
國 立 交 通 大 學 
 

統 計 學 研 究 所 

 

碩 士 論 文 

 

 

類別製造過程的多變量指數加權移動平均監控計劃 

 

Multivariate Exponentially Weighted Moving Average 

Monitoring Scheme for a Categorical Manufacturing Process 
 

 

 

               研 究 生：洪鏡婷 

               指導教授：陳志榮  博士 

 

 

中 華 民 國 九 十 九 年 六 月 



類別製造過程的多變量指數加權移動平
均監控計劃 

 
Multivariate Exponentially Weighted Moving Average 
Monitoring Scheme for a Categorical Manufacturing 

Process 
 

  研 究 生：洪鏡婷             Student：Jing-Ting Hong 

  指導教授：陳志榮  博士       Advisor：Dr. Chih-Rung Chen 

 

國 立 交 通 大 學 

統 計 學 研 究 所 

碩 士 論 文 

 

A Thesis 
Submitted to Institute of Statistics 

College of Science 
National Chiao Tung University 

In Partial Fulfillment of the Requirements 
for the Degree of Master 

in   
Statistics 
June 2010 

Hsinchu, Taiwan 
 

中 華 民 國 九 十 九 年 六 月 



類別製造過程的多變量指數加權移動平
均監控計劃 

 
 
 
 
 

學生：洪鏡婷 

 

指導教授：陳志榮  

 

國立交通大學統計學研究所 

 

摘 要       
 
    本文是發展一個方法去監控不同類別的資料。首先介紹

Dirichlet-多項式模型，根據該模型提出了類別製造過程的多變量

指數加權移動平均管制圖並研究其相關的特性。最後用模擬的資

料來說明這個方法的實用性與適用性。 
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ABSTRACT 
    This paper is to develop a method to monitor the fractions of the tested 

items falling into different categories of pass/fail modes. The 

Dirichlet-compound multinomial model is first introduced and then a 

multivariate exponentially weighted moving average control chart is proposed 

for a categorical manufacturing process under the proposed model. Some 

relevant properties of the proposed control chart are also investigated. Finally, a 

simulation study is presented to show the usefulness and applicability of the 

proposed methodology.
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1 Introduction

1.1 Motivation

In the current international marketplace, quality improvement is a key point for main-

taining competitive advantage. Statistical process control is an effective tool for achieving

process stability and improving process capability through variation reduction. When a

product item is tested, usually one has more information than just pass or fail. Often

there are categories of failures. For instance, a product may have several categories of

failure modes. Thus, in the paper, a multivariate exponentially weighted moving av-

erage monitoring scheme is proposed for a categorical manufacturing process under the

Dirichlet-compound multinomial model and then some relevant properties of the proposed

monitoring scheme are also investigated.

1.2 Literature Review

Statistical process control (SPC) refers to some statistical methods which are widely

used to monitor and improve the quality and productivity of industrial processes and

service operations. SPC primarily involves the implementation of control charts. The

method of control charts is a graphical tool which is used to monitor processes in or-

der to distinguish special significant causes of variation from general assignable causes

of variation in processes. The Shewhart (Shewhart, 1931), cumulative sums (CUSUM)

(Page, 1954), and exponentially weighted moving average (EWMA) (Roberts, 1959) con-

trol charts are widely used in practice. Standard control chart usage involves phase I

and phase II applications, with two different and distinct objectives. In phase I, a set of

process data is gathered and analyzed all at once in a retrospective analysis, constructing

trial control limits to determine if the process has been in control over the period of time

where the data were collected, and to see if reliable control limits can be established to

monitor future production. In phase II, we use the control chart to monitor the process by

comparing the sample statistic for each successive sample as it is drawn from the process

to the control limits.
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The Shewhart control chart (Shewhart, 1931) monitors the process observations di-

rectly. Suppose that {xtm: t = 1, 2, ... and m = 1, ..., n} are independent univariate mea-

surements, where n is a known positive integer and xt1, ..., xtn are identically distributed

for each t. Set x̄t ≡
∑n

m=1 xtm/n for t = 1, 2, .... Let µ0 denote the known real-valued

in-control process target and σ0 the known positive in-control process standard deviation.

When x̄t ∼ N(µ0, σ
2
0/n), the process is called in control at time t; otherwise, out of control

at time t. Then the Shewhart control chart is based on the values

wt = x̄t − µ0 (1)

for t = 1, 2, .... Shewhart (1931) proposed the stopping time of the Shewhart control chart

as the first time t such that

|wt| > L
σ0√
n
, (2)

where L = 3. In practice, L is often chosen to achieve a specified in-control average run

length.

Page (1954) introduces the CUSUM chart as a sequential probability test. Suppose

that {xtm: t = 1, 2, ... and m = 1, ..., n} are independent univariate measurements, where

n is a known positive integer and xt1, ..., xtn are identically distributed for each t. Set x̄t ≡∑n
m=1 xtm/n for t = 1, 2, .... Let µ0 denote the known real-valued in-control process target

and σ0 the known positive in-control process standard deviation. When x̄t ∼ N(µ0, σ
2
0/n),

the process is called in control at time t; otherwise, out of control at time t. The CUSUM

algorithm assigns equal weights to past observations, and its tabular form consists of two

quantities,

w+
t = max

[
0, w+

t−1 + (x̄t − µ0)− kσ0/
√
n
]

(3)

and

w−t = min
[
0, w−t−1 + (x̄t − µ0) + kσ0/

√
n
]

(4)

for t = 1, 2, ..., where w+
0 = w−0 = 0 and k is the reference value which is often chosen

about halfway between the target µ0 and the out-of-control mean value µ1 of interest.

2



Page (1954) proposed the stopping time of the CUSUM control chart as the first time t

such that either w+
t or w−t exceed the decision interval H, where H is chosen to achieve

a specified in-control average run length, e.g., H = 5 when ARL0 = 465.

