	129.6		
0.0153	3316.9	34.7	155.0		
0.0171	3316.9	34.5	183.9		
0.0189	3316.7	34.2	213.3		
0.0204	3316.6	34.3	239.6		
0.0221	3316.9	34.4	269.3		

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 47,48 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為 $v^{obs} = v_o - C \frac{(D-1)}{(2D+1)}$,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置, v_o 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到正庚烷的介電常數參考數據 以及系統於四種溫度下的介電常數值(15°C:1.931,25°C:1.917,35 °C:1.903,45°C:1.889)。將在溶液下觀察到順式單體的 N-H 基伸縮 振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-264.44X + 3512.9,結果如圖 3.59 所示。其中截距為 3512.9cm⁻¹代表外插到 D = 1 的狀態,即溶質於 真空狀態下順式單體 N-H 基的伸縮振動頻率 v_c^{o} 。將在溶液下觀察到反 式 單 體 的 N-H 基 伸縮 振動 頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性 迴歸可 得 Y=-284.23X + 3536.0,結果如圖 3.60 所示。其中截距為 3536.0cm⁻¹代表 外插到 D = 1 的狀態,即溶質於真空狀態下反式單體 N-H 基的伸縮振 動頻率 v_c^{o} 。

由表 3.13 知定溫下順式、反式單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的順式、反式單

147

體最大吸收頻率位置做平均,且將四個溫度下的(D-1) (2D+1) 值整理如下

正庚烷	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.1915	0.1897	0.1879	0.1861
v_t^{obs} / cm ⁻¹	3481.4 ± 0.1	3482.2 ± 0.2	3482.6 ± 0.1	3483.1 ± 0.1
v_c^{obs} / cm ⁻¹	3462.2 ± 0.1	3462.8 ± 0.2	3463.2 ± 0.1	3463.6 ± 0.1

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-19) 並利用比爾定理將順式、反式構型轉換平衡常數 K₁ 整理成

$$K_{1} = \frac{c_{B_{t}}}{c_{B_{c}}} = \frac{\frac{[B_{t}]}{c^{\Theta}}}{\frac{[B_{c}]}{c^{\Theta}}} = \frac{\frac{A_{t}}{\varepsilon_{t}}}{\frac{A_{c}}{\varepsilon_{c}}} = \frac{A_{t}}{A_{c}} (\frac{\varepsilon_{c}}{\varepsilon_{t}}) = \frac{A_{t}}{A_{c}} \times \text{constant}$$
(3-7)

已知定溫下反式單體、順式單體的總莫耳吸收係數*E_c、E_t及順式單體自結合平衡常數K₁為定值。因此由式 (3-7) 知,在固定溫度下A_t/A_c也為 定值,不隨初始濃度<i>c*₀改變。如圖 3.61 為*A_t/A_c*對初始無因次化 *B* 的 配置濃度*c*₀做圖。

整理式 (2-22) 並利用比爾定理將自結合平衡常數 K2 整理成

$$K_{2} = \frac{c_{B_{2}}}{c_{B_{c}}^{2}} = \frac{\frac{[B_{2}]}{c^{\Theta}}}{(\frac{[B_{C}]}{c^{\Theta}})^{2}} = \frac{\frac{A_{d}}{\varepsilon_{d}}c^{\Theta}}{(\frac{A_{C}}{\varepsilon_{C}})^{2}} = \frac{A_{d}}{A_{C}^{2}}(\frac{\varepsilon_{C}^{2}c^{\Theta}}{\varepsilon_{d}}) = \frac{A_{d}}{A_{C}^{2}} \times \text{constant}$$
(3-8)

已知定溫下順式單體、雙體的總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_d$ 及順式單體自結 合平衡常數 K_2 為定值。因此由式 (3-8) 知,在固定溫度下 A_d / A_c^2 也為 定值,不隨初始濃度 c_0 改變。如圖 3.62 為 A_d / A_c^2 對初始無因次化 B 的 配置濃度 c_0 做圖。

圖 3.59 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中,不同溫 度下的順式單體最大吸收峰位置 V^{obs} 對(D−1)/(2D+1)作圖, 其中 D 為正庚烷的介電常數。

圖 3.60 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中,不同溫 度下的反式單體最大吸收峰位置 v_t^{obs} 對(D-1)/(2D+1)作圖, 其中 D 為正庚烷的介電常數。

圖 3.61 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中A_tA_c⁻¹對 c₀作圖。其四組溫度分別為: (-●-)288K, (-●-)298K, (-▲ -)308K, (-▼-)318K。

圖 3.62 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中A_dA_c⁻²對 c₀作圖。所得線性圖。其四組溫度分別為: (-■-)288K, (-● -)298K, (-▲-)308K, (-▼-)318K。
我們將公式 (2-33)、公式 (2-36)、公式 (2-39) 整理如下

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2(c^{\Theta})^2} A_c + \frac{1+K_1}{\varepsilon_{\rm c}c^{\Theta}}$$
(2-33)

$$\frac{c_{\rm o}}{A_{\rm t}} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}}$$
(2-36)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1+K_{\rm I}}{K_2^{1/2}\varepsilon_{\rm d}^{1/2}(c^{\Theta})^{1/2}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d}c^{\Theta}}$$
(2-39)

由於我們無法利用式 (2-33)、式 (2-36) 及式 (2-39) 的斜率與截距求 得順式、反式總莫耳吸收係數、構型轉換平衡常數 K₁及單雙自結合平 衡常數 K₂。退而求其次,我們利用實驗配合理論計算的方式,將構型 轉換平衡常數 K₁求出,以解出光譜參數 $\varepsilon_c \sim \varepsilon_i$ 及熱力學參數 K₂。光譜 參數 ε_d 是獨立變數,可以由式 (2-39) 得到。透過式 (3-7) 如下

$$K_1 = \frac{A_t}{A_c} \frac{\varepsilon_c}{\varepsilon_t}$$
(3-7)

經由軟體可以適解紅外光譜資料,得到順式、反式單體吸收度 A_c 、 A_i , 且藉由台大蘇志明教授的幫忙,能利用理論計算的方式求出順式與反 式的總吸收係數比 $\varepsilon_c / \varepsilon_i$,因此構型轉換平衡常數 K_i 即可求出。將得 到的 K_i 代入式 (2-33)、式 (2-36)、式 (2-39)中求得順式單體吸收係 數 ε_{c} 、反式單體吸收係數 ε_{t} 、雙體吸收係數 ε_{d} 、順式單體自結合平衡常數 K_{2} 。

圖 3.63 為利用表 3.13 中定溫下,順式單體在吸收帶的總吸收度 A_c ,代入順式單體的公式 (2-33),並以 $Y = c_0 / A_c$ 對 $X = A_c$ 做線性圖。 圖 3.64 為利用表 3.13 中定溫下,反式、順式單體在吸收帶的總吸收 度 A_t 、 A_c ,代入反式單體的公式 (2-36),並以 $Y = c_0 / A_t$ 對 $X = A_c$ 做線 性圖。圖 3.65 為利用表 3.13 中定溫下,雙體在吸收帶的總吸收度 A_d , 代入雙體的公式 (2-39),並以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 做線性圖。

把熱力學參數、光譜參數列於表 3.14 中。將不同溫度下的構型轉換 平衡常數 K_1 、單體自結合平衡常數 K_2 做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$ 。以Y= $\ln K$ 對 X= $\frac{1}{T}$ 做線性圖,得到斜率 $-\frac{\Delta H^{\Theta}}{R}$ 及截距 $\frac{\Delta S^{\Theta}}{R}$ 。因此由斜率、截距可以分別求出單體構型轉換的標準焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 、順式單體自結合的標準焓 ΔH_2^{Θ} 及熵 ΔS_2^{Θ} 。

圖 3.66 為 ln K_1 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.14 可以看出,由單體構型轉換平衡常數值求出的焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 分別為 3.42 kJ mol⁻¹ 與 0.96 J mol⁻¹ K⁻¹。當溫度升高時,會使單體構型轉換平衡常數 K_1 值變大, 增加溫度使得順式單體獲得的能量越多,使之能克服能障轉成反式構型,增加了反式的居量,由求出的焓知,順式單體轉成反式單體為吸熱反應。 圖 3.67 為 $\ln K_2$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.14 可以看出,單體自結 合 平 衡 常 數 值 求 出 的 焓 ΔH_2^{Θ} 及 熵 ΔS_2^{Θ} 分 別 為 - 32.1k J mol⁻¹ 與 - 70.1J mol⁻¹ K⁻¹。如表 3.14,當溫度升高時,會使順式單體自結合平衡 常數 K_2 值變小,降低自結合的形成,因此確認由氫鍵形成的自結合為 放熱反應。

圖 3.64 由公式 (2-36)所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 正庚烷溶中所得線性圖。其四組溫度分別為: (-■-)288K, (●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.66 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中 van't Hoff 圖。K1為構型轉換的平衡常數。

圖 3.67 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中 van't Hoff 圖。K₂為順式單體自結合的平衡常數。

3.14 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於正庚烷溶劑中,在不同溫度下所求得知順式單體總莫耳吸收係	數 Ec、反式單體總莫耳吸收係數 Et、雙體總莫耳吸收係數 Ed、單體自結合常數 K2、單體構型轉換乎	衡常數 K1,以及由不同溫度條件下之平衡常數所求得的構型轉換的標準反應焓AH1 ⁺ 及標準熵AS1 ⁺ B	單體自結合之標準焓AH2 ⁺ 及標準熵AS2 ⁺ 。
表			

	構型轉換平衡常	單體自結合平衡	順式單體吸收係	反式單體吸收係	雙體吸收係數
遛废	K_1	K_2	$\varepsilon_{\rm C}/{\rm Lcm^{-2}}~{ m mol^{-1}}$	$\varepsilon_{ m t} / m Lcm^{-2} mol^{-1}$	$\varepsilon_{\rm d}/{\rm Lcm}^{-2}{ m mol}^{-1}$
15°C	0.269 ± 0.002	132.0 ± 4.0	9139.3 ± 15.5	8117.2 ± 22.8	68212.8 ± 411.5
25°C	0.282 ± 0.003	99.1 ± 1.5	9011.4 ± 82.6	8082.6 ± 39.4	67272.1 ± 181.6
35°C	0.295 ± 0.003	67.3 ± 0.7	8762.8 ± 73.5	8054.0 ± 135.7	66489.6 ± 251.8
45°C	0.308 ± 0.002	36.5 ± 0.3	8749.9 ± 68.0	7928.1 ± 41.2	65423.6 ± 318.5
構型轉換的標	菁準反應焓ΔH₁^e/kJ	$mol^{-1} = 3.42 \pm 0.06$			
構型轉換的標	菁準反應熵∆S ₁ [●] /Jm	$10^{-1} \text{ K}^{-1} = 0.96 \pm 0.19$	6		
單體自結合的	り標準反應焓∆H2 ^e /]	kJ mol ⁻¹ = -32.1 ± 4.6	ý		
單雙體自結合	♪之標準熵∆S2 [●] /Jm	$\text{tol}^{-1} \text{ K}^{-1} = -70.1 \pm 15.$	3		

3.4.3 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環己烷溶液

此系統分別在 15° 、 25° 、 35° C 及 45° C等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M) 是根據甲基環已烷在不同溫度下的密度為參考數據 ⁴¹(15° C : 0.7747, 25° C : 0.76613, 35° C : 0.7574, 45° C : 0.7486 g mL⁻¹)。定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基,因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m = 溶劑密度 p°圖 3.68 為 15° C時, 無因次化溶質的配置濃度分別為0.0224、0.0182、0.0142、0.0105 及 0.0067 時溶質的 NH 基 IR 吸收光譜。

圖 3.69 為 15 ℃時,無因次化溶質的配置濃度為 0.0106 時,將 NH 基的順式單體、反式單體及雙體吸收之重疊部分,以 Galatic 出品 的 PeakSolve GRAMS32 AI 軟體,利用高斯—勞倫茲(Gauss-Lorentz)混 合適解分佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收 頻率分別為反式單體、順式單體吸收峰及雙體吸收峰。

表 3.15 為在四種不同溫度下,測量十組濃度後所得之順式、反式 單體及雙體的最大吸收位置、半高寬以及總吸收度。

圖 3.68 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中,
 15℃時所測得 N-H 基的 IR 光譜圖。無因次化溶質配置濃度分別為:0.0224、0.0182、0.0142、0.0105 及 0.0067。

圖 3.69 3,5-二甲基-1H-吡咯-2-甲酸乙酯於甲基環己烷溶劑中在 25℃無因次化溶質配置濃度為 0.0184 時所做的 N-H 基適 解譜線。

表 3.15 在不同溫度下,3,5-二甲基-1H-吡咯-2-甲酸乙酯溶在甲基環 已烷溶劑中,改變不同無因次化溶質濃度時,順式單體、反 式單體及雙體最大吸收位置、半高寬及總吸收度。

T=15°C	順式	單體吸收		反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0067	3461.2	8.6	31.4	3480.1	7.9	8.9
0.0082	3461.0	8.7	36.6	3480.0	7.8	10.2
0.0105	3460.2	8.6	43.6	3479.1	7.8	12.3
0.0122	3460.8	8.4	48.4	3479.6	7.8	14.0
0.0142	3460.3	8.6	55.4	3479.2	8.0	15.0
0.0164	3460.0	8.4	59.2	3478.7	7.9	16.7
0.0182	3460.9	8.4	63.4	3479.7	7.9	17.9
0.0202	3460.0	8.3	67.9	3478.8	7.8	19.2
0.0224	3459.9	8.3	73.0	3478.6	7.8	20.9
0.0244	3460.3	8.3	76.7	3479.1	7.8	21.6
					IE	
			18	96	IS	

			18
T=15°C	雙	體吸收峰	\$
C _O	最大吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0067	3312.5	36.8	85.8
0.0082	3312.2	37.0	115.4
0.0105	3311.3	37.1	164.6
0.0122	3312.0	36.8	202.7
0.0142	3311.6	36.8	249.6
0.0164	3311.2	36.8	302.5
0.0182	3311.0	36.8	347.9
0.0202	3311.0	36.8	398.6
0.0224	3311.0	36.9	458.1
0.0244	3311.2	37.3	509.0

接續表 3.15

T=25°C	順式	單體吸收		反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0067	3460.6	8.7	33.5	3479.4	8.1	9.6
0.0090	3460.3	8.7	41.8	3479.3	8.0	12.3
0.0106	3460.8	8.7	47.2	3479.6	8.1	13.6
0.0125	3460.8	8.7	53.3	3479.7	8.1	15.5
0.0143	3460.8	8.7	58.4	3479.7	8.1	17.1
0.0160	3460.2	8.7	63.4	3479.1	8.0	18.5
0.0180	3460.8	8.8	68.8	3479.7	8.1	20.2
0.0199	3460.9	8.6	73.7	3479.7	8.1	21.4
0.0218	3460.8	8.8	78.3	3479.7	8.1	22.8
0.0235	3460.8	8.7	82.1	3479.7	8.1	23.9

0.0200	210010	0.7	02.1	0.17.1	0.1
			18	96	JE.
T=25°C	雙	體吸收山	夆		
c _o	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})		
0.0067	3312.8	37.2	71.4		
0.0090	3312.5	37.2	112.1		
0.0106	3313.1	37.1	142.6		
0.0125	3312.7	37.2	181.2		
0.0143	3312.7	37.2	219.3		
0.0160	3312.4	37.1	256.2		
0.0180	3312.7	37.1	301.8		
0.0199	3312.8	37.1	346.4		
0.0218	3312.7	37.1	391.2		
0.0235	3312.8	37.2	433.0		

接續表 3.15

T=35°C	順式	單體吸口	 佐峰	反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0069	3460.6	8.7	35.5	3479.4	8.5	10.9
0.0093	3461.8	8.7	44.7	3480.6	8.5	13.7
0.0114	3461.0	8.8	51.8	3479.8	8.5	16.2
0.0136	3461.3	8.7	59.5	3480.1	8.4	18.2
0.0155	3461.3	8.7	65.4	3480.1	8.5	20.2
0.0172	3461.5	8.7	70.5	3480.3	8.5	22.1
0.0192	3461.7	8.7	76.2	3480.5	8.5	23.4
0.0210	3461.4	8.7	81.6	3480.2	8.5	24.9
0.0230	3461.6	8.7	86.5	3480.3	8.6	26.5
0.0248	3461.5	8.7	90.8	3480.3	8.5	28.2

0.0230	5401.0	0.7	00.5	5460.5	0.0
0.0248	3461.5	8.7	90.8	3480.3	8.5
					E
) IE
T=35°C	雙	體吸收山	牟 1 😣	96	
C	最大	半亡宫	物四近座		
c_0	吸收位置	十回見	恋汉牧反		
(毎留仕)	(am^{-1})	(am^{-1})	(am^{-1})		
(無半位)	(cm)	(cm)	(cm)		
0.0069	3313.4	37.3	62.6		
0.0093	3314.6	37.3	99.8		
0.0114	3313.8	37.5	135.7		
0.0136	3314.3	37.3	176.4		
0.0155	3314.1	37.4	214.3		
0.0172	3314.0	37.4	247.7		
0.0192	3314.4	37.5	288.9		
0.0210	3314.1	37.5	328.1		
0.0230	3314.5	37.4	372.0		
0.0248	3314.0	37.5	413.4		

接續表 3.15

T=45°C	順式	單體吸收		反式	單體吸收	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0069	3460.9	9.0	37.7	3480.0	8.7	12.0
0.0084	3461.5	8.9	44.5	3480.4	8.7	14.2
0.0102	3461.8	8.9	52.2	3480.7	8.6	16.6
0.0119	3461.5	9.1	59.1	3480.5	8.6	18.8
0.0138	3461.3	9.1	66.2	3480.2	8.7	21.1
0.0156	3461.9	8.9	73.1	3480.7	8.7	23.2
0.0171	3461.7	9.0	78.2	3480.6	8.7	24.8
0.0190	3461.3	8.9	84.7	3480.2	8.7	26.9
0.0210	3461.8	8.9	91.0	3480.6	8.7	29.1
0.0231	3461.1	8.9	98.2	3479.9	8.7	31.1

0.0210	3461.8	8.9	91.0	3480.6	8.7
0.0231	3461.1	8.9	98.2	3479.9	8.7
					x IE
T=45°C	雙	體吸收山	<u> </u>	96	
C	最大	半亡宫	纳四此庄		
ι ₀	吸收位置	十回見	認又收及		
(毎留仕)	(am^{-1})	(am^{-1})	(am^{-1})		
(無単位)	(cm)	(cm)	(cm)		
0.0069	3314.3	37.9	44.1		
0.0084	3315.5	37.4	61.4		
0.0102	3315.5	37.7	84.2		
0.0119	3314.9	37.9	108.0		
0.0138	3315.0	37.9	136.3		
0.0156	3315.3	37.7	165.0		
0.0171	3315.1	37.7	189.7		
0.0190	3315.0	37.8	222.5		
0.0210	3315.5	37.8	258.0		
0.0231	3314.7	37.9	297.1		

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為 $v^{obs} = v_o - C \frac{(D-1)}{(2D+1)}$,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置, v_o 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到甲基環已烷的介電常數參考 數據以及系統於四種溫度下的介電常數值(15℃:2.028,25℃:2.012, 35℃:1.996,45℃:1.980)。將在溶液下觀察到順式單體的 N-H 基 伸縮振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-195.33X + 3500.1,結果 如圖 3.70 所示。其中截距為3500.1 cm⁻¹代表外插到 D=1 的狀態,即溶 質於真空狀態下順式單體 N-H 基的伸縮振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-205.87X + 3521.1,結果如圖 3.71 所示。其中截距為3521.1 cm⁻¹代表 外插到 D=1 的狀態,即溶質於真空狀態下反式單體 N-H 基的伸縮振 動頻率 v_c^{0} 。

由表 3.15 知定溫下順式、反式單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的順式、反式單

165

體最大吸收頻率位置做平均,將四個溫度下的(D-1) (2D+1) 值整理如下

甲基環己烷	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.2033	0.2012	0.1995	0.1976
\mathbf{v}_t^{obs} / cm ⁻¹	3479.3 ± 0.3	3479.6 ± 0.1	3480.2 ± 0.1	3480.4 ± 0.1
v_C^{obs} / cm ⁻¹	3460.5 ± 0.2	3460.7 ± 0.1	3461.4 ± 0.1	3461.5 ± 0.1

