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摘 要       

 

    半導體產業是一種高投資產業，每間公司在製程上所投資的成本都很高。由於半導體產業

製程相當複雜，因此，對每間公司而言，如何使製程穩定與良率提升便是一個很重要的目標。  

 晶圓圖是半導體產業中偵測製程異常的重要參考依據。當非隨機性的異常晶圓圖發生時，

常代表製造過程發生異常。藉由這些異常晶圓圖的圖形，也可幫助工程師找出可能發生的原因，

例如機台發生問題或哪個製程步驟有異常等。對於分辨隨機與非隨機晶圓圖的議題已有很多相

關研究，分別提出一些可以取代人工目視判斷方式的方法，以減少由於人為主觀的因素所導致

的圖形判斷結果不一致。 

然而在半導體廠製造技術水準與機台能力或產品特性等限制下，常導致晶圓圖上某些區域

容易產生故障品，此種原因所形成的異常晶圓圖形並非是特殊的製程異常所引起，而是基於半

導體廠製造技術水準與機台能力或產品特性的根本限制。此種「異常」和真正有歸屬原因的「異

常」，一般電腦自動辨識方法是分不出來的。在本篇論文中，在分辨晶圓圖形是否隨機，我們針

對此種製程能力的限制提出一個修正方法，期能正確判定真正的晶圓圖異常。此方法將可協助

工程師快速掌握製程異常的發生並加以排除，使製程穩定並提升良率。 
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Abstract

The semiconductor industry is a very competitive and high-investment industry.

The manufacturing process is one of the areas that are heavily invested. Semicon-

ductor manufacturing are so complex that improving the process stability and yield

is essential for each company to stay competitive.

The wafer sort map (WSM) is a useful tool for detecting abnormal processes.

Non-random patterns on a WSM usually provides clues about process problems.

With particular patterns, WSMs can help engineers to identify possible causes,

such as problems in equipments or process steps. Some automatic methods were

proposed to distinguish between random and non-random WSMs in the literature,

attempting to replace the labor-intensive human recognition operations for cost

saving as well as to reduce the inconsistency due to subjective human judgements.

In practice, however, almost all WSMs exhibit some regions of inherent failures,

which generally are due to process limitations caused by, say, layouts, equipments,

process technologies, etc. This kind of failures are inevitable at the present technol-

ogy level; thus, in the view of statistical process control, they should be considered

as caused by common causes instead of process problems caused by special causes.

Thus, in fab, such failures are often accepted and referred to as the “baseline” of the

process. Unfortunately, without accounting for, the baseline, most of the existing

automatic methods will classify these baseline patterns as non-random patterns. In
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this thesis, we propose a new approach to detecting WSMs with “genuine” non-

random WSM by taking the baseline into account. Three effective schemes are

developed and studied. Effective detection of patterned WSMs can help engineers

to trace process failures of particular patterns back to their root causes and then

improve the process stability and yield by eliminating these causes.
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1 Introduction

1.1 Background

The semiconductor industry has emerged as one of the most important industries in many

countries such as the USA, Germany, South Korea, Japan, and Taiwan. Semiconductor

devices are absolutely essential for almost all electronic products and systems in the

sense that most of the electronic products and systems cannot be produced or operated

without them. Their influences over human society are enormous. In recent years, the

mainstream evolution of the electronic products, such as computers, cell phones, digital

cameras/camcorders, and portable audio/video players, has continually striving people

toward designing/manufacturing products to be faster in operation, smaller in size, lighter

in weight, and of more value-added functionalities. Therefore, how to cope these desirable

features has become major challenges in ensuing competitiveness in the semiconductor

industry. Needless to say, advanced semiconductor packaging technologies play a very

important role in such efforts.

One major goal in advanced semiconductor packaging technologies is to increase the

density of devices in a fixed packaging size. To achieve this, the multi-chip module (MCM)

was developed and a widely application of the MCM is system-in-package (SiP), which

consists of multiple dies stacked vertically and connected within package. Each of these

dies, such as a specialized processor, DRAM, or FLASH memory, usually has one sin-

gle functionality. Dies are then combined with passive components to form a system or

subsystem. Various dies can be manufactured separately in different semiconductor man-

ufacturing companies, and then assembled together. However, the cost, as well as the

quality and production yield, highly depends on the cost and the quality of the individual

dies. Illustrating this with a simplified case that ignores assembly defects and different

yield levels of parts in an assembly, Figure 1 shows that the predicted yield of an assembly

decreases exponentially as a function of the number of devices used. A SiP consists of

various types of dies packaged together in an IC. Any of these dies failed will cause the

system not working properly. So, to drive up the yield of a SiP is more difficult than a

traditional single-chip IC.

In the final product, if one die fails, the whole module is typically useless or so reduced

in performance that it cannot be sold for its intended purpose or at a price that can cover
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the cost. Thus, there is no doubt that the high quality of dies is playing an important

role for an MCM in the aspect of reducing the cost and enhancing the quality/yield. This

leads to the demands for high-quality dies, which are called “known good dies (KGD)”

in the die market. A KGD is a bare die (i.e., without package) with high quality and

reliability that can assure the functionality in the integrated circuit (IC) level. Because of

that, KGD has become an imperative for component manufacturers who provide various

types of dies for the multi-chip module business.

Dies

Figure 1: System predicted yield as a function of the number of dies assembled for various

die yields.

However, the semiconductor manufacturing process is more complicate than those of

traditional manufacturing industries. It takes about 30–60 days to complete the process

of making bare silicon wafers into integrated circuits, such as microprocessors or memory

chips. In general, several wafers are processed simultaneously as a “lot”, typically of 25

wafers, and the size of each wafer ranges from 3 to 12 inches in diameter. Each wafer

would contain thousands of dies depending on the size of the dies being produced.

After wafer fabrication, all dies on a wafer must go through a process called the wafer

sort (WS). The purpose of the wafer sort is to examine the electrical functions of each

die and to prevent from packaging bad dies into a multi-chip package. The results of the

wafer sort give each die a binary code that denotes it as either a good die (0) or bad
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die (1). These wafer sort data then are used to generate the wafer sort map (WSM). A

WSM displays the locations of bad dies on the wafer. Figure 2 presents an example of

WSMs. The white squares and black squares on the map denote the good dies and bad

dies, respectively.

Figure 2: The left panel is a WSM with the code and the right panel is the corresponding

visual figure of bad dies.

Since the occurrences of any quality excursions can induce WS failures, WSM analysis

can help determine the possible causes of failures and help devise solutions to prevent

such failures from reoccuring. For example, uneven temperatures or chemical aging often

lead to spatial clusters on the WSM. Clustering also can be the result of crystalline

nonuniformity, photo-mask misalignment, or particles caused by mechanical vibration.

Improper material shipping and handling also can leave scratch lines on a WSM (see, for

example, Cunningham and McKinnon [1], Hansen and Tyregod [2], Hansen et al. [3], and

Taam and Hamada [4]).

Because WSMs contain important information that might guides quality engineers to

trace back to the source of process failures, WSMs has been considered as one of the most

important analysis tools in the semiconductor industry.

On the other hand, more important issues for KGD vendors to consider are (i) how

to provide quality assurance to their customers and (ii) what sale strategies to take to

make more profits. One possible solutions for that is to examine WSMs. If a WSM is of

3



some patterns, it implies process problems exist. Furthermore, the general market has a

common view that the good dies on a wafer with no patterns have better quality than

the good dies on a wafer with patterns in the semiconductor manufacturing industry. To

determine whether a wafer is of some patterns or not, spatial randomness tests are a useful

tool. Some tests are available in the literature, see, for example, Taam and Hamada [4]

and Hansen et al. [3].

Ideally, a completely random mechanism for dies can be defined as “bad dies on

the wafer are randomly distributed under the spatial homogeneous Bernoulli process

(SHBP).” This means the probability of each die being bad is the same. In practice,

however, almost all WSMs exhibit some regions of inherent failures, which generally are

due to process limitations caused by, say, layouts, equipments, process technologies, etc.