Roberts (1959) proposed a monitoring scheme which is based on the EWMA of

the observations. The EWMA, originally called geometric moving average (GMA) in

Roberts (1959), is briefly introduced as follows: Suppose that {xtm: t = 1, 2, ... and m =

1, ..., n} are independent univariate measurements, where n is a known positive integer

and xt1, ..., xtn are identically distributed for each t. Set x̄t ≡
∑n

m=1 xtm/n for t = 1, 2, ....

Let µ0 denote the known in-control real-valued process target and σ0 the known positive

in-control process standard deviation. When x̄t ∼ N(µ0, σ
2
0/n), the process is called in

control at time t; otherwise, out of control at time t. Then the EWMA control chart is

based on the values

wt ≡ (1− λ)wt−1 + λ(x̄t − µ0)

= λ(1− λ)t−1(x̄1 − µ0) + · · ·+ λ(1− λ)(x̄t−1 − µ0) + λ(x̄t − µ0)

= λ
t−1∑
i=0

(1− λ)i(x̄t−i − µ0) (5)

for t = 1, 2, ..., where w0 ≡ 0 and λ is a specified value in (0, 1]. If x̄t ∼ N(µ0, σ
2
0/n), then

wt ∼ N(0, σ2
t ), where

σt =

√
λ [1− (1− λ)2t]

n(2− λ)
σ0 →

√
λ

n(2− λ)
σ0 (6)

as t→∞. Roberts (1959) proposed the stopping time of the EWMA monitoring scheme

as the first time t such that

|wt| > Lσt, (7)

where L = 3. In practice, L is often chosen to achieve a specified in control average run

length. It is the same as the Shewhart control chart when λ = 1, and nearly the same

as the CUSUM control chart when λ → 0. There have been numerous extensions and

variations of the basic EWMA control chart.

Through modern technology that allows simultaneously monitoring all key quality

characteristics during a manufacturing process, the monitored quality characteristics are

3



usually dependent each other. This is especially true for quality characteristics related

to safety, fault detection and diagnosis, quality control, and process control. Joint moni-

toring of quality characteristics ensures appropriate control of the overall process. Multi-

variate SPC techniques have recently been applied to novel fields such as environmental

monitoring and detection of computer intrusion. The purpose of multivariate on-line

techniques is to investigate whether quality characteristics are simultaneously in control

or not. Versions of the multivariate Shewhart, CUSUM, and EWMA control charts have

been proposed under the multivariate normality assumption.

To incorporate the recent historical information, Lowry et al. (1992) proposed a mul-

tivariate exponentially weighted moving average (MEWMA) control chart which is briefly

introduced as follows: Suppose that {xtm: t = 1, 2, ... and m = 1, ..., n} are independent

p-variate measurements, where n is a known positive integer; xt1, ..., xtn are identically

distributed for each t; and p (≥ 2) is a known positive integer. Set x̄t ≡
∑n

m=1 xtm/n for

t = 1, 2, .... Let µ0 denote the known p× 1 in-control process target vector in (−∞,∞)p

and Σ0 the known p×p positive definite in-control process covariance matrix. Let Np(µ,Σ)

denote the p-variate normal distribution with mean vector µ and covariance matrix Σ.

When x̄t ∼ Np(µ0,Σ0/n), the process is called in control at time t; otherwise, out of

control at time t. Lowry et al. (1992) proposed the MEWMA control chart as based on

the p× 1 vectors

wt ≡ (Ip − Λ)wt−1 + Λ(x̄t − µ0)

= Λ(Ip − Λ)t−1(x̄1 − µ0) + · · ·+ Λ(Ip − Λ)(x̄t−1 − µ0) + Λ(x̄t − µ0)

= Λ
t−1∑
i=0

(Ip − Λ)i(x̄t−i − µ0) (8)

for t = 1, 2, ..., where w0 ≡ 0p×1, the p×1 vector (0, ..., 0)T ; Ip denotes the identity matrix

of order p; and Λ is a specified diagonal matrix diag{λ1, ..., λp} with λ1, ..., λp ∈ (0, 1]. Set

Σ0 ≡ (Σ0jj′ )j,j′=1,...,p. If x̄t ∼ Np(µ0,Σ0/n), then wt ∼ Np(0p×1,Σt), where

Σt ≡ (Σtjj
′ )j,j′=1,...,p =

1

n
Λ

[
t−1∑
i=0

(Ip − Λ)iΣ0(Ip − Λ)i

]
Λ

→ 1

n
Λ

[
∞∑
i=0

(Ip − Λ)iΣ0(Ip − Λ)i

]
Λ (9)

4



as t→∞ with

Σtjj′ =
λjλj′

[
1− (1− λj)t(1− λj′ )t

]
Σ0jj′

n(λj + λj′ − λjλj′ )
→

λjλj′Σ0jj′

n(λj + λj′ − λjλj′ )
(10)

as t→∞. In particular, when λ1 = ... = λp = λ,

Σt =
λ [1− (1− λ)2t]

n(2− λ)
Σ0 →

λ

n(2− λ)
Σ0 (11)

as t→∞. Then the stopping time of the MEWMA monitoring scheme is the first time t

such that

wTt Σ−1t wt (≡ T 2
t ) > h, (12)

where h is chosen to achieve a specified in-control average run length.

Consider a manufacturing process where each product units can be classified as one

of k+ 1 disjoint categories for some fixed k ∈ {1, 2, ...}. When the outcome is recorded as

one of two categories, e.g., {pass, fail}, the data are called binary. When the outcome is

recorded as one of k+1 disjoint categories for some k ∈ {2, 3, ...}, the data are called poly-

tomous, e.g., {pass, the first defect type, ..., the kth defect type}. See, e.g., McCullagh

and Nelder (1989). Several researchers have investigated categorical data in different situ-

ations. Shiau et al. (2005) proposed the Dirichlet-compound multinomial empirical Bayes

model to monitor the polytomous data. In the paper, we develop an MEWMA control

chart for monitoring a manufacturing process under the Dirichlet-compound multinomial

model.

