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Abstract

In the paper, the likelihood inference under the transformed truncated normal
mode regression model is proposed when the range of the transformation is possibly
different from the whole real line. The proposed methodology is then applied to two
real data sets in Box and Cox (1964), where the truncated normality assumption is
compared with the conventional normality assumption. Finally, the proposed model
is compared with the transformed truncated normal mean and median regression

models via the computational complexity.
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1 Introduction

The techniques for linear models are justified by assuming simplicity of systematic
structure, constancy of error variances, normality of distributions, and independence of
responses. In analyzing data which do not satisfy the traditional assumptions for linear
models, Tukey (1957) suggested two alternatives: either a new analysis must be devised or
the data must be transformed to satisfy the assumptions. If a satisfactory transformation
can be found, it is usually easier to use the conventional techniques for linear models to
analyze the transformed data than to develop a new method to analyze the original data.

It is common practice simply to assume the following normal regression model:

yi = [z B) + & (1)

for © = 1,...,n, where y; is the response for subject 7; x; is a known covariate vector
for subject i; 8 is an unknown finite-dimensional regression parameter vector; f(-; /) is
a known regression function for each 3, e.g., f(z;;3) = zI'8 or exp{z!3}; and &;s are
i.i.d. N(0,0?) errors with unknown: positive standard deviation o. Notice that all of the
mean, median, and mode of y; are the same as f(x;;5) fori=1,...,n.

When there exist heteroscedastic errors and/or departures from normality in the data,
one possible approach is to transform the data. A widely used family of transformations

to transform positive continuous data is the family of modified power transformations

(u* —1)/\ for X # 0,
log(u) for A =0.

ey

(2)

Figure 1 shows some different modified power transformations.
In such situations, Box and Cox (1964) proposed the following Box-Cox transformed

linear normal regression model:
y =alB+e; (3)

for i = 1,...,n, where y; has support (0,00) and A is an unknown real-valued transfor-
mation parameter.

When both heteroscedastic errors and departures from normality cannot be simulta-
neously removed in the data by any single transformation, Carroll and Ruppert (1988)

proposed the following Box-Cox transformed heteroscedastic normal regression model:

y,w = f(x; B) + & (4)



fori = 1,...,n, where g;s are independent errors distributed as N (0, ¢*(f(x:; 8), zi;7y) 0%)
such that z; is a known covariate vector for subject i, e.g., z; is a known function of z;;
~ is an unknown finite-dimensional parameter vector; g(-, -;) is a known positive function
for each v, e.g., g(f(xi;8), zi57) = exp{f(wi; B)m + 2] 72} with v = (31,79)7; and o is
an unknown positive scale parameter. In Carroll and Ruppert (1988), the constants
1/g?(f(xi; B), zi;7) are called the true weights. Notice that model (3) is a special case of
model (4) when f(z;;8) = 218 and g(f(z:;8),2i;7) =1 fori=1,...,n.

Z()‘) € (—1/X 00) for A > 0, (—00,00) (= R) for A =0, and (—o0, —1/) for
(N

7

However, y
A < 0, respectively. Thus, except for A = 0, y.”’ cannot be normally distributed. Hence,
Poirier (1978) modified model (3) to the following Box-Cox transformed linear truncated
normal mode regression model:

yﬁ” = fL’iTﬁ + & (5)

for i = 1,...,n, where g;s are independent errors distributed as either N(0,0?) for A = 0
or truncated N(0,0?) for A # 0 with unknown positive scale parameter o. Notice that,
for i = 1,...,n, I 3 is the mode of yy‘) when it is in the support of yl-(’\); however, it is
generally neither the mean nor median of yg)‘).

In Chen and Wang (2003), three widely used families of transformations with ranges

possibly different from R are reviewed as-follows:
Example 1.1 The family of shifted power transformations (Box and Cox, 1964)
B A) = (u— a)® = [(u—a)* = 1]/X for X #£0, ©)
log(u — a) for A =0,
can be used to transform data with known support (a,o0), where a € R, e.g., a = 0.
Then the range h((a,00);A) is (—=1/A,00) for A > 0, R for A = 0, and (—o0, —1/A) for

A < 0, respectively. Similarly, the family of transformations

M) = (b —wy® = § 17T WA for A0, (7)
—log(b — u) for A =0,

can be used to transform data with known support (—oo,b), where b € R, e.g., b = 0.
Then the range h((—o00,b);A) is (—oo,1/A) for A > 0, R for A = 0, and (1/A, 00) for
A < 0, respectively.