These types of failures are inevitable at the present technology level; thus, in the view of

statistical process control, they should be considered as caused by common causes instead

of process problems caused by special causes. Thus, in fab, they are often accepted and

referred to as the “baseline” of the process. Simply speaking, “common causes” induce

usual, historical, and quantifiable variations in a system, whereas “special causes” lead

to unusual, not previously observed, and non-quantifiable variations. Figure 3 presents

some WSM examples: the top panel shows four “random” wafer sort maps with a baseline

of a central disc pattern and the bottom panel exhibits four WSMs with patterns such

as linear scratch, ring, bottom, and crescent moon patterns in addition to a central disc

baseline.

However, the currently available spatial randomness tests can not distinguish between

the wafer patterns induced by common causes or special causes. Because of this reason,

semiconductor companies usually hire engineers to classify these WSMs visually based on

their own experiences. This approach is subjective as well as time-consuming. It would be

desirable to develop an automatic detecting procedure for classifying the wafer patterns

induced by common causes or special causes and this is the main objective of this study.

1.2 Motivation

As the technology evolves and advances, KGDs start playing an important role in ad-

vanced packaging technologies such as SiP. Because the yield of SiP devices highly de-

pends on the internal dies, KGDs are widely used to obtain higher yield of SiP devices.

4



(a) Random wafer sort maps with a baseline of a central disc.

(b) Patterned wafer sort maps with a baseline of a central disc.

Figure 3: Some random and patterned wafer sort maps with the baseline limitation.

Furthermore, for KGD suppliers, one of the quality assurance is from inspecting WSMs.

In general, KGDs on WSMs with common-cause patterns are better than those on WSMs

with special-cause patterns. So, KGD suppliers do classify wafers into random (i.e., better

grade) wafers or patterned (i.e., lower grade) wafers after wafers pass through the wafer

sort.

However, to classify wafers, many companies still rely on the visual inspection of

experienced engineers. The manual sorting is not only time-consuming but also full of

inconsistency, restricted by the capability of human recognition. By providing a ran-

domness test that takes the baseline of the process into account, this study will help fab

engineers to automatically determine whether a WSM is random or not. For simplicity,

in this paper, we assume the baseline regions are pre-determined by engineers based on

their experiences.

1.3 Overview

The remainder of this thesis is organized as follows. In Section 2, we give a brief overview

on the semiconductor manufacturing process and advance packaging technologies. More-

over, some WSM patterns that often occur in the process with their probable causes

5



are reviewed. In Section 3, we give a literature review including some related studies

in semiconductor manufacturing, spatial randomness tests, and a tool we use for mode

estimation. In Section 4, we present the proposed schemes, which extend three existing

spatial randomness tests to cope with baseline regions. Our proposed schemes can easily

adapt to any kind of baselines set by engineers. In Section 5, we evaluate and compare the

three proposed schemes via simulation studies. Finally, we conclude the thesis in Section

6.
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2 Introduction of Semiconductor Process and Pack-

aging Technologies

The processes involved in semiconductor manufacturing have been grouped by many re-

searchers into four stages, which are termed wafer fabrication, wafer sorting, device assem-

bly, and final testing. Wafer fabrication is an extremely sophisticated and complex process

that manufactures silicon dies. Assembly is a highly precise and automated process that

packages silicon dies for protection and providing users a practical way of handling. For

detailed descriptions of semiconductor manufacturing processes, see, for example, Uzsoy

et al. [5] and Knutson et al. [6]. The following descriptions are taken from May and

Spanos [7].

The four stages of semiconductor manufacturing system are carried out separately in

different work centers. These four stages are further grouped into two categories: front-

end manufacturing operations consist of wafer fabrication and back-end manufacturing

operations include wafer sorting, device assembly, and final testing (see Figure 4). We

will discuss these two categories in the following subsections.

Wafer 
Fabrication

Wafer 
Sort

Assembly Final Test

Figure 4: Flow chart for semiconductor manufacturing.

2.1 Front-End Process Steps

Semiconductor manufacturing consists of a series of sequential process steps including

crystal preparing, wafer preparation, lithograph, etching, ion implantation, metallization,

and cleaning to produce ICs. Figure 5 illustrates the interrelationship between the major

process steps in IC fabrication. The main steps are summarized as follows.

• Crystal Preparing

The first stage of the semiconductor manufacturing process involves growing a single
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Crystal Preparing
Wafer Preparation

and Input

1. Oxidation 2. Lithograph

3. Etching

4. Ion Implantation5. Metallization

6. Cleaning

Wafer Acceptance Test

Figure 5: Flow chart for generic IC process sequence.

crystal of silicon into a solid cylindrical shape. The silicon is first purified and heated

into a bath of molten liquid, into which a small crystal of silicon, called a seed, is

dipped. As the seed is slowly withdrawn, the surface tension between the seed and

the molten silicon causes some liquid to rise with the seed. The liquid solidifies

around the seed to form a single crystal ingot.

• Wafer Preparation

The solid cylinder of silicon, typically 150-mm (6 in.), 200-mm (8 in.), and 300-mm

(12 in.) in diameter, is then cut with a diamond saw blade to wafers about 0.5–

0.7 mm thick. Each wafer is cleaned, smoothed, and polished through a series of

machines.

• Oxidation

Generally, the step in semiconductor device fabrication involves the oxidation of the

wafer surface in order to grow a thin layer of silicon dioxide (SiO2). This oxide is

used to provide insulating and passivation layers.

• Lithograph

The lithography is the process for pattern definition by applying a thin uniform layer

of viscous liquid (photo-resist) on the wafer surface. The photo-resist is hardened
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by baking and then selectively removed by projecting light through a reticle that

contains mask information.

• Etching

This step selectively removes unwanted material from the surface of the wafer. The

pattern of the photo-resist is transferred to the wafer by means of etching agents.

• Ion Implantation

Ion implantation is a material-engineering process, by which ions of a material can

be implanted into another solid, thereby changing the physical properties of the

solid. Ion implantation is used in semiconductor device fabrication and in metal

finishing, as well as in various applications of materials science research.

• Metallization

Wafer metallization is the deposition of a thin film of conductive metal onto the

wafer surface.

• Cleaning

A number of wafer cleaning techniques or steps are employed to remove the contam-

inants from the wafer surface and to control chemically grown oxide on the wafer

surface.

At the end of these process steps, several test sites located on the fixed locations of

each wafer are selected to perform the wafer acceptance test (WAT) with 100-500 electrical

test items sequentially. The objective of the WAT is to perform the device characteristic

analysis.

2.2 Back-End Process

After the wafer fabrication is completed, the wafers go through the back-end process,

which includes wafer sort, assembly, and final test. During the back-end process, the good

dies are put through a series of processes to create the electrical connections necessary for

device to function. The following is a brief description of the three back-end stages.
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2.2.1 Wafer Sort

After wafer fabrication is completed, each finished wafer undergoes the wafer sort process.

The wafer sort test with 50–100 test items is performed sequentially to each die. The

objective of WS is to perform the die functionality sorting. Then, the bad dies are

automatically marked with a black dot so they can be separated from the good dies after

the wafer is cut (see Figure 6).

Figure 6: Mark the bad dies on the wafer after wafer sort.

2.2.2 Assembly

Assembly is the process after wafer sort that enables dies to be packaged for system use.

Each good die which goes through the process is usually called an integrated circuit. The

following are the main steps of the assembly process (see Figure 7).

Wafer Grinding 
and Sawing 

Die 
Bonding

Wire 
Bonding

Molding

Final Test
Appearance 

Check
Packing

Figure 7: IC assembly process sequence.

• Wafer Grinding and Sawing

Wafer Grinding and Sawing is the process to saw the wafer to dies.
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• Die Bonding

Die Bonding is the process of attaching the die either to its package or to some

substrate such as tape carrier for tape automated bonding. The die is first picked

from a separated wafer or from a waffle tray, aligned to a target pad on the carrier

or substrate, and then permanently attached, usually by means of a solder or epoxy

bond.

• Wire Bonding

Wire Bonding is the process of providing electrical connections between the die and

the external leads of the semiconductor device using very fine bonding wires.

• Molding

Molding is the process of encapsulating the device in plastic material. Transfer

molding is one of the most widely used molding processes in the semiconductor

industry because of its capability to mold small parts with complex features.

2.2.3 Final Test

In this stage, final test is the final arbiter of process quality and yield at the completion

of manufacturing. A description is in the following (see Figure 8).

