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Tolerance Limits for a Binomial Mixture Model

Student: Shanggang Wu Advisor: Dr. Hsiuying Wang

Institute of Statistics

National Chiao Tung University

Abstract

The construction of tolerance intervals (TIs) to measure discrete quality characteristics
has been one of the major tasks in developing quality control systems used in the man-
ufacturing and pharmaceutical sectors.. dn this study, we propose two methods based
on parametric and nonparametriec approaches to construct tolerance limits for a mixture
binomial distribution, whichcan be-adopted in many applications. A simulation study
is conducted to compare both methods. The nonparametric method has a better perfor-
mance than that of the parametric method. The simulation study also shows that the

proposed tolerance bounds lead to a satisfactory result.

Keyword: Binomial mixture model, Confidence interval, Coverage probability, Tolerance

limit.
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1 Introduction

The construction of tolerance intervals (T1Is) to measure discrete quality characteristics
has been one of the major tasks in developing quality control systems used in the man-
ufacturing and pharmaceutical sectors. For example, a manufacture can use a tolerance
bound to inspect whether the number of defective units is in a tolerance region.

The investigation of tolerance interval construction has been extensively studied for
continuous distributions (e.g., Wald and Wolfowitz 1946 [12]; Odeh and Owen 1980 [10];
Wang and Iyer 1994 [13]; Wolfinger 1998 [15]; Fernholz and Gillespie 2001 [2]; Hamada et
al. 2004 [6]; Krishnamoorthy and Mathew 2004 [7]; Liao, Lin, and Iyer 2005 [8]; Van Der
Merwe, Pretorius, and Meyer 2006 [11] ).

Most recently, Wang and Tsung (2009) and Cai and Wang (2009) have explored the
discrete distribution tolerance interval construction, which dates back to Zack (1970) .
The tolerance interval for discrete distributions is+a useful tool which can be used for
quality control testing. Wang and Tsung (2009).and Cai and Wang (2009) constructed
improved tolerance intervals for binomial and Poisson. distributions, which can be used
for defective rate investigation.

The number of defective units.in n units in a’production process can be assumed to
follow a binomial distribution B(n;p), where p represents the defective rate if the de-
fective rate is assumed to be a constant in the production processes. However, in real
applications, it is likely that there are several production lines operating simultaneously.
The total n units are produced from several production lines with different defective rates.
In this case, for an unit, we may not know which production line it comes from. In this
case, the number of defective units follows a mixture binomial model. Assume that X is
the defective number of n units manufactured from k& production lines, and the defective
number among n units of the ith line follows a binomial distribution B(n,p;). Then X
follows a mixture binomial distribution. In this study, we focus on exploring tolerance

bounds for a mixture binomial distribution.

An interval (L(X),U(X)) is said to be a 1 — a confidence tolerance interval with
B — contant, denoted as (8,1 — )T for a density function F' if



Pro{[F(U(X)) ~ F(L(X))] > 8} =1 -«

L(X) is defined a (3,1 —«) low tolerance bound if Prg{1—F(L(X)) > f} = 1—a and
a bound U(X) is defined a (/3,1 —«) upper tolerance bound if Pro{ F(U(X)) > 5} = 1—a.

Some applications require one-sided lower or upper tolerance bounds for the distri-
bution of Y, the number of defective units in future samples of m product units. For
example, assume that a production process packing in groups of size m. Suppose that it
is desired to have a specified level of confidence, then at least 1005% of such packages are

less than or greater than the bound.

In this study, we propose two tolerance limits based on parametric and nonparametric
approaches for a mixture binomial distribution.

This thesis is organized as follows.” The mixture model and mixture binomial distri-
bution are introduce in Section 2. The method for estimating the defective rates is given
in Section 3. The method for computing the confidence interval and tolerance limit for
binomial distribution are given in Section4 and.5. New-methods to calculate the binomial
distribution’s tolerance limit are proposed in-Section 6. A simulation study is given in

Section 7. Finally, we summarize‘a conclusion-in Section 8.

