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Multivariate Exponentially Weighted Moving Average
Monitoring Scheme for a Categorical Manufacturing

Process

Student : Jing-Ting Hong Advisor: Dr. Chih-Rung Chen

Institute of Statistics,
National Chiao Tung University

ABSTRACT

This paper is to develop a method to monitor the fractions of the tested
items falling into different categories of pass/fail modes. The
Dirichlet-compound multinomial model is first introduced and then a
multivariate exponentially weighted moving average control chart is proposed
for a categorical manufacturing process under the proposed model. Some
relevant properties of the proposed control chart are also investigated. Finally, a
simulation study is presented to show the usefulness and applicability of the

proposed methodology.



R ATe & R IE o R et T O Bl s S X

4 Yy - lﬁi}lb-ﬁ)& °

I SRR E R E R R R T

Pen- Bepp o BAN KRG B ESE R FH A PR EAPRS
P RE O $UIR W h R - R AR G RS

}-r‘

VIR e T S I e L e el L EARAT

]

?éﬁkﬁw’ﬁﬁﬁwﬂ&ﬁi%ﬁ%’ﬂéﬁﬁﬁ’ﬁi%“

IS I LR SLETS Y
By o ALRBEHAPTA T AL ST EX 2P AN
ABRBDOR DN NE L NE R
Bofs o AR RRHT ERERA O HFH T LEANRK T 0 AT
SHAFTF S~ 7 ST SVEIR SRS

R#s o o X I inipa

EAYe HET
RECRTIENE- SR ¥
PEARA A4 ES D



Contents
List of Tables

1 Introduction
1.1 Motivation . . . . . . . . s,
1.2 Literature Review . . . . . . . . . . s,

1.3 Outline. . . . . . s,

2 Dirichlet-Compound Multinomial Model for a

Categorical Manufacturing Process

3 Multivariate Exponentially Weighted Moving

Average Monitoring Scheme
4 A Simulation Study

5 Comparison and Conclusions

ii

12

14



List of Tables

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

hfor A€ S and ap = (85,10,5)7. . . . . . ... ... 18

ARLyforl=0, A€ S'; a1 € {a!V, al? o!}, where ol = (80,12.5,7.5)7,

ol? = (75,15,10)7, and o\ = (70,20,10)7. . . ... 18
ARL forl=1, 1€ 5; ay € {a! ,al),af”)}. ................ 18
ARL, forl=2, A€ S ;0 € {al ,a?),agg)}. ................ 19
ARL, for =3, €S0 € {agl),ag ),af’)}. ................ 19
ARL  forl=4, 1€ S'; ay € {a!V, a§ ),af)’)}. ................ 19
ARL for =5, € S oy € {al' ,a?),agg)}. ................ 20
ARL, for =6, A€ S'; a1 € {agl),ag ),a§3)}. ................ 20
ARL, forl=7, 1€ S";a; € {af),aﬁ ),af’)}. ................ 20
ARL  forl=8 1€ S; apefaa®a®y. ... 21
ARL; for 1 =9, A € SyopefaVa® oy ... 21
ARL, for [ =10, M€ Sy € {al ,a?),af’)} ................. 21
ARL, for | =11, N € S'; ay € {oz1 ,a?),ag N 22
ARLy for 1 =12, A eSraie "oy 22
ARL; for =13, A€ S ot efaa? oy . 22
ARL  for 1 =14, A€ S'; oy € {al ),af),af’)} ................. 23
ARLy forl=15, A€ S e {a\",a® oy ... 23
ARL; for =16, A€ S ;a1 € {a{”,a® Py . ... 23
ARL, for | =17, € S"; a; € {agl),af),af’)} ................. 24
ARL, for =18, A€ S'; a; € {&gl),af),agg)} ................. 24
ARL, for 1 =19, A€ S'; a; € {agl),a?),a?)} ................. 24
ARLy for 1 =20, A€ S5 a1 € {a{V,a® a®}y. ... 25
ARL; for 1 =21, A€ S'; o € {045 Lol ),a§3>} ................. 25
ARLy for 1=36, A€ S ;ar e {alV,a® ¥y ... . 25
ARL for 1 =37, A€ 8 a1 € {a{V,a®,a®}y. . ... 26
ARL; for 1 =38, A€ S'; oy € {&gl),a?),a?)} ................. 26

i



27
28
29
30

31

ARLy for 1 =138, A€ Sy a1 € {aiV,a® oy . .. 26

ARLy for 1 =139, A€ 8 : ay € {a{”, 0P oY 000 27
ARLy for 1 =140, A € S';on € {0l Py .o 27
ARLy for 1 =450, A€ Sy o1 € {alV,a® Py ... 27
ARL, for | =500, A € S'; oy € {agl), ong), 04§3)}. ............... 28

il



1 Introduction

1.1 Motivation

In the current international marketplace, quality improvement is a key point for main-
taining competitive advantage. Statistical process control is an effective tool for achieving
process stability and improving process capability through variation reduction. When a
product item is tested, usually one has more information than just pass or fail. Often
there are categories of failures. For instance, a product may have several categories of
failure modes. Thus, in the paper, a multivariate exponentially weighted moving av-
erage monitoring scheme is proposed for a categorical manufacturing process under the
Dirichlet-compound multinomial model and then some relevant properties of the proposed

monitoring scheme are also investigated.

1.2 Literature Review

Statistical process control (SPC) refers to some statistical methods which are widely
used to monitor and improve the quality and-productivity of industrial processes and
service operations. SPC primarily: involves the implementation of control charts. The
method of control charts is a graphical tool which is used to monitor processes in or-
der to distinguish special significant causes of variation from general assignable causes
of variation in processes. The Shewhart (Shewhart, 1931), cumulative sums (CUSUM)
(Page, 1954), and exponentially weighted moving average (EWMA) (Roberts, 1959) con-
trol charts are widely used in practice. Standard control chart usage involves phase I
and phase Il applications, with two different and distinct objectives. In phase I, a set of
process data is gathered and analyzed all at once in a retrospective analysis, constructing
trial control limits to determine if the process has been in control over the period of time
where the data were collected, and to see if reliable control limits can be established to
monitor future production. In phase II, we use the control chart to monitor the process by
comparing the sample statistic for each successive sample as it is drawn from the process

to the control limits.



