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摘要 

 

建立容許區間衡量製程特性在製造業與醫藥等領域廣泛地被使用於制

定品質控制系統。我們在本論文中分別提出有母數與無母數的兩種方法，

用以建立混合二項分配的容忍界限，而這兩種方法亦可以被使用於許多應

用問題之中。本文將其進行模擬並比較兩種方法，而無母數的方法在此表

現較佳因為它的覆蓋率可以達到我們給定的標準且容許界限也有令人滿意

的結果。 

 

關鍵詞：容許界限、混合二項分配、信賴區間、覆蓋率 

  

 



Tolerance Limits for a Binomial Mixture Model

Student: Shanggang Wu Advisor: Dr. Hsiuying Wang

Institute of Statistics

National Chiao Tung University

Abstract

The construction of tolerance intervals (TIs) to measure discrete quality characteristics

has been one of the major tasks in developing quality control systems used in the man-

ufacturing and pharmaceutical sectors. In this study, we propose two methods based

on parametric and nonparametric approaches to construct tolerance limits for a mixture

binomial distribution, which can be adopted in many applications. A simulation study

is conducted to compare both methods. The nonparametric method has a better perfor-

mance than that of the parametric method. The simulation study also shows that the

proposed tolerance bounds lead to a satisfactory result.

Keyword: Binomial mixture model, Confidence interval, Coverage probability, Tolerance

limit.
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1 Introduction

The construction of tolerance intervals (TIs) to measure discrete quality characteristics

has been one of the major tasks in developing quality control systems used in the man-

ufacturing and pharmaceutical sectors. For example, a manufacture can use a tolerance

bound to inspect whether the number of defective units is in a tolerance region.

The investigation of tolerance interval construction has been extensively studied for

continuous distributions (e.g., Wald and Wolfowitz 1946 [12]; Odeh and Owen 1980 [10];

Wang and Iyer 1994 [13]; Wolfinger 1998 [15]; Fernholz and Gillespie 2001 [2]; Hamada et

al. 2004 [6]; Krishnamoorthy and Mathew 2004 [7]; Liao, Lin, and Iyer 2005 [8]; Van Der

Merwe, Pretorius, and Meyer 2006 [11] ).

Most recently, Wang and Tsung (2009) and Cai and Wang (2009) have explored the

discrete distribution tolerance interval construction, which dates back to Zack (1970) .

The tolerance interval for discrete distributions is a useful tool which can be used for

quality control testing. Wang and Tsung (2009) and Cai and Wang (2009) constructed

improved tolerance intervals for binomial and Poisson distributions, which can be used

for defective rate investigation.

The number of defective units in n units in a production process can be assumed to

follow a binomial distribution B(n, p), where p represents the defective rate if the de-

fective rate is assumed to be a constant in the production processes. However, in real

applications, it is likely that there are several production lines operating simultaneously.

The total n units are produced from several production lines with different defective rates.

In this case, for an unit, we may not know which production line it comes from. In this

case, the number of defective units follows a mixture binomial model. Assume that X is

the defective number of n units manufactured from k production lines, and the defective

number among n units of the ith line follows a binomial distribution B(n,pi). Then X

follows a mixture binomial distribution. In this study, we focus on exploring tolerance

bounds for a mixture binomial distribution.

An interval (L(X), U(X)) is said to be a 1 − α confidence tolerance interval with

β − contant, denoted as (β, 1− α)TI for a density function F if

1



Prθ{[F (U(X))− F (L(X))] ≥ β} = 1− α.

L(X) is defined a (β, 1−α) low tolerance bound if Prθ{1−F (L(X)) ≥ β} = 1−α and

a bound U(X) is defined a (β, 1−α) upper tolerance bound if Prθ{F (U(X)) ≥ β} = 1−α.

Some applications require one-sided lower or upper tolerance bounds for the distri-

bution of Y , the number of defective units in future samples of m product units. For

example, assume that a production process packing in groups of size m. Suppose that it

is desired to have a specified level of confidence, then at least 100β% of such packages are

less than or greater than the bound.

