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互斥問題在空間與遠端存取次數的最佳解 

學生：陳勝雄 

 

指導教授：黃廷祿  

國立交通大學 資訊工程學系 博士班 

摘 要       

互斥問題為非同步共享記憶體系統中的基本問題，用來管理系統中的資源。本論文針對此

問題，分別就空間使用與遠端存取次數上提出最佳解。 

針對像嵌入式即時系統這樣具有時間與資源限制的環境，互斥演算法應該符合公平性並且

降低記憶體的使用。在文獻中，已有數個演算法僅用一個共享變數並且具有公平性。然而，這

些演算法使用一些從未在任何系統中出現的假設性指令來設計。在不使用這樣的指令之下，我

們首先提出兩個具公平性的演算法，並且僅需多用一個共享變數。所採用的指令為常見於一般

系統的 fetch&store 與 read/write。第一個演算法符合 bounded bypass 條件。第二個則是改

進第一個演算法，使其達到 FCFS 的公平性。改進公平性所需的代價為需更大的共享變數，

在第一個演算法中共享變數大小為 2log2(n+1) 位元，第二個演算法則需 1 + 3log2 (n+1) 位

元，其中 n 代表所有 process 的個數。此外，我們進一步去證明在使用相同指令的條件下，

至少需兩個共享變數才能達到 bounded bypass 的公平性。因此，就共享變數的使用個數上，

所提出的演算法為最佳解。 

而針對分散式共享記憶體系統，近期的研究主要為設計降低遠端存取次數的互斥演算法。

頻繁地遠端存取會產生大量記憶體與處理器之間的流量，進而降低系統的效能。在此研究方向

上，我們提出一個遠端存取次數的 lower bound。所假設的系統為採用通用 read-modify-write 

指令的分散式共享記憶體系統。此通用 read-modify-write 指令為一般常見於系統一次存取一



ii 

個共享變數的不可分割指令之一般化模型，因此所提出的 lower bound 適用於所有採用這類

指令的系統。再者，根據黃廷祿博士於 ICDCS’99 提出的演算法，此 lower bound 為最佳。 

 

關鍵字：互斥問題、共享記憶體系統、嵌入式即時系統、公平性、空間複雜度、時間複雜

度、最佳解。 



Tight Bounds on Space and Remote Memory Reference

Time Complexity of Mutual Exclusion

Student: Sheng-Hsiung Chen Advisor: Dr. Ting-Lu Huang

Department of Computer Science

National Chiao Tung University

ABSTRACT

The mutual exclusion problem is fundamental to resource allocation in asyn-

chronous shared memory systems. In this dissertation we present mutual exclusion

algorithms with fairness and the minimum number of shared variables, and then

show a tight bound on remote reference time complexity.

For shared memory systems under time and memory constraints such as embed-

ded real-time systems, a mutual exclusion mechanism that is both fair and space-

efficient can be highly valuable. Several algorithms that utilize only one shared vari-

able and guarantee a certain level of fairness have been proposed. However, these

use hypothetical read-modify-write primitives that have never been implemented

in any system. We present two fair algorithms that do not use such primitives,

but each algorithm has one additional shared variable. The proposed algorithms

employ commonly available primitives, fetch&store and read/write, on two shared

variables. The first algorithm satisfies the bounded bypass condition. The second

is an improvement on the first that satisfies the FCFS condition, which is the most

stringent fairness condition. The improvement is at the cost of increasing the size

of a shared variable from 2 log
2
(n + 1) bits to 1 + 3 log

2
(n + 1) bits, where n is the

number of processes. In addition, it is shown that achieving the bounded bypass

condition using the same set of primitives requires two shared variables. Both of the

algorithms are thus space-optimal in terms of the number of shared variables.
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For distributed shared memory (DSM) systems, recent work on this problem has

focused on the design of mutual exclusion algorithms that minimize the number of

remote memory references, which generate processor-to-memory traffic and therefore

may result in a bottleneck. We establish a lower bound of three on remote reference

time complexity for mutual exclusion algorithms in a DSM model where processes

communicate by means of a general read-modify-write primitive that accesses at

most one shared variable in one instruction. Since the general read-modify-write

primitive is a generalization of a variety of atomic primitives that have been imple-

mented in multiprocessor systems, the lower bound holds for all mutual exclusion

algorithms that use such primitives. Additionally, the lower bound is tight because

it matches the upper bound of Huang’s algorithm proposed in ICDCS’99.

Key words: Mutual exclusion, shared memory systems, embedded real-time

systems, fairness, space complexity, time complexity, tight bounds
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Chapter 1

Introduction

The mutual exclusion problem [18] is fundamental in multiprocessing systems for

managing access to a single indivisible resource. In mutual exclusion, a process

accesses the resource within a distinct part of code known as the critical region. A

process executes trying and exit regions, respectively, before and after executing the

critical region, to guarantee the following basic requirements.

Mutual Exclusion: At most one process at a time is permitted to enter the critical

region.

Progress: If at least one process is in the trying region and no process is in the

critical region, then at some later point some process enters the critical region.

In addition, if at least one process is in the exit region, then at some later

point some process enters the rest of the code, called the remainder region.

The progress condition is necessary for the system to make any progress at all.

However, an algorithm satisfying the condition does not guarantee that the critical

region is granted fairly to different processes; for example, it allows one process to

be repeatedly granted access to its critical region while other users trying to gain

access are forever prevented from doing so. This situation is known as lockout, or

starvation. Therefore, there are other fairness conditions of granting the critical

region, several of which are enumerated in the following.
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Lockout Freedom: A mutual exclusion algorithm is said to be lockout-free if no

process can be kept waiting indefinitely either for the critical region or for the

remainder region.

The next two conditions constrain the number of processes that may bypass a

requesting process. To define such conditions, a definition is needed to specify when

a process has make a request in its trying region. We adopt a widely-used definition

that assumes the trying region is composed of a doorway and a waiting parts. Only

the entry to the waiting part of the trying region bounds the possible orders of entry

to the critical region.

Bounded Bypass: A mutual exclusion algorithm is said to be bounded-bypass if

it is b-bounded-bypass for some constant b. A mutual exclusion algorithm is

defined to satisfy the b-bounded bypass property if no process that has finished

its doorway can be bypassed more than b times by any other process when

competing for a resource.

FCFS: The most stringent fairness condition is the first-come-first-served (FCFS)

property that if a process i passes through its doorway before j performs a

step in its doorway, then j can not enter its critical region before i does so. It

is clear that a FCFS algorithm is also bounded-bypass.

Starting with an algorithm by Dijkstra [18], early work on this problem was

focused on improving Dijkstra’s algorithm by guaranteeing fairness conditions de-

scribed above or by weakening the type of shared memory that is used [33, 17, 20,

34, 9, 38]. Due to the increasing interest on embedded real-time systems, we ad-

dress that none of the previous algorithms is feasible for such systems, and proposes

suitable algorithms in Chapter 4.

In contrast, recent work on the mutual exclusion problem has focused on the

design of algorithms that reduce the number of remote memory references, which

may produce a large amount of processor-to-memory traffic in shared memory sys-

tems. For this direction of research, we show a tight bound on the number of remote

memory references in Chapter 5.
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1.1 Algorithms for Systems under Time and Mem-

ory Constraints

Embedded real-time systems, e.g., automotive control systems, mobile computing

devices and home electronics, have received increasing interest in recent years. An

algorithm for such systems should consider time and memory constraints. The time

constraint imposes a deadline for each process in executing a particular job because

the process often interacts with users or a dynamic environment. Additionally, em-

bedded systems often have small memory (about 32–64 kBytes) since minimizing

production costs, weight and power consumption are primary concerns in their de-

signs [25, 42, 43]. As shown below, a mutual exclusion algorithm, in particular,

should consider fairness and space efficiency.

Since a process can remain in the critical region for an arbitrarily long time, no

algorithm can ensure that each waiting process will gain the permission to enter the

critical region before its deadline. This creates an inherent difficulty in the mutual

exclusion problem, especially for systems under the time constraint. Thus, algo-

rithm designers attempt to improve the feasibility of mutual exclusion algorithms

by designing them to grant the critical region fairly to each process. A mutual exclu-

sion algorithm that satisfies the basic requirements may not guarantee such fairness.

That is, a process may be indefinitely denied access to the critical region. Hence, the

worst-case waiting time may be infinite even when each process always returns the

resource quickly. A fair mutual exclusion algorithm tries to reduce the worst-case

waiting time by scheduling requests fairly, and thereby improves the feasibility of

the algorithm.

A space-efficient mutual exclusion algorithm largely focuses on reducing the

memory consumption. This requirement is crucial for systems under the memory

constraint. In terms of the space complexity, most n-process mutual exclusion algo-

rithms in previous literature use at least n shared variables, as shown in surveys by

Anderson et al. [5] and Raynal [39]. For systems with limited memory, an algorithm

using a constant number of shared variables would be more suitable.
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For systems under time and memory constraints, we provide two fair and space-

efficient mutual exclusion algorithms in Chapter 4. A 2-bounded-bypass algorithm

with two shared variables is first presented to show the basic idea. A FCFS algo-

rithm, which is based on the first algorithm, and uses the same number of shared

variables, is then presented. The cost at improving the fairness from bounded by-

pass to FCFS is that the size of a shared variable is increased from 2 log
2
(n+1) bits

to 1 + 3 log
2
(n + 1) bits, where n denotes the number of all processes.

In terms of the fairness, both of the proposed algorithms satisfy bounded bypass,

so that a process in either algorithm can roughly estimate the waiting time. (Note

that a FCFS algorithm is also bounded-bypass.) For instance, in the 2-bounded-

bypass algorithm, a process cannot be bypassed more than 2(n− 1) times by other

processes after its requesting the critical region. By contrast, a process might be

bypassed without limitation in an algorithm that does not satisfy bounded bypass,

easily violating the deadline for executing a particular job.

In terms of the space complexity, only two shared variables are utilized in each of

the algorithms. Moreover, no dynamic memory allocation is needed when executing

the algorithm, so the system overhead is reduced. Since mutual exclusion is a

basic synchronization mechanism frequently used in multiprocessing systems both

in operating system kernel level and in users’ application level [37], the system

performance can be significantly improved.

In addition to atomic read and write primitives, both of the algorithms are

implemented by fetch&store, which atomically writes a value into a shared variable

and returns the old value of the same variable. Burns and Lynch [11] showed that

n shared variables are necessary to solve the n-process mutual exclusion problem if

only read and write are available. Fich et al. [21] recently extended the linear lower

bound to systems that support conditional read-modify-write (RMW) primitives,

such as compare&swap. A primitive is said to be RMW provided that it reads the

value of a shared variable and changes the value of the shared variable in a single

step. An RMW primitive is said to be conditional provided that it changes the value

of a variable only if the variable has a particular value. Hence, some primitives other
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than read/write and conditional RMW primitives are needed to decrease the space

requirement. Primitive fetch&store is adopted to implement the algorithms since it

is commonly supported in modern microprocessors such as a series of processors of

Intel and AMD, Motorola 88000, and SPARC [40], and is also available in the ARM

processor family [1]1, which is arguably the most popular embedded architecture

today. Thus, fetch&store improves the portability of the algorithm.

Several algorithms that use only a single shared variable and guarantee a certain

level of fairness have been presented. For instance, Fischer et al. [23] devised a

FCFS algorithm, and Burns et al. [10] devised a bounded-bypass algorithm and

a lockout-free algorithm. Unfortunately, all of these algorithms used hypothetical

RMW primitives that have never yet been implemented in any system. In contrast,

none of the algorithms we propose use a hypothetical RMW operation, and each of

them requires only one more shared variable than these algorithms.

The proposed algorithms are inspired by the circular list-based mutual exclusion

algorithm presented by Fu and Tzeng [24, 30]. (Fu and Tzeng’s algorithm is refereed

to as the CL algorithm throughout the rest of the dissertation.) The proposed

algorithms, like the CL algorithm, organize waiting processes into lists, but pass

the permission within and among lists very differently. The CL algorithm may

block a process in the exit region. However, the proposed algorithms eliminate this

drawback. Whereas Fu and Tzeng reduced the number of remote memory references,

our algorithms target the space complexity and guarantee a certain level of fairness.

Furthermore, we prove that two shared variables are necessary to solve the

mutual exclusion problem with b-bounded bypass for any constant b using only

fetch&store and read/write. This impossibility result is proven by showing a more

general result, that two object instances are required to implement a bounded-bypass

mutual exclusion algorithm when using only historyless objects, regardless of the size

of the objects. The definition of a historyless object is given by Fich et al. [22] and is

restated in Section 4.3. According to the definition, shared variables associated with

1The ARM processor provides the SWP instruction, which performs the same functionality as

fetch&store.
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fetch&store and read/write belong to the class of historyless objects, so the more

general result implies the proposed algorithms are space-optimal. Informally, an

object is historyless if applying a sequence of operations yields the same value in the

object as applying just the last nontrivial operation in the sequence. A nontrivial

operation is one that writes a value to the object.

The lower bound proof technique is related to an elegant method introduced

by Burns and Lynch in proving the lower bound of n on the number of read/write

objects required to solve the n-process mutual exclusion problem [11]. Their method,

called covering argument, aims at read/write objects, and is generalized herein to

historyless objects.

1.2 Algorithms for Systems Whose Memory Has

Locality

In shared memory systems, since all processes communicate through the shared

memory, each competing process may test certain shared variable(s) repeatedly while

it is waiting to enter its critical region. Such repeated testing may produce a large

amount of processor-to-memory traffic in shared memory systems, heavily degrading

the system performance. This problem can be avoided in two architectural para-

digms of shared memory systems: distributed shared memory (DSM) systems, in

which each process has a local portion of shared memory, and cache coherent (CC)

systems, in which each process has a local cache [37]. In DSM systems, a memory

reference to a shared variable will not cause interconnect traffic if the variable is

stored in the local portion of shared memory. In CC systems, whether a memory

reference causes interconnect traffic depends on the caching protocol. Generally

speaking, the first reference (be it read, write, or both) to a shared variable will

cause interconnect traffic and establish a cached copy. Subsequent references, how-

ever, will not cause traffic until the cached copy of the shared variable is updated or

invalidated. In general, a memory reference is regarded as local if it does not cause

6



any interconnect traffic; otherwise, it is remote.

Much work on the mutual exclusion problem has focused on the design of local-

spin algorithms, which reduce the number of remote memory reference (RMR) steps

by busy waiting only on locally-accessible shared variables. A number of perfor-

mance studies [6, 8, 26, 31, 37, 41] have shown that synchronization algorithms

minimizing the number of RMR steps have the best performance.

To evaluate mutual exclusion algorithms, the conventional time complexity, which

counts all steps for one process in the worst case, might be inappropriate. This is

because in any algorithm in which a process enters a busy-waiting loop when its

critical region is unavailable, the worst case number of steps taken by one waiting

process is unbounded. In other words, the conventional time complexity yields no

useful information concerning the performance of such algorithms. Since the num-

ber of RMR steps significantly reflects the performance of an algorithm, Anderson

and Yang [7] were the first to propose the number of RMR steps as a time complex-

ity metric. To be more specific, the RMR time complexity of a mutual exclusion

algorithm is the worst case number of RMR steps taken by any single process to

enter and exit its critical region once. One may consider the amortized number of

RMR steps instead of the worst case number as the RMR time complexity of an

algorithm. But, as Anderson and Yang did, we adopt the worst case number rather

than the amortized one because of the following reasons.

1. The worst case RMR time complexity of an algorithm can be easily analyzed

by just inspecting the algorithm.

2. To achieve low amortized RMR time complexity, an algorithm may assign

some process to service other processes. However, such a process is not equally

treated. This unfairness will be revealed if we consider the worst case number.

Throughout the rest of this dissertation, the RMR time complexity means the worst

case RMR time complexity.

Known constant RMR time algorithms. In the literature, with some read-

modify-write primitives in addition to atomic read and write, many mutual exclu-

7



sion algorithms of constant RMR time complexity are proposed:

• Anderson [8] proposed a constant RMR time algorithm for CC systems using

fetch&increment and fetch&add .