The Shewhart control chart (Shewhart, 1931) monitors the process observations di-
rectly. Suppose that {x;,,: t =1,2,... and m = 1,...,n} are independent univariate mea-
surements, where n is a known positive integer and x;1, ..., x4, are identically distributed
for each t. Set z; = ZZ:1 Tym/n for t = 1,2, ... Let py denote the known real-valued
in-control process target and oy the known positive in-control process standard deviation.
When Z; ~ N (g, 02/n), the process is called in control at time ¢; otherwise, out of control

at time ¢. Then the Shewhart control chart is based on the values
Wy = Ty — o (1)

fort = 1,2, .... Shewhart (1931) proposed the stopping time of the Shewhart control chart

as the first time ¢ such that

0o

'z (2)

where L. = 3. In practice, L is often chosen to achieve a specified in-control average run

|wt| > L

length.

Page (1954) introduces the CUSUM chart as a sequential probability test. Suppose
that {xy,: t =1,2,... and m = 1,....;n} are independent univariate measurements, where
n is a known positive integer and x,;1 ..., &y, are identically distributed for each t. Set z, =
> @ /nfort =1,2 ... Let po denote the known real-valued in-control process target
and o the known positive in-control process standard deviation. When Z; ~ N (pg, 02 /n),
the process is called in control at time ¢; otherwise, out of control at time ¢. The CUSUM

algorithm assigns equal weights to past observations, and its tabular form consists of two

quantities,

w; = max [0, w, + (Z; — po) — koo/+/n] (3)
and

w, =min [0, w;_y + (T — po) + koo/+/n] (4)
for t = 1,2,..., where wy = w; = 0 and k is the reference value which is often chosen

about halfway between the target po and the out-of-control mean value p; of interest.



Page (1954) proposed the stopping time of the CUSUM control chart as the first time ¢
such that either w;” or w; exceed the decision interval H, where H is chosen to achieve
a specified in-control average run length, e.g., H = 5 when ARLq = 465.

Roberts (1959) proposed a monitoring scheme which is based on the EWMA of
the observations. The EWMA, originally called geometric moving average (GMA) in
Roberts (1959), is briefly introduced as follows: Suppose that {zy,: t = 1,2, ... and m =
1,...,n} are independent univariate measurements, where n is a known positive integer
and @1, ..., Ty, are identically distributed for each t. Set &, =Y " _| &y /nfort =1,2, ...
Let pp denote the known in-control real-valued process target and oy the known positive
in-control process standard deviation. When Z; ~ N(ug, 05 /n), the process is called in
control at time t¢; otherwise, out of control at time ¢. Then the EWMA control chart is

based on the values

(1 = MNwi1 +MT: — po)

Wy

= A1 = N)"7H@ = o) A = XU(T1 — o) + MTe — po)

t—

= A (1 =N(Ti—i = o) (5)

1
=0
for t = 1,2, ..., where wy = 0 and \is a specifiedvalue in (0,1]. If Z; ~ N (o, 02/n), then
w; ~ N(0,0?), where

ML= (1= 0] A
Ut:\/ n2-n 7 \e-xn " o

as t — oo. Roberts (1959) proposed the stopping time of the EWMA monitoring scheme

as the first time ¢ such that
|wy| > Loy, (7)

where L = 3. In practice, L is often chosen to achieve a specified in control average run
length. It is the same as the Shewhart control chart when A = 1, and nearly the same
as the CUSUM control chart when A\ — 0. There have been numerous extensions and
variations of the basic EWMA control chart.

Through modern technology that allows simultaneously monitoring all key quality

characteristics during a manufacturing process, the monitored quality characteristics are

3



usually dependent each other. This is especially true for quality characteristics related
to safety, fault detection and diagnosis, quality control, and process control. Joint moni-
toring of quality characteristics ensures appropriate control of the overall process. Multi-
variate SPC techniques have recently been applied to novel fields such as environmental
monitoring and detection of computer intrusion. The purpose of multivariate on-line
techniques is to investigate whether quality characteristics are simultaneously in control
or not. Versions of the multivariate Shewhart, CUSUM, and EWMA control charts have
been proposed under the multivariate normality assumption.

To incorporate the recent historical information, Lowry et al. (1992) proposed a mul-
tivariate exponentially weighted moving average (MEWMA) control chart which is briefly
introduced as follows: Suppose that {zy,: t =1,2,... and m = 1,...,n} are independent
p-variate measurements, where n is a known positive integer; x;1, ..., x4, are identically
distributed for each ¢; and p (> 2) is-a known positive integer. Set 7, = " _| &4m/n for
t=1,2,.... Let po denote the known p X 1 in-control process target vector in (—oo, 00)P
and Xy the known pxp positive definite in-control process covariance matrix. Let N,(p, X)
denote the p-variate normal.distribution with mean vector p and covariance matrix .
When 7, ~ N,(uo,¥0/n), the process is called-in.control at time ¢; otherwise, out of
control at time t. Lowry et al. (1992) proposed the MEWMA control chart as based on

the p x 1 vectors

Iy = Nwi—y + ATy — o)

Wy

= A(Ip - A)t_l(fl - NJO) +o A(]p - A)(fft—l - #0) + A(ft - Mo)

= A (I, = M) (T — po) (8)

%

[y

I
o

fort = 1,2, ..., where wg = 0,1, the p x 1 vector (0, ...,0)7; I, denotes the identity matrix
of order p; and A is a specified diagonal matrix diag{ A, ..., A\, } with Ay, ..., A\, € (0, 1]. Set
Yo = (Xoj5) =1 pr U T ~ Np(po, Xo/n), then wy ~ Np(0px1, X¢), where

-----

= i i
Y = (Etjj’)j,j’zl,...,p = EA E (Ip — N)" (Il = A)'| A
=0
1 - i i
— EA ;:0 (L, — N)'2o(L, — A)'| A 9)




as t — oo with

S AjAj [1 —(1=X)H(1— )\j/)t} Yojj AjA s g5 (10)
2 n()\] + /\j/ - /\j/\j/) TL()\j + /\j/ - /\j)\j/)
as t — oo. In particular, when A\ = ... =\, = A,
A1 = (1= N)*] A
Y= )y — ¥ 11
t n2—n 0 T a2—n (11)

as t — oo. Then the stopping time of the MEWMA monitoring scheme is the first time ¢

such that
w! Y w, (= TP) > h, (12)

where h is chosen to achieve a specified in-control average run length.