1.3 Outline

The paper is organized as follows. In Section 2, the Dirichlet-compound multinomial

model for a categorical manufacturing process is briefly introduced. In Section 3, a mul-

tivariate exponentially weighted moving average control chart is proposed and then some

relevant properties of the proposed control chart are also investigated. In Section 4, a

simulation study is presented to illustrate the proposed methodology. Finally, comparison

and conclusions are given in Section 5.
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2 Dirichlet-Compound Multinomial Model for a

Categorical Manufacturing Process

Consider a manufacturing process which produces product units having k different

types of defects for some known positive integer k. In a product unit, let pit denote the

probability of having the ith defect type at time t for i = 1, ..., k. Then 1−
∑k

i=1 pit (≡ p0t)

is the probability of having none of these k defect types at time t. For i = 1, ..., k, let xit

denote the number of tested product units having the ith defect type among nt randomly

chosen tested product units at time t. Then nt−
∑k

i=1 xit (≡ x0t) is the number of tested

product units having none of these k defect types at time t. Set pt ≡ (p0t, p1t, ..., pkt)
T

and xt ≡ (x0t, x1t, ..., xkt)
T . Then pt ∈ P and xt ∈ Xt, where P ≡ {pt: p0t, p1t, ..., pkt ∈

(0, 1) with
∑k

i=0 pit = 1} and Xt ≡ {xt: x0t, x1t, ..., xkt ∈ {0, 1, ..., nt} with
∑k

i=0 xit = nt}.

Then the number of elements in Xt is (nt + k)!/(nt! k!) (≡ |Xt|). Assume that xt given pt

is distributed as either binomial(nt; pt) for k = 1 or multinomial(nt; pt) for k ≥ 2. Then

the conditional probability mass function (p.m.f.) of xt given pt is

f(xt|pt) =
nt!

x0t!x1t! · · · xkt!
px0t0t p

x1t
1t · · · p

xkt
kt · 1Xt(xt), (13)

where 1Xt(xt) = 1 for xt ∈ Xt and 0 otherwise.

Suppose that pt is distributed as either beta(α) for k = 1 or Dirichlet(α) for k ≥ 2,

where α (≡ (α0, α1, ..., αk)
T ) is the unknown (k+1)×1 parameter vector in the parameter

space (0,∞)k+1. Set αs ≡
∑k

i=0 αi. Then the probability density function (p.d.f.) of pt is

f(pt;α) =
Γ(αs)

Γ(α0) Γ(α1) · · · Γ(αk)
pα0−1
0t pα1−1

1t · · · pαk−1
kt · 1P(pt), (14)

where 1P(pt) = 1 for pt ∈ P and 0 otherwise. Then pt given xt is distributed as either

beta(α0 +x0t, α1 +x1t) for k = 1 or Dirichlet(α0 +x0t, α1 +x1t, ..., αk +xkt) for k ≥ 2 with

Eα(pt|xt) =

(
α0 + x0t
αs + nt

,
α1 + x1t
αs + nt

, ...,
αk + xkt
αs + nt

)T
. (15)

See, e.g., p. 217 of Johnson et al. (1995) for the parametric family of beta distributions

and p. 488 of Kotz et al. (2000) for the parametric family of Dirichlet distributions.
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Then the p.m.f. of xt is

f(xt;α) =
f(xt, pt;α)

f(pt|xt;α)
=
f(xt|pt)f(pt;α)

f(pt|xt;α)

= exp

[
nt−1∑
j=0

log

(
j + 1

αs + j

)
−

k∑
i=0

xit−1∑
j=0

log

(
j + 1

αi + j

)]
· 1Xt(xt); (16)

see, e.g., pp. 80–81 of Johnson et al. (1997). Then, given xt, the likelihood function for α

is

L(α;xt) = exp

[
nt−1∑
j=0

log

(
j + 1

αs + j

)
−

k∑
i=0

xit−1∑
j=0

log

(
j + 1

αi + j

)]
, (17)

the log-likelihood function for α is

l(α;xt) = log [L(α;xt)] =
nt−1∑
j=0

log

(
j + 1

αs + j

)
−

k∑
i=0

xit−1∑
j=0

log

(
j + 1

αi + j

)
, (18)

the score function for α is

∂l(α;xt)

∂α

=

(
x0t−1∑
j=0

1

α0 + j
,

x1t−1∑
j=0

1

α1 + j
, ...,

xkt−1∑
j=0

1

αk + j

)T

−

(
nt−1∑
j=0

1

αs + j

)
· 1(k+1)×1

≡ S(α;xt) ≡ (S0(α;xt), S1(α;xt), ..., Sk(α;xt))
T , (19)

the observed Fisher information for α is

−∂
2l(α;xt)

∂α∂αT
= diag

{
x0t−1∑
j=0

1

(α0 + j)2
,

x1t−1∑
j=0

1

(α1 + j)2
, ...,

xkt−1∑
j=0

1

(αk + j)2

}

−

[
nt−1∑
j=0

1

(αs + j)2

]
· 1(k+1)×11

T
(k+1)×1

≡ J(α;xt) ≡ (Jii′ (α;xt))i,i′=0,1,...,k , (20)

and the expected Fisher information for α is

Covα (S(α;xt)) ≡ It(α) ≡ (Itii′ (α))i,i′=0,1,...,k , (21)

where 1(k+1)×1 denotes the (k+1)×1 vector (1, ..., 1)T . Notice that Eα(S(α;xt)) = 0(k+1)×1

and that Covα(S(α;xt)) = Eα(J(α;xt)), where 0(k+1)×1 denotes the (k + 1) × 1 vector

7



(0, ..., 0)T . Then

Itii(α) =
∑
xt∈Xt

(
xit−1∑
j=0

1

αi + j
−

nt−1∑
j=0

1

αs + j

)2

f(xt;α)