In this study, we propose two tolerance limits based on parametric and nonparametric

approaches for a mixture binomial distribution.

This thesis is organized as follows. The mixture model and mixture binomial distri-

bution are introduce in Section 2. The method for estimating the defective rates is given

in Section 3. The method for computing the confidence interval and tolerance limit for

binomial distribution are given in Section 4 and 5. New methods to calculate the binomial

distribution’s tolerance limit are proposed in Section 6. A simulation study is given in

Section 7. Finally, we summarize a conclusion in Section 8.

2 Mixture Model

In statistics, a mixture density is a probability density function expressed as a convex

combination of other probability density functions. It can be got by following approach.

First, pick a probability density function from known probability distributions, then simu-

late a sample from the chosen probability distribution. Because this approach is a two-step

process, they are also called hierarchical models. It is important to distinguish between a

random variable whose density is the sum of a set of component densities (i.e a mixture)

and a random variable whose value is the sum of the values of two or more random vari-

ables, in which case the distribution is given by the convolution operator.

Finite mixtures of distributions have provided a mathematical-based approach to the sta-

2



tistical modeling of a wide variety of random phenomena. Because of their usefulness as

an extremely flexible method of modeling, finite mixture models have continued to receive

increasing attention over the years, from both a practical and theoretical point of view.

Indeed, in the past decade the extent and the potential of the applications of finite mixture

models have widened considerably. Fields in which mixture models have been successfully

applied including astronomy, biology, genetics, medicine, psychiatry, economics, engineer-

ing, marketing, physical, and social sciences. In addition to their more direct role in data

analysis and inference of providing descriptive models for distributions, finite mixture

models underpin a variety of techniques in major areas of statistics, including cluster and

latent class analyses, discriminant analysis, image analysis, and survival analysis.

Here are some examples of mixture model and their histograms.
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Figure 1: The mixture distribution is composed of two distributions, and the proportion

of each distribution is different.

The usefulness of mixture distributions in the modeling of heterogeneity in a cluster

analysis context is obvious. In another example where is group structure, they have a

very useful role in assessing the error rates of diagnostic and screening procedures in the
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absence of a gold standard. But as any continuous distribution can be approximated,

mixture models provide a convenient semiparametric framework in which to model un-

known distribution shapes, whatever the objective, whether it be, say, density estimation

or the flexible construction of Bayesian priors.

2.1 Binomial Mixture Model

Suppose the distribution of data is shown to be a single elliptical curve, we can fit

it with one distribution. However, if it is shown to be a complex curve, using a single

distribution is not suitable to describe the probability density function of the data. In the

manufacture process with several production lines discussed in Section 1, we can consider

to fit the data with a binomial mixture model. Suppose the number of defective units

X is a random variable following a binomial mixture model with k components. The

probability function of X is

f(x|Θ) =
k∑

i=1

ϕi

(
ni

x

)
pxi (1− pi)

n−x. (2.1.1)

Θ = {p1, . . . , pk, ϕ1, . . . , ϕk} where n1, . . . , nk are the sample sizes of the k binomial distri-

butions, p1, . . . , pk are the corresponding successful probabilities of the probability func-

tions, and ϕ1, . . . , ϕk are the weights of k components (i.e. ϕi ≥ 0 ∀1 ≤ i ≤ k and∑k
i=1 ϕi = 1).

In this study, we assume that ϕ1, . . . , ϕk are known and have equal weights 1/k. To derive

a tolerance interval for a random variable following a binomial mixture model, a feasible

way is to estimate the unknown parameters p1, . . . , pk first. In estimating parameters

in a mixture model, EM algorithm is a widely-used method adopted for estimation in

hierarchical model. An alternative estimating method is using Gibbs sampling approach.