• Graunke and Thakkar [26] proposed a constant RMR time algorithm for CC

systems using fetch&store.

• Mellor-Crummey and Scott [37] first proposed an algorithm (referred to as the

MCS lock in literature) for both CC and DSM systems using fetch&store and

compare&swap.

• Craig [14], Magnusson et al. [36], and Huang and Lin [29] independently pro-

posed the same constant time algorithm with fetch&store. Craig presented

variants of the algorithm for both CC and DSM systems; while the other two

considered only CC systems.

• In recent work, Anderson and Kim [4] presented a genetic constant RMR time

algorithm for both CC and DSM systems using fetch&φ.

For more details of these algorithms, see the recent survey paper [5] of Anderson et

al.

Because of these constant RMR time algorithms, the asymptotic tight bound

on RMR time complexity is Θ(1). From a theoretical point of view, constant time

is the best an algorithm can achieve in the RMR time complexity. Nevertheless,

some researchers such as Fu and Tzeng [24, 30] continue to strive for minimizing the

number of RMR steps. We consider it worthwhile to reduce the number as much

as possible. In practice, remote memory references are orders of magnitude slower

than references to the local memory. And mutual exclusion is a basic synchronization

mechanism frequently used in multiprocessing systems both at the operating system

kernel level and the users’ application level [37]. Consequently, minimizing the

number of RMR steps yields considerable performance improvement.

Our result for this direction of research is a tight bound on the number of RMR

steps needed to solve the mutual exclusion problem in DSM systems. We prove
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three is a lower bound on RMR time complexity. The lower bound is tight because

it matches the upper bound of the algorithm proposed by Huang in ICDCS’99 [28].

(The algorithm is referred to as Huang’s algorithm throughout the rest of the dis-

sertation.) To prove the correctness of Huang’s algorithm, we sketch a proof in

Section 3.3.2.

Huang’s algorithm is related to the MCS lock [37] and the CL algorithm by Fu

and Tzeng [24, 30]. Fu and Tzeng tried to improve the MCS lock, whose RMR time

complexity is four, and obtained a better algorithm in terms of the amortized RMR

time complexity. But, in the CL algorithm, some process in its exit region (i.e., the

code fragment after executing its critical region) may take an unbounded number

of RMR steps for the purpose of scheduling other competing processes. Thus, the

worst case number of RMR steps taken by some process is unbounded, i.e., the

RMR time complexity is unbounded. Huang follows the line of their algorithm but

eliminate the above drawback.

We prove the time bound in an asynchronous distributed shared memory model

where processes communicate by means of a general RMW primitive. The general

RMW primitive atomically accesses one shared variable, reading the value of the

variable and writing back a new value according to the submitted function. Let V

be the set of all possible values for the variable. The submitted function can be

any function f : V → V . Hence, the general RMW primitive is a generalization

of all atomic primitives that access at most one shared variable, and therefore the

lower bound holds for any set of such primitives. In practice, almost all commonly-

available primitives implemented in multiprocessor systems—such as read/write,

test&set, compare&swap, fetch&add , fetch&increment , fetch&store, fetch-and-φ—

access one shared variable. Thus, the general RMW primitive can be used to model

these primitives. For instance, a read primitive is equivalent to the general RMW

primitive with the identity function (write the same value as that returned by the

read), and a write primitive is equivalent to the general RMW primitive with the

constant function that always maps to the new value (write the new value and

discard the returned value).
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Known Lower Bounds on RMR time complexity. Several related lower

bounds have been proved in the literature. All of these bounds are asymptotic.

Anderson and Yang [7] first initiated a series of studies of lower bounds on RMR

time complexity. They established a trade-off between the amount of contention,

which was defined by Dwork et al. [19], and the RMR time complexity. The amount

of contention of an algorithm is the maximum number of processes that are enabled

to access the same shared variable simultaneously. Since our aim is minimizing the

number of RMR steps, we focus on the RMR time complexity when contention may

equal the number of all processes. Applying their result to the model with the general

RMW primitive, we have that Ω(logc n) RMR steps are required in both DSM and

CC systems, where c is the amount of contention and n is the number of processes.

Thus, the lower bound on RMR time complexity is Ω(1), a trivial bound, when con-

tention is n. Then, Cypher [15] showed a lower bound of Ω(log log n/ log log log n)

on RMR time complexity in DSM and CC systems with only atomic read and write

primitives. This result implies that there is no constant time mutual exclusion al-

gorithm if only read and write are available. He went on to show that the lower

bound holds even if conditional RMW primitives are available in addition to read

and write. In a later work, Anderson and Kim [2] improved Cypher’s lower bound

to Ω(log n/ log log n). Cypher’s lower bound and the improved bound by Anderson

and Kim hold for read, write and conditional RMW primitives, whereas ours holds

for all commonly-available primitives that access at most one shared variable in an

instruction.

In addition, Kim and Anderson [32] provided an RMR time complexity lower

bound for adaptive mutual exclusion algorithms in which the RMR time complexity

is a function of the number of contending processes. They showed that for any k,

there exists some n such that, for any n-process mutual exclusion algorithm based

on read, write or conditional RMW primitives, there exists an execution involving

Θ(k) processes in which some process performs Ω(k) RMR steps to enter and exit

its critical region. The result applies to both DSM and CC systems. In another

paper [3], Anderson and Kim showed that for any n-process mutual exclusion al-
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gorithm based on non-atomic read and write, there exists an execution involving

only one process in which that process performs Ω(log n/ log log n) RMR steps in

DSM systems to enter its critical region. Moreover, these RMR steps must access

Ω(
√

log n/ log log n) distinct remote shared variables, which implies that the process

performs Ω(
√

log n/ log log n) RMR steps in CC systems to enter its critical region.

Unlike the researchers who provided related lower bounds on the RMR time

complexity, we establish a lower bound only for DSM systems; the lower bound

proof herein is not applicable to CC systems. Future work is needed to establish the

exact lower bound in CC systems.

1.3 Contributions

In summary, we first provide two fair and space-efficient algorithms for shared mem-

ory systems without resorting to any hypothetical primitive, and also show that the

proposed algorithms are space-optimal in terms of the number of shared variables,

making them highly valuable for systems under time and memory constraints.

We then improve the tight bound of mutual exclusion algorithms on RMR time

complexity from Θ(1) to three in DSM systems. From the complexity-theoretic point

of view, it may not be so surprising. But, this result is of importance for algorithm

designers. Focus of mutual exclusion algorithms for shared memory systems for the

last 15 years has been on minimizing the number of remote memory references [14,

24, 28, 30, 37]. The tight bound shows that it is impossible to obtain any better

algorithm than Huang’s algorithm in terms of minimizing the number.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides the system

models and definitions of the mutual exclusion problem. Chapter 3 reviews the

MCS lock, the CL algorithm and Huang’s algorithm, which inspire our algorithms.

Chapter 4 presents the space-optimal mutual exclusion algorithms for systems under
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time and memory constraints. Chapter 5 presents the tight bound on the RMR time

complexity in DSM systems. Conclusions and future directions for this research are

finally drawn in Chapter 6.
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Chapter 2

System Models and Definitions

The purpose of this chapter is to introduce formal models that are adopted. We

first describe the shared memory model and then extend it to the distributed shared

memory model. The only difference between these two models is that the shared

memory of the latter has locality. The shared memory model is adopted in Chap. 4,

where a tight bound on the number of shared variables is provided; while, the

distributed shared memory model is utilized in Chap. 5 to present a tight bound on

the number of remote memory references.

Besides, the mutual exclusion problem is formally defined. And, an indistin-

guishability relation is defined in order to prove the impossibility results in this

dissertation.

2.1 Shared Memory Model

The model of an asynchronous shared memory system is based on the model de-

scribed by Lynch in [35].

An algorithm in a shared memory system is modelled as a triple (P ,V , δ), where

P is a nonempty finite set of processes, V is a nonempty finite set of shared variables,

and δ is a transition relation for the entire system.

Each shared variable v ∈ V has an associated set of values, among which some

are designated as the initial values, Iv.
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Each process i ∈ P is associated with a kind of state machine consisting of the

following components:

• Σi: a (possibly infinite) set of states;

• Ii: a subset of Σi, indicating the initial states;

• Πi : {(v, f)i | v ∈ V and f is a function mapping from the value set of v to

the same set}. Informally, Πi specifies the steps that i may execute. Each

step (v, f)i is a read-modify-write operation that atomically reads the current

value of v, say old, and writes back f(old) to the same variable v. That is,

step (v, f)i means that process i accesses v by executing RMW(v,f).

The system is asynchronous. That is, process steps do not necessarily take place

in lock-step synchrony; rather, they may happen in an arbitrary order.

A system state is a tuple consisting of the state of each process in P and the

value of each shared variable in V . System states will be denoted by s and t with

subscripts and superscripts. For a system state s, we write s(i), i ∈ P , to denote

the state of process i at s, and s(v), v ∈ V , to denote the value of shared variable v

at s. An initial system state is a system state s at which s(i) ∈ Ii for each process

i ∈ P and s(v) ∈ Iv for each shared variable v ∈ V .

The transition relation δ is a set of (s, e, s′) triples, where s and s′ are system

states, and e is a step of some process. We assume that δ satisfies the following

assumptions.

Localized update: Suppose (s, (v, f)i, s
′) is a transition in δ, where (v, f)i is a

step of process i.

1. Suppose (t, (v, f)i, t
′) is an arbitrary transition in δ, with the same step

of i. If s(i) = t(i) and s(v) = t(v), then s′(i) = t′(i).

Informally, the present state of i and the present value of v uniquely

determine the state of i after i takes step (v, f)i.
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2. s′(v) = f(s(v)).

The new value of v is determined by the function f and the current value

of v.

3. s′(j) = s(j) for all j ∈ P\{i}, and

s′(u) = s(u) for all u ∈ V\{v}.

Only the state of process i and the value of variable v can be affected.

Localized enabling: If (s, (v, f)i, s
′) ∈ δ, then for any system state t at which

t(i) = s(i) holds, there exists a system state t′ such that (t, (v, f)i, t
′) ∈ δ.

We say that a step e = (v, f)i is enabled at system state s if there exists

a system state s′ such that (s, e, s′) ∈ δ. “Localized enabling” means that

whether or not a step of a process is enabled at a system state depends only

on the state of the process. Namely, if a step of process i is enabled at system

state s, then the step is also enabled at any system state t at which t(i) = s(i)

holds.

Determinism: For any process at any system state, there is at most one step of

that process enabled.

If a step e = (v, f)i is enabled at system state s, the resulting system state after

i takes the step is unique since the new state of i and the new value of v are uniquely

determined in the model. Therefore, we write e(s) to denote the resulting system

state.

An execution fragment is a finite or infinite sequence of steps. Several notations

regarding execution fragments will be used in the sequel. Let α and α′ be execution

fragments.

• |α|: the length of α. (if α is a finite fragment)

• α|i: the subsequence of α consisting of all steps of process i in α.

• Pro(α): the set of processes that take at least one step in α.

• Var(α): the set of shared variables accessed by any step in α.
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• α ◦ α′: the execution fragment obtained by concatenating α and α′, provided

that α is finite.

In addition, we say that α is a P -execution fragment if all processes involved in α

are included in P (i.e., Pro(α) ⊆ P ), where P is a subset of P . When P = {i} we

write i-execution fragment instead of {i}-execution fragment.

A finite execution fragment e1e2 . . . en is executable from a system state s if for all

i, n ≥ i ≥ 1, ei is enabled at si−1 where s0 = s and si = ei(si−1). Likewise, an infinite

execution fragment e1e2 . . . is executable from a system state s if for all i ≥ 1, ei is

enabled at si−1 where s0 = s and si = ei(si−1). If α is a finite execution fragment

executable from s, we write α(s) to denote the system state after performing α from

s. An execution is an execution fragment that is executable from an initial system

state. A system state s is said to be reachable if there exists a finite execution such

that the resulting system state is s.

2.2 Distributed Shared Memory Model

The distributed shared memory (DSM) model is the same as the shared memory

model proposed in the previous section, except that in the DSM model, each process

has a segment of shared memory that is local to it. We adopt the definition of a

remote memory reference step proposed by Anderson and Yang [7], and thus use

the number of remote memory reference steps as the RMR time complexity metric.

In the DSM model, V is partitioned into disjoint nonempty subsets Vi for each

i ∈ P . In other words, each variable belongs to a segment of shared memory that

is local to a single process. This captures the essence of distributed shared memory

systems. Vi denotes the set of all shared variables located at process i. To a process

i, a shared variable v is remote if v 6∈ Vi; otherwise, it is local.

For a step (v, f)i ∈ Πi, we say that this step of process i accesses the shared

variable v. It is a remote memory reference (RMR) step from i if v 6∈ Vi. That

is, the step accesses a shared variable located at some other process. An RMR step

to j is an RMR step from i 6= j that accesses a shared variable v ∈ Vj.
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2.3 The Mutual Exclusion Problem

The shared memory model and the distributed shared memory model have been

described so far. A formal definition of the mutual exclusion problem, which is

similar the one proposed by Burns et al. in [10], is given below for both models.

Informally, the mutual exclusion problem is to devise algorithms for each process

to access a designated region of code called the critical region. A process can only

occupy its critical region while no other process is in its critical region. In order to

gain admission to the critical region, a process executes its trying region code, and

when a process leaves its critical region, it executes the exit region code for syn-

chronization purposes and then returns to the rest of its code, called the remainder

region.

For each process i, Σi is partitioned into nonempty disjoint subsets Ri, Ti, Ci

and Ei. We say that a process i is in its remainder (R) region, trying (T ) region,

critical (C ) region or exit (E ) region at system state s if s(i) belongs to Ri, Ti, Ci

or Ei, respectively. A system state is said to be idle if all processes are in R. Each

initial system state is assumed to be idle. In addition, we assume that the transition

relation δ for a mutual exclusion algorithm satisfies the following well-formedness

conditions.

• If (s, (v, f)i, s
′) ∈ δ and s(i) ∈ Ri, then s′(i) ∈ Ri ∪ Ti.

• If (s, (v, f)i, s
′) ∈ δ and s(i) ∈ Ti, then s′(i) ∈ Ti ∪ Ci.

• If (s, (v, f)i, s
′) ∈ δ and s(i) ∈ Ci, then s′(i) ∈ Ci ∪ Ei.

• If (s, (v, f)i, s
′) ∈ δ and s(i) ∈ Ei, then s′(i) ∈ Ei ∪Ri.

That is, each process cycles through its remainder, trying, critical and exit regions,

in that order.

For all steps, we assume that a step enabled in R or C never accesses a shared

variable that may be accessed by a step enabled in T or E. Thus, a step taken in R

or C will not affect the processes in T and E.
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In addition, an algorithm that solves the mutual exclusion problem must meet

the two basic conditions below.

Mutual Exclusion: There is no reachable system state at which more than one

process is in C.

The next condition depends on an assumption about the scheduling of processes

in executions: no process “halts” anywhere except possibly in R. Executions with

this property are said to be admissible. Let α be an execution executable from an

initial system state s. Formally, α is admissible from s if for every process i ∈ P

that takes only finitely many steps in α, i’s final state belongs to Ri.

Progress: Let α be an admissible execution executable from an initial system state

s and α1 be any finite prefix of α. At system state α1(s),

• if at least one process is in T and no process is in C, then there exists

a finite prefix α2 of α, |α2| > |α1|, such that some process enters C at

α2(s);

• if at least one process is in E, then there exists a finite prefix α2 of α,

|α2| > |α1|, such that some process enters R at α2(s).

An algorithm satisfying the condition does not guarantee that the critical region

is granted fairly to each individual process. To avoid entering a situation in which

some process is denied indefinitely access to the critical region, it is often desirable

to have some level of fairness other than the progress condition.

An algorithm is lockout-free provided that it guarantees, assuming that no

process stays in C indefinitely and the execution is admissible, no process can be

kept waiting indefinitely either for C or for R. It is intuitively clear that a lockout-

free algorithm is also an algorithm satisfying the progress condition.