Consider a manufacturing process where each product units can be classified as one
of k+ 1 disjoint categories for some fixed k €{1,2,...}. When the outcome is recorded as
one of two categories, e.g., {pass, fail}, the data are called binary. When the outcome is
recorded as one of k+1 disjoint categories for some k €92, 3, ...}, the data are called poly-
tomous, e.g., {pass, the first.defect type, ..., the kth defect type}. See, e.g., McCullagh
and Nelder (1989). Several researchers have investigated categorical data in different situ-
ations. Shiau et al. (2005) proposed the Dirichlet-compound multinomial empirical Bayes
model to monitor the polytomous data. In the paper, we develop an MEWMA control
chart for monitoring a manufacturing process under the Dirichlet-compound multinomial

model.

1.3 Outline

The paper is organized as follows. In Section 2, the Dirichlet-compound multinomial
model for a categorical manufacturing process is briefly introduced. In Section 3, a mul-
tivariate exponentially weighted moving average control chart is proposed and then some
relevant properties of the proposed control chart are also investigated. In Section 4, a
simulation study is presented to illustrate the proposed methodology. Finally, comparison

and conclusions are given in Section 5.



2 Dirichlet-Compound Multinomial Model for a
Categorical Manufacturing Process

Consider a manufacturing process which produces product units having k different
types of defects for some known positive integer k. In a product unit, let p;; denote the
probability of having the ith defect type at time ¢ fori =1, ..., k. Then 1— Zle pit (= por)
is the probability of having none of these k defect types at time ¢t. For i =1, ..., k, let x;
denote the number of tested product units having the ¢th defect type among n, randomly
chosen tested product units at time ¢. Then n; — Zle zy (= xo;) is the number of tested
product units having none of these k defect types at time t. Set p; = (pos, Piss - Prt)
and z; = (Tos, 1ty -, The) L. Then p, € P and x; € X;, where P = {ps: pot, Pies - Prt €
(0,1) with Z,};:Opit =1} and &, = {x: zo, 214, o, T € {0, 1, ...,y } with Ef:o Tip = My}
Then the number of elements in X is(n, + k) (nd k!) (= |A;]). Assume that z; given p;

is distributed as either binomial(ng;p;) for & = 1 or multinomial(ny; p;) for & > 2. Then

the conditional probability mass function (p.m.f.) of z; given p; is

nt!

f(@dpe) =

Lot L1t . . Tkt 1 13
2\ Lt
th!xlt!"'xkt!pOt D Diy t( )7 ( )

where 1y, (z;) = 1 for z; € X, and 0 otherwise.

Suppose that p; is distributed as either beta(a) for £ = 1 or Dirichlet(«) for k > 2,
where a (= (ag, ay, ..., ai)T) is the unknown (k+1) x 1 parameter vector in the parameter
space (0,00)* 1. Set a, = Zf:o a;. Then the probability density function (p.d.f.) of p; is

I'(a)
C(ag) () - - T(ag

ap—1 a1—1 .

)pOt P1s : 'pgf_l 1p(pr), (14)

f(pi; ) =

where 1p(p;) = 1 for p; € P and 0 otherwise. Then p, given x; is distributed as either

beta(ag + Tot, 1 + 214) for k = 1 or Dirichlet(cg + zot, a1 + 14, -, Qg + x¢) for k > 2 with

(15)

T
Qo + Tor Q1 + Tt O + Tt
, S ey
s +ny ag+ny Qg + Ny

Balpe) = (

See, e.g., p. 217 of Johnson et al. (1995) for the parametric family of beta distributions

and p. 488 of Kotz et al. (2000) for the parametric family of Dirichlet distributions.



Then the p.m.f. of z; is

f(mhpt; 04) _ f($t|pt)f(]9t; 04)
f(pelzs; ) f(pelzs; o)

ng—1 . k xi—1 1
- exp[ng(%H) 2,20 (owy)

Jj=0 =0 j=

flra) =

) ]‘Xt(xt); (16)

see, e.g., pp. 80-81 of Johnson et al. (1997). Then, given x4, the likelihood function for «

is

the score function for « is

Ol(a; xt)
1oJe
xot—1 x1i—1 Tre—1 I ng—1
1 1
= (Z +.,Z % ,Z T ) (Z +.>'1(k+1)><1
o Qo T ] =0 o+ =0 ag +.J ay Os T ]
= Slyx) = (So(a;xt),Sl(a;xt),...,Sk(a;:ct))T, (19)

the observed Fisher information for « is

0°(c; ) i D | o
AN ) T - - — —_
dadal iagy D (a0 + )2’ 2 (a1 +5)2 " 2 (o + 42

=0 =0 =0
ni—1
E [Z(% gl
— (aa+)
= J(z) = (Jii’<04§xt>)i,i’=o,1 ..... k> (20)

and the expected Fisher information for « is
Covy (S(a; 1)) = Li(a) = ([tii’<a))i,i’:0,1 ..... ko (21)

where 1(;11)x1 denotes the (k+1)x 1 vector (1, ..., 1)T. Notice that E,(S(a;z;)) = O(kt1)x1

and that Cova(S(o; ) = Eo(J(o;24)), where Ogq1yx1 denotes the (k4 1) x 1 vector



wi—1 1 i—1
A L:o | 1) - por (a5+J) 22)
fort=0,1,...,k and
Ly (@) = _mil ; (23)
= (s +7)?
for i, = 0,1,...,k with 4 # i". Sometimes, |X;| is very large at time ¢ in a man-

ufacturing process, e.g., |X;| = 82,408,626,300 when n, = 200 and k& = 6. In such

situations, it will take too much time to evaluate I;;(a)s by equation (18). One possi-

ble approach to evaluate Iy;(«)s is the Monte Carlo method as follows: First generate

i.i.d. (pgl)T, x,gl)T)T, . (pgr)T 2 Y2 such that P is sampled from Dirichlet(«) and 7
(u)

given p, ’ is sampled from multinomial(ng; pgu)) for u=1,...,r, where r is a large positive

integer, e.g., r = 100,000. Then I;;(a) can be approximately evaluated by m, where

2
(W_g

T ad /&7 1
T AN .+ = as + 7
or
1 (u) —1 ni—1
' Z (25)
ruljo CMZ+] s ozs+]



