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Capability Adjustment for Non-Central Chi-Squared Processes with Mean

Shift Consideration
Student : Hung-Hsing Hou Advisor : Dr. Hui-Nien Hung
Dr. W. L. Pearn
Institute of Statistics

National Chiao Tung University

Abstract

Process capability indices have been proposed in the manufacturing industry to prove
numerical measures on process,feproduction capability, which are effective tools for quality
assurance and guidance for proeess improvement. Motorola, Inc. introduced its Six Sigma quality
initiative to the world in the 1980s. Some quality practitioners questioned why the Six Sigma
advocates claim it is necessary to add a”1:50 shift to the process mean when estimating process
capability. Bothe (2002) provides a statistical reason’ for including such a shift in the process
average that is base on the chart’s ‘subgroup size. Data in Bothe’ study was assumed to be
approximately normally distributed, but the process output is usually not from approximately
normally. Some research is about the PCls adjustment for process output has a non-normal
distribution. This paper investigates the average run length of non-normal distribution, non-central
chi-squared distribution, and calculate the mean shift adjustments and addresses this problem
computing reliable estimates for capability index Cy for non-central chi-squared process when the

statistically adjustments is considered. For illustration purpose, an application example is presented.

Keyword : Process capability index , Dynamic G, , Mean shift , Non-central chi-squared

distribution
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1 Introduction

Process capability indices (PCIs) which provide numerical measure of production
characteristic to reflect the quality of product have been used in the manufacturing industry. Those
indices have become popular as unit-less measures on process potential and performance. The most
commonly used ones, C, and Gy discussed in Kane (1986), and more advanced indices C,,, and
Comi developed by Chan et al. (1988) and Pearn et al. (1992). Many authors have promoted the use
of various PCIs for evaluating a supplier’s process capability. Based on analyzing the PClIs, a
production department can trace and improve a poor process so that the quality level can be

enhanced and the requirements of the customers can be satisfied. These PCls have been defined

explicitly as:
c :USL—LSL ’ Ck:min{USL_u,'u_LSL},sz USL — LSL ’
? 60 | 36 36 ? 6\/02 +(u-T)
C,, =min USL =u L=LSL

{3\/02 + (U =T)3yJo? +(d=T)

where USL is the upper specification limit, LSL is the lower specification limit, p is the process
mean, o is the process standard deviation (overall process variation), and 7'is the target value. The
index C, considers the overall process variability relative to the manufacturing tolerance, reflecting
product quality consistency. The index Cy takes the magnitude of process variance as well as
process departure from target value, and has been regarded as a yield-based index since it providing
lower bounds on process yield. The index C,,,, emphasizes on measuring the ability of the process
to cluster around the target, which therefore reflects the degrees of process targeting (centering).
Since the design of C,, is based on the average process loss relative to the manufacturing tolerance,
the index C,,, provides an upper bound on the average process loss, which has been alternatively

called the Taguchi index. The index C,,« 1s constructed by appropriately combining the yield-based
1



index Cy and the loss-based index C,, accounting for the process yield as well as the process

loss.

Since Motorola, Inc. introduced its Six Sigma quality mitiative in the 1980s, quality
practitioners have questioned why the followers of this iitiative have added a 1.5¢ shift to the
process mean when estimating process capability. The advocates of Six Sigma have claimed that
such an adjustment is necessary, but they have offered only personal experiences and three dated
empirical studies as justification for this claim (see Bender (1975); Evans (1975); Gilson (1951)).
By examining the sensitivity of control charts to detect changes of various magnitudes, Bothe (2002)
provided a statistically based reason for this claim. In his study, Bothe assumed that the process data
is approximately normally distributed.. However; snon-normal processes occur frequently, in
particular, in the semiconductofandustry. Pyzdek(1992) mentioned that the distributions of certain
chemical processes, such as«zine plating in"a hot-dip galvamzing process, are very often skewed.
Choi et al. (1996) presented an example of a skewed distribution in the “active area” shaping stage
of the wafer’s production processes. The abundance of outputs from skewed distributions, the
stratification, tec., makes the normality-assumption‘ofien unreasonable. The non-central chi-square
distribution plays an important role in communications, for example in the analysis of mobile and
wireless communication systems. It not only includes the important cases of a squared Rayleigh
distribution and a squared Rice distribution, but also the generalizations to a sum of independent
squared Gaussian random variables of identical variance with or without mean, i.e., a "squared
MIMO Rayleigh" and "squared MIMO Rice" distribution. Therefore, a non-central chi-square
process for data analysis has been chosen for this study. Moreover, if the capability indices based on
the normal assumption concerning the data are used to deal with nonnormal observations, the
values of the capability indices may, in a majority of situations, be incorrect and quite likely

misrepresent the actual product quality.



The control charts are commonly used in many industries for providing early warning for the
shift in the process mean. If the control chart detects a process mean shift, then the process is not
under control. However, for momentary process mean shifts, it may be beyond the control chart
detection power. Consequently, the undetected shifts may result in overestimating process capability.
If the process mean shifts are not detected, then unadjusted G, would overestimate the actual
process yield. Bothe (2002) provided a statistical reason for considering such a shift in the process
mean for normal processes. However, if the capability indices are based on the assumption of a
normal distribution of data but are used to deal with non-normal observations, the values of the

capability indices may, in the majority of situations, misrepresent actual product quality.