=
∑
xt∈Xt

[
xit−1∑
j=0

1

(αi + j)2

]
f(xt;α)−

nt−1∑
j=0

1

(αs + j)2
(22)

for i = 0, 1, ..., k and

Itii′ (α) = −
nt−1∑
j=0

1

(αs + j)2
(23)

for i, i
′

= 0, 1, ..., k with i 6= i
′
. Sometimes, |Xt| is very large at time t in a man-

ufacturing process, e.g., |Xt| = 82, 408, 626, 300 when nt = 200 and k = 6. In such

situations, it will take too much time to evaluate Itii(α)s by equation (18). One possi-

ble approach to evaluate Itii(α)s is the Monte Carlo method as follows: First generate

i.i.d. (p
(1)T
t , x

(1)T
t )T , ..., (p

(r)T
t , x

(r)T
t )T such that p

(u)
t is sampled from Dirichlet(α) and x

(u)
t

given p
(u)
t is sampled from multinomial(nt; p

(u)
t ) for u = 1, ..., r, where r is a large positive

integer, e.g., r = 100, 000. Then Itii(α) can be approximately evaluated by Îtii(α), where

Îtii(α) ≡ 1

r

r∑
u=1

x
(u)
it −1∑
j=0

1

αi + j
−

nt−1∑
j=0

1

αs + j

2

(24)

or

1

r

r∑
u=1

x
(u)
it −1∑
j=0

1

(αi + j)2
−

nt−1∑
j=0

1

(αs + j)2
. (25)
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3 Multivariate Exponentially Weighted Moving

Average Monitoring Scheme

In this section, a multivariate exponentially weighted moving average control chart is

proposed for monitoring a categorical manufacturing process under the Dirichlet-compound

multinomial model as follows: Suppose that {(pTt , xTt )T : t ≥ 1} are independent (2k+2)×1

random vectors, where both pt and xt are described in Section 2. Let α0 (∈ (0,∞)k+1)

denote the known (k + 1)× 1 in-control process parameter vector in phase I. The multi-

variate exponentially weighted moving average (MEWMA) control chart is based on the

(k + 1)× 1 vectors

wt ≡ (Ik+1 −R)wt−1 +RS(α0;xt)

= R(Ik+1 −R)t−1S(α0;x1) + · · ·+R(Ik+1 −R)S(α0;xt−1) +RS(α0;xt)

= R
t−1∑
i=0

(Ik+1 −R)iS(α0;xt−i) (26)

for t = 1, 2, ..., where w0 ≡ 0(k+1)×1; Ik+1 denotes the identity matrix of order k + 1; R is

a specified (k+ 1)× (k+ 1) positive definite covariance matrix such that Ik+1−R is non-

negative definite; and (Ik+1 − R)0 ≡ Ik+1. It follows from the eigenvalue decomposition

that R = PΛP T where P is an orthogonal matrix, i.e., PP T = Ik+1, and Λ is a diagonal

matrix diag{λ0, λ1, ..., λk} with λ0, λ1, ..., λk ∈ (0, 1]. Then

wt = PΛ
t−1∑
i=0

(Ik+1 − Λ)iP TS(α0;xt−i) (27)

for t = 1, 2, ....

When p1, ..., pt ∼ Dirichlet(α0) for some t = 1, 2, ..., the following properties hold:

(i) Eα0(wt) = 0(k+1)×1.

(ii)

Covα0(wt) = PΛ

[
t−1∑
i=0

(Ik+1 − Λ)iP T It−i(α0)P (Ik+1 − Λ)i

]
ΛP T (≡ Σt). (28)

(iii) Eα0(w
T
t Σ−1t wt) = k + 1. Set

T 2
t ≡ wTt Σ−1t wt. (29)

9



(iv)

(R−1ΣtR
−1)−1/2R−1wt

a.s.→

[
t−1∑
i=0

It−i(α0)

]−1/2 t−1∑
i=0

S(α0;xt−i) (30)

and

T 2
t
a.s.→

[
t−1∑
i=0

S(α0;xt−i)

]T [ t−1∑
i=0

It−i(α0)

]−1 t−1∑
i=0

S(α0;xt−i) (≡ T 2
t0) (31)

as max{λ0, λ1, ..., λk} → 0, where T 2
t0 is the score test statistic up to time t for testing

the null hypothesis H0: p1, ..., pt ∼ Dirichlet(α0) versus the alternative H1: p1, ..., pt ∼

Dirichlet(α) for some α 6= α0.

(v) If supt≥1 nt < ∞, then (R−1ΣtR
−1)−1/2R−1wt

d→ Nk+1(0(k+1)×1, Ik+1) and T 2
t

d→

χ2
k+1 as max{λ0, λ1, ..., λk} → 0 and t→∞.

(vi) If Λ = λ Ik+1 for some λ ∈ (0, 1], then

wt = λ
t−1∑
i=0

(1− λ)iS(α0;xt−i), (32)

T 2
t =

[
t−1∑
i=0

(1− λ)iS(α0;xt−i)

]T [ t−1∑
i=0

(1− λ)2iIt−i(α0)

]−1 t−1∑
i=0

(1− λ)iS(α0;xt−i), (33)

and

Σt = λ2
t−1∑
i=0

(1− λ)2iIt−i(α0) (34)

for t = 1, 2, ..., where 00 ≡ 1. In particular, if Λ = Ik+1, then wt = S(α0;xt), T
2
t =

ST (α0;xt)I
−1
t (α0)S(α0;xt) (≡ T 2

t1), and Σt = It(α0) for t = 1, 2, ..., where T 2
t1 is the score

test statistic at time t for testing the null hypothesis H0: pt ∼ Dirichlet(α0) versus the

alternative H1: pt ∼ Dirichlet(α) for some α 6= α0.