2 Mixture Model

In statistics, a mixture density is a probability density function expressed as a convex
combination of other probability density functions. It can be got by following approach.
First, pick a probability density function from known probability distributions, then simu-
late a sample from the chosen probability distribution. Because this approach is a two-step
process, they are also called hierarchical models. It is important to distinguish between a
random variable whose density is the sum of a set of component densities (i.e a mixture)
and a random variable whose value is the sum of the values of two or more random vari-
ables, in which case the distribution is given by the convolution operator.

Finite mixtures of distributions have provided a mathematical-based approach to the sta-



tistical modeling of a wide variety of random phenomena. Because of their usefulness as
an extremely flexible method of modeling, finite mixture models have continued to receive
increasing attention over the years, from both a practical and theoretical point of view.
Indeed, in the past decade the extent and the potential of the applications of finite mixture
models have widened considerably. Fields in which mixture models have been successfully
applied including astronomy, biology, genetics, medicine, psychiatry, economics, engineer-
ing, marketing, physical, and social sciences. In addition to their more direct role in data
analysis and inference of providing descriptive models for distributions, finite mixture
models underpin a variety of techniques in major areas of statistics, including cluster and

latent class analyses, discriminant analysis, image analysis, and survival analysis.

Here are some examples of mixture model and their histograms.
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Figure 1: The mixture distribution is composed of two distributions, and the proportion

of each distribution is different.

The usefulness of mixture distributions in the modeling of heterogeneity in a cluster
analysis context is obvious. In another example where is group structure, they have a

very useful role in assessing the error rates of diagnostic and screening procedures in the



absence of a gold standard. But as any continuous distribution can be approximated,
mixture models provide a convenient semiparametric framework in which to model un-
known distribution shapes, whatever the objective, whether it be, say, density estimation

or the flexible construction of Bayesian priors.

2.1 Binomial Mixture Model

Suppose the distribution of data is shown to be a single elliptical curve, we can fit
it with one distribution. However, if it is shown to be a complex curve, using a single
distribution is not suitable to describe the probability density function of the data. In the
manufacture process with several production lines discussed in Section 1, we can consider
to fit the data with a binomial mixture model. Suppose the number of defective units
X is a random variable following a binomial mixture model with k£ components. The

probability function of X is

F(al6) = Z¢ (). @.L1)

©={p1,..., Pk, P1,...,0r} wherem;, ..., n; arethe sample sizes of the k binomial distri-
butions, py,...,pr are the corresponding successful probabilities of the probability func-
tions, and ¢y, ..., ¢ are the weights of & components (i.e. ¢; > 0 V1 < i < k and
Y di=1).

In this study, we assume that ¢y, ..., ¢ are known and have equal weights 1/k. To derive
a tolerance interval for a random variable following a binomial mixture model, a feasible
way is to estimate the unknown parameters pi,...,pg first. In estimating parameters
in a mixture model, EM algorithm is a widely-used method adopted for estimation in
hierarchical model. An alternative estimating method is using Gibbs sampling approach.
We develop an algorithm based on Gibbs sampling approach for estimating p;, ..., px in a

mixture binomial model.



3  Gibbs sampler

In this mixture model (2.1.1), we don’t derive estimators for parameters straightfor-
ward. Gibbs sampling is one of the feasible ways to estimate parameters in a mixture
model, which is an algorithm to generate a sequence of samples from the joint probability
distribution of two or more random variables. One of the purposes of such a sequence is
to approximate the joint distribution. Gibbs sampling is a special case of the Metropolis-
Hastings algorithm, and thus is an example of a Markov chain Monte Carlo algorithm.
The algorithm is named after the physicist J. W. Gibbs, an analogy between the sampling
algorithm and statistical physics (Geman S., and Geman D. 1984 [3]). The algorithm was
devised by brothers Stuart and Donald Geman.

Gibbs sampling is applicable when the joint distribution is not known explicitly, but
the conditional distribution of each variable is known. Gibbs sampling algorithm gener-
ates an instance from the distribution of each variable in turn, conditional on the current
values of the other variables. "It can-be shown that the sequence of samples constitutes
a Markov chain, and the stationary distribution of that Markov chain is just the sought-

after joint distribution.