This paper is organized as follows. “We first, introduce the characteristic of non-central
chi-squared distribution in Section2. In Section 3; we examine Bothe’s approach and finds that the
detection power of the control chart is-less than'0.5'when data comes from non-central chi-squared
distribution. This shows that Bothe’s adjustments ar¢ inadequate when we have non-central
chi-squared processes. Therefore,, we_calculate the-adjustments under various subgroup sizes (n)
and non-central chi-square parameters A with-afixed detection power of 0.5. Further, we provide
the adjusted process capability formula to accommodate the undetected shifts when data is
non-central chi-squared distribution. As a result, our adjustments provide significantly more
accurate calculations of the capability of non-central chi-squared processes. In Section 4, we apply
our method to asset of real data to illustrate the applicability of the process capability index. Finally,

we conclude the paper with a brief summary in Section 5.



2 The Non-Central Chi-Squared Process

All of us know that the case of nonrnormal processes occurs frequently in practice, for example,
in the semiconductor industry. Pyzdek (1992) pointed out the skewed distributions that are bounded
on one side occur frequently in industry and gave several examples, such as a shearing process and a
chemical dip process. The abundance of outputs from skewed distributions makes the normality
assumption often unreasonable. The non-central chi-square distribution plays an important role in
communications, for example in the analysis of mobile and wireless communication systems. It not
only includes the important cases of a squared Rayleigh distribution and a squared Rice distribution,
but also the generalizations to a sum of independent squared Gaussian random varables of identical
variance with or without mean,.i‘e.,”a"squared-MIMO Rayleigh" and "squared MIMO Rice"
distribution. A non-central chissquared-distribution, with 'varied A values, covers a wide class of
non-normal applications. Therefore, a non-central chi-squared process for data analysis has been
chosen for this study. The difference between normal and-non-central chi-squared distributions is
compared in Section 2.1. And_the, statistical property of non-central chi-squared distribution is

discussed in Section 2.2.

2.1 The Non-Central Chi-Squared Distribution

In this section, we investigate the non-central chi-squared distribution to study the effect on the
detection power of the control chart. Observations from the non-central chi-squared distribution are
non-negative. The non-central chi-squared distribution can be denoted as xf (A) with the

probability density function given by Chou et al. (1984) as follows:



N2 x 23 1
f(@)=— Jy o ()| oGx-y - VA fx-y - VA dy .
) <2 )-F(Vz_l) 2{(x—y

where x>0, v>0, A>0, ®( *) is the c.d.f of N(0,1), and the mean and variance are given,

respectively, by (v + 1) and 2(v + 21).

Denote the family of non-central chi-squared distributions with mean (1 + A) and degree of
freedom 1 by x?(X). The non-central chi-squared distributions are skewed. To see how this
distribution is different from the standard normal distribution in terms of skewness and kurtosis,
Table 2-1 presents the values of skewness and kurtosis (which are defined as the third and fourth

moments of the standardized distributiony respectively) of the non-central chi-squared distributions

under study. The skewnesseand kurtesismofay*(X) are vV8(1 + 31)/(1+ 210)%/? and

3+12(1 + 41)/ (1 + 2))?%=respectively. We can find in-Table 2-1 when the A decreases, the
corresponding values of skewness and kurtosis will become large and far away from the values of
the standard normal distribution. The result through-these distributions, we can get some insights of
the effects of non-normality in terms of skewness-and kurtosis. Fig. 2-1 presents several non-central
chi-squared distributions along with a normal distribution for the same mean and variance. In this
study, we let A= 0.1, 0.5, 1, 2, 3, 5, 10, 20 and 100, when v=1. As can be seen from Fig. 2-1 a—f, as A
increases, the non-central chi-squared distribution appears more nearly normal distribution. In fact,
we demonstrate this convergence property in Table 2-1, by calculating the skewness and kurtosis. It
can be seen that as A increases, the skewness and kurtosis of non-central chi-squared distribution are
very close to those of normal distribution. Through these distributions, we wish to get some insights
of'the effects of non-normality on the detection power in terms of skewness and kurtosis in Section

2.



Table 2-1 Values of Skewness and Kurtosis of Various

Non-Central Chi-Squared Distribution 2 (1)

Distribution Skewness Kurtosis
N(O,1) 0 3
2.828427
X*(0) 15
2.797155
x?(0.1) 14.666667
2.500000
x?(0.5) 12
2.177324
x2 (1) 9.666667
1.770875
X*(2) 7.32
5 1.527207 6.183673
x“(3)
5 1.240441 5.082645
x“(5)
0.911125 4.115646
X*(10)
0.657202 3.578227
X*(20)
0.298757 3.119106
X*(100)
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2.2 Statistical Properties of Non-Central Squared Distribution

The non-central chi-squared distribution has a reproductive property: If X; and X, are
independent random variables and each has a non-central chi-squared distribution with possible
different values of vi, v, of v, and A;, A, of A, then X;+X; also has a non-central chi-squared
distribution, with v=v;+v,, and with A=\+A,. Applying this property, let X;, Xo, ..., X, be a
sequence of independent distribution of ¥?(A) and then the distribution of X+Xo+...+X, is

Xa(n}) . Using simply statistical technique, we can conclude that Xy~2 (nl)/n.

The standard deviation of the X, distribution, ox , 1s calculated from its relationship to the

distribution parameters and the subgroup Size n as follows:

o = =520
n

Let Xi, Xy, ..., X, be a sequence of independent distribuition of %2 (3) and we plot the probability
density function of the average Xn' for subgroup size n=2(1)5 in Fig. 2-2 a—d. We can find that the
variance of average Xn will get smaller as subgroup size n increases. This situation means that the
distribution of Xn is more centralized when n>1. Also, Fig. 2-3 a-d presents several non-central
chi-squared distributions of the average Xn for subgroup size n=2(1)5 along with a normal
distribution for the same mean and variance. As can be seen from Fig. 2-3 a—d as n increases, the
non-central chi-squared distribution of the average Xn appears more nearly normal distribution.
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3 Process Mean Shift Investigation for Non-Central
Chi-Squared Process

3.1 The Detection Power of Non-Central Chi-Squared Process

Under Bothe’s Adjustment

The major purpose of individuals control chart is assisting on identifying shifts and drifts in
processes and it is easily to be implemented. But, some assumptions should be satisfied before
control charts are used. The assumptions include that the process characteristics must follow normal
distributions. Actually, non-normal processes occur frequently in practice. Due to above-mentioned
statements, we replace the traditional, 11 + 3o, to be thepper or lower control limits by the quantile
of cumulative distribution . function—for - different \, parameters of xﬁ ™) ( Foo0135v2 and
Fo.99865v2 ) and detect the-power of non-central chi-squared process under Bothe’s capability

adjustments.