(vii) If n1 = n2 = ..., then

Σt = PΛ

[
t−1∑
i=0

(Ik+1 − Λ)iP T I1(α0)P (Ik+1 − Λ)i

]
ΛP T

≡ PΛ

[
t−1∑
i=0

(Ik+1 − Λ)i I∗1 (α0)(Ik+1 − Λ)i

]
ΛP T

= P

(
λjλj′

[
1− (1− λj)t(1− λj′ )t

]
I∗
1jj′

(α0)

λj + λj′ − λjλj′

)
j,j
′
=0,1,...,k

P T

→ P

(
λjλj′I

∗
1jj′

(α0)

λj + λj′ − λjλj′

)
j,j′=0,1,...,k

P T (35)
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as t→∞, where P T I1(α0)P ≡ I∗1 (α0) ≡ (I∗
1jj′

(α0))j,j′=0,1,...,k.

(viii) If n1 = n2 = ... and Λ = λ Ik+1 for some λ ∈ (0, 1], then

Σt =
λ [1− (1− λ)2t]

2− λ
I1(α0)→

λ

2− λ
I1(α0) (36)

as t → ∞. In particular, if n1 = n2 = ... and Λ = Ik+1, then Σt = I1(α0) for t = 1, 2, ...,

w1, w2, ... are i.i.d., and T 2
1 , T

2
2 , ... are i.i.d.

Then the stopping time of the MEWMA monitoring scheme is the first time t such

that

T 2
t > h, (37)

where h is chosen to achieve a specified in-control average run length, e.g., 1/[2Φ(−3)] ≈

370.4 with Φ(·) denoting the cumulative distribution function (c.d.f.) of the standard

normal distribution.
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4 A Simulation Study

In the former information, it accumulate the data up to time t when t = 1, 2, ..., l.

Through the former information, this paper discusses the different l for each λ. The l is

the past in-control data in phase I.

In order to study the performance of this quality control scheme, it compute the

average run length. To evaluate the in-control average run length (≡ ARL0), it con-

siders the special case where k = 2; p1, p2, ... are sampled from Dirichlet(α0) with α0 =

(85, 10, 5)T ; n1 = n2 = ... = 100; P = I3; and Λ = λ I3 for λ ∈ {0.01, 0.05, 0.10,

0.15, 0.20, 0.30, 0.40, 0.50, 1} (≡ S).

For λ ∈ S and ARL0 = 1/[2Φ(−3)], The h in equation (33) can be evaluated as

follows:

Step 1: Generate i.i.d. (pT1 , x
T
1 )T , ..., (pT370, x

T
370)

T such that pt is sampled from Dirichlet(α0)

and xt is sampled from multinomial(100; pt) for t = 1, 2, ..., 370.

Step 2: To sort the T 2
t s such that T

2(1)
t , T

2(2)
t , ..., T

2(370)
t .

Step 3: Choose the maximum T
2(370)
t (≡ T ∗2t ).

Repeat Steps 1–3 for 10,000 times independently. To sort the T ∗2t s such that T
∗2(1)
t , T

∗2(2)
t

, ...,T
∗2(10,000)
t . The initial value of h1 is T

∗2(5,000)
t . To compute the ARL

(1)
0 with h1. If the

ARL
(1)
0 is large than 1/[2Φ(−3)], then h2 is given such that h2 < h1, and compute the

ARL
(2)
0 . If the ARL

(1)
0 is smaller than 1/[2Φ(−3)], then h2 is given such that h2 > h1,

and compute the ARL
(2)
0 . Until it finds the h such that ARL0 ≈ 1/[2Φ(−3)] for each λ;

see Table 1.

To evaluate the out-of-control average run length (≡ ARL1), it considers the spe-

cial case where k = 2; p1, ..., pl are sampled from Dirichlet(α0) and pl+1, pl+2, ... are

sampled from Dirichlet(α1) for some l ∈ {0, 1, 2, ..., 500} with α0 = (85, 10, 5)T , α1 ∈

{(80, 12.5, 7.5)T (≡ α
(1)
1 ), (75, 15, 10)T (≡ α

(2)
1 ), (70, 20, 10)T (≡ α

(3)
1 )}; n1 = n2 = ... =

100; P = I3; and Λ = λ I3 for λ ∈ S.

The ARL1 can be evaluated as follows:

Step 1: Generate i.i.d. (pT1 , x
T
1 )T , ..., (pTl , x

T
l )T such that pt is sampled from Dirichlet(α0)

and then xt is sampled from multinomial(100; pt) for t = 1, 2, ..., l.

12



Step 2: If T 2
t > h for some t ∈ {1, 2, ..., l}, then return to Step 1.

Step 3: Generate i.i.d. (pTl+1, x
T
l+1)

T , ..., (pTl+t∗ , x
T
l+t∗)

T such that pt is sampled from

Dirichlet(α1) and then xt is sampled from multinomial(100; pt) for t = l+1, l+2, ..., l+ t∗,

where l + t∗ is the first time t such that T 2
t > h.

Repeat Steps 1–3 for 100,000 times independently. Then the ARL1 is approximated

evaluated by the average of 100,000 t∗s for each λ ∈ S.

For λ ∈ S and ARL0 = 1/[2Φ(−3)], the ARL1 is put in Tables 2–31. The proposed

MEWMA monitoring scheme is also compared with the following monitoring scheme: the

stopping time of the monitoring scheme is the first time t such that T 2
t0 > h0, where T 2

t0 is

defined in equation (27) and h0 is chosen to achieve ARL0 = 1/[2Φ(−3)].
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5 Comparison and Conclusions

In the paper, an MEWMA control chart is proposed for monitoring a manufacturing

process in the Dirichlet-compound multinomial model. For each λ ∈ S ∪ {0} (≡ S
′
), it is

seen that h increases as λ increases; see Table 1.

For 0 ≤ l ≤ 4 and λ ∈ S ′ , the ARL1 increases as λ increases; see Tables 2–6. Then λ

is chosen as 0.