We develop an algorithm based on Gibbs sampling approach for estimating p1, ..., pk in a

mixture binomial model.
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3 Gibbs sampler

In this mixture model (2.1.1), we don’t derive estimators for parameters straightfor-

ward. Gibbs sampling is one of the feasible ways to estimate parameters in a mixture

model, which is an algorithm to generate a sequence of samples from the joint probability

distribution of two or more random variables. One of the purposes of such a sequence is

to approximate the joint distribution. Gibbs sampling is a special case of the Metropolis-

Hastings algorithm, and thus is an example of a Markov chain Monte Carlo algorithm.

The algorithm is named after the physicist J. W. Gibbs, an analogy between the sampling

algorithm and statistical physics (Geman S., and Geman D. 1984 [3]). The algorithm was

devised by brothers Stuart and Donald Geman.

Gibbs sampling is applicable when the joint distribution is not known explicitly, but

the conditional distribution of each variable is known. Gibbs sampling algorithm gener-

ates an instance from the distribution of each variable in turn, conditional on the current

values of the other variables. It can be shown that the sequence of samples constitutes

a Markov chain, and the stationary distribution of that Markov chain is just the sought-

after joint distribution.

Gibbs sampling is particularly well-adapted to sample the posterior distribution of a

Bayesian network, since Bayesian networks are typically specified as a collection of con-

ditional distributions.
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3.1 The algorithm for GIBBS sampling

In this section, we develop an algorithm based on the Gibbs sampling to derive the

estimators of p1, ..., pk in (2.1.1), which are the defective rates with respect to each of k

production lines. The proposed algorithm is as follows. Suppose x1, . . . , xm are i.i.d from

(2.1.1) with n1 = n2 = ... = nk = n.

Step 1: Let Zi, i = 1, ...,m be random variables with possible values 1, ..., k, which asso-

ciate with xi, i = 1, ..,m by assigning each xi to one group among the k groups. Let

the initial values of Zi = 1, 2, . . . , k be 1/k for each i.

(Z ′
is role is to guess which binomial distribution generated Xi.)

Step 2: p
(h)
j =

∑m
l=j xlI(zl = i)/(m) ∀1 ≤ j ≤ k

Step 3: qj=
( nxi)p

xi
j (1−pj)

n−xi∑k
e=1 (

n
xi
)pxie (1−pe)

n−xi
, for j = 1, 2, . . . , k. ∀1 ≤ i ≤ m

Step 4: P (Zi = j) = qj, for j = 1, 2, . . . , k. ∀1 ≤ i ≤ m

Step 5: Repeat Steps 2-4 until convergence.

6



4 Confidence Interval for a Binomial Distribution

In this section, we introduce confidence intervals for a binomial distribution. Based on

the confidence interval, a proposed tolerance interval is constructed in the next section.

For a binomial distribution B(n, p), the sample proportion p̂=x/n is a point estimate

for p, the true population (or process) proportion. However, p̂ differs due to sampling

fluctuations. Thus, one frequently desires to compute a two-sided confidence interval or

a one-sided confidence bound for p from the sample data.

If X is a random variable following a binomial distribution B(n, p) with unknown p,

a conservative two-sided 100(1-α)% confidence interval for p is

[p, p] = [{1 +
(n− x+ 1)F(1−α/2,2n−2x,2x)

x
}−1, {1 + x

(x+ 1)F(1−α/2,2x+2,2n−2x)

}−1] (4.0.1)

where Fa,r1,r2 is the 100αth percentile of the F distribution with r1 and r2 degrees of

freedom. Similarly, one-sided upper 100(1-α)% confidence bound is

p = {1 + x

(x+ 1)F(1−α,2x+2,2n−2x)

}−1 (4.0.2)

and lower 100(1-α)% confidence bound is

p = {1 +
(n− x+ 1)F(1−α/2,2n−2x,2x)

x
}−1

The upper limit is defined to be p=1 if x = n and the lower limit p=0 if x = 0.

