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考慮非中心卡方製程的製程平均發生偏移下之製程能力 

調整 

研究生 : 侯 宏 興                       指導教授 : 洪 慧 念 博士  

                                     彭 文 理 博士 

國立交通大學統計學研究所碩士班 

 

摘要 

    製程能力指標被用來衡量製程製造產品符合規格的能力，不僅是提供品質保證的工具，

也是在品質改善方面的一個方針。不過，自從Motorola公司在1980年代提出6個標準差

的觀念後，很多統計學家質疑提倡6個標準差的學者，為什麼在衡量製程能力時需要對製

程平均做1.5倍的標準差調整。Bothe (2002) 針對這個問題，利用管制圖的機制來偵測製

程平均發生偏移的情況，發現它隨著不同的抽樣個數可以有不同的調整量，可是Bothe 的

研究是在常態分配的假設之下，事實上，非常態分配製程在業界是較常發生的。過去的研

究也有針對了非常態分配 (伽瑪、韋伯、對數常態分配) 的調整。所以我們針對非常態非

中心卡方方配做詳細的分析，導出在不同非常態分配下應調整的偏移量，並針對非常態分

配適用的 Cpk 指標做調整。在本研究的最後，以實例來說明如何在非常態分配製程的情況

下，在考慮製程平均發生變動的情況下，如何調整製程能力指標 Cpk 。 

關鍵字 : 非常態、非中心卡方分配、製程偏移、製程能力指標 
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National Chiao Tung University 

 

Abstract 

    Process capability indices have been proposed in the manufacturing industry to prove 

numerical measures on process reproduction capability, which are effective tools for quality 

assurance and guidance for process improvement. Motorola, Inc. introduced its Six Sigma quality 

initiative to the world in the 1980s. Some quality practitioners questioned why the Six Sigma 

advocates claim it is necessary to add a 1.5σ shift to the process mean when estimating process 

capability. Bothe (2002) provides a statistical reason for including such a shift in the process 

average that is base on the chart’s subgroup size. Data in Bothe’ study was assumed to be 

approximately normally distributed, but the process output is usually not from approximately 

normally. Some research is about the PCIs adjustment for process output has a non-normal 

distribution. This paper investigates the average run length of non-normal distribution, non-central 

chi-squared distribution, and calculate the mean shift adjustments and addresses this problem 

computing reliable estimates for capability index Cpk for non-central chi-squared process when the 

statistically adjustments is considered. For illustration purpose, an application example is presented. 

Keyword : Process capability index , Dynamic Cpk , Mean shift , Non-central chi-squared 

distribution 
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1 Introduction 

Process capability indices (PCIs) which provide numerical measure of production 

characteristic to reflect the quality of product have been used in the manufacturing industry. Those 

indices have become popular as unit-less measures on process potential and performance. The most 

commonly used ones, Cp and Cpk discussed in Kane (1986), and more advanced indices Cpm and 

Cpmk developed by Chan et al. (1988) and Pearn et al. (1992). Many authors have promoted the use 

of various PCIs for evaluating a supplier’s process capability. Based on analyzing the PCIs, a 

production department can trace and improve a poor process so that the quality level can be 

enhanced and the requirements of the customers can be satisfied. These PCIs have been defined 

explicitly as: 

2 2

2 2 2 2

   ,  min{ , } ,   , 
6 3 3 6 ( )

min{ , },
3 ( ) 3 ( )

p pk pm

pmk

USL LSL USL LSL USL LSLC C C
T

USL LSLC
T T

 
    

 
   

   
  

 

 


   

where USL is the upper specification limit, LSL is the lower specification limit, ߤ is the process 

mean, ߪ is the process standard deviation (overall process variation), and T is the target value. The 

index Cp considers the overall process variability relative to the manufacturing tolerance, reflecting 

product quality consistency. The index Cpk takes the magnitude of process variance as well as 

process departure from target value, and has been regarded as a yield-based index since it providing 

lower bounds on process yield. The index Cpm emphasizes on measuring the ability of the process 

to cluster around the target, which therefore reflects the degrees of process targeting (centering). 

Since the design of Cpm is based on the average process loss relative to the manufacturing tolerance, 

the index Cpm provides an upper bound on the average process loss, which has been alternatively 

called the Taguchi index. The index Cpmk is constructed by appropriately combining the yield-based 
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index  Cpk and the loss-based index Cpm, accounting for the process yield as well as the process 

loss. 

Since Motorola, Inc. introduced its Six Sigma quality initiative in the 1980s, quality 

practitioners have questioned why the followers of this initiative have added a 1.5σ shift to the 

process mean when estimating process capability. The advocates of Six Sigma have claimed that 

such an adjustment is necessary, but they have offered only personal experiences and three dated 

empirical studies as justification for this claim (see Bender (1975); Evans (1975); Gilson (1951)). 

By examining the sensitivity of control charts to detect changes of various magnitudes, Bothe (2002) 

provided a statistically based reason for this claim. In his study, Bothe assumed that the process data 

is approximately normally distributed. However, non-normal processes occur frequently, in 

particular, in the semiconductor industry. Pyzdek (1992) mentioned that the distributions of certain 

chemical processes, such as zinc plating in a hot-dip galvanizing process, are very often skewed. 

Choi et al. (1996) presented an example of a skewed distribution in the ‘‘active area’’ shaping stage 

of the wafer’s production processes. The abundance of outputs from skewed distributions, the 

stratification, tec., makes the normality assumption often unreasonable. The non-central chi-square 

distribution plays an important role in communications, for example in the analysis of mobile and 

wireless communication systems. It not only includes the important cases of a squared Rayleigh 

distribution and a squared Rice distribution, but also the generalizations to a sum of independent 

squared Gaussian random variables of identical variance with or without mean, i.e., a "squared 

MIMO Rayleigh" and "squared MIMO Rice" distribution. Therefore, a non-central chi-square 

process for data analysis has been chosen for this study. Moreover, if the capability indices based on 

the normal assumption concerning the data are used to deal with non-normal observations, the 

values of the capability indices may, in a majority of situations, be incorrect and quite likely 

misrepresent the actual product quality. 
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The control charts are commonly used in many industries for providing early warning for the 

shift in the process mean. If the control chart detects a process mean shift, then the process is not 

under control. However, for momentary process mean shifts, it may be beyond the control chart 

detection power. Consequently, the undetected shifts may result in overestimating process capability. 