Gibbs sampling is particularly well-adapted to sample the posterior distribution of a
Bayesian network, since Bayesian networks are typically specified as a collection of con-

ditional distributions.



3.1 The algorithm for GIBBS sampling

In this section, we develop an algorithm based on the Gibbs sampling to derive the
estimators of py,...,px in (2.1.1), which are the defective rates with respect to each of k
production lines. The proposed algorithm is as follows. Suppose z1, ..., x,, are i.i.d from

(2.1.1) with ny = ng = ... = ng = n.

Step 1: Let Z;,7 = 1,...,m be random variables with possible values 1, ..., k, which asso-
ciate with x;,7 = 1,..,m by assigning each x; to one group among the k groups. Let
the initial values of Z; = 1,2,... k be 1/k for each i.

(Z!s role is to guess which binomial distribution generated X;.)

Step 2: p|" = Yl (=1 /(m)V1<j<k

(s O —p)"
S (1 )pet (1—pei

Step 3: ¢;= forp=1,2 ...k VI<i<m

Step 4: P(Z; =j) =gq;, forj=1,2,... ks V1<i<m

Step 5: Repeat Steps 2-4 until convergence.



4 Confidence Interval for a Binomial Distribution

In this section, we introduce confidence intervals for a binomial distribution. Based on
the confidence interval, a proposed tolerance interval is constructed in the next section.
For a binomial distribution B(n,p), the sample proportion p=z/n is a point estimate
for p, the true population (or process) proportion. However, p differs due to sampling
fluctuations. Thus, one frequently desires to compute a two-sided confidence interval or
a one-sided confidence bound for p from the sample data.

If X is a random variable following a binomial distribution B(n,p) with unknown p,

a conservative two-sided 100(1-a/)% confidence interval for p is

T

— (n — T+ 1>Fl—a 2.2n—2x,2x) y —
p.7) = [{1+ — N {1+

“11(4.0.1
p T (x+ 1)F(1_a/2,2:c+2,2n—2w)} : )

where F, ., ,, is the 100ath percentile of the F' distribution with 7 and ry degrees of
freedom. Similarly, one-sided upper 100(1-a)% eonfidence bound is

z -1

== O
p=1 (@ 1) FaL o009 20=22)

(4.0.2)

and lower 100(1-a)% confidence bound is

(n=2+ 1) Fia/20m 20 20) =

=11
p={t :

The upper limit is defined to be p=Lif.z.=mn-and the lower limit p=0 if z = 0.

Sometimes the use of (4.0.1) may not be convenient. For example, commonly per-
centiles tables of the F' distribution only for a limited number of values of v, and s, and
interpolation may be necessary. Fortunately, an approximate expression which uses only
tabulations of the normal distribution percentiles provides adequate accuracy when both
np and n(1 — p) exceed 10. The approximate two-sided 100(1 — «)% confidence interval

for p is

R p(1 —p)
D, Pl =P+ 20-0/9) =]

(4.0.3)

where z, is the 100yth percentile of the standard normal distribution. Similarly, one-
side lower and upper 100(1 — )% confidence bounds are obtained by replacing /2 by «
in the lower and upper parts, respectively, of this expression. In this paper we will choose

to use the former because it is more in line with this model.



5 Tolerance limit for a Binomial Distribution

The following one-sided binomial tolerance bound was first given by Hahn and Chandra
(1981).

The function
B(z,n,p) = Pr(Y <z)= s (n)p](l —p)" (5.0.4)

is the cumulative distribution function of Y.

If the population proportion g of defect is known, the smallest integer T" such that
B(T.n,p) > (5.0.5)

is an upper bound for the number of defective units with 1005% of the future samples from
the sampled population, and size is n, but now p is unknown, consisting of X defective
units in a random sample of n units. Thus, we can construct an upper tolerance bound
for the distribution of Y. An“upper tolerance bound for the distribution of Y can be
found by the following steps.that is named

Procedure 1:
1. Use (4.0.2) to compute Dy upper 100(1-a))%_ confidence bound for p.