Sometimes the use of (4.0.1) may not be convenient. For example, commonly per-

centiles tables of the F distribution only for a limited number of values of γ1 and γ2, and

interpolation may be necessary. Fortunately, an approximate expression which uses only

tabulations of the normal distribution percentiles provides adequate accuracy when both

np̂ and n(1 − p̂) exceed 10. The approximate two-sided 100(1− α)% confidence interval

for p is

[p, p] = p̂± z(1−α/2)[
p̂(1− p̂)

n
] (4.0.3)

where zγ is the 100γth percentile of the standard normal distribution. Similarly, one-

side lower and upper 100(1− α)% confidence bounds are obtained by replacing α/2 by α

in the lower and upper parts, respectively, of this expression. In this paper we will choose

to use the former because it is more in line with this model.
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5 Tolerance limit for a Binomial Distribution

The following one-sided binomial tolerance bound was first given by Hahn and Chandra

(1981).

The function

B(x, n, p) = Pr(Y ≤ x) =
x∑

j=0

(
n

j

)
pj(1− p)n−j (5.0.4)

is the cumulative distribution function of Y .

If the population proportion β of defect is known, the smallest integer T such that

B(T, n, p) ≥ β (5.0.5)

is an upper bound for the number of defective units with 100β% of the future samples from

the sampled population, and size is n, but now p is unknown, consisting of X defective

units in a random sample of n units. Thus, we can construct an upper tolerance bound

for the distribution of Y . An upper tolerance bound for the distribution of Y can be

found by the following steps that is named

Procedure 1:

1. Use (4.0.2) to compute p, upper 100(1-α)% confidence bound for p.

2. Substitute p for p, and find the smallest integer T such that satisfying (5.0.5). This

integer is an upper tolerance bound T .

So, one can say with 100(1-α)% confidence that B(T ;n; p) ≥ β. Thus, we have 100(1-

α)% confidence that at least 100β% of the future samples of size n will contain T or fewer

defective units.
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6 Tolerance limit for a Binomial Mixture Model

6.1 Tolerance limit based on a mixture model

Based on Procedure 1, we propose a tolerance interval by extending the steps in

Procedure 1 to a mixture model using a Gibbs sampling method to estimate the binomial

proportions.

B′(x, n,p) = Pr(Y ≤ x) =
x∑

j=0

k∑
i=1

1

k

(
n

j

)
pji (1− pi)

n−j (6.1.1)

If the population proportion β of defect is known, the smallest integer T such that

B′(T, n,p) ≥ β (6.1.2)

where p={p1,p2,...,pk}, is an upper bound for the number of defective units with 100β%

of the future samples from the sampled population, and size is n. But now pi is unknown

and only sample data, consisting of X defective units in a random sample of n units.

Thus,we can construct an upper tolerance bound for the distribution of Y . An upper

tolerance bound for the distribution of Y can be found by the following steps:

1. Use Gibbs sampling to compute p̂1, p̂2 ,. . . ,p̂k.

2. Use (4.0.2) to compute p1, p2 ,. . . , pk, upper 100(1-α)% confidence bound for p1, p2

,. . . , pk.

3. Substitute pi for pi,and find the smallest integer T such that satisfying (6.1.1). This

integer is an upper tolerance limit Tβ.

So, one can say with 100(1-α)% confidence that B′(Tβ;n; p) ≥ β. Thus, we have

100(1-α)% confidence that at least 100β% of the future samples size n will contain Tβ or

fewer defective units.

9



6.2 Distribution-Free Tolerance Interval

For constructing a tolerance interval for a mixture model, we can adopt a distribution-

free approach model, introduced in Hahn and Meeker (1991), to find a one-sided distribution-

free conservative upper 100(1 − α)% confidence bound for the 100βth percentile of the

sampled population. A distribution-free tolerance limit is an order statistic Y = x(u),

where u is chosen as the smallest integer satisfied the following inequality

B(u− 1, n, β) ≥ 1− α, 0 < u ≤ n+ 1, 0 < β < 1. (6.2.1)

where n is the sample size, and the actual confidence level is given by the left-hand

side of this inequality.