3 Multivariate Exponentially Weighted Moving
Average Monitoring Scheme

In this section, a multivariate exponentially weighted moving average control chart is
proposed for monitoring a categorical manufacturing process under the Dirichlet-compound
multinomial model as follows: Suppose that {(pf,z!)": t > 1} are independent (2k+2)x 1
random vectors, where both p; and z; are described in Section 2. Let ag (€ (0, 00)**1)
denote the known (k + 1) x 1 in-control process parameter vector in phase I. The multi-
variate exponentially weighted moving average (MEWMA) control chart is based on the

(k+ 1) x 1 vectors
Wy = (IkJrl — R)U)tfl + RS(Oéo, It)
= R(Ik+1 - R)t_ls(ao; 1’1) — R(Ik—l-l - R)S(Oéo;xt—ﬂ + RS(ao;xt)

= RZ Ii1 — R)'S(agswe=i) (26)

for £ =1,2, ..., where wy = Og41)x1; Lp+1 denotes the identity matrix of order k + 1; R is
a specified (k+ 1) x (k+ 1) pesitive definite covariance matrix such that I, — R is non-
negative definite; and (Iyy; — R)® =1;.,. It follows from the eigenvalue decomposition
that R = PAPT where P is an orthogonal matrix, i.e., PPT = I, and A is a diagonal

matrix diag{ g, A1, ..., Ak} with Ao, A1, ..., A € (0,1]. Then

= PA Z([’““ — A PTS(ap; z44) (27)

fort=1,2,...
When py, ..., py ~ Dirichlet(ayg) for some t = 1,2, ..., the following properties hold:
(1) Eop(wy) = O(k+1)x1
(i)

t—1
Covay(wy) = PA | (Ire1 — A)'PT I_i(ao)P(Irey — A)' | AP (= 53)). (28)
=0
(iii) Eay (w2 wy) = k + 1. Set

T? = wl S, w,. (29)

9



t—1 —1/2 44
(RilztRil)il/ZRilwt 5 [Z [ti(ao)] Z S(aw; w4—4) (30)
i=0

i=0
and
|

Z[ti(ao)] ZS(ao;xt,i) (=T%3) (31)

t—1 T
Z S(Oéo; xtz)]
i=0

as max{Ag, A1, ..., \s} — 0, where T} is the score test statistic up to time ¢ for testing

the null hypothesis Hy: pi,...,p; ~ Dirichlet(ag) versus the alternative Hy: py,...,p ~
Dirichlet(a) for some o # «p.

(v) If sup,s;, m < oo, then (R7'SR™) V2R wy % Niyy (Oesnyna, Irr) and T2
Xi41 as max{Ao, A1, ..., A} — 0 and t — oo.

(vi) If A = XN}, for some A € (0, 1], then

wy = A Z_:(l = NS (o; T15), (32)

Tf = i(l — )\)iS(OZQ; JTt_i)] l: S (1 2 )\)%It_i(ao)] : (1 — )\)iS(Oé(); [L’t_i), (33)
and

¥y =N ia ATy (o) (34)

for t = 1,2,..., where 0° = 1. In particular, if A = Iy, then w; = S(ag;xs), T? =
ST (avg; o) I () S(o; ) (= T2), and By = I () for t = 1,2,..., where T2 is the score
test statistic at time ¢ for testing the null hypothesis Hy: p; ~ Dirichlet(ag) versus the

alternative Hy: p; ~ Dirichlet(a) for some o # ay.

(vii) If ny = ny = ..., then
[t—1
S = PAD (Inp1 = A PT Ii(ag) P(Ipr — A)'| APT

L i=0
[t—1

= PA|> (It — A I (ao)(Tnpa — M) | APT
L i=0

_ p ()\j)\j/ [1 — (]_ — /\J)t<1 — )\j/)t} ]L.j.l(dé[))) PT

Aj+ )\j/ — )\j)\j/ .
)\j)\</l*.4/<060>
P J 155 pT
7.9 =0,1,....k

10



as t — oo, where PTI (o) P = I} () = (I;jj’(aﬂ))jg’:o,l ..... k-

(viii) If ny =ny = ... and A = X\ I, for some A € (0, 1], then
AL—(1=N)*
Et = [ 2(_ h\ ) ] [1(040) — 5\ 11(040) (36)
as t — oo. In particular, if ny = ny = ... and A = I4, then ¥, = I1(ag) for t = 1,2, ...,

Wy, Wy, ... are i.i.d., and TZ T3, ... are i.i.d.
Then the stopping time of the MEWMA monitoring scheme is the first time ¢ such

that
17 > h, (37)

where h is chosen to achieve a specified in-control average run length, e.g., 1/[2®(—3)] ~
370.4 with ®(-) denoting the cumulative distribution function (c.d.f.) of the standard

normal distribution.

11



4 A Simulation Study

In the former information, it accumulate the data up to time ¢t when ¢t = 1,2,...,[.
Through the former information, this paper discusses the different [ for each A\. The [ is
the past in-control data in phase I.

In order to study the performance of this quality control scheme, it compute the
average run length. To evaluate the in-control average run length (= ARLg), it con-
siders the special case where k = 2; py, po, ... are sampled from Dirichlet(ag) with ag =
(85,10,5); my = mg = ... = 100; P = I3; and A = M3 for A € {0.01,0.05,0.10,
0.15,0.20,0.30,0.40,0.50,1} (= S).

For A\ € S and ARLy, = 1/[2®(—3)], The h in equation (33) can be evaluated as
follows:

Step 1: Generate i.i.d. (p?, 27)7, oo, (Pogwin)” such that p; is sampled from Dirichlet(ayp)
and z; is sampled from multinemial(100;p,).for t=1,2, ...,370.

Step 2: To sort the T?s stich that FAORT R \ 30,

Step 3: Choose the maximum 7,0 (= T;2).

Repeat Steps 1-3 for 10,000 times independently. To sort the T;s such that Tt*Q(l), Tt*2(2)
, ...,7}*2(10’000). The initial value of hy is 7}*2(5’000). To compute the ARLE)I) with Aq. If the
ARL(()l) is large than 1/[2®(—3)], then hy is given such that hy < hy, and compute the
ARLSQ). If the ARLSI) is smaller than 1/[2®(—3)], then hs is given such that hy > hy,
and compute the ARL(()Z). Until it finds the h such that ARLy =~ 1/[2®(—3)] for each X;
see Table 1.