To define the fairness properties below, which guarantee a bound on the number

of bypasses, we assume that the trying region of each process consists of two parts:

a doorway followed by a waiting part. The doorway part is wait-free: its execution

requires only a bounded number of steps. The following properties prevent any
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process that has finished its doorway from being bypassed arbitrary times by any

other process.

A mutual exclusion algorithm is said to be bounded-bypass if it guarantees a

b-bounded bypass for some constant b. The b-bounded bypass condition is defined

as follows.

b-bounded bypass: Once a process i has passed through its doorway, no process

can enter its C more than b times before i does so.

A mutual exclusion algorithm is said to be first-come-first-served (FCFS) if

process i completes its doorway before j performs a step in its doorway, then j can

not enter C before i does so. It is intuitively clear that a FCFS algorithm is also an

algorithm satisfying the bounded bypass condition.

RMR Time Complexity in the DSM model. In the DSM model, the RMR

time complexity of a mutual exclusion algorithm is the worst case number of RMR

steps taken by any single process in T and the following E if the process enters and

then leaves C, i.e., the worst case number of RMR steps for any single process to

enter and then exit C once.

Then, a local-spin mutual exclusion algorithm can be formally defined as follows.

This definition has been used implicitly or explicitly in related work about local-spin

algorithms [5].

Definition 2.1 A mutual exclusion algorithm is local-spin if its RMR time com-

plexity is bounded, that is, a constant c exists such that its RMR time complexity is

less than or equal to c.

2.4 An Indistinguishability Relation

Variants of the notion of indistinguishability are frequently used to prove impossibil-

ity results in distributed systems [35]. Here, we first define an equivalence relation

among system states, and then propose several ways to manipulate execution frag-

ments.
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Definition 2.2 Let P be a subset of P and V a subset of V. System states s and t

are said to be indistinguishable to P with respect to V , denoted by s
P
∼
V

t, if

1. s(i) = t(i) for each i ∈ P , and

2. s(v) = t(v) for each v ∈ V .

Informally, for system states s and t with s
P
∼
V

t, s and t are indistinguishable to those

processes in P consulting only shared variables in V . When P = {i}, we write s
i
∼
V

t

instead of s
{i}
∼
V

t; when V = V , we write s
P
∼ t instead of s

P
∼
V

t.

Our definition is a generalization of the indistinguishability relation defined by

Lynch [35]: when V = V , the two indistinguishability relations become equal. The

generalized version of indistinguishability makes it easier to define a weaker condition

imposed on two system states such that an execution fragment executable from one

system state is also executable from the other. Intuitively, it is enough to consider

the set of all shared variables accessed in the execution fragment rather than the

whole set V . Furthermore, for a shared memory model whose memory has locality,

this definition is useful in characterizing properties related to local shared memory,

as we will see in Lemma 2.2 below and Lemma 5.2 in Section 5.2.1.

Now, we present two lemmas about ways to manipulate execution fragments

based on the indistinguishability relation defined above. The first is holds for both

of the proposed models; in contrast, the latter holds only for the DSM model.

These lemmas can be easily proved by the localized update and localized enabling

assumptions.

Suppose that execution fragment α is executable from system state s. Let P =

Pro(α) and V = Var(α). If s
P
∼
V

t, Lemma 2.1 says that α is also executable from

system state t. This is because each process and each shared variable involved in α

have the same state and the same value, respectively, at s and t. By the localized

update and localized enabling assumptions, an induction on each prefix of α can

show that α is also executable from system state t. If, in addition, α is finite, the

resulting system states α(s) and α(t) will be also indistinguishable to P with respect

to V , i.e., α(s)
P
∼
V

α(t).
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Lemma 2.1 Let s and t be system states. Suppose that α is an execution fragment

executable from s. Let P = Pro(α) and V = Var(α). If s
P
∼
V

t, then α is also

executable from t. If, in addition, α is finite, then α(s)
P
∼
V

α(t).

Proof. Suppose that s
P
∼
V

t, that is, each process and each shared variable involved in

α have the same state and the same value, respectively, at s and t. According to the

localized update and localized enabling assumptions, a straightforward induction

proves that for each prefix α′ of α, α′ is also executable from t and furthermore at

the resulting system states α′(s) and α′(t), the states of all processes in P and the

values of all shared variables in V are the same. 2

The above lemma can be applied on both of the models, whereas the next lemma,

Lemma 2.2, is only for the DSM model. Lemma 2.2 is for system states s and t that

are indistinguishable to a process i consulting only shared variables in Vi. Informally,

if an execution fragment α executable from system state s contains neither RMR

steps from i nor RMR steps to i, then no communication between i and any other

process can occur in α. Lemma 2.2 says that α|i is also executable from all system

states t at which s
i
∼
Vi

t holds. If, in addition, α is finite, then the resulting system

states α(s) and (α|i)(t) will be also indistinguishable to process i with respect to Vi.

Lemma 2.2 Let s and t be system states and i a process. Suppose α is an execution

fragment that is executable from s and contains neither RMR steps from i nor RMR

steps to i. If s
i
∼
Vi

t, then α|i is also executable from t. If, in addition, α is finite,

then α(s)
i
∼
Vi

(α|i)(t).

Proof. Since α contains neither RMR steps from i nor RMR steps to i, i does not

access any remote shared variable and no other process accesses any shared variable

located at i in α. Thus, when α is executed from s, the state of i and the values of

all shared variables located at i depend only on α|i. Therefore, α|i is also executable

from s and if, in addition, α is finite, α(s)
i
∼
Vi

(α|i)(s).

Suppose that s
i
∼
Vi

t. We show that α|i is also executable from t. Since α|i is an

i-execution fragment and i does not access any remote shared variable in α|i (i.e.,
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Var(α|i) ⊆ Vi), s
i
∼
Vi

t implies s
P
∼
V

t where P = Pro(α|i) = {i} and V = Var(α|i).

Hence, by Lemma 2.1, α|i is also executable from t and if, in addition, α is finite,

(α|i)(s)
i
∼
Vi

(α|i)(t).

If α is finite, since α(s)
i
∼
Vi

(α|i)(s) and (α|i)(s)
i
∼
Vi

(α|i)(t), we have α(s)
i
∼
Vi

(α|i)(t).

2

When α ending with an RMR step from i satisfies the assumptions on α in

Lemma 2.2 except the last step, the following corollary says that α|i is also exe-

cutable from t. Let α′ be the prefix of α, just excluding the last step of α. By

Lemma 2.2, α′|i is also executable from t and the states of i at α′(s) and (α′|i)(t)

are the same. Thus, the RMR step from i at the end of α is also enabled at (α′|i)(t).

Namely, the execution fragment α|i (α|i = α′|i ◦ the RMR step from i) is also ex-

ecutable from t. However, since the last step from i is an RMR step, the state of i

at α(s) might be different from that at (α|i)(t).

Corollary 2.3 Let s and t be system states and i a process. Suppose α is a finite

execution fragment that is executable from s, ends with an RMR step from i, and

contains neither RMR steps from i nor RMR steps to i except the last step. If s
i
∼
Vi

t,

then α|i is also executable from t.
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Chapter 3

Related Algorithms

Before presenting our results, three algorithms that aim at reducing the number

of RMR steps are reviewed. They demonstrate how to order requests using RMW

primitives. These algorithms also inspire the proposed algorithms in Chapter 4.

The first is the MCS lock, which is proposed by Mellor-Crummey and Scott [37];

the second is the CL algorithm, which is proposed by Fu and Tzeng [24]; the last is

Huang’s algorithm, which is proposed by Huang [28]. Due to Huang’s algorithm, the

lower bound on RMR time complexity in Chapter 5 is tight. Notably, the original

version of the CL algorithm suffers a deadlock error in the trying region, and the

version herein is the one corrected by Huang and Shann [30].

Both of the MCS lock and Huang’s algorithm employ fetch&store and compare&swap

to order requests to the critical region in a list-based way; while the CL algorithm

employs fetch&store and swap&compare to do so in a circular-list-based way. The

primitive swap&compare is a hypothetical RMW primitive defined by Fu and Tzeng.

Definitions of these RMW primitives are given in Fig. 3.1.

3.1 The MCS Lock

As shown in Fig. 3.2, the MCS lock uses a fetch&store on a lock to chain competing

processes as a list. Each process in the doorway, which is composed of line T1 in

Fig. 3.2, executes fetch&store on the shared variable L (i.e., the lock), announcing
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fetch&store (shared variable v, value new)
previous := v

v := new

return previous

compare&swap (shared variable v, value old, value new)
previous := v

if previous = old then

v := new

fi

return previous

swap&compare (shared variable v, private variable old, value new)
previous := v

v := old

old := previous

if v = old then

v := new

fi

Figure 3.1: fetch&store, compare&swap and swap&compare primitives.

its identity and obtaining the identity of its predecessor if there is one. It then

enters the waiting part of its trying region, which is composed of lines T2–T4. If

the returned value is nil, i.e., the requesting process is the head of the list, then

it immediately enters its critical region. Otherwise, if it has a predecessor, it first

writes a value to its predecessor’s Next variable, notifying its predecessor to refer

back to its identity (T3). It then starts to spin on a locally-accessible shared variable

until it is awakened (T4).

In the exit region, a process i passes the permission to its successor if there is one.

If Next(i) 6= ⊥, i.e., i’s successor has updated Next(i), then i updates its successor’s

spin variable (E8). Otherwise, two cases are possible: (1) i has no successor, or (2)

i does have a successor, but the successor has not yet updated Next(i). Primitive

compare&swap in E2 enables i to determine which case is true. If the returned value

of compare&swap is not i, i.e., i indeed has a successor, i waits until its successor

updates Next(i) (E3), and then wakes up its successor (E5). Otherwise, if the
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Shared variables:

L ∈ {nil, 0, 1, . . . , n − 1}, initially nil � L can be located at any process
for every i ∈ {0, . . . , n − 1}:

Spin(i) ∈ {true, false}, initially true

Next(i) ∈ {⊥, 0, . . . , n − 1}, initially ⊥
� Spin(i) and Next(i) are located at process i

Process i : (i ∈ {0, . . . , n − 1})

Private variables of i:

pred, suc ∈ {nil, 0, 1, . . . , n − 1}, initially arbitrary

while true do

R: Remainder region

T1: pred := fetch&store(L, i);
T2: if pred 6= nil then

T3: Next(pred) := i

T4: await ¬Spin(i); fi � locally spin until Spin(i) = false

C: Critical region

E1: if Next(i) = ⊥ then

E2: if compare&swap(L, i, nil) 6= i then

E3: await Next(i) 6= ⊥; � locally spin until Next(i) is updated
E4: suc := Next(i);
E5: Spin(suc) := false; fi � wake up its successor
E6: else

E7: suc := Next(i);
E8: Spin(suc) := false; � wake up its successor
E9: fi

E10: Spin(i) := true; � set Spin(i) to true

E11: Next(i) := ⊥; � set Next(i) to ⊥
od

Figure 3.2: The MCS lock.
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Figure 3.3: An execution of the MCS lock. An arrow from node p to note q indicates

that process q has updated process p’s Next variable so that p is aware of the identity

of its successor.

returned value of compare&swap is i, i.e., i has no successor, then compare&swap

has modified L’s value to nil, setting the system state to the starting state.

Figure 3.3 illustrates a simple execution of the MCS lock. Process 3 first executes

fetch&store in T1 and gets nil from L, so it enters C immediately. While process 3

is in C, processes 1, 5 and 4 execute T1 in turn. Each of processes 1, 5 and 4 updates

its predecessor’s Next variable and then starts to wait. The permission is conveyed

from 3 to 1, then from 1 to 5, and then from 5 to 4. After process 4 leaves C, if

there is no other request, process 4 modifies L’s value to nil; otherwise, it passes

the permission to its successor.

The MCS lock satisfies mutual exclusion, progress and the FCFS condition.

Inspecting the algorithm, the worst case number of RMR steps taken by any single

process in T and E is four (Steps T1, T3, E2 and E5).

3.2 The CL Algorithm

Fu and Tzeng tried to improve the MCS lock and proposed the CL algorithm, which

is better in terms of the amortized RMR time complexity. But, the FCFS condition

is not satisfied. Furthermore, although the CL algorithm is bounded-bypass in the

trying region, some process may be blocked in the exit region. Figure 3.4 is the CL
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algorithm. Explanation of the algorithm follows.

Shared variables:

L ∈ {nil, 0, 1, . . . , n − 1}, initially nil � L can be located at any process
for every i ∈ {0, . . . , n − 1}:

Spin(i) ∈ {true, false}, initially true � Spin(i) is located at process i

Process i : (i ∈ {0, . . . , n − 1})

Private variables of i:

pred ∈ {nil, 0, 1, . . . , n − 1}, initially arbitrary

while true do

R: Remainder region

T1: pred := fetch&store(L, i);
T2: if pred 6= nil then

T3: await ¬Spin(i); fi � locally spin until Spin(i) = false

C: Critical region

E1: if pred = i then � as a controller
E2: while true do

E3: pred := nil;
E4: swap&compare(L, pred, nil);
E5: if pred = i then

E6: break; � leave the inner while loop
E7: else

E8: Spin(i) := true;
E9: Spin(pred) := false; � wake up the tail of the waiting list
E10: await ¬Spin(i); � locally spin until Spin(i) = false

E11: fi

E12: od

E13: else

E14: Spin(pred) := false; � wake up its predecessor
E15: fi

E16: Spin(i) := true; � set Spin(i) to true

od

Figure 3.4: The CL algorithm.

As in the MCS lock, each process in its doorway, which is composed of line

T1 in Fig. 3.4, executes fetch&store on the shared variable L to make public its

identity and obtain the identity of its predecessor if there is one. The process then

enters its waiting part, which is composed of lines T2 and T3, and starts to check

whether it is the first process that references L (T2), either since system start-up

or since the last step that the value nil was written back to L. If so, the process

enters C ; otherwise it starts to spin on its spin variable (T3). Unlike the MCS lock,
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the CL algorithm eliminates the remote memory reference that notifies a requesting

process’s predecessor to refer back to the process’s identity (i.e., step T3 in the MCS

lock). As a result, the MCS lock orders processes in a list according to when they

make requests, whereas the CL algorithm orders processes in the opposite order. For

instances, suppose that processes 3, 1, 5 and 4 make requests in turn. In the MCS

lock, they are linked into a list as shown in Fig. 3.3; while, in the CL algorithm,

they are linked in the opposite order as shown in Fig. 3.5(a).

When a process i leaves C, if it does not get nil from L in T (i.e., pred 6= nil), i

just passes the permission to its predecessor (E14), and then enters R after setting

its spin variable to true (E16). Otherwise, if pred = nil, it is selected as a controller

and has additional responsibility for servicing other requesting processes. It executes

steps E2–E12 to take care of the followings. Two possibilities exist. If L is still

equal to i, no other processes are interested in entering C. Process i writes nil to L

when performing step E4 and moves to R. Otherwise, if L has some other process’s

identity, there is a list of waiting processes. Process i stores the value of L, which

is the identity of the tail of the current waiting list, to pred (as a result of E4) and

passes the permission to the tail (E9). The permission will be conveyed along the

list from the tail to the head. While the permission is being transmitted, process i,

the head of the list, is blocked at E10.

After i passes E10, all processes in the waiting list have finished C but more

processes may have arrived and have been kept waiting. Process i should go back

to E2 to prepare for the next run of playing controller. It will be kept in this

potentially unbounded number of runs of playing controller as long as there are

processes interested in entering C.

Figure 3.5 depicts an example execution. Process 3 first takes step T1, gets

nil from L and thus enters C immediately. At about the same time, processes 1,

5 and 4 execute T1 in turn. A waiting list, called list 1, is formed as shown in

Fig. 3.3(a). In Fig. 3.5(b), process 3 leaves C, sets L to its identity and obtains

the identity of the tail. It then passes the permission to the tail of the list (i.e.,

process 4). The permission will be conveyed from 4 to 5, then from 5 to 1, and then
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Figure 3.5: An execution of the CL algorithm. A gray node indicates a process that

has finished one life cycle. An upward arrow from a process points to the process’s

predecessor, and a downward arrow from a process, which must be a controller,

points to the tail of a waiting list to which the process is responsible.

from 1 to 3. Process 3 will be blocked until the permission is passed back to itself.

