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Outlier Proportion Based Gene Expression Analysis
Student: Ying-Chieh Tiao Advisor: Dr. Lin-An Chen
Institute of Statistics

National Chiao Tung University

Abstract

Discovering the influential genes through the detection of outliers in
samples of disease group subjects is a very new and important approach
for gene expression analysis. The outlier sum or outlier mean technique
can detect the shift in central tendency for the outlier data but not other
characteristics such as spreadness or others for the outlier data. It is
desired to provide a test that is easy toximplement and efficient in power
performance as an alternative tool for-gene expression analysis. We
propose the concept of outlier proportion for developing a test based on
asymptotic distribution of this statistics. We further compare it with the
outlier mean for their power performances. To avoid the inefficiency in
estimating densities at tail quantiles involved in estimation of outlier
proportion variance, we further consider applying the empirical quantile
as the cutoff point for an alternative outlier proportion based test which
shows satisfactory role in gene expression analysis from the point of
power performance.
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Outlier Proportion Based Gene Expression Analysis

SUMMARY
Discovering the influential genes through the detection of outliers in samples
of disease group subjects is a very new and important approach for gene
expression analysis. The outlier sum or outlier mean technique can detect
the shift in central tendency for the outlier data but not other characteristics
such as spread or others for the outlier data. It is desired to provide a
test that is easy to implement and efficient in power performance as an
alternative tool for gene expression analysis. We propose the concept of
outlier proportion for developing a test based on asymptotic distribution
of this statistic. We further compare it with the outlier mean for their
power performances. To avoid the inefficiency in estimating densities at tail
quantiles involved in estimation of outlier proportion variance, we further
consider applying the empirical quantile as the cutoff point for an alternative
outlier proportion based test which shows satisfactory role in gene expression

analysis from the point of power performance.

1. Introduction

DNA microarray technology, which simultaneously probes thousands of
gene expression profiles, has been successfully used in medical research for
disease classification (Agrawal et al. (2002); Alizadeh et al. (2000); Ohki et
al. (2005)); Sorlie et al. (2003)). Among the existed techniques in differen-
tial genes detection, common statistical methods for two-group comparisons
such as t-test, are not appropriate due to a large number of genes expressions
and a limited number of subjects available. Several statistical approaches
have been proposed to identify those genes where only a subset of the sam-
ple genes has high expression. Among them, Tomlins et al. (2005) observed
that there is small number of outliers in samples of differential genes and
then introduced a method called cancer outlier profile analysis that identifies
outlier profiles by a statistic based on the median and the median absolute
deviation of a gene expression profile. With this observation, a sequence of

approaches then concentrated on detecting differential genes based on out-
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lier samples while Tibshirani and Hastie (2007) and Wu (2007) suggested to
use an outlier sum, the sum of all the gene expression values in the disease
group that are greater than a specified cutoff point. The common disad-
vantage of these techniques is that the distribution theory of the proposed
methods has not been discovered so that the distribution based p value can
not been applied. Recently Chen, Chen and Chan (2010) considered the
outlier mean (average of outlier sum) and developed its large sample theory
that allows us to formulate the distribution based p value. In specific, they
considered the parametric study by specifying the normal distribution and

performed simulation studies and data analysis for gene expression analysis.

According to Tomlins et al. (2005), it is desired to verify if the variables
for disease group subjects and normal group subjects on the region excessed
a cutoff point are identical. The outlier mean approach of Chen, Chen and
Chan (2010) can detect if the excessive means are different. We know that
summarizing the outlier data by its sum or mean (average) may be efficient
when the central tendencies of two distributions on excessive region are sig-
nificantly different. However, it is known that.it is not enough to detect just
the shift in mean while there may have a shift-other than the central ten-
dency. So, it requires to measure other characteristics showing in the outlier
data as an alternative for detection of influential genes. Here, in this paper,
we consider the proportion of outlier data, called the outlier proportion, to
detect the influential genes. Interestingly this study shows that outlier pro-
portion technique provides a technique very simple in computation but it is
also much more efficient than the outlier mean test in detection of influential

genes.

In Section 2, we introduce the concept of population outlier proportion
and study the adequacy for using it in detection of distributional shift.
In Section 3, we study large sample property of the outlier variance and
we compare the power performances between the tests based on outlier
mean and outlier proportion. In Section 4, we propose an alternative outlier
proportion based test that avoids the estimation of densities on extreme

quantiles for construction of test statistic.