To evaluate the out-of-control average run length (= ARLq), it considers the spe-
cial case where k = 2; py,...,p; are sampled from Dirichlet(ag) and pji1,prio, ... are
sampled from Dirichlet(ay) for some [ € {0,1,2,...,500} with ag = (85,10,5), a; €
{(80,12.5,7.5)T (= i), (75,15,10)7 (= o!?), (70,20,10)7 (= o)}y = ny = ... =
100; P =1I3;and A= A3 for A € S.

The ARL; can be evaluated as follows:

Step 1: Generate i.i.d. (p¥,z7)T, ..., (pf, )" such that p; is sampled from Dirichlet(cy)

and then x; is sampled from multinomial(100; p;) for t = 1,2, ..., 1.
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Step 2: If T? > h for some ¢ € {1,2, ...,1}, then return to Step 1.

Step 3: Generate i.i.d. (ply,z{ )", ..., (pfip, 2= )" such that p, is sampled from
Dirichlet(ay ) and then z; is sampled from multinomial(100; p;) for t = 141,142, ..., [+ t*,
where [ + t* is the first time ¢ such that T7? > h.

Repeat Steps 1-3 for 100,000 times independently. Then the ARL; is approximated
evaluated by the average of 100,000 t*s for each A € S.

For A € S and ARLy = 1/[2®(-3)], the ARL; is put in Tables 2-31. The proposed
MEWMA monitoring scheme is also compared with the following monitoring scheme: the
stopping time of the monitoring scheme is the first time ¢ such that T/ > hg, where T} is

defined in equation (27) and hg is chosen to achieve ARLy = 1/[2®(—3)].
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5 Comparison and Conclusions

In the paper, an MEWMA control chart is proposed for monitoring a manufacturing
process in the Dirichlet-compound multinomial model. For each A € SU {0} (= '), it is
seen that h increases as A increases; see Table 1.

For0<!<4and X € S", the ARL; increases as A increases; see Tables 2-6. Then A
is chosen as 0.

For > 5 and a; € {agl), a§2), af’)}, consider the following three cases:

Case 1: a1 = ozgl). When 5 <[ < 20, the MEWMA monitoring scheme with A = 0
has the smallest ARL; for A\ € S"; see Tables 7-22. When 21 < [ < 36, the MEWMA
monitoring scheme with A\ = 0.05 has the smallest ARL; for A € S'; see Tables 23-24.
When 38 < [ < 500, the MEWMA monitoring scheme with A\ = 0.1 has the smallest
ARL, for A € S'; see Tables 26-31.

Case 2: a1 = a§2). When5 <l < 11, the MEWMA monitoring scheme with A = 0
has the smallest ARL; for X'€ S'; see Tables 7+13.. When 12 < [ < 138, the MEWMA
monitoring scheme with A = 0.15 has the smallest ARL, for A € S’; see Tables 14-27.
When 140 < [ < 500, the MEWMA monitoring scheme with A = 0.2 has the smallest
ARL, for A € S'; see Tables 29-31.

Case 3: a; = a§3). When 5 <1 <8, the MEWMA monitoring scheme with A = 0 has
the smallest ARL, for \ € S’; see Tables 7-10. But when the 9 <[ < 500, the MEWMA
monitoring scheme with A = 0.3 has the smallest ARL; for A € S'; see Tables 11-31.

For these three cases, it is seen that when « is faraway from «y, e.g., a3 = a§3), the
ARL; is smaller. When «; is close to ag, e.g., a3 = aﬁ”, the ARL; is bigger.

Compare X\ = 0.05 and 0.01:

Case 1: a; = agl). When 0 <[ <15, the ARL; for A = 0.01 is smaller than taht for
A = 0.05, so A = 0.01 is better than A = 0.05; see Tables 2-17. When 16 <[ < 500, the
ARL; for A = 0.05 is smaller than taht for A = 0.01, so A = 0.05 is better than A = 0.01;
see Tables 18-31.

Case 2: o = 0452). When 0 <1 <12, the ARL; for A = 0.01 is smaller than taht for

A =0.05, so A = 0.01 is better than A = 0.05; see Tables 2-14. When 13 <[ < 500, the

14



ARL; for A = 0.05 is smaller than taht for A = 0.01, so A = 0.05 is better than A = 0.01;
see Tables 14-31.

Case 3: a; = 0453). When 0 <[ <11, the ARL; for A = 0.01 is smaller than taht for
A = 0.05, so A = 0.01 is better than A = 0.05; see Tables 2-13. When 12 <[ < 500, the
ARL; for A\ = 0.05 is smaller than taht for A = 0.01, so A = 0.05 is better than A = 0.01;
see Tables 14-31.

So, when [ is large, the weight A = 0.05 is better than A = 0.01.

In general, the A of EWMA in the interval 0.05 < A < 0.25 works well in practice,
with A = 0.05, A = 0.10, A = 0.20 being popular choices. In this paper, it suggests
a multivariate exponentially weighted moving average control chart for some relevant
properties of the proposed control chart are also investigated in the Dirichlet-compound
multinomial model for a categorical manufacturing process. It is found by simulation that
the different a; and [ have different weight such that the ARL; is smallest when \ € S
According to accumulating different-in-control data up to time [ in phase I, A will be

different. This can be taken as a reference.
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Table 1: h for A € S and ap =

(85,10, 5)7.

A 0.00

0.01

0.05

0.10

0.15

0.20

0.30

0.40 | 0.50

1.00

h |l 6.53

8.33

11.96

14.79

17.02

19.08

22.45

25.42 | 27.73

34.34

* denotes the smallest ARL;.