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場*R* (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-19) 並利用比爾定理將順式、反式構型轉換平衡常數 K₁ 整理成

$$K_{1} = \frac{c_{B_{t}}}{c_{B_{c}}} = \frac{\frac{[B_{t}]}{c^{\Theta}}}{\frac{[B_{c}]}{c^{\Theta}}} = \frac{\frac{A_{t}}{\varepsilon_{t}}}{\frac{A_{c}}{\varepsilon_{c}}} = \frac{A_{t}}{A_{c}} (\frac{\varepsilon_{c}}{\varepsilon_{t}}) = \frac{A_{t}}{A_{c}} \times \text{constant}$$
(3-7)

已知定溫下反式單體、順式單體的總莫耳吸收係數 ε_c 、 ε_t 及順式單體 自結合平衡常數 K_1 為定值。因此由式 (3-7) 知,在固定溫度下 A_t/A_c 也 為定值,不隨初始濃度 c_0 改變。如圖 3.72 為 A_t/A_c 對初始無因次化 B的配置濃度 c_0 做圖。

整理式 (2-22) 並利用比爾定理將自結合平衡常數 K2 整理成

$$K_{2} = \frac{c_{B_{2}}}{c_{B_{C}}^{2}} = \frac{\frac{[B_{2}]}{c^{\Theta}}}{(\frac{[B_{C}]}{c^{\Theta}})^{2}} = \frac{\frac{A_{d}}{\varepsilon_{d}}c^{\Theta}}{(\frac{A_{C}}{\varepsilon_{C}})^{2}} = \frac{A_{d}}{A_{C}^{2}}(\frac{\varepsilon_{C}^{2}c^{\Theta}}{\varepsilon_{d}}) = \frac{A_{d}}{A_{C}^{2}} \times \text{constant}$$
(3-8)

已知定溫下順式單體、雙體的總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_d$ 及順式單體自結 合平衡常數 K_2 為定值。因此由式 (3-8) 知,在固定溫度下 A_d / A_c^2 也為 定值,不隨初始濃度 c_0 改變。如圖 3.73 為 A_d / A_c^2 對初始無因次化 B 的 配置濃度 c_0 做圖。

圖 3.70 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中,不 同溫度下的順式單體吸收峰位置 V^{obs} 對(D-1)/(2D+1)作圖, 其中D為甲基環已烷的介電常數。

圖 3.71 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中,不
 同溫度下反式單體吸收峰位置 v_t^{obs} 對(D−1)/(2D+1)作圖,其
 中 D 為甲基環已烷的介電常數。

圖 3.72 3,5-二甲基-1H-吡咯-2-甲酸乙酯於甲基環已烷溶劑中A_tA_c⁻¹ 對c₀作圖。所得線性圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

 圖 3.73 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環已烷溶劑中 A_dA_c⁻²對c_o作圖。所得線性圖。其四組溫度分別為: (-■ -)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

我們將公式 (2-33)、公式 (2-36)、公式 (2-39) 整理如下

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2(c^{\Theta})^2} A_c + \frac{1+K_1}{\varepsilon_{\rm c}c^{\Theta}}$$
(2-33)

$$\frac{c_{\rm o}}{A_{\rm t}} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}}$$
(2-36)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1 + K_{\rm 1}}{K_{\rm 2}^{1/2} \varepsilon_{\rm d}^{1/2} (c^{\Theta})^{1/2}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-39)

由於我們無法利用式 (2-33)、式 (2-36) 及式 (2-39) 的斜率與截距求 得順式、反式總莫耳吸收係數、構型轉換平衡常數 K₁ 及單雙自結合平 衡常數 K₂。退而求其次,我們利用實驗配合理論計算的方式,將構型 轉換平衡常數 K₁求出,以解出光譜參數 E_c、 E_t 及熱力學參數 K₂。光譜 參數 E_d 是獨立變數,可以由式 (2-39) 得到。透過式 (3-7) 如下

$$K_1 = \frac{A_t}{A_C} \frac{\varepsilon_C}{\varepsilon_t}$$
(3-7)

經由軟體可以適解紅外光譜資料,得到順式、反式單體吸收度 A_c 、 A_t , 且藉由台大蘇志明教授的幫忙,能利用理論計算的方式求出順式與反 式的總吸收係數比 $\varepsilon_c/\varepsilon_t$,因此構型轉換平衡常數 K_1 即可求出。將得到 的 K_1 代入式 (2-33)、式 (2-36)、式 (2-39)中求得順式單體吸收係數 ε_c 、反式單體吸收係數 ε_t 、雙體吸收係數 ε_d 、順式單體自結合平衡常 數 K_2 。

圖 3.74 為利用表 3.15 中定溫下,順式單體在吸收帶的總吸收度 A_c ,代入順式單體的公式 (2-33),並以 $Y = c_0 / A_c$ 對 $X = A_c$ 做線性圖。 圖 3.75 為利用表 3.15 中定溫下,反式、順式單體在吸收帶的總吸收 度 A_i 、 A_c ,代入反式單體的公式 (2-36),並以 $Y = c_0 / A_i$ 對 $X = A_c$ 做線 性圖。圖 3.76 為利用表 3.15 中定溫下,雙體在吸收帶的總吸收度 A_d , 代入雙體的公式 (2-39),並以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 做線性圖。

把熱力學參數、光譜參數列於表 3.16 中。將不同溫度下的構型轉換平衡常數 K_1 、單體自結合平衡常數 K_2 做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$ 。以 $Y = \ln K$ 對 $X = \frac{1}{T}$ 做線性圖,得到斜率 $-\frac{\Delta H^{\Theta}}{R}$ 及 截距 $\frac{\Delta S^{\Theta}}{R}$ 。因此由斜率、截距可以分別求出單體構型轉換的標準焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 、順式單體自結合的標準焓 ΔH_2^{Θ} 及熵 ΔS_2^{Θ} 。

圖 3.77 為 $\ln K_1$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.16 可以看出,由單體構型轉換平衡常數值求出的焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 分別為 3.26 kJ mol⁻¹ 與 1.3 J mol⁻¹ K⁻¹。當溫度升高時,會使單體構型轉換平衡常數 K_1 值變大, 增加溫度使得順式單體獲得的能量越多,使之能克服能障轉成反式構型,增加了反式的居量,由求出的焓知,順式單體轉成反式單體為吸熱反應。 圖 3.78 為 $\ln K_2$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.16 可以看出,單體自結 合 平 衡 常 數 值 求 出 的 焓 ΔH_2^{Θ} 及 熵 ΔS_2^{Θ} 分 別 為 - 25.9k J mol⁻¹ 與 -51.1J mol⁻¹ K⁻¹。如表 3.14,當溫度升高時,會使順式單體自結合平衡 常數 K_2 值變小,降低自結合的形成,因此確認由氫鍵形成的自結合為 放熱反應。

圖 3.74 由公式 (2-33) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於 甲基環已溶劑中所得線性圖。其四組溫度分別為: (-■ -)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.75 由公式 (2-36)所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 甲基環已烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K, (-◆-)298K, (-▲-)308K, (-▼-)318K。

圖 3.76 由公式 (2-39) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於 甲基環已烷溶劑中所得線性圖。其四組溫度分別為: (-■ -)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.77 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環己烷溶劑中 van't Hoff 圖。K₁為單體構型轉換的平衡常數。

圖 3.78 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環己烷溶劑中 van't Hoff 圖。K₂為順式單體自結合的平衡常數。

16 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於甲基環己烷溶劑中,在不同溫度下所求得知順式單體總莫耳吸	收係數 Ec、反式單體總莫耳吸收係數 Ei、雙體總莫耳吸收係數 Ea、單體自結合常數 K2、單體構型轉	换平衡常数 K1,以及由不同温度條件下之平衡常數所求得的構型轉换的標準反應焓AH1 ⁺ 及標準熵	△S1 ⁺ 及單體自結合之標準焓ΔH2 ⁺ 及標準熵ΔS2 ⁺ 。	「
表 3.				

	構型轉換平衡常	單體自結合平衡	順式單體吸收係	反式單體吸收係	雙體吸收係數
通度	K_1	K_2	$\varepsilon_{\rm C}/{\rm Lcm}^{-2}~{\rm mol}^{-1}$	$\varepsilon_{ m t}/{ m Lcm^{-2}}{ m mol^{-1}}$	$\varepsilon_{ m d}/{ m Lcm^{-2}}~{ m mol^{-1}}$
15°C	0.30 ± 0.005	101.0 ± 6.2	9347.0 ± 33.5	8661.1 ± 20.7	74432.5 ± 194.2
25°C	0.31 ± 0.003	75.4 ± 0.6	9241 <i>.</i> 7 ± 49.7	8498.4 ± 118.2	73260.1 ± 126.1
35°C	0.33 ± 0.003	58.6 ± 0.7	9090.1 ± 86.0	8495.4 ± 117.7	71199.7 ± 237.1
45°C	0.34 ± 0.001	35.2 ± 0.2	8957.5 ± 35.2	8404.7 ± 12.5	70472.2 ± 125.2
構型轉換的標	標準反應焓∆H1 [●] /kJ	$mol^{-1} = 3.26 \pm 0.3$			
構型轉換的視	標準反應熵∆S1 ^e / J m	$ol^{-1} K^{-1} = 1.3 \pm 0.1$			
單體自結合的	り標準反應焓∆H ² /]	kJ mol ⁻¹ = -25.9 ± 3.6	ý.		
單雙體自結合	分之標準熵∆S2 ⁶ /Jm	$ol^{-1} K^{-1} = -51.1 \pm 11.$	7		

3.4.4 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶液

此系統分別在 15° C、 25° C、 35° C及 45° C等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M) 是根據環已烷在不同溫 度下的密度為參考數據 ⁴¹(15° C:0.7820, 25° C:0.7731, 35° C:0.7641, 45° C:0.7549 g mL⁻¹)。定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基, 因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ。 圖 3.79 為 15° C時, 無因次化溶質的配置濃度分別為 0.0284、0.0236、 0.0189、0.0138 及 0.0085 時溶質的 NH 基 IR 吸收光譜。

圖 3.80 為 15 ℃時,無因次化溶質的配置濃度為 0.0263 時,將 NH 基的順式單體、反式單體及雙體吸收之重疊部分,以 Galatic 出品 的 PeakSolve GRAMS32 AI 軟體,利用高斯—勞倫茲(Gauss-Lorentz)混 合適解分佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收 頻率分別為反式單體、順式單體吸收峰及雙體吸收峰。

表 3.17 為在四種不同溫度下,測量十組濃度後所得之順式、反式 單體及雙體的最大吸收位置、半高寬以及總吸收度。

圖 3.79 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中,15℃時 所測得 N-H 基的 IR 光譜圖。無因次化溶質配置濃度分別 為:0.0284、 0.0236、0.0189、0.0138 及 0.0085。

圖 3.80 3,5-二甲基-1H-吡咯-2-甲酸乙酯於環己烷溶劑中在15℃無因 次化溶質配置濃度為 0.0263 時所做的 N-H 基適解譜線。

表 3.17 在不同溫度下,3,5-二甲基-1H-吡咯-2-甲酸乙酯溶在環己烷 溶劑中,改變不同溶質的配置濃度時,順式單體、反式單體 及雙體最大吸收位置、半高寬及總吸收度。

T=15℃順式單體吸收峰反式單體吸收峰 c_0 最大 吸收位置半高寬 總吸收度 吸收位置最大 吸收位置(無單位)(cm ⁻¹)(cm ⁻¹)(cm ⁻¹)0.00853460.37.636.23478.87.70.01123460.77.744.43479.27.817.3							
c_0 最大 吸收位置半高寬 總吸收度 總吸收位置最大 吸收位置半高寬 總吸收度 吸收位置(無單位)(cm ⁻¹)(cm ⁻¹)(cm ⁻¹)(cm ⁻¹)0.00853460.37.636.23478.87.70.01123460.77.744.43479.27.817.3	T=15°C	.5℃ 順式	單體吸	 佐峰	反式	單體吸	 佐峰
(無單位) (cm ⁻¹) (cm^{-1}) (cm ⁻¹) (cm^{-1}) (cm ⁻¹) (cm^{-1})	c _o	。 最大 [。] 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
0.0085 3460.3 7.6 36.2 3478.8 7.7 14.2 0.0112 3460.7 7.7 44.4 3479.2 7.8 17.3	無單位)	單位) (cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
0.0112 3460.7 7.7 44.4 3479.2 7.8 17.3	0.0085	085 3460.3	7.6	36.2	3478.8	7.7	14.2
	0.0112	112 3460.7	7.7	44.4	3479.2	7.8	17.3
0.0138 3460.6 7.6 50.9 3479.2 7.6 20.2	0.0138	138 3460.6	7.6	50.9	3479.2	7.6	20.2
0.0165 3460.2 7.6 58.6 3478.7 7.8 22.1	0.0165	165 3460.2	7.6	58.6	3478.7	7.8	22.1
0.0189 3459.6 7.6 64.3 3478.1 7.7 25.1	0.0189	189 3459.6	7.6	64.3	3478.1	7.7	25.1
0.0212 3459.8 7.6 69.3 3478.2 7.7 27.0	0.0212	212 3459.8	7.6	69.3	3478.2	7.7	27.0
0.0236 3460.0 7.6 74.6 3478.4 7.7 29.1	0.0236	236 3460.0	7.6	74.6	3478.4	7.7	29.1
0.0262 3460.2 7.6 79.4 3478.7 7.7 31.1	0.0262	262 3460.2	7.6	79.4	3478.7	7.7	31.1

	E			8
T=15°C	雙	體吸收山	牟 10	96
c _o	最大 吸收位置	半高寬	總吸收度	
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	
0.0085	3312.5	36.5	114.4	
0.0112	3312.7	36.5	171.1	
0.0138	3312.5	36.7	229.7	
0.0165	3312.6	36.6	293.8	
0.0189	3311.5	36.7	352.9	
0.0212	3311.9	36.6	411.5	
0.0236	3312.4	36.8	474.1	
0.0262	3312.2	36.8	542.8	

接續表 3.17

T=25°C	順式	單體吸收		反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0079	3460.7	7.7	34.0	3479.4	7.8	13.7
0.0100	3460.6	7.7	40.7	3479.2	7.8	16.5
0.0116	3460.4	7.7	45.5	3479.0	7.9	18.4
0.0141	3460.5	7.7	52.5	3479.2	7.8	21.3
0.0159	3460.3	7.7	57.0	3478.9	7.9	22.9
0.0175	3460.3	7.7	61.3	3478.9	7.9	24.7
0.0198	3460.6	7.7	66.5	3479.2	7.9	26.8
0.0215	3459.9	7.7	70.4	3478.5	7.9	28.3
0.0238	3461.4	7.7	75.8	3480.0	7.9	30.5
0.0263	3459.9	7.7	81.3	3478.5	7.9	32.5

	E			8	
T=25°C	雙	體吸收山	牟 1 🛛	96	15
c _o	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)		
0.0079	3313.6	37.1	86.1		
0.0100	3313.5	37.1	123.7		
0.0116	3313.2	37.2	154.7		
0.0141	3313.2	37.3	205.3		
0.0159	3313.0	37.3	244.1		
0.0175	3312.5	37.1	279.3		
0.0198	3313.1	37.2	332.1		
0.0215	3312.7	37.1	371.9		
0.0238	3314.1	37.1	427.2		
0.0263	3312.7	37.4	488.7		

接續表 3.17

順式單體吸收峰			反式單體吸收峰		
最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
3461.0	7.9	30.0	3479.8	7.9	12.5
3460.9	7.8	37.3	3479.6	8.0	15.7
3460.9	7.9	44.5	3479.6	8.0	18.6
3460.4	7.8	50.2	3479.1	7.9	21.0
3460.9	7.9	56.6	3479.7	7.9	23.6
3460.7	7.8	61.8	3479.3	7.9	25.2
3460.6	7.8	66.8	3479.3	8.0	27.9
3461.4	7.8	72.3	3480.1	7.9	30.6
3460.9	7.8	77.3	3479.6	8.0	32.6
3461.0	7.8	81.9	3479.7	7.9	34.0
	順式 最大 吸收位置 (cm ⁻¹) 3461.0 3460.9 3460.9 3460.9 3460.7 3460.6 3461.4 3460.9 3461.0	順式單體吸收 最大 吸收位置 (cm ⁻¹) (cm ⁻¹) 3461.0 7.9 3460.9 7.9 3460.9 7.9 3460.9 7.9 3460.7 7.8 3460.7 7.8 3460.6 7.8 3461.4 7.8 3461.4 7.8 3461.9 7.8 3461.0 7.8	順式單體吸收峰最大 吸收位置半高寬 總吸收度(cm ⁻¹)(cm ⁻¹)3461.07.930.03460.97.837.33460.97.944.53460.47.850.23460.77.861.83460.67.866.83460.97.877.33460.07.881.9	順式單體吸收峰反式最大 吸收位置半高寬 總吸收度 吸收位置最大 吸收位置(cm ⁻¹)(cm ⁻¹)(cm ⁻¹) 3461.0 7.9 30.0 3460.9 7.8 37.3 3460.9 7.9 44.5 3460.4 7.8 50.2 3460.7 7.8 61.8 3460.7 7.8 61.8 3460.6 7.8 66.8 3460.6 7.8 66.8 3461.4 7.8 72.3 3461.4 7.8 77.3 3461.4 7.8 77.3 3461.4 7.8 77.3 3461.0 7.8 81.9 3479.7	順式單體吸收峰反式單體吸收最大 吸收位置半高寬總吸收度 吸收位置最大 吸收位置(cm ⁻¹)(cm ⁻¹)(cm ⁻¹)(cm ⁻¹) 3461.0 7.9 30.0 3479.8 7.9 3460.9 7.8 37.3 3479.6 8.0 3460.9 7.9 44.5 3479.6 8.0 3460.9 7.9 56.6 3479.7 7.9 3460.7 7.8 61.8 3479.3 7.9 3460.6 7.8 66.8 3479.3 7.9 3460.6 7.8 66.8 3479.3 8.0 3461.4 7.8 72.3 3480.1 7.9 3460.9 7.8 77.3 3479.6 8.0 3461.4 7.8 72.3 3479.6 8.0 3461.4 7.8 72.3 3479.6 8.0 3461.0 7.8 81.9 3479.7 7.9

0.0254	5401.0	1.0	01.9	5479.7	1.9
				8	E
T=35°C	雙	體吸收	¥ 1 8	96	
c _o	最大 吸收位置	半高寬	總吸收度		5
(無單位)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)		
0.0064	3314.7	37.3	48.0		
0.0085	3315.0	37.5	76.5		
0.0104	3314.2	37.6	105.0		
0.0122	3314.2	37.5	135.0		
0.0142	3314.5	37.7	170.2		
0.0159	3314.7	37.6	202.1		
0.0178	3314.5	37.5	238.7		
0.0198	3314.9	37.7	278.7		
0.0217	3314.2	37.6	317.7		
0.0234	3314.9	37.7	354.2		

接續表 3.17

T=45°C	順式	單體吸收		反式單體吸收峰		
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0081	3461.1	8.1	36.3	3479.9	8.1	15.9
0.0094	3461.9	8.1	40.7	3480.7	8.1	18.0
0.0117	3460.9	8.1	49.2	3479.6	8.0	21.1
0.0138	3460.2	8.1	56.4	3479.0	8.1	24.5
0.0157	3460.5	8.1	62.3	3479.2	8.1	27.3
0.0176	3461.4	8.1	68.4	3480.2	8.1	29.7
0.0198	3461.2	8.1	74.7	3479.9	8.1	32.2
0.0214	3461.3	8.0	79.1	3480.0	8.1	34.4
0.0237	3461.1	8.0	85.1	3479.8	8.1	37.1
0.0257	3461.6	8.0	90.2	3480.3	8.1	39.4