Similarly, an one-sided distribution-free conservative lower 100(1 − α)% confidence

bound for for the 100(1-β)th percentile of the sampled population is obtained as Y = x(l),

where l is chosen as the largest integer satisfied the following inequality:

1−B(l + 1, n, β) ≥ 1− α, 0 ≤ l < n+ 1, 0 < β < 1. (6.2.2)

the actual confidence level is given by the left-hand side of this inequality.(Hahn and

Meeker 1991, 89-91)

An one-sided distribution-free tolerance limit is equivalent to an one-sided distribution-

free confidence limit for a percentile of that population. That is an one-sided distribution-

free upper (lower) 100(1−α)% tolerance limit that will exceed (will be exceeded) at least

100β% of the population is the same as an one-sided distribution-free conservative upper

(lower) 100(1− α)% confidence limit for the 100β% percentile of that population.

10



7 Simulation

A simulation study is conducted to compare the two proposed tolerance intervals. The

details are given as follows. The n in (2.1.1) is assumed to be 30.

• Generate x1, x2, ..., xm from f(x|θ) =
∑3

i=1 ϕi

(
30
x

)
pxi (1− pi)

30−x

• Sampling and estimate p̂1, p̂2 and p̂3 by the algorithm for Gibbs sampling.

• Method 1: Use step 2 and step 3 in Section 6.1 to produce a (0.9,0.95) upper

tolerance bound.

• Method 2: Generate 100 samples y1, ....y100 from this model f ′(x|θ) =
∑3

i=1 ϕi

(
30
x

)
p̂i

x(1−

p̂i)
30−x, by (6.2.1), y96 is a one-sided distribution-free (0.9,0.95) upper tolerance

bound.

Beside comparing the above two tolerance bounds, we also compare a method when

the sample is assumed to follow a binomial distribution. That is, we do not fit the data

using a mixture model. Do not estimate p̂1, p̂2 and p̂3, just estimate p̂ by sample mean.

That means we assumes only one production line.

At first, we compare the variations between estimator of defective rates by Gibbs sam-

pling for a mixture model and estimator of defective rate by only considering a binomial

model.

By the Table 1 and Table 2 we can find estimated defective rates by Gibbs sampling is

much better than by means (in addition to the the defective rates is equal). Said by Gibb

sampling for a mixture model may be closer to real situation than by only considering a

binomial model.

And then we compare the (0.9,0.95) upper tolerance bound’s cover probability between

method 1 and method 2.
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Figure 2 and Figure 3 plots the variations of estimated the defective rates by Gibbs

sampling and means. By comparing the lines in Figure 2 and Figure 3 it is clear that

the performance of these variations of estimated the defective rates by Gibbs sampling is

better than by sample mean, we can see that lines of Gibbs sampling are shock in 0.001

and lines of means are show a quadratic curve and the center is the mean of p1, p2 and

p3(actual value), only in this case the variation will be similar between the two ways,

otherwise means would be much higher than Gibbs sampling.

Figure 4 to Figure 7 plots the coverage probabilities of one-sided (0.9, 0.95) tolerance

bounds built from the Method 1 and Method 2. In these figures we can find that the cov-

erage probabilities of Method 1 almost higher than Method 2 and slightly conservative,

sometimes it will near 1, in contrast, the coverage probabilities of Method 2 is better than

Method 1.

In Figure 8, we compare the coverage probabilities of Method 2 which estimate the

defective rates by Gibbs sampling or means. We can clearly find that estimate by means

of instability and most of the coverage probabilities are quite low.
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Figure 2: Variation of the estimated the defective rates for p1=0.06,p2=0.12-0.18
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Figure 3: Variation of the estimated the defective rates for p1=0.08,p2=0.08-0.14
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Figure 4: Coverage probabilities of Method 1 and Method 2 for p1=0.02, p2=0.02-0.08
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Figure 5: Coverage probabilities of Method 1 and Method 2 for p1=0.02, p2=0.14-0.20
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Figure 6: Coverage probabilities of Method 1 and Method 2 for p1=0.04, p2=0.10-0.16
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Figure 7: Coverage probabilities of Method 1 and Method 2 for p1=0.06, p2=0.08-0.14
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Figure 8: Coverage probabilities of Method 2 for p1=0.06, p2=0.08-0.14
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Figure 9: Coverage probabilities of Method 1 for p1=0.06, p2=0.12-0.18
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8 Conclusions