Table 2: ARL, for | = 0, A € S'; a; € {041 L ),al }, where &g) = (80,12.5,7.5)7,

ol?) = (75,15,10)T, and o{*) = (70,20, 107
A
1=0 0.00 | 0.01 | 0.05| 0.10| 0.15| 0.20| 0.30| 040 | 050 | 1.00
(80,12.5,7.5)T || 5.00% 6.19 | 8.32 | 10.10 | 12.00 | 14.08 | 18.64 | 23.47 | 27.90 | 45.20
(75,15,10)7 || 1.94% 2.19 | 2.627) -2.96 1 322 | 3.49 | 3.96 | 4.52 | 5.13 | 8.80
(70,20,10)7 || 1.30%| 1.394.1:54-1.66 | L77 | 1.86 | 1.99 | 2.16 | 2.28 | 3.32
Table 3: ARL; forl=1Lxe 'S aj€ {',al?, al?}.
A
I=1 0.00 | 0.01 | 0.05 | ‘010 | 0.15| 0.20| 0.30| 040 | 050 | 1.00
(80,12.5,7.5)T || 6.00% 7.20 | 9.29 | 10.94 | 12.71 | 14.76 | 19.13 | 23.75 | 28.03 | 45.2
(75,15,10)7 || 2.37%| 2.65 | 3.14 | 3.44 | 3.65| 3.86| 426 | 475 | 529 | 8.80
(70,20,10)7 || 1.53*| 1.64 | 1.84 | 1.96 | 2.05| 2.11| 221 | 2.31| 241 | 3.32
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Table 4: ARL, for =2, A€ S'; a1 € {alV, a0, a®].

A
[=2 0.00 | 0.01 005 010 0.15] 0.20| 0.30 | 040 | 0.50 | 1.00
(80,12.5, 7.5)T 6.64% 7.94 | 9.83 | 11.31 | 13.06 | 14.94 | 19.23 | 24.10 | 27.87 | 45.20
(75,15,10)" 2.64% 296 | 3.44 | 3.69 | 386 | 4.04 | 438 | 482 | 503 | 8.80
(70,20, 1O)T 1.69* 1.82 | 2.03 | 2.14 | 2.19| 224 | 229 | 237 | 244 | 3.32
Table 5: ARL, for =3, A€ S"; oy € {agl),&?),&f’)}.
A
[=3 0.00 | 0.01 | 0.05| 0.10| 0.15| 0.20 | 0.30| 0.40 | 0.50 | 1.00
(80,12.5, 7.5)T 7.177 8.36 | 10.19 | 11.69. | 13.24 | 15.05 | 19.38 | 24.26 | 28.03 | 45.20
(75,15,10)" 2.89% 3.22 | «3.66 | 3.87 (. 399 | 4.11 | 441 | 4.84 | 531 | 8.80
(70,20, 1O)T 1.82% 1.97+| 2.17 2.25 | 228 =230 | 233 | 237 | 244 | 3.32
Table 6: ARLy ford=4, X € S yay € {a&”,aﬁ”,a?)}.
A
[=4 0.00 | 0.01 | 0.05| 0.10| 0.15| 0.20 ] 0.30| 0.40 | 0.50 | 1.00
(80,12.5, 7.5)T 7.56% 8.90 | 10.52 | 11.76 | 13.24 | 15.27 | 19.52 | 24.07 | 27.93 | 45.20
(75,15, IO)T 3.09% 3.42 | 3.84| 401 | 408 | 418 | 443 | 485 | 532 | 8.80
(70,20, 1O)T 1.94% 2.10 | 229 | 234 | 234 | 235 | 235 | 238 | 244 | 3.32
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Table 7. ARL, for [ =5, A € S/; a1 € {Oégl),@?),@?)}-

A
[=5 0.00 | 0.01| 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 8.01*| 9.24 | 10.85 | 11.94 | 13.58 | 15.18 | 19.57 | 24.12 | 28.19 | 45.20
(75,15,10)" 3.27 3.63 | 399 | 410 | 413 | 423 | 446 | 487 | 537 | 8.80
(70,20,10)" 2.05% 2.21 | 238 | 241 | 240 | 237 | 235 | 238 | 245 | 3.32
Table 8: ARL, for =6, A€ S; oy € {agl),&?),&f’)}.
A
[=6 0.00 001 005| 010| 0.15] 0.20| 0.30| 0.40| 0.50| 1.00
(80,12.5,7.5)T || 8.40*| 9.55 | 11.14 | 12.05. | 13.49 | 15.21 | 19.49 | 24.14 | 28.09 | 45.20
(75,15,10)" 3.45% 3.78 | «412 | 416 | 418 | 422 | 444 | 485 | 534 | 8.80
(70,20,10)" 2.16%| 2.31+| 246 246 | 242|239 | 237 | 238 | 244 | 3.32
Table 9: ARLy for4i="T7,X€ S yay € {a&”,aﬁ”,a?)}.
A
=17 0.00 001 005| 010] 0.15] 0.20| 0.30| 0.40| 0.50| 1.00
(80,12.5,7.5)T || 8.80*| 9.95 | 11.23 | 12.07 | 13.46 | 15.33 | 19.37 | 24.16 | 28.44 | 45.20
(75,15,10)T 3.508% 393 | 423 | 422 420 | 424 | 444 | 485 | 5.36| 8.80
(70,20,10)" 2.23% 240 | 253 | 250 | 243 | 240 | 237 | 238 | 244 | 3.32
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Table 10: ARL, forl=8, A€ S;a; € {agl),a?),agg)}.