Example 1.2 The family of shifted folded power transformations (Mosteller and



Tukey, 1977)

[(u—a)* = (b—u)*|/\ for A #£ 0,
log[(u —a)/(b — u)] for A =0,

hu; A) = (u—a)™ = (b—u)M =

can be used to transform data with known support (a,b), where —oco < a < b < 0, e.g.,
(a,b) = (0,1). Then the range h((a,b); \) is (—(b — a)*/A, (b — a)*/)) for A > 0 and R
for A < 0, respectively.

Example 1.3 The family of shifted modulus power transformations (John and

Draper, 1980)

h(u; \) sgn(u — Ap)(Ju — Ao| + 1)

 sen(u— M)l dal + DM = 1)/ for Ay £0, (9)

sgn(u — Ag) log(ju — Ao + 1) for Ay =0,

can be used to transform data with support R, where A = (A, \)? and sgn(u) = 1 for
u >0, 0 for u =0, and —1 for u < 0, respectively. Then the range h(R;\) is R for A\; > 0
and (1/A1, —1/A;) for A\; < 0, respectively:

In order to cover such kinds-of families in Examples 1-3, Chen and Wang (2003)
modified model (4) to the following transformed truncated normal median regression

model:
h(yis A) = f(zi; B) + e (10)

fori=1,... n, where y; has known support (a,b) (C R), e.g., (a,b) = (0,00), or (0,1), or
R; A is an unknown finite-dimensional transformation vector; h(-; A) is a known strictly
increasing and differentiable real-valued function on (a,b), e.g., Examples 1.1-1.3; and
g;s are independent errors distributed as either N(0, g*(f(z:; ), zi;v) o) or truncated
N(ui(\, B,0,7), ¢*(f(zs; B), 2i;7) 0?) with median 0 for some p;(A, 3,0,7) € R. Notice
that, for i = 1,...,n, f(z;;f) is the median of A(y;; \); however, it is generally neither
the mean nor mode of h(y;; \).

In Section 2, the transformed truncated normal mode regression model is proposed to
extend model (5) and then the corresponding likelihood inference is discussed thoroughly.
In Section 3, the proposed methodology is applied to two real data sets in Box and Cox

(1964). Finally, conclusions and discussion are given in Section 4.



2 Transformed Truncated Normal Mode Regression

Model

In this section, the transformed truncated normal mode regression model is proposed to

extend model (5) and then the corresponding likelihood inference is discussed thoroughly.

2.1 Transformed Truncated Normal Mode Regression Model

Consider the following transformed truncated normal mode regression model:

h(yis A) = f(zi;8) + & (11)

for i = 1,...,n, where y; is the response for subject ¢ with known support (a,b) (C R),
e.g., (0,00), or (0,1), or R; A is an unknown finite-dimensional transformation vector;
h(-; A) is a known strictly increasing and differentiable real-valued function on (a,b), e.g.,
Examples 1.1-1.3 in Section 1; z; is a known covariate vector for subject 7; 3 is an unknown
finite-dimensional regression parameter vector; f(-; 5) is a known regression function for
each B3, e.g., f(xi; 8) = I 8 or exp{al B}; and &;s are independent errors distributed as
either N (0, ¢*(f(xs; B), zi;7) 0%) or truncated' N(0, ¢*(f(z4; B), zi;v) 02) such that z; is a
known covariate vector for subject 7, e:g.;z; is a known function of x;; v is an unknown
finite-dimensional parameter vector; g(-, ;) is a known positive function for each v, e.g.,
g(f (w5 8), 27) = exp{fles B)m + 2T} with 7 = (11,93)7; and o is an unknown
positive scale parameter. Notice that, for i = 1,...,n, f(x;; 5) is the mode of h(y;; A)
when it is in the support of A(y;; A); however, it is generally neither the mean nor median

of h(yi; ).