For l ≥ 5 and α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }, consider the following three cases:

Case 1: α1 = α
(1)
1 . When 5 ≤ l ≤ 20, the MEWMA monitoring scheme with λ = 0

has the smallest ARL1 for λ ∈ S ′ ; see Tables 7–22. When 21 ≤ l ≤ 36, the MEWMA

monitoring scheme with λ = 0.05 has the smallest ARL1 for λ ∈ S ′ ; see Tables 23–24.

When 38 ≤ l ≤ 500, the MEWMA monitoring scheme with λ = 0.1 has the smallest

ARL1 for λ ∈ S ′ ; see Tables 26–31.

Case 2: α1 = α
(2)
1 . When 5 ≤ l ≤ 11, the MEWMA monitoring scheme with λ = 0

has the smallest ARL1 for λ ∈ S ′ ; see Tables 7–13. When 12 ≤ l ≤ 138, the MEWMA

monitoring scheme with λ = 0.15 has the smallest ARL1 for λ ∈ S ′ ; see Tables 14–27.

When 140 ≤ l ≤ 500, the MEWMA monitoring scheme with λ = 0.2 has the smallest

ARL1 for λ ∈ S ′ ; see Tables 29–31.

Case 3: α1 = α
(3)
1 . When 5 ≤ l ≤ 8, the MEWMA monitoring scheme with λ = 0 has

the smallest ARL1 for λ ∈ S ′ ; see Tables 7–10. But when the 9 ≤ l ≤ 500, the MEWMA

monitoring scheme with λ = 0.3 has the smallest ARL1 for λ ∈ S ′ ; see Tables 11–31.

For these three cases, it is seen that when α1 is faraway from α0, e.g., α1 = α
(3)
1 , the

ARL1 is smaller. When α1 is close to α0, e.g., α1 = α
(1)
1 , the ARL1 is bigger.

Compare λ = 0.05 and 0.01:

Case 1: α1 = α
(1)
1 . When 0 ≤ l ≤ 15, the ARL1 for λ = 0.01 is smaller than taht for

λ = 0.05, so λ = 0.01 is better than λ = 0.05; see Tables 2–17. When 16 ≤ l ≤ 500, the

ARL1 for λ = 0.05 is smaller than taht for λ = 0.01, so λ = 0.05 is better than λ = 0.01;

see Tables 18–31.

Case 2: α1 = α
(2)
1 . When 0 ≤ l ≤ 12, the ARL1 for λ = 0.01 is smaller than taht for

λ = 0.05, so λ = 0.01 is better than λ = 0.05; see Tables 2–14. When 13 ≤ l ≤ 500, the

14



ARL1 for λ = 0.05 is smaller than taht for λ = 0.01, so λ = 0.05 is better than λ = 0.01;

see Tables 14–31.

Case 3: α1 = α
(3)
1 . When 0 ≤ l ≤ 11, the ARL1 for λ = 0.01 is smaller than taht for

λ = 0.05, so λ = 0.01 is better than λ = 0.05; see Tables 2–13. When 12 ≤ l ≤ 500, the

ARL1 for λ = 0.05 is smaller than taht for λ = 0.01, so λ = 0.05 is better than λ = 0.01;

see Tables 14–31.

So, when l is large, the weight λ = 0.05 is better than λ = 0.01.

In general, the λ of EWMA in the interval 0.05 ≤ λ ≤ 0.25 works well in practice,

with λ = 0.05, λ = 0.10, λ = 0.20 being popular choices. In this paper, it suggests

a multivariate exponentially weighted moving average control chart for some relevant

properties of the proposed control chart are also investigated in the Dirichlet-compound

multinomial model for a categorical manufacturing process. It is found by simulation that

the different α1 and l have different weight such that the ARL1 is smallest when λ ∈ S ′ .

According to accumulating different in-control data up to time l in phase I, λ will be

different. This can be taken as a reference.
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Table 1: h for λ ∈ S ′ and α0 = (85, 10, 5)T .

λ 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

h 6.53 8.33 11.96 14.79 17.02 19.08 22.45 25.42 27.73 34.34

* denotes the smallest ARL1.

Table 2: ARL1 for l = 0, λ ∈ S
′
; α1 ∈ {α(1)

1 , α
(2)
1 , α

(3)
1 }, where α

(1)
1 ≡ (80, 12.5, 7.5)T ,

α
(2)
1 ≡ (75, 15, 10)T , and α

(3)
1 ≡ (70, 20, 10)T .

λ

l = 0 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 5.00∗ 6.19 8.32 10.10 12.00 14.08 18.64 23.47 27.90 45.20

(75, 15, 10)T 1.94∗ 2.19 2.62 2.96 3.22 3.49 3.96 4.52 5.13 8.80

(70, 20, 10)T 1.30∗ 1.39 1.54 1.66 1.77 1.86 1.99 2.16 2.28 3.32

Table 3: ARL1 for l = 1, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 1 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 6.00∗ 7.20 9.29 10.94 12.71 14.76 19.13 23.75 28.03 45.2

(75, 15, 10)T 2.37∗ 2.65 3.14 3.44 3.65 3.86 4.26 4.75 5.29 8.80

(70, 20, 10)T 1.53∗ 1.64 1.84 1.96 2.05 2.11 2.21 2.31 2.41 3.32

18



Table 4: ARL1 for l = 2, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 2 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 6.64∗ 7.94 9.83 11.31 13.06 14.94 19.23 24.10 27.87 45.20

(75, 15, 10)T 2.64∗ 2.96 3.44 3.69 3.86 4.04 4.38 4.82 5.03 8.80

(70, 20, 10)T 1.69∗ 1.82 2.03 2.14 2.19 2.24 2.29 2.37 2.44 3.32

Table 5: ARL1 for l = 3, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 3 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 7.17∗ 8.36 10.19 11.69 13.24 15.05 19.38 24.26 28.03 45.20