0.0237	3461.1	8.0	85.1	3479.8	8.1
0.0257	3461.6	8.0	90.2	3480.3	8.1
T=45°C	雙	體吸收	牟 1 2	96	
c _o	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)		
0.0081	3315.5	37.9	56.9		
0.0094	3316.5	38.4	72.9		
0.0117	3315.7	38.3	104.2		
0.0138	3314.8	38.1	135.5		
0.0157	3315.0	38.3	165.7		
0.0176	3315.7	38.2	197.2		
0.0198	3315.7	38.4	236.1		
0.0214	3316.0	38.2	265.4		
0.0237	3315.8	38.3	306.5		
0.0257	3316.2	38.3	347.8		

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀 態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 ^{47,48} 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為 $v^{obs} = v_o - C \frac{(D-1)}{(2D+1)}$,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置, v_o 為溶質在真空狀態時特定官能基的最大吸收位置, C為常數, D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到環已烷的介電常數參考數據 以及系統於四種溫度下的介電常數值(15℃:2.031,25℃:2.015, 35℃:1.999,45℃:1.983)。將在溶液下觀察到順式單體的 N-H 基 伸縮振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-170.9X+3495.0,結果如 圖 3.81 所示。其中截距為3495.0cm⁻¹代表外插到 D=1 的狀態,即溶質 於真空狀態下順式單體 N-H 基的伸縮振動頻率 v_c^{obs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 又=-217.7X+3523.0,結果如圖 3.82 所示。其中截距為3523.0cm⁻¹代表外 插到 D=1 的狀態,即溶質於真空狀態下反式單體 N-H 基的伸縮振動 頻率 v_c^{0} 。

由表 3.17 知定溫下順式、反式單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15 ℃、25 ℃、35 ℃及 45 ℃時的順式、反

183

式單體最大吸收頻率位置做平均,將四個溫度下的(D-1) (2D+1) 值整理如下

環己烷	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.2036	0.2018	0.1998	0.1979
v_t^{obs} / cm ⁻¹	3478.7 ± 0.2	3479.1 ± 0.2	3479.6 ± 0.1	3479.9 ± 0.2
v_C^{obs} / cm ⁻¹	3460.2 ± 0.1	3460.5 ± 0.2	3460.9 ± 0.1	3461.1 ± 0.3

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場*R* (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-19) 並利用比爾定理將順式、反式構型轉換平衡常數 K₁ 整理成

$$K_{1} = \frac{c_{Bt}}{c_{B_{C}}} = \frac{\frac{[B_{t}]}{c^{\Theta}}}{\frac{[B_{C}]}{c^{\Theta}}} = \frac{\frac{A_{t}}{\varepsilon_{t}}}{\frac{A_{C}}{\varepsilon_{C}}} = \frac{A_{t}}{A_{C}} (\frac{\varepsilon_{C}}{\varepsilon_{t}}) = \frac{A_{t}}{A_{C}} \times \text{constant}$$
(3-7)

已知定溫下反式單體、順式單體的總莫耳吸收係數*E_c、E_t及順式單體自結合平衡常數K₁為定值。因此由式 (3-7) 知,在固定溫度下A_t/A_c也為 定值,不隨初始濃度<i>c*₀改變。如圖 3.83 為*A_t/A_c*對初始無因次化 *B* 的 配置濃度*c*₀做圖。

整理式 (2-22) 並利用比爾定理將自結合平衡常數 K2 整理成

$$K_{2} = \frac{c_{B_{2}}}{c_{B_{c}}^{2}} = \frac{\frac{[B_{2}]}{c^{\Theta}}}{(\frac{[B_{c}]}{c^{\Theta}})^{2}} = \frac{\frac{A_{d}}{\varepsilon_{d}}c^{\Theta}}{(\frac{A_{c}}{\varepsilon_{c}})^{2}} = \frac{A_{d}}{A_{c}^{2}}(\frac{\varepsilon_{c}^{2}c^{\Theta}}{\varepsilon_{d}}) = \frac{A_{d}}{A_{c}^{2}} \times \text{constant}$$
(3-8)

已知定溫下順式單體、雙體的總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_d$ 及順式單體自結 合平衡常數 K_2 為定值。因此由式 (3-8) 知,在固定溫度下 A_d / A_c^2 也為 定值,不隨初始濃度 c_0 改變。如圖 3.84 為 A_d / A_c^2 對初始無因次化 B 的 配置濃度 c_0 做圖。

圖 3.81 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中,不同溫 度下的順式單體最大吸收峰位置 V^{obs} 對(D-1)/(2D+1)作圖, 其中D為環己烷的介電常數。

圖 3.82 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中,不同溫度下的反式單體最大吸收峰位置 v^{obs} 對(D-1)/(2D+1)作圖, 其中D為環已烷的介電常數。

圖 3.83 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中A_tA_c⁻¹對c₀ 作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲ -)308K, (-▼-)318K。

圖 3.84 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶劑中A_aA_c⁻²對 c₀作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲ -)308K, (-▼-)318K。
我們將公式 (2-33)、公式 (2-36)、公式 (2-39) 整理如下

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2 (c^{\Theta})^2} A_{\rm c} + \frac{1+K_1}{\varepsilon_{\rm c} c^{\Theta}}$$
(2-33)

$$\frac{c_{\rm o}}{A_{\rm t}} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}}$$
(2-36)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1 + K_{\rm 1}}{K_{\rm 2}^{1/2} \varepsilon_{\rm d}^{1/2} (c^{\Theta})^{1/2}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-39)

由於我們無法利用式 (2-33)、式 (2-36) 及式 (2-39) 的斜率與截距求 得順式、反式總莫耳吸收係數、構型轉換平衡常數 K₁及單雙自結合平 衡常數 K₂。退而求其次,我們利用實驗配合理論計算的方式,將構型 轉換平衡常數 K₁求出,以解出光譜參數 $\varepsilon_c \sim \varepsilon_i$ 及熱力學參數 K₂。光譜 參數 ε_d 是獨立變數,可以由式 (2-39) 得到。透過式 (3-7) 如下

$$K_1 = \frac{A_t}{A_C} \frac{\varepsilon_C}{\varepsilon_t}$$
(3-7)

經由軟體可以適解紅外光譜資料,得到順式、反式單體吸收度 A_c 、 A_t , 且藉由台大蘇志明教授的幫忙,能利用理論計算的方式求出順式與反 式的總吸收係數比 $\varepsilon_c / \varepsilon_t$,因此構型轉換平衡常數 K_1 即可求出。將得 到的 K_1 代入式 (2-33)、式 (2-36)、式 (2-39)中求得順式單體吸收係 數 ε_c 、反式單體吸收係數 ε_t 、雙體吸收係數 ε_d 、順式單體自結合平衡 常數 K₂。

圖 3.85 為利用表 3.17 中定溫下,順式單體在吸收帶的總吸收度 A_c ,代入順式單體的公式 (2-33),並以 $Y = c_0 / A_c$ 對 $X = A_c$ 做線性圖。 圖 3.86 為利用表 3.17 中定溫下,反式、順式單體在吸收帶的總吸收 度 A_i 、 A_c ,代入反式單體的公式 (2-36),並以 $Y = c_0 / A_i$ 對 $X = A_c$ 做線 性圖。圖 3.87 為利用表 3.17 中定溫下,雙體在吸收帶的總吸收度 A_d , 代入雙體的公式 (2-39),並以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 做線性圖。

把熱力學參數、光譜參數列於表 3.18 中。將不同溫度下的構型轉換 平衡 常數 K_1 、單體自結合平衡 常數 K_2 做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$ 。以 Y = $\ln K$ 對 X = $\frac{1}{T}$ 做線性圖,得到斜率 - $\frac{\Delta H^{\Theta}}{R}$ 及 截距 $\frac{\Delta S^{\Theta}}{R}$ 。因此由斜率、截距可以分別求出單體構型轉換的標準焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 、順式單體自結合的標準焓 ΔH_2^{Θ} 及熵 ΔS_2^{Θ} 。

圖 3.88 為 $\ln K_1$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.18 可以看出,由單體構型轉換平衡常數值求出的焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 分別為 2.80 kJ mol⁻¹ 與 2.48 J mol⁻¹ K⁻¹。當溫度升高時,會使單體構型轉換平衡常數 K_1 值變大, 增加溫度使得順式單體獲得的能量越多,使之能克服能障轉成反式構型,增加了反式的居量,由求出的焓知,順式單體轉成反式單體為吸熱反應。 圖 3.89 為 $\ln K_2$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.18 可以看出,單體自結 合 平 衡 常 數 值 求 出 的 焓 ΔH_2^{Θ} 及 熵 ΔS_2^{Θ} 分 別 為 -23.7 k J mol⁻¹ 與 -44.0 J mol⁻¹ K⁻¹。 如表 3.18,當溫度升高時,會使順式單體自結合平衡 常數 K_2 值變小,降低自結合的形成,因此確認由氫鍵形成的自結合為 放熱反應。

圖 3.85 由公式 (2-33) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-●-)308K, (-♥-)318K。

圖 3.86 由公式 (2-36) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環己烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-●-)308K, (-♥-)318K。

圖 3.87 由公式 (2-39) 所得之 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 環已烷溶劑中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-)298K, (-▲-)308K, (-▼-)318K。

圖 3.88 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於環已烷溶劑中 van't Hoff 圖。K₁為構型轉換的平衡常數。

圖 3.89 3,5-二甲基-1H-吡咯-2-甲酸乙酯於環已烷溶劑中 van't Hoff 圖。K₂為順式單體自結合的平衡常數。

	構型轉換平衡常	單體自結合平衡	順式單體吸收係	反式單體吸收係	雙體吸收係數
涧	K_1	K ₂	$\varepsilon_{\rm C}/{\rm Lcm^{-2}}~{\rm mol^{-1}}$	$\varepsilon_{\rm t}/{\rm Lcm^{-2}}{ m mol^{-1}}$	$arepsilon_{ m d}/{ m Lcm^{-2}}~{ m mol^{-1}}$
15°C	0.421 ± 0.006	99.7 ± 3.8	8998.6 ± 20.3	8425.8 ± 25.6	76481.8 ± 117.8
25°C	0.435 ± 0.002	75.1 ± 0.9	8615.6 ± 71.5	8127.8 ± 81.7	75786.3 ± 159.2
35°C	0.451 ± 0.005	51.8 ± 0.2	8367.2 ± 83.8	7752.7 ± 98.4	74515.6 ± 267.2
45°C	0.470 ± 0.004	39.9 ± 0.4	8030.5 ± 69.2	7493.1 ± 63.8	72358.9 ± 364.5
構型轉換的標	標準反應焓∆H1 ^e /kJ	$mol^{-1} = 2.8 \pm 0.16$			
構型轉換的標	標準反應熵∆S1 ^e / J m	$ol^{-1} \ K^{-l} = 2.48 \pm 0.5$			
單體自結合的	b標準反應焓ΔH2 ^e /1	kJ mol ⁻¹ = -23.7 ± 1.1	0		
單雙體自結合	♪之標準嫡∆S2 [●] /Jm	ol ⁻¹ K ⁻¹ = -44.0 \pm 3.6	3		

3.4.5 3.5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶液

此系統分別在 15° C、 25° C、 35° C及 45° C等四個不同溫度下進行實驗。濃度由 molality (m) 轉換為 morality (M) 是根據四氯乙烯在不同 溫度下的密度為參考數據 ⁴¹(15° C : 1.6289, 25° C : 1.6132, 35° C : 1.5974, 45° C : 1.5815 g mL⁻¹)。定義 m = (溶質莫耳數/mol) / (溶劑重量/kg), M = (溶質莫耳數/mol) / (溶液體積/L)。(體基莫耳濃度/M) = m×(溶劑重量/kg) / (溶液體積/L), 而在稀薄溶液中,假設溶液體基約等於溶劑體基, 因此其轉換公式 M ≈ m×(溶劑重量/kg) / (溶劑體基/L) = m×溶劑密度 ρ。 圖 3.90 為 15 °C時, 無因次化溶質的配置濃度分別為 0.0207、0.0171、 0.0135、0.0099 及 0.0099 時溶質的 NH 基 IR 吸收光譜。

圖 3.91 為 15℃時,無因次化溶質的配置濃度為 0.0263 時,將 NH 基的順式單體、反式單體及雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,利用高斯—勞倫茲(Gauss-Lorentz)混合 適解分佈曲線公式所分離之圖形,其中由較高吸收頻率至較低吸收頻 率分別為反式單體、順式單體吸收峰及雙體吸收峰。

表 3.19 為在四種不同溫度下,測量十組濃度後所得之順式、反式 單體及雙體的最大吸收位置、半高寬以及總吸收度。

圖 3.90 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中,
 15℃時所測得 N-H 基的 IR 光譜圖。無因次化溶質配置濃度分別為:0.0207、0.0171、 0.0135、0.0099 及 0.0065。

圖 3.91 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中,在
 15 ℃無因次化溶質配置濃度為 0.0099 時所做的 N-H 基適
 解譜線。

表 3.19 在不同溫度下, 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶在四氯乙 烯溶劑中,改變不同溶質的配置濃度時,順式單體、反式單 體及雙體最大吸收位置、半高寬及總吸收度。

T=15°C	順式	單體吸收		反式	單體吸口	
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)
0.0065	3455.9	15.7	38.0	3474.5	12.8	7.5
0.0081	3455.8	15.4	45.3	3474.6	12.9	9.2
0.0099	3455.9	15.8	52.1	3474.5	12.7	10.2
0.0116	3455.9	15.2	59.2	3474.4	12.6	11.4
0.0135	3455.0	15.2	65.0	3474.5	12.6	12.8
0.0152	3455.9	15.4	70.7	3474.6	12.9	13.9
0.0171	3455.8	15.8	77.0	3474.5	12.9	14.7
0.0189	3456.0	15.5	82.4	3474.5	12.6	16.0
0.0207	3455.9	15.5	87.5	3474.4	12.6	17.2
0.0225	3455.8	15.5	91.9	3474.6	12.6	17.9

0.0225	3455.8	15.5	91.9	3474.6	0 12.6
			18	96	
T=15°C	雙	體吸收的	夆		
C _O	最大 吸收位置	半高寬	總吸收度	111	
(無單位)	(cm^{-1})	(cm^{-1})	(cm^{-1})		
0.0065	3310.1	41.2	73.6		
0.0081	3309.7	41.5	103.2		
0.0099	3309.8	40.9	139.2		
0.0116	3310.2	41.1	175.6		
0.0135	3309.6	40.9	219.8		
0.0152	3310.0	41.0	256.6		
0.0171	3310.0	40.7	303.0		
0.0189	3310.1	40.9	347.9		
0.0207	3310.0	40.9	392.0		
0.0225	3309.7	40.9	436.9		

接續表 3.19

T=25°C	順式	單體吸口	 佐峰	反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0071	3456.3	14.8	42.6	3474.8	13.3	8.6
0.0093	3456.3	15.1	52.6	3474.8	13.3	10.6
0.0114	3456.2	14.8	61.2	3474.9	13.3	12.3
0.0135	3456.3	14.9	69.7	3474.7	13.3	14.2
0.0156	3456.4	14.8	77.8	3474.8	13.3	15.8
0.0175	3456.4	15.2	84.5	3474.9	13.3	17.0
0.0195	3456.2	14.8	91.1	3474.8	13.2	18.4
0.0216	3456.3	14.8	97.5	3474.7	13.2	19.7
0.0235	3456.2	14.8	103.2	3474.8	13.2	21.0
0.0257	3456.4	15.0	110.6	3474.8	13.3	22.4

0.0235	3456.2	14.8	103.2	3474.8	13.2
0.0257	3456.4	15.0	110.6	3474.8	13.3
					BE
T=25°C	雙	體吸收	牟 12	96	
c _o	最大 吸收位置	半高寬	總吸收度		
(無單位)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)		
0.0071	3310.6	41.6	67.5		
0.0093	3310.8	41.9	103.1		
0.0114	3311.0	41.5	141.4		
0.0135	3310.8	41.5	181.3		
0.0156	3310.8	41.4	224.4		
0.0175	3311.0	41.6	265.7		
0.0195	3311.0	41.3	308.9		
0.0216	3310.4	41.2	355.7		
0.0235	3310.0	41.3	401.6		
0.0257	3311.3	41.3	453.8		

接續表 3.19

T=35°C	順式	單體吸收		反式	單體吸收	
c _o	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
0.0067	3456.7	15.3	41.7	3475.2	13.1	8.6
0.0086	3456.6	15.0	51.1	3475.4	13.2	10.6
0.0103	3456.8	15.0	59.2	3475.3	13.2	12.2
0.0121	3456.7	15.3	67.3	3476.2	13.1	13.8
0.0138	3456.7	15.2	74.3	3476.3	13.3	15.5
0.0155	3456.8	15.2	81.3	3475.3	13.4	16.8
0.0173	3456.7	15.1	88.0	3475.2	13.3	18.1
0.0190	3456.8	15.0	94.5	3475.2	13.2	19.6
0.0208	3456.6	15.1	100.7	3475.3	13.1	20.8
0.0227	3456.6	15.1	107.2	3475.3	13.4	22.2

0.0227	3456.6	15.1	107.2	3475.3	13.4
				6	E
T=35°C	雙	豐體吸收	峰		
c _o	最大 吸收位置	半高寬	總吸收度	96	S
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)		
0.0067	3312.7	42.4	50.5		
0.0086	3312.5	42.5	75.8		
0.0103	3311.4	42.3	101.5		
0.0121	3312.3	42.4	130.4		
0.0138	3312.1	42.2	159.8		
0.0155	3311.5	41.7	190.7		
0.0173	3312.0	41.7	225.2		
0.0190	3311.8	41.8	258.0		
0.0208	3311.9	41.8	294.3		
0.0227	3311.4	41.7	334.5		

接續表 3.19

T=45°C	順主	代單體吸收	文峰	反式	單體吸	 佐峰
C _O	最大 吸收位置	半高寬	總吸收度	最大 吸收位置	半高寬	總吸收度
(無單位)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})			
0.0063	3456.9	15.3	40.5	3475.5	13.3	8.6
0.0080	3456.9	15.1	48.9	3475.6	13.1	10.4
0.0098	3457.0	15.3	58.6	3475.5	13.1	12.6
0.0116	3457.1	15.0	66.4	3475.5	13.2	14.5
0.0133	3457.0	15.1	75.1	3475.4	13.2	16.2
0.0152	3457.0	15.1	82.4	3475.5	13.2	18.0
0.0170	3457.1	15.2	90.4	3475.6	13.1	19.7
0.0188	3457.0	15.0	97.0	3475.5	13.1	21.3
0.0208	3457.1	15.0	105.0	3475.5	13.1	23.1
0.0225	3456.9	15.3	112.1	3475.5	13.2	24.0

0.0208	5457.1	15.0	105.0	34/5.5	
0.0225	3456.9	15.3	112.1	3475.5	1
				2	
				0	
T=45°C	售	隻體吸收峰	[≹] 1896		
	最大	水古安	始田山市		
c_{0}	吸收位置	千尚見	總吸收度		
(左門小)	(-1)	-15	(-1)		
(無単位)	(cm)	(cm)	(cm)		
0.0063	3313.9	43.2	36.2	-	
0.0080	3313.2	42.9	54.5		
0.0098	3312.7	42.5	76.4		
0.0116	3312.6	43.3	100.5		
0.0133	3312.4	43.1	125.2		
0.0152	3312.8	42.8	154.5		
0.0170	3312.5	42.8	184.0		
0.0188	3313.1	42.6	215.0		
0.0208	3313.3	42.4	249.8		
0.0225	3313.6	42.7	280.7	_	

由於分子振動所產生的吸收光譜在氣態 (gas phase) 與在溶劑狀態 (condensed phase) 下有所不同,因此分子溶解於不同溶劑系統下時 須考慮溶劑效應。根據 KBM (Kirkwood-Bauer-Magat) 理論 47,48 可知, 利用 IR 光譜偵測到特定官能基振動頻率位置與溶劑介電常數的關係 為 $v^{obs} = v_o - C \frac{(D-1)}{(2D+1)}$,其中 v^{obs} 為觀測到特定官能基最大吸收峰位置, v_o 為溶質在真空狀態時特定官能基的最大吸收位置,C為常數,D為溶 劑的介電常數。