In this study, we propose two methods in constructing tolerance bounds for a binomial

mixture models. One method is based on a parametric method, which used the Gibbs

sampling to estimate the unknown parameter first. With these estimated values and the

existing approach of the binomial tolerance bounds, we construct the first tolerance bound

for a binomial mixture model. The second method is based on the nonparametric method

to derive a distribution-free tolerance interval. The endpoint of a distribution-free toler-

ance interval is an order statistic.

In this study, we assume that the weights of each distribution are equal, but it may

not hold for real applications. The algorithm for deriving good estimators for the weight

is still under investigation.

The comparison of these two methods shows that the second method has better per-

formance than the first method. Since in real manufacturing process, there are common

many production lines of operation, the existing methods can not directly apply to these

cases. The methods we proposed here can provide an efficient way to construct tolerance

intervals for the defective numbers estimation.
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Table 1 is a variation of the estimated defective rates by Gibbs sampling(p̂1, p̂2, p̂3).

Data in Table 1 is calculated by following formula

Pv =

∑d
i=1(p̂1 − p1)

2 + (p̂2 − p2)
2 + (p̂3 − p3)

2

d

where d is the number of experiments under the same parameters(p1,p2 and p3).

Table 1: Variation of estimated defective rates by Gibbs sampling for p1=0.06.

p2 p3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.12 0.000986 0.001075 0.001107 0.001003 0.001081 0.001190 0.000972 0.000807

0.14 0.001008 0.001088 0.001166 0.001059 0.001449 0.001774 0.001430 0.001137

0.16 0.001225 0.001203 0.001116 0.001089 0.001396 0.001828 0.001570 0.001481

0.18 0.001130 0.001189 0.001236 0.001337 0.001356 0.001646 0.001587 0.001352

0.20 0.001008 0.001488 0.001268 0.001181 0.001382 0.001718 0.001355 0.001244

p2 p3

0.09 0.10 0.11 0.12 0.13 0.014 0.15 0.16

0.12 0.000756 0.000866 0.001047 0.001396 0.001315 0.001364 0.001257 0.001244

0.14 0.001069 0.001005 0.000999 0.001248 0.001619 0.002071 0.001738 0.001681

0.16 0.001291 0.001298 0.001304 0.001293 0.001427 0.001638 0.001989 0.002580

0.18 0.001489 0.001663 0.001350 0.001343 0.001505 0.001679 0.001634 0.001811

0.20 0.001430 0.001866 0.001557 0.001551 0.001771 0.001785 0.001695 0.001914

p2 p3

0.17 0.18 0.19 0.20

0.12 0.001502 0.001474 0.001640 0.001570

0.14 0.001706 0.001485 0.001757 0.001628

0.16 0.002074 0.001721 0.001878 0.001882

0.18 0.002247 0.002275 0.001998 0.002065

0.20 0.001843 0.001965 0.002560 0.002735
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Table 2 is a variation of the estimated defective rate by means(p̂). Data in Table 2 is

calculated by following formula

Pv =

∑d
i=1(p̂− p1)

2 + (p̂− p2)
2 + (p̂− p3)

2

d

Table 2: Variation between estimated p̂ (sample mean) and actual pi for p1=0.06

p2 p3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.12 0.006194 0.005179 0.004305 0.003572 0.002974 0.002515 0.002198 0.001960