Let Xj, Xy, ..., X, be a sequence observations of independent and identically distributed
in %% (). Using the reproductive property of non-central chi-squared distribution, the mean of the

observations is Xn which is distributed in xfl(nk) /n. Also, we can obtain

that p_= p_=1+A, 6=/ 2(1 + 21) andog =/2(1 + 24)/n. Consequently, we derived the

power of non-central chi-squared process as follows. Since the type Il error B is

B=P(LCL<X,<UCL| p, = p,+ko, )
= P(Fyo0135,0 —kOy S Xn—koy < o565, — kai)

= (D(n,/l) (E).99865,n,nﬂ. - kaxi )— q)(n,/l) (E).00135,n,n/1 - kGXi ) >

11



where /- is the detection power of the process, @ ,)(+) is the cumulative distribution function
of xfl (nA)/n.The control limits LCL and UCL are calculated as Fy 99135102 a0d Fp 998651125
respectively. Table 3-1 presents the detection power under the alternative hypothesis test, the mean
shift caused by the shift of location 6, when data comes from non-central chi-squared distribution
with /=0, 0.1, 0.5, 1(1)10, 20, 50, 100, and 700. Table 3-2 presents the detection power under the
alternative hypothesis test, the mean shift caused by the shift of the parameter A, when data comes
from non-central chi-squared distribution with A=0, 0.1, 0.5, 1(1)10, 20, 50, 100, and 700. The
magnitude of shift in the second row on the left is Bothe’s capability adjustments determined when
data comes from normal distribution and the detection power is 0.5. From Table 3-1, we can find
that the detection power is less than 0.5 when data comes from non-central chi-squared distribution
under Bothe’s capability adjustments, Otr study shows that the detection power gets closer to 0.5 as
A increases, which is reasonable since-the-corresponding distributions get closer to the standard

normal distribution. This is due to Bothe’s (2002) approach is based on the normality assumption of
the data and the detection power is 0.5, The skewness of x> (L) is V8(1 + 31)/(1 + 21)3/2.

Therefore, as A decreases the nonfcentral chi-squared-distribution is more skewed and the detection
power is poorer. For example, when A= 0.5 and the subgroup size n=2, the detection power is 0.037.
It implies Bothe’s adjustments are inadequate when we have skewed processes. Consequently, in
our study, we determined the capability adjustment and calculation when process data comes from

non-central chi-squared distribution.

12



Table 3-1 Detection power of various non-central chi-square processes

under the shift of location
n | & y gy
A=0 A=0.1 | 2=0.5 =1 = =3 =4 =5 =6
2 | 212 0.027 0.028 | 0.037 | 0.051 | 0.075 | 0.097 | 0.116 | 0.132 | 0.147
3 | 1L.73| 0.040 0.042 | 0.055 | 0.073 | 0.104 | 0.130 | 0.152 | 0.170 | 0.186
4 | 150 | 0.054 0.055 | 0.072 | 0.093 | 0.129 | 0.158 | 0.181 | 0.200 | 0.215
5 | 1.34| 0.066 0.068 | 0.087 | 0.110 | 0.149 | 0.179 | 0.202 | 0.221 | 0.236
6 | 1.22 | 0.077 0.079 | 0.099 | 0.125 | 0.165 | 0.195 | 0.218 | 0.237 | 0.252
7 | 113 | 0.088 0.091 | 0.112 | 0.139 | 0.181 | 0.211 | 0.234 | 0.252 | 0.266
8§ | 1.06 | 0.100 0.102 | 0.125 | 0.153 | 0.196 | 0.226 | 0.249 | 0.267 | 0.281
30 | 0.55 | 0.233 0.235 | 0.260 | 0.287 | 0.323 | 0.346 | 0.362 | 0.374 | 0.384
Table 3-1 Detection power of variousnon-¢entral chi-square processes
under the shift of location(continued)
n | & | X0
A=7 =8 =9 |A=10 | A=20 | A=50 |A=100 | A=700 | N(,1)

2(212| 0160 | 0.172 | 0.182 | 0.192 | 0.256 | 0.332 | 0.377 0.452 0.5
3(1173| 0200 | 0.212 | 0.222 | 0.232 | 0.293 | 0.360 | 0.398 0.460 0.5
41150| 0229 | 0241 | 0.251 | 0.260 | 0.317 | 0.379 | 0.412 0.466 0.5
5(134| 0250 | 0.261 | 0.271 | 0.280 | 0.333 | 0.389 | 0.420 0.468 0.5
6| 122 0264 | 0.275| 0.285 | 0.293 | 0.344 | 0.395 | 0424 0.468 0.5
7(1113| 0279 | 0.289 | 0.298 | 0.306 | 0.354 | 0403 | 0.429 0.470 0.5
8(1106| 0293 | 0303 | 0.312 | 0320 | 0.366 | 0.412 | 0.437 0.475 0.5
30| 055| 0391 | 0.398 | 0403 | 0408 | 0434 | 0459 | 0472 0.493 0.5