As Fig. 3.5(c) shows, while the permission is transmitted along list 1, subsequent

requesting processes form another waiting list, called list 2. In Fig. 3.5(d), the

permission is conveyed back to process 3, the process takes the role of the controller

again and redirects the permission to the process 4, which is the tail of list 2.

The concept of using a controller to convey the permission to the tail of a waiting

list also appears in our algorithms in Chap. 4 and Chap. 5. The differences are which

process is selected as a controller and how to pass the responsibility of controller to

the next one.

The CL algorithm satisfies mutual exclusion, progress and bounded bypass in

the trying region. But, since a process may be kept an unbounded number of times

at the while loop in E, the RMR time complexity of the CL algorithm is unbounded.
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3.3 Huang’s Algorithm

This section presents Huang’s algorithm, whose RMR time complexity is three. The

key to minimizing the number of RMR steps is encoding different messages into an

RMR step. Based on the algorithm, the lower bound result on RMR time complexity

in Chapter 5 is tight.

The algorithm also satisfies bounded bypass and lockout-freedom besides the

basic requirements. To argue the correctness, we sketch a proof in the end of the

section.

3.3.1 The Algorithm

The algorithm is shown in Fig. 4.2. Figure 4.1 illustrates an example to help explain

the working of the algorithm.

As in the MCS lock, Huang’s algorithm uses a fetch&store on a lock to link

competing processes, but, as in the CL algorithm, it eliminates the remote memory

references needed in the MCS lock to notify its predecessor to re-direct the link for

each process in a list. With this modification, the CL algorithm proposed a way to

pass the lock among processes. However, this way suffers from blocking in the exit

region. To eliminate this drawback, the algorithm provides a new way to convey the

lock.

We first give an informal description of the algorithm and then describe it in

more detail. In the algorithm for n processes, each process i ∈ P = {0, . . . , n − 1}

has two identities, i and n + i. For brevity, let ī denote n + i. Each process uses

different identities in any two consecutive life cycles to avoid a subtle situation. We

defer the explanation of the subtlety until we have presented the algorithm.

We now explain the key idea of the algorithm. Each requesting process executes

fetch&store on the shared variable L (i.e., the lock) to announce its identity and

obtain its predecessor’s identity if there is one. If the returned value is nil, the critical

region is available and the requesting process enters the critical region immediately;

otherwise, it waits by repeatedly testing its local spin variable. Since each process
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Shared variables:

L ∈ {nil, 0, 1, . . . , 2n − 1}, initially nil � L can be located at any process
for every i ∈ {0, . . . , n − 1}:

Spin(i) ∈ {(Head ,Tail) | Head ,Tail ∈
{nil, 0, 1, . . . , 2n − 1} }, initially (nil, nil) � Spin(i) is located at process i

Process i : (i ∈ {0, . . . , n − 1})

Private variables of i:

id ∈ {i, n + i}, initially i

pred ∈ {nil, 0, 1, . . . , 2n − 1}, initially arbitrary
head, tail ∈ {nil, 0, 1, . . . , 2n − 1}, initially arbitrary

while true do

R: Remainder region

T1: pred := fetch&store(L, id);
T2: if pred 6= nil then

T3: await Spin(i) 6= (nil, nil); fi

C: Critical region

E1: (head, tail) := Spin(i);
E2: if pred = nil or pred = head then � as a controller
E3: if pred = nil then � E3–E8 encode the permission word
E4: head := id;
E5: else

E6: head := tail;
E7: fi

E8: tail := compare&swap(L, head, nil);
E9: if tail 6= head then � wake up the tail of the waiting list
E10: Spin(tail mod n) := (head, tail); fi

E11: else � as a non-controller
E12: Spin(pred mod n) := (head, tail); � wake up its predecessor
E13: fi

E14: Spin(i) := (nil, nil); � set the spin variable to (nil, nil)
E15: id := (id + n) mod 2n; � change the identity

od

Figure 3.6: Huang’s algorithm.

makes a request by executing fetch&store on the same variable L, a waiting list will

be formed if some process has been in C. For instance, in Fig. 3.7(a), as process 3

is in C, all competing processes (1, 5, and 4) form a waiting list.

When a process leaves C, it takes an RMR step to write a value, called the

permission word, to the spin variable of some waiting process. Since the waiting

process is testing its spin variable repeatedly, the permission word in effect serves as

a wake-up signal. In order to minimize the number of remote memory references, the

permission word not only serves as permission to enter C, but also carries enough
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Figure 3.7: An execution of Huang’s algorithm in Fig. 3.6. A gray node indicates

a process that has finished one life cycle. An upward arrow from a process points

to the process’s predecessor, and a downward arrow from a process, which must be

a controller, points to the tail of the waiting list to which the process is responsi-

ble. The label of a downward arrow from a process represents the permission word

conveyed to the tail by the process.
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information for processes to arrange among themselves the order to enter C, without

using any other control word.

The permission will be conveyed in the following way. First, any process that

succeeded in acquiring nil from L enters C. When such a process leaves C, it conveys

the permission to the tail of the current waiting list. Then, the permission will be

transmitted along the list from the tail to the head, allowing every process in the

list to enter C in an orderly way. While the permission is being transmitted, all

subsequent requesting processes form a new waiting list appending to the tail of

the old list. Once the head of the old list leaves C, i.e., all processes in the list

have finished their critical regions, the permission will be redirected to the tail of

the new waiting list. Similarly, the permission will be conveyed along the new list.

We call a process that redirects the permission to the tail of a new waiting list a

controller. Namely, a process is a controller if it gets nil from L or it is the head

of a waiting list. In addition, a controller has the responsibility to encode some

information into the permission so that each process in a new list can check whether

it is the head of the list and if so, it should take the role of a new controller. If

there is no new waiting list when a controller tries to redirect the permission, the

controller modifies L’s value to nil, thus properly setting the system to the starting

state. Using compare&swap, a controller can atomically check whether there is a

new waiting list and if not, modify L’s value to nil, avoiding any interleaving with

processes that make requests about the same time.

For example, in Fig. 3.7(a), when process 3 (the controller at the time) leaves C,

it conveys the permission to process 4, the tail of the current waiting list, called list

1. Pair (3,4) serves as the permission, where 3 is used for each process receiving the

permission to check whether it is the head of list 1, and 4 indicates the tail of the list

and will be used to encode the next permission. The permission will be transmitted

along list 1. In Fig. 3.7(b), when process 1 in list 1 leaves C, i.e., all processes in

the list have finished their critical regions, process 1 knows that it is the head of list

1 by checking whether its predecessor is 3. Process 1 encodes new information into

the permission and redirects it to the tail of the current waiting list, called list 2.
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We now describe the algorithm in more detail. The algorithm uses n + 1 shared

variables: L and Spin(i) for each i ∈ P . L can be located at any process; in

contrast, Spin(i) must be located at process i. Spin(i) is the spin variable of process

i. Whenever busy-waiting is necessary, process i repeatedly checks its spin variable

without causing any remote memory reference. Each spin variable consists of two

parts, (Head ,Tail), each being the identity of a process or nil. Initially, L is set to

nil and each spin variable is set to (nil, nil).

In the trying region, a process in its doorway, which is composed of line T1

in Fig. 3.6, executes fetch&store on L. It then enters the waiting part, which

is composed of lines T2 and T3. If the returned value of the primitive is nil,

the requesting process enters its critical region immediately; otherwise, it waits by

repeatedly testing its spin variable until the value is not equal to (nil, nil) (T3).

In the exit region, each process reads its spin variable and stores the permission

word into its private variables head and tail (E1). A process will identify itself as a

controller if the result of checking E2 is “yes”—that is, pred is equal to nil or head.

If the process is not a controller, it just transmits the permission to its predecessor

by executing E12. Otherwise, it first encodes new control information into a new

permission word by executing steps E3–E8. Steps E3–E7 set the new value of head:

if the controller gets nil from L, then head is set to its current identity; otherwise,

head is set to the value of tail in the old permission word. This is because the value

of head will be used by processes in the new waiting list to check whether it is the

head of the list. Step E8 sets tail to the returned value of compare&swap on L,

which is the identity of the tail of the new waiting list if there is one. If there is no

new waiting list, E8 atomically modifies L’s value to nil. Otherwise, the controller

redirects the modified permission word to the tail of the new list by executing E10.

The algorithm has been presented. It remains to explain the reason why each

process uses different identities in any two consecutive life cycles. Each process

alternately uses one of its identities to avoid a subtle situation. Although a process

cannot appear more than once in a waiting list, it may appear in two neighboring

lists. A process’s identity in one life cycle is different from that in the next cycle since
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a process always changes its current identity in E15. Therefore, no two identities of

the same process in any two consecutive lists are the same. This is important for

a process to determine whether it should act as the controller for the next waiting

list. For example, in Fig. 3.7(c), process 3 in list 3 would not be able to tell the

difference between 4 in list 3 and 4̄ in list 2 if process 4 uses the same identity. With

the different identities, process 3 should pass the permission to process 4, rather

than taking up the role of a controller. The situation occurs whenever a process

at the tail of a waiting list, after having been given permission to enter C, quickly

makes a new request in the next waiting list. Fortunately, the subtlety needs to

be resolved only between two neighboring waiting lists, thus two identities for each

process suffice.

RMR Time Complexity. Inspecting the algorithm, it is easy to find that the

worst case number of RMR steps taken by any single process in T and E is three

(Steps T1, E8 and E10).

3.3.2 A Correctness Argument

Mutual Exclusion

In the algorithm, a process i has permission to enter C exactly if it obtains nil from

L when executing T1 (i.e., pred = nil) or Spin(i) 6= (nil, nil). Since a process that

obtains nil when executing T1 writes its identity, a non-nil value, to L in the same

step, a nil in L permits at most one process to gain permission. Initially, L is set to

nil and Spin(i) = (nil, nil) for each process i. Thus, at most one process may enter

C initially.

To prove mutual exclusion, we focus on steps that may cause some process to

gain permission, that is, on steps that may set L to nil or modify some process’s

spin variable. Inspection of the algorithm clearly indicates that only steps E8, E10,

and E12 need to be considered.

• Step E8 (tail := compare&swap(L, head, nil)) assigns the current value of L
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to tail, and modifies L’s value to nil only if L = head. If the step indeed

modifies L’s value, it is regarded as successful. A successful E8 allows at most

one process to gain permission.

• Each of E10 and E12 modifies some process’s spin variable. Since the spin

variables of any two processes are distinct, each of the two steps allows at

most one process to gain permission.

According to the algorithm, a process that executes a successful E8 bypasses E10

since tail = head. Hence, a process in E executes exactly one of the following steps:

successful E8, E10, or E12. That is, a process in E passes its permission to at most

one process.

Since at most one process may gain permission initially and each process having

permission passes its permission to at most one process, the following lemma holds.

Lemma 3.1 Huang’s algorithm guarantees mutual exclusion.

Lockout-freedom

We now show that the algorithm is lockout-free. This also implies that the algorithm

satisfies progress.

Before proving the lockout-freedom condition, we present several definitions that

intend to organize all requests in an execution. First, a busy period is an execution

fragment that starts with a step T1 that succeeds in acquiring nil from L, and ends

with the following successful E8, which modifies L’s value to nil. Since L = nil

initially, all occurrences of T1 (i.e., all requests) in an execution can be divided into

busy period(s). In a busy period, each requesting process except the first one has

the identity of its predecessor because each process makes a request by executing

T1 on the same shared variable L.

Next, we try to divide all requests in a busy period into lists. A list in a busy

period is a sequence of processes that execute T1 between the first T1, which obtains

nil from L, and the following unsuccessful E8, or between an unsuccessful E8 and
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the next unsuccessful one. Starting from the last process in a list, we can trace the

whole list from the tail to the head through the value of pred of each process in

the list. A process that executes E8 is called a controller. If a controller executes

an unsuccessful E8, then it defines a new list and is also called the controller of the

new list. Otherwise, if a controller executes a successful E8, then it ends the busy

period.

Lemma 3.2 Huang’s algorithm guarantees lockout-freedom.

Proof. The argument for the exit region is simple. Since no loop occurs in the exit

region, each process in E eventually enters R.

The lockout-freedom condition for the trying region is now considered. We argue

that each requesting process in any busy period of an admissible execution eventually

enters C.

In a busy period, the first T1 obtains nil from L and thus the first requesting

process eventually enters C. When leaving C, the process identifies itself as a con-

troller since pred = nil. After executing E4 to assign its current identity to head,

it executes E8. When it executes E8, if L = head (i.e., no other request exists),

it modifies L’s value to nil in the same step and ends the busy period. Otherwise,

it defines the first list and is the controller of the list. We need to prove that each

requesting process in the first list and all possible subsequent lists eventually enters

C.

We show that each requesting process in the ith list, called list i, eventually

enters C, and only the head of the list is selected as a new controller by induction

on i.

Basis: i = 1. List 1 contains all processes that make requests between the first

T1 in the busy period and the unsuccessful E8 executed by the controller of list 1.

Through the returned value of compare&swap in E8, the controller has the identity

of the tail of the list. Lemma 3.1 implies that at most one process has permission

at any system state. Thus, before the controller passes the permission to the tail,

all requesting processes will be blocked at T3. The controller then executes E10 to
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pass the permission to the tail by writing pair (head, tail) to the tail’s Spin variable,

where head is the controller’s identity and tail is the tail’s identity. In list 1, each

process except the head will not be selected as a new controller since pred 6= nil

and pred 6= head, and will pass the permission to its predecessor by executing E12.

Thus, the permission will be conveyed along the whole list from the tail to the head

so that each process in list 1 eventually enters C. When the head of list 1 leaves C, it

identifies itself as a new controller since its pred is equal to the previous controller’s

identity (i.e., pred = head).

Inductive step: Assume that each process in list i eventually enters C and only

the head of the list is selected as a new controller. While the permission is conveyed

along list i, all subsequent requesting processes, including those that are in list i

and make requests again, will be blocked at T3.

According to the induction hypothesis, the head of list i identifies itself as a new

controller after leaving C. The new controller executes E6 to assign the identity of

the tail of list i to its head. Since a process always switches its identity in E15, if

the process at the tail of list i makes a request, after having been given permission,

it has a different identity. Thus, if L = head holds when the new controller executes

E8, then no other request exists. The new controller modifies L’s value to nil in

the same step and ends the busy period. Otherwise, it defines list i + 1 and is the

controller of list i+1. List i+1 contains all requesting processes that make requests

between the previous unsuccessful E8, which defines list i, and the unsuccessful E8

executed by the controller of list i + 1. The controller then passes the permission

to the tail of list i + 1 by writing pair (head, tail) to the tail’s Spin variable, where

head is the identity of the tail of list i and tail is the identity of the tail of list i + 1.

It remains to show that the permission will be conveyed along the whole list.

Although the process at the tail of list i may be a member of list i + 1, it has a

different identity when it appears in list i + 1. Therefore, in list i + 1, only the

head will identify itself as a new controller when checking whether its predecessor’s

identity equals the identity of the tail of list i. The permission will be conveyed

along the whole list so that each process in list i + 1 eventually enters C. 2
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Bounded Bypass

In a busy period of an execution, since a list does not receive the permission until

each process in the previous list has left C, the algorithm satisfies bounded bypass.

Lemma 3.3 Huang’s algorithm guarantees bounded bypass.
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Chapter 4

Tight Bound on Space Complexity

In this chapter, two algorithms are proposed for systems under time and mem-

ory constraints. Each of the algorithms utilizes constant two shared variables with

fetch&store as well as read/write. The first algorithm satisfies the bounded bypass

condition; the second is an improvement on the first that satisfies the FCFS condi-

tion. To improve the fairness, the FCFS algorithm increases the number of values

taken on by a shared variable from (n + 1)2 to 2(n + 1)3, where n is the number of

all processes.