2. Substitute p for p, and find the smallest integer T" such that satisfying (5.0.5). This

integer is an upper tolerance bound 7.

So, one can say with 100(1-a)% confidence that B(T;n;p) > 3. Thus, we have 100(1-
a)% confidence that at least 1003% of the future samples of size n will contain T or fewer

defective units.



6 Tolerance limit for a Binomial Mixture Model

6.1 Tolerance limit based on a mixture model

Based on Procedure 1, we propose a tolerance interval by extending the steps in
Procedure 1 to a mixture model using a Gibbs sampling method to estimate the binomial
proportions.

T k
1 . .
B(z,n,p) = Pr(Y <) — . (;?)pgu _p) (6.1.1)
1

j=0 i=

If the population proportion g of defect is known, the smallest integer 7" such that
B(Tn,p) > § (6.12)

where p={p1,p2,...,x }, is an upper bound for the number of defective units with 1005%
of the future samples from the sampled population, and size is n. But now p; is unknown
and only sample data, consisting of X _defective units in a random sample of n units.
Thus,we can construct an upper tolerance bound for-the distribution of Y. An upper

tolerance bound for the distribution of ¥ can be found by the following steps:
1. Use Gibbs sampling to compute pi, Pa s« D

2. Use (4.0.2) to compute p1, Pa ;- « <, Pry upper 100(1-a)% confidence bound for py, ps

1+ s Dk

3. Substitute p; for p;,and find the smallest integer T such that satisfying (6.1.1). This

integer is an upper tolerance limit Tﬁ

So, one can say with 100(1-)% confidence that B'(Tg;n;p) > B. Thus, we have
100(1-a)% confidence that at least 1008% of the future samples size n will contain T or

fewer defective units.



6.2 Distribution-Free Tolerance Interval

For constructing a tolerance interval for a mixture model, we can adopt a distribution-
free approach model, introduced in Hahn and Meeker (1991), to find a one-sided distribution-
free conservative upper 100(1 — )% confidence bound for the 1008th percentile of the
sampled population. A distribution-free tolerance limit is an order statistic Y = T (),

where u is chosen as the smallest integer satisfied the following inequality
B(u—1,n,8)>1-—aq, O<u<n+1, 0<fB<Ll. (6.2.1)

where n is the sample size, and the actual confidence level is given by the left-hand
side of this inequality.

Similarly, an one-sided distribution-free conservative lower 100(1 — «)% confidence
bound for for the 100(1-/3)th percentile of the sampled population is obtained as Y = z(,

where [ is chosen as the largest integer.satisfied the following inequality:
1-B(l+1,n,8.3>1—aq, 0<l<n+1, 0<pB<l. (6.2.2)

the actual confidence level is given by the left-hand side of this inequality.(Hahn and
Meeker 1991, 89-91)

An one-sided distribution-free tolerance limit is'equivalent to an one-sided distribution-
free confidence limit for a percentile of that population. That is an one-sided distribution-
free upper (lower) 100(1 — )% tolerance limit that will exceed (will be exceeded) at least
1008% of the population is the same as an one-sided distribution-free conservative upper

(lower) 100(1 — )% confidence limit for the 1008% percentile of that population.

10



7 Simulation

A simulation study is conducted to compare the two proposed tolerance intervals. The

details are given as follows. The n in (2.1.1) is assumed to be 30.
o Cenerate 21,2y, ..., T, from f(z|0) =30 & (*N)pr(1 — p;)*0®
e Sampling and estimate p1, ps and ps by the algorithm for Gibbs sampling.

e Method 1: Use step 2 and step 3 in Section 6.1 to produce a (0.9,0.95) upper

tolerance bound.

e Method 2: Generate 100 samples yy , ....y100 from this model f/(x]6) = 327, ¢ (*)pi* (1-
P07 by (6.2.1), yge is a one-sided distribution-free (0.9,0.95) upper tolerance
bound.