2. Outlier Proportion

In a study that consists of ny subjects in the normal control group and ns
subjects in the disease group, suppose that there are m genes to be investi-
gated. Their gene expression can be represented as X;j;,7 = 1,2,...,n1,7 =
1,...,m for normal control group and Y;;,i = 1,2,...,m2,5 = 1,2,...,m for
the disease group.

For theoretical development, let us fix a gene and we drop the index j.
Let X and Y be expression variables with expression X;,7 = 1,...,n for
group of normal subject and Y;,i = 1,...,n9 for group of disease subject,
respectively, with distribution functions Fx and Fy.

An important observation by Tomlins et al. (2005) from a study of
prostate cancer, outlier genes are over-expressed only in a small number
of disease samples. With defining a cutoff point 7 determined from the
data of the variable X, Tibshirani and Hastie (2007) and Wu (2007) con-
sidered the sum of variables Y/s that are over higher cutoff point 7 given
by Y2, ViI(Y; > 7)) as a test statistic for detection if the disease group
distribution is different from the nermal group distribution. Latter, Chen,
Chen and Chan (2010) developed the asymptotic distribution for its aver-
age, called the outlier mean, Ly = (32;2, I(Y: > 7))~ >, YViI(Y; > %)
for constructing a distribution based p value. Let n be the population coun-
terpart of the sample cutoff point 7. The idea behind the outlier mean
approach considers a test based on Ly to verify if its corresponding pop-
ulation outlier mean pp, = E(Y|Y > n) varied from the same population
outlier mean when Fy = Fx as uy,, = F(X|X > n).

We consider here to establish a test based on the sample outlier propor-

tion, a tail probability estimator, as
n2
By =ny 'y I(Y; > ). (2.1)
i=1

Hence, the idea behind this sample percentage is to verify if its corresponding

population outlier proportion

By = P{Y >n} (2.2)
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varied from the same population outlier proportion when Fy = Fx as Bx =
P{X >n}.

To verify if this consideration is appropriate, we suggest the population
cutoff point of the form n = 2F5 (1 — @) — Fx'(a) and make a numerical

comparison of two outlier proportions. We consider the following setting

Normal : X ~ N(0,1) and Y ~ N(6,1),
Mixed normal: X ~ N(0,1),Y ~ 0.9N(0,1) + 0.1N(6,02).
Population outlier proportions for variables X and Y under the above set-
tings are displyed in Table 1 with the specified o’s and 6’s.

Table 1. Population outlier proportions (o = 1)

o By =1 =3 =5
By By By
Fx = N(0,1) Fy =N(0,1)
0.01 1.48E — 12 1.12E —9 3.19F — 7 0.0239
0.05 4.01F -7 4.16E —5 0.0016 0.5260
0.1 6.03FE — 5 0.0022 0.0325 0.8760
0.2 0.0057 0.0636 0.2998 0.9933
0.25 0.0215 0.1530 0.4906 0.9985
0.35 0.1238 0.4380 0.8006 0.9999
0.45 0.3530 0.7333 0.9477 0.9999
Mixed Normal
0.01 1:13E — 10 3.19F — 8 0.0023
0.05 4.52FE — 6 1.67F — 4 0.0526
0.1 2.76FE — 4 0.0033 0.0876
0.2 0.0115 0.0351 0.1045
0.25 0.0346 0.0684 0.1192
0.35 0.1552 0.1915 0.2114
0.45 0.3911 0.4125 0.4177

Conceptually the bigger the difference By — (Bx, the easier to establish
a test in detection of distributional shift. From Table 1, we expect that
larger o’s make the detection by outlier proportion more powerful. We will

evaluate this point in the subsequent sections.

3. A Test Based on Asymptotic Distribution of Sample Outlier

Proportion




The sample outlier proportion is defined by

1 &
= — ) I(Y; > 1)
n2 i

where cutoff point estimator is 7j = 2F5 (1 —a) — Fix*(a) and where F5(5)
is the dth empirical quantile based on sample X;,7 =1, ...,n1.