Additionally, a lower bound result shows that any bounded-bypass algorithm

using the same set of primitives must utilize at least two shared variables. The

proposed algorithms are therefore space-optimal. In other words, a tight bound of

two on the number of shared variables is obtained.

The computational model adopted in this chapter is the shared memory model.

The formal description of the model appears in Chapter 2.

4.1 The 2-bounded-bypass Algorithm

This section presents a bounded-bypass mutual exclusion algorithm using two shared

variables, as shown in Fig. 4.2. Figure 4.1 illustrates an example to help explain the

working of the algorithm.

In summary, the algorithm links competing processes as circular lists by fetch&store
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along with a shared variable. The permission to enter the critical region is trans-

mitted along a list after its construction. While the permission is transmitted,

subsequent requests constitute a new waiting list. The new list is closed when each

process in the old list has left its critical region, at which time the new list re-

ceives the permission. Likewise, after the new list is closed, subsequent requesting

processes form another list and wait for the permission. Roughly speaking, permis-

sion is conveyed along a list and then passed to the next waiting list. The algorithm

thus satisfies the bounded bypass condition.

According to the construction of a list, a competing process has the identity of

its predecessor rather than its successor. Consequently, the permission is conveyed

from the tail of a list to the head, resulting in the failure to meet the FCFS condi-

tion. The next section describes a modified algorithm that eliminates this drawback

and achieves the FCFS condition by initiating an additional phase for every list to

redirect the links in the list.

4.1.1 An Informal Description of the Algorithm

The algorithm requires exactly two shared variables. Variable L organizes requests

by processes to enter C, and variable P indicates which process has the permission

to enter C. Additionally, each process has several private variables, which are not

accessible to other processes.

As in the CL algorithm, the proposed algorithm uses a fetch&store operation

on a lock to link competing processes as a circular waiting list. Each process in its

doorway executes fetch&store on the shared variable L (i.e., the lock), announcing

its identity and obtaining the identity of its predecessor if it has one. Thus, a waiting

list is formed implicitly. Variable L is initially set to nil. A process that reads nil

from L starts a waiting list and is the head of the list. Such a process in our design

is responsible for closing the list and starting to transmit the permission along the

list. Thus, the process is called the controller of the list.

After announcing its request by executing fetch&store on L, each process enters
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the waiting part of its trying region and starts to test P repeatedly until it has the

permission to enter C. A controller repeatedly tests P until P = nil, which is the

permission for a controller. A non-controller repeatedly tests P until P equals its

identity, which indicates that it gains the permission. Since P = nil initially, the

first controller always gains the permission.

A waiting list is closed when the controller of the list leaves C. The controller

closes the list by executing fetch&store(L, nil), which atomically returns the identity

of the tail of the list and modifies L’s value to nil. This closed waiting list contains all

processes making requests between the controller obtaining nil from L and modifying

L’s value to nil. Since L’s value is changed to nil, subsequent requests constitute

another waiting list.

After a list is closed, the permission is transmitted along the list from the tail to

the head, allowing each process in the list to enter C in order. If the controller is

not the only process in the list, then it passes the permission to the tail of the list

by setting P to the identity of the tail. Each non-controller in the list then hands

the permission to its predecessor, by setting P to the identity of its predecessor,

when it leaves C. However, if the predecessor is the head of the list, then the process

passes the permission to the next waiting list rather than to the predecessor because

the predecessor has left C. Some information is needed to check this situation, and

is encoded into P . Let P hold a pair (Receiver ,Head), each being the identity

of a process or nil.1 The Receiver component serves the original purpose of P ,

indicating which process can enter C, and the Head component stores the identity

of the head of the list so that each process can determine whether its predecessor

is the head. If the predecessor’s identity of a process is equal to Head , the process

modifies Receiver ’s value to nil instead of the predecessor’s identity to convey the

permission to the head of the next waiting list.

Figure 4.1 illustrates an execution of the algorithm. Variables L and P are

respectively set to nil and (nil,4), as shown in Fig. 4.1(a). The symbol 4 in the

1Thus, P consists (n + 1)2 distinct values, where n is the number of processes; while L consists

n + 1 values.
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Figure 4.1: An execution of the 2-bounded-bypass algorithm. A gray node indicates

a process that has finished one life cycle. The symbol 4 denotes an arbitrary value.

An arrow from process a to b represents that a has the identity of b.
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Head component represents that the component is not used at this time and can be

an arbitrary value.

In Fig. 4.1(b), process 5 first makes a request by executing fetch&store(L, 5) and

obtains nil from L. Since Receiver = nil, process 5 enters C after setting Receiver

to 5. While process 5 is in C, processes 2, 6 and 4 make requests in turn. Processes

5, 2, 6 and 4 form a list as shown in Fig. 4.1(c). Because none of processes 2, 6

and 4 succeeds in acquiring nil from L, they repeatedly test P until the Receiver

component of P equals their respective identities.

When leaving C, process 5 closes the list, called list 1, by executing fetch&store(L, nil).

This operation obtains the identity of the tail and modifies L’s value to nil. The

edge from 5 to 4 in Fig. 4.1(d) indicates that the returned value is 4, i.e., the tail of

the list is process 4. Process 5 then passes the permission to the tail and sets Head

to 5 by writing (4,5) to P , as shown in Fig. 4.1(e). In Fig. 4.1(f), process 4 gains the

permission, enters C and then passes the permission to process 6. Similarly, process

6 gains the permission from process 4, enters C and then hands the permission to

process 2 by writing (2, 5) into P . In Fig. 4.1(g), since the predecessor of process

2 is the head of the list, process 2 modifies Receiver ’s value to nil to transmit the

permission to the next waiting list, called list 2. Finally, in Fig. 4.1(h), because

Receiver ’s value has been changed to nil, process 1, which is the head of list 2,

enters C after setting Receiver to 1.

4.1.2 Proposed Algorithm

Variables L and P are initially set to nil and (nil,4), respectively. Each process

stores the values of the two components of shared variable P into its private variables

receiver and head.

In the trying region, the doorway is composed of line T1 in Fig. 4.2, and the

waiting part is composed of the rest (T2–T8). A process i in the doorway executes

fetch&store(L, i) (T1) to announce its request, and then enters the waiting part. If

pred = nil, i.e., the returned value of T1 is nil, then the process identifies itself as
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Shared variables:

L ∈ {nil, 1, . . . , n}, initially nil

P ∈ {(Receiver ,Head) |Receiver ,Head ∈ {nil, 1, . . . , n}}, initially (nil,4)

Process i : (1 ≤ i ≤ n)

Private variables of i:

pred, tail, receiver, head ∈ {nil, 1, . . . , n}, initially arbitrary

while true do

R: Remainder region

T1: pred := fetch&store(L, i);
T2: (receiver, head) := P ;
T3: if pred = nil then � as a controller
T4: while receiver 6= nil do � await Receiver = nil

T5: (receiver, head) := P od

T6: P := (i,4);
else � as a non-controller

T7: while receiver 6= i do � await Receiver = i

T8: (receiver, head) := P od

fi

C: Critical region

E1: if pred = nil then � as a controller
E2: tail := fetch&store(L, nil); � close the waiting list
E3: if tail 6= i then

E4: P := (tail, i); � wake up the tail and set Head to i

else

E5: P := (nil,4) fi

else � as a non-controller
E6: if pred = head then

E7: P := (nil,4);
else

E8: P := (pred, head) fi � wake up the predecessor
fi

od

Figure 4.2: The 2-bounded-bypass algorithm.
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a controller and begins repeatedly checking P until the Receiver component of P

equals nil (T4–T5). When Receiver = nil, process i sets Receiver to i (T6) and

then enters the critical region. In contrast, if pred 6= nil, then process i repeatedly

tests P until Receiver = i holds (T7–T8).

In the exit region, a controller closes the current waiting list by performing

fetch&store(L, nil) (E2). If the returned value, which is stored in tail, is not equal

to its identity (i.e., the list contains some other process), then the controller passes

the permission to the tail of the list and sets Head to its identity (E4); otherwise,

the controller just modifies Receiver ’s value to nil (E5). For each non-controller, if

its predecessor is not the head of the list, then it simply transfers the permission to

its predecessor by setting Receiver to pred (E8); otherwise, it modifies Receiver ’s

value to nil to convey the permission to the next waiting list (E7).

4.1.3 Proof Outlines

Since each labelled instruction in the trying and exit regions accesses at most one

shared variable, it is set to correspond to a step of a process. That is, each labelled

instruction in the algorithm is atomic. For each process i, pci is defined as the

program counter of i; for instance, pci = T1 at a system state means that step T1

of process i is enabled. A private variable v of process i is denoted as vi. Finally, a

process i in T, C or E is defined as a controller provided that predi = nil.

Mutual Exclusion

In the algorithm, whether a process in T can enter C depends on the value of

Receiver . If Receiver = nil, then a controller waiting for nil in T is permitted to

enter C, while if Receiver = i, 1 ≤ i ≤ n, then only process i is permitted to do so.

Inspection of the algorithm clearly indicates that only the process in E can modify

Receiver ’s value to nil or the identity of some other process using one of steps E4,

E5, E7 or E8. (Although a controller in T modifies Receiver ’s value by executing

T6, it sets Receiver to its identity, allowing no other process to enter C.) We show
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that a nil can be taken as the permission for at most one process. Hence, a process

in E allows at most one process to enter C. Additionally, since Receiver is set to nil

initially, and a nil permits at most one process to enter C, at most one process can

enter C from the starting state. Thus, the mutual exclusion condition is ensured.

The following lemma states that at most one controller is at T4, T5, or T6. In

other words, at most one controller is waiting for nil at any reachable system state.

Once Receiver = nil, the controller enters C after step T6, which sets Receiver to

its identity, a non-nil value. Thus, a nil in Receiver permits at most one process to

enter C.

Lemma 4.1 At any reachable system state,

| { i ∈ P | predi = nil ∧ pci ∈ {T4, T5, T6}} | ≤ 1.

Proof. Since each process is in R at an initial system state, no process is in the

set and thus the statement is true. We then argue that if a process enters the

set at a systems state, no other process can enter the set until it leaves the set.

Consequently, starting from an initial state, at most one process is in the set at all

reachable system states.

The steps that could cause processes to enter the set are considered. A process

i can enter the set exactly if predi = nil after step T1, which simultaneously sets

L := i. Before process i modifies L’s value to nil by executing step E2, no other

process can obtain nil from L when executing step T1, and therefore no other process

will enter the set. That is, no process can enter the set until i leaves the set. 2 .

Since a process in E allows at most one process to enter C and at most one

process can enter C from the starting state, the following theorem holds.

Theorem 4.2 The algorithm guarantees mutual exclusion.

Progress

We argue that the algorithm satisfies the lockout-freedom condition, that if no

process stays in C indefinitely, any process in T eventually enters C ; and any
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process in E eventually enters R. A lockout-free algorithm is intuitively also an

algorithm satisfying the progress condition.

Theorem 4.3 The algorithm guarantees lockout-freedom.

Proof. The argument for the exit region is simply that since no loop occurs in the

exit region, each process in E eventually enters R.

The lockout-freedom condition for the trying region is now considered. We first

show that each request is properly recorded in a list, and then argue that each list

will receive the permission to enter C.

In the algorithm, each process i makes a request by performing fetch&store(L, i)

(T1). A process that succeeds in acquiring nil from L starts a waiting list and

becomes the controller of the list. Suppose a list controller gains permission to

enter C at a later point. After passing through C, the controller closes the list by

executing E2 which obtains the identity of the tail and modifies L’s value to nil,

and then starts to convey the permission along the list from the tail. Before the

controller closes the list, all processes that perform step T1 after the controller reads

nil from L are well organized into the list, in which the controller has the identity of

the tail and each other process in the list has the identity of its predecessor. Since

L’s value is changed to nil, subsequent requests form a new list in the same way.

That is, in an execution fragment that starts with a system state at which L has

the nil value and ends with a system state at which L’s value is changed to nil,

all requesting processes form a list. Thus, each request is properly recorded in a

list. Clearly, a closed list contains a finite number of waiting processes, since each

process can occur in a list at most once.

To prove that each requesting process eventually enters C, it remains to be shown

that each controller receives the permission. Since Receiver is initially set to nil,

the first controller always gains the permission. The controller closes the list, and

conveys the permission to the tail of the list, when it leaves C. Since a closed list

contains a finite number of processes, if no process stays in C indefinitely, then each

process in the list eventually gains the permission to enter C. When the process next
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to the controller receives the permission, since its pred equals Head , it redirects the

permission to the next controller by setting Receiver to nil after passing through

C. (From Lemma 4.1, if one controller is waiting for nil, exactly one such controller

exists.) Thus, each controller eventually receives the permission. 2

Bounded Bypass

A process i is said to be in the doorway if pci = T1, and it is said to be in the

waiting part if pci ∈ {T2, . . . , T8}. As shown in the proof of Theorem 4.3, a process

is recorded in a waiting list after passing through its doorway (i.e., after executing

T1). Since a list does not receive the permission until each process in the previous

list has left C, a process in a list may be bypassed by those processes in the same

list and in the previous list. In addition, because a process can occur in a list at

most once, a waiting process may be bypassed by any individual process at most

twice. In other words, the algorithm satisfies 2-bounded bypass. The worst case, in

which a process that has finished its doorway is bypassed twice by another process,

may occur when a non-controller in a list quickly makes a request appending to the

new list after receiving the permission. For example, in Fig. 4.1(f–h), process 7 is

bypassed twice by process 4, which makes a request after receiving the permission.

Consequently, the following theorem holds.

Theorem 4.4 The algorithm guarantees 2-bounded bypass.

4.2 The FCFS Algorithm

The above algorithm is 2-bounded-bypass. This section gives a FCFS algorithm,

based on the 2-bounded-bypass algorithm, with the same number of shared variables

and the same set of primitives.

The FCFS algorithm follows the same concept of the 2-bounded-bypass algo-

rithm, except that it initiates an additional phase to redirect the links in a list

to meet the FCFS condition. Owing to the implementation of the communication
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phase, the number of values taken on by the shared variable P increases from (n+1)2

to 2(n + 1)3.

4.2.1 An Informal Description of the Algorithm

The FCFS algorithm also organizes waiting processes into circular lists. Each process

in its doorway announces its request by executing fetch&store on the shared variable

L. In this step, a contending process obtains the identity of its predecessor if it has

one, and replaces L with its identity. As in the 2-bounded-bypass algorithm, a

process gaining nil from L is the head of the list that it closes, and takes the role of

a controller. That is, the process closes the list, and starts to transmit the permission

along the list, when it leaves the critical region.

However, the FCFS algorithm conveys the permission along a list in the reverse

order. Recall that a waiting list in the 2-bounded-bypass algorithm is ordered from

the tail to the head, causing the algorithm to fail the FCFS condition. Each process

in a waiting list, except the head, has the identity of its predecessor rather than its

successor. To achieve the FCFS requirement, an additional communication phase

is required to inform each process of its successor’s identity, so that the permission

can be passed in the FCFS order.

The algorithm initiates such a phase by the controller of a list when the controller

leaves C. Starting from the tail, each non-controller except the immediate successor

of the head writes a message in turn to inform its predecessor of its identity. The

communication phase is completed when the immediate successor of the head re-

ceives its successor’s identity. The permission is then conveyed from the successor

of the head to the tail. The algorithm thus satisfies the FCFS condition.

Implementing this phase requires some communication mechanism. In the algo-

rithm, the shared variable P is used for two purposes: to indicate which process is

permitted to enter C, and to inform processes of their respective successors. The

use of a shared variable for these two purposes is inspired by the algorithms [10]

proposed by Burns et al. To serve both purposes, the variable holds a 4-tuple
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Figure 4.3: An execution of the FCFS algorithm. The notation is the same as that

in Fig. 4.1.

(Type,Receiver , Successor ,Head), where Type is a value in {Info,Grant}, and the

other parts take on values from {nil, 1, . . . , n}. The number of values taken on by

P in this algorithm is 2(n + 1)3, compared with (n + 1)2 in the 2-bounded-bypass

algorithm.