Beside comparing the above two tolerance bounds, we also compare a method when
the sample is assumed to follow a binomial distribution. That is, we do not fit the data
using a mixture model. Do not estimate py, p> and p3, just estimate p by sample mean.
That means we assumes only one production line.

At first, we compare the variations between estimator of defective rates by Gibbs sam-
pling for a mixture model and estimator of defective rate by only considering a binomial

model.

By the Table 1 and Table 2 we can find estimated defective rates by Gibbs sampling is
much better than by means (in addition to the the defective rates is equal). Said by Gibb
sampling for a mixture model may be closer to real situation than by only considering a

binomial model.

And then we compare the (0.9,0.95) upper tolerance bound’s cover probability between

method 1 and method 2.

11



Figure 2 and Figure 3 plots the variations of estimated the defective rates by Gibbs
sampling and means. By comparing the lines in Figure 2 and Figure 3 it is clear that
the performance of these variations of estimated the defective rates by Gibbs sampling is
better than by sample mean, we can see that lines of Gibbs sampling are shock in 0.001
and lines of means are show a quadratic curve and the center is the mean of p;, ps and
ps(actual value), only in this case the variation will be similar between the two ways,

otherwise means would be much higher than Gibbs sampling.

Figure 4 to Figure 7 plots the coverage probabilities of one-sided (0.9, 0.95) tolerance
bounds built from the Method 1 and Method 2. In these figures we can find that the cov-
erage probabilities of Method 1 almost higher than Method 2 and slightly conservative,
sometimes it will near 1, in contrast, the coverage probabilities of Method 2 is better than

Method 1.

In Figure 8, we compare the coverage probabilities of Method 2 which estimate the
defective rates by Gibbs sampling or means. We can clearly find that estimate by means

of instability and most of the coverage probabilities are quite low.

12
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8 Conclusions

In this study, we propose two methods in constructing tolerance bounds for a binomial
mixture models. One method is based on a parametric method, which used the Gibbs
sampling to estimate the unknown parameter first. With these estimated values and the
existing approach of the binomial tolerance bounds, we construct the first tolerance bound
for a binomial mixture model. The second method is based on the nonparametric method
to derive a distribution-free tolerance interval. The endpoint of a distribution-free toler-

ance interval is an order statistic.

In this study, we assume that the weights of each distribution are equal, but it may
not hold for real applications. The algorithm for deriving good estimators for the weight

is still under investigation.

The comparison of these two methods shows that the second method has better per-
formance than the first method. Since in real manufacturing process, there are common
many production lines of operation, the existing methods can not directly apply to these
cases. The methods we proposed here can provide an efficient way to construct tolerance

intervals for the defective numbers estimation.
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Table 1 is a variation of the estimated defective rates by Gibbs sampling(py, p2, Ps).

Data in Table 1 is calculated by following formula

where d is the number of experiments under the same parameters(p;,p; and ps).

Table 1: Variation of estimated defective rates by Gibbs sampling for p;=0.06.

P, =

S (B — 1)+ (o — p2)® + (s — ps)?