根據純溶劑介電常數表⁴⁹,可以得到四氯乙烯的介電常數參考數 據以及系統於四種溫度下的介電常數值(15°C:2.32,25°C:2.30,35 °C:2.28,45°C:2.26)。將在溶液下觀察到順式單體的 N-H 基伸縮振 動頻率 v_c^{abs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性迴歸可得 Y=-175.0X+3515.0,結果如圖 3.92 所示。其中截距為3515.0cm⁻¹代表外插到 D = 1 的狀態,即溶質於真空 狀態下順式單體 N-H 基的伸縮振動頻率 v_c^{a} 。將在溶液下觀察到反式單 體 的 N-H 基 伸 縮 振 動 頻 率 v_c^{abs} 對 $\frac{(D-1)}{(2D+1)}$ 作線性 迴 歸 可 得 Y=-185.0X+3499.0,結果如圖 3.93 所示。其中截距為3499.0cm⁻¹代表外 插到 D = 1 的狀態,即溶質於真空狀態下反式單體 N-H 基的伸縮振動 頻率 v_c^{a} 。

由表 3.19 知定溫下順式、反式單體最大伸縮振動頻率不太隨濃度改變,將系統溫度分別為 15℃、25℃、35℃及 45℃時的順式、反式單

體最大吸收頻率位置做平均,且將四個溫度下的(D-1) (2D+1) 值整理如下

四氯乙烯	15°C	25°C	35°C	45°C
(D-1) / (2D+1)	0.234	0.232	0.23	0.228
\mathbf{v}_t^{obs} / cm ⁻¹	3474.5 ± 0.1	3474.8 ± 0.1	3475.3 ± 0.2	3475.5 ± 0.1
ν_c^{obs} / cm ⁻¹	3455.9 ± 0.1	3456.3 ± 0.1	3456.7 ± 0.1	3457.0 ± 0.2

溶劑的介電常數會受溫度的影響,當低溫時其介電常數大。由 Onsager⁵⁰ 理論知當溶劑介電常數增大,會造成溶劑作用於溶質的反應場 R (reaction field)增大。且知反應場作用於溶質造成能量的下降為 U=μR/2=hΔv,μ為溶質的偶極距,Δv為伸縮振動頻率的位移。Δv可 表示成μR/2h,因此溶劑介電常數越大,則R越大,造成伸縮振動頻率 的位移Δv也越大。KBM^{47,48}以 Onsager 的理論當基礎,推導出位移公 式,而由實驗的結果也與理論相符,隨著溶劑介電常數越大其最大伸 縮振動頻率位移也會增大。

整理式 (2-19) 並利用比爾定理將順式、反式構型轉換平衡常數 K₁ 整理成

$$K_{1} = \frac{c_{B_{t}}}{c_{B_{c}}} = \frac{\frac{[B_{t}]}{c^{\Theta}}}{\frac{[B_{c}]}{c^{\Theta}}} = \frac{\frac{A_{t}}{\varepsilon_{t}}}{\frac{A_{c}}{\varepsilon_{c}}} = \frac{A_{t}}{A_{c}} (\frac{\varepsilon_{c}}{\varepsilon_{t}}) = \frac{A_{t}}{A_{c}} \times \text{constant}$$
(3-7)

已知定溫下反式單體、順式單體的總莫耳吸收係數*E_c、E_t及順式單體自結合平衡常數K₁為定值。因此由式 (3-7) 知,在固定溫度下A_t/A_c也為 定值,不隨初始濃度<i>c*₀改變。如圖 3.94 為*A_t/A_c*對初始無因次化 *B* 的 配置濃度*c*₀做圖。

整理式 (2-22) 並利用比爾定理將自結合平衡常數 K2 整理成

$$K_{2} = \frac{c_{B_{2}}}{c_{B_{c}}^{2}} = \frac{\frac{[B_{2}]}{c^{\Theta}}}{(\frac{[B_{C}]}{c^{\Theta}})^{2}} = \frac{\frac{A_{d}}{\varepsilon_{d}}c^{\Theta}}{(\frac{A_{C}}{\varepsilon_{C}})^{2}} = \frac{A_{d}}{A_{C}^{2}}(\frac{\varepsilon_{C}^{2}c^{\Theta}}{\varepsilon_{d}}) = \frac{A_{d}}{A_{C}^{2}} \times \text{constant}$$
(3-8)

已知定溫下順式單體、雙體的總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_d$ 及順式單體自結 合平衡常數 K_2 為定值。因此由式 (3-8) 知,在固定溫度下 A_d / A_c^2 也為 定值,不隨初始濃度 c_0 改變。如圖 3.95 為 A_d / A_c^2 對初始無因次化 B 的 配置濃度 c_0 做圖。

圖 3.92 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中,不同 溫度下的順式單體吸收峰位置 V^{obs} 對 (D-1)/(2D+1) 作圖, 其中 D 為四氯乙烯的介電常數。

圖 3.93 3,5-二甲基-1H-吡咯-2-甲酸乙酯於四氯乙烯溶劑中,不同溫度下的反式單體吸收峰位置 v_t^{abs} 對(D−1)/(2D+1)作圖,其中D為四氯乙烯的介電常數。

圖 3.94 3,5-二甲基-1H-吡咯-2-甲酸乙酯於四氯乙烯溶劑中A_tA_c⁻¹對 c_o作圖。其四組溫度分別為: (-■-)288K, (-●-)298 K, (-▲ -)308K, (-▼-)318K。

圖 3.95 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中A_aA_c⁻²
 對c_o作圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-▲-)308K, (-▼-)318K。

我們將公式 (2-33)、公式 (2-36)、公式 (2-39) 整理如下

$$\frac{c_{\rm o}}{A_{\rm c}} = \frac{2K_2}{\varepsilon_{\rm c}^2 (c^{\Theta})^2} A_{\rm c} + \frac{1+K_1}{\varepsilon_{\rm c} c^{\Theta}}$$
(2-33)

$$\frac{c_{\rm o}}{A_{\rm t}} = \frac{2K_2}{K_1 \varepsilon_{\rm C} \varepsilon_{\rm t} (c^{\Theta})^2} A_{\rm C} + \frac{1+K_1}{K_1 \varepsilon_{\rm t} c^{\Theta}}$$
(2-36)

$$\frac{c_{\rm o}}{A_{\rm d}} = \frac{1 + K_{\rm 1}}{K_{\rm 2}^{1/2} \varepsilon_{\rm d}^{1/2} (c^{\Theta})^{1/2}} A_{\rm d}^{-1/2} + \frac{2}{\varepsilon_{\rm d} c^{\Theta}}$$
(2-39)

由於我們無法利用式 (2-33)、式 (2-36) 及式 (2-39) 的斜率與截距求 得順式、反式總莫耳吸收係數、構型轉換平衡常數 K₁及單雙自結合平 衡常數 K₂。退而求其次,我們利用實驗配合理論計算的方式,將構型 轉換平衡常數 K₁求出,以解出光譜參數 $\varepsilon_c \sim \varepsilon_t$ 及熱力學參數 K₂。光譜 參數 ε_d 是獨立變數,可以由式 (2-39) 得到。透過式 (3-7) 如下

$$K_1 = \frac{A_t}{A_C} \frac{\varepsilon_C}{\varepsilon_t}$$
(3-7)

經由軟體可以適解紅外光譜資料,得到順式、反式單體吸收度 A_c 、 A_t , 且藉由台大蘇志明教授的幫忙,能利用理論計算的方式求出順式與反 式的總吸收係數比 $\varepsilon_c / \varepsilon_t$,這樣一來構型轉換平衡常數 K_1 即可求出。 將得到的 K_1 代入式 (2-33)、式 (2-36)、式 (2-39)中求得順式單體吸 收係數 ε_c 、反式單體吸收係數 ε_t 、雙體吸收係數 ε_d 、順式單體自結合 平衡常數 K2。

圖 3.96 為利用表 3.19 中定溫下,順式單體在吸收帶的總吸收度 A_c ,代入順式單體的公式 (2-33),並以 $Y = c_0 / A_c$ 對 $X = A_c$ 做線性圖。 圖 3.97 為利用表 3.19 中定溫下,反式、順式單體在吸收帶的總吸收 度 A_i 、 A_c ,代入反式單體的公式 (2-36),並以 $Y = c_0 / A_i$ 對 $X = A_c$ 做線 性圖。圖 3.98 為利用表 3.19 中定溫下,雙體在吸收帶的總吸收度 A_d , 代入雙體的公式 (2-39),並以 $Y = c_0 / A_d$ 對 $X = A_d^{-1/2}$ 做線性圖。

把熱力學參數、光譜參數列於表 3.20 中。將不同溫度下的構型轉換平衡常數 K_1 、單體自結合平衡常數 K_2 做 van't Hoff 圖, $\ln K = -\frac{\Delta H^{\Theta}}{R}\frac{1}{T} + \frac{\Delta S^{\Theta}}{R}$ 。以 $Y = \ln K$ 對 $X = \frac{1}{T}$ 做線性圖,得到斜率 $-\frac{\Delta H^{\Theta}}{R}$ 及 截距 $\frac{\Delta S^{\Theta}}{R}$ 。因此由斜率、截距可以分別求出單體構型轉換的標準焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 、順式單體自結合的標準焓 ΔH_2^{Θ} 及熵 ΔS_2^{Θ} 。

圖 3.99 為 $\ln K_1$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.20 可以看出,由單體構型轉換平衡常數值求出的焓 ΔH_1^{Θ} 及熵 ΔS_1^{Θ} 分別為 2.43 kJ mol⁻¹ 與 -4.6 J mol⁻¹ K⁻¹。當溫度升高時,會使單體構型轉換平衡常數 K_1 值變大, 增加溫度使得順式單體獲得的能量越多,使之能克服能障轉成反式構 型,增加了反式的居量,由求出的焓知,順式單體轉成反式單體為吸 熱反應。 圖 3.100 為 $\ln K_2$ 對 $\frac{1}{T}$ 做 van't Hoff 圖。表 3.20 可以看出,單體自 結 合 平 衡 常 數 值 求 出 的 焓 ΔH_2^{Θ} 及 熵 ΔS_2^{Θ} 分 別 為 - 22.3k J mol⁻¹ 與 -42.9 J mol⁻¹ K⁻¹。如表 3.20,當溫度升高時,會使順式單體自結合平衡 常數 K_2 值變小,降低自結合的形成,因此確認由氫鍵形成的自結合為 放熱反應。

圖 3.96 由公式 (2-33) 所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 四氯乙烯溶中所得線性圖。其四組溫度分別為: (-■-)288K,
 (-●-) 298K, (-▲-)308K, (-▼-)318K。

圖 3.97 由公式 (2-36)所得之3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於
 四氯乙烯溶劑中所得線性圖。其四組溫度分別為: (-■-)288K, (-●-)298K, (-●-)308K, (-▼-)318K。

圖 3.99 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中 van't Hoff 圖。K₁為構型轉換的平衡常數。

圖 3.100 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中 van't Hoff 圖。K₂為順式單體自結合的平衡常數。

及單覺	售自结合之標準焓AH	H₂ ^Φ 及標準熵ΔS2 ^Φ 。			
	構型轉換平衡常	單體自結合平衡	順式單體吸收係	反式單體吸收係	雙體吸收係數
窗度	K_1	K_2	$\varepsilon_{\rm C}/{\rm Lcm}^{-2}~{\rm mol}^{-1}$	$\varepsilon_t/Lcm^{-2} mol^{-1}$	$\varepsilon_{\rm d}/{\rm Lcm}^{-2}{ m mol}^{-1}$
15°C	0.209 ± 0.003	64.6 ± 1.5	10229.9 ± 163.0	10043.2 ± 30.4	78247.3 ± 609.1
25°C	0.216 ± 0.001	46.0 ± 0.5	9688.6 ± 88.1	8965.5 ± 84.5	76365.0 ± 277.2
35°C	0.220 ± 0.001	35.0 ± 0.1	9517.7 ± 38.0	8858.5 ± 76.3	74906.4 ± 256.9
45°C	0.231 ± 0.002	26.7 ± 0.6	9383.2 ± 109	8591.8 ± 60.9	72966.1 ± 179.7
構型轉換的核	票準反應焓∆H1 [●] /kJ	$mol^{-1} = 2.42 \pm 0.3$			
構型轉換的核	票準反應熵∆S1 ^e / J m	$10^{-1} \text{ K}^{-1} = -4.6 \pm 0.1$			
單體自結合的	伪標準反應焓△H²/	kJ mol ⁻¹ = -22.3 ± 0.4	1		
單雙體自結合	含老標準熵∆S2 [●] /Jm	$10^{-1} \text{ K}^{-1} = -42.9 \pm 1.5$			

平衡常數 K1,以及由不同溫度條件下之平衡常數所求得的構型轉換的標準反應焓OH1⁺及標準熵OS1⁺ 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於四氯乙烯溶劑中,在不同溫度下所求得知順式單體總莫耳吸收 係數 Ec、反式單體總莫耳吸收係數 Ei、雙體總莫耳吸收係數 Ea、單體自結合常數 K2、單體構型轉換 表 3.20

第四章 實驗光譜參數、熱力學參數及理論計算結果的探討 4.1 證明 3,5-二甲基-2-乙醯基吡咯的雙體為環狀雙體

在本實驗研究化合物 3,5-二甲基-2-乙醯基吡咯(2-Acetyl-3,5-di-methylpyrrole, ADP),結構如下:

順式單體自結合有可能是以環狀雙體或是線性雙體的方式結合。溶質 吡咯環上的 N-H 基會與另一溶質 C=O 形成氫鍵, 雙體可能的構型為

此為兩順式單體自結合成環狀雙體圖,其雙體具有兩個氫鍵。另一種 可能是以線性的方式結合,如下圖所示

此為兩順式單體自結合成線性雙體圖,其雙體具有一個氫鍵。若雙體 是以環狀雙體存在,則所有雙體中的 N-H 基皆形成氫鍵鍵結。若單 體自結合式形成線性雙體,則雙體有未形成氫鍵 N-H 基。若以 IR 測 此終端基,此訊號因接近單體的 N-H 基吸收峰,會對單體 N-H 基吸 收帶的吸收度造成貢獻。假設雙體是以線性雙體的形式存在,因此單 位光徑下單體在吸收帶的總吸收度 A_m 改為

$$A_m^l = \varepsilon_m[B] + \varepsilon_m'[B_2] = \varepsilon_m c_B c^{\Theta} + \varepsilon_m' c_{B_2} c^{\Theta}$$

(4-1)

$$c_B = \frac{A_m^l}{\varepsilon_m c^{\Theta}} - \frac{\varepsilon_m' c_{B_2}}{\varepsilon_m}$$
(4-2)

由式 (2-15) 知在單位光徑下雙體在吸收帶的總吸收度 $A_d = \varepsilon_d c_{B_2} c^{\Theta}$,因此我們可以將無因次化雙體濃度以 $c_{B_2} = A_d / \varepsilon_d c^{\Theta}$ 表示,並代入式 (2-2)

中 $K = c_{B_2} / c_B^2$, 並整理成

$$K = c_{B_2} / c_B^2 = A_d / \varepsilon_d c^\Theta c_B^2$$
(4-3)

將式 (4-3) 求倒數,並將式 (4-2) 代入

$$\frac{1}{K} = \frac{\varepsilon_d c^{\Theta} c_B^2}{A_d} = \frac{\varepsilon_d c^{\Theta}}{A_d} \left(\frac{A_m^l}{\varepsilon_m c^{\Theta}} - \frac{\varepsilon_m^\prime c_{B_2}}{\varepsilon_m}\right)^2 = \frac{\varepsilon_d}{A_d \varepsilon_m^2 c^{\Theta}} \left(A_m^l - \varepsilon_m^\prime c_{B_2} c^{\Theta}\right)^2 \tag{4-4}$$

將式 (4-4) 等號左右同乘以 $\varepsilon_m c^{\Theta}/\varepsilon_d$ 並整理成

$$\frac{\varepsilon_m^2 c^{\Theta}}{K\varepsilon_d} = \frac{1}{A_d} \left[(A_m^l)^2 - 2A_m^l \varepsilon_m' c_{B_2} c^{\Theta} + (\varepsilon_m' c_{B_2} c^{\Theta})^2 \right]$$
(4-5)

將式 (4-5) 重新整理成

$$\frac{(A_m^l)^2}{A_d} = \frac{\varepsilon_m^2 c^{\Theta}}{K\varepsilon_d} + \frac{2A_m^l \varepsilon_m' c_{B_2} c^{\Theta}}{A_d} - \frac{(\varepsilon_m' c_{B_2} c^{\Theta})^2}{A_d} = 96$$
(4-6)

我們知在定溫下 $\varepsilon_m \cdot \varepsilon'_m \cdot \varepsilon_d Q K$ 為定值, $A'_m \cdot A_d$ 會隨著濃度的增加 而增加。若有裸露出的 N-H 基終端基訊號,則 $\varepsilon'_m \neq 0$,因此會使式 (4-6) 右式的後兩項隨濃度改變,所以 $\frac{(A'_n)^2}{A_d}$ 對濃度 c_0 作圖不為水平線。反 之若無裸露出的 N-H 基終端基訊號,則 $\varepsilon'_m = 0, \frac{(A'_n)^2}{A_d} = \text{constant} \cdot \bigcup \frac{(A'_n)^2}{A_d}$ 或 $A_d / (A'_m)^2$ 對濃度 c_0 作圖為水平線。由圖 3.4、3.13、3.22、3.31 及 3.40 是以 $A_d / (A_m)^2$ 對濃度 c_0 作圖,其圖形幾乎為水平線,因此也證明了雙 體是以環狀雙體存在。 A.T. Dubis⁴⁰ 等人利用紅外光譜研究 2-吡咯甲醛自結合,並透過 理論計算 B3LYP/6-311++G**的結果能預測雙體是以環狀雙體形式存 在 ^{51,52}。固態晶體資料也顯示此類化合物自結合成環狀結構 ⁴¹⁻⁴⁴ 及 H. E. Affsprung¹³研究丁內醯胺的自結合從光譜資料也顯示可以用 A_d / A²_m 對濃度作圖,以檢視雙體是否為環狀雙體。A_d / A²_m不隨濃度改變,則 表示雙體為環狀雙體。

4.2 在不同溶劑下溶質特定官能基伸縮振動頻率的探討

在本實驗研究了溶質自結合。我們改變溶劑的種類,目的是探討溶劑效應的影響。根據 KBM (Kirkwood-Bauer-Magat)^{47,48} 位移公式

$$\frac{\Delta v}{v^{o}} = \frac{v^{o} - v^{obs}}{v^{o}} = C \frac{D - 1}{2D + 1}$$
(4-7)

此公式適用於非極性的溶劑條件。v^o為在氣相時特定官能基的伸縮 振動頻率,v^{obs}為在溶劑時所偵測到特定官能基的伸縮振動頻率,C為 常數,D為溶劑的介電常數。當溶劑的介電常數越大,其極性越大, 溶質特定官能基的伸縮振動頻率越往低頻位移。而溫度亦會影響到介 電常數,當高溫時會降低溶劑的介電常數,使其極性降低。所以在固 定溶劑下,改變系統溫度,當高溫時特定官能基的伸縮振動頻率會在 較高頻率的位置。我們也將式 (4-7) 重新整理

$$v^{obs} = -Cv^{0} \frac{D-1}{2D+1} + v^{0}$$
(4-8)

以 $Y = v^{obs}$ 對 $X = \frac{D-1}{2D+1}$ 做線性圖,可以由截距得到在氣相時的伸縮振動 頻率 v^{o} 。圖 4.1 為溶質 3,5-二甲基-2-乙醯基吡咯 ADP 溶於不同溶劑 中及四組不同溫度下,以 $Y = v^{obs}_{NH}$ 對X = (D-1)/(2D+1)做線性圖,可以 得線性迴歸線 Y=-116.01X+3471.4。其中截距為3471.4cm⁻¹代表外插到 D = 1 的狀態,對應了溶質於真空狀態下單體 N-H 基伸縮振動頻率 v^{o} 。