13




Table 3-2  Detection power of various non-central chi-square processes

under the shift of parameter
n | & | X¥®
=0 | A=01 | A=05 | A=l =2 | A3 =4 A=5 A=6
21212 0.155| 0.151| 0.156| 0.169| 0.192| 021| 0224 0236| 0246
31173) 0175] 0171] 0.178| 0.192| 0.216| 0235| 0249| 0.261| 0.271
41150( 0.191| 0.187| 0.195]| 0210 | 0235| 0254| 0.269| 0.281| 0.290
50134 0203] 0200| 0208| 0224 | 0249 | 0268 | 0282| 0294| 0.303
6122 0212 0209| 0218| 0.234| 0259 | 0278 | 0.292| 0303| 0312
711131 0222 0219| 0228 | 0.244| 0269 | 0288 | 0.301| 0313| 0322
8| 1.06 0231 0228| 0238| 0254| 0.28| 0298 0312| 0323| 0332
301 055 0314] 0313| 0324| 0339 0361 | 0376 0387 0.395| 0402
Table 3-2  Detection power of variousnon-¢entral chi-square processes
under: the shift of parametet(continued)
n |8 | ¥

A=7 =8 =9 |A=10 | A=20 | A=50 |2A=100 |A=700 | N(O,1)

2212 | 0254 |0.262|0.269| 0.275 | 0.315 | 0365 | 0.396 | 0.455 0.5

31173| 0280 | 0.283| 0.294| 0.300 | 0.339 | 0384 | 0412 | 0.462 0.5

41150| 0.299 | 0.306|0.313| 0.318 | 0355 | 0.397 | 0.423 | 0.468 0.5

5134 | 0312 | 0319|0.325| 0.331 | 0366 | 0.405 | 0.429 | 0.470 0.5

6|122| 0320 |0.327|0.333| 0338 | 0.372 | 0409 | 0431 | 0471 0.5

7113 | 0330 | 0336|0.342| 0.347 | 0380 | 0415 | 0436 | 0.472 0.5

8|1.06| 0339 |0346|0.352| 0.357 | 0388 | 0423 | 0.443 | 0.476 0.5

30 055| 0407 |0412|0416| 042 | 0441 | 0462 | 0474 | 0.493 0.5
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3.2 The Modified Mean Adjustments for Non-Central

Chi-Squared Process

The undetected mean shift adjustment cause by the shift of location & in Table 3-3 is called ASs
which is the magnitude of shift we need to adjust based on designated detection power is 0.5 and
process data comes from non-central chi-squared distribution. The undetected mean shift
adjustment cause by the shift of parameter A in Table 3-4 is called ASs, which is the magnitude of
shift we need to adjust based on designated detection power is 0.5 and process data comes from
non-central chi-squared distribution. Table 3-3 and Table 34 display the magnitude of adjustments
ASs based on the detection power is.0.5 and; data comes from x?(A) with various values of
A(=0.1, 0.5, 1(1)10, 20, 50, and 400-) and n=2(1)30. Forexample, if we set A=3 and n=5, then the
adjustment from Table 3-3 45 ASs;=179. We conclude that the adjustment ASsoo (=1.790) is
required based on the detection power is 0.5 anddata comes ffom x2 (). It also shows from Table
3-3 that the adjustments ASsyp-get closer to Bothe’s-adjustments as A increases (when n=2(1)10),
which is reasonable since the” eortesponding distfibutions get closer to the standard normal
distribution. However, we should notice that when A is small (distribution is strongly skewed), the
required adjustment in the capability index formula is much greater than those for normal processes.
Using the adjusted process capability formula, the engineers can determine the actual process
capability more accurately. Fig. 3-1 presents the power curves, these lines on the graph depict the
probabilities of detecting a shift in p for the commonly used subgroup size n=3, 4, 5 (expressed in
o units on the horizontal axis) when A=3. All these lines are close to zero for small shifts m p. It
can be found that the power of the chart with all three curves eventually leveling off close to 100%
as the size of the shifts in excess of 3.56. The dashed horizontal line drawn in Fig. 3-1 shows that
there is a 50% probability of missing a 1.79c shift in p when n is 5, while p must move by

2.472c to have this same probability when n is only 3. The shift sizes that have a 50% probability
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of remaining undetected, called ASs, values are listed in Table 3-3 for subgroup sizes n=2(1)30.
Momentary movements in i smaller than ASsyc are more than likely to be missed by a control
chart. Therefore our adjustment ASs takes into account those shifts that are not detected by the

control chart.
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Table 3-3  ASs values for several subgroup size n and various A values

under the shift of location
A 0 0.1 0.5 1 2 3 4 5 6 N(0,1)