d

P2

b3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.12
0.14
0.16
0.18
0.20

0.000986
0.001008
0.001225
0.001130
0.001008

0.001075
0.001088
0.001203
0.001189
0.001488

0.001107
0.001166
0.001116
0.001236
0.001268

0.001003
0.001059
0.001089
0.001337

£.001181

0.001081
0.001449
0.001396
0.001356
0.001382

0.001190
0.001774
0.001828
0.001646
0.001718

0.000972
0.001430
0.001570
0.001587
0.001355

0.000807
0.001137
0.001481
0.001352
0.001244

D2

b3

0.09

0.10

0.11
|

0.12

|

0.13

0.014

0.15

0.16

0.12
0.14
0.16
0.18

0.20

0.000756
0.001069
0.001291
0.001489
0.001430

0.000866
0.001005
0.001298
0.001663
0.001866

0.001047
0:000999
0.001304
0.001350
0.001557

0.001396
0.001248
0.001293
0.001343

0.001551

0.001315
0.001619
0.001427
0.001505
0.001771

0.001364
0.002071
0.001638
0.001679
0.001785

0.001257
0.001738
0.001989
0.001634
0.001695

0.001244
0.001681
0.002580
0.001811
0.001914

D2

Ps3

0.17

0.18

0.19

0.20

0.12
0.14
0.16
0.18
0.20

0.001502
0.001706
0.002074
0.002247
0.001843

0.001474
0.001485
0.001721
0.002275
0.001965

0.001640
0.001757
0.001878
0.001998
0.002560

0.001570
0.001628
0.001882
0.002065
0.002735
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Table 2 is a variation of the estimated defective rate by means(p). Data in Table 2 is

calculated by following formula

Table 2: Variation between estimated p (sample mean) and actual p; for p;=0.06

P, =

S B —p1)?+ (B —p2)? + (B — ps)?

d

D2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.12
0.14
0.16
0.18
0.20

0.006194
0.008751
0.011866
0.015527
0.019700

0.005179
0.007588
0.010596
0.014078
0.018113

0.004305
0.006622
0.009418
0.012822
0.016768

0.003572
0.005759
0.008463
0.011681
0.0154381

0.002974
0.004990
0.007567
0.010657
0.014329

0.002515
0.004411
0.006832
0.009788
0.013303

0.002198
0.003927
0.006248
0.009072
0.012472

0.001960
0.003593
0.005736
0.008470
0.011716

D2

0.09

0.10

0.11

0.12

0.13

0.014

0.15

0.16

0.12
0.14
0.16
0.18
0.20

0.001910
0.003408
0.005422
0.008015
0.011102

0.001988
0.003332
0.005234
0.007670
0.010636

0.002185
0.003393
0.005167
0.007456
0.010328

0:002528
0.003592
0.005235
0.007408
0.010117

0.003000
0.003953
0.005453
0.007473
0.010009

0.003622
0.004438
0.005749
0.007647
0.010082

0.004375
0.005032
0.006256
0.008004
0.010291

0.005259
0.005822
0.006853
0.008511
0.010634

D2

b3

0.17

0.18

0.19

0.20

0.12
0.14
0.16
0.18
0.20

0.006269
0.006689
0.007602
0.009071
0.011127

0.007408
0.007668
0.008480
0.009852
0.011702

0.008684
0.008807
0.009501
0.010719
0.012452

0.010064
0.010125
0.010669
0.011754
0.013317
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Table 3: Coverage probability of a (0.9,0.95) upper tolerance bound for p;=0.02

P2 p3
0.01 0.02 0.03| 0.04| 0.05| 006 0.07| 0.08| 0.09] 0.10

0.02 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.932 | 0.972
0.04 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 | 1.000
0.06 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000 | 1.000
0.08 1 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.1 ]0.956 | 0.992 | 0.988 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 0.956 | 0.992
0.12 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 0.960 | 0.976 | 0.992 | 0.984 | 1.000
0.14 | 0.976 | 0.964 | 0.972 | 0.996+| 0.996. | 1:000 | 1.000 | 1.000 | 1.000 | 0.960
0.16 | 0.952 | 0.968 | 0.956 | +.0.62 | 0.968 {.0.952 | 0.956 | 0.980 | 0.980 | 0.992
0.18 | 0.992 | 0.992 | 0.996+ 1.000-{ 0:98.| 1.000 | 0.996 | 1.000 | 0.94 | 0.956
0.2 10984 | 0.998 | 0.98770.984 | 0972 0.972 | 0.972 | 0.98 | 0.972 | 0.996