圖 4.1 3,5-二甲基-2-乙醯基吡咯溶於不同溶劑中及四組不同溫度 下的單體最大伸縮振動頻率位置 V^{obs} 對(D-1)/(2D+1) 做圖, 其中D為介電常數。其四組溶劑分別為:(-○-)正庚烷,(-■ -)正辛烷,(-▲-)環己烷,(-×-)四氯乙烯。

圖 4.2、4.3 分別為溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 (Ethyl3,5-dimethyl-1H-pyrrole-2-carboxylate, EDPC)反式、順式單體 N-H基最大伸縮振動頻率 V^{obs} 或 V^{obs} 對(D-1)/(2D+1)做線性圖,可以 得到反式、順式的線性迴歸線分別為 Y= -170.5X+3514.1、Y= -151.7X+3491.4。其中截距為3514.1cm⁻¹代、3491.4 cm⁻¹代表外插到 D = 1 的狀態,溶質於真空狀態下反式、順式單體 N-H 基的伸縮振動頻 率分別為 V⁰_i、 V⁰_c。

圖 4.2 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於不同溶劑中及四組不同溫度條件下,反式單體的最大伸縮振動頻率位置 v^{obs}對(D-1)/(2D+1)做圖,其中D為介電常數。其五組溶劑分別為: (-▼-)正庚烷, (-△-)正辛烷, (-●-)甲基環已烷, (-□-)環已烷, (-■-)四氯乙烯。

 圖 4.3 3,5-二甲基-1H-吡咯-2-甲酸乙酯溶於不同溶劑中及四組
 不同溫度條件下,順式單體的最大伸縮振動頻率位置 v^{obs} 對(D-1)/(2D+1)做圖,其中D為介電常數。其四組溶劑分
 別為: (-▼-)正庚烷, (-△-)正辛烷, (-●-)甲基環已烷, (-□-)
 環已烷, (-■-)四氯乙烯。

1896

從實驗結果知改變溶劑也會對雙體 N-H 基最大伸縮振動頻率位 置造成影響,但雙體涉及到氫鍵,因此以雙體 N-H 基最大伸縮振動 頻率位置對(D-1)/(2D+1)做圖可能會偏離 KBM 的預測。因為 KBM 位移公式適用範圍並不考慮到雙原子分子受到特殊作用力的情況。從 圖 4.4-4.11 觀察,只能定性的說,隨著溶劑介電常數增加,雙體 N-H 基最大伸縮振動頻率會往低頻方向移動。

圖 4.5 15℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同溶劑中,雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做圖,其中D為介電常數。四組溶劑分別為:(-◆-)正庚烷,(-■-)正辛烷,(-◆-)甲基環已烷,(-▼-)環己烷,(-×-)四氯乙烯。

圖 4.6 25℃下溶質 3,5-二甲基-2-乙醯基吡咯 ADP 溶於不同溶劑中,
 雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做圖,其中D
 為介電常數。四組溶劑分別為: (-●-)正庚烷, (-■-)正辛烷,
 (-▲-)環己烷, (-×-)四氯乙烯。

圖 4.7 25℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同溶劑中,雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做圖,其中D為介電常數。四組溶劑分別為:(-◆-)正庚烷,(-■-)正辛烷,(-◆-)甲基環己烷,(-▼-)環己烷,(-×-)四氯乙烯。

圖 4.9 35℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同 溶劑中, 雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做 圖,其中D為介電常數。四組溶劑分別為: (-◆-)正庚烷, (-■-)正辛烷, (-◆-)甲基環已烷, (-▼-)環己烷, (-×-)四氯乙烯。

圖 4.11 45℃下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於不同溶劑中,雙體 N-H 基最大伸縮頻率位置對(D-1)/(2D+1)做圖,其中D為介電常數。四組溶劑分別為:(-◆-)正庚烷,(-■-)正辛烷,(-◆-)甲基環已烷,(-▼-)環己烷,(-×-)四氯乙烯。
另外我們也探討溫度效應對雙體 N-H 基最大伸縮振動頻率位置 的影響,從圖 4.12、4.13 觀察到隨溫度升高,雙體 N-H 基最大伸縮 振動頻率位置會往高頻的方向移動。這是由於溫度上升,降低了溶劑 的介電常數,因此由 KBM 的位移公式知雙體 N-H 基最大伸縮振動頻 率位置會在較高頻位置。

圖 4.12 溶質 3,5-二甲基-2-乙醯基吡咯 ADP 溶於正辛烷溶劑中, 雙 體 N-H 基最大伸縮振動頻率位置對(D-1)/(2D+1)做圖,其中 D為介電常數。

 圖 4.13 溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 溶於正辛烷溶 劑中,雙體 N-H 基最大伸縮振動頻率位置對(D-1)/(2D+1) 做
 圖,其中D為介電常數。

由理論計算 PBE1PBE/6-311++G**的結果,能預測紅外光譜特定 官能基的伸縮振動頻率。如表 4.1 為理論計算溶質 EDPC 順式、反式 單體 N-H 基伸縮振動頻率,並與實驗結果相互對照。兩者皆隨溶劑 極性增加,伸縮振動頻率位移到低頻。

贈	
軍武	
RIA	
ろら	
甲酸	
-2-	
叱也略	
1H-	
基	
1	
3,5-	
<u>환</u>	١
等	4
は見	
驗釴	
致無	
(**{ [
)++	1
-311)
0 1	
PBI	-
BEI	
瘅 P	4
高計	
理	1
Ē	
4.1	
表	

順式單體和雙體紅外光譜 N-H 基最大伸縮振動頻率位置

	集體	最大伸縮振動頻率 / cm ⁻¹	理論值	3325.2	3326.2	3326.2	3328.0	3325.0
			實驗值	3313.0	3313.8	3313.0	3313.1	3311.0
	順式單體	b頻率 / cm ⁻¹	理論值	3455.7	3458.6	3449.0	3453.1	3438.5
		最大伸縮振動	實驗值	3462.2	3462.7	3460.5	3456.0	3455.9
	反式單體	反式單體 最大伸縮振動頻率 /cm ⁻¹	理論值	3487.4	3485.5	3473.0	3476.2	3460.5
			實驗值	3481.1	3481.3	3479.1	3478.3	3474.5
			溶劑	正辛院	正戊烷	甲基環己烷	邊已院	四氯乙烯

本實驗研究單體的自結合,從溶質紅外光譜偵測到雙體 N-H 基 的伸縮振動頻率會位移到低頻的位置。其他作者研究化合物的自結合 亦有此現象^{51,53}。而 D. Sajan⁵⁴等人研究醇類的振動光譜,他發現當 氫鍵形成時 O-H…O, O-H 基的伸縮振動頻率會紅位移到低頻位置。 作者認為質子受體 O 提供孤對電子給質子予體 O-H 的反鍵結軌域σ_{ab}, 造成此軌域的電子居量增加,也使得質子予體的 O-H 鍵變弱及 O-H 鍵變長⁵⁵,如圖 4.14。因此雙體 O-H 基的伸縮振動頻率會紅位移到 低頻位置。而 N. W. Alcock⁵⁶等人也將 O-H 基形成氫鍵時的軌域和能 階圖以如圖 4.15 表示。

圖 4.14 醇類質子予體 O-H 鍵長對 O…O 距離做圖, O…O 為質子予 體 O 與質子受體 O 之間距離⁵⁵

[引自 Figure 8.12 in ref. 55, P. Schuster, G. Zundel and C. Sandorfy, *The Hydrogen Bond Vol II* (North-Holland, New York, 1976), p. 411.]

圖 4.15 (a)形成 O-H 鍵的軌域圖(b)形成 O-H 鍵的能階圖(c)質子受 體 O 接近體 O-H 鍵時提供孤對電子給 O-H 鍵的反鍵結軌域 σ_{ab}之軌域圖(d) 質子受體 O 接近體 O-H 鍵時提供孤對電子 給 O-H 鍵的反鍵結軌域σ_{ab}之能階圖⁵⁶

[引自 Figure 7.10 in ref. 56, N. W. Alcock, *Bonding And Structure Structural Principles In Inorganic And Organic Chemistry* (Ellis Horwood Limited, New York, 1990), p 192.]

4.3 在不同溶劑下單體自結合標準焓的探討

3.5-二甲基-2-乙醯基吡咯 (2-Acetyl-3.5-di-methylpyrrole, ADP) 和 3.5-二甲基-1H-吡咯-2-甲酸乙酯(Ethyl3,5-dimethyl-1H-pyrrole-2carboxylate, EDPC)這兩個化合物在三氯乙烯、四氯乙烯、環己烷、 甲基環己烷、正辛烷及正庚烷溶劑中的雙體皆是以環狀雙體存在。改 變實驗條件,以探討溫度、溶劑對自結合的影響。當增加溫度時,也 明顯由實驗數據得到單體自結合的平衡常數 K 會下降,因此高溫下 不利形成雙體。將不同溫度下得到的 K 值做 van't Hoff 圖,可進一步 由斜率求得自結合標準焓。改變溶劑時也發現在極性的溶劑下,自結 合平衡常數會變小,可能是溶劑與單體的作用較強,降低了自結合的 能力。從 Onsager⁵⁰ 的理論知,當溶劑的介電常數 D 越大,使溶質所 受的反應場 $R = \frac{2(D-1)}{(2D+1)} \frac{\mu}{a^3}$ 也越大,造成單體能階下降量 $U = \mu R/2$ 也 越大。由於雙體是以環狀雙體存在,其偶極距趨近於0,其所受的反 應場影響較小,因此雙體能階較不受溶劑的影響。將理論計算 PBE1PBE/6-31++G**反式單體、順式單體及雙體偶極距的結果列於表 4.2 中。我們將不同溶劑下單、雙體的相對能階以圖 4.16 表示。由圖 4.16 知當增加溶劑的極性, 順式單體受反應場作用較大, 也造成順式 單體的能階下降,因此自結合的標準焓下降。本實驗所使用的溶劑其 介電常數值 D 的大小為: D(四氯乙烯)> D(環己烷)> D(甲基環己烷)>

D(正辛烷)>D(正庚烷)。由實驗的結果,如表 4.3 單體自結合標準焓 $\Delta H_2^{\Theta}($ 四氯乙烯)< $\Delta H_2^{\Theta}($ 環已烷)< $\Delta H_2^{\Theta}($ 甲基環已烷)< $\Delta H_2^{\Theta}($ 正辛烷)< $\Delta H_2^{\Theta}($ 正庚烷),此趨勢與理論預料相符。

表 4.2 利用理論計算 PBE1PBE/6-31++G**先將溶質 3,5-二甲基 -1H-吡咯-2-甲酸乙酯 EDPC 的幾何構型最佳化,再利用 MP2/6-311+G(2d,p)單點計算出偶極距反式單體、順式單體、 雙體偶極距。

	反式單體	順式單體	雙體
	偶極距	偶極距	偶極距
溶劑	µ/ debye	µ/ debye	µ/ debye
氣相	1.41	3.80	
正辛烷	1.72	4.09	0.005
正戊烷	1.63	4.08	0.003
甲基環己烷	1.74	4.20	-0.003
環己烷	1.65	4.13	0.003
四氯乙烯	1.69	4.22	0.004
		1030	

表4.3 利用理論計算B3LYP/6-31+G**先將3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 的幾何構型最佳化,再利用 MP2/6-311+G(2d,p)單點計算出能量自結合焓。

自結合標準焓	$\Delta H_2^{\Theta} / kJ mol^{-1}$
實驗部分	理論部分
	-43.05
-28.7 ± 3.5	-27.19
-32.1 ± 4.6	-27.41
-25.9 ± 3.6	-26.04
-23.7 ± 1.1	-26.05
-22.3 ± 0.4	-23.48
	自結合標準焓 實驗部分 -28.7±3.5 -32.1±4.6 -25.9±3.6 -23.7±1.1 -22.3±0.4

圖 4.16 3,5-二甲基-2-乙醯基吡咯在不同溶劑下,順式單體及雙體 能階圖。溶劑分別為:正辛烷、環已烷及四氯乙烯。

4.4 在不同溶劑下對單體半高寬的影響

在本實驗中,我們發現隨溶劑極性 (polarity) 增加,會使得單體、 雙體的半高寬 $\Delta v_{1/2}$ ⁵⁷變寬。

$$\Delta \mathbf{v}_{1/2} = \frac{\Gamma}{2\pi} \tag{4-9}$$

Γ為衰退速率 (decay rate)58 表示如下

$$\Gamma = \left(\frac{2\pi}{\hbar}\right) \sum_{\mathbf{m}(\mathbf{E}_{\mathbf{m}} < E_{k})} \left| V_{mk,EM} \right|^{2} \rho(E_{k} - \hbar\omega)$$
(4-10)

 $V_{mk,EM}$ 為電磁的微擾位能, ρ 為能量的狀態密度。但事實上此式並未考 慮到溶劑的交互作用能 V_{int} , 由 Onsager 的理論知溶質的永久偶極會誘 使溶劑極化,進而使溶劑對溶質產生反應場R。隨著溶劑極性增加溶 質所感受到的反應場也越大,溶質與溶劑之間的微擾的交互作用能 $V_{int} = -\frac{1}{2}\mu R$ 也越大。因此溶質在溶劑中也應該要考慮到溶質與溶劑之 間的微擾的交互作用能,所以我們將式 (4-10) 改寫成

$$\Gamma = \left(\frac{2\pi}{\hbar}\right) \sum_{\mathbf{m}(E_m < E_k)} \left| V_{mk, EM} + V_{int} \right|^2 \rho(E_k - \hbar\omega)$$
(4-11)

由式 (4-11) 知當溶劑極性增加,溶質與溶劑之間的微擾的交互作用 能也增大,增加分子從激發態掉到基態的衰退速率,因此也造成了半 高寬變寬。 本實驗所使用的溶劑其介電常數值 $D(三氯乙烯)>D(四氯乙烯)>D(環已烷)>D(正辛烷)>D(正庚烷)。由實驗的結果,在不同溶劑 下 3,5-二甲基-2-乙醯基吡咯 ADP 單體 N-H 基的半高寬大小依序為 <math>\Delta v_{1/2}$ (三氯乙烯)> $\Delta v_{1/2}$ (四氯乙烯)> $\Delta v_{1/2}$ (正辛烷)≈ $\Delta v_{1/2}$ (正庚烷)≈ $\Delta v_{1/2}$ (環已烷),如圖 4.17-4.20 所示。

 圖 4.17 在溫度 15℃下 3,5-二甲基-2-乙醯基吡咯單體 N-H基的半高 寬對濃度 co作圖,變化不同溶劑,溶劑分別為: (-×-)三氯乙 烯、(-▼-)四氯乙烯、 (-◆-)環己烷、(-○-)正庚烷及(-■-)正 辛烷。

 圖 4.18 在溫度 25℃下 3,5-二甲基-2-乙醯基吡咯單體 N-H基半高寬 對濃度 co作圖,變化不同溶劑,溶劑分別為: (-×-)三氯乙烯、 (-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。

 圖 4.19 在溫度 35℃下 3,5-二甲基-2-乙醯基吡咯單體 N-H基的半高 寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、 (-▼-)四氯乙烯、(-◆-)環已烷、(-○-)正庚烷及(-■-)正辛烷。

 圖 4.20 在溫度 45℃下 3,5-二甲基-2-乙醯基吡咯單體 N-H 基的半高 寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、
 (-▼-)四氯乙烯、(-◆-)環已烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.17-4.20 中發現在正辛烷、正庚烷及環己烷的溶劑中單體 N-H 基的半高寬皆差不多,這是由於 $D(II 辛烷) \approx D(II 庚烷) \approx D(環已烷)$, 溶質與溶劑的交互作用能差不多,因此半高寬不會有太大差異。在不 同溶劑下 3,5-二甲基-2-乙醯基吡咯 ADP 雙體 N-H基的半高寬也會受 溶劑的影響,隨溶劑介電常數增大,溶劑與溶質之間的交互作用能越 大,造成衰退數率變快,因此半高寬變寬。ADP 雙體 N-H 基的半高 寬大小依序為: $\Delta v_{1/2}$ (三氯乙烯)> $\Delta v_{1/2}$ (四氯乙烯)> $\Delta v_{1/2}$ (II 年烷) $\approx \Delta v_{1/2}$ (II 庚烷) $\approx \Delta v_{1/2}$ (環己烷),如圖 4.21-4.24 所示。

圖 4.21 在溫度 15℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.22 在溫度 25℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.23 在溫度 35℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.24 在溫度 45℃下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溶劑,溶劑分別為:(-×-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環己烷、(-○-)正庚烷及(-■-)正辛烷。

3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 順式、反式單體 N-H 基的
 半高寬大小依序為Δν_{1/2}(四氯乙烯)>Δν_{1/2}(甲基環已烷)≈Δν_{1/2}(環已烷)
 ≈Δν_{1/2}(正辛烷)≈Δν_{1/2}(正庚烷),如圖 4.25-4.32 所示。

圖 4.25 在溫度 15℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.26 在溫度 15℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<-)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.27 在溫度 25℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為:(-◀-)四氯乙烯、(-◇
 -)環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.28 在溫度 25℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖溶劑分別為: (-<)四氯乙烯、(-◇-)環已
 烷、(-△-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.29 在溫度 35℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為:(-◄-)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.30 在溫度 35℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<-)四氯乙烯、(-◇-)
 環己烷、(-△-)甲基環己烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.31 在溫度 45℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體的
 半高寬對濃度作圖,其溶劑分別為: (- <-)四氯乙烯、(- <-)
 環己烷、(- △-)甲基環己烷、(- ○-)正庚烷及(-=-)正辛烷。

圖 4.32 在溫度 45℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的
 半高寬對濃度作圖,其溶劑分別為:(-<-)四氯乙烯、(-◇-)
 環已烷、(-△-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。

3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 雙體 N-H基的半高寬大小 依序為Δν_{1/2}(四氯乙烯)>Δν_{1/2}(甲基環己烷)≈Δν_{1/2}(環己烷)≈Δν_{1/2}(正辛 烷)≈Δν_{1/2}(正庚烷),如圖 4.33-4.36 所示。

 圖 4.33 在溫度 15℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯雙體的半高 寬對濃度作圖,其溶劑分別為:(-×-)四氯乙烯、(-◇-)環已 烷、(-▼-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。

 圖 4.34 在溫度 25℃下 3,5-二甲基-1H-吡咯-2-甲酸乙酯雙體的半高 寬對濃度作圖,其溶劑分別為:(-×-)四氯乙烯、(-◇-)環已 烷、(-▼-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。

 圖 4.35 在溫度 35°C下 3,5-二甲基-1H-吡咯-2-甲酸乙酯雙體的半高 寬對濃度作圖,其溶劑分別為:(-×-)四氯乙烯、(-◇-)環已 烷、(-▼-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。

 圖 4.36 在溫度 45°C下 3,5-二甲基-1H-吡咯-2-甲酸乙酯雙體的半高 寬對濃度作圖,其溶劑分別為:(-×-)四氯乙烯、(-◇-)環已 烷、(-▼-)甲基環已烷、(-○-)正庚烷及(-■-)正辛烷。

圖 4.37-4.41 及圖 4.42-4.46 分別為 3,5-二甲基-2-乙醯基吡咯 ADP 單體、雙體 N-H 基的半高寬對濃度作圖,當我們改變系統溫度,從 圖中發現單體、雙體 N-H 基的半高寬不太隨溫度影響。這是由於稍 微改變系統溫度,並不會對溶劑的介電常數有太大的改變,溶質與溶 劑之間的交互作用能亦差不多,因此半高寬不會差異太大。

圖 4.37 在固定溶劑正辛烷條件下 3,5-二甲基-2-乙醯基吡咯單體的
 半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■
 -)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.38 在固定溶劑正庚烷條件下 3,5-二甲基-2-乙醯基吡咯單體的
 半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■
 -)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.39 在固定溶劑環已烷條件下 3,5-二甲基-2-乙醯基吡咯單體的
 半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■
 -)288K、(-○-)298K、(-△-)308K、(-×-)318K。

 圖 4.40 在固定溶劑四氯乙烯條件下 3,5-二甲基-2-乙醯基吡咯單體 的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■
 -)288K、(-○-)298K、(-△-)308K、(-×-)318K。