n

2 4182 | 4.157 | 3.931 | 3.694 | 3.400 | 3.225 | 3.107 3.021 | 2954 | 2.12
3 3.126 | 3.109 | 2951 | 2789 | 2.590 | 2472 | 2.393 233512290 | 1.73
4 2.553 | 2.539 | 2419 | 2296 | 2.146 | 2.057 | 1.997 1.954 | 1.920 | 1.50
5 2188 | 2177 | 2079 | 198 | 1.860 | 1.789 | 1.741 1.705 | 1.678 | 1.34
6 1.932 | 1.922 | 1.841 | 1.758 | 1.657 | 1.598 | 1.558 1.528 | 1.506 | 1.22
7 1.741 | 1.733 | 1.663 | 1.592 | 1.505 | 1.454 | 1.420 1.395 | 1.375 | 1.13
8 1.592 | 1.585 | 1.524 | 1.462 | 1.386 | 1.341 | 1.311 1.289 | 1.272 | 1.06
9 1473 | 1467 | 1412 | 1.357 | 1.290 | 1.250 | 1.223 1.203 | 1.188 | 1.00
10 1.375 | 1.369 | 1.320 | 1.270 {210 | 1.174 | 1.149 1.132 | 1.118 | 0.95
11 1.292 | 1.287 | 1242401197 | 1.142-{14109 | 1.087 1.071 | 1.059 | 0.90
12 1.221 | 1.217 | 1.176 4 1134 | 1.084 | 1.054 | 1.034 1.019 | 1.007 | 0.87
13 1.16 | 1.156 | 1418 | 108 [©1.033 | 1,005 0.987 0973 | 0963 | 0.83
14 1.107 | 1.103 | 1068 1°1.032 | 0989 | 0.963 .| 0.946 0933 | 0.923 | 0.80
15 1.059 | 1.055 | 1:023 | 0.990{70.949 . 0.925+ 0.909 0.897 | 0.888 | 0.77
16 1.017 | 1.013 | 0.983.]10.952 | 0.914 1 0.891.'| 0.876 0.865 | 0.856 | 0.75
17 0979 | 0.975 | 0947 4.0917 | 0.882_|70.861 | 0.846 0.836 | 0.828 | 0.73
18 0944 | 0.941 | 0914 | 0887 |710.853 '} 0.833 | 0.819 0.809 | 0.802 | 0.71
19 0913 | 091 0.884 | 0.858 | 0.826 | 0.807 | 0.794 0.785 | 0.778 | 0.69
20 0.884 | 0.882 | 0.857 | 0.832 | 0.802 | 0.784 | 0.772 0.763 | 0.756 | 0.67
21 0.858 | 0.855 | 0.832 | 0.809 | 0.780 | 0.762 | 0.751 0.742 | 0.736 | 0.65
22 0.834 | 0.831 | 0.809 | 0.787 | 0.759 | 0.743 | 0.731 0.723 | 0.717 | 0.64
23 0.811 | 0.809 | 0.788 | 0.766 | 0.740 | 0.724 | 0.713 0.706 | 0.700 | 0.63
24 0.79 | 0.788 | 0.768 | 0.747 | 0.722 | 0.707 | 0.697 0.689 | 0.683 | 0.61
25 0.771 | 0.769 | 0.749 | 0.729 | 0.705 | 0.691 | 0.681 0.674 | 0.668 | 0.60
26 0.753 | 0.751 | 0.732 | 0.713 | 0.689 | 0.676 | 0.666 0.659 | 0.654 | 0.59
27 0.736 | 0.734 | 0.716 | 0.697 | 0.675 | 0.661 | 0.652 0.646 | 0.64 0.58
28 0.72 | 0.718 0.7 | 0.683 | 0.661 | 0.648 | 0.639 0.633 | 0.628 | 0.57
29 0.704 | 0.703 | 0.686 | 0.669 | 0.648 | 0.635 | 0.627 0.621 | 0.616 | 0.56
30 0.69 | 0.688 | 0.672 | 0.656 | 0.635 | 0.623 | 0.615 0.609 | 0.605 | 0.55
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Table 3-3  ASs values for several subgroup size n and various A values

under the shift of location (continued)

A 7 8 9 10 20 50 100 N(O,1)
n
2 2.900 2.856 2.818 2.786 2.604 2432 2.343 2.12
3 2.254 2.224 2.199 2.177 2.055 1.940 1.880 1.73
4 1.893 1.870 1.851 1.835 1.743 1.656 1.611 1.50
5 1.656 1.638 1.623 1.610 1.536 1.467 1.431 1.34
6 1.487 1.472 1.460 1.449 1.387 1.329 1.299 1.22
7 1.359 1.346 1.336 1.326 1.273 1.223 1.198 1.13
8 1.258 1.247 1.237 1.229 1.183 1.139 1.116 1.06
9 1.176 1.166 1.157 1.150 1.108 1.070 1.050 1.00
10 1.107 1.098 1.090 1:084 1.046 1.011 0.993 0.95
11 1.049 1.040 1.033 1.027 0.993 0.962 0.945 0.90
12 0.998 0.991 0:984 0.979 0.947 0.918 0.903 0.87
13 0.954 0.947 0.941 0.936 0.907 0.880 0.866 0.83
14 0.915 0.909 0903 0.898 0.872 0.847 0.834 0.80
15 0.880 0.874 0.869 0.865 0.840 0.816 0.804 0.77
16 0.849 0.844 0.839 0.835 0811 0.789 0.778 0.75
17 0.821 0.816 0.811 0.807 0.785 0.765 0.754 0.73
18 0.795 0.790 0.786 0.782 0.761 0.742 0.732 0.71
19 0.772 0.767 0.763 0.759 0.740 0.721 0.712 0.69
20 0.750 0.746 0.742 0.739 0.720 0.702 0.693 0.67
21 0.730 0.726 0.722 0.719 0.701 0.685 0.676 0.65
22 0.712 0.708 0.704 0.701 0.684 0.668 0.660 0.64
23 0.695 0.691 0.687 0.684 0.668 0.653 0.645 0.63
24 0.679 0.675 0.672 0.669 0.653 0.639 0.631 0.61
25 0.664 0.660 0.657 0.654 0.639 0.625 0.618 0.60
26 0.650 0.646 0.643 0.640 0.626 0.613 0.606 0.59
27 0.636 0.633 0.630 0.628 0.614 0.601 0.594 0.58
28 0.624 0.621 0.618 0.615 0.602 0.589 0.583 0.57
29 0.612 0.609 0.606 0.604 0.591 0.579 0.572 0.56
30 0.601 0.598 0.595 0.593 0.580 0.569 0.563 0.55
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Table 3-4  ASs values for several subgroup size n and various A values
under the shift of parameter
A 0 0.1 0.5 1 2 3 4 5 6 N(0,1)
n