(75, 15, 10)T 2.89∗ 3.22 3.66 3.87 3.99 4.11 4.41 4.84 5.31 8.80

(70, 20, 10)T 1.82∗ 1.97 2.17 2.25 2.28 2.30 2.33 2.37 2.44 3.32

Table 6: ARL1 for l = 4, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 4 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 7.56∗ 8.90 10.52 11.76 13.24 15.27 19.52 24.07 27.93 45.20

(75, 15, 10)T 3.09∗ 3.42 3.84 4.01 4.08 4.18 4.43 4.85 5.32 8.80

(70, 20, 10)T 1.94∗ 2.10 2.29 2.34 2.34 2.35 2.35 2.38 2.44 3.32
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Table 7: ARL1 for l = 5, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 5 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 8.01∗ 9.24 10.85 11.94 13.58 15.18 19.57 24.12 28.19 45.20

(75, 15, 10)T 3.27∗ 3.63 3.99 4.10 4.13 4.23 4.46 4.87 5.37 8.80

(70, 20, 10)T 2.05∗ 2.21 2.38 2.41 2.40 2.37 2.35 2.38 2.45 3.32

Table 8: ARL1 for l = 6, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 6 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 8.40∗ 9.55 11.14 12.05 13.49 15.21 19.49 24.14 28.09 45.20

(75, 15, 10)T 3.45∗ 3.78 4.12 4.16 4.18 4.22 4.44 4.85 5.34 8.80

(70, 20, 10)T 2.16∗ 2.31 2.46 2.46 2.42 2.39 2.37 2.38 2.44 3.32

Table 9: ARL1 for l = 7, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 7 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 8.80∗ 9.95 11.23 12.07 13.46 15.33 19.37 24.16 28.44 45.20

(75, 15, 10)T 3.58∗ 3.93 4.23 4.22 4.20 4.24 4.44 4.85 5.36 8.80

(70, 20, 10)T 2.23∗ 2.40 2.53 2.50 2.43 2.40 2.37 2.38 2.44 3.32
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Table 10: ARL1 for l = 8, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 8 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 9.10∗ 10.10 11.31 12.14 13.43 15.30 19.17 24.17 27.59 45.20

(75, 15, 10)T 3.75∗ 4.09 4.33 4.27 4.22 4.27 4.44 4.85 5.37 8.80

(70, 20, 10)T 2.33∗ 2.49 2.60 2.53 2.46 2.40 2.36 2.38 2.44 3.32

Table 11: ARL1 for l = 9, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 9 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 9.40∗ 10.53 11.51 12.39 13.58 15.28 19.64 24.01 27.79 45.20

(75, 15, 10)T 3.91∗ 4.21 4.41 4.29 4.22 4.23 4.45 4.84 5.36 8.80

(70, 20, 10)T 2.40 2.57 2.65 2.56 2.48 2.40 2.36∗ 2.38 2.45 3.32

Table 12: ARL1 for l = 10, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 10 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 9.68∗ 10.79 11.62 12.26 13.55 15.35 19.35 23.99 28.01 45.20

(75, 15, 10)T 4.01∗ 4.35 4.48 4.34 4.23 4.25 4.46 4.86 5.34 8.80

(70, 20, 10)T 2.50 2.64 2.69 2.58 2.47 2.40 2.35∗ 2.37 2.45 3.32
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Table 13: ARL1 for l = 11, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 11 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 10.03∗ 11.03 11.79 12.31 13.57 15.33 19.55 24.17 28.23 45.20

(75, 15, 10)T 4.16∗ 4.45 4.55 4.36 4.27 4.25 4.46 4.85 5.33 8.80

(70, 20, 10)T 2.55 2.71 2.75 2.59 2.48 2.41 2.36∗ 2.38 2.44 3.32

Table 14: ARL1 for l = 12, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 12 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 10.24∗ 11.31 11.82 12.35 13.55 15.31 19.60 24.19 28.19 45.20

(75, 15, 10)T 4.27 4.57 4.59 4.38 4.24∗ 4.26 4.44 4.85 5.35 8.80

(70, 20, 10)T 2.64 2.78 2.77 2.61 2.48 2.41 2.36∗ 2.39 2.44 3.32

Table 15: ARL1 for l = 13, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 13 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 10.53∗ 11.54 11.93 12.41 13.56 15.29 19.32 24.23 28.40 45.20

(75, 15, 10)T 4.40 4.68 4.65 4.39 4.26∗ 4.27 4.44 4.85 5.36 8.80

(70, 20, 10)T 2.70 2.85 2.80 2.61 2.47 2.42 2.35∗ 2.38 2.44 3.32
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Table 16: ARL1 for l = 14, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 14 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 10.70∗ 11.63 11.97 12.40 13.56 15.31 19.23 24.15 28.32 45.20

(75, 15, 10)T 4.48 4.77 4.71 4.41 4.27∗ 4.28 4.43 4.86 5.34 8.80

(70, 20, 10)T 2.76 2.92 2.81 2.62 2.47 2.41 2.37∗ 2.38 2.44 3.32

Table 17: ARL1 for l = 15, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 15 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 10.96∗ 11.81 12.03 12.39 13.57 15.33 19.37 24.17 28.28 45.20

(75, 15, 10)T 4.59 4.86 4.74 4.42 4.27∗ 4.28 4.45 4.86 5.35 8.80

(70, 20, 10)T 2.82 2.97 2.84 2.62 2.48 2.41 2.35∗ 2.38 2.43 3.32

Table 18: ARL1 for l = 16, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 16 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 11.22∗ 12.02 12.00 12.38 13.58 15.29 19.24 24.26 28.17 45.20

(75, 15, 10)T 4.68 4.95 4.77 4.42 4.26∗ 4.27 4.44 4.87 5.35 8.80

(70, 20, 10)T 2.88 3.05 2.87 2.63 2.47 2.42 2.33∗ 2.37 2.44 3.32
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Table 19: ARL1 for l = 17, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 17 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 11.50∗ 12.37 12.16 12.38 13.56 15.31 19.30 24.03 28.25 45.20