 圖 4.41 在固定溶劑三氯乙烯條件下 3,5-二甲基-2-乙醯基吡咯單體 的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■
 -)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.42 在固定溶劑正辛烷條件下 3,5-二甲基-2-乙醯基吡咯雙體的
 半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■-)288K、(-○-)298K、(-△-)308K、(-▽-)318K。

圖 4.43 在固定溶劑正庚烷條件下 3,5-二甲基-2-乙醯基吡咯雙體的
 半高寬對濃度作圖,變化不同溫度,溫度分別為: (-■-)288K、
 (-0-)298K、(-▲-)308K、(-▽-)318K。

圖 4.44 在固定溶劑環已烷條件下 3,5-二甲基-2-乙醯基吡咯雙體的
 半高寬對濃度作圖,變化不同溫度,溫度分別為: (-■-)288K、
 (-○-)298K、(-▲-)308K、(-▽-)318K。

 圖 4.45 在固定溶劑四氯乙烯條件下 3,5-二甲基-2-乙醯基吡咯雙體 的半高寬對濃度作圖,變化不同溫度,溫度分別為: (-■ -)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

圖 4.46 在固定溶劑三氯乙烯條件下 3,5-二甲基-2-乙醯基吡咯雙體的半高寬對濃度作圖,變化不同溫度,溫度分別為: (-■-)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

圖 4.47-4.56 及圖 4.57-61 分別為溶質 3,5-二甲基-1H-吡咯-2-甲酸 乙酯 EDPC 順式、反式單體及雙體 N-H 基的半高寬對濃度作圖,在 固定溶劑下改變系統溫度,順式、反式單體及雙體 N-H 基的半高寬 不太隨溫度改變。

 圖 4.47 在固定溶劑正辛烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順 式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.48 在固定溶劑正辛烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.49 在固定溶劑正庚烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順 式單體的半高寬對濃度作圖,其溫度分別為:(-■-)288K、 (-0-)298K、(-△-)308K、(-×-)318K。

圖 4.50 在固定溶劑正庚烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

 圖 4.51 在固定溶劑甲基環已烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙 酯順式單體的半高寬對濃度作圖,變化不同溫度,溫度分別 為:(-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

 圖 4.52 在固定溶劑甲基環己烷條件下3,5-二甲基-1H-吡咯-2-甲酸乙 酯反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別 為:(-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

 圖 4.53 在固定溶劑環已烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯順 式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-) 288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.54 在固定溶劑環己烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯
 反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

 圖 4.55 在固定溶劑四氯乙烯條件下3,5-二甲基-1H-吡咯-2-甲酸乙酯 順式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.56 在固定溶劑四氯乙烯條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯
 反式單體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-△-)308K、(-×-)318K。

圖 4.57 在固定溶劑正辛烷條件下3,5-二甲基-1H-吡咯-2-甲酸乙酯雙體的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■-)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

圖 4.58 在固定溶劑正庚烷條件下3,5-二甲基-1H-吡咯-2-甲酸乙酯雙體的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■-)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

圖 4.59 在固定溶劑環已烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯雙 體的半高寬對濃度作圖,變化不同溫度,溫度分別為:(-■-)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

 圖 4.60 在固定溶劑甲基環已烷條件下 3,5-二甲基-1H-吡咯-2-甲酸乙 酯雙體的半高寬對濃度作圖,變化不同溫度,溫度分別為:
 (-■-)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

圖 4.61 在固定溶劑四氯乙烯條件下 3,5-二甲基-1H-吡咯-2-甲酸乙酯 雙體的半高寬對濃度作圖,變化不同溫度,溫度分別為:(■-)288K、(-○-)298K、(-▲-)308K、(-▽-)318K。

4.5 氫鍵及溶劑效應對總莫耳吸收係數的影響

從實驗結果我們發現, 雙體的總莫耳吸收係數遠大於單體的總莫 耳吸收係數。C. M. Huggins⁵⁹等人研究醋酸的自結合及 R. E. Asfin⁶⁰ 等人研究次磷酸的自結合中得到雙體的總莫耳吸收係數遠大於單體 的總莫耳吸收係數。由 G. C. Pimentel⁶¹的書中提到, 具氫鍵強度至少 大於單體強度五倍, 其整理一些化合物(具氫鍵/單體)強度比, 如表 4.4 所示。

ACID	BASE	B (H bond)×10 ⁻³	B (H bond)
		$(L cm^{-2}mole^{-1})$	B (monomer)
phenol	benzene	16	2.1
phenol	ethyl acetate	84	7.2
phenol	acetonitrile	50	4.3
phenol	diethyl ether	80.3	6.9
phenol	hexamethylene		
	tetramine	124	10.7
n-butyl alcohol	diethyl ether	38	5.3
sec-butyl alcohol	diethyl ether	32	5.5
t-butyl alcohol	diethyl ether	26	6.2
γ-butyrolactam			
dimer		41	14
acetic acid dimer		74	37
methanol		24	5
polymer		24	3
H ₂ O polymer			12
N-ethylacetamide		090	
polymer		44	19
CDCl ₃	benzene	0.31	6.2
CDCl ₃	ethyl acetate	· · · ·	9.5
CDCl ₃	acetone	0.54	10.8
CDCl ₃	N-ethylacetamide	1.7	34

表 4.4 不同化合物其(具氫鍵/單體)強度比⁶¹ [引自 Table 3-VII in ref. 61, G. C. Pimentel and A. L. McClellan, *The Hydrogen Bond* (W. H. Freeman, New York, 1960), p. 102.]

G.C.Pimentel⁶¹與T.Ebata⁶²認為當氫鍵形成時,質子受體B的 電荷-q₀接近質子予體A-H使H的電荷q₀,使B的電荷-q₀及H的 電荷q₀分佈急劇改變,這也造成了偶極距的改變,如圖4.67所示。 由圖4.62知電荷的移動增加了(dµ/dr),而強度I正比(dµ/dr)²,由此 我們可以知道電荷的移動造成偶極距的改變,進而也增加了雙體強 度。

stretching

圖 4.62 質子予體的電荷分佈改變,造成偶極距的改變⁶¹ [引自 Figure 8-7 in ref. 61, G. C. Pimentel and A. L. McClellan, *The Hydrogen Bond* (W. H. Freeman, New York, 1960), p. 248.] 在本實驗中我們改變溶劑的種類,以觀察溶劑效應對 N-H 基吸 收帶的總莫耳吸收係數影響。M.I. Nasser⁶³ 等人研究溶劑效應對二苯 胺 N-H 基吸收帶強度等影響,作者將不同溶劑下二苯胺 N-H 基吸收 帶強度及(D-1)/(2D+1)值整理如下表 4.5,並以 N-H 基吸收帶強度 對(D-1)/(2D+1)做圖,如圖 4.63。

- 表 4.5 在不同溶劑下二苯胺 N-H 基吸收带的強度 As。D 為溶劑的介電常數值⁶³
- [引自 Figure 2 in ref. 63, M. I. Nasser, Appl. Spectrosc. 28, 545 (1974).]

solvent	A _S ×10 ⁻⁸ (N-H)	(D-1) / (2D+1)	
1.n-Hexane	24.51	0.183	
2.cyclohexane	25.27	0.205	
3.carbon tetrachloride	28.50	0.225	
4.carbon disulfide	32.76	0.261	
5.chloroform	34.53 0.360		
6.methyl iodide	43.21	0.400	
7.ethyl bromide	53.01	0.424	
8.dichloroethane	46.90	0.428	
9.benzene	46.83	0.229	
10.toluene	48.07	0.239	
11.bromobenzene	42.95	0.373	
12.nitrobenzene	72.08	0.478	

 圖 4.63 在不同溶劑下二苯胺 N-H 基吸收帶的強度 As 對 (D-1)/(2D+1)做圖。溶劑分別為 1.正已烷、2.環已烷、3. 四氯化碳、4.硫化碳、5.三氯化碳、6.碘化鉀、7.溴化鉀烷、 8.二氯以烷、9.苯、10.甲苯、11.溴化苯、12.硝基苯⁶³

[引自 Figure 2 in ref. 63, M. I. Nasser, Appl. Spectrosc. 28, 545 (1974).]

896

由圖 4.63 知隨著溶劑介電常數的改變會造成二苯胺 N-H 基吸收 帶的強度 As 改變,但不一定溶劑的介電常數 D 值大,N-H 基吸收帶 的強度吸收帶的強度就越強。因此我們將溶質 3,5-二甲基-2-乙醯基吡 咯 ADP 單體 N-H 基吸收帶的總莫耳吸收係數對(D-1)/(2D+1)做 圖,如圖 4.64。

圖 4.64 在不同溶劑下溶質 3,5-二甲基-2-乙醯基吡咯 ADP 單體 N-H 基吸收帶的總莫耳吸收係數對(D-1)/(2D+1)做圖。溶劑分別為(-○-)三氯乙烯、(-▼-)四氯乙烯、(-◆-)環已烷、(-■-)正 辛烷及(-◆-)正戊烷

圖 4.65、4.66 分別為 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 順 式、反式單體 N-H 基吸收带的總莫耳吸收係數對(D-1)/(2D+1)做 圖。

圖 4.65 在不同溶劑下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 順式 單 體 N-H 基 吸 收 帶 的 總 莫 耳 吸 收 係 數 對 (D-1)/(2D+1)做圖。溶劑分別為(-○-)四氯乙烯、(-▲-)甲基環己烷、(-◆-)環己烷、(-●-)正辛烷及(-●-)正戊烷

-

TIM

圖 4.66 在不同溶劑下溶質 3,5-二甲基-1H-吡咯-2-甲酸乙酯 EDPC 反式 單體 N-H 基吸收带的總莫耳吸收係數對 (D-1)/(2D+1)做圖。溶劑分別為(-○-)四氯乙烯、(-▲-)甲基環己烷、(-◆-)環己烷、(-●-)正辛烷及(-◆-)正戊烷

另外 E. Hirota⁶⁴ 指出官能基吸收強度與溶劑介電常數及折射率的關係

m

式如下

A_s、A_g分別為在溶劑下及在氣態下官能基吸收強度,n為溶劑的折射率,D為溶劑的介電常數。由於我們並無法得到氣態下官能基吸收強度,因此我們先找一溶劑當作參考溶劑,以在此溶劑下官能基的吸收強度當作參考強度A_{s,r},A_g可表示為

$$\frac{A_{s,r}}{A_s} = \left[\frac{(n_r^2 + 2)(2D_r + 1)}{3(2D_r + n_r^2)}\right]^2$$
(4-13)

n,為參考溶劑的折射率, D,為參考溶劑的介電常數。再將式 (4-12) 除以式 (4-13),即可得到在溶劑下官能基吸收強度比的關係式

$$\frac{A_s}{A_{s,r}} = \left(\frac{n^2 + 2}{n_r^2 + 2}\right)^2 \left[\frac{(2D+1)(2D_r + n_r^2)}{(2D_r + 1)(2D + n^2)}\right]^2$$
(4-14)

將式 (4-14) 中溶劑的折射率以介電常數表示 $n^2 = D \cdot n_r^2 = D_r$,因此 可以將式 (4-14) 改寫成 $\frac{A_s}{A_{s,r}} = (\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ (4-15)

我們以正庚烷當參考溶劑,以溶質 ADP 在正庚烷溶劑下的 N-H 基吸 收帶總莫耳吸收係數當作參考強度,正庚烷的介電常數當作參考介電。 如此可以利用式 (4-15) 以 $Y = \frac{A_s}{A_{s,r}}$ 對 $X = (\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ 做圖, 如圖 4.67。

m

ΠΠ

圖 4.68、4.69 分別為溶質 EDPC 順式、反式單體 N-H 基吸收帶的總 莫耳吸收係比 $\frac{A_s}{A_{s,r}}$ 對 $(\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ 做圖。本實驗以正庚烷當 做參考溶劑,溶質 EDPC 在此溶劑下單體 N-H 基吸收帶的總莫耳吸 收係受當作參考強度,並以式 (4-15) 當作理論線。

圖 4.68 $\frac{A_s}{A_{s,r}}$ 對 $(\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$ 做圖。以正庚烷當參考溶劑, 溶質 EDPC 在正庚烷溶劑下的順式單體 N-H 基吸收帶總莫 耳吸收係數當作參考強度,正庚烷的介電常數當作參考介電。 溶劑分別為:(- \bullet -)四氯乙烯、(- \bullet -)環已烷、(- \bullet -)甲基環已烷、 (- \bullet -)正辛烷。實線部份以式 (4-15)當作理論線

另外我們也探討溶劑效應對雙體強度所造成的影響,利用式 (4-15)先以正庚烷當參考溶劑,溶質 ADP 在正庚烷溶劑下環狀雙體 N-H 基吸收帶總莫耳吸收係數當作參考強度,最後以 $Y = \frac{A_s}{A_{s,r}}$ 對

$$X = \left(\frac{D+2}{D_r+2}\right)^2 \left[\frac{(2D+1)D_r}{(2D_r+1)D}\right]^2 做圖 , 如圖 4.70 \circ$$

同理圖 4.71 為溶質 EDPC 在正庚烷溶劑下環狀雙體 N-H 基吸收 帶總莫耳吸收係數當作參考強度,最後以 $Y = \frac{A_s}{A_{s,r}}$ 對

X =
$$(\frac{D+2}{D_r+2})^2 [\frac{(2D+1)D_r}{(2D_r+1)D}]^2$$
 做圖 。

溶劑分別為:(-◆-)四氯乙烯、(-▲-)環已烷、(-●-)甲基環已烷、(-■-)正辛烷。實線部份以式 (4-15)當作理論線

將本實驗的結果套入 M. I. Nasser⁶³ 及 E. Hirota⁶⁴ 的方法中,由圖 4.64-4.71 知,不論單體或雙體 N-H 基吸收帶總莫耳吸收係數,並不 一定隨溶劑的介電常數越大,官能基吸收帶強度越強。

第五章 結論

利用紅外光譜以研究 3,5-二甲基-2-乙醯基吡咯(2-Acetyl-3,5-dimethylpyrrole, ADP)和 3,5-二甲基-1H-吡咯-2-甲酸乙酯(Ethyl3,5-dimethyl-1H-pyrrole-2-carboxylate, EDPC)這兩化合物在溶劑中的自結 合現象,並探討其溫度及溶劑效應。

歸納本文的研究結果:

 ADP 在稀薄溶液下呈現順式單體、環狀雙體共存。處理單體 N-H 基吸收度數據公式 (2-13) 及雙體 N-H 基吸收度數據公式 (2-17), 得到單體、雙體總莫耳吸收係數 ε_m、ε_d 及自結合平衡常數K_d。此 方法的優點在於可由公式 (2-13) 及 (2-17) 分別獨立求出K_d, K_d 之間的差值可用以檢視實驗數據的可靠性。利用不同溫度下的平 衡常數K_d做 van't Hoff 圖可以得到自結合的標準焓ΔH^{eb}及標準熵 ΔS^e。

EDPC 在稀薄溶液下呈現順式、反式單體及環狀雙體共存。本實驗所推導新的公式,以處理軟體適解的光譜資料。但從線性公式(2-33)的斜率P_c、截距Q_c、式(2-36)的斜率P_i、截距Q_i及式(2-39)的斜率P_d、截距Q_d中,除了雙體總莫耳吸收係數ε_d可由Q_d得到外。其餘並無法由P_c、P_i、P_d及Q_c、Q_i求得順式、反式單體總莫耳吸收係數ε_c、ε_i及單體構型轉換平衡常數K₁、自結合

平衡常數 $K_2 \circ 經以 P_c \sim P_i \sim Q_c \& Q_i$ 的 Jacobian 函數檢視證明出 這些條件式函數相依。為克服相依性所帶來的困境,經由台大蘇 志明老師的協助,利用理論計算 PBE1PBE/6-311++G**的結果能 預測出可靠的順式、反式單體 N-H 基吸收帶總莫耳吸收係數比 $\varepsilon_c / \varepsilon_i \circ 後者及實驗求得的 A_i \sim A_c$ 代入可得單體構型轉換平衡常 數 $K_1 = \frac{A_i}{A_c} \frac{\varepsilon_c}{\varepsilon_i} \circ K_1$ 再代入式 (2-33) 的 $P_c \sim Q_c \sim$ 式 (2-36) 的 $Q_i \&$ 式 (2-39) 的 P_d ,可進一步地求得 $\varepsilon_c \sim \varepsilon_i \& K_2 \circ$ 由不同溫度下的 $K_1 \sim$ $K_2 做 van't Hoff 圖可以得到單體構型轉換的標準焓 \Delta H_1^{\Theta} 、標準熵$ $\Delta S_1^{\Theta} \& Da f = 16$

- 3. 由於溶質 ADP 的雙體可能為環狀雙體或是線性雙體。其判斷可 依式 (4-6),以(A_m)²/A_d 對濃度c₀作圖。若(A_m)²/A_d 對濃度c₀作圖 為水平線,表示雙體為環狀雙體。在定溫下(A_m)²/A_d 對濃度c₀作 圖,結果為 ADP 在不同溶劑中皆呈現水平,因此推斷 ADP 雙體 在這些溶劑中為環狀。E. Affsprung¹³ 亦以此方法判斷丁內醯胺雙 體為環狀雙體。
- 4. 由 KBM^{47,48}的位移公式 (4-7)知,當溶劑的介電常數越大,極性 越大,單、雙體 N-H 基的伸縮振動頻率會往低頻位移。溫度亦 會影響到介電常數,當溫度升高時會降低溶劑的介電常數,使溶

劑極性降低,溶質單、雙體 N-H 基的伸縮振動頻率會越往高頻 移動。

- 5. 從 ADP 與 EDPC 的紅外光譜偵測到單體 N-H 基的伸縮振動頻率 會在較高頻的位置,雙體 N-H 基的伸縮振動頻率會在較低頻的 位置,兩者差距大約150 cm⁻¹。D. Sajan⁵⁴研究醇類自結合時亦有 相同問題。他認為質子受體 O 提供孤對電子給質子予體 O-H 的 反鍵結軌域σ_{ab},造成此軌域的電子居量增加,也使得質子予體 的 O-H 鍵變弱,變長。因此雙體 O-H 基的伸縮振動頻率會位移 到低頻位置。
- 6. 從 Onsager⁵⁰ 的理論知,當溶劑的介電常數 D 越大,使溶質所受的反應場 R = 2(D-1) µ (2D+1) a³ 也越大,造成單體能階下降量 U = µR/2 也越大。由於雙體是以環狀雙體存在,其偶極距趨近於 0,所受的反應場影響較小,雙體能階較不受溶劑的影響。因此可以推斷,隨溶劑的介電常數越大自結合的標準焓越小。反之當系統溫度增加,溶劑的 D 下降,使自結合的標準焓減少。
- 由式 (4-11) 知當溶劑極性增加,溶質與溶劑之間的微擾的交互 作用能也增大,增加分子振動能階從激發態掉到基態的衰退速率, 因此也造成了半高寬變寬。
- 8. 由實驗結果發現, 雙體的總莫耳吸收係數遠大於單體的總莫耳吸

收係數。G. C. Pimentel⁶¹與 T. Ebata⁶²認為當氫鍵形成時,質子受 體C=O的電荷- q_0 接近質子予體N-H基時,使H的電荷 q_0 及C=O 的電荷- q_0 分佈急劇改變,增加了偶極距的改變率 $(d\mu/dr)$,而強 度I正比 $(d\mu/dr)^2$,由此增加了雙體 N-H基的強度。本實驗探討 溶劑對雙體 N-H 基強度的影響時,套用了 M. I. Nasser⁶³和 E. Hirota⁶⁴的方法,但溶劑效應對強度的影響不是很顯著,因此無 法用此方法解釋。這可能是還要考慮到溶質與溶劑之間的交互作 用,會對偶極距的改變率 $d\mu/dr$ 造成影響。

附錄 A 自結合使溶液呈現非理想性的說明

我們從依數性質觀點來探討自結合是否造成非理想溶液⁶。因依 數性質只與粒子個數有關而與粒子物種無關,在單雙體共存情況下總 濃度[B]₆為

$$[B] + [B_2] = [B]'_0 \tag{A-1}$$

另一方面由於質量結算 (material balance)

$$[B] + 2[B_2] = [B]_0$$
 (A-2)