Wafer Grinding 
and Sawing 

Die Bonding Wire Bonding

Molding

Final Test
Appearance 

Check
Packing

Figure 8: Final test process sequence.

• Final Test

During the packaging process, dies may be damaged or packaging may not be cor-

rectly performed. Final test is a 100% test performed on each packaged IC prior to

shipment to insure that any ICs improperly packaged are not shipped. The purpose

of final testing is to ensure that the product performs to the specifications it was

designed for.
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• Appearance Check

Appearance check is to examine the surface for defects.

• Packing

Packing is to stamp QC label and seal the product in vacuum bags.

2.3 Advanced Packaging Technologies — System-In-Packaging

As the semiconductor technology advances, the process technology improves from .35um

to 90nm and further to 45nm. Thus, in recent year, the electronics industry has experi-

enced a great enhancement in development of new materials and processes to support the

demand for “smaller, lighter, faster, and better” products. At the same time, it is seen that

packaging technologies are also shifted toward achieving these requirements through the

use of high-density packaging. One of these high-density packaging, system-in-packaging,

is an ideal solution in markets to support the demand. By stacking multiple silicon dies

vertically inside the same package, the technology effectively increases the functionality

and capacity of the electronic devices. (See Figures 9 and 10.)

3

SiP helps surpass the limits
 of the conventional system-on-chip (SoC) designs.

CPU

User Logic

SiP
Digital IP

Analog IP

Memory

High-Density System
(Smaller and Thinner)

Traditional System

SiP is an advanced technology to incorporate multiple components into a single package. 
You can mix a variety of components such as CPU, logic, analog and memory functions, reducing 
overall system size.

Market Needs for SiP

1. Reducing system board space
2. Reducing board mounted height
● The evolution of mobile electronic devices such as cell phones, digital cameras, digital camcorders and 

portable audio players is driving the demand for SiP solutions.

What is System-in-Pacakge (SiP)?

Figure 9: Scope of System-in-Packaging.

There are several reasons why the market demand seems to be growing strongly for

SiP solutions. These include:
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9-Layer MCP. (5 Die Stacked Die)

For space-constrained applications…

For height-constrained applications…

Toshiba’s SiP solution fully leverages its advanced die 
backgrinding technology to allow up to 9 die stack.

Low Loop Wire Bonding

Chip thickness: 60 µm
Ultra-Thin Stacked SiP

2-Layer Stacked SiP: Max. 
Thickness = 0.55 mm

High-Density Packaging Technology

(a) 9-layer 5 dies stacked (Front View)
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9-Layer MCP. (5 Die Stacked Die)

For space-constrained applications…

For height-constrained applications…

Toshiba’s SiP solution fully leverages its advanced die 
backgrinding technology to allow up to 9 die stack.

Low Loop Wire Bonding

Chip thickness: 60 µm
Ultra-Thin Stacked SiP

2-Layer Stacked SiP: Max. 
Thickness = 0.55 mm

High-Density Packaging Technology

(b) 9-layer 5 dies stacked (Lateral View)

Figure 10: The graph of SiP structure viewed by a scanning electron microscope.

1. Size: The size of sub-system can be reduced by integrating multiple dies and other

components in a SiP.

2. Performance advantages: Power reduction by minimizing line lengths (capacitive

loads) between dies in a SiP.

3. Lower System Cost: An optimized SiP solution usually results in an overall system

cost reduction compared to discrete IC packages.

4. SiP solutions reduce the complexity of the motherboard by moving the routing

complexity to the package substrate. This often results in a reduced layer count in

the motherboard and simplifies the product design.

More advantages were discussed in Scanlan and Karim [8], Lin [9], Buck [10], and

Aguirre [11].

2.4 Wafer Sort Map Pattern

As mentioned early, the wafer sort is a process that examines the functionalities of each die

by specific test conditions. One can color each die black (fail) or white (pass) from the test

results for a wafer, and the resulting map is called a “wafer sort map”. By incorporating

various plotting features into these maps, spatial patterns for passing and failing dies

become readily apparent. Since the occurrence of any quality inferiority can usually be

attributed to some specific causes, WSM analysis can help determine the possible causes

of process failures and help devise solutions to prevent the reoccurrence of these failures.

Usually the failure patterns of WSM can be classified into three major categories as

follows: (Kaempf [12])

13



1. Random patterns:

No spatial clustering and pattern exist, and the defective dies randomly distributed

in the two-dimensional map. Figure 11 is an example. Random defects are usually

caused by manufacturing environment factors. Even in a near sterile environment,

particles cannot be removed completely. Nevertheless, reducing the level of random

defects can improve the overall productivity of wafer fabrication.

Figure 11: Random defects of various defect level.

2. Systematic patterns:

As examples, Figure 12 shows some patterns of systematic defects. The positions

of defective dies in the wafer show the spatial correlation. Therefore, one may be

able to trace back to the assignable cause from the problematic process steps or

mechanism by analyzing the spatial distribution of failed dies. Systematic defects

usually give an analyst some clues to find problematic steps and ways to eliminate

them.

Figure 12: Examples of systematic defects.

3. Mixed pattern:

A mixed pattern is most common for a WSM, which consists of random defects and
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systematic defects in one map. Figure 13 gives an example.

Figure 13: Random defects plus systematic defects to form a mixed defects.

The following are four patterns occurring most often and some potential causes asso-

ciated with them. A baseline of a central disc is included as an example in the illustrative

figures.

• Bottom

The bottom pattern (Figure 14) could be the result of uneven heating during a

diffusion process or the probe card itself failed.

Figure 14: Bottom pattern
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• Ring

The ring pattern (Figure 15) appears on the WSM as a result of non-uniformities

created in the thin film deposition process or an uneven temperature distribution

during the rapid thermal annealing process.

Figure 15: Ring pattern

• Linear Scratch

The linear scratch pattern (Figure 16) on the WSM could be a result of material

shipping and handling during the manufacturing or testing.

Figure 16: Linear scratch pattern

• Crescent Moon

The crescent moon pattern (Figure 17) could be the result of defective wafer ma-

terials or adverse processes. For example, a fab engineer who notices this pattern

might decide to immediately look at the rapid thermal anneal (RTA) process.
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Figure 17: Crescent moon pattern
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3 Literature Review

In this section, we review some areas of research related to wafer maps, two spatial

randomness tests for testing the spatial randomness of wafer maps, and the kernel density

estimation that we use as a tool in our proposed schemes.

3.1 Related Studies

These areas in semiconductor manufacturing related to wafer maps are briefly described

here, including decision systems, yield models, and pattern recognition.

1. Decision System

Decision system is namely the application of various kinds of knowledge systems

to failure analysis. It integrates parameter analysis and engineering experiments to

help engineers effectively find the assignable causes and make decisions.

Two early examples of knowledge systems used in semiconductor manufacturing are

PIES (Pan and Tenenbaum [13]) and SMART (Mary [14]) that diagnose problems

in semiconductor fabrication processes by analyzing parametric test data. Maly et

al. [15] recommended using a hierarchical methodology for the interpretation of test

data. Methods such as CART (Breiman et al. [16]) and decision tree (Venkat [17])

would be useful in developing a decision system.

2. Yield Models

Yield in many ways is the most important financial factor in producing ICs. This is

because yield is inversely proportional to the total manufacturing cost. The higher

the yield is, the lower is the cost.

A yield model that provides good estimates of manufacturing yield can help predict

product cost, determine optimum equipment utilization, or be used as a metric for

supporting decisions involving new technologies and the identification of problematic

products or processes. Cunningham [18] provided a good historical review of yield

models.

Yield prediction of semiconductor dies can be used to:

• determine the cost of a new chip before fabrication,
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• identify the cost of defect types for a particular chip or a range of chips,

• estimate the number of wafer starts required,

• show which defect types accounted for the most yield loss,

• identify when a fabrication process is not performing as expected,

• determine the extent of parametric problems (in both design and process),

• monitor the fabrication process.

3. Pattern Recognition

Since wafer maps contain important information that could be used to trace the

process failures back to their root causes for quality engineers, how to recognize

wafer patterns is an important issue.

Gleason et al. [19] employed an automated clustering algorithm using artificial

intelligence. Chen and Liu [20] and Liu et al. [21] used neural networks for pattern

recognition. Lee et al. [22] adopted a self-organized feature map for advanced

process controls. Chao and Tong [23] used multi-class support vector machines

with a novel defect cluster index for pattern recognition. The above methods need

a large number of good training samples in order to successfully recognize defect

patterns.