If the process mean shifts are not detected, then unadjusted Cpk would overestimate the actual 

process yield. Bothe (2002) provided a statistical reason for considering such a shift in the process 

mean for normal processes. However, if the capability indices are based on the assumption of a 

normal distribution of data but are used to deal with non-normal observations, the values of the 

capability indices may, in the majority of situations, misrepresent actual product quality.  

This paper is organized as follows. We first introduce the characteristic of non-central 

chi-squared distribution in Section 2. In Section 3, we examine Bothe’s approach and finds that the 

detection power of the control chart is less than 0.5 when data comes from non-central chi-squared 

distribution. This shows that Bothe’s adjustments are inadequate when we have non-central 

chi-squared processes. Therefore, we calculate the adjustments under various subgroup sizes (n) 

and non-central chi-square parameters λ with a fixed detection power of 0.5. Further, we provide 

the adjusted process capability formula to accommodate the undetected shifts when data is 

non-central chi-squared distribution. As a result, our adjustments provide significantly more 

accurate calculations of the capability of non-central chi-squared processes. In Section 4, we apply 

our method to asset of real data to illustrate the applicability of the process capability index. Finally, 

we conclude the paper with a brief summary in Section 5. 
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2 The Non-Central Chi-Squared Process 

All of us know that the case of non-normal processes occurs frequently in practice, for example, 

in the semiconductor industry. Pyzdek (1992) pointed out the skewed distributions that are bounded 

on one side occur frequently in industry and gave several examples, such as a shearing process and a 

chemical dip process. The abundance of outputs from skewed distributions makes the normality 

assumption often unreasonable. The non-central chi-square distribution plays an important role in 

communications, for example in the analysis of mobile and wireless communication systems. It not 

only includes the important cases of a squared Rayleigh distribution and a squared Rice distribution, 

but also the generalizations to a sum of independent squared Gaussian random variables of identical 

variance with or without mean, i.e., a "squared MIMO Rayleigh" and "squared MIMO Rice" 

distribution. A non-central chi-squared distribution, with varied λ values, covers a wide class of 

non-normal applications. Therefore, a non-central chi-squared process for data analysis has been 

chosen for this study. The difference between normal and non-central chi-squared distributions is 

compared in Section 2.1. And the statistical property of non-central chi-squared distribution is 

discussed in Section 2.2. 

2.1 The Non-Central Chi-Squared Distribution 

In this section, we investigate the non-central chi-squared distribution to study the effect on the 

detection power of the control chart. Observations from the non-central chi-squared distribution are 

non-negative. The non-central chi-squared distribution can be denoted as  χν
ଶ(λ)  with the 

probability density function given by Chou et al. (1984) as follows: 
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where x>0, ν>0, λ>0, Φ( ) is the c.d.f. of N(0,1), and the mean and variance are given, ‧

respectively, by (ν + λ) and 2(ν + 2λ). 

Denote the family of non-central chi-squared distributions with mean (1 + λ) and degree of 

freedom 1 by χଶ(λ). The non-central chi-squared distributions are skewed. To see how this 

distribution is different from the standard normal distribution in terms of skewness and kurtosis, 

Table 2-1 presents the values of skewness and kurtosis (which are defined as the third and fourth 

moments of the standardized distribution, respectively) of the non-central chi-squared distributions 

under study. The skewness and kurtosis of χଶ(λ)  are √8(1 + 3λ) (1 + 2λ)ଷ/ଶൗ  and 

3+12(1 + 4λ) (1 + 2λ)ଶ⁄  respectively. We can find in Table 2-1 when the λ decreases, the 

corresponding values of skewness and kurtosis will become large and far away from the values of 

the standard normal distribution. The result through these distributions, we can get some insights of 

the effects of non-normality in terms of skewness and kurtosis. Fig. 2-1 presents several non-central 

chi-squared distributions along with a normal distribution for the same mean and variance. In this 

study, we let λ= 0.1, 0.5, 1, 2, 3, 5, 10, 20 and 100, when ν=1. As can be seen from Fig. 2-1 a–f, as λ 

increases, the non-central chi-squared distribution appears more nearly normal distribution. In fact, 

we demonstrate this convergence property in Table 2-1, by calculating the skewness and kurtosis. It 

can be seen that as λ increases, the skewness and kurtosis of non-central chi-squared distribution are 

very close to those of normal distribution. Through these distributions, we wish to get some insights 

of the effects of non-normality on the detection power in terms of skewness and kurtosis in Section 

2. 
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Table 2-1  Values of Skewness and Kurtosis of Various 

         Non-Central Chi-Squared Distribution  χଶ(λ) 

Distribution Skewness Kurtosis 

N(0,1) 0 3 

χଶ(0) 
2.828427 

15 

χଶ(0.1) 
2.797155 

14.666667 

χଶ(0.5) 
2.500000 

12 

χଶ(1) 
2.177324 

9.666667 

χଶ(2) 
1.770875 

7.32 

χଶ(3) 
1.527207 6.183673 

χଶ(5) 
1.240441 5.082645 

χଶ(10) 
0.911125 4.115646 

χଶ(20) 
0.657202 3.578227 

χଶ(100) 
0.298757 3.119106 

 

 

 

 

 

 

 



 

7 

 

 

Fig. 2-1  (a) Probability density functions for χଶ(0.1) and N(1.1, 2.4). (b) Probability 
density functions for χଶ(1) and N(2, 6). (c) Probability density functions for 
χଶ(5) and N(6, 22). (d) Probability density functions for χଶ(10) and N (11, 42). 
(e) Probability density functions for χଶ(100) and N(102, 402). (f) Probability 
density functions for χଶ(1000) and N(1001, 4002). 
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2.2 Statistical Properties of Non-Central Squared Distribution 

The non-central chi-squared distribution has a reproductive property: If X1 and X2 are 

independent random variables and each has a non-central chi-squared distribution with possible 

different values of ν1, ν2 of ν, and λ1, λ2 of λ, then X1+X2 also has a non-central chi-squared 

distribution, with ν=ν1+ν2, and with λ=λ1+λ2. Applying this property, let X1, X2, …, Xn be a 

sequence of independent distribution of χଶ(λ) and then the distribution of X1+X2+…+Xn is 

χ୬
ଶ (nλ) . Using simply statistical technique, we can conclude that Xഥn~χ୬

ଶ (nλ) n⁄ . 