式中 $[B]_0$ 為 B 的配置濃度 (prepared concentration)。若無自結合, $[B_2]=0$, $[B]'_0=[B]_0$, 則 $\frac{[B]'_0}{[B]_0}=1$,此為理想溶液的情形。若存在自結合 $[B]'_0<[B]_0$,使溶液呈現非理想性,其偏差可由 $\eta=1-\frac{[B]'_0}{[B]_0}$ 量度之。 將公式 (A-1) 除以公式 (A-2),代入 η 中。

$$\eta = 1 - \frac{[B]'_{0}}{[B]_{0}} = 1 - \frac{([B]_{0} - [B])}{[B]_{0}} = \frac{[B]}{[B]_{0}}$$
(A-3)

自結合平衡常數 K 也可以寫成

$$K = \frac{\frac{[B]_{o} - [B]}{2}}{[B]^{2}}$$
(A-4)

由上式解出[B]為K及[B₀]的函數為[B]=
$$\frac{-1+\sqrt{1+8K[B]_0}}{4K}$$

$$\eta = \frac{1}{2} - \frac{1}{1 + \sqrt{1 + 8K[B]_0}}$$
(A-5)

依公式 (A-5), η 對 $[B]_0$ 做圖得到結果如圖 A.1

圖 A.1 自結合平衡常數為 K = 2、K = 10、K = 30 及 K = 60 時, η與 [B]₀ 依存關係。

從圖 A.1 發現,在極稀釋溶液下η≅0,接近理想溶液。當有自結合時, η隨著[B]₀ 及 K 的增加而增加,即溶液越偏離理想。

附錄 B 理論計算部份

B.1 摘要

本實驗研究 3,5-二甲基-1H-吡咯-2-甲酸乙酯(Ethyl3,5-dimethyl-1H-pyrrole-2-carboxylate, EDPC)在溶液中的自結合。並無法由公式 (2-33)、公式 (2-36)和公式 (2-39)的斜率、截距求出順式單體吸收 係數 ε_c 、反式單體吸收係數 ε_t 、構型轉換平衡常數 K_1 及單體自結合平 衡常數 K_2 。為了克服相依性造成的困境,以實驗配合理論的方式先 將其中一個光譜參數求出。由公式 (2-46) 知

 $K_1 = \frac{A_t}{A_C} \frac{\varepsilon_C}{\varepsilon_t}$

(2-46)

透過理論計算的結果,可以求出可靠的順式單體與反式單體吸收 係數比值 $\varepsilon_c / \varepsilon_t$ 。由軟體可以適解紅外光譜,進而得到順式與反式單 體 NH 伸縮振動在吸收帶的吸收度 $A_c \cdot A_t$,因此有了這些參數即可以 求出單體構型轉換平衡常數 K_1 。再將 K_1 代入公式 (2-33) 、 (2-36) 和 公式 (2-39) 的斜率、截距求出順式、反式單體總莫耳吸收係數 $\varepsilon_c \cdot \varepsilon_t$ 及單體自結合平衡常數 K_2 。雙體總莫耳吸收係數 ε_d 是獨立參數,可 以由式 (2-39) 的截距求得。

本篇理論計算部分是由台大蘇志明老師利用理論計算的方式求 得的,採用套裝軟體 Gaussian 03⁶⁵ 作 Ab inito 分子軌域理論計算,以 得到分子在自結合與構型轉換的標準熵、自由能。其計算的方法是利 用電子密度泛函理論 (Density functional theory)中的 B3LYP 方法,並 配合基底函數 (basis sets)6-31+G^{**}作結構最佳化 (geometry optimize)。 確認穩定構型時,利用 Hartree-Fock 理論中的 MP2 方法,再配合基 底函數 (basis sets) 6-311+G(2d,p)求穩定結構能量。

在計算 N-H 伸縮振動頻率位置及吸收強度,是利用電子密度泛 函理論 (Density functional theory)中的 PBE1PBE 方法,並配合基底函 數 (basis sets) 6-311++G^{**}求得伸縮振動頻率位置及強度。

計算整個分子的偶極距 (dipole moment) 時,其計算的方法是利 用電子密度泛函理論 (Density functional theory) 中的 PBE1PBE 方法, 並配合基底函數 (basis sets) 6-311++G^{**}作結構最佳化 (geometry optimize)。確認穩定構型時,再利用 Hartree-Fock 理論中的 MP2 方法, 配合所選的基底函數 (basis sets) 6-311+G(2d,p)求穩定結構的偶極 距。

本實驗研究溶質的自結合,改變不同溶劑,以求溶劑對自結合的 影響。理論計算採用自組反應場 (Self-Consistent Reaction Field, SCRF) 的方法⁶⁶。此方法假設溶劑是一連續均勻介質,介電常數 *ε*,溶質如 一個空洞 (cavity) 置於此均勻介質中,自組反應場 SCRF 裡有不同空 洞(cavity) 定義和反應場,如圖 B.1、圖 B.2。

圖 B.1 Onsager 定義分子的模型。

最簡單的 SCRF 模式是 Onsager 反應場模式。將溶質想像是一個 半徑 a。的圓球,因溶質本身具有永久偶極,誘使溶劑產生偶極和電場, 反過來作用於分子偶極,使整個環境處於穩定情形。

Tomasi's 被極化連續模式 (Polarized Continuum Model, PCM), 空洞(cavity) 的定義,是將原子想像是一個球形,每個原子連接起來, 形成溶質的結構。溶劑被極化且對溶質產生作用的影響,被以數值積 分的方式計算。 B.1.1 密度泛函理論 (Density Functional Theory, DFT)

近年來理論計算有 Hatree-Fock 、半實驗公式、多體微擾和密度 泛函理論等等計算的理論。其中 Hatree-Fock 因忽略了電子與電子之 間的作用力,因此在能量的計算上會有明顯誤差。密度泛函理論考慮 了電子與電子之間的作用力,因此在計算能量方面比較準確。所花的 時間也比較少,因此近年來此理論計算方法被廣為使用。此理論並不 直接計算分子的波函數,而是計算電子的密度 p(electron density),並 由 p 計算出電子能量。在 1964 年 Hohenberg 與 Kohn 證明了電子基 態 能 量 及 其 他 電子 性 質,僅 由 電子 密度 即 可 決定,得到 Hohenberg-Kohn 理論。

對於封閉殼層 (close shell) 系統,由 Kohn 和 Shan⁶⁷的理論中提到n個電子系統的基態能量E(p)為

$$E(\rho) = -\frac{1}{2} \sum \int \Psi_i^*(r_1) \nabla^2 \Psi_i(r_1) dr_1 - \sum_{1}^{N} \frac{Z_1 e^2}{r_{11}} \rho(r_1) dr_1 + \frac{1}{2} \int \frac{\rho(r_1) \rho(r_2) e^2}{r_{12}} dr_1 dr_2 + E^{xc}(\rho)$$
(B-1)

Ψ_i為單電子空間軌域 (i=1,2,3...n), Z_I為原子核的原子序,ρ(r) 為電子密度可以表示成ρ(r) = $\sum_{i=1}^{n} |\Psi_i(r)|^2$ 。式 (B-1) 第一項表示電子 動能項,第二項表示電子與原子核之間吸引,第三項代表總電荷分佈 的庫倫作用力,最後一項為交換相關泛函的能量(exchange-correlation energy)E^{xc}(ρ)。現今仍無法得到E^{xc}(ρ) 真實解,只能以近似的方式得

B.1.2 多體微擾理論

1934年 Møller-Plesset 提出了多體維擾理論,引入了微擾的波函數,目的是處理多電子系統近似解的問題,但此理論也限制只能運算基態分子。

由公式 (B-2) 考慮了微擾的 Hamiltonian 運算子 Ĥ $\hat{H} = \hat{H}^{o} + \hat{H}^{\prime}$ (B-2)

Ĥ^o為未微擾的 Hamiltonian 運算子, Ĥ 微擾的 Hamiltonian 運算子, Ĥ'微擾與未微擾的 Hamiltonian 差運算子。

將式 (B-2) 應用在 Schrödinger 方程式上

 $\hat{H}\Psi_{n} = (\hat{H}^{o} + \hat{H}^{\prime})\Psi_{n} = E_{n}\Psi_{n}$ (B-3)

由於要考慮微擾項,引入一個微擾參數λ,λ增加表示微擾增加。 受微擾波函數Ψ,及能量E,以泰勒展開式表示成

$$\Psi_{n} = \Psi_{n} \Big|_{\lambda=0} + \frac{\partial \Psi_{n}}{\partial \lambda} \Big|_{\lambda=0} \lambda + \frac{\partial^{2} \Psi_{n}}{\partial \lambda^{2}} \Big|_{\lambda=0} \frac{\lambda^{2}}{2!} + \dots$$
(B-4)

$$E_{n} = E_{n} \Big|_{\lambda=0} + \frac{\partial E_{n}}{\partial \lambda} \Big|_{\lambda=0} \lambda + \frac{\partial^{2} E_{n}}{\partial \lambda^{2}} \Big|_{\lambda=0} \frac{\lambda^{2}}{2!} + \dots$$
(B-5)

當 $\lambda = 0$ 即表示未受微擾 $\Psi_n = \Psi_n^{(0)} \perp E_n = E_n^{(0)}, \text{ 並定義 } \Psi_n^{(k)}, E_n^{(k)}$

$$\Psi_{n}^{(k)} = \frac{1}{k!} \frac{\partial^{k} \Psi_{n}}{\partial \lambda^{k}} \bigg|_{\lambda=0} \quad , \quad E_{n}^{(k)} = \frac{1}{k!} \frac{\partial^{k} E_{n}}{\partial \lambda^{k}} \bigg|_{\lambda=0} \quad k = 1, 2, \dots$$
(B-6)

$$\Psi_{n} = \Psi_{n}^{(0)} + \lambda \Psi_{n}^{(1)} + \lambda^{2} \Psi_{n}^{(2)} + \dots + \lambda^{k} \Psi_{n}^{(k)}$$
(B-7)

$$E_{n} = E_{n}^{(0)} + \lambda E_{n}^{(1)} + \lambda^{2} E_{n}^{(2)} + \dots + \lambda^{k} E_{n}^{(k)}$$
(B-8)

再將公式 (B-7) 及公式 (B-8) 代入公式 (B-3) 中

$$(\hat{H}^{0} + \hat{H}^{\prime})(\Psi_{n}^{(0)} + \lambda\Psi_{n}^{(1)} + \lambda^{2}\Psi_{n}^{(2)} + ...)$$
 (B-9)

$$=(E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + ...)(\Psi_n^{(0)} + \lambda \Psi_n^{(1)} + \lambda^2 \Psi_n^{(2)} + ...)$$
項的部分整理

將λ項的部分整理

$$\lambda^{0}: \hat{H}^{0} \Psi_{n}^{(0)} = E_{n}^{(0)} \Psi_{n}^{(0)}$$
(B-10)

$$\lambda^{1}: \hat{H}' \Psi_{n}^{(0)} + \hat{H}^{0} \Psi_{n}^{(1)} = E_{n}^{(1)} \Psi_{n}^{(0)} + E_{n}^{(0)} \Psi_{n}^{(1)}$$
(B-11)

$$\lambda^{2}: \hat{H}^{0} \Psi_{n}^{(2)} + \hat{H}^{\prime} \Psi_{n}^{(1)} = E_{n}^{(0)} \Psi_{n}^{(2)} + E_{n}^{(1)} \Psi_{n}^{(1)} + E_{n}^{(2)} \Psi_{n}^{(0)}$$
(B-12)

此為一階能量修正項的求法

B.2 理論計算 3,5-二甲基-1H-吡咯-2-甲酸乙酯的結果

本實驗研究 3,5-二甲基-1H-吡咯-2-甲酸乙酯 (Ethyl3,5-dimethyl-1H-pyrrole-2-carboxylate, EDPC)在溶液中的自結合,並探討溶劑對自 結合的影響。理論計算 B3LYP/6-31+G**的結果知, EDPC 這化合物 因順式單體與反式單體各有三種穩定構型。如圖 B.3-B.6。圖 B.7 為 理論計算出雙體穩定的構型。

圖 B.3 由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體穩定構型。

圖 B.4 由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-吡咯-2-甲酸乙酯順式單體穩定構型(有兩種)。

圖 B.5 由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體穩定構型(有兩種)。

圖 B.6 由理論計算 B3LYP/6-31+G**的結果,此為 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體穩定構型。

圖 B.7 由理論計算 B3LYP/6-31+G**的結果,3,5-二甲基-1H-吡咯-2-甲酸乙酯的雙體為環狀雙體。 以理論計算 MP2/6-311+G(2d,p)//B3LYP/6-31+G**的方法計算三 個構型的能量值,再取三個能量的波茲曼平均當作理論值。表 B.1 為 在溶劑條件下的順式、反式構型轉換標準焓 ΔH_1^{Θ} 及自由能 ΔG_1^{Θ} 、自 結合標準焓 ΔH_2^{Θ} 和自結合自由能 ΔG_2^{Θ} 。

表 B.1 利用理論計算 MP2/6-311+G(2d,p)//B3LYP/6-31+G**的方法 計算出 3,5-二甲基-1H-吡咯-2-甲酸乙酯構型轉換標準焓、構 型轉換自由能、自結合標準焓和自結合自由能。

	構型轉換標準焓	構型轉換自由能
溶劑	$\Delta H_1^{\Theta} / kJ mol^{-1}$	$\Delta G_1^{\Theta} / kJ mol^{-1}$
氣相	3.31	4.52
正辛烷	5.07	6.28
正戊烷	5.15	6.86
甲基環己烷	4.99	6.59
環已烷	4.99	6.55
四氯乙烯	4.87 90	5.92
	自結合標準焓	自結合自由能
溶劑	$\Delta H_2^{\Theta} / kJ mol^{-1}$	$\Delta G_2^{\Theta} / kJ mol^{-1}$
氣相	-43.05	4.46
正辛烷	-27.19	18.88
正戊烷	-27.41	18.86
甲基環己烷	-26.04	20.10
環已烷	-26.05	20.05
四氯乙烯	-23.48	22.58

利用理論計算 MP2/6-311+G(2d,p)// PBE1PBE/6-31++G**能求得

EDPC 反式單體、順式單體及雙體偶極距,如表 B.2。由於雙體是屬 於環狀雙體,因此可預期雙體的偶極距會小於單體偶極距。

表 B.2 利用理論計算 MP2/6-311+G(2d,p)//PBE1PBE/6-31++G**的 方法計算出 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式單體、順式 單體、雙體偶極距。

	反式單體偶極距	順式單體偶極距	雙體偶極距	
溶劑	µ/ debye	µ/ debye	µ/ debye	
氣相	1.41	3.80		
正辛烷	1.72	4.09	0.005	
正戊烷	1.63	4.08	0.003	
甲基環己烷	1.74	4.20	0.003	
環己烷 1.65		4.13	0.003	
四氯乙烯	1.69	4.22	0.004	

利用理論計算 PBE1PBE//6-311++G**能計算出 EDPC 反式、順式單體及雙體 N-H 基伸縮振動頻率位置,如表 B.3。

表 B.3 利用理論計算 PBE1PBE/6-311++G**的方法計算出 3,5-二甲基-1H-吡咯-2-甲酸乙酯反式、順式單體及雙體 N-H 基伸縮振動頻率位置。

理論部分	反式單體	順式單體	雙體
资产	伸縮振動頻率	伸縮振動頻率	伸縮振動頻率
俗別	$/ \text{ cm}^{-1}$	$/ \text{ cm}^{-1}$	$/ \text{ cm}^{-1}$
正辛烷	3487.4	3455.7	3325.2
正戊烷	3485.5	3458.6	3326.2
甲基環己烷	3473.0	3449.0	3326.2
環己烷	3476.2	3453.1	3328.0
四氯乙烯	3460.5	3438.5	3325.0

利用理論計算特定官能基的伸縮振動頻率時,通常都會高估吸收 位置,因此必須乘以頻率效正因子 (frequency scale factor),才是真正 理論得到的值。我們採用 J. P. Merrick⁶⁸ 理論計算 PBE1PBE 的校正因 子 0.9594。

利用理論計算 PBE1PBE/6-311++G**能預測出 3,5-二甲基-1H-吡 咯-2-甲酸乙酯順式、反式單體及雙體 N-H 基的振動吸收強度。如表 B.4。

表 B.4 利用理論計算 PBE1PBE/6-311++G**的方法計算出 3,5-二甲 基-1H-吡咯-2-甲酸乙酯順式、反式單體及雙體 N-H 基的強 度

	順式單體	反式單體	雙體	順式、反式單體
	N-H基強度 € _c	N-H 基強度 € _t	N-H 基強度 € _d	N-H 基強度比 $\varepsilon_{\rm c}/\varepsilon_{\rm t}$
溶劑	/(km/mol)	/(km/mol)	/(km/mol)	
正辛烷	154	142	2272	1.08
正戊烷	156	143	2198	1.09
甲基環己烷	159	149	2276	1.07
環己烷	163	151	2212	1.08
四氯乙烯	176	165	2161	1.07

B.3 敏感度分析

藉由理論計算 PBE1PBE/6-311++G**的方法,可算出 3,5-二甲基 -1H-吡咯-2-甲酸乙酯順式、反式單體 NH 伸縮振動強度比 $\varepsilon_{c}{}^{\circ}/\varepsilon_{t}{}^{\circ}$ 。 由 A. Milani⁶⁹ 等人文獻中得知利用 PBE1PBE/6-311++G**的方法估算 順式、反式單體 NH 伸縮振動強度比 $\varepsilon_{c}{}^{\circ}/\varepsilon_{t}{}^{\circ}$ 大約會有 15%的誤差。 將強度比增加、減少 15%,配合光譜資料 $A_{c} \cdot A_{t}$ 求得順式、反式構 型轉換平衡常數 K_{1} 。並將 K_{1} 代入式 (2-33) 的 $P_{c} \cdot Q_{c}$ 及式 (2-36) 的 Q_{t} ,可進一步地求得 $\varepsilon_{c} \cdot \varepsilon_{t}$ 及 K_{2} 。表 B.5 分別為當 $\varepsilon_{c}{}^{\circ}/\varepsilon_{t}{}^{\circ}$ 強度比增 加、減少 15%時所求得的 $K_{1} \cdot K_{2}$ 值。