0.14 0.008751 0.007588 0.006622 0.005759 0.004990 0.004411 0.003927 0.003593

0.16 0.011866 0.010596 0.009418 0.008463 0.007567 0.006832 0.006248 0.005736

0.18 0.015527 0.014078 0.012822 0.011681 0.010657 0.009788 0.009072 0.008470

0.20 0.019700 0.018113 0.016768 0.015481 0.014329 0.013303 0.012472 0.011716

p2 p3

0.09 0.10 0.11 0.12 0.13 0.014 0.15 0.16

0.12 0.001910 0.001988 0.002185 0.002528 0.003000 0.003622 0.004375 0.005259

0.14 0.003408 0.003332 0.003393 0.003592 0.003953 0.004438 0.005032 0.005822

0.16 0.005422 0.005234 0.005167 0.005235 0.005453 0.005749 0.006256 0.006853

0.18 0.008015 0.007670 0.007456 0.007408 0.007473 0.007647 0.008004 0.008511

0.20 0.011102 0.010636 0.010328 0.010117 0.010009 0.010082 0.010291 0.010634

p2 p3

0.17 0.18 0.19 0.20

0.12 0.006269 0.007408 0.008684 0.010064

0.14 0.006689 0.007668 0.008807 0.010125

0.16 0.007602 0.008480 0.009501 0.010669

0.18 0.009071 0.009852 0.010719 0.011754

0.20 0.011127 0.011702 0.012452 0.013317
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Table 3: Coverage probability of a (0.9,0.95) upper tolerance bound for p1=0.02

p2 p3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.932 0.972

0.04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 1.000

0.06 1.000 0.998 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000

0.08 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.1 0.956 0.992 0.988 1.000 0.996 1.000 1.000 1.000 0.956 0.992

0.12 0.992 1.000 1.000 1.000 1.000 0.960 0.976 0.992 0.984 1.000

0.14 0.976 0.964 0.972 0.996 0.996 1.000 1.000 1.000 1.000 0.960

0.16 0.952 0.968 0.956 0.62 0.968 0.952 0.956 0.980 0.980 0.992

0.18 0.992 0.992 0.996 1.000 0.98 1.000 0.996 1.000 0.94 0.956

0.2 0.984 0.998 0.98 0.984 0.972 0.972 0.972 0.98 0.972 0.996

p2 p3

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

0.02 0.992 1.000 0.940 0.972 0.988 0.960 0.992 0.932 0.972 0.980

0.04 1.000 1.000 0.948 0.996 0.996 0.968 0.980 0.996 0.972 0.984

0.06 1.000 0.987 0.988 0.999 1.000 0.985 0.992 0.992 0.940 0.968

0.08 0.972 0.988 1.000 1.000 0.948 0.972 0.992 1.000 0.964 0.984

0.1 1.000 1.000 1.000 0.948 0.968 0.988 0.996 0.916 0.984 0.996

0.12 1.000 0.952 0.984 0.988 0.996 1.000 0.960 0.980 0.984 0.996

0.14 0.984 0.988 1.000 1.000 1.000 0.980 0.992 0.988 0.996 0.996

0.16 0.996 0.996 1.000 0.964 0.976 0.996 0.996 0.996 1.000 0.984

0.18 0.940 0.992 0.988 0.988 0.996 0.996 1.000 0.984 0.992 0.988

0.2 1.000 0.992 0.992 0.932 0.984 0.984 0.980 0.996 1.000 0.996
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Table 4: Coverage probability of a distribution-free tolerance interval for p1=0.02

p2 p3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.02 1.000 0.980 0.996 1.000 1.000 0.908 0.948 0.988 0.828 0.936