The standard deviation of the Xഥn distribution, σ୶ത，is calculated from its relationship to the 

distribution parameters and the subgroup size n as follows: 

1 (1 2 )   X n
    

Let X1, X2, …, Xn be a sequence of independent distribution of χଶ(3) and we plot the probability 
density function of the average Xഥn for subgroup size n=2(1)5 in Fig. 2-2 a–d. We can find that the 
variance of average Xഥn will get smaller as subgroup size n increases. This situation means that the 
distribution of Xഥn is more centralized when n>1. Also, Fig. 2-3 a-d presents several non-central 
chi-squared distributions of the average Xഥn for subgroup size n=2(1)5 along with a normal 
distribution for the same mean and variance. As can be seen from Fig. 2-3 a–d as n increases, the 
non-central chi-squared distribution of the average Xഥn appears more nearly normal distribution. 
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Fig. 2-2  (a) Probability density functions for χଶ(3) and Xഥn for n=2. (b) Probability density 
functions for χଶ(3) and Xഥn for n=3. (c) Probability density functions for χଶ(3) and 
Xഥn for n=4.(d) Probability density functions for χଶ(3) and Xഥn for n=5. 
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Fig. 2-3  (a) Probability density functions of Xഥn for n=2, χଶ(2,6)/2, and N(4,7). (b) Probability 
density functions of Xഥn for n=3, χଶ(3,9)/3, and N(4,14/3). (c) Probability density 
functions of Xഥn for n=4, χଶ(4,14)/4, and N(4,4).(d) Probability density functions of 
Xഥn for n=5, χଶ(5,15)/5,and N(4,14/5) 
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3 Process Mean Shift Investigation for Non-Central 

Chi-Squared Process 

3.1 The Detection Power of Non-Central Chi-Squared Process          

Under Bothe’s Adjustment 

The major purpose of individuals control chart is assisting on identifying shifts and drifts in 

processes and it is easily to be implemented. But, some assumptions should be satisfied before 

control charts are used. The assumptions include that the process characteristics must follow normal 

distributions. Actually, non-normal processes occur frequently in practice. Due to above-mentioned 

statements, we replace the traditional, μ ± 3σ, to be the upper or lower control limits by the quantile 

of cumulative distribution function for different parameters of χυ
ଶ(λ)  (  F଴.଴଴ଵଷହ,஝,஛  and 

F଴.ଽଽ଼଺ହ,஝,஛ ) and detect the power of non-central chi-squared process under Bothe’s capability 

adjustments. 

Let X1, X2, …, Xn be a sequence observations of independent and identically distributed 

in χଶ(λ). Using the reproductive property of non-central chi-squared distribution, the mean of the 

observations is Xഥn  which is distributed in χ୬
ଶ (nλ) n⁄ . Also, we can obtain 

that μ୶୧= μ୶ത=1+λ, σ୶୧=ඥ2(1 + 2λ) and σ୶ത  =ඥ2(1 + 2λ) n⁄ .  Consequently, we derived the 

power of non-central chi-squared process as follows. Since the type II error β is 

1 0

0.00135, , 0.99865, ,

( , ) 0.99865, , ( , ) 0.00135, ,

( |  )

  ( )

   = ( ) ( ) ,

i

i i i

i i

n X

nn n X X n n X

n n n X n n n X

P LCL X UCL k

P F k X k F k

F k F k
 

   

   

  

 

    

     

   
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where 1-β is the detection power of the process, Φ(୬,λ)(∙) is the cumulative distribution function 

of χ୬
ଶ(nλ)/n.The control limits LCL and UCL are calculated as ܨ଴.଴଴ଵଷହ,௡,௡ఒ and ܨ଴.ଽଽ଼଺ହ,௡,௡ఒ, 

respectively. Table 3-1 presents the detection power under the alternative hypothesis test, the mean 

shift caused by the shift of location δ, when data comes from non-central chi-squared distribution 

with λ=0, 0.1, 0.5, 1(1)10, 20, 50, 100, and 700. Table 3-2 presents the detection power under the 

alternative hypothesis test, the mean shift caused by the shift of the parameter λ, when data comes 

from non-central chi-squared distribution with λ=0, 0.1, 0.5, 1(1)10, 20, 50, 100, and 700. The 

magnitude of shift in the second row on the left is Bothe’s capability adjustments determined when 

data comes from normal distribution and the detection power is 0.5. From Table 3-1, we can find 

that the detection power is less than 0.5 when data comes from non-central chi-squared distribution 

under Bothe’s capability adjustments. Our study shows that the detection power gets closer to 0.5 as 

λ increases, which is reasonable since the corresponding distributions get closer to the standard 

normal distribution. This is due to Bothe’s (2002) approach is based on the normality assumption of 

the data and the detection power is 0.5. The skewness of χଶ(λ) is √8(1 + 3λ) (1 + 2λ)ଷ/ଶൗ . 

Therefore, as λ decreases the non-central chi-squared distribution is more skewed and the detection 

power is poorer. For example, when λ= 0.5 and the subgroup size n=2, the detection power is 0.037. 