P2 P3
0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

0.02 | 0.992 | 1.000 | 0.940 | 0.972 | 0.988 1 0.960 | 0.992 | 0.932 | 0.972 | 0.980
0.04 | 1.000 | 1.000 | 0.948 | 0.996 | 0.996 | 0.968 | 0.980 | 0.996 | 0.972 | 0.984
0.06 | 1.000 | 0.987 | 0.988 | 0.999 | 1.000 | 0.985 | 0.992 | 0.992 | 0.940 | 0.968
0.08 | 0.972 | 0.988 | 1.000 | 1.000 | 0.948 | 0.972 | 0.992 | 1.000 | 0.964 | 0.984
0.1 | 1.000 | 1.000 | 1.000 | 0.948 | 0.968 | 0.988 | 0.996 | 0.916 | 0.984 | 0.996
0.12 | 1.000 | 0.952 | 0.984 | 0.988 | 0.996 | 1.000 | 0.960 | 0.980 | 0.984 | 0.996
0.14 | 0.984 | 0.988 | 1.000 | 1.000 | 1.000 | 0.980 | 0.992 | 0.988 | 0.996 | 0.996
0.16 | 0.996 | 0.996 | 1.000 | 0.964 | 0.976 | 0.996 | 0.996 | 0.996 | 1.000 | 0.984
0.18 1 0.940 | 0.992 | 0.988 | 0.988 | 0.996 | 0.996 | 1.000 | 0.984 | 0.992 | 0.988
0.2 ] 1.000 | 0.992 | 0.992 | 0.932 | 0.984 | 0.984 | 0.980 | 0.996 | 1.000 | 0.996
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Table 4: Coverage probability of a distribution-free tolerance interval for p;=0.02

D2 P3
0.01 0.02 0.03| 0.04| 0.05| 0.06 | 0.07| 0.08| 0.09]| 0.10

0.02 | 1.000 | 0.980 | 0.996 | 1.000 | 1.000 | 0.908 | 0.948 | 0.988 | 0.828 | 0.936
0.04 | 0.992 | 1.000 | 1.000 | 1.000 | 0.932 | 1.000 | 1.000 | 1.000 | 0.880 | 0.932
0.06 | 1.000 | 0.916 | 0.952 | 0.980 | 0.996 | 1.000 | 1.000 | 0.904 | 0.968 | 0.984
0.08 1 0.968 | 0.992 | 0.996 | 0.996 | 1.000 | 0.924 | 0.956 | 0.984 | 0.992 | 0.992
0.10 | 0.876 | 0.928 | 0.920 | 0.948 | 0.972 | 0.968 | 0.992 | 1.000 | 1.000 | 0.932
0.12 | 0.988 | 0.992 | 0.980 | 0.888 | 0.996 | 0.892 | 0.956 | 0.944 | 0.972 | 0.980
0.14 | 0.952 | 0.940 | 0.948 | 0.956+(:0.964/:0.972 | 0.988 | 1.000 | 0.996 | 0.892
0.16 | 0.940 | 0.956 | 0.940 | 0.940 | 0.920.{.0.944 | 0.908 | 0.960 | 0.976 | 0.964
0.18 | 0.988 | 0.996 | 0.976+ 0.996-{-0.984 | 0.988 | 0.972 | 0.988 | 0.900 | 0.880
0.2 | 0.988 | 0.984 | 0.98410.980 | 0.972| 0.980 | 0:984 | 0.968 | 0.976 | 0.972

b2 D3
0.11 0.12 0.13 0.14 0.15 0:16 0.17 0.18 0.19 0.20

0.02 | 0.952 | 0.976 | 0.936 | 0.968 | 0.992 1 0.928 | 0.976 | 0.992 | 0.968 | 0.984
0.04 | 0.984 | 0.992 | 0.944 | 0.944 | 0.976 | 0.940 | 0.956 | 0.992 | 0.960 | 0.996
0.06 | 0.996 | 0.916 | 0.952 | 0.972 | 0.864 | 0.896 | 0.944 | 0.988 | 0.948 | 0.972
0.08 | 0.908 | 0.952 | 0.976 | 0.988 | 0.928 | 0.988 | 0.972 | 0.888 | 0.940 | 0.972
0.10 | 0.968 | 0.992 | 1.000 | 0.996 | 0.976 | 0.980 | 0.988 | 0.876 | 0.960 | 0.972
0.12 | 0.988 | 0.988 | 0.932 | 0.960 | 0.980 | 0.996 | 0.996 | 0.956 | 0.960 | 0.992
0.14 | 0.948 | 0.972 | 0.980 | 0.988 | 0.996 | 1.000 | 0.972 | 0.980 | 0.984 | 0.980
0.16 | 0.980 | 0.992 | 1.000 | 0.936 | 0.956 | 0.976 | 0.996 | 0.984 | 1.000 | 0.972
0.18 1 0.932 | 0.948 | 0.960 | 0.964 | 0.996 | 1.000 | 1.000 | 0.972 | 0.960 | 0.988
0.2 |0.976 | 0.988 | 1.000 | 0.996 | 0.940 | 0.940 | 0.960 | 0.980 | 0.992 | 1.000
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Table 5: Variation between (0.9,0.95) upper tolerance bound and 90th percentile of pop-
ulation for p;=0.02