To construct a distribution based test statistic by this outlier proportion,
we state an asymptotic distribution for this statistic in the following theorem

where its proof is given in Appendix.

Theorem 3.1. Suppose that assumptions (Ay) and (A3) in the Appendix

are true. Then n2 *(By — By) converges in distribution to N(0, o) where
ag = afab;—(1—a)by)*+(1—2a)a? (by+b2)* +a(—(1—a)by+aby)*+ By (1—Py ).

Here we let

b1 =2vfy(n )fX (Fy (1 —a)),
by =7 fy () fx (Fx ().

This theorem indicates, under Hg : Fo-=F,, the following

Pay (i (D= 0x 5X <z}%/ oz

for z € R where ¢ represents the probability density function of N(0,1).
Suppose that we have estimates 63 and BX, a test based on the sample

outlier proportion is

1/2(5Y ﬁX)

-~ 3.1
)z (3.1)

rejecting Hy if

The test tries to see if outlier proportion for disease group subjects is differ-
ent from it for normal group subjects. As a nonparametric approach, this

test statistic involves the estimation of some density points fx and fy.



Having this sample outlier proportion based nonparametric test, it is
desired to verify the power performance of this test when there exists dis-
tributional shift for the disease group distribution. An approximate power

with significant level o* may be derived as bellows

o= P () 2 )
~ Zox 03 A _
N e Py L
og og
~ P{Z > 24 + ‘/n_zwf — BY)}. (3.2)
B

Considering the following distributional settings,

Normal: X ~ N(0,1),Y ~ N(6,1)
Laplace distribution: X ~ Laplace(0,1),Y ~ Laplace(0,1)
t distribution : X ~ ¢(5),Y ~ #(5) + 6,

we display the powers p,,, for outlier mean based test, and p,, for outlier

proportion based test, in Table 2.

Table 2 Approximate powers of outlier mean and outlier proportion



o =1 =2 =3
Normal
a = 0.45, pp, 0.523 0.999 1
Dp 0.908 1 1
a = 0.35,pm 0.144 0.844 1
Dp 0.537 1 1
a = 0.25, pm 0.063 0.294 0.863
Dp 0.262 0.992 0.999
a = 0.15,pm, 0.052 0.111 0.151
Dp 0.122 0.537 0.579
Laplace
a = 0.45, pm, 0.289 0.993 1
Dp 0.979 1 1
a = 0.35, pm 0.050 0.414 0.999
Dp 0.390 1 1
a = 0.25,pm, 0.050 0.255 0.490
Dp 0.219 0.798 0.999
a = 0.15,pm, 0.050 0.05 0.050
Dp 0.123 0.441 0.260
t-distrib
a = 0.45, pm, 0.412 0.994 1
Dp 0.898 1 1
a = 0.35, pm 0.077 0.418 0.999
Dp 0.543 1 1
a = 0.25, pm 0.043 0.052 0.518
Dp 0.332 0.995 0.998
a = 0.15,pm, 0.046 0.027 0.016
Dp 0.203 0.828 0.687

How surprisingly the outlier proportion performs much better than the out-
lier mean in these three location distributional shifts.

According to Tomlins et al. (2005), it is desired to verify the power
performance of the outlier proportion when there is only a small percentage
of outliers in the data of Y. For this, we consider the following distributional

setting:

X ~ Laplace(0,1),Y ~ 0.9Laplace(0,1) + 0.1Laplace(, o)

Table 3 Approximate powers of outlier mean and outlier proportion for

Laplace mixture




Pm Pm Pm
« (6 =3) Py (6 = 5) Py (6 = 10) Py
oc=3
a = 0.45 0.184 0.707 0.253 0.734 0.368 0.756
a=0.35 0.189 0.846 0.276 0.875 0.420 0.896
a=0.25 0.180 0.941 0.299 0.965 0.550 0.978
a=0.15 0.150 0.975 0.255 0.990 0.742 0.996
a=0.05 0.105 0.987 0.130 0.992 0.485 0.999

This computation shows that the outlier proportion is still a satisfactory
one in this case of mixed distribution. This further support the use of outlier

proportion in gene expression analysis.