It implies Bothe’s adjustments are inadequate when we have skewed processes. Consequently, in 

our study, we determined the capability adjustment and calculation when process data comes from 

non-central chi-squared distribution. 
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Table 3-1  Detection power of various non-central chi-square processes  
under the shift of location  

 n ઼    ૏૛(ૃ)         
  λ=0 λ=0.1 λ=0.5 λ=1 λ=2 λ=3 λ=4 λ=5 λ=6 
2 2.12 0.027 0.028 0.037 0.051 0.075 0.097 0.116 0.132 0.147 
3 1.73 0.040 0.042 0.055 0.073 0.104 0.130 0.152 0.170 0.186 
4 1.50 0.054 0.055 0.072 0.093 0.129 0.158 0.181 0.200 0.215 
5 1.34 0.066 0.068 0.087 0.110 0.149 0.179 0.202 0.221 0.236 
6 1.22 0.077 0.079 0.099 0.125 0.165 0.195 0.218 0.237 0.252 

7 1.13 0.088 0.091 0.112 0.139 0.181 0.211 0.234 0.252 0.266 
8 1.06 0.100 0.102 0.125 0.153 0.196 0.226 0.249 0.267 0.281 
30 0.55 0.233 0.235 0.260 0.287 0.323 0.346 0.362 0.374 0.384 

 

 

 

Table 3-1  Detection power of various non-central chi-square processes  
under the shift of location (continued) 

 
n ઼ ૏૛(ૃ)         
  λ=7 λ=8 λ=9 λ=10 λ=20 λ=50 λ=100 λ=700 N(0,1) 
2 2.12 0.160 0.172 0.182 0.192 0.256 0.332 0.377 0.452 0.5 

3 1.73 0.200 0.212 0.222 0.232 0.293 0.360 0.398 0.460 0.5 

4 1.50 0.229 0.241 0.251 0.260 0.317 0.379 0.412 0.466 0.5 

5 1.34 0.250 0.261 0.271 0.280 0.333 0.389 0.420 0.468 0.5 

6 1.22 0.264 0.275 0.285 0.293 0.344 0.395 0.424 0.468 0.5 

7 1.13 0.279 0.289 0.298 0.306 0.354 0.403 0.429 0.470 0.5 

8 1.06 0.293 0.303 0.312 0.320 0.366 0.412 0.437 0.475 0.5 

30 0.55 0.391 0.398 0.403 0.408 0.434 0.459 0.472 0.493 0.5 
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Table 3-2  Detection power of various non-central chi-square processes  
under the shift of parameter 

n ઼ ૏૛(ૃ)         
  λ=0 λ=0.1 λ=0.5 λ=1 λ=2 λ=3 λ=4 λ=5 λ=6 
2 2.12 0.155 0.151 0.156 0.169 0.192 0.21 0.224 0.236 0.246 
3 1.73 0.175 0.171 0.178 0.192 0.216 0.235 0.249 0.261 0.271 
4 1.50 0.191 0.187 0.195 0.210 0.235 0.254 0.269 0.281 0.290 
5 1.34 0.203 0.200 0.208 0.224 0.249 0.268 0.282 0.294 0.303 
6 1.22 0.212 0.209 0.218 0.234 0.259 0.278 0.292 0.303 0.312 
7 1.13 0.222 0.219 0.228 0.244 0.269 0.288 0.301 0.313 0.322 
8 1.06 0.231 0.228 0.238 0.254 0.28 0.298 0.312 0.323 0.332 

30 0.55 0.314 0.313 0.324 0.339 0.361 0.376 0.387 0.395 0.402 

 

 

 

Table 3-2  Detection power of various non-central chi-square processes  
under the shift of parameter (continued) 

n ઼ ૏૛(ૃ)         
  λ=7 λ=8 λ=9 λ=10 λ=20 λ=50 λ=100 λ=700 N(0,1) 
2 2.12 0.254 0.262 0.269 0.275 0.315 0.365 0.396 0.455 0.5 

3 1.73 0.280 0.288 0.294 0.300 0.339 0.384 0.412 0.462 0.5 

4 1.50 0.299 0.306 0.313 0.318 0.355 0.397 0.423 0.468 0.5 

5 1.34 0.312 0.319 0.325 0.331 0.366 0.405 0.429 0.470 0.5 

6 1.22 0.320 0.327 0.333 0.338 0.372 0.409 0.431 0.471 0.5 

7 1.13 0.330 0.336 0.342 0.347 0.380 0.415 0.436 0.472 0.5 

8 1.06 0.339 0.346 0.352 0.357 0.388 0.423 0.443 0.476 0.5 

30 0.55 0.407 0.412 0.416 0.42 0.441 0.462 0.474 0.493 0.5 
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3.2 The Modified Mean Adjustments for Non-Central  

Chi-Squared Process 

The undetected mean shift adjustment cause by the shift of location δ in Table 3-3 is called AS50 

which is the magnitude of shift we need to adjust based on designated detection power is 0.5 and 

process data comes from non-central chi-squared distribution. The undetected mean shift 

adjustment cause by the shift of parameter λ in Table 3-4 is called AS50 which is the magnitude of 

shift we need to adjust based on designated detection power is 0.5 and process data comes from 

non-central chi-squared distribution. Table 3-3 and Table 3-4 display the magnitude of adjustments 

AS50 based on the detection power is 0.5 and data comes from χଶ(λ) with various values of 

λ(=0.1, 0.5, 1(1)10, 20, 50, and 100 ) and n=2(1)30. For example, if we set λ=3 and n=5, then the 

adjustment from Table 3-3 is AS50=1.79. We conclude that the adjustment AS50σ (=1.79σ) is 

required based on the detection power is 0.5 and data comes from χଶ(λ). It also shows from Table 

3-3 that the adjustments AS50 get closer to Bothe’s adjustments as λ increases (when n=2(1)10), 

which is reasonable since the corresponding distributions get closer to the standard normal 

distribution. However, we should notice that when λ is small (distribution is strongly skewed), the 

required adjustment in the capability index formula is much greater than those for normal processes. 