The Type component represents the purpose of a variable. If Type has the

value Grant, then variable P is adopted to convey the permission. In this case,

the Receiver component represents the process that has the permission, while the

Successor and Head are not used, and may have arbitrary values, denoted as 4 in

the algorithm. Otherwise, if the Type component has the value Info, then variable P

is used to inform some process of its successor. In this case, Receiver represents the

receiver of the message; Successor represents the identity of the receiver’s successor,

and Head represents the identity of the head of the list.
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Figure 4.3 illustrates an execution of the algorithm. The sequence of requests in

list 1 is the same as that given to the 2-bounded-bypass algorithm in Fig. 4.1, but

the order in which the permission is conveyed among non-controllers is opposite.

Variables L and P are initially set to nil and (Grant, nil,4,4), respectively.

In Fig. 4.3(a), processes 5, 2, 6, 4 make requests in turn and constitute a list.

Because process 5 obtains nil from L, and receives a message that Type = Grant

and Receiver = nil, it has the permission for a controller. It enters C after setting

P to (Grant, 5,4,4). In contrast, processes 2, 6, and 4 repeatedly test P until

they receive their respective messages. Process 5 performs fetch&store(L, nil) to

obtain the identity of the tail, 4 in this case, and modifies L’s value to nil, when it

leaves C. It then starts a communication phase by writing (Info, 4, nil, 5), as shown

in Fig. 4.3 (b). This message notifies process 4 that it is the tail of the list (because

Successor = nil), and that the head is process 5. Process 4 then receives the message

and writes a new message (Info, 6, 4, 5) to process 6, as shown in Fig. 4.3(c). The

new message informs process 6 that its successor is process 4, and that the head of

the list is process 5. Similarly, process 6 receives the message from process 4, and

writes a new message (Info, 2, 6, 5) to inform process 2, as shown in Fig. 4.3(d).

Process 2 receives the message written by process 6, and becomes aware that it

is the immediate successor of the head, because its predecessor is the head of the

list. This means that the communication phase is completed. Process 2 enters C,

and conveys the permission to its successor, process 6, by writing (Grant, 6,4,4)

into P , as shown in Fig. 4.3(e). Process 6 then gains the permission, and conveys it

to process 4, as shown in Fig. 4.3(f). Since process 4 is the tail of the list, process

4 hands the permission to the next waiting list, by setting P to (Grant, nil,4,4),

when it leaves C, as shown in Fig. 4.3(g). Process 1, which is the head of the

next list, then receives the permission to enter C, as shown in Fig. 4.3(h), because

Type = Grant and Successor = nil.
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Shared variables:

L ∈ {nil, 1, . . . , n}, initially nil

P ∈ {(Type,Receiver ,Successor ,Head) |Type ∈ {Info,Grant},
Receiver ,Successor ,Head ∈ {nil, 1, . . . , n}}, initially (Grant, nil,4,4)

Process i : (1 ≤ i ≤ n)

Private variables of i:

type ∈ {Info,Grant}
pred, tail, receiver, successor, head ∈ {nil, 1, . . . , n}, initially arbitrary

while true do

R: Remainder region

T1: pred := fetch&store(L, i);
T2: if pred = nil then � as a controller
T3: (type, receiver, successor, head) := P ;
T4: while type 6= Grant or receiver 6= nil do

T5: (type, receiver, successor, head) := P od

T6: P := (Grant, i,4,4);
else � as a non-controller

T7: (type, receiver, successor, head) := P ;
T8: while receiver 6= i do

T9: (type, receiver, successor, head) := P od

T10: if type = Info and pred 6= head then

T11: P := (Info, pred, i, head); � inform its predecessor
T12: goto T7;

fi

fi

C: Critical region

E1: if pred = nil then � as a controller
E2: tail := fetch&store(L, nil); � close the waiting list
E3: if tail 6= i then

E4: P := (Info, tail, nil, i); � inform the tail
else

E5: P := (Grant, nil,4,4) fi

else � as a non-controller
E6: if successor = nil then

E7: P := (Grant, nil,4,4);
else

E8: P := (Grant, successor,4,4) fi � wake up the successor
fi

od

Figure 4.4: The FCFS algorithm.
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4.2.2 Proposed Algorithm

This subsection describes the algorithm in more detail. Each process stores the

values of the four components of shared variable P into its private variables type,

receiver , successor and head .

In the trying region, the doorway is composed of line T1 in Fig. 4.4, and the

waiting part is composed of the rest (T2–T12). If the returned value of T1 is nil (i.e.,

pred = nil), then process i identifies itself as a controller, and repeatedly checks P

until it gains the permission for a controller (i.e., type = Grant and receiver = nil)

(T4–T5). When type = Grant and receiver = nil, process i enters C after setting

Receiver to i (T6). In contrast, if pred 6= nil, then process i repeatedly tests P

until a message belonging to it is received (T8–T9). If the received message has

value Grant in the Type component, then i enters C immediately; otherwise, if the

message has value Info in Type, then two cases may occur.

1. When pred = head , process i is the immediate successor of the head. In other

words, the communication phase is completed and i is permitted to enter C.

2. When pred 6= head , process i conveys its own identity and the identity of the

head to its predecessor (T11), and continues to check P (T12).

In the exit region, a controller i performs fetch&store(L, nil) (E2) to close the

current waiting list, and stores the returned value in tail . If tail is not equal to its

identity, then the list contains some process other than the controller, and there-

fore the controller starts a communication phase by writing (Info, tail, nil, i) into

P (E4). This value indicates that the receiver is the tail of the list; that the tail

has no successor because the Successor part is equal to nil, and that the head

of the list is process i. Otherwise, if tail equals the controller’s identity, then

it just modifies P ’s value to the initial value, (Grant, nil,4,4) (E5). For every

non-controller, if successor = nil holds, then it realizes that it is the tail of the

list, and gives the permission to the next list by writing (Grant, nil,4,4) into P

(E7). Otherwise, it hands the permission to its successor by changing P ’s value to

(Grant, successor,4,4) (E8).
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4.2.3 An Informal Correctness Argument

Since the correctness argument of the 2-bounded-bypass algorithm has shown the

basic idea about arranging waiting processes into lists, this subsection simply pro-

vides a proof sketch. The notation and the definition of a controller are the same

as those in Section 4.1.3.

The mutual exclusion condition is proven by the strategy adopted in the 2-

bounded-bypass algorithm. First, a process in E enables at most one process to

enter C, and at most one process can enter C from the starting state.

In the algorithm, a process i in T is permitted to enter C only if one of the

following conditions holds.

Condition 1: type = Grant and receiver = nil hold. Informally, process i, which

is a controller, obtains the permission to enter C.

Condition 2: type = Grant and receiver = i hold. Informally, process i, which is

a non-controller, obtains the permission to enter C.

Condition 3: type = Info, receiver = i and pred = head hold. Informally, process

i, which is aware that it is the immediate successor of the controller and that

the communication phase is finished, obtains the permission to enter C.

Inspecting the algorithm indicates that a process in E performs exactly one of

E4, E5, E7 and E8 to change P ’s value. As shown below, each step enables at most

one process to enter C.

Step E4 modifies P ’s value to (Info, tail, nil, i). A value in P is said to be a

communication word if Tpye = Info. According to the algorithm (T10–T12), a

communication word may enable the receiver of the word to satisfy Condition 3. If

not, the receiver writes a new communication word to its predecessor and backs to

step T7. Thus, step E4 enables at most one process to satisfy Condition 3.

Step E8 modifies P ’s value to (Grant, successor,4,4), making the process

whose identity is equal to successor to satisfy Condition 2.
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Steps E5 and E7 set P to the initial value, (Grant, nil,4,4). Using the argu-

ment in Lemma 4.1, we have the counterpart of Lemma 4.1 below.

Lemma 4.5 At any reachable system state,

| { i ∈ P | predi = nil ∧ pci ∈ {T3, T4, T5, T6}} | ≤ 1.

Namely, at most one controller is blocked because of Condition 1 at any reachable

state, so that the initial value allows at most one process to enter C. This implies that

E5 and E7 each enable at most one process to gain the permission, and furthermore

implies that at most one process can enter C from the starting state, at which P

has the initial value. Thus, the mutual exclusion condition is ensured.

We now argue that the proposed algorithm satisfies the lockout-freedom condi-

tion. The argument is similar to that of Theorem 4.3. A process i is said to be in the

doorway if pci = T1, and it is said to be in the waiting part if pci ∈ {T2, . . . , T12}.

Due to the fetch&store primitive, each requesting process is properly arranged in

a list after finishing its doorway. Moreover, each process has the identity of its

predecessor, by which the head of a list initiates a communication phase to reverse

the order in a list. Consequently, the permission can be conveyed according to the

sequence of the requests; the algorithm thus satisfies not only the lockout-freedom

condition, but also the FCFS condition.

4.3 An Impossibility Result

This section shows that the bounded-bypass mutual exclusion problem cannot be

solved at all with fewer than two shared variables if only fetch&store and read/write

are used. This result implies that both of the algorithms in this chapter are space-

optimal. In the proof of this impossibility result, a shared variable associated with

fetch&store and read/write is modelled as a type of historyless objects for two

reasons. First, this approach simplifies the presentation of the proof. Second, a

more general result is thus provided: using only historyless objects, two objects are
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required to solve the bounded-bypass mutual exclusion problem. Historyless objects,

as proposed by Fich et al. [22], are defined below, and then the proof is presented.

A shared object has an associated set of possible values and supports a fixed set

of operations that provide the only means to manipulate the object. An operation

of an object is regarded as trivial if it leaves the value of the object unchanged. An

operation e is said to overwrite an operation e′ on an object, if, starting from any

value, applying e′ and then e yields the same value in the object as applying just

e. An object is historyless if all its nontrivial operations overwrite one another. For

example, read is a trivial operation; and operations write and fetch&store overwrite

each other. Therefore, an object associated with any subset of read, write and

fetch&store is historyless, implying that the objects provided in the shared memory

model with read/write and fetch&store are historyless. The value of a historyless

object depends only on the last nontrivial operation applied to it, because the last

nontrivial operation overwrites the value that might have been written to the object.

The proof can now be presented by following the proving strategy proposed by

Burns and Lynch [11]. Two more definitions are needed. First, because a shared

variable is modelled as an object, Definition 2.2 for the case in which V = V is

rewritten as follows.

Definition 4.1 System states s and t are indistinguishable to process i with respect

to all objects, written as s
i
∼ t, if the state of process i and the values of all the

objects in the system are the same at s and t.

The second definition generalizes that of Burns and Lynch [11], which states that

a process covers a shared variable x provided that a write operation of the process

is enabled to write to x. An enabled write operation can overwrite the variable

involved. Similarly, an enabled nontrivial operation of a historyless object can also

overwrite the object. Thus, the concept of “covering” is generalized to historyless

objects.

Definition 4.2 Process i covers a historyless object x at system state s provided

that a nontrivial operation of i is enabled to manipulate x.
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That is, when process i covers a historyless object x, i can overwrite the value of x

in its next step.

A basic lemma showing that any process that reaches R from C on its own must

take a nontrivial operation to some object is presented before proving the lower

bound. The proof of this lemma is similar to the result provided by Lynch in [35,

pp. 301–302] which shows that a process reaching C from R on its own must write

something into shared memory before doing so.

Lemma 4.6 Suppose that A is a mutual exclusion algorithm, shared by n ≥ 2

processes, using only historyless objects. Let s be a reachable system state of A at

which process i is in C. If process i reaches R in a finite execution fragment starting

from s that involves steps of i only, then it must take a nontrivial operation to some

object along the way.

Proof. Let α1 be a finite execution fragment that starts from s (at which i is in

C ), involves steps of i only, and ends with process i in R. By contradiction, suppose

that α1 does not include any nontrivial operation to any object. An execution that

violates the mutual exclusion condition is constructed herein.

Let s1 be the system state at the end of α1. Since process i does not write

anything to any object, then s
j
∼ s1 for every j 6= i.

According to the progress condition, a finite execution fragment α2, starting from

s1 and not including any step of process i, exists such that some process reaches C.

Because s
j
∼ s1 for every j 6= i, α2 is also executable from s according to Lemma 2.1.

An execution α violating the mutual exclusion condition can be easily con-

structed as follows. Execution α begins with a finite execution fragment leading to

the reachable system state s, and then continues with α2. However, two processes

are in C at the end of α, contradicting the mutual exclusion condition. 2

The main idea of the lower bound proof is that when a process covers a historyless

object x, it can overwrite the information that other processes might have written

to x in its next step. If a request of some process is overwritten, another process

may enter C arbitrary times, violating the bounded bypass condition.
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Figure 4.5: The execution for the proof of Theorem 4.7.

Theorem 4.7 If algorithm A solves the bounded-bypass mutual exclusion problem

for n processes where n > 2, using only historyless objects, then A must use at least

two objects.

Proof. Suppose for the sake of contradiction that there is such an algorithm A

using only one historyless object, say x, and guaranteeing b-bounded bypass for

some constant b. Let s be an initial system state. An execution of A that violates

the bounded bypass condition is constructed below and is depicted in Fig. 4.5.

The progress condition implies that there is an execution involving process i only,

starting from s, that causes process i to enter C once and back to an idle system

state s′. Lemma 4.6 implies that process i must take a nontrivial operation to some

object in E in this solo execution. Since only one object is used, process i must take

a nontrivial operation to the historyless object x in E. Thus, i must cover x at some

point in E.

Let α1 be the prefix of this solo execution up to the last point where process i

covers x in E. At this point, the last nontrivial operation of i in the solo execution is

enabled. (That is, i can write a value to x in its next step such that x has the same

value as that at system state s′.) Then, α1 is extended to α2 by allowing process j,

which is in R at the end of α1, to enter T and finish its wait-free doorway, and then

allowing process i to overwrite x. Let the final system states of α1 and α2 be s1 and

s2, respectively. Object x has the same value at s′ and s2 because the last nontrivial
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operation in the execution leading to s′ is the same as that in the execution leading

to s2. Therefore, s′
k
∼ s2 for every k 6= i and j.

Consider any process k that is different from i and j. (k exists since n > 2.)

Since s′
k
∼ s2, and s′ is an idle system state, the progress condition implies that

process k can enter the critical region arbitrary times on its own, starting from s2.

Additionally, process j must remain in the trying region at s2, to avoid violating

the mutual exclusion condition.

A counterexample execution α is constructed as follows. It begins with α2 and

then continues by allowing k to enter the critical region b + 1 times, as if process

j had never entered its trying region. Execution α violates the bounded bypass

condition, because process j, which has passed through its doorway, is bypassed

more than b times by k. 2

4.4 Summary

Two fair and space-efficient algorithms are proposed for systems under time and

memory constraints. The first algorithm is 2-bounded-bypass; the second is a FCFS

algorithm based on the first algorithm. Each algorithm adopts the commonly avail-

able primitives fetch&store and read/write.

Each algorithm utilizes only two shared variables, one for arranging requests and

the other for communicating messages. The shared variable for arranging requests

requires n+1 distinct values in either algorithm, where n is the number of processes.

In contrast, to improve the fairness from the bounded bypass condition to FCFS,

the FCFS algorithm increases the number of values taken on by the other shared

variable from (n + 1)2 to 2(n + 1)3. That is, the size of the shared variable for

communicating messages is increased from 2 log
2
(n+1) bits to 1+3 log

2
(n+1) bits.

The best choice of algorithm thus depends on the size of the shared variables in the

underlining system.

Furthermore, it is shown that any bounded-bypass algorithm using the same set

of primitives must utilize at least two shared variables, regardless of the size of the
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variables. This lower bound is proven by showing a more general result that two

objects are necessary to solve the bounded-bypass mutual exclusion problem when

using only historyless objects. Since shared variables associated with fetch&store

and read/write belong to the class of historyless objects, the more general result

applies to our model, implying that both of the algorithms in this chapter are optimal

with respect to the number of shared variables. The proof technique is derived from

that of Burns and Lynch [11].
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Chapter 5

Tight Bound on RMR Time

Complexity

This chapter establishes a tight bound of three on the RMR time complexity in

DSM systems. We show that three is a lower bound on the RMR time complexity.