In the process of pattern recognition, performing a spatial randomness test is an

important step to classify raw WSMs into two categories, patterned or random. If the

spatial randomness test is too sensitive, the frequency of false alarms would be large.

Conversely, if the spatial randomness test is not powerful enough, process failures may

not be detected and opportunities of quality improvement are lost. In the following, we

describe two existing spatial randomness tests.

3.2 Spatial Randomness Tests

In this subsection, we review two existing spatial randomness tests, respectively, pro-

posed by Tamm and Hamada [4] and Hansen, Nair, and Friedman [3], for semiconductor

manufacturing applications. Both methods use the joint-count statistics to measure the

adjacencies between good and bad dies (Weszka et al. [24]). The basic idea is based on
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comparing the number of good dies around a bad die and the number of bad dies are

around a good die.

3.2.1 Log Odds Ratio Test

Given a WSM and its site map, let Yi = 0 and Yi = 1 denote the die at site i being good

or bad, respectively.

A neighboring relationship is formed when two dies are located in the neighborhood of

each other. In general, the king-move neighborhood that consists of a central die and its

eight surrounding neighbors, as depicted in Figure 18, is the most popular construction

rule.

Figure 18: The king-move neighborhood.

In this study, we adopting the king-move neighborhood rule. Denote the set of all

neighboring relationships of a wafer by H , that is, the notation (i, j) ∈ H implies that

two dies i and j are neighbors. Let N denote the total number of dies per wafer. Then,

the following four statistics can be computed:

NGG =
∑∑

i<j
δij(1− Yi)(1− Yj), (3.2.1a)

NGB =
∑∑

i<j
δij(1− Yi)Yj, (3.2.1b)

NBG =
∑∑

i<j
δijYi(1− Yj), (3.2.1c)

NBB =
∑∑

i<j
δijYiYj, (3.2.1d)

where

δij =

 1, (i, j) ∈ H,

0, otherwise.
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Take Figure 19 as an illustrative example. If the ith die is a good die, then the

summand is 0 for NBG and NBB, 1 for NGG, and 3 for NGB, corresponding to the king-

move neighborhood rule and (3.2.1).

Figure 19: An example to depict the calculation of the four joint-count statistics.

To measure spatially associative effects on the WSM, Tamm and Hamada [4] proposed

the following log odds ratio

θ̂ = log(
(NGG + 0.5)(NBB + 0.5)

(NGB + 0.5)(NBG + 0.5)
), (3.2.2)

by employing the king-move neighborhood rule.

When the total number of dies on a wafer N is large, θ̂ is approximately normal

distributed with mean 0 and variance (Agresti [25])

σ2 = (
1

NGG + 0.5
+

1

NBG + 0.5
+

1

NGB + 0.5
+

1

NBB + 0.5
). (3.2.3)

Thus, when | θ̂ | is greater than the critical point determined by the above approximate

normal distribution, there is significant evidence to claim that the WSM is non-random;

otherwise, claim that the WSM is random.

3.2.2 HNF Test

For convenience, the test developed by Hansen et al. [3] is referred to as the HNF test

here after. In the test, two weighted “joint-count” statistics are computed, one counts the

number of bad neighbors of bad dies and the other counts the number of good neighbors

of good dies. To make this intuitive formulation mathematically precise, we introduce

some notation.

Let N represent the collection of die locations on a given wafer and N denote the

total number of dies on a wafer. And let N1 ⊂ N denote the positions of the bad dies on
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a wafer and N1 = |N1|, the number of bad dies. Similarly, let N0 = N \N1, the locations

of the good dies and N0 = |N0|. Hence, N = N1 +N0. Next, for i ∈ N , let IN1(i) be the

indicator function of the event that the die at site i is bad, and set IN0(i) = 1 − IN1(i).

Finally, we let pi = EIN1(i), the probability that the die at site i is bad, and set qi = 1−pi,

the probability that the same die is good.

In the absence of any non-random patterns, assume that bad dies are distributed

randomly across the wafer. More specifically, we assume that the variables IN1(i)’s are

independent and identically distributed as Bernoulli random variables with constant prob-

ability pi = p, i ∈ N . In other words, we have an SHBP over the die locations in N (Cliff

and Ord [26]).

After the wafer sort, the proportion of bad dies on a wafer, p̂, can be computed.

Consider the statistic T = (TN0 , TN1)
′ to test the null hypothesis that there is no non-

random pattern, where

TN0 = N−1
∑
i∈N

∑
j∈N

wi(j)IN0(i)IN0(j), (3.2.4)

TN1 = N−1
∑
i∈N

∑
j∈N

wi(j)IN1(i)IN1(j), (3.2.5)

and, for each i ∈ N , {wi(j), j ∈ N} denotes a set of nonnegative weights normalized so

that
∑

j∈N wi(j) = 1.
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Figure 20: An example to depict the calculation of the pair T statistics.

Figure 20 depicts two illustrative examples with the right panel indicating the weight
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for each neighboring site. In the examples, weights are equally distributed among all the

neighbors for each die. Let

TN0(i) = N−1
∑
j∈N

wi(j)IN0(i)IN0(j)

and

TN1(i) = N−1
∑
j∈N

wi(j)IN1(i)IN1(j).

Then TN0 =
∑
i∈N

TN0(i) and TN1 =
∑
i∈N

TN1(i).

For Figure 20(a), we have TN1(i) = 0 and TN0(i) = N−1(1
8
· 1 · 1 + 1

8
· 1 · 1); and for

Figure 20(b), TN1(i) = 0 and TN0(i) = N−1 · 1
5
· 1 · 1, corresponding to the king-move

neighborhood and the associated weights of neighbors.

The following are the exact first and second moments of the pair T statistic conditional

on p̂ = N1/N . Note that N is fixed, so being conditional on p̂ is equivalent to being

conditional on N0 or on N1. Thus, the exact first moments are

E (TN0|N0) =
N0(N0 − 1)

N(N − 1)
(3.2.6)

and

E (TN1|N1) =
N1(N1 − 1)

N(N − 1)
, (3.2.7)

assuming that wj(j) = 0 for all j ∈ N (Cliff and Ord [26]). Next, the second moments of

the pair T are

E
(
T 2
N0
|N0

)
= α1

N0

N
+ α2

N0(N0 − 1)

N(N − 1)
+ α3

N0(N0 − 1)(N0 − 2)

N(N − 1)(N − 2)
+

α4
N0(N0 − 1)(N0 − 2)(N0 − 3)
N(N − 1)(N − 2)(N − 3)

(3.2.8)

and

E
(
T 2
N1
|N1

)
= α1

N1

N
+ α2

N1(N1 − 1)

N(N − 1)
+ α3

N1(N1 − 1)(N1 − 2)

N(N − 1)(N − 2)
+

α4
N1(N1 − 1)(N1 − 2)(N1 − 3)

N(N − 1)(N − 2)(N − 3)
,

(3.2.9)

where α1 + α2 + α3 + α4 = 1 and α1 = 0 if wj(j) = 0 for all j ∈ N . Note the symmetry

between (3.2.6) and (3.2.7), also between (3.2.8) and (3.2.9). The four αk’s are defined as
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αk = N−2
∑
i∈N

∑
j∈N

∑
i′∈N

∑
j′∈N

wi(j)wi′(j
′)Ik(i, j, i

′, j′), (3.2.10)

where Ik returns the value of 1 if there are only k different elements among its four

arguments and 0 otherwise. Roughly speaking, quantities αk’s are obtained by computing

the proportions of the terms in the expansion of the second moment that involve two,

three, and four unique indicators, respectively, and hence must be computed separately

for every different die layout N . Finally, if wj(j) = 0 for all j ∈ N as one would usually

set, then the covariance between TN0 and TN1 can be computed by

E (TN0TN1|N0, N1) = α4
N1(N1 − 1)N0(N0 − 1)

N(N − 1)(N − 2)(N − 3)
. (3.2.11)

Assume that N1/N dose not go to 0 as N →∞. Then, with the theory of U statistics

(Lee [27]), it can be shown that, the statistic T under null hypothesis has a bivariate

normal limiting distribution as N (and N1) tends to infinity (Hansen et al. [3]). This

implies

T =

 TN0

TN1

∣∣∣∣∣∣N0, N1 ∼ BN(µ1,Σ1) as N →∞, (3.2.12)

and the exact conditional expectation (µ1) and conditional variance and covariance matrix

(Σ1) can be obtained by (3.2.6) – (3.2.11). Thus, conditional on N0, N1, the test statistic

D = (T − µ1)
′Σ1(T − µ1)

follows the chi-square distribution with degrees of freedom 2. Accordingly, the critical

value of the test can be determined.