Using the adjusted process capability formula, the engineers can determine the actual process 

capability more accurately. Fig. 3-1 presents the power curves, these lines on the graph depict the 

probabilities of detecting a shift in μ for the commonly used subgroup size n=3, 4, 5 (expressed in 

σ units on the horizontal axis) when λ=3. All these lines are close to zero for small shifts in μ. It 

can be found that the power of the chart with all three curves eventually leveling off close to 100% 

as the size of the shifts in excess of 3.5σ. The dashed horizontal line drawn in Fig. 3-1 shows that 

there is a 50% probability of missing a 1.79σ shift in μ when n is 5, while μ must move by 

2.472σ to have this same probability when n is only 3. The shift sizes that have a 50% probability 
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of remaining undetected, called AS50 values are listed in Table 3-3 for subgroup sizes n=2(1)30. 

Momentary movements in μ smaller than AS50σ are more than likely to be missed by a control 

chart. Therefore our adjustment AS50 takes into account those shifts that are not detected by the 

control chart. 
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Table 3-3  AS50 values for several subgroup size n and various λ values  
under the shift of location 

  ૃ 

n 

0 0.1 0.5 1 2 3 4 5 6 N(0,1) 

2 4.182 4.157 3.931 3.694 3.400 3.225 3.107 3.021 2.954 2.12 
3 3.126 3.109 2.951 2.789 2.590 2.472 2.393 2.335 2.290 1.73 
4 2.553 2.539 2.419 2.296 2.146 2.057 1.997 1.954 1.920 1.50 
5 2.188 2.177 2.079 1.98 1.860 1.789 1.741 1.705 1.678 1.34 
6 1.932 1.922 1.841 1.758 1.657 1.598 1.558 1.528 1.506 1.22 
7 1.741 1.733 1.663 1.592 1.505 1.454 1.420 1.395 1.375 1.13 
8 1.592 1.585 1.524 1.462 1.386 1.341 1.311 1.289 1.272 1.06 
9 1.473 1.467 1.412 1.357 1.290 1.250 1.223 1.203 1.188 1.00 
10 1.375 1.369 1.320 1.270 1.210 1.174 1.149 1.132 1.118 0.95 
11 1.292 1.287 1.242 1.197 1.142 1.109 1.087 1.071 1.059 0.90 
12 1.221 1.217 1.176 1.134 1.084 1.054 1.034 1.019 1.007 0.87 
13 1.16 1.156 1.118 1.08 1.033 1.005 0.987 0.973 0.963 0.83 
14 1.107 1.103 1.068 1.032 0.989 0.963 0.946 0.933 0.923 0.80 
15 1.059 1.055 1.023 0.990 0.949 0.925 0.909 0.897 0.888 0.77 
16 1.017 1.013 0.983 0.952 0.914 0.891 0.876 0.865 0.856 0.75 
17 0.979 0.975 0.947 0.917 0.882 0.861 0.846 0.836 0.828 0.73 
18 0.944 0.941 0.914 0.887 0.853 0.833 0.819 0.809 0.802 0.71 
19 0.913 0.91 0.884 0.858 0.826 0.807 0.794 0.785 0.778 0.69 
20 0.884 0.882 0.857 0.832 0.802 0.784 0.772 0.763 0.756 0.67 
21 0.858 0.855 0.832 0.809 0.780 0.762 0.751 0.742 0.736 0.65 
22 0.834 0.831 0.809 0.787 0.759 0.743 0.731 0.723 0.717 0.64 
23 0.811 0.809 0.788 0.766 0.740 0.724 0.713 0.706 0.700 0.63 
24 0.79 0.788 0.768 0.747 0.722 0.707 0.697 0.689 0.683 0.61 
25 0.771 0.769 0.749 0.729 0.705 0.691 0.681 0.674 0.668 0.60 
26 0.753 0.751 0.732 0.713 0.689 0.676 0.666 0.659 0.654 0.59 
27 0.736 0.734 0.716 0.697 0.675 0.661 0.652 0.646 0.64 0.58 
28 0.72 0.718 0.7 0.683 0.661 0.648 0.639 0.633 0.628 0.57 
29 0.704 0.703 0.686 0.669 0.648 0.635 0.627 0.621 0.616 0.56 
30 0.69 0.688 0.672 0.656 0.635 0.623 0.615 0.609 0.605 0.55 
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Table 3-3  AS50 values for several subgroup size n and various λ values  
under the shift of location (continued) 

     ૃ 

n 

7 8 9 10 20 50 100 N(0,1) 

2 2.900 2.856 2.818 2.786 2.604 2.432 2.343 2.12 
3 2.254 2.224 2.199 2.177 2.055 1.940 1.880 1.73 
4 1.893 1.870 1.851 1.835 1.743 1.656 1.611 1.50 
5 1.656 1.638 1.623 1.610 1.536 1.467 1.431 1.34 
6 1.487 1.472 1.460 1.449 1.387 1.329 1.299 1.22 
7 1.359 1.346 1.336 1.326 1.273 1.223 1.198 1.13 
8 1.258 1.247 1.237 1.229 1.183 1.139 1.116 1.06 
9 1.176 1.166 1.157 1.150 1.108 1.070 1.050 1.00 
10 1.107 1.098 1.090 1.084 1.046 1.011 0.993 0.95 
11 1.049 1.040 1.033 1.027 0.993 0.962 0.945 0.90 
12 0.998 0.991 0.984 0.979 0.947 0.918 0.903 0.87 
13 0.954 0.947 0.941 0.936 0.907 0.880 0.866 0.83 
14 0.915 0.909 0.903 0.898 0.872 0.847 0.834 0.80 
15 0.880 0.874 0.869 0.865 0.840 0.816 0.804 0.77 
16 0.849 0.844 0.839 0.835 0.811 0.789 0.778 0.75 
17 0.821 0.816 0.811 0.807 0.785 0.765 0.754 0.73 
18 0.795 0.790 0.786 0.782 0.761 0.742 0.732 0.71 
19 0.772 0.767 0.763 0.759 0.740 0.721 0.712 0.69 
20 0.750 0.746 0.742 0.739 0.720 0.702 0.693 0.67 
21 0.730 0.726 0.722 0.719 0.701 0.685 0.676 0.65 
22 0.712 0.708 0.704 0.701 0.684 0.668 0.660 0.64 
23 0.695 0.691 0.687 0.684 0.668 0.653 0.645 0.63 
24 0.679 0.675 0.672 0.669 0.653 0.639 0.631 0.61 
25 0.664 0.660 0.657 0.654 0.639 0.625 0.618 0.60 
26 0.650 0.646 0.643 0.640 0.626 0.613 0.606 0.59 
27 0.636 0.633 0.630 0.628 0.614 0.601 0.594 0.58 
28 0.624 0.621 0.618 0.615 0.602 0.589 0.583 0.57 
29 0.612 0.609 0.606 0.604 0.591 0.579 0.572 0.56 
30 0.601 0.598 0.595 0.593 0.580 0.569 0.563 0.55 
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Table 3-4  AS50 values for several subgroup size n and various λ values  
under the shift of parameter 