2 | 4314 | 4259 | 3973 | 3.712 | 3.406 | 3.228 | 3.109 | 3.022 | 2955 | 2.12
3 13207 | 3170 | 2976 | 2.800 | 2.594 | 2475 | 2394 | 2336 | 2291 | 1.73
4 | 2611 | 2583 | 2437 | 2304 | 2.149 | 2.059 | 1.999 | 1954 | 1.920 | 1.50
5 12232 2210 | 2093 | 1.987 | 1.862 | 1.790 | 1.742 | 1.706 | 1.679 | 1.34
6 | 1.967 | 1.949 | 1.852 | 1.763 | 1.660 | 1.599 | 1.559 | 1.529 | 1.506 | 1.22
7 | L771 | 1755 | 1.672 | 1.596 | 1.507 | 1455 | 1420 | 1.395 | 1.375 | 1.13
8 | 1.618 | 1.605 | 1.532 | 1466 | 1.388 | 1.342 | 1.312 | 1.289 | 1.272 | 1.06
9 | 1495 | 1484 | 1419 | 1.360 | 1.291 | 1.251 | 1.223 | 1.204 | 1.188 | 1.00
10 | 1.395 | 1.384 | 1.326 | 1.273;p .24, | 1.174 | 1.150 | 1.132 | 1.118 | 095
11 | 1.310 | 1.300 | 1.248 4 1.200 | 1.143~{1.210 | 1.088 | 1.071 | 1.059 | 0.90
12 | 1.237 | 1229 | 1181 L4137 1.085 |.1.054.| 1.034 | 1.019 | 1.008 | 0.87
13 | 1.175 | 1.167 | 1.123 | 1.082 | "1.034 | 4.006 - 0.987 | 0.973 | 0.963 | 0.83
14 | 1.120 | 1.112 | 1072 |"1.034 | 0.989 | 0963 [.0.946 | 0.933 | 0.923 | 0.80
15 | 1.071 | 1.065 | 1.027 | 0.99171<0.950 | 0.925/%0.909 | 0.897 | 0.888 | 0.77
16 | 1.028 | 1.022 | 0.986.\ 0.953 | 0.914 F 0.891.| 0.876 | 0.865 | 0.856 | 0.75
17 | 0989 | 0983 | 0.950°1.0:919 | 0.882 |-0861 | 0.846 | 0.836 | 0.828 | 0.73
18 | 0954 | 0949 | 0917 | 0.888 10853 | 0.833 | 0.819 | 0.809 | 0.802 | 0.71
19 | 0922 | 0917 | 0.887 | 0.860 | 0.827 | 0.808 | 0.795 | 0.785 | 0.778 | 0.69
20 | 0.893 | 0.888 | 0.860 | 0.834 | 0.802 | 0.784 | 0.772 | 0.763 | 0.756 | 0.67
21 | 0.866 | 0.861 | 0.835 | 0.810 | 0.780 | 0.763 | 0.751 | 0.742 | 0.736 | 0.65
22 | 0.841 | 0.837 | 0.812 | 0.788 | 0.760 | 0.743 | 0.732 | 0.723 | 0.717 | 0.64
23 1 0.819 | 0.814 | 0.790 | 0.767 | 0.740 | 0.724 | 0.714 | 0.706 | 0.700 | 0.63
24 1 0.797 | 0.793 | 0.770 | 0.748 | 0.722 | 0.707 | 0.697 | 0.689 | 0.683 | 0.61
25 1 0.777 | 0.774 | 0.751 | 0.730 | 0.706 | 0.691 | 0.681 | 0.674 | 0.668 | 0.60
26 | 0.759 | 0.755 | 0.734 | 0.714 | 0.690 | 0.676 | 0.666 | 0.659 | 0.654 | 0.59
27 1 0.742 | 0.738 | 0.717 | 0.698 | 0.675 | 0.662 | 0.652 | 0.646 | 0.641 | 0.58
28 | 0.725 | 0.722 | 0.702 | 0.683 | 0.661 | 0.648 | 0.639 | 0.633 | 0.628 | 0.57
29 | 0.710 | 0.707 | 0.688 | 0.670 | 0.648 | 0.635 | 0.627 | 0.621 | 0.616 | 0.56
30 | 0.695 | 0.692 | 0.674 | 0.656 | 0.636 | 0.624 | 0.615 | 0.609 | 0.605 | 0.55
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Table34  ASs values for several subgroup size n and various A values

under the shift of parameter (continued)