3.2.3 HNF Method Under Cluster

As mentioned in Section 1, the bad dies being distributed randomly across the wafer is the

ideal situation for a wafer. Unfortunately, almost all wafer sort maps exhibit some regions

of inherent failures in practice. Hansen et al. [3] also considered a clustered alternative

hypothesis and derived the exact distribution of the T statistic conditional on a cluster

C and p̂ = N1/N .

To describe more precisely, let C0, C1 ⊂ N denote the set of good and bad die sites,

respectively, and set C = C0 ∪ C1. Generically, we refer to C as a cluster. Let C0 and C1
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be the number of the good dies and bad dies in C, respectively. For any sets I,J ⊂ N ,

we define

T (I,J ) = N−1
∑
i∈N

∑
j∈N

wi(j)II(i)IJ (j), (3.2.13)

where II(i) = 1 if i ∈ I; 0 otherwise.

Then the exact mean of T conditional on the event that C0 contains all the good dies

in C can be computed by:

E (TN0|N0, N1, C0, C1) = T (C0, C0) + [T (C0, Cc) + T (Cc, C0)] N0 − C0
N − C +

T (Cc, Cc)(N0 − C0)(N0 − C0 − 1)
(N − C)(N − C − 1)

(3.2.14)

and

E (TN1 |p̂ = N0, N1, C0, C1) = T (C1, C1) + [T (C1, Cc) + T (Cc, C1)] N1 − C1
N − C

+T (Cc, Cc)(N1 − C1)(N1 − C1 − 1)
(N − C)(N − C − 1)

,
(3.2.15)

where Cc = N\C, the complement of C.

The expressions for second moments are complicated and not presented here. These

expressions also depend on the αk’s defined in (3.2.10). Recall that αk’s vary with the

wafer layout. In addition, when there exists a baseline C, these αk’s depend not only on

the set C but also on C0 and C1.

The joint distribution of the pair T = (TN0 , TN1) conditional on (N0,N1, C0, C1) is

approximately bivariate normal when N − C is large, that is

T =

 TN0

TN1

∣∣∣∣∣∣N0, N1, C0, C1 ∼ BN(µ2,Σ2) as N − C →∞, (3.2.16)

where µ2 given in (3.2.14) and (3.2.15) and Σ2 can be found in Ooi et al. [28]. With

(3.2.16), the critical value of the randomness test can be determined.

However, the computation of the exact second moments are too extensive to carry out

in practice, we will propose an alternative method to compute µ2 and Σ2 by constructing

some pseudo wafers.
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3.3 Mode Estimation Via Kernel Density Estimation

In this subsection, we give a brief description on kernel density estimation, a tool we use

to estimate the mode of a distribution in proposed schemes.

Kernel density estimation has a long tradition of estimating the probability density

function of a random variable in nonparametric way. With the kernel density estimate, the

mode of the distribution can be estimated by the maximizer of the kernel density estimate.

Parzen [29] gave consistency, asymptotic normality, and mean squared error evaluation

of the kernel sample mode, and his results have been extended in several directions by

Chernoff [30], Eddy [31], and Romano [32].

Given the random sample x1, x2, . . . , xn, which follow a continuous, univariate proba-

bility density function f , the kernel density estimator is

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (3.3.1)

where K is some kernel function and h is a smoothing parameter called the bandwidth.

The bandwidth controls the smoothness of the estimated curve (Silverman [33], Chen [34],

Shi and Zhang [35], and Gasser and Muller [36]). Small values of h force the expected

value of the estimate f̂h(x) to be close to the true value f(x), but the price to pay is the

high variability of the estimate, since it is based on comparatively few observations. On

the other hand, variability can be decreased by increasing h. Quite often K is taken to

be a standard Gaussian function with mean 0 and variance 1. That is,

K

(
x− xi
h

)
=

1√
2π

e
−

(x− xi)2
2h2 . (3.3.2)

Given the parameter h and kernel K, we take the maximizer of the estimated kernel

density f̂h to be the estimate of the mode of f .

26



4 Proposed Schemes

4.1 Data Encoding

The WS data are three-dimensional data with the (x, y) position and the binary test

result value for each die. Figure 21 illustrates how to transform WS data (left panel) to a

one-dimensional binary sequence according to the ordering shown in the site map (right

panel).

{1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,........}

WS Data Site Map

Figure 21: Data encoding.

4.2 Proposed Method

Loosely speaking, the baseline is a region treated by engineers as an accepted flaw in

practice. When they judge a wafer to be random or patterned, they simply ignore whether

the situation is inside the baseline. Therefore, to them, an automatic classification method

should also ignore whether within the baseline. Also, baselines have various shapes and

they will definitely change as the manufacturing process improves/changes over time. So

desirable automatic pattern detection method should be able to adapt to any kind of

baselines set by engineers.
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Unfortunately, the odds ratio test and HNF test described in the previous section can-

not distinguish between the baseline and the “genuine” non-random patterns. The HNF

method under cluster dose take the baseline into account, but it is too computationally

intensive to be feasible for practice use. To meet engineers’ need, we modify these three

randomness tests with a simple approach that takes the baseline into account. The idea is

fairly simple: masking the unwanted area, e.g., the baseline, with a randomly generated

Bernoulli sequence to remove the unwanted patterns so that the existing methods are

applicable.

Two types of pseudo wafers, called pseudo-inside and pseudo-outside WSMs, are con-

sidered. For the WSM under test, a pseudo-inside WSM is generated by replacing the

die data in the baseline with a set of generated variates that follows an SHBP with the

probability of {Y = 0} to be the yield outside the baseline. If the dies outside the base-

line indeed follow an SHBP, then the whole pseudo WSM also follows the same SHBP

approximately. Then the first two randomness tests can be applied to the pseudo WSM.

Similarly, a pseudo-outside WSM is generated by replacing the binary die data outside

the baseline with a sequence of SHBP data. The procedure for generating a sequence of

pseudo-inside (pseudo-outside) is as follows.

1. Given the baseline region, calculate youtside, the yield outside the baseline region.

2. Generate a Bernoulli sequence with the parameter 1− youtside and the length is the

total number of dies inside (outside) the baseline region.

3. Replace the inside-baseline (outside-baseline) data with the Bernoulli sequence ac-

cording to the site map.

4. Repeat steps 2–3 n times.

Figure 22 and 23 illustrate the generation of pseudo-inside and pseudo-outside WSMs,

respectively. The left-hand-side of the arrow is the original WSM with a central-disc

baseline and the right-hand-side are n pseudo WSMs obtained by the above procedure.

The purpose of generating n pseudo-inside WSMs is to find a “good” substitute for

the original WSM. We could have simply generated just one pseudo WSM and apply the

odds ratio or HNF test to it. But we are concerned about getting not-so-good substitute

due to sampling. With n replicates, one could use the sample mean of n test statistics for
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Figure 22: Generating a sequence of pseudo-inside WSMs from a WSM.
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Generating 
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Repeat 
n times

Figure 23: Generating a sequence of pseudo-outside WSMs from a WSM.

reducing the sampling error, or the sample median for robustness, or the sample mode

for the high likelihood. Here we describe the sample mode approach because it is slightly

complicated than using mean and median.

With this generating procedure, we now are ready to describe the proposed schemes.