(75, 15, 10)T 4.81 5.07 4.79 4.43 4.26∗ 4.27 4.44 4.85 5.34 8.80

(70, 20, 10)T 2.95 3.08 2.90 2.64 2.48 2.42 2.34∗ 2.38 2.44 3.32

Table 20: ARL1 for l = 18, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 18 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 11.77∗ 12.61 12.18 12.38 13.55 15.34 19.17 23.92 28.33 45.20

(75, 15, 10)T 4.91 5.13 4.82 4.43 4.19∗ 4.26 4.45 4.85 5.35 8.80

(70, 20, 10)T 3.01 3.11 2.91 2.64 2.49 2.41 2.33∗ 2.38 2.45 3.32

Table 21: ARL1 for l = 19, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 19 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 12.05∗ 12.64 12.22 12.52 13.56 15.32 19.23 24.29 28.39 45.20

(75, 15, 10)T 5.01 5.25 4.82 4.44 4.25∗ 4.27 4.44 4.86 5.37 8.80

(70, 20, 10)T 3.07 3.15 2.93 2.63 2.48 2.42 2.36∗ 2.39 2.45 3.32
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Table 22: ARL1 for l = 20, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 20 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 12.12∗ 12.84 12.23 12.49 13.58 15.33 19.33 24.03 28.24 45.20

(75, 15, 10)T 5.10 5.26 4.90 4.45 4.25∗ 4.28 4.44 4.85 5.36 8.80

(70, 20, 10)T 3.09 3.21 2.94 2.63 2.49 2.42 2.37∗ 2.39 2.44 3.32

Table 23: ARL1 for l = 21, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 21 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 12.42 13.01 12.27∗ 12.43 13.57 15.29 19.20 23.94 28.13 45.20

(75, 15, 10)T 5.17 5.38 4.91 4.44 4.26∗ 4.27 4.45 4.87 5.35 8.80

(70, 20, 10)T 3.20 3.28 2.95 2.64 2.50 2.43 2.36∗ 2.37 2.44 3.32

Table 24: ARL1 for l = 36, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 36 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 15.63 14.09 12.34∗ 12.45 13.62 15.35 19.40 24.17 28.18 45.20

(75, 15, 10)T 5.98 6.08 4.95 4.44 4.26∗ 4.30 4.44 4.86 5.34 8.80

(70, 20, 10)T 3.77 3.69 3.01 2.65 2.50 2.43 2.34∗ 2.38 2.44 3.32
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Table 25: ARL1 for l = 37, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 37 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 15.76 14.21 12.46∗ 12.46∗ 13.65 15.37 19.43 24.19 28.20 45.20

(75, 15, 10)T 6.11 6.14 4.99 4.44 4.27∗ 4.29 4.44 4.86 5.36 8.80

(70, 20, 10)T 3.82 3.73 3.03 2.66 2.50 2.43 2.35∗ 2.38 2.44 3.32

Table 26: ARL1 for l = 38, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 38 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 16.15 14.37 12.51 12.47∗ 13.63 15.39 19.47 24.04 28.17 45.20

(75, 15, 10)T 6.24 6.19 5.00 4.44 4.27∗ 4.31 4.44 4.87 5.33 8.80

(70, 20, 10)T 3.90 3.76 3.04 2.65 2.50 2.43 2.36∗ 2.37 2.44 3.32

Table 27: ARL1 for l = 138, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 138 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 26.84 18.16 12.63 12.39∗ 13.60 15.30 19.42 23.94 28.19 45.20

(75, 15, 10)T 11.32 7.78 5.07 4.47 4.28∗ 4.31 4.44 4.85 5.35 8.80

(70, 20, 10)T 6.71 4.67 3.07 2.65 2.49 2.41 2.35∗ 2.38 2.45 3.32
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Table 28: ARL1 for l = 139, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 139 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 26.91 18.17 12.63 12.41∗ 13.59 15.31 19.43 24.06 28.17 45.20

(75, 15, 10)T 11.36 7.79 5.07 4.46 4.26∗ 4.26∗ 4.45 4.86 5.36 8.80

(70, 20, 10)T 6.74 4.68 3.06 2.65 2.50 2.42 2.36∗ 2.38 2.44 3.32

Table 29: ARL1 for l = 140, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 140 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 27.04 18.18 12.64 12.42∗ 13.58 15.31 19.47 24.07 28.17 45.20

(75, 15, 10)T 11.38 7.79 5.06 4.45 4.32 4.21∗ 4.45 4.86 5.36 8.80

(70, 20, 10)T 6.75 4.68 3.05 2.66 2.48 2.42 2.37∗ 2.39 2.44 3.32

Table 30: ARL1 for l = 450, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 450 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 45.17 19.08 12.75 12.61∗ 13.55 15.38 19.45 24.34 28.52 45.20

(75, 15, 10)T 19.36 8.34 5.11 4.54 4.47 4.32∗ 4.46 5.09 5.39 8.80

(70, 20, 10)T 11.71 4.87 3.10 2.68 2.51 2.42 2.33∗ 2.41 2.40 3.32
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Table 31: ARL1 for l = 500, λ ∈ S ′ ; α1 ∈ {α(1)
1 , α

(2)
1 , α

(3)
1 }.

λ

l = 500 0.00 0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00

(80, 12.5, 7.5)T 48.04 19.30 12.80 12.67∗ 13.57 15.42 19.44 24.38 28.49 45.20

(75, 15, 10)T 20.21 8.42 5.19 4.53 4.49 4.36∗ 4.47 5.13 5.42 8.80

(70, 20, 10)T 12.09 4.89 3.11 2.66 2.52 2.40 2.31∗ 2.43 2.36 3.32

28


	paper封面.doc
	摘要.pdf
	致謝.doc
	paper.pdf