A 7 8 9 10 20 50 100 N(O,1)
n
2 2.901 2.856 2.819 2.786 2.604 2432 2.343 2.12
3 2.254 2.224 2.199 2.177 2.055 1.940 1.880 1.73
4 1.893 1.870 1.851 1.835 1.743 1.656 1.611 1.50
5 1.657 1.639 1.623 1.610 1.536 1.467 1.431 1.34
6 1.488 1.473 1.460 1.449 1.387 1.329 1.299 1.22
7 1.360 1.347 1.336 1.326 1.273 1.223 1.198 1.13
8 1.258 1.247 1.237 1.229 1.183 1.139 1.116 1.06
9 1.176 1.166 1.157 1.150 1.108 1.070 1.050 1.00
10 1.107 1.098 1.090 1:084 1.046 1.011 0.993 0.95
11 1.049 1.040 1.033 1.027 0.993 0.962 0.945 0.90
12 0.998 0.991 0:984 0.979 0.947 0.918 0.903 0.87
13 0.954 0.947 0.941 0.936 0.907 0.880 0.866 0.83
14 0.915 0.909 0903 0.898 0.872 0.847 0.834 0.80
15 0.881 0.874 0.869 0.865 0.840 0.816 0.804 0.77
16 0.849 0.844 0.839 0.835 0811 0.789 0.778 0.75
17 0.821 0.816 0.811 0.807 0.785 0.765 0.754 0.73
18 0.795 0.790 0.786 0.782 0.761 0.742 0.732 0.71
19 0.772 0.767 0.763 0.760 0.740 0.721 0.712 0.69
20 0.750 0.746 0.742 0.739 0.720 0.702 0.693 0.67
21 0.730 0.726 0.722 0.719 0.701 0.685 0.676 0.65
22 0.712 0.708 0.704 0.701 0.684 0.668 0.660 0.64
23 0.695 0.691 0.687 0.684 0.668 0.653 0.645 0.63
24 0.679 0.675 0.672 0.669 0.653 0.639 0.631 0.61
25 0.664 0.660 0.657 0.654 0.639 0.625 0.618 0.60
26 0.650 0.646 0.643 0.641 0.626 0.613 0.606 0.59
27 0.636 0.633 0.630 0.628 0.614 0.601 0.594 0.58
28 0.624 0.621 0.618 0.615 0.602 0.589 0.583 0.57
29 0.612 0.609 0.606 0.604 0.591 0.579 0.572 0.56
30 0.601 0.598 0.595 0.593 0.580 0.569 0.563 0.55
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Fig. 3-1 Power curve for the commonly used subgroup size 3,4, 5when A =3

3.3 The Modified Estimator of Process Capability C,;
33.1  Cpi in Non-Normal Case

The index Gy has been viewed as a yield-based index since it provides bounds on the process

yield for a normally distributed process with a fixed value of C. This index Gy 1s defined as:

USL—u u—-LSL
30 3o

C,, =min{

i

where as above USL is the upper specification limit, LSL is the lower specification limit, p is the
process mean and ¢ is the process standard deviation. The proper use of process capability indices,
which are statistical measures of process capability, is based on several assumptions. One of the

most essential is that the process monitored is supposed to be stable and the output is approximately
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normally distributed. When the distribution of a process characteristic is nonrnormal, PCls
calculated using conventional methods could often lead to erroneous and misleading interpretation

of'the process’s capability.

In the recent years, several approaches to problems of PCls for the nonrnormal populations
have been suggested. A widely accepted approach for PCI computation is to use the popular normal
plot so that the normality assumption can be verified simultaneously. Analogous to the normal
probability plot, where the “nature” process width is between the 0.135 percentile and 99.865
percentile, surrogate PCI values may be obtained via appropriately selected probability plots. Since
the median 1s usually the preferable central value for a skewed distribution, the corresponding G,

and C, are defined as:

USL—median USL - F

pu

B (upper 0.135% point) —median - F} g0s65s — Fy 5

c - median — LSL _ F,s—LSL
"' median~ (lower-0:35% point) Fys —F) o135

Then the index C,x would be calculated as the minimum of C,,, and C,, namely:

USL—Fys _Fy=LSL |
_Fo.s ’FO.S_F

0.00135

C, =min{C, ,C }=min{

0.99865

so that the normality assumption can be verified simultaneously.

We can obtain more accurate measures of these percentile points (Fygpszs, Fos and Fpgosss)
under consideration in the non-normal case, if we are able to find a better distributional form for the
data, which provides a very satisfactory fit. This involves modeling the process data with alternative

probability plot models, such as the Weibull or gamma ones (see e.g. Dudewicz and Mishra, 1998;
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Kotz and Lovelace, 1998). Nevertheless, an obvious disadvantage of probability plotting is that it &
not a truly objective procedure. It is quite possible for two analysts to arrive at different conclusions
using the same data. Accordingly, it is often desirable to supplement probability plots with
goodness-of-fit tests, which possess more formal statistical foundations (see, e.g., Shapiro, 1995).
Choosing proper distribution to fit the data is an important step in probability plotting. Sometimes
one can use the available knowledge of the physical phenomenon or the past experience to suggest a

choice of the distribution.

332  Adjustmentof Cp

Acknowledging that a process will experience'shift in 75 of various magnitudes and knowing
that not all of these will be discovered,-somef allowance for them must be made when estimating
outgoing quality so customers are-not disappointed. Because shifts ranging in size from 0 to ASsoo
are the ones likely to remainundetected (large moves should be caught by the chart), a conservative

approach is to assume that every missed shift is-as-large as' ASs.

Considering the undetected process mean shift as large as ASsyo, we use Fjs minus ASsio to
evaluate how well the process output meets the LSL and Fys plus ASsyc for determining
conformance to the USL when estimating the index G . Incorporating both of these adjustments

mto the basic Gy formula we obtained the ‘‘dynamic” Cy index by making the following

modifications:
Cpk — mln{USL - (FZ)S + ASSOG) ; (FZ)S - ASSOG) _LSL}
0.99865 _Fo.s Fo.s - E).ooms
ming USL=Fus _ASwo (Fys—LSL  AS,0 \
E).99865 _Fo.s E).99865 - E).s E).s - E).ooms Fo.s _E).ooms
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By considering an adjustment ASsyc in this assessment for undetected shifts in process median, the
estimate of dynamic index C, will decrease and the expected total number of nonconforming parts
will increase. It must be noticed that this nonconforming level assumes that undetected shifts are
happening almost constantly and that everyone is equal to ASsoc. From Table 3-3, the practitioners
can find the ASs to calculate the dynamic index Gy for determining whether their process meets

the preset capability requirement, and make reliable decisions to the process.