4.2.1 Mode Odds Ratio Method

Note that, for the same original WSM, the approximate variance (3.2.3) of the test statistic

θ̂ of a pseudo-inside WSM depends on the statistics obtained from the pseudo WSM, hence

each pseudo WSM has its own value of σ2. By normalizing θ̂, we have

Z =
θ̂

σ

approx.
∼ N(0, 1). (4.2.1)

To describe the proposed mode odds ratio method, we use the WSM shown in Figure

22 as an illustrative example. Generate 100 pseudo WSMs. For the jth pseudo WSM,

j = 1, 2, . . . , 100, obtain θ̂j then Zj. Applying the kernel density estimation method to

{Zj, j = 1, . . . , 100} to obtain the kernel density estimate and then its mode. The mode

represents the most probable Z value for the WSM under study when pretending that

the baseline region is random. Figure 24 presents the kernel density estimate of the 100
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Zj’s in this case. At the significance level α = 0.01, the mode estimate is Z∗ = 11.7558 >

z.005 = 2.576, hence we reject the null hypothesis of randomness, i.e., special patterns

other than the baseline exist for this WSM, which indeed is the case.

z*z*

Figure 24: Mode estimation of Zj values

4.2.2 Mode HNF Method

Generate n pseudo-inside WSMs from the WSM to be tested as described earlier in

subsection 2. For the jth pseudo-inside WSM data, j = 1, . . . , n, carry out the following

statistic

Dj = (Tj − µj)
′
Σ−1

j (Tj − µj), (4.2.2)

where µj and Σj can be obtained from (3.2.6)–(3.2.9). By the result given in Hansen et al.

[3], Dj follows χ2(2) asymptotically, the chi-square distribution with 2 degrees of freedom.

Apply the the kernel density estimation method to these Dj values and obtain the mode of

the kernel density estimate, denoted by D∗. Then we can judge whether there exist special

patterns by comparing the mode with the critical value χ2
α(2), the 100(1−α)% percentile

of χ2(2). Take the same example as described in the last subsection as an example. The

same 100 pseudo-inside WSMs given a kernel density estimate and its mode D∗ = 147.02

as shown in Figure 25. Take α = 0.01 as an example. Since D∗ is far greater than the
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critical value χ2
0.01(2) = 9.21034, we reject the null hypothesis of randomness, and claim

that the original WSM exhibits special patterns other than the baseline.

D*D*

Figure 25: Mode estimation of Dj values

4.2.3 Empirical HNF Method

The method described in Subsection 3.2 does take the baseline into account, but the

computation is too intensive to be feasible for online testing. For example, it took almost

30 minutes on a regular PC to complete the randomness test for one single wafer. In

this subsection, we propose an alternative method by estimating the mean and covariance

matrix empirically with pseudo-outside WSMs.

For a given WSM, we first generate n pseudo-outside WSMs as described earlier. As

in Subsection 3.2, compute the statistic Tj for the jth pseudo WSM, j = 1, . . . , n, and

obtain a pseudo sample of size n. Compute the sample mean T̄ and sample covariance

matrix S of this sample. Consider the statistic

F =
n(n− p)
(n2 − 1)p

(T − T̄ )
′
S−1(T − T̄ ), (4.2.3)

where T is the statistic of the original WSM and p = 2 is the dimension of T . Recall that

conditional on N0, N1, C0, and C1, the distribution of each Tj follows a bivariate normal

31



asymptotically. Therefore, if Tj’s are independent and identically distribution (i.i.d.), then

the test statistic F in (4.2.3) has an F distribution with degrees of freedom 2 and n− 2

asymptotically and the critical value would be its 100(1− α)th percentile accordingly.

However, Tj’s are not independent because all the pseudo WSMs have the same base-

line. Fortunately, this loop hole can be mended with the following argument. Let C be

the set of dies in the baseline and Cc = N\C, the complement of C. We say a die is

in the boarder of C and Cc if it has a neighbor from the other set. Denote the boarder

by B. First note that, the contribution of all the dies in the boarder to TN0 and TN1 ,∑
i∈B

TN0(i) and
∑
i∈B

TN1(i), can be neglected because |B|/|N | → 0 as N → ∞. Next,

without involving neighbors in Cc, we have
∑
i∈C\B

TN0(i) = c0 and
∑
i∈C\B

TN1(i) = c1 for all

pseudo-outside WSMs, where c0 and c1 are two constants. On the other hand, the statistic∑
i∈Cc\B

TN0(i) for each pseudo WSM are i.i.d. by their construction. The same argument

of Hansen et al. [3] would imply that

( ∑
i∈Cc\B

TN0(i),
∑

i∈Cc\B
TN1(i)

)′

follows a bivariate

normal asymptotically. Combining all these terms, (TN0 , TN1)
′

also follows a bivariate

normal asymptotically. Thus we conclude that conditional on (N0, N1, C0, C1), statistic F

in (4.2.3) follows F distribution with degrees of freedom 2 and n− 2 asymptotically.

For the same example as before, we generate 100 pseudo-outside WSMs to obtain 100

Tj’s. For these Tj’s, T =

 0.4723

0.1350

, T̄ =

 0.4519

0.1148

, and S =

 2.16e− 05 −5.84e− 06

−5.84e− 06 5.54e− 06

.

Let α = 0.01. Then by (4.2.3), F = 380.1747 > F2,98(0.01) = 4.8285. Thus, the example

shows that the Empirical HNF test rejects the null hypothesis of being random and claim

the WSM has some patterns other than the baseline.

Finally, we summarize these three proposed schemes in the following flow chart (Figure

26).
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Input data

Figure 26: The flow chart of the proposed schemes.
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5 Simulation Studies

We first discuss how to create the platform of the WSM. In this part, the total number

of dies on a wafer is determined by the simulation parameters. After the simulation

parameters are set, we then focus on how to generate various patterns on a wafer. Finally,

we evaluate the performances of the three proposed schemes in terms of the false alarm

rate and detection power under various yield levels and patterns.

5.1 Simulation Settings

In our simulation, the number of rows and columns and total number of dies are deter-

mined by the 5 spatial parameters. The 5 parameters are as follows and illustrated in

Figure 27:  

k

r

k

k k 

h

l 
w

Figure 27: Simulation parameters

for wafer.

• r denotes the radius of the wafer

• h denotes the interval between two dies

• k denotes the length of the retained wafer edge

• l denotes the length of each die

• w denotes the width of each die

For example, the simulation parameters (r, h, k, l, w) = (8, 0.5, 0.8, 1.2, 1) would corre-

spond to a wafer with 9 rows and 8 columns, and the total number of dies is 52. Figure

27 and Table 1 illustrate the details of the wafer layout under this setting.
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Table 1: An example for wafer creation.

row ] of dies x-cordinate y-cordinate

start end

1 2 −0.85 0.85 6.0

2 6 −4.25 4.25 4.5

3 6 −4.25 4.25 3.0

4 8 −5.95 5.95 1.5

5 8 −5.95 5.95 0.0

6 8 −5.95 5.95 −1.5

7 6 −4.25 4.25 −3.0

8 6 −4.25 4.25 −4.5

9 2 −0.85 0.85 −6.0

5.2 Generating Patterned Wafer Sort Maps

After the wafer layout is set, we focus on how to generate patterned wafer sort maps.

In this study, we pick four wafer patterns, the linear scratch, ring, bottom, and crescent

moon. Here, we explain how to generate the linear scratch pattern as an illustrative

example.

For the linear scratch pattern, the wafer is separated into two disjoint areas, the linear

scratch (B) area and its complement (A), as illustrated in Figure 28. To generate a

linear scratch pattern, simply generate a Bernoulli variate for each die with a “success”

probability to be a bad die higher for dies in patterned area B than in A. That is, the

yield in A is higher than in B.  

B

A 

A

Figure 28: Illustration for generating a linear scratch pattern.
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5.3 Comparisons

In this simulation, the wafer layout parameters are (r, h, k, l, w) = (8, 0.01, 0.15, 0.24, 0.18)

and the total number of dies per wafer is 3913. Assume the baseline is the centered disc

of radius 3.47 as shown in Figure 29. The area of the baseline is almost 20% of a wafer. 

baseline 

3.47 

Figure 29: Baseline setting.

For patterned wafers with the baseline, Figure 30 illustrates four different patterns in

our simulation studies. Divide a wafer into three areas, the baseline, the patterned area,

and the random area. Let the yield in the random area be yr, the yield in the baseline

be 0.8yr, and the yield in the patterned area be 0.6yr. Denote the proportion of the

patterned area is a wafer by b. Then the wafer yield is y = (0.96− 0.4b)yr.

Figure 30: 4 different patterns with a central-disc baseline region.

In order to study and compare the performances of the proposed schemes under various

conditions, we conduct the following three simulation studies.