4. An Outlier Proportion Test With Empirical Quantile as Cutoff
point

We have observed that the outlier proportion may have satisfactory power
performance when we have consistent estimators B x and o to construct test
in (3.1). However, 63 involves estimations of density points fy and fx while
estimation of density function at tail quantile points is extremely difficult in
practice. Without an alternative proposal avoiding this density estimation,
the outlier proportion based test won’t be practically powerful in detection
of influential genes unless ny and ng, the numbers of disease group subjects
and number of normal group subjects;-are very large.

In this section, we choose cutoff point 7 = ﬁ’)}l('y) for some v > 0. For

not being confused, we denote the outlier proportion as

for estimating 35 = P(Y > Fx'(y)). We first study the differences of two

population outlier proportions under the following distribution setting:

X ~ Laplace(0,1),Y ~ 0.9Laplace(0,1) + 0.1Laplace(0, o).

Table 4. Population outlier proportions



i By 0 = 0 = g =10
By By By

v=20.9
c=3 0.203 0.751 0.872 0.975
o= 0.203 0.671 0.779 0.918
=10 0.203 0.594 0.668 0.798

v = 0.95
o= 0.193 0.747 0.870 0.975
o= 0.193 0.668 0.777 0.918
=10 0.193 0.592 0.666 0.797

It is seen that the differences between two population proportions are quite

significant when the quantile percentage 7 is 0.9 or 0.95. This shows that

using quantile as cutoff point in detection of outliers is quite satisfactory.
A large sample theory for this quantile based outlier proportion is stated

below.

Theorem 4.1. Suppose that assumptions (A2) and (A3z) in the Appendix

are true. Then, n;/z(B;‘, — (%) converges in distribution to N (0, crg y) where

05y =Y = V) Vay f3 (PR (N FE (' (1) + By (1 = By).

To construct a test statistic based on the above theorem, we still face the
problem of requiring estimation of ag,y that involved prediction of density
points fy (Fx'(v)) and fx(Fx'(v)) which is difficult unless there is huge
sample. However, under Hy we may replace fy by fx and then crgyy is

induced as
05 x =71 =) Vay + By (1 — By).

In this setting, we need only to find estimates BA;‘, and B} to build the outlier

proportion based test as

rejecting Hy if \/_nQ(ﬁYA;BX) > Zge. (4.1)
08,X
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An approximate power for outlier proportion based on this quantile cutoff

point at significance level a* may be derived as bellows

By — Bx

98X

Pry {/n2( ) > Zar}
. " Za*a'g,x A% %
M) > /_n2( N +BX ﬁY

03,y 08,y

98,y 98y

= PFy{\/n_Q(

~ P{Z > z»

where 3% = P(X > Fx'(v)).
It is interested to compare outlier mean and outlier proportion both using
quantile cutoff point in terms of powers. First, we consider the following

two location shift models:

Case 1:X ~ N(0,1) and Y ~ N(0,1)
Case 2:X ~ Laplace(0,1) and Y ~ Laplace(6,1)

We display the results of power in the following table.

Table 5 Approximate powers of outlier mean and outlier proportion

Power =1 0=2 =4
Case 1
(v =0.9)pp, 0.180 0.858 1.0
Dp 0.687 0.987 1.0
(v =0.95)p., 0.122 0.558 1.0
Dp 0.407 0.961 1.0
Case 2
(v=0.9)pp, 0.050 0.192 1.0
Dp 0.389 0.771 1.0
(v =0.95)p,, 0.050 0.090 1.0
Dp 0.235 0.581 1.0

In this location shift models, it still shows that the outlier proportion is
better than the outlier mean. This further indicates the appropriateness of

applying the outlier proportion in gene expression analysis.
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With observation from Tomlins et al. (2005), it is interested to further
investigate a power comparison when there is only a small percentage of
outliers in distribution of Y. We evaluate the approximate power for the

following two mixed distributions:

Case A : X ~ Laplace(0,1),Y ~ 0.7Lapace(0,1) + 0.3N(6,1)
Case B: X ~ t(5),Y ~ 0.7¢(5) + 0.3Laplace(6,1)

The results are listed in Table 6.