I		構型車	■	數 K1、自 添 ^a	结合平衡 端子子 御堂	數 K, 整理	· 小小。 一世其遇了	。 处		च र्मुह	として	流。
ļ	T/K	$(\epsilon_{c}$ ⁰ $(\epsilon_{t}$ ⁰)	K ₁	K ₂	Kı	K_2	K1	K ₂	K	K_2	K	K_2
I	288	$\begin{array}{c}1.15\\1\\0.85\end{array}$	$\begin{array}{c} 0.298 \pm 0.001 \\ 0.261 \pm 0.004 \\ 0.220 \pm 0.001 \end{array}$	$\begin{array}{c} 128.5 \pm 0.5 \\ 122.6 \pm 0.5 \\ 113.6 \pm 0.4 \end{array}$	$\begin{array}{c} 0.309 \pm 0.003 \\ 0.269 \pm 0.002 \\ 0.229 \pm 0.002 \end{array}$	$142.1 \pm 4.3 \\ 132.0 \pm 4.0 \\ 125.1 \pm 3.8 \\$	$\begin{array}{c} 0.346 \pm 0.006 \\ 0.300 \pm 0.005 \\ 0.256 \pm 0.004 \end{array}$	$107.9 \pm 6.5 0 \\ 101.0 \pm 6.2 0 \\ 93.9 \pm 5.7 0$	$.484 \pm 0.007$ $.421 \pm 0.006$ $.358 \pm 0.005$	94.7 ± 3.4 99.7 ± 3.8 79.2 ± 2.9	$\begin{array}{c} 0.240 \pm 0.004 \\ 0.209 \pm 0.003 \\ 0.178 \pm 0.003 \end{array}$	75.2 ± 1.8 64.6 ± 1.5 67.8 ± 1.7
293	298	$\begin{array}{c} 1.15\\1\\0.85\end{array}$	$\begin{array}{c} 0.313 \pm 0.002 \\ 0.273 \pm 0.001 \\ 0.231 \pm 0.001 \end{array}$	$\begin{array}{c} 98.3 \pm 0.6 \\ 94.6 \pm 0.6 \\ 86.5 \pm 0.6 \end{array}$	$\begin{array}{c} 0.323 \pm 0.003 \\ 0.282 \pm 0.003 \\ 0.239 \pm 0.002 \end{array}$	$106.5 \pm 1.6 \\ 99.1 \pm 1.5 \\ 93.3 \pm 1.4$	$\begin{array}{c} 0.357 \pm 0.003 \\ 0.310 \pm 0.003 \\ 0.264 \pm 0.002 \end{array}$	$80.3 \pm 0.6 \\ 75.4 \pm 0.6 \\ 69.6 \pm 0.5 \\ 0$	$.500 \pm 0.002$ $.435 \pm 0.002$ $.369 \pm 0.001$	$\begin{array}{c} 87.4 \pm 1.1 \\ 75.1 \pm 0.9 \\ 72.9 \pm 0.9 \end{array}$	$\begin{array}{c} 0.249 \pm 0.001 \\ 0.216 \pm 0.001 \\ 0.184 \pm 0.001 \end{array}$	$\begin{array}{c} 48.4 \pm 0.5 \\ 46.0 \pm 0.5 \\ 43.5 \pm 0.5 \end{array}$
	308	1.15 1 0.85	$\begin{array}{c} 0.322 \pm 0.002 \\ 0.284 \pm 0.002 \\ 0.238 \pm 0.002 \end{array}$	69.8 ± 0.6 65.2 ± 0.9 61.2 ± 0.6	$\begin{array}{c} 0.338 \pm 0.003 \\ 0.295 \pm 0.003 \\ 0.250 \pm 0.002 \end{array}$	69.8 ± 0.7 67.3 ± 0.7 60.9 ± 0.6	$\begin{array}{c} 0.379 \pm 0.004 \\ 0.330 \pm 0.003 \\ 0.280 \pm 0.003 \end{array}$	$61.8 \pm 0.7 058.6 \pm 0.7 053.3 \pm 0.6 0$	$.519 \pm 0.005$ $.451 \pm 0.005$ $.383 \pm 0.004$	$52.9 \pm 0.5 \\51.8 \pm 0.2 \\43.9 \pm 0.4$	$\begin{array}{c} 0.254 \pm 0.001 \\ 0.220 \pm 0.001 \\ 0.188 \pm 0.001 \end{array}$	37.2 ± 0.1 35.0 ± 0.1 33.3 ± 0.1
	318	$\begin{array}{c} 1.15\\1\\0.85\end{array}$	$\begin{array}{c} 0.342 \pm 0.003 \\ 0.298 \pm 0.003 \\ 0.252 \pm 0.002 \end{array}$	41.6 ± 0.3 39.3 ± 0.3 36.3 ± 0.3	$\begin{array}{c} 0.354 \pm 0.002 \\ 0.308 \pm 0.002 \\ 0.262 \pm 0.002 \end{array}$	$\begin{array}{c} 40.4 \pm 0.3\\ 36.5 \pm 0.3\\ 35.1 \pm 0.3\end{array}$	$\begin{array}{c} 0.391 \pm 0.001 \\ 0.340 \pm 0.001 \\ 0.289 \pm 0.001 \end{array}$	$38.2 \pm 0.2 0$ $35.2 \pm 0.2 0$ $32.8 \pm 0.2 0$	0.541 ± 0.004 0.470 ± 0.004 0.400 ± 0.003	39.3 ± 0.6 39.9 ± 0.4 32.5 ± 0.4	$\begin{array}{c} 0.266 \pm 0.003 \\ 0.231 \pm 0.002 \\ 0.197 \pm 0.002 \end{array}$	$\begin{array}{c} 29.5 \pm 0.6 \\ 26.7 \pm 0.6 \\ 27.6 \pm 0.5 \end{array}$

由 PBE1PBE/6-311++G**方法求出的强度比會有 15% 誤差,將 ^{gC}/g⁰ 增加、减少 15% 時得到的順式、反式

表 B.5

a: $(\epsilon_c^{o}/\epsilon_t^{o}=1.08)$ b: $(\epsilon_c^{o}/\epsilon_t^{o}=1.09)$ c: $(\epsilon_c^{o}/\epsilon_t^{o}=1.07)$ d: $(\epsilon_c^{o}/\epsilon_t^{o}=1.08)$ e: $(\epsilon_c^{o}/\epsilon_t^{o}=1.07)$

將不同溫度下的順式、反式構型轉換平衡常數、自結合平衡常數 做 van't Hoff 圖,可以得到順式、反式單體構型轉換標準焓 ΔH_1^{Θ} 、自 結合標準焓 ΔH_2^{Θ} 。比較 $\varepsilon_c^{O}/\varepsilon_t^{O}$ 強度比增加15%、減少15%時, ΔH_1^{Θ} 、 ΔH_2^{Θ} 的差異,如表 B.7。

求出可靠	%時得到	い茶。	ΔH_2^{Θ}	kJ mol ⁻¹	-22.3 ± 0.4	-23.5 ± 2.2	-22.7 ± 2.6
*的方法能	、減少15	因熱	ΔH_1^{Θ}	kJ mol ⁻¹	2.42 ± 0.34	2.49 ± 0.28	2.47 ± 0.29
5-311++G*:	ɛc°/ɛt° 增加	· 於 ^d	ΔH_2^{Θ}	kJ mol ⁻¹	-23.7 ± 1.1	-23.7 ± 4.6	-24.0 ± 4.6
PBE1PBE/6	%误差。将 《度分析。	環	ΔH_1^{Θ}	kJ mol ⁻¹	2.8 ± 0.16	2.8 ± 0.19	2.8 ± 0.20
以理論計算]	方法會有 159 含∆H2 ⁰ 做敏感	激已然。	ΔH_2^{Θ}	kJ mol ⁻¹	-25.9 ± 3.5	-25.6 ± 3.1	-25.9 ± 3.1
司 溶 劑 中 ,	^{0/Et⁰。但此 結合標準}	甲基1	ΔH_{Θ}^{0}	kJ mol ⁻¹	3.3 ± 0.31	3.2 ± 0.32	3.2 ± 0.31
酯溶於不同	鲂強度比 ε(含∆H1 ⁰ 、自	焓∆H ₁ ⁰ 、自	ΔH_2^{Θ}	kJ mol ⁻¹	-32.1 ± 4.6	-31.8 ± 3.8	-32.2 ± 3.8
2-甲酸乙	H 伸縮振動 轉換標準終	正	ΔH_1^{Θ}	kJ mol ⁻¹	3.42 ± 0.06	3.41 ± 0.11	3.44 ± 0.08
基-1H-吡咯	、武單體 NI 反式構型	.) 년 a	ΔH_2^{Θ}	kJ mol ⁻¹	-28.7 ± 3.6	-28.2 ± 3.6	-28.6 ± 3.7
3,5-二甲	的順、反的順式、	中 王	ΔH_1^{Θ}	kJ mol ⁻¹	3.30 ± 0.13	3.32 ± 0.33	3.32 ± 0.30
表 B.6			$(\epsilon_{c}^{0}/\epsilon_{t}^{0})/(\epsilon_{c}^{0}/\epsilon_{t}^{0})$		-	1.15	0.85

a: $(\epsilon_c^{0/\epsilon_t^{0}}=1.08)$ b: $(\epsilon_c^{0/\epsilon_t^{0}}=1.09)$ c: $(\epsilon_c^{0/\epsilon_t^{0}}=1.07)$ d: $(\epsilon_c^{0/\epsilon_t^{0}}=1.08)$ e: $(\epsilon_c^{0/\epsilon_t^{0}}=1.07)$
從表 B.6 知當 $\varepsilon c^{\circ} / \varepsilon t^{\circ}$ 強度比增加、減少 15%並不會對順式、反 式構型轉換標準焓 ΔH_1^{Θ} 、自結合標準焓 ΔH_2^{Θ} 造成太大的影響。表示 當 $\varepsilon c^{\circ} / \varepsilon t^{\circ}$ 強度比增加、減少 15%範圍內,皆能夠準確的求得 ΔH_1^{Θ} 、 ΔH_2^{Θ} 。表 B.7 為 $\varepsilon c^{\circ} / \varepsilon t^{\circ}$ 強度比增加、減少 15%時順式、反式構型轉 換標準熵 ΔS_1^{Θ} 、自結合標準熵 ΔS_2^{Θ} 。

順、反式單體 NH 伸縮振動強度比 ec ⁰ /e ¹ 。但此方法會有 15%誤差。將 ec ⁰ /e ¹ 增加、減少 15%時得到的順 式、反式構型轉換標準熵V21 ⁹ 、自結合標準熵Δ5 ^{.0} 做敏感度分析。	回氯乙烯。	ΔS_2^{Θ}	$\mathbf{J} \operatorname{mol}^{-1} \mathbf{K}^{-1}$	-42.9 ± 1.5	-46.0 ±7.1	-44.1 ± 8.7
		ΔS_1^{Θ}	J mol ⁻¹ K ⁻¹	-4.60 ± 0.10	-3.21 ± 0.91	-5.79 ± 0.91
	减已然。	ΔS_2^{Θ}	J mol ⁻¹ K ⁻¹	-44.0 ± 3.6	-43.8 ± 15.1	-46.6 ± 15.2
		ΔS_1^{Θ}	$J mol^{-1}K^{-1}$	2.48 ± 0.50	3.68 ± 0.58	1.16 ± 0.67
	甲基環己烷。	ΔS_2^{Θ}	J mol ⁻¹ K ⁻¹	-51.1 ± 11.7	-49.6 ± 10.1	-51.97 ± 10.1
		ΔS_1^{Θ}	J mol ⁻¹ K ⁻¹	1.30 ± 0.10	2.41 ± 0.99	-0.20 ± 0.09
	正庚烷。	ΔS_2^{Θ}	J mol ⁻¹ K ⁻¹	-70.1 ± 15.30	-68.6 ± 12.5	-70.9 ± 12.5
		ΔS_1^{Θ}	J mol ⁻¹ K ⁻¹	0.96 ± 0.19	2.10 ± 0.37	-0.32 ± 0.25
	正辛烷。	ΔS_2^{Θ}	$\mathbf{J} \operatorname{mol}^{-1} \mathbf{K}^{-1}$	-59.0 ± 11.8	-57.1 ± 11.9	-59.3 ± 12.1
		ΔS_1^{Θ}	$\mathbf{J} \text{ mol}^{-1} \mathbf{K}^{-1}$	0.37 ± 0.04	1.46 ± 0.11	-1.06 ± 0.10
		$(\epsilon_{c}/\epsilon_{t}) / (\epsilon_{c}^{\circ}/\epsilon_{t}^{\circ})$	297	-	1.15	0.85

B.7

表

a: $(\epsilon_c^{0/\epsilon_t^{0}}=1.08)$ b: $(\epsilon_c^{0/\epsilon_t^{0}}=1.09)$ c: $(\epsilon_c^{0/\epsilon_t^{0}}=1.07)$ d: $(\epsilon_c^{0/\epsilon_t^{0}}=1.08)$ e: $(\epsilon_c^{0/\epsilon_t^{0}}=1.07)$

參考文獻

- 1. L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. USA **37**, 729 (1951).
- 2. S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih, Nature Letters **459**, 414 (2009).
- 3. G. L. Patrick, An Introduction to Medicinal Chemistry (OXFORD, New York, 2005), p. 3.
- 4. C. A. Rice, I. Dauster, and M. A. Suhm, J. Chem. Phys. **126**, 134313 (2007).
- 5. M. D. Joesten and L. J. Schaad, *Hydrogen Bonding* (Marcel Dekker, New York, 1974), p. 2.
- 6. A. S. N. Murthy and C. N. R. Rao, Appl. Spectrosc. Rev. 2, 69 (1968).
- 7. S. N. Vinogradov and R. H. Linnell, *Hydrogen Bonding* (Van Nostrand Reinhold Company, New York, 1971), p. 24.
- 8. F. S. Parker and K.R. Bhaskar, Biochemistry 7, 1286 (1968).
- 9. A. D. H. Clague and H. J. Bernstein, Spectrochim. Acta, Part A 25, 593 (1969).
- 10. N. Muller and P. Simon, J. Phys. Chem. 71, 568 (1967).
- 11. H. Ratajczak, W. J. Orville-Thomas and C. N. R. Rao, Chem. Phys. **17**, 197 (1976).
- 12. E. Hirano and K. Kozima, Bull. Chem. Soc. Jpn. 85, 371 (1966).
- 13. H. E. Affsprung, S. D. Christan and J. D. Worley, Spectrochim. Acta **20**, 1415 (1964).
- 14. N. Kulevsky and W. Reinecke, J. Phys. Chem. 72, 3339 (1968).
- 15. T. L. Hill, *An introduction to Statistical Thermodynamics* (Dover Publications, New York, 1960), p. 261.

- 16. J. S. Chen and D. Y. Kao, Z. Phys. Chem. **218**, 231 (2004).
- 17. F. Schwager, E. Marand and R. M. Davis, J. Phys. Chem. **100**, 19268 (1996).
- 18. O. Redlick and A. T. Kister, J. Chem. phys. 15, 849 (1947).
- 19. G. öjelund, R. Sköld and I. Wadsö, J. Chem. Thermodyn. **8**, 45 (1976).
- 20. M. Davies and D. K. Thomas, J. Phys. Chem. 60, 763 (1956).
- 21. M. Davies and D. K. Thomas, J. Phys.Chem. 60, 767 (1956).
- 22. H. S. Frank and W. Y. Wen, Discuss. Faraday Soc. 24, 133 (1957).
- 23. S. W. Benson and E. D. Diebert, J. Am. Chem. Soc. 114, 4269 (1992).
- 24. S. W. Dietrich, E. C. Jorgensen, P. A. Kollman, and S. Rothenberg, J. Am. Chem. Soc. **98**, 8310 (1976).
- 25. C. Chen and F. S. Hsu, J. Mol. Struct. 506,147 (2000).
- 26. O. Bastiansen, Acta Chem. Scand. 3, 415 (1949).
- 27. N. A. prokopenko, I. A. Bethea, C. J. Clemens, 4th, A. Klimek, K. Wargo, C. Spivey, K. Waziri and A. Grushow, Phys. Chem. Chem. Phys. 4, 490 (2002).
- 28. J. D. Watson and F. H. C. Crick, Nature 171, 737 (1973).
- 29. D. Voet, J. G. Voet and C. W. Pratt, *Foundamentals Of Biochemistry* (John Wiley & Sons, New York, 1999).
- 30. M. Furukawa, H. Tanaka and T. Kawai, J. Chem. Phys. **115**, 3419 (2001).
- 31. J. S. Chen, C. C. Wu and D. Y. Kao, Spectrochim. Acta Part A 60, 2287 (2004).
- 32. U. Liddel and E. D. Becker, Spectrochim. Acta 10, 70 (1957).

- 33. G. Althoff, J. Ruiz, V. Rodriguez, G. Lopez, J. Pérez and C. Janiak, Cryst. Eng. Comm. **8**, 662 (2006).
- 34. P. M. Tolstoy, S. N. Smirnov, I. G. Shenderovich, N. S. Golubev, G. S. Denisov and H.-H. Limbach, J. Mol. Struct. **700**, 19 (2004).
- 35. G. S. Ušćumlić, D. Ž. Mijin, N. V. Valentić, V. V. Vajs and B. M. Sušić, Chem. Phys. Lett. **397**, 148 (2004).
- 36. Y. Liu, H. Maeda, Y. Ozaki, M. A. Czarnecki, M. Suzuki and M. Iwahashi, Appl. Spect. **49**, 1661 (1995).
- 37. L.-Å. Näslund, D. C. Edward, P. Wernet, U. Bergmann, H. Ogasawara, L. G. M. Pettersson, S. Myneni and A. Nilsson, J. Phys. Chem. A 109, 5995 (2005).
- 38. B. G. Somers and H.S. Gutowsky, J. Am. Chem. Soc. 85, 3065 (1963).
- 39. J. S. Chen and R. B. Shirts, J. Phys. Chem. 89, 1643 (1985).
- 40. A. T. Dubis and S. J. Grabowski, J. Phys. Chem. A 107, 8723 (2003).
- 41. C. T. Arranja, M. R. Silva, A. M. Beja, A. F. P. V. Ferreira and A. J. F. N. Sobral, Acta Cryst. **E64**, 01989 (2008).
- 42. J. A. Paixão, M. R. Silva, A. M. Beja, A. J. F. N. Sobral, S. H. Lopes and A. M. d'A. R. Gonsalves, Acta Cryst. **C58**, o721 (2002).
- 43. M. E. Light, S. Camiolo, P. A. Gale and M. B. Hursthouse, Acta Cryst. E57, o1245 (2001).
- 44. M. G. Gardiner, R. C. Jones, S. Ng and J. A. Smith, Acta Cryst. E63, 0197 (2007).
- 45. G. Stephenson, *Mathmatival Methods For Sience Students 2nd* (Pearson Prentice Hall, London, 1973), p. 290.
- 46. C. L. Yaws, *Thermophysical Properties Of Chemicals And Hydrocarbons* (William Andrew, New York, 2008), p. 109, 128, 139, 147.
- 47. J. G. Kirkwood, J. Chem. Phys. 2, 351 (1934).
- 48. E. Bauer and M. Magat, J. Phys. Radium 9, 319 (1938).

- 49. A. A. Maryott and E. R.Smith, *Table of Dielectric Constants Of Pure Liquids* (Nation Bureau of Standards Circular 514, United States, 1951), p. 6, 20, 25, 28.
- 50. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
- 51. C. A. Rice, L. Dauster, and M. A. Suhm, J. Chem. phys. **126**, 134313 (2007).
- 52. A. T. Dubis and S. J. Grabowski, New J. Chem. 26, 165 (2002).
- 53. D. M. Anderson, J. L. Duncan and F. J. C. Rossotti, J. Chem. Soc. 140 (1961).
- 54. D. Sajan, Y. Erdogdu, T. Kuruvilla and I. H. Joe, J. Mol. Stru. **983**, 12 (2010).
- 55. P. Schuster, G. Zundel and C. Sandorfy, *The Hydrogen Bond Vol II* (North-Holland, New York, 1976), p. 411.
- 56. N. W. Alcock, Bonding And Structure Structural Principles In Inorganic And Organic Chemistry (Ellis Horwood Limited, New York (1990), p 192.
- 57. P. F. Bernath, *Spectra of Atoms and Molecules* (Oxford University Press, New York, 2005), p. 27.
- 58. A. Hinchliffe and R. W. Munn, *Molecular Electromagnetism* (John Wiley & Sons Limited, New YORK, 1985), p. 178.
- 59. C. M. Huggins and G. C. Pimentel, J. Phys. Chem. 60, 1615 (1956).
- 60. R. E. Asfin, G. S. Denisov and K. G. Tokhadze, J. Mol. Stru. **608**, 161 (2002).
- 61. G. C. Pimentel and A. L. McClellan, *The Hydrogen Bond* (W. H. Freeman, New York, 1960), p.102.
- 62. T. Ebata, T. Watanabe and N. Mikami, J. Phys. Chem. **99**, 5761 (1995).
- 63. M. I. Nasser, Appl. Spectrosc. 28, 545 (1974).

- 64. E. Hirota, Bull. Chem. Soc. Japan, 26, 397 (1953).
- 65. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, J. A., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, (GAUSSIAN 03, Revision D.02, Gaussian Inc., Wallingford, CT, 2003).
- 66. J. B. Foresman and Æ. Frisch, *Exploring Chemistry with Electronic* Structure Methods 2nd (Gaussian, Pittsburgh, 1993).
- 67. W. Kohn and Sham, Phys. Rev. 140, A1133 (1965).
- 68. J. P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A **111**,11683 (2007).
- 69. A. Milani and C. Castiglioni, J. Phys. Chem. A 114, 624 (2010).