The first simulation study compares the false-alarm rate of the three proposed methods

and two existing methods with wafers of no special patterns. The second study compares

the detecting power of the three methods under various yield level. The third study

compares the detection power of the three methods under various sizes of the patterned

area when the yield level is fixed. Two yield levels, including middle and high wafer
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yield, are considered. For each case under study, we generate 150 WSMs and the level of

significance is α = 0.01.

5.3.1 False-alarm Rate

We generate 150 random WSMs with the baseline for each yield level yr, for yr =

0.01(0.05)0.95. We apply the existing odds ratio test and HNF tests as well as our three

methods to the generated WSMs. The false-alarm counts are listed in Table 2 and the

corresponding false-alarm rates are plotted in Figure 31.

From Figure 31, the two existing methods that do not take the baseline into account

lead to a higher false-alarm rate, especially when the yield y is high. A high false-alarm

rate will make engineers lose confidence in the auto detection method. On the other hand,

our proposed schemes take the baseline into account and the resulting false-alarm rates

are controlled at an about right level.
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Figure 31: False-alarm rate of the two existing method and three proposed methods for

various yield level.
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5.3.2 Detecting Power vs. Yield

It is interesting to evaluate the performance in detecting various patterns. Because the

size of the patterned area affects the performance, we fix the size at 20% of the wafer in

this study.

Figure 32 and Tables 3–6, show the simulation results. It is observed that these

methods have the same trend—the higher yield, the larger power. The detecting power

of the mode odds ratio test is greater than the other two tests; and the mode HNF test

seems performing slightly better than empirical HNF test. When the yield (y) is higher

than 0.6, all three methods have 100% detecting power for all the patterns.

For the comparison of various patterns, it is observed that the linear scratch pattern

is the hardest to detect. The bottom pattern is the easiest, followed by the crescent moon

and edge ring pattern.
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(a) Linear Scratch
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(b) Edge Ring
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(c) Bottom
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(d) Crescent Moon

Figure 32: Detecting power for various patterns under a fixed patterned area size.
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5.3.3 Detecting Power vs. Patterned Area

In Subsection 5.3.2, we have seen that the yield level has a great impact on the detecting

power for all three proposed methods, and the higher the yield is, the better is the

detecting power. This is very intuitive because it is easier to spot unusual patterns when

the yield is high. Conversely, for a wafer with a very low yield, the bad dies in the

random area will mask the patter so that it would be hard to detect patterns, if they

exist. We remark that detecting patterns has no practical meaning when the yield level

is low, because it would be a time of emergency and engineers must stop the process to

take necessary actions to find the root cause of the low yield.

Therefore, in studying how the proposed methods would react to the size of the pat-

terned area, we consider two yield levels, yr = 0.75 (middle) and 0.95 (high). In our

simulation study, for each pattern, we start with almost no pattern and then gradually

increase the size of the patterned area to about 20% of the wafer. For 20 area size con-

sidered in the simulation, the wafer yield is in the range of 0.7 ± 0.03 and 0.9 ± 0.03 for

the middle and high yield levels, respectively.

For the middle and high yield level, Figure 33 and Figure 34 display the detecting

power of the three methods over the size of the patterned area with panel (a) for linear

scratch, (b) for edge ring, (c) for bottom, and (d) for crescent moon pattern, respectively.

Table 7–14 show the simulation results.

From these figures, we observe

• Except for the edge ring pattern, the detecting power of all three methods increases

as the area size increases. This is quite intuitive since the non-random pattern gets

more apparent as the size gets larger.

• Except for the edge ring pattern, the mode odds ratio method performs the best and

the two HNF methods perform very similar with the mode HNF method slightly

better.

• In general, the bottom pattern is the easiest and the linear scratch pattern is the

hardest to detect.

• The performances of the three methods behave quite differently from the other

patterns. For this pattern, the mode odds ratio method performs the worst, but not
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(a) Linear Scratch
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(b) Edge Ring
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(c) Bottom
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(d) Crescent Moon

Figure 33: Detecting power for various patterns under middle yield level.

too far from the empirical HNF method. The behavior of the mode HNF method

is worth mentioning. The detecting power increases very rapidly at low area, which

is somewhat against the general impression that a small patterned area would be

harder to detect than a lower patterned area. This could be due to some kind of

edge effect. The edge ring pattern generates more bad dies at the edge than other

patterns. A bad die at the edge has fewer neighbors so that each of its neighbors

has a larger weight wi(j) than that of the interior dies. This may lead to a larger

statistic TN1 and hence higher power. This finding makes the mode HNF method a

good choice for detecting a pattern with many dies at the edge.
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(a) Linear Scratch
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(b) Edge Ring
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(c) Bottom
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Figure 34: Detecting power for various patterns under high yield level.
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6 Conclusion

The semiconductor industry is a very competitive industry. Continual improvement of the

process stability and yield has become essential for each semiconductor company to stay

competitive. Among quality improvement tools, the wafer sort map is commonly used

for detecting abnormal processes since non-random patterns on a WSM often can provide

clues about process problems and perhaps lead to possible causes. In addition, dies in a

wafer with a random WSM are graded higher than those in a wafer that shows some non-

random patterns in the die market. Thus, it is common practice to separate wafters into

two categories—“random” and “non-random” (or “patterned”). However, most existing

automatic methods cannot distinguish the “genuine” patterns and the “baseline’ patterns.

The former are caused by the real process problems that engineers would like to detect

and the later are inherent from the process limitations induced by present technology that

engineers accepted as “normal” for now.

In this study, we take the baseline into consideration and propose three automatic

schemes for detecting “genuine” patterned wafers with an approach of generating pseudo

WSMs on which the existing randomness tests can be applicable. Simulation studies are

conducted to evaluate and compare these new schemes. It is found that

• the yield level affects the detecting power greatly—the higher the yield, the larger

the power;

• the size of the patterned area also affects the effectiveness of the detection—the

larger the patterned area, the larger the power;

• not counting the the edge ring pattern, the mode odds ratio test performs the best

but not too far from the rest;

• there exists an edge effect and the mode HNF method is very sensitive to it.

Therefore, considering the overall performance, the mode HNF method may be a good

choice. However, in practice, a very small area edge pattern in human eyes most likely

will be ignored and the wafer will be considered as a good wafer. So being very sensitive

may not be a good feature under practical (economical) concerns. However, giving up

opportunities for process improvement may cost a lot more in the long run.
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The methods we propose may have another application for KGD vendors in pricing

KGDs. KGD vendors could grade their KGDs with our methods by setting different

levels of the baseline area. A wafer that passes the test with smaller baseline area could

be graded higher. For example, set three baseline levels. Start with the most stringent

level (smallest baseline area), if the wafer passes the test with no apparent patterns,

grade it as A+; otherwise, test it with the second level. If it passes, then grade it is as

A; otherwise test it with the third level. If it passes, grade it A−; otherwise, classify it as

“patterned”.

In this study, we assume the baseline is pre-determined. In practice, how to determine

the baseline from historical data or engineers’ knowledge/experiences is an important is-

sue. It would be useful if we can automatically generate probable baselines from historical

data for engineers. This could be a potential future research topic. Another topic could

be developing techniques for automatic pattern classifications under the consideration of

the baseline.
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Appendices

A Table and WSMs Related to Simulation Studies

Table 2: Counts of false alarm’s of the two existing methods and three proposed methods

among 150 random WSMs under various yield levels.

Case Yield Odds Ratio Test HNF Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.01 5 2 4 1 2

2 0.06 3 3 1 1 1

3 0.11 1 4 1 2 0

4 0.16 4 2 1 0 1

5 0.21 2 4 0 2 1

6 0.26 3 4 0 3 0

7 0.31 4 2 0 1 0

8 0.36 6 2 1 1 1

9 0.41 2 1 0 0 0

10 0.46 4 3 0 1 0

11 0.51 10 8 0 3 0

12 0.56 16 10 1 2 2

13 0.61 27 16 0 1 1

14 0.66 46 33 0 2 1

15 0.71 66 53 0 2 0

16 0.76 101 78 1 3 0

17 0.81 119 109 1 2 1

18 0.86 145 143 1 0 0

19 0.91 150 150 0 0 0

20 0.95 150 150 0 3 0
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Table 3: Counts of detection among 150 WSMs with the linear scratch pattern under

various yield.