Table 6 Approximate powers of outlier mean and outlier proportion

Power =2 =3 0 =4
Case A

(v = 0.85)pp, 0.107 0.553 0.986

Dp 0.634 0.809 0.839

(v =0.9)pp, 0.086 0.252 0.504

Dp 0.565 0.815 0.878

(v =0.95)py, 0.125 0.156 0.237

Pp 0.424 0.690 0.881
Case B

(v = 0.85)pp, 0.335 0.926 0.999

Dp 0.637 0.774 0.818

(v =0.9)pp, 0.185 0.640 0.987

Dp 0.623 0.805 0.858

(v =0.95)py, 0.177 0.205 0.458

Pp 0.499 0.779 0.880

The approximate powers showing in Table 6 indicates that the outlier pro-
portion is still a right choice in these distributional settings. Let us further

consider one more distributional setting as
Mixed t : X ~ £(10),Y ~ 0.9¢(10) 4 0.1(x*(10) + )

for comparison. The results are displayed in Table 7.
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Table 7 Approximate powers of outlier mean and outlier proportion for

some mixed distributions

Power 0=2 =14 =6

(v =0.9)pp, 0.879 0.895 0.905
Dp 0.873 0.953 0.960

(v =0.95)py, 0.873 0.892 0.903
Dp 0.900 0.957 0.970

Both methods are with high powers in this distributional setting, however,

the outlier proportion based test is still a better one.

5. Simulations Study

Suppose that now we have estimates B}} and 63 x for B% and og x
respectively. A test based on quantile based outlier probability is stated
. . N ~ ~
in (4.1). Let g% = n—llz:?:llI(Xi > FYAY)s Yoy = 32 and Gpx =
Y(1 = ¥)¥zy + By (1 — Py). A question is that is this practically a level

« test?

Theoretically the critical point zg«_is 1.645 when we expect the signifi-
cance level is 0.05. We conduct m = 100,000 replications to simulate the

following simulated probablity

1 m Q% Q%
D DY (et S ) (5.1

o

When we set £ = 1.645 (5.1) represents the probability of type I error. with
some distributions been used and various sample sizes that the results are

displayed in the following table.

Table 8. Simulated probability of type I error when z,+ = 1.645
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sample size N(0,1) t(10) Laplace(0, 1)
n = 30 0.1156 0.1178 0.1174
n = 50 0.1328 0.1327 0.1341
n = 100 0.1133 0.1125 0.1134
n = 200 0.1258 0.1238 0.1243
n = 500 0.1197 0.1211 0.1198
n = 1000 0.1285 0.1273 0.1264
n = 10,000 0.1203 0.1213 0.1205
n = 100, 000 0.1199 0.1201 0.1198

Unfortunately (4.1) is not practically a level 0.05 test. We now, for each
distribution, choose a constant £ such that (5.1) is approximately equal to
0.05 and then further to simulate the power of (5.1) under case I and case

II distributions as follows

Case I: X ~ N(0,1) and Y ~ 09N (0, 1) + 0.1(x*(10) + 6)
Case II: X ~ (10) and Y~ 0.9£(10) -+ 0.1(x*(10) + ).

The results are displayed in Table 9 and Table 10.

Table 9. Power performance comparison by simulation (Case I)
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H, =2 =14 =6
v =20.5
Pm (¢ = 2.16) 0.0527 0.9109 0.9303 0.9419
pp(c = 2.38) 0.0516 0.9526 0.9671 0.9782
v =0.55
Pm (c = 2.23) 0.0501 0.9167 0.9332 0.9443
pp(c = 2.44) 0.0504 0.9569 0.9685 0.9868
v = 0.6
Pm (¢ = 2.28) 0.0504 0.9192 0.9355 0.9443
pp(c = 2.51) 0.0508 0.9739 0.9828 0.9983
v =0.65
Pm (¢ = 2.37) 0.0523 0.9227 0.9394 0.9474
pp(c = 2.62) 0.0513 0.9647 0.9761 0.9802
v=0.7
Pm (c = 2.48) 0.0513 0.9227 0.9387 0.9469
Pplc=2.7) 0.0496 0.9716 0.9826 0.9956
=0.75
Pm(c = 2.74) 0.0511 0.9225 0.9388 0.9493
pp(c =2.78) 0.0505 0.9623 0.9764 0.9890
v=0.8
Pm (¢ = 2.96) 0.0526 0.9243 0.9388 0.9486
pp(c = 2.83) 0.0510 0.9674 0.9891 0.9912
v =0.85
Pm(c = 3.8) 0.0508 0.9169 0.9332 0.942
pp(c = 2.95) 0.0513 0.9598 0.9864 0.9946
v=10.9
Pm (¢ = 4.81) 0.051 0.9034 0.926 0.9368
pp(c = 3.19) 0.0497 0.9580 0.9681 0.9767
v =0.95
Pm (¢ = 20.8) 0.0502 0.6608 0.7208 0.7659
pp(c = 3.58) 0.0506 0.8774 0.9105 0.9423