A
[=38 0.00 | 0.01| 0.05| 0.10] 0.15| 0.20| 0.30 | 0.40| 0.50 | 1.00
(80,12.5,7.5)T || 9.10*| 10.10 | 11.31 | 12.14 | 13.43 | 15.30 | 19.17 | 24.17 | 27.59 | 45.20
(75,15,10)" 3.75% 4.09 | 433 | 427 | 422 | 427 | 444 | 485| 537 | 880
(70,20,10)" 233" 249 | 260 | 253 | 246 | 240| 236 | 238 | 244 | 3.32
Table 11: ARL, forl=9, A€ S; a; € {agl),a?),af’)}.
A
[=9 0.00 0.01| 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 9.40*| 10.53 | 11.51 | 12.39 | 13.58 | 15.28 | 19.64 | 24.01 | 27.79 | 45.20
(75,15,10)" 3.91% 421 | 441 | 429 | ~422 | 423 | 445 | 484 | 536 | 880
(70,20,10)" 240 | 257 265 256 | 248+ 240 | 236" 2.38| 245 | 3.32
Table 12: ARLy for =10, A€ S a; € {agl), af),ag‘o’)}.
A
[ =10 0.00| 0.01| 005 0.10| 0.15] 020 | 0.30| 0.40| 0.50 | 1.00
(80,12.5,7.5)T || 9.68* 10.79 | 11.62 | 12.26 | 13.55 | 15.35 | 19.35 | 23.99 | 28.01 | 45.20
(75,15,10)T 4.01* 435 | 448 | 434 | 423 | 425 | 446 | 486 | 534 | 880
(70,20,10)" 250 | 264 | 269 | 258 | 247 | 240 | 235" 237 | 245 | 3.32
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Table 13: ARL, for =11, A€ S oy € {agl), af),af’)}.
A
[=11 0.00| 0.01| 0.05| 0.10| 0.15| 0.20| 0.30| 0.40| 050 | 1.00
(80,12.5,7.5)7 || 10.03*| 11.03 | 11.79 | 12.31 | 13.57 | 15.33 | 19.55 | 24.17 | 28.23 | 45.20
(75,15,10)7 || 4.16*| 4.45| 4.55| 4.36| 4.27| 4.25| 446 | 4.85| 5.33| 8.80
(70,20,10)7 || 255 | 2.71| 2.75| 259 | 248 | 241 | 2.36* 2.38 | 244 | 3.32
Table 14: ARL, for l =12, A€ S"; ay € {aV,a?, oV}
A
=12 0.00| 0.01| 0.05| 0.10| 0.15| 0.20| 0.30| 0.40| 050 | 1.00
(80,12.5,7.5)7 || 10.24*| 11.31 | 11.82 | 12.35 | 13.55 | 15.31 | 19.60 | 24.19 | 28.19 | 45.20
(75,15,10)7 || 4.27 | 4.57+) 459 | 4.38 | 4:24*| 426 | 4.44 | 4.85| 535 8.80
(70,20,10)7 || 2.64 | 2:78 | 277 | 261|248 | 2.41| 2.36*| 2.39| 244 | 3.32
Table 15: ARLyfor =13, X € S a; € {o{V,al? olP1.
A
=13 0.00 | 0.01] 005| 0.10| 0.15| 0.20| 0.30| 0.40| 0.50 | 1.00
(80,12.5,7.5) || 10.53*| 11.54 | 11.93 | 12.41 | 13.56 | 15.29 | 19.32 | 24.23 | 28.40 | 45.20
(75,15,10)7 || 4.40 | 4.68 | 4.65| 4.39| 4.26*| 4.27| 4.44 | 4.85| 5.36 | 8.80
(70,20,10)7 || 2.70 | 2.85| 2.80| 2.61 | 2.47| 242 | 2357 238 | 244 | 3.32
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Table 16: ARL, for =14, A€ S oy € {agl), af),af’)}.
A
=14 0.00| 001 0.05| 0.10| 0.15| 0.20| 0.30| 0.40| 0.50| 1.00
(80,12.5, 7.5)T 10.70*| 11.63 | 11.97 | 12.40 | 13.56 | 15.31 | 19.23 | 24.15 | 28.32 | 45.20
(75,15, 1O)T 448 | 4.77 | 471 | 4.41 | 427 428 | 443 | 486 | 534 | 8.80
(70,20, 1O)T 276 | 292 | 281 2.62 | 247 | 241 2377 2.38 | 244 | 3.32
Table 17: ARL, for =15, A€ S oy € {0451), af),agg)}.
A
[=15 0.00 | 0.01] 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5, 7.5)T 10.96*| 11.81 | 12.03 { 12.39 | 13.57 | 15.33 | 19.37 | 24.17 | 28.28 | 45.20
(75,15, 1O)T 4.59 | 4.860f 4.74 | 4.42 427 428 | 4.45| 486 | 5.35| 8.80
(70,20, 1O)T 2.82 | 297 | 284 [© 262|248 | 241 2.35% 2.38 | 243 | 3.32
Table 18: ARLyfor =16, A€ S'va; € {o!V,al? alP1.
A
[ =16 0.00 | 0.01] 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5, 7.5)T 11.22% 12.02 | 12.00 | 12.38 | 13.58 | 15.29 | 19.24 | 24.26 | 28.17 | 45.20
(75,15, lO)T 468 | 4.95 | 4.77| 4.42 | 4.26% 427 | 4.44| 487 | 535 | 8.80
(70,20,10)" 288 | 3.05| 287 | 263 | 247 | 242 | 233* 237 | 244 | 3.32
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Table 19: ARL, for =17, A€ S'; oy € {agl),al yaq7 b
A
[ =17 0.00 | 0.01] 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 11.50*| 12.37 | 12.16 | 12.38 | 13.56 | 15.31 | 19.30 | 24.03 | 28.25 | 45.20
(75,15,10)" 481 | 5.07| 479 | 443 | 4.26* 4.27| 444 | 485| 534 | 880
(70,20,10)" 295 3.08| 290 | 2.64 | 248 | 242 | 234" 238 | 244 | 3.32
Table 20: ARL, for | =18, A€ S oy € {0451), af),agg)}.
A
[ =18 0.00 | 0.01} 005} 0.10| 0.15| 0.20| 0.30| 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 11.77%| 12.61 | 12.18 | 12.38 | 13.55 | 15.34 | 19.17 | 23.92 | 28.33 | 45.20
(75,15,10)" 491 | 513+ 482 | 443 1 4:.19* 426 | 4.45| 485| 535 | 880
(70,20,10)" 3.01 | 31| 291 @ 264 249 | 241 | 233" 238 | 245 | 3.32
Table 21: ARLy for =19, X€ S a; € {agl), af),ag‘o’)}.
A
=19 0.00 | 0.01| 0.05| 0.10| 0.15| 0.20| 0.30 | 040 | 0.50 | 1.00
(80,12.5,7.5)T || 12.05*| 12.64 | 12.22 | 12.52 | 13.56 | 15.32 | 19.23 | 24.29 | 28.39 | 45.20
(75,15,10)T 5.01 | 525 | 482 | 444 | 4.25% 4.27| 444 | 486 | 537 | 880
(70,20,10)" 3.07 1 315 | 293 | 263 | 248 | 242 | 236" 239 | 245 | 3.32
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Table 22: ARL, for 1 =20, A€ S'; ay € {al”,a?, oV},

A

[ =20 0.00 | 0.01} 0.05| 0.10| 0.15| 0.20| 030 | 0.40 | 0.50 | 1.00

(80,12.5,7.5)T || 12.12*| 12.84 | 12.23 | 12.49 | 13.58 | 15.33 | 19.33 | 24.03 | 28.24 | 45.20

(75,15,10)" 0.10 | 5.26 | 490 | 4.45| 4.25% 428 | 444 | 485 | 536 | 8.80

(70,20,10)" 3.09 | 321 294 | 2.63| 249 | 242 | 237 239 | 244 | 3.32

Table 23: ARL, for | =21, A€ S oy € {0451), af),agg)}.