  ૃ 

n 

0 0.1 0.5 1 2 3 4 5 6 N(0,1) 

2 4.314 4.259 3.973 3.712 3.406 3.228 3.109 3.022 2.955 2.12 
3 3.207 3.170 2.976 2.800 2.594 2.475 2.394 2.336 2.291 1.73 
4 2.611 2.583 2.437 2.304 2.149 2.059 1.999 1.954 1.920 1.50 
5 2.232 2.210 2.093 1.987 1.862 1.790 1.742 1.706 1.679 1.34 
6 1.967 1.949 1.852 1.763 1.660 1.599 1.559 1.529 1.506 1.22 
7 1.771 1.755 1.672 1.596 1.507 1.455 1.420 1.395 1.375 1.13 
8 1.618 1.605 1.532 1.466 1.388 1.342 1.312 1.289 1.272 1.06 
9 1.495 1.484 1.419 1.360 1.291 1.251 1.223 1.204 1.188 1.00 
10 1.395 1.384 1.326 1.273 1.211 1.174 1.150 1.132 1.118 0.95 
11 1.310 1.300 1.248 1.200 1.143 1.110 1.088 1.071 1.059 0.90 
12 1.237 1.229 1.181 1.137 1.085 1.054 1.034 1.019 1.008 0.87 
13 1.175 1.167 1.123 1.082 1.034 1.006 0.987 0.973 0.963 0.83 
14 1.120 1.112 1.072 1.034 0.989 0.963 0.946 0.933 0.923 0.80 
15 1.071 1.065 1.027 0.991 0.950 0.925 0.909 0.897 0.888 0.77 
16 1.028 1.022 0.986 0.953 0.914 0.891 0.876 0.865 0.856 0.75 
17 0.989 0.983 0.950 0.919 0.882 0.861 0.846 0.836 0.828 0.73 
18 0.954 0.949 0.917 0.888 0.853 0.833 0.819 0.809 0.802 0.71 
19 0.922 0.917 0.887 0.860 0.827 0.808 0.795 0.785 0.778 0.69 
20 0.893 0.888 0.860 0.834 0.802 0.784 0.772 0.763 0.756 0.67 
21 0.866 0.861 0.835 0.810 0.780 0.763 0.751 0.742 0.736 0.65 
22 0.841 0.837 0.812 0.788 0.760 0.743 0.732 0.723 0.717 0.64 
23 0.819 0.814 0.790 0.767 0.740 0.724 0.714 0.706 0.700 0.63 
24 0.797 0.793 0.770 0.748 0.722 0.707 0.697 0.689 0.683 0.61 
25 0.777 0.774 0.751 0.730 0.706 0.691 0.681 0.674 0.668 0.60 
26 0.759 0.755 0.734 0.714 0.690 0.676 0.666 0.659 0.654 0.59 
27 0.742 0.738 0.717 0.698 0.675 0.662 0.652 0.646 0.641 0.58 
28 0.725 0.722 0.702 0.683 0.661 0.648 0.639 0.633 0.628 0.57 
29 0.710 0.707 0.688 0.670 0.648 0.635 0.627 0.621 0.616 0.56 
30 0.695 0.692 0.674 0.656 0.636 0.624 0.615 0.609 0.605 0.55 
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Table 3-4  AS50 values for several subgroup size n and various λ values  
under the shift of parameter (continued) 

     ૃ 

n 

7 8 9 10 20 50 100 N(0,1) 