24



4 Application

Recently, due to the excellent current driving capability and microwave performances,
heterojunction bipolar transistors (HBTs) have extensively employed on digital and analogy
applications and are recognized as promising electronic devices for high frequency and high
performance circuit applications, such as monolithic microwave integrated circuit and optoelectronic
integrated circuit. For successful process control, process optimization, circuit design, and compact
transistor modeling, there are several problems that must be overcome to realize practical high speed
ICs. One of the problems is a current gain reduction associated with the scaling down of transistor
size. Since the emitter dimension must be minimized for higher switching speed operation,
elimination of the current gain reduction’ss very important for HBT designs. Also, Cutoff frequency
and maximum oscillation frequency were changed with enmitter dimension, and this was attributed to

the variation of resistances and junction capacitances with emitter structure.

Therefore, we should address on one of the characteristics of HBTSs, the emitter area. The upper
and lower manufacturing specific’limits-are.set-toUSL=45 um’ and LSL=>5 uny’, respectively. If the
characteristic data does not fall within the tolerance (LSL, USL) , the component of the emitter area is
consider to nonconforming/defective, and will not be used to make the emitter area of that particular

model.

As shown in Table 4-1, a part of historical data is collected. Fig. 4-2 displays the histogram,
and Fig. 4-1 displays the normal probability plot of these historical data. From the Fig. 4-1 and
Fig. 4-2, it is evident to conclude the data collected from the factory are not normal distributed. The
data analysis results justify that the process is significantly away from the normal distribution. By
the goodness-of-fit tests, the historical data indicates that the process pretty approximates to be

distributed as non-central chi-squared. The parameter v and A of non-central chi-squared
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distribution could be calculated from historical data giving v=1 and A=20. Therefore, it is
approximate to use this approach and we can obtain more accurate measures of the three quantile:

Foooss, Fos (median) , and F7 ggss5 for

o :\/1(1+2;t) _ \/%(1+2-20) =/4.1=2.025
n

under consideration. Then “dynamic” Cy, index can be calculated as follows:

USL-F,,-AS,,0) F,;—AS,,0c—LSL

dynamic C , =min{ : ,— }
7" 0.99865 E).s E).s _E).00135
. 45— 20-1.046-2.025 20-1.046-2.025-5
=min { , }
55.832-20 20-2.167
~ min{0.64,0.72}
=0.64

with ASs;=1.046 for =10 fiom Table 3-3. Compared it'to the value of the following conventional

mdex:

USL~F,, F,,—LSL
F0.99865 - Fo.s , Fo.s - F0.00135
45-20 20-5

55.832-20° 20—2.167}
~min{ 0.70,0.841=0.70

C, =min{C

pu,Cp,}:rnin{

}

=min{

calculated by a traditional capability study (the shift of process mean is not considered), we can find
that the value of the modified Cyis much smaller. This result indicates if the process mean shifts
that are not detected then unadjusted C,x would overestimate the actual process yield which is not
derisible. Our adjustment takes into account those shifts that are not detected so that the practitioner
would be able to keep its quality promise for this process. As the adjusted process capability drops

below the desired quality level, the practitioner should stop the process because the process does not
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meet his preset capability requirement. As the subgroup size n increases, the shift in process mean
have a higher probability of detection. For example, if n=15, the ASsy would be 0.840 for x2(20)

from Table 3-3, and then the “dynamic” C, index is

USL-F,,—AS,,0) F,;—AS,,c—LSL

dynamic C , = min{ : , }
i E).99865 _F;).s E).s _E).oows
. 45— 20-0.840-1.653 20-0.840-1.653-5
=min{ : f
55.832-20 20-2.167

~min{0.66,0.76}=0.66

Changing n from 10 to 15 increases the dynamic Cy, index from 0.64 to 0.66, and the total number

of nonconforming parts would be reduced.

Table 4-1 The 100 observations are collected from the historical data

32955 | 15736 | 25510 w 18311 | 6.255 19248 | [-16.3 32922 | 17451 | 11374

9.858 18385 | 14725 #37.943 | 27:512.,=20:158/ [1:23.992 | 24408 | 19497 | 20.954

28.506 | 16.812 | 31.125 | 34926 “| 21.003 | 8.L16 19456 | 18011 | 16695 | 23.67

18.49 9.844 11532 | 25789 £ 2231-11.19973 | 17.759 | 24597 | 15493 | 16.397

17.771 | 24566 | 24.018 | 6.658 14296 | 20389 | 29304 | 10274 | 13462 | 17752

33.647 | 23895 | 20944 | 30906 | 10373 | 26093 |21.52 20644 | 29.198 | 24368

31458 | 13.159 | 23962 | 27.004 | 24527 | 2357 15256 | 20438 | 24599 | 9.911

12983 | 823 26.109 | 22977 | 10126 | 41423 | 8.854 16815 | 17.774 | 13.339

11316 | 18924 | 5.114 33823 | 2243 20686 | 31242 | 11.123 | 9.868 37314

14.859 | 43.001 | 1745 35999 | 17945 | 16318 | 12035 | 11.187 | 19.18 | 19.607
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5 Conclusions

In this paper, we considered the problem of how to determine the adjustments for process
capability with mean shift when data follows the non-central chi-squared distribution. We first
examined Bothe’s approach and found the detection power is less than 0.5 when data comes from
the non-central chi-squared distribution, showing that Bothe’s adjustments are inadequate when
we have non-central chi-squared processes. For non-central chi-squared processes, we calculated
the adjustments for various sample sizes (n) and non-central chi-square parameter (v, A) with
detection power fixed to 0.5. For small value of A (distribution is strongly skewed), the required
adjustment in the capability index formula is much greater than those for normal processes. Using
the adjusted process capability formula; the engmeers can determine the actual process capability
more accurately. Tables are also provided | for engineers/practitioners to use in their in-plant
applications. A real-world=semi-conductor production plant is investigated and presented to

illustrate the applicability ofthe proposed approach.
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