A

[ =21 0.00| 0.01| 005| 0.10| 0.15| 0.20| 0.30| 0.40 | 0.50 | 1.00

(80,12.5,7.5)T || 12.42 | 13.01 | 12.27*} 12.43 | 13.57 | 15.29 | 19.20 | 23.94 | 28.13 | 45.20

(75,15,10)" .17 | 5.384 491 | 4.44 14.26% 4.27| 445 | 487 | 535 | 8.80

(70,20,10)" 3.20 | 328 | 293 |© 2.64 [ 250 | 243 | 2.36% 237 | 244 | 3.32

Table 24: ARLy for 1= 36, X€ S’ a; € {agl), af),ag‘o’)}.

A

[ =36 0.00| 0.01| 005| 0.10| 0.15| 0.20| 0.30| 0.40 | 0.50 | 1.00

(80,12.5,7.5)T || 15.63 | 14.09 | 12.34*| 12.45 | 13.62 | 15.35 | 19.40 | 24.17 | 28.18 | 45.20

(75,15,10)T 0.98 | 6.08 | 495 | 4.44 | 4.26% 4.30| 444 | 486 | 534 | 8.80

(70,20, 10)T 3.77 1 3.69 | 3.01| 2.65| 250 | 243 | 2.34% 238 | 244 | 3.32
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Table 25: ARL, for [ =37, A€ S'; oy € {agl), af),af’)}.
A
[ =37 0.00 | 0.01] 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 15.76 | 14.21 | 12.46*| 12.46*| 13.65 | 15.37 | 19.43 | 24.19 | 28.20 | 45.20
(75,15,10)" 6.11 | 6.14 | 499 | 444 | 427 429 | 444 | 486 | 536 | 8.80
(70,20,10)" 3.82 | 3.73 | 3.03| 266 | 250 | 243 | 235" 238 | 244 | 3.32
Table 26: ARL, for | =38, A€ S oy € {0451), af),agg)}.
A
[ =38 0.00 | 0.01} 005} 0.10| 0.15| 0.20| 0.30| 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 16.15 | 14.37 | 12.5L | 12.47*| 13.63 | 15.39 | 19.47 | 24.04 | 28.17 | 45.20
(75,15,10)" 6.24 | 6.19+) 5.00 | 4.44 427" 431 | 4.44| 487 | 533 | 880
(70,20,10)" 3.90 | 3%6 | 3.04 |© 265 250 | 243 | 236" 237 | 244 | 3.32
Table 27: ARLy for I'=138,X€ S';a; € {a&”,ai”,af’)}.
A
=138 0.00 | 0.01] 005| 0.10| 0.15| 0.20| 0.30| 0.40 | 0.50 | 1.00
(80,12.5,7.5)T || 26.84 | 18.16 | 12.63 | 12.39*| 13.60 | 15.30 | 19.42 | 23.94 | 28.19 | 45.20
(75,15,10)T 11.32 | 7.78 | 5.07 | 447 | 4.28* 431 | 444 | 485 | 535 | 8.80
(70,20,10)" 6.71 | 4.67 | 3.07 | 2.65| 249 | 241 | 235" 238 | 245 | 3.32
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Table 28: ARL; for 1 =139, A€ S'; a; € {agl),a?),agg)}.
A
[ =139 0.00| 001 0.05| 0.10| 0.15| 0.20| 0.30| 0.40| 0.50| 1.00
(80,12.5, 7.5)T 26.91 | 18.17 | 12.63 | 12.41*| 13.59 | 15.31 | 19.43 | 24.06 | 28.17 | 45.20
(75,15,10)" 11.36 | 7.79 | 5.07 | 4.46 | 4.26*| 4.26% 445 | 486 | 5.36 | 8.80
(70,20,10)7 || 6.74 | 4.68 | 3.06 | 2.65| 2.50 | 242 | 2.36* 2.38| 244 | 3.32
Table 29: ARL, for | =140, A€ S’ oy € {agl),a?),&gg)}.
A
[ =140 0.00 | 0.01] 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5, 7.5)T 27.04 | 18.18 | 12.64 | 12.42*| 13.58 | 15.31 | 19.47 | 24.07 | 28.17 | 45.20
(75,15,10)" 11.38 | 7.79+ 5.06 | 4.45 1 4.32 | 4.21* 445 | 486 | 536 | 8.80
(70,20,10)" 6.75 | 468 | 3.05 [© 2.66 [ 248 | 242 | 237 239 | 244 | 3.32
Table 30: ARLy for I'= 450, X € S';a; € {agl), 0452), a§3)}.
A
[ =450 0.00 | 0.01] 0.05| 0.10| 0.15| 0.20| 0.30 | 0.40 | 0.50 | 1.00
(80,12.5, 7.5)T 45.17 | 19.08 | 12.75 | 12.61*| 13.55 | 15.38 | 19.45 | 24.34 | 28.52 | 45.20
(75,15,10)T 19.36 | 834 | 5.11 | 454 | 447 | 4.32* 446 | 509 | 539 | 8.80
(70,20, 1O)T 11.71 | 487 | 3.10| 2.68| 251 | 242 233" 241 2.40 | 3.32
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Table 31: ARL; for I =500, A € S'; a; € {agl),a?),agg)}.
A
[ =500 0.00| 001 0.05| 0.10| 0.15| 0.20| 0.30| 0.40| 0.50| 1.00
(80,12.5, 7.5)T 48.04 | 19.30 | 12.80 | 12.67*| 13.57 | 15.42 | 19.44 | 24.38 | 28.49 | 45.20
(75,15, 1O)T 20.21 | 842 | 519 | 4.53 | 449 | 4.36* 447 | 513 | 542 | 8.80
(70,20, 1O)T 12.09 | 489 | 3.11 | 266 | 2.52| 240| 2.31* 243 | 2.36 | 3.32
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