The lower bound matches the upper bound of Huang’s algorithm in Section 3.3, it

is therefore tight.

The computational model adopted is the DSM model with the general RMW

primitive. To prove the lower bound, a definition on an indistinguishability relation

is needed. Formal descriptions of the model and the indistinguishability relation

appear in Chapter 2.

5.1 The General RMW Primitive

The general RMW primitive atomically accesses one shared variable, reading the

value of the variable and writing back a new value according to the submitted

function. Let V be the set of all possible values for the variable. The submitted

function can be any function f : V → V . Formally, the general RMW primitive is

defined below, where v is the shared variable and f is the submitted function.

RMW (shared variable v, function f)
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previous := v

v := f(v)

return previous

It is not hard to show that the RMW primitives used in Haung’s algorithm are

special cases of the general RMW primitive.

• Primitive fetch&store(v, new): It atomically writes value new to shared vari-

able v and returns the old value, and is equivalent to RMW(v, f) where f is a

constant function that always maps to value new.

• Primitive compare&swap(v, old, new): It atomically writes value new to shared

variable v exactly if its old value equals old, and returns the old value regardless

of what happens in the comparison. The primitive is equivalent to RMW(v, f)

where f is a function defined as follows. Let x be any value in the value set

of v.

f(x) =







new, if x = old

x, otherwise

Since all primitives used in Huang’s algorithm can be replaced by the general

RMW primitive, the algorithm is indeed an upper bound result in the adopted

model.

5.2 An RMR Time Complexity Lower Bound

In this section we show that, under the DSM model and definitions in Chapter 2, the

RMR time complexity of any mutual exclusion algorithm with at least four processes

is at least three.

Theorem 5.1 Let A be a mutual exclusion algorithm for n > 3 processes. Then

the RMR time complexity of A must be three or more.

This section is organized as follows. We first make a simplifying restriction on

the mutual exclusion algorithms. Next, we present several properties of a process
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that is busy waiting only at certain local shared variable(s) in T, i.e., a process that

is locally spinning in T. These properties will be used in our lower bound proof.

Finally, we present the outline of the lower bound proof, and then show the detailed

proof.

For simplicity, we make the following restriction on mutual exclusion algorithms:

we only consider local-spin mutual exclusion algorithms. This entails no loss of

generality, because the RMR time complexity of a non-local-spin algorithm is un-

bounded.

5.2.1 Basic Properties

We present three lemmas about a process that is locally spinning and show that for

any local-spin mutual exclusion algorithm, there exists a reachable system state at

which some process is locally spinning.

First, a definition is needed to describe a system state at which some process

is locally spinning in T. Informally, a process i locally spinning in T at a system

state s has two features: by running i alone from s, (1) i will not perform any RMR

step; and (2) i will never change regions. The definition below tries to capture this

notion.

Definition 5.1 Let s be a system state of a mutual exclusion algorithm. We say

that process i is locally spinning in T at s if

1. i is in T at s, and

2. for any finite i-execution fragment α executable from s, α contains no RMR

step and i remains in T from s to α(s).

The following lemma says that whether a process is locally spinning at a system

state depends on the state of the process and the values of its local shared variables.

Lemma 5.2 Let s and t be system states of a mutual exclusion algorithm such that

s
i
∼
Vi

t for process i. Then i is locally spinning in T at s if and only if i is locally

spinning in T at t.
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Proof.

1. (→) Suppose i is locally spinning in T at s. Since i is in T at s and s
i
∼
Vi

t,

i is in T at t. It remains to show that for any finite i-execution fragment

α executable from t, α contains no RMR step and i remains in T from t to

α(t). By way of contradiction, suppose that α is a finite i-execution fragment

executable from t such that α contains an RMR step or i changes regions in

α. Let α′ be the prefix of α including and ending with the first step that is

either an RMR step or an operation that makes i change regions. Since s
i
∼
Vi

t,

α′ is also executable from s. (If α′ ends with an RMR step, this follows from

Corollary 2.3; otherwise, this follows from Lemma 2.2.) This contradicts the

assumption that i is locally spinning in T at s.

2. (←) The other direction follows from symmetry.

2

The next lemma says that starting from a system state at which process i is

locally spinning, i will not perform any RMR step before any other process takes an

RMR step to i.

Lemma 5.3 Let s be a system state of a mutual exclusion algorithm at which process

i is locally spinning in T. In any execution fragment executable from s, no RMR

step from i exists before the first RMR step to i occurs.

Proof. Suppose for the sake of contradiction that α is an execution fragment

executable from s in which an RMR step from i exists before the first RMR step to

i occurs. We construct an i-execution fragment that is executable from s but ends

with an RMR step from i. This contradicts the assumption that i is locally spinning

at s.

Let α′ be the prefix of α including and ending with the first RMR step from i.

Note that the assumption on α implies that α′ contains no RMR step to i. We show

that α′|i is also executable from s. This is the needed contradiction because α′|i

ends with an RMR step from i. By the definition of α′, it is executable from s, ends
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with an RMR step from i, and contains neither RMR steps from i nor RMR steps

to i except the last step. Also, it is trivial that s
i
∼
Vi

s. By Corollary 2.3, α′|i is also

executable from s. 2

Intuitively, if a process i is locally spinning in T at some point and i enters C

at a later point, then some other process must have taken at least one RMR step

to wake up i. The next lemma, also called the inherent cost lemma, formalizes this

intuition. A similar observation in a message-passing model can be found in Chandy

and Misra’s work about “knowledge” among processes [12].

Lemma 5.4 (inherent cost) Let s be a system state of a mutual exclusion algo-

rithm at which process i is locally spinning in T. Suppose that process i reaches C

in a finite execution fragment α executable from s. Then, α must contain at least

one RMR step to i.

Proof. By way of contradiction, suppose that α contains no RMR step to i. We con-

struct an i-execution fragment that is executable from s but violates the assumption

that i is locally spinning in T at s.

By Lemma 5.3, α contains no RMR step from i and therefore it contains neither

RMR steps form i nor RMR steps to i. In addition, it is clear that s
i
∼
Vi

s. Thus, by

Lemma 2.2, α|i is also executable from s and process i has the same state at α(s)

and (α|i)(s). Since i is in C at α(s), i is also in C at (α|i)(s). Thus, α|i is the

needed execution fragment because i changes regions in α|i. 2

Finally, the following lemma says that for any local-spin mutual exclusion al-

gorithm, if some process has been in C at a system state, then running another

requesting process i alone eventually leads to a system state at which i is locally

spinning.

Lemma 5.5 Let A be a local-spin mutual exclusion algorithm for n > 1 processes.

Let s be a reachable system state of A at which process i is in R and some other

process is in C. Then there exists a finite i-execution fragment α executable from s

such that i is locally spinning T at system state α(s).
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Proof. Starting from s, let i enter T and continue to run i alone. This must

lead to a system state at which i is locally spinning since otherwise the RMR time

complexity would be unbounded or i would change regions. The former violates

the assumption that A is a local-spin mutual exclusion algorithm; while, the latter

violates the mutual exclusion condition. 2

5.2.2 Proof Outline

Throughout the rest of this paper, we let A = (P ,V , δ) be an arbitrary local-spin

algorithm for n > 3 processes and let sinit be an initial system state of A. To prove

the lower bound of three on the RMR time complexity, the objective is to construct

an execution of A from sinit in which some process takes at least three RMR steps

to enter and exit C once. We call such an execution a goal execution.

A goal execution will be constructed in the following way. We start by con-

structing n solo executions, one per process, each starting from sinit and involving

its steps only until it has just entered C. (The progress condition implies that this

is possible.) For each i ∈ P , let αi denote the solo execution of i. Next, for each αi

and each process j 6= i, we extend αi to what is denoted by αij by running j alone

until j has just entered a system state at which j is locally spinning in T. Execution

αij exists according to Lemma 5.5. The lower bound proof focuses on the set of all

αij’s, called set E . More precisely, we define

E = {αij | i, j ∈ P and i 6= j}.

We show that a goal execution can be constructed by extending some execution in

E .

Consider the number of RMR steps that have been taken by each process in each

execution in E . For brevity, let time(i, αij) and time(j, αij) respectively denote the

number of RMR steps taken by i and j in their trying regions in αij. Then two

cases are discussed.

Case 1. ∃ αij ∈ E : time(i, αij) ≥ 2 or time(j, αij) ≥ 2.
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Let αij ∈ E be such an execution. A goal execution can be extended from αij

by applying the inherent cost lemma.
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Figure 5.1: A goal execution extended from αij in which time(i, αij) ≥ 2.

If time(i, αij) ≥ 2, we extend αij to an execution in which i takes at least one

RMR step in its corresponding exit region so that i takes at least three RMR

steps in total. The way to extend αij is described as follows and is illustrated

in Fig. 5.1. From the end of αij, we let i leave C first and then let i and j take

enabled steps alternately until j enters C. Since i and j take enabled steps

alternately, this execution is admissible. Thus, the progress condition implies

that j eventually enters C. By the inherent cost lemma, there exists at least

one RMR step to j, which must be taken by i because only processes i and j

are involved, in the portion of the resulting execution after αij.

If time(i, αij) ≥ 2 does not hold, it must be the case that time(j, αij) ≥ 2

holds. Similarly, by the inherent cost lemma, we extend αij to an execution

in which j instead of i takes at least one RMR step in its corresponding exit

region. The construction will be given in the detailed proof.

Case 2. ∀ αij ∈ E : time(i, αij) < 2 and time(j, αij) < 2.

This case is the core of the lower bound proof. We construct a goal execution

in which some process takes one RMR step in T and takes at least two RMR

steps in its corresponding exit region.

We first use the following property, called the rendezvous property, which

says that in most executions in E , processes communicate through the same
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remote shared variable: (The property will be proved in the next subsection.)

Suppose that for all αij ∈ E , processes i and j each access at most

one remote shared variable in αij. Then there exists a shared vari-

able v such that for all αij ∈ E that v is remote to both i and j,

both i and j must access v in αij. More precisely,

∃ v ∈ V , ∀αij ∈ E , v 6∈ Vi and v 6∈ Vj : both i and j must access v in αij.

Since for all αij ∈ E , time(i, αij) < 2 and time(j, αij) < 2, i and j each access

at most one remote shared variable in αij. Therefore, the above property

guarantees the existence of such a shared variable v. Let m be the process to

which v is local. We conclude that for each αij with i 6= m and j 6= m, we

always have time(i, αij) = 1 and time(j, αij) = 1. Furthermore, both i and j

must access the same remote shared variable v.

Take any three distinct processes i, j and k that are different from m. Processes

i, j and k exist since n > 3. Consider αij and αik. By the conclusion above,

i and j each take exactly one RMR step in αij, and they access the shared

variable v, which is located at process m. Likewise, i and k each take exactly

one RMR step in αik, and they access v. A goal execution can be constructed

by extending either αij or αik, in which i takes at least two more RMR steps

in addition to the one it has taken in αij or αik. The construction is illustrated

in Fig. 5.2.

First, we extend αij to α′
ij in the same way as that shown in Fig. 5.1, i.e., by

letting i leave C and then running i and j until j reaches C. In the suffix of

α′
ij after αij, if i takes at least two RMR steps, α′

ij is already a goal execution.

Otherwise, the inherent cost lemma implies that i takes exactly one RMR

step, which is from i to j. Based on this implication, a goal execution α′
ik is

constructed below.

Execution α′
ik begins with αik, in which i has taken one RMR step. It then

continues by letting process i run alone until it takes the RMR step to j
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Figure 5.2: A goal execution extended from either αij or αik. We write e to denote

the RMR step from i to j.

as it does in the suffix of α′
ij after αij. This is possible mainly because

αij(sinit)
i
∼
Vi

αik(sinit). (A precise argument will be given in the detailed proof.)

It finishes by running processes i and k until k enters C ; along the way, the

inherent cost lemma guarantees that i must take at least one RMR step to

k. Thus, i takes at least three RMR steps in α′
ik, and thereby α′

ik is a goal

execution.

5.2.3 Detailed Proof

We begin by proving the rendezvous property (Lemma 5.8) and then provide the

detailed lower bound proof.

In order to prove the rendezvous property, we first present two lemmas for all

αi of A, i ∈ P . The first, Lemma 5.6, says that for any two distinct solo executions

αi and αj, there exists at least one shared variable that is accessed in both αi and

αj. That is, processes i and j must access at least one common shared variable in

their respective solo executions. The other, Lemma 5.7, says that if every i ∈ P

accesses at most one remote shared variable in its αi, then there is exactly one shared

variable, say v, that is accessed in all αi, i ∈ P . That is, every process i must access

v in its αi. Note that unlike Lemma 5.7, Lemma 5.6 holds without any assumption
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on the number of remote shared variables accessed in each αi.

For presenting Lemma 5.6 and Lemma 5.7, we need a definition: for every shared

variable v, let Pv denote the set of all processes that access v in their respective solo

executions. That is, for every v in V , define

Pv = {i ∈ P | i accesses v in αi}.

First, we prove Lemma 5.6, also called the pairwise common lemma. Informally,

although αi and αj are two independent executions, processes i and j should access

at least one common shared variable for synchronization purposes. For otherwise,

it is easy to yield an execution in which both i and j are in their critical regions

simultaneously by concatenating αi and αj. This violates the mutual exclusion

condition.

Lemma 5.6 (pairwise common) For any two solo executions αi and αj, i 6= j,

there exists at least one shared variable accessed in both αi and αj. More precisely,

∀ i, j ∈ P , i 6= j, ∃ v ∈ V : {i, j} ⊆ Pv.

Proof. By way of contradiction, suppose that there exists no shared variable ac-

cessed in both αi and αj. Thus, each shared variable accessed in αj has the same

value at system states sinit and αi(sinit). In addition, process j has the same state at

sinit and αi(sinit), and therefore we have sinit
P
∼
V

αi(sinit), where P = Pro(αj) = {j}

and V = Var(αj). Hence, according to Lemma 2.1, αj is also executable from

αi(sinit). This violates the mutual exclusion condition because both i and j are in

C at (αi ◦ αj)(sinit). 2

Since a shared variable is local to one process and remote to all other processes,

a shared variable accessed in both αi and αj is remote to either i or j, or to both.

That is, at least one of i and j accesses a remote shared variable.

Next, we prove Lemma 5.7. Suppose that every process i ∈ P accesses at

most one remote shared variable in αi. (Note that i may access many local shared

variables in αi.) Based on the pairwise common lemma, we show that all processes

must access one common shared variable, say v, in their respective solo executions.
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This implies that for all i ∈ P , except the process to which v is local, i accesses

exactly one remote shared variable in αi and this shared variable is v.

Lemma 5.7 Suppose that for all αi, i ∈ P, i accesses at most one remote shared

variable in αi. Then there exists exactly one shared variable v such that for all αi,

i ∈ P, i accesses v in αi. More precisely, there exists exactly one shared variable v

such that |Pv| = n.

Proof. If there exists one shared variable that is accessed in every αi, it is easy

to show that the number of such shared variables must be exactly one. Suppose

not, that is, there is more than one such shared variable. Since n > 3 (A is for

n > 3 processes), there exists one process that accesses more than one remote shared

variable, violating the assumption that each process accesses at most one. Thus,

all we need to show is that there exists one such shared variable. More precisely,

∃ v ∈ V : |Pv| = n. We first show the following weaker claim.

Claim 5.7.1 Suppose that for all αi, i ∈ P, i accesses at most one remote shared

variable in αi. Then, ∃ v ∈ V : |Pv| > 2.

Proof. By way of contradiction, suppose that |Pv| ≤ 2 for all v ∈ V . We

show that some process accesses more than one remote shared variable. This

contradicts the assumption that each process accesses at most one.

Consider four distinct processes i, j, k and l. (Processes i, j, k and l exist

because n > 3.) By the pairwise common lemma, for αi and αj, there exists one

shared variable accessed in both αi and αj. Let variable w be such a variable,

i.e., {i, j} ⊆ Pw. Since |Pv| ≤ 2 for all v ∈ V , Pw = {i, j}. Likewise, we

conclude that Px = {j, k} for some variable x, Py = {k, l} for some variable y

and Pz = {j, l} for some variable z. Since Pw = {i, j} 6= Px = {j, k}, w and x

must be two different shared variables. Similarly, we conclude that w, x, y and

z are four different shared variables. (See Fig. 5.3.)