0.04 0.992 1.000 1.000 1.000 0.932 1.000 1.000 1.000 0.880 0.932

0.06 1.000 0.916 0.952 0.980 0.996 1.000 1.000 0.904 0.968 0.984

0.08 0.968 0.992 0.996 0.996 1.000 0.924 0.956 0.984 0.992 0.992

0.10 0.876 0.928 0.920 0.948 0.972 0.968 0.992 1.000 1.000 0.932

0.12 0.988 0.992 0.980 0.888 0.996 0.892 0.956 0.944 0.972 0.980

0.14 0.952 0.940 0.948 0.956 0.964 0.972 0.988 1.000 0.996 0.892

0.16 0.940 0.956 0.940 0.940 0.920 0.944 0.908 0.960 0.976 0.964

0.18 0.988 0.996 0.976 0.996 0.984 0.988 0.972 0.988 0.900 0.880

0.2 0.988 0.984 0.984 0.980 0.972 0.980 0.984 0.968 0.976 0.972

p2 p3

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

0.02 0.952 0.976 0.936 0.968 0.992 0.928 0.976 0.992 0.968 0.984

0.04 0.984 0.992 0.944 0.944 0.976 0.940 0.956 0.992 0.960 0.996

0.06 0.996 0.916 0.952 0.972 0.864 0.896 0.944 0.988 0.948 0.972

0.08 0.908 0.952 0.976 0.988 0.928 0.988 0.972 0.888 0.940 0.972

0.10 0.968 0.992 1.000 0.996 0.976 0.980 0.988 0.876 0.960 0.972

0.12 0.988 0.988 0.932 0.960 0.980 0.996 0.996 0.956 0.960 0.992

0.14 0.948 0.972 0.980 0.988 0.996 1.000 0.972 0.980 0.984 0.980

0.16 0.980 0.992 1.000 0.936 0.956 0.976 0.996 0.984 1.000 0.972

0.18 0.932 0.948 0.960 0.964 0.996 1.000 1.000 0.972 0.960 0.988

0.2 0.976 0.988 1.000 0.996 0.940 0.940 0.960 0.980 0.992 1.000
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Table 5: Variation between (0.9,0.95) upper tolerance bound and 90th percentile of pop-

ulation for p1=0.02

p2 p3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.02 1.208 0.396 0.824 1.004 1.200 0.200 0.552 1.116 0.336 0.684

0.04 0.904 0.984 1.044 1.260 0.276 0.600 0.928 1.376 0.340 0.688

0.06 1.484 0.208 0.364 0.620 0.816 1.064 1.356 0.328 0.548 0.852

0.08 0.880 1.012 1.056 1.316 1.616 0.296 0.536 0.764 1.076 1.500

0.1 0.632 0.580 0.624 0.692 0.832 0.952 1.156 1.536 0.396 0.692

0.12 2.052 1.932 1.760 1.956 2.040 0.548 0.544 0.688 0.896 1.152

0.14 1.492 1.324 1.568 1.240 1.252 1.488 1.380 1.428 1.792 0.516

0.16 1.004 1.048 0.980 1.000 0.876 0.940 0.808 1.020 0.972 1.192

0.18 2.596 2.908 2.344 2.408 2.248 2.324 0.620 2.372 0.608 0.576

0.2 1.836 1.804 1.724 1.764 1.644 1.444 1.620 1.448 1.352 1.472

p2 p3

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

0.02 1.064 2.164 0.844 1.424 2.272 0.940 1.840 0.688 1.116 2.048

0.04 1.276 2.028 0.844 1.528 2.24 0.980 1.508 2.388 1.040 1.684

0.06 1.476 0.460 0.696 1.388 2.244 0.776 1.392 2.284 1.008 1.708

0.08 0.448 0.716 1.180 1.868 0.612 0.896 1.520 2.148 0.864 1.692

0.1 0.848 1.144 1.660 0.48 0.828 1.276 1.760 0.596 0.976 1.732

0.12 1.500 0.436 0.708 0.82 1.168 1.468 0.464 0.840 1.228 1.784

0.14 0.612 0.896 1.136 1.40 1.940 0.656 0.828 1.088 1.716 0.496

0.16 1.396 1.756 2.104 0.544 0.740 0.992 1.424 1.748 2.424 0.768

0.18 0.74 0.840 0.988 1.148 1.348 1.844 2.328 0.660 0.844 1.244

0.2 1.572 1.680 2.120 0.496 0.660 0.768 1.016 1.140 1.648 1.688
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