D2 b3
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.02 | 1.208 | 0.396 | 0.824 | 1.004 | 1.200 | 0.200 | 0.552 | 1.116 | 0.336 | 0.684
0.04 | 0.904 | 0.984 | 1.044 | 1.260 | 0.276 | 0.600 | 0.928 | 1.376 | 0.340 | 0.688
0.06 | 1.484 | 0.208 | 0.364 | 0.620 | 0.816 | 1.064 | 1.356 | 0.328 | 0.548 | 0.852
0.08 | 0.880 | 1.012 | 1.056 | 1.316 | 1.616 | 0.296 | 0.536 | 0.764 | 1.076 | 1.500
0.1 ]0.632 | 0.580 | 0.624 | 0.692 | 0.832 | 0.952 | 1.156 | 1.536 | 0.396 | 0.692
0.12 | 2.052 | 1.932 | 1.760 | 1.956 | 2.040 | 0.548 | 0.544 | 0.688 | 0.896 | 1.152
0.14 | 1.492 | 1.324 | 1.568 | 1.240{ 1.252 ' 1.488 | 1.380 | 1.428 | 1.792 | 0.516
0.16 | 1.004 | 1.048 | 0.980 [1.000-{-0.876.|0.940 | 0.808 | 1.020 | 0.972 | 1.192
0.18 | 2.596 | 2.908 | 2.344.| 2:408 | 2.248 | 2:324 | 0.620 | 2.372 | 0.608 | 0.576
0.2 | 1.836 | 1.804 | 1.724. 1.7647| 1.644 | 1.444 | 1.620 | 1.448 | 1.352 | 1.472

D2 b3
0.11 0.12 0.13 014 0.15 0.16 0.17 0.18 0.19 0.20

0.02 | 1.064 | 2.164 | 0.844 | 1.424 | 2.272 | 0.940 | 1.840 | 0.688 | 1.116 | 2.048
0.04 | 1.276 | 2.028 | 0.844 | 1.528 | 2.24 | 0.980 | 1.508 | 2.388 | 1.040 | 1.684
0.06 | 1.476 | 0.460 | 0.696 | 1.388 | 2.244 | 0.776 | 1.392 | 2.284 | 1.008 | 1.708
0.08 | 0.448 | 0.716 | 1.180 | 1.868 | 0.612 | 0.896 | 1.520 | 2.148 | 0.864 | 1.692
0.1 ]0.848 | 1.144 | 1.660 | 0.48 | 0.828 | 1.276 | 1.760 | 0.596 | 0.976 | 1.732
0.12 | 1.500 | 0.436 | 0.708 | 0.82 | 1.168 | 1.468 | 0.464 | 0.840 | 1.228 | 1.784
0.14 1 0.612 | 0.896 | 1.136 | 1.40 | 1.940 | 0.656 | 0.828 | 1.088 | 1.716 | 0.496
0.16 | 1.396 | 1.756 | 2.104 | 0.544 | 0.740 | 0.992 | 1.424 | 1.748 | 2.424 | 0.768
0.18 | 0.74 1 0.840 | 0.988 | 1.148 | 1.348 | 1.844 | 2.328 | 0.660 | 0.844 | 1.244
0.2 | 1.572 | 1.680 | 2.120 | 0.496 | 0.660 | 0.768 | 1.016 | 1.140 | 1.648 | 1.688
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