2 2.901 2.856 2.819 2.786 2.604 2.432 2.343 2.12 
3 2.254 2.224 2.199 2.177 2.055 1.940 1.880 1.73 
4 1.893 1.870 1.851 1.835 1.743 1.656 1.611 1.50 
5 1.657 1.639 1.623 1.610 1.536 1.467 1.431 1.34 
6 1.488 1.473 1.460 1.449 1.387 1.329 1.299 1.22 
7 1.360 1.347 1.336 1.326 1.273 1.223 1.198 1.13 
8 1.258 1.247 1.237 1.229 1.183 1.139 1.116 1.06 
9 1.176 1.166 1.157 1.150 1.108 1.070 1.050 1.00 
10 1.107 1.098 1.090 1.084 1.046 1.011 0.993 0.95 
11 1.049 1.040 1.033 1.027 0.993 0.962 0.945 0.90 
12 0.998 0.991 0.984 0.979 0.947 0.918 0.903 0.87 
13 0.954 0.947 0.941 0.936 0.907 0.880 0.866 0.83 
14 0.915 0.909 0.903 0.898 0.872 0.847 0.834 0.80 
15 0.881 0.874 0.869 0.865 0.840 0.816 0.804 0.77 
16 0.849 0.844 0.839 0.835 0.811 0.789 0.778 0.75 
17 0.821 0.816 0.811 0.807 0.785 0.765 0.754 0.73 
18 0.795 0.790 0.786 0.782 0.761 0.742 0.732 0.71 
19 0.772 0.767 0.763 0.760 0.740 0.721 0.712 0.69 
20 0.750 0.746 0.742 0.739 0.720 0.702 0.693 0.67 
21 0.730 0.726 0.722 0.719 0.701 0.685 0.676 0.65 
22 0.712 0.708 0.704 0.701 0.684 0.668 0.660 0.64 
23 0.695 0.691 0.687 0.684 0.668 0.653 0.645 0.63 
24 0.679 0.675 0.672 0.669 0.653 0.639 0.631 0.61 
25 0.664 0.660 0.657 0.654 0.639 0.625 0.618 0.60 
26 0.650 0.646 0.643 0.641 0.626 0.613 0.606 0.59 
27 0.636 0.633 0.630 0.628 0.614 0.601 0.594 0.58 
28 0.624 0.621 0.618 0.615 0.602 0.589 0.583 0.57 
29 0.612 0.609 0.606 0.604 0.591 0.579 0.572 0.56 
30 0.601 0.598 0.595 0.593 0.580 0.569 0.563 0.55 
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Fig. 3-1 Power curve for the commonly used subgroup size 3 , 4 , 5 when 3   

3.3 The Modified Estimator of Process Capability ࢑࢖࡯ 

 in Non-Normal Case  ࢑࢖࡯ 3.3.1

The index Cpk has been viewed as a yield-based index since it provides bounds on the process 

yield for a normally distributed process with a fixed value of Cpk. This index Cpk is defined as: 

 C min{ , } ,
3 3pk

USL LSL 
 
 

  

where as above USL is the upper specification limit, LSL is the lower specification limit, μ is the 

process mean and σ is the process standard deviation. The proper use of process capability indices, 

which are statistical measures of process capability, is based on several assumptions. One of the 

most essential is that the process monitored is supposed to be stable and the output is approximately 
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normally distributed. When the distribution of a process characteristic is non-normal, PCIs 

calculated using conventional methods could often lead to erroneous and misleading interpretation 

of the process’s capability. 

In the recent years, several approaches to problems of PCIs for the non-normal populations 

have been suggested. A widely accepted approach for PCI computation is to use the popular normal 

plot so that the normality assumption can be verified simultaneously. Analogous to the normal 

probability plot, where the “nature” process width is between the 0.135 percentile and 99.865 

percentile, surrogate PCI values may be obtained via appropriately selected probability plots. Since 

the median is usually the preferable central value for a skewed distribution, the corresponding Cpu 

and Cpl are defined as: 

0.5

0.99865 0.5(  0.135% point)pu
USL FUSL medianC

upper median F F


 
 

 

0.5

0.5 0.00135(  0.135% point)pl
F LSLmedian LSLC

median lower F F


 
   

Then the index Cpk would be calculated as the minimum of Cpu and Cpl, namely: 

0.5 0.5

0.99865 0.5 0.5 0.00135

min{ , } min{ , }pk pu pl
USL F F LSLC C C

F F F F
 

 
   

so that the normality assumption can be verified simultaneously. 

We can obtain more accurate measures of these percentile points (F0.00135, F0.5 and F0.99865) 

under consideration in the non-normal case, if we are able to find a better distributional form for the 

data, which provides a very satisfactory fit. This involves modeling the process data with alternative 

probability plot models, such as the Weibull or gamma ones (see e.g. Dudewicz and Mishra, 1998; 
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Kotz and Lovelace, 1998). Nevertheless, an obvious disadvantage of probability plotting is that it is 

not a truly objective procedure. It is quite possible for two analysts to arrive at different conclusions 

using the same data. Accordingly, it is often desirable to supplement probability plots with 

goodness-of-fit tests, which possess more formal statistical foundations (see, e.g., Shapiro, 1995). 

Choosing proper distribution to fit the data is an important step in probability plotting. Sometimes 

one can use the available knowledge of the physical phenomenon or the past experience to suggest a 

choice of the distribution. 

3.3.2 Adjustment of ࢑࢖࡯ 

Acknowledging that a process will experience shift in F0.5 of various magnitudes and knowing 

that not all of these will be discovered, some allowance for them must be made when estimating 

outgoing quality so customers are not disappointed. Because shifts ranging in size from 0 to AS50σ 

are the ones likely to remain undetected (large moves should be caught by the chart), a conservative 

approach is to assume that every missed shift is as large as AS50. 

Considering the undetected process mean shift as large as AS50σ, we use F0.5 minus AS50σ to 

evaluate how well the process output meets the LSL and F0.5 plus AS50σ for determining 

conformance to the USL when estimating the index Cpk . Incorporating both of these adjustments 

into the basic Cpk formula we obtained the ‘‘dynamic’’ Cpk index by making the following 

modifications: 

0.5 50 0.5 50

0.99865 0.5 0.5 0.00135

0.5 50 0.5 50

0.99865 0.5 0.99865 0.5 0.5 0.00135 0.5 0.00135

( ) ( )min{ , }

(      = min{ , }

pk
USL F AS F AS LSLC

F F F F
USL F AS F LSL AS

F F F F F F F F

 

 

   


 
 

 
     
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By considering an adjustment AS50σ in this assessment for undetected shifts in process median, the 

estimate of dynamic index Cpk will decrease and the expected total number of nonconforming parts 

will increase. It must be noticed that this nonconforming level assumes that undetected shifts are 

happening almost constantly and that everyone is equal to AS50σ. From Table 3-3, the practitioners 

can find the AS50 to calculate the dynamic index Cpk for determining whether their process meets 

the preset capability requirement, and make reliable decisions to the process. 
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4 Application 

Recently, due to the excellent current driving capability and microwave performances, 

heterojunction bipolar transistors (HBTs) have extensively employed on digital and analogy 

applications and are recognized as promising electronic devices for high frequency and high 

performance circuit applications, such as monolithic microwave integrated circuit and optoelectronic 

integrated circuit. For successful process control, process optimization, circuit design, and compact 

transistor modeling, there are several problems that must be overcome to realize practical high speed 

ICs. One of the problems is a current gain reduction associated with the scaling down of transistor 

size. Since the emitter dimension must be minimized for higher switching speed operation, 

elimination of the current gain reduction is very important for HBT designs. Also, Cutoff frequency 

and maximum oscillation frequency were changed with emitter dimension, and this was attributed to 

the variation of resistances and junction capacitances with emitter structure.    