Case Yield Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.01 3 2 3

2 0.05 1 1 2

3 0.1 1 4 0

4 0.14 3 2 3

5 0.19 3 5 3

6 0.23 15 10 11

7 0.28 17 17 11

8 0.32 29 23 25

9 0.37 50 36 36

10 0.41 86 65 63

11 0.46 113 91 92

12 0.5 136 126 126

13 0.55 147 143 141

14 0.59 150 150 150

15 0.64 150 150 150

16 0.68 150 150 150

17 0.73 150 150 150

18 0.77 150 150 150

19 0.82 150 150 150

20 0.86 150 150 150

50



51



Table 4: Counts of detection among 150 WSMs with the ring pattern under various yield.

Case Yield Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.01 4 1 2

2 0.05 1 0 0

3 0.1 3 2 2

4 0.14 3 1 5

5 0.19 10 6 7

6 0.23 13 10 12

7 0.27 38 26 26

8 0.32 61 56 50

9 0.36 90 81 78

10 0.41 121 118 113

11 0.45 139 135 131

12 0.5 148 146 146

13 0.54 150 150 150

14 0.58 150 150 150

15 0.63 150 150 150

16 0.67 150 150 150

17 0.72 150 150 150

18 0.76 150 150 150

19 0.81 150 150 150

20 0.85 150 150 150
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Table 5: Counts of detection among 150 WSMs with the bottom pattern under various

yield.

Case Yield Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.01 3 1 2

2 0.05 3 6 1

3 0.1 7 5 3

4 0.14 7 8 6

5 0.19 15 7 11

6 0.23 28 24 19

7 0.27 45 32 27

8 0.32 91 75 68

9 0.36 112 88 92

10 0.41 144 133 129

11 0.45 150 143 145

12 0.5 150 150 150

13 0.54 150 150 150

14 0.58 150 150 150

15 0.63 150 150 150

16 0.67 150 150 150

17 0.72 150 150 150

18 0.76 150 150 150

19 0.81 150 150 150

20 0.85 150 150 150
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Table 6: Counts of detection among 150 WSMs with the moon pattern under various

yield.

Case Yield Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.01 4 1 1

2 0.05 4 5 4

3 0.1 2 1 2

4 0.14 2 2 3

5 0.19 9 6 7

6 0.23 28 21 18

7 0.27 40 32 32

8 0.32 69 54 50

9 0.36 107 89 86

10 0.41 132 112 112

11 0.45 148 139 138

12 0.5 149 146 147

13 0.54 150 150 150

14 0.58 150 150 150

15 0.63 150 150 150

16 0.67 150 150 150

17 0.72 150 150 150

18 0.76 150 150 150

19 0.81 150 150 150

20 0.85 150 150 150
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• Middle Yield

Table 7: Counts of detection among 150 WSMs with the linear scratch pattern under

various patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.03 0 0 0

2 1.07 1 0 0

3 1.97 1 2 1

4 3.04 8 6 10

5 4.11 26 12 14

6 5.06 43 32 42

7 6.13 90 78 75

8 7.23 116 87 97

9 8.36 134 120 119

10 9.3 138 131 135

11 10.43 148 145 144

12 11.53 147 143 142

13 12.52 146 145 145

14 13.65 150 150 150

15 14.75 149 149 150

16 15.9 150 150 150

17 16.89 150 150 150

18 18.04 150 150 150

19 19.17 150 150 150

20 20.21 150 150 150
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Table 8: Counts of detection among 150 WSMs with the ring pattern under various

patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.1 1 2 3

2 0.61 0 16 0

3 2.04 0 147 0

4 3.02 1 150 2

5 4.24 3 150 8

6 5.42 6 150 22

7 6.54 41 150 60

8 7.92 92 149 116

9 8.54 107 150 126

10 9.76 137 150 149

11 11.19 148 150 148

12 12.22 150 150 150

13 13.14 150 150 150

14 13.85 150 150 150

15 15.18 150 150 150

16 16 150 150 150

17 17.63 150 150 150

18 18.76 150 150 150

19 19.37 150 150 150

20 20.19 150 150 150
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Table 9: Counts of detection among 150 WSMs with the bottom pattern under various

defect areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.28 0 2 0

2 0.66 0 0 2

3 1.18 6 4 4

4 1.87 21 19 16

5 2.61 40 38 33

6 3.4 66 56 59

7 4.29 100 90 90

8 5.24 130 116 119

9 6.18 142 140 135

10 7.18 145 144 143

11 8.23 150 150 149

12 9.38 149 149 149

13 10.66 149 150 149

14 11.96 150 150 150

15 13.37 150 150 150

16 14.62 150 150 150

17 15.97 150 150 150

18 17.43 150 150 150

19 18.89 150 150 150

20 20.29 150 150 150
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Table 10: Counts of detection among 150 WSMs with the moon pattern under various

patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.59 0 0 0

2 1.71 1 0 0

3 2.66 4 2 3

4 3.78 25 11 14

5 4.73 49 39 30

6 5.8 99 80 75

7 6.8 125 109 105

8 7.87 143 134 128

9 8.87 146 143 141

10 9.84 149 149 149

11 10.94 150 150 148

12 11.91 150 150 149

13 13.01 150 150 150

14 13.98 150 150 150

15 15.08 150 150 150

16 16 150 150 150

17 17.1 150 150 150

18 18.02 150 150 150

19 19.12 150 150 150

20 20.04 150 150 150
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• High Yield

Table 11: Counts of detection among 150 WSMs with the linear scratch pattern under

various patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.03 1 2 0

2 1.07 1 3 3

3 1.97 86 76 66

4 3.04 149 148 150

5 4.11 150 150 150

6 5.06 150 150 150

7 6.13 150 150 150

8 7.23 150 150 150

9 8.36 150 150 150

10 9.3 150 150 150

11 10.43 150 150 150

12 11.53 150 150 150

13 12.52 150 150 150

14 13.65 150 150 150

15 14.75 150 150 150

16 15.9 150 150 150

17 16.89 150 150 150

18 18.04 150 150 150

19 19.17 150 150 150

20 20.21 150 150 150
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Table 12: Counts of detection among 150 WSMs with the ring pattern under various

patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.1 1 9 0

2 0.61 1 130 1

3 2.04 7 150 18

4 3.02 47 150 81

5 4.24 138 150 149

6 5.42 149 150 150

7 6.54 150 150 150

8 7.92 150 150 150

9 8.54 150 150 150

10 9.76 150 150 150

11 11.19 150 150 150

12 12.22 150 150 150

13 13.14 150 150 150

14 13.85 150 150 150

15 15.18 150 150 150

16 16 150 150 150

17 17.63 150 150 150

18 18.76 150 150 150

19 19.37 150 150 150

20 20.19 150 150 150
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Table 13: Counts of detection among 150 WSMs with the bottom pattern under various

patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.28 1 24 2

2 0.66 53 75 62

3 1.18 133 138 129

4 1.87 149 149 149

5 2.61 150 150 150

6 3.4 150 150 150

7 4.29 150 150 150

8 5.24 150 150 150

9 6.18 150 150 150

10 7.18 150 150 150

11 8.23 150 150 150

12 9.38 150 150 150

13 10.66 150 150 150

14 11.96 150 150 150

15 13.37 150 150 150

16 14.62 150 150 150

17 15.97 150 150 150

18 17.43 150 150 150

19 18.89 150 150 150

20 20.29 150 150 150
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Table 14: Counts of detection among 150 WSMs with the moon pattern under various

patterned areas.

Case Patterned Area (%) Mode Odds Ratio Test Mode HNF Empirical HNF

1 0.59 1 3 0

2 1.71 30 21 18

3 2.66 115 90 80

4 3.78 150 150 149

5 4.73 150 150 150

6 5.8 150 150 150

7 6.8 150 150 150

8 7.87 150 150 150

9 8.87 150 150 150

10 9.84 150 150 150

11 10.94 150 150 150

12 11.91 150 150 150

13 13.01 150 150 150

14 13.98 150 150 150

15 15.08 150 150 150

16 16 150 150 150

17 17.1 150 150 150

18 18.02 150 150 150

19 19.12 150 150 150

20 20.04 150 150 150
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