Since a shared variable is local to only one process, variable w is remote

to at least one of processes i and j. Assume, without loss of generality, w is
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Figure 5.3: Shared variables for the proof of Claim 5.7.1.

remote to j. Since j accesses at most one remote shared variable in αj and

it has accessed w, variable x must be local to j and therefore x is remote to

process k. Similarly, y is remote to process l. Hence, we know that j accesses

remote shared variable w in αj and l accesses remote shared variable y in αl.

However, variable z, which is accessed in both αj and αl, is remote to at least

one of j and l. Thus, at least one of j and l accesses more than one remote

shared variable, which is the needed contradiction. 2

Next, we prove that ∃ v ∈ V : |Pv| = n. Again, by way of contradiction, suppose

that |Pv| < n for all v ∈ V . We will show that some process accesses more than one

remote shared variable, which contradicts the assumption that each process accesses

at most one. By Claim 5.7.1, we conclude that there exists one shared variable v such

that n > |Pv| > 2. Let variable w be such a shared variable. Since n > |Pw| > 2,

assume {i, j, k} ⊆ Pw and {l} 6⊆ Pw. For processes i, j and k, variable w is remote

to at least two of them. Without loss of generality, assume w is remote to j and k.

Namely, j and k each access remote shared variable w in αj and αk.

We now show that some process accesses more than one remote shared variable.

Consider αj and αl. By the pairwise common lemma, there exists a variable accessed

in both αj and αl. Let variable x be such a variable, i.e., {j, l} ⊆ Px. Similarly, for

αk and αl, let variable y be a variable that {k, l} ⊆ Py. Clearly, both x and y are

variables different from variable w since {l} ⊆ Px, {l} ⊆ Py, but {l} 6⊆ Pw.

If x and y are the same shared variable, i.e., {j, k, l} ⊆ Px = Py, since x is

remote to at least one of j and k, at least one of j and k accesses more than one

remote shared variable: variables w and x.

Otherwise, if x and y are two different shared variables, since j has accessed
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remote shared variable w, variable x is local to j and therefore x is remote to l.

Thus, for processes k and l, we know that k accesses remote shared variable w in

αk, and l accesses remote shared variable x in αl. However, because y, which is

accessed in both αk and αl, is remote to at least one of k and l, at least one of k

and l accesses more than one remote shared variable. 2

In the following, we complete the proof of the rendezvous property.

Lemma 5.8 (rendezvous property) Suppose that for all αij ∈ E, processes i and

j each access at most one remote shared variable in αij. Then there exists a shared

variable v such that for all αij ∈ E that v is remote to both i and j, both i and j

must access v in αij. More precisely,

∃ v ∈ V , ∀αij ∈ E , v 6∈ Vi and v 6∈ Vj : both i and j must access v in αij.

Proof. Since for all αij ∈ E , processes i and j each access at most one remote

shared variable in αij, it is true, a fortiori, that for all αi, i ∈ P , process i accesses

at most one remote shared variable in αi. From Lemma 5.7, there exists exactly

one common shared variable, say v, that is accessed in all αi, i ∈ P . Let m be

the process to which v is local. We prove that j also accesses v in every αij ∈ E

with i 6= m and j 6= m, which completes the proof because v is the needed shared

variable.

We first show the following claim.

Claim 5.8.1 In every αij ∈ E with i 6= m and j 6= m, process j must access some

shared variable that has been accessed by i.

Proof. Suppose not, that is, there exists an αij with i 6= m and j 6= m in which

j does not access any shared variable that has been accessed by i. Let αij be

such an execution. We construct an execution violating the progress condition.

Let α be the subsequence of αij containing all steps executed by j, that is,

the suffix of αij after αi (αij = αi ◦ α). We will show that α is executable from

sinit and αij(sinit)
j
∼
Vj

α(sinit). By Lemma 5.2, and because αij(sinit)
j
∼
Vj

α(sinit)
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Figure 5.4: Executions αij and αkj. Execution fragment α′′ ends with the first RMR

step from j to i.

and j is locally spinning in T at αij(sinit), this implies that j is also locally

spinning in T at α(sinit). But this easily yields a j-execution α′ violating the

progress condition. Starting from sinit, execution α′ begins with α. It then

continues by running j alone. Since j is locally spinning in T at α(sinit),

no finite j-execution fragment executable from α(sinit) will lead j to C. This

violates the progress condition.

It remains only to show that α is executable from sinit and αij(sinit)
j
∼
Vj

α(sinit).

Since j does not access any shared variable that has been accessed by i, we have

αi(sinit)
j
∼
V

sinit where V = Var(α). By the definition of α, Pro(α) = {j} and α

is executable from αi(sinit). Thus, by Lemma 2.1, α is also executable from sinit

and αij(sinit)
j
∼
V

α(sinit). In addition, since v is the only remote shared variable

accessed by i in αij, i does not access any shared variable located at j. We

now show that αij(sinit)
j
∼
Vj

α(sinit) holds. Let w be any variable in Vj. If w is in

V , it has the same value at αij(sinit) and α(sinit) because we have proved that

αij(sinit)
j
∼
V

α(sinit). Otherwise, if w is not accessed by j in α, because i does

not access any shared variable located at j, the value of w is never changed in

αij and α. Hence, αij(sinit)
j
∼
Vj

α(sinit). 2

Next, we prove that j also accesses v in every αij with i 6= m and j 6= m by

contradiction. Assume that there exists an αij with i 6= m and j 6= m in which j

does not access v. Let αij be such an execution.

In αij, the possible shared variables accessed by i are v and the shared variables

located at i. By Claim 5.8.1, since j does not access v, j must access some shared
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variable located at i. Since j accesses at most one remote shared variable in αij, j

must access exactly one remote shared variable and this shared variable is located

at i.

Consider another αk, k 6= m, i, j. We show that in αkj, j does not access any

shared variable that has been accessed by k in αkj, contradicting Claim 5.8.1. As

shown in Fig. 5.4, let α′′ be the subsequence of αij starting from the end of αi (not

including the end of αi) until j has just finished its first RMR step, which is from j

to i. In αi and αk, since i and k do not access any shared variable located at process

j (variable v, which is located at m, is the only remote shared variable accessed

by i and k), we have αi(sinit)
j
∼
Vj

αk(sinit). Since αi(sinit)
j
∼
Vj

αk(sinit), j enables the

same step at αi(sinit) and αk(sinit) by the determinism and the localized enabling

assumptions of the model. Furthermore, if the step is not remote, the resulting

system states are also indistinguishable to j with respect to Vj by the localized

update assumption. Using such an argument repeatedly, it is easy to see that j also

performs α′′ in αkj after αk as it does in αij. Thus, j also accesses a shared variable

located at i in αkj.

Since process j accesses at most one remote shared variable in αkj by the as-

sumption on every execution in E , j accesses exactly one remote shared variable

and this shared variable is located at i. Therefore, j does not access any shared

variable that has been accessed by k in αkj. (Note that the possible shared variables

accessed by k in αkj are v and the shared variables located at k.) This contradicts

Claim 5.8.1. 2

The main lemma, rendezvous property, has been proven. To finish the lower

bound proof, it remains to provide the details that are skipped in the proof outline

in Section 5.2.2.

Proof (of Theorem 5.1). We show that there exists an execution of A in which

some process performs at least three RMR steps to enter and exit C once. We

complete the proof with a case analysis on E , getting a goal execution for each

possibility.
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Figure 5.5: Executions in Case 1.

Case 1. ∃ αij ∈ E : time(i, αij) ≥ 2 or time(j, αij) ≥ 2.

Let αij ∈ E be such an execution.

If time(i, αij) ≥ 2, we have presented the construction of a goal execution

in Section 5.2.2. If time(i, αij) ≥ 2 does not hold, it must be the case that

time(j, αij) ≥ 2 holds. It remains to construct a goal execution in this case.

We extend αij to an execution in which j must take at least one RMR step in

E.

As shown in Fig. 5.5, we extend αij, in which j has taken at least two RMR

steps, to α1 by letting i leave C first and then alternately executing enabled

steps of i and j until i enters R and j enters C. This follows from the progress

condition. Then we extend α1 to α2 by running a new competing process k

alone until k is locally spinning in T. This follows from Lemma 5.5. Finally,

we extend α2 to α3 by letting j leave C first and then alternately executing

enabled steps of j and k until k enters C ; along the way, by the inherent cost

lemma, process j must take at least one RMR step to k. In total, j takes at

least three RMR steps to enter and exit C once in α3.

Case 2. ∀ αij ∈ E : time(i, αij) < 2 and time(j, αij) < 2.

By the rendezvous property, there exists a shared variable v such that for any

distinct processes i and j to which v is remote, both i and j must access v in

αij. Let m be the process to which v is local. Take any three distinct processes
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i, j and k that are different from m. As shown in Section 5.2.2, we first extend

αij to α′
ij by letting i leave C and then running i and j until j reaches C. If

process i takes at least two RMR steps in the portion of α′
ij after αij, execution

α′
ij is already a goal execution. Otherwise, the inherent cost lemma implies

that i takes exactly one RMR step, which is from i to j. We now construct a

goal execution α′
ik. Let α be the subsequence of α′

ij starting from the end of

αij (not including the end of αij) until i has just finished its RMR step, say

step e. The precise construction of α′
ik is given below.

Execution α′
ik begins with αik, in which i has taken one RMR step. Then it is

concatenated by α|i, which ends with an RMR step from i to j. It finishes by

letting processes i and k alternately execute enabled steps until k enters C ;

along the way, i must take at least one RMR step to k by the inherent cost

lemma. In total, i takes at least three RMR steps in α′
ik.

It remains to show that it is legitimate in our construction to concatenate

αik by α|i. This follows from Corollary 2.3. To apply the corollary, we need

to show the following properties: αij(sinit)
i
∼
Vi

αik(sinit); α is executable from

αij(sinit) and it ends with an RMR step from i; and α contains neither RMR

steps from i nor RMR steps to i except the last step. In αij and αik, since

i performs the same sequence of steps (i.e., αi), and j and k do not access

any shared variable located at i (v, which is located at m, is the only remote

shared variable accessed by j and k), we have αij(sinit)
i
∼
Vi

αik(sinit). By the

definition of α, it is executable from αij(sinit) and it ends with an RMR step

from i. Since e is the only RMR step from i in the portion of α′
ij after αij, α

contains no RMR step from i except the last one. In addition, by Lemma 5.3,

α contains no RMR step from j and, a fortiori, α contains no RMR step from

j to i. Thus, α, which is an {i, j}-execution fragment, contains neither RMR

steps from i nor RMR steps to i except the last step. Thus, by Corollary 2.3,

α|i is executable from αik(sinit).

2
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5.3 Summary

We have proved that the remote reference time complexity of any mutual exclusion

algorithm with at least four processes is at least three in DSM systems. Due to

Huang’s algorithm, the bound is tight.

The tight bound remains unchanged when we consider lockout-freedom and

bounded bypass. Because we only assume the basic conditions of the mutual exclu-

sion problem in the proof of the lower bound, this bound also holds for lockout-free

mutual exclusion and bounded-bypass mutual exclusion. Additionally, Huang’s al-

gorithm also satisfies these two fairness properties. Consequently, the RMR time

complexity of mutual exclusion in the DSM model is not sensitive to these properties.
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Chapter 6

Conclusions and Future Work

In this chapter, we draw conclusions and discuss directions for future research.

6.1 Tight Bound on Space Complexity

In Chapter 4, we propose two fair and space-efficient algorithms for systems under

time and memory constraints. The first algorithm is 2-bounded-bypass; the second

is a FCFS algorithm based on the first algorithm. Each algorithm adopts the com-

monly available primitives fetch&store and read/write, and employs only constant

two shared variables. Furthermore, we show that with the same set of primitives,

two shared variables are necessary to solve the bounded-bypass mutual exclusion

problem. Both of the algorithms are therefore optimal in terms of the number of

required shared variables.

One disadvantage of the algorithms is that the hot spot contention [19] can be

up to n. The hot spot contention is the maximum number of pending operations

for any individual shared variable in any execution, and this number is one of the

principal determiners of the system performance. Because each algorithm utilizes

only a constant number of shared variables to meet the memory constrain, Ω(n) hot

spot contention is inevitable.

Additionally, each competing process in the algorithms repeatedly tests a shared

variable while it is waiting to enter its critical region. As described in Section 1.2,
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such repeated testing may generate much traffic on the interconnection network be-

tween the process and the memory, heavily degrading the system performance. In

cache-coherent systems, both of the algorithms have O(n) RMR complexity. Since

the algorithms are bounded-bypass and each process performs a constant number

of steps to modify shared variables in its trying and exit regions, the cached copies

of these shared variables are updated O(n) times during a process’ life cycle. Thus,

a process takes O(n) RMRs to pass through its critical region once. In distributed

shared memory systems, a process in the algorithms, however, may take an un-

bounded number of RMRs in a busy-waiting loop. The problem can be alleviated

by using a collision avoidance technique such as exponential backoff. A contending

process increases its delay time before testing again after a failed attempt to obtain

the required value from a remote shared variable.

6.2 Tight Bound on RMR Time Complexity

In Chapter 5, we establish the tight bound of three on the RMR time complexity and

show that it remains unchanged when we consider lockout-freedom and bounded by-

pass. The lower bound is proved by constructing an execution in which some process

takes at least three remote memory references to enter and exit its critical region

once. In the course of proving the lower bound, we need to formalize the notion

of a process “entering a local-spin loop.” Danek and Hadzilacos [16] and we [13]

independently proposed a similar formal definition at about the same time. Based

on the definition, we also present several properties of local-spin mutual exclusion

algorithms.

6.3 Future Work

In this section, we discuss some of the remaining open problems and directions for

further research on the mutual exclusion problem.

Only fetch&store is investigated in Chapter 4. Herlihy [27] has provided a wait-
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free hierarchy that classifies synchronization primitives according to their power to

solve consensus. A future direction is to provide a separation among all multi-

processor synchronization primitives based on the space complexity of solutions to

the mutual exclusion problem. Interestingly, compare&swap, which is considered

to be powerful according to Herlihy’s wait-free hierarchy, is not a good choice to de-

crease the space requirement. A recent paper of Fich et al. [21] shows that at least n

shared variables are required to solve the n-process mutual exclusion problem if only

conditional primitives, such as compare&swap, are available. Their result indicates

an inherent difference between the two problems.

The algorithms proposed in Chapter 4 are optimal with respect to the number

of shared variables. Future work is needed to establish the tight bound on the size

of shared variables. Although each of the algorithms utilizes two shared variables,

the total values taken on by the shared variables in the FCFS algorithm is larger

than that in the 2-bounded-bypass algorithm. An interesting question is how large

the two shared variables must be in order to guarantee bounded bypass or FCFS.

One disadvantage of Huang’s algorithm is that it uses two primitives, compare&swap

and fetch&store, besides read/write. Since Cypher [15] showed that there is no

constant time algorithm using conditional RMW primitives and read/write, a non-

conditional RMW primitive is needed to implement an algorithm whose upper

bound matches the lower bound in Chapter 5. An open question is whether such

an algorithm is obtainable using only one non-conditional RMW primitive such as

fetch&store in addition to read/write.

In addition, although Huang’s algorithm satisfies lockout-freedom and bounded

bypass, it does not satisfy the FCFS property. Hence, the tight bound on the RMR

time complexity for the FCFS mutual exclusion problem remains to be solved. The

tight bound must be either three or four, because the MCS lock [37] satisfies the

FCFS property and its RMR time complexity is four, and our lower bound of three

also holds for the problem.

We focus only on DSM systems when studying on the RMR time complexity

of the mutual exclusion problem. The lower bound proof herein is not applicable
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to CC systems. Future work is needed to establish the exact lower bound in CC

systems.
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