Therefore, we should address on one of the characteristics of HBTs, the emitter area. The upper 

and lower manufacturing specific limits are set to USL=45 um2 and LSL=5 um2, respectively. If the 

characteristic data does not fall within the tolerance (LSL, USL) , the component of the emitter area is 

consider to nonconforming/defective, and will not be used to make the emitter area of that particular 

model. 

As shown in Table 4-1, a part of historical data is collected. Fig. 4-2 displays the histogram, 

and Fig. 4-1 displays the normal probability plot of these historical data. From the  Fig. 4-1 and 

Fig. 4-2 , it is evident to conclude the data collected from the factory are not normal distributed. The 

data analysis results justify that the process is significantly away from the normal distribution. By 

the goodness-of-fit tests, the historical data indicates that the process pretty approximates to be 

distributed as non-central chi-squared. The parameter ν  and λ  of non-central chi-squared 
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distribution could be calculated from historical data giving ν=1 and λ=20. Therefore, it is 

approximate to use this approach and we can obtain more accurate measures of the three quantile: 

F0.00135 , F0.5 (median) , and F0.99865 for  

1 1(1 2 ) (1 2 20) 4.1 2.025
10n

         

under consideration. Then “dynamic” Cpk index can be calculated as follows: 

0.5 50 0.5 50

0.99865 0.5 0.5 0.00135

) min{ , }

45  20 1.046 2.025 20 1.046 2.025 5                      =min{ , }
55.832 20 20 2.167

                      min{0.64,0.72}
         

pk
USL F AS F AS LSLdynamic C

F F F F
    


 

     
 


             =0.64

 with AS50=1.046 for n=10 from Table 3-3. Compared it to the value of the following conventional 

index: 

0.5 0.5

0.99865 0.5 0.5 0.00135

min{ , } min{ , }

45 20 20-5                                =min{ , }
55.832-20 20-2.167

                                min{ 0.70,0.84}=0.70

pk pu pl
USL F F LSLC C C

F F F F
 

 
 





 
calculated by a traditional capability study (the shift of process mean is not considered), we can find 

that the value of the modified Cpk is much smaller. This result indicates if the process mean shifts 

that are not detected then unadjusted Cpk would overestimate the actual process yield which is not 

derisible. Our adjustment takes into account those shifts that are not detected so that the practitioner 

would be able to keep its quality promise for this process. As the adjusted process capability drops 

below the desired quality level, the practitioner should stop the process because the process does not 
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meet his preset capability requirement. As the subgroup size n increases, the shift in process mean 

have a higher probability of detection. For example, if n=15, the AS50 would be 0.840 for χଵ
ଶ(20) 

from Table 3-3, and then the ‘‘dynamic’’ Cpk index is 

0.5 50 0.5 50

0.99865 0.5 0.5 0.00135

) min{ , }

45  20 0.840 1.653 20 0.840 1.653 5                     =min{ , }
55.832 20 20 2.167

                    min{0.66,0.76}=0.66

pk
USL F AS F AS LSLdynamic C

F F F F
    


 

     
 



 
Changing n from 10 to 15 increases the dynamic Cpk index from 0.64 to 0.66, and the total number 

of nonconforming parts would be reduced. 

Table 4-1  The 100 observations are collected from the historical data 

32.955 15.736 25.510 18.311 6.255 19.248 16.3 32.922 17.451 11.374 

9.858 18.385 14.725 37.943 27.512 20.158 23.992 24.408 19.497 20.954 

28.506 16.812 31.125 34.926 21.003 8.116 19.456 18.011 16.695 23.67 

18.49 9.844 11.532 25.789 22.311 19.973 17.759 24.597 15.493 16.397 

17.771 24.566 24.018 6.658 14.296 20.389 29.304 10.274 13.462 17.752 

33.647 23.895 20.944 30.906 10.373 26.093 21.52 20.644 29.198 24.368 

31.458 13.159 23.962 27.004 24.527 23.57 15.256 20.438 24.599  9.911 

12.983 8.23 26.109 22.977 10.126 41.423 8.854 16.815 17.774 13.339 

11.316 18.924 5.114 33.823 22.43 20.686 31.242 11.123 9.868 37.314 

14.859 43.001 17.45 35.999 17.945 16.318 12.035 11.187 19.182 19.607 
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Fig. 4-1 Normal probability plot of the historical data 

 

 

 

 

 

Fig. 4-2 Histogram plot of the historical data 
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5 Conclusions 

In this paper, we considered the problem of how to determine the adjustments for process 

capability with mean shift when data follows the non-central chi-squared distribution. We first 

examined Bothe’s approach and found the detection power is less than 0.5 when data comes from 

the non-central chi-squared distribution, showing that Bothe’s adjustments are inadequate when 

we have non-central chi-squared processes. For non-central chi-squared processes, we calculated 

the adjustments for various sample sizes (n) and non-central chi-square parameter (ν, λ) with 

detection power fixed to 0.5. For small value of  λ (distribution is strongly skewed), the required 

adjustment in the capability index formula is much greater than those for normal processes. Using 

the adjusted process capability formula, the engineers can determine the actual process capability 

more accurately. Tables are also provided for engineers/practitioners to use in their in-plant 

applications. A real-world semi-conductor production plant is investigated and presented to 

illustrate the applicability of the proposed approach. 
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