Table 10. Power performance comparison by simulation (Case II)
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H, =2 =14 =6
v =20.5
Pm (¢ = 2.35) 0.0497 0.8881 0.9119 0.9281
pp(c = 2.18) 0.0508 0.9636 0.9870 0.9958
v =0.55
Pm (c = 2.42) 0.0501 0.8932 0.9166 0.9304
pp(c = 2.29) 0.0506 0.9626 0.9863 0.9961
v = 0.6
Pm (¢ = 2.47) 0.0508 0.8918 0.9159 0.9336
pp(c = 2.35) 0.0498 0.9540 0.9847 0.9953
v =0.65
Pm (c = 2.65) 0.0492 0.8925 0.9167 0.9316
pp(c = 2.42) 0.0509 0.9391 0.9794 0.9937
v=0.7
Pm (c = 2.75) 0.051 0.8956 0.917 0.9344
Pplc =2.5) 0.0495 0.9501 0.9836 0.9951
=0.75
Pm (¢ = 3.05) 0.05 0.8924 0.9168 0.9308
pp(c = 2.57) 0.0510 0.9207 0.9693 0.9900
v=0.8
Pm (¢ = 3.36) 0.0494 0.8847 0.9109 0.9288
pp(c =2.73) 0.0497 0.9413 0.9786 0.9925
v =0.85
Pm (¢ = 4.25) 0.0503 0.868 0.9001 0.9185
pp(c = 2.98) 0.0502 0.9164 0.9485 0.9799
v=10.9
Pm (¢ = 5.45) 0.0505 0.8366 0.8775 0.9019
pp(c = 3.21) 0.0509 0.8936 0.9167 0.9549
v =0.95
Pm(c = 23) 0.0502 0.5262 0.588 0.6364
pp(c = 3.45) 0.0503 0.7492 0.8406 0.9041

The outlier mean and outlier proportion techniques are both powerful in
these settings of distribution. More interestingly the outlier proportion is

the more efficient method in this comparison.

6. Appendix

Three assumptions for the asymptotic representation of the sample outlier
proportion test are as follows.

1. The limit 7., = limnl,m_moZ—f exists.

2. Pobability density function fx of distribution F'x is bounded away from
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zero in neighborhoods of Fil(a) for a € (0,1) and the population cutoff
point 7.

3. Probability density function fy is bounded away from zero in a neigh-
borhood of the population cutoff point 7.

Proof of theorem 3.1.

From the expression of By in (3.1), we have

n2 n2

ny > (By—By) = —ny S UYi < ntny T~ 1(Y; < p)ny 2N (1Y > n)—By).

(6.1)

where

A~

T, =12 (h=n) = m*(12(Fx" (1- ) = F5 ' (@) — (2Fx (1= ) = Fx ' ()].

With assumption (3), the key in this proof is that

n2

ny 2 (Y <+ P, — 1Y < )]
=1

— 2 fy ()T 0,(1) (6.2)

which may seen in Ruppert and Carroll (1980) and Chen and Chiang (1996).

With the following representation of.empirical quantile,

Vi (Fx' () - Fx'(a)

ni

=[x (F (@)ng Y la = I(Xi < FR'(@)] +0,(1),  (63)

=1

(see, for example, Ruppert and Carroll (1980)), a Bahadur representation
of the outlier proportion is induced from (6.1)-(6.3) as

1

ny*(By — By) =ny "/ D_l(@by = (1= a)b)I(X; < Fi'() + alba +bo)
I(Fx' () < Xi < Fx'(1 = ) + (—(1 — a)b; + abs)

I(X; > Fg' (1= a)] + 05 Y 1Y > n) = By] + 0, (1).

=1
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The asymptotic distribution in Theorem 3.1 is induced from the Central
Limit Theorem. [
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