2.2 Maximum Likelihood Estimation

Let 0 (= (6y,...,04)") denote the d-dimensional parameter vector (AT, 87, o, ~T)T
in the parameter space O, where © is a non-empty open subset of the d-dimensional
Euclidean space R?. Let ®(-) denote the cumulative distribution function (c.d.f.) of

N(0,1) and ¢(-) the probability density function (p.d.f.) of N(0,1). Set

e:(u: 0) = h(w; A) = f(ais B) _ hw; A) = fi(B) )

g(f(xs: B),z7) 0 9(B,7) 0




for u € [a,b], § € ©, and ¢ = 1,...,n, where h(a;\) = lim,, h(u; \) and h(b;\) =
Under model (11), the p.d.f. of y; is

o\ ¢(ei(yi; 9))h/(yi; )\)
PO = G B o @leb:0)) - Bleady] W

(13)

fori =1,...,n, where /'(y;; A\) = Oh(u; \)/Oulu—y, = hi(N) and 1) (y;) = 1 for y; € (a,b)
and 0 otherwise. Set y = (y1,...,%n)". Set h;(\) = h(y;; A), and e;(0) = e;(y;; 0) for 0 € ©

and ¢ = 1,...,n. Then, given y, the likelihood function for 6 is

- Olei(0) ()
L o (et ) — e oy~ ) (14)

7

and the log-likelihood function for @ is
log[L(6)] = £() = ) _ 4:(6), (15)
where

6:i(0) = log[o(ei(®))] + log[hi(\)] — log[g:(8,7)] — log()

— log[®(e;(b;0)) —®(eila; 0))]. (16)
Assume that
a [ > Opi(ys; 0)
%/a pi(yi; 0) dy; = /a Tdyi (17)
and
0 ’ ’ 82171'(3/@'; 0)
W/a pi(yi; 0) dy; = /a Wdyi (18)
for 8 € © and i = 1,...,n. Then the score function for 0 is
M)  —~0L0) _ ¢ _
o6 2 op = Z; S:(0) = S(0), (19)

the observed Fisher information for 6 is

0°(0) S 0i(0) _ B
“o600T — 2~ 0007 >_Ji(0) =), (20)

and the expected Fisher information for 6 is

Coovg (S(0)) = Z Covg(Si(0)) = > L(0) = 1(9), (21)



where both S;(#) and J;(0) are put in Appendices A and B, respectively. By equation (17),
Eyg(Si(0)) = 0gx1 for 6 € © and i = 1,...,n, where 04x; denotes the d x 1 vector
(0,...,0)T. By equations (17) and (18), Ey(J;(0)) = I;(0) for 0 € © and i = 1,...,n.
Assume that, given y, there exists a unique maximum likelihood estimate (MLE)
O(y) (= 0) of 6. Then 6 solves the score equation S(f) = 0gy1 for 6. One possible
approach to evaluate 0 is as follows: First choose a good initial value 0© and then iterate
the following equations
O+ — g 1 A1 (9*) S (6®) (22)
for k = 0,1,2,... until ||S(é(k+1))]\ < ¢ for some small positive value ¢, e.g., ¢ = 1073,
where [|a|| = (aTa)'/? for a € RE. When M(O®) = 1(0®) for k = 0,1,2,..., it is
called the Fisher scoring method. However, it will take too much time to evaluate / (é(k))s
because there is generally no closed-form formula for each I(A®). When M(0%®) =
J (é(k)) for K =0,1,2,..., it is called the Newton-Raphson method. It is usually difficult
to find a good initial value for the Newton-Raphson method specially when d is not a
small positive integer. Moreover, it is not necessary that f(é(k“)) > f(é(k)) for k =
0,1,2,.... Thus, a modified Newton-Raphson method is suggested as follows: First choose
a good initial value 0 and a fraction X € (0,1}, e.g., A = 1/2. When 6® is obtained
and ST(A®)J-1(9*)S(B®) £ 0 for some-non-negative integer k, iterate the following

equations
OrFLI) = §*) 1 gan (ST (AW T7H(9R)S(HW)) N T~ (6®) S (9*)) (23)

for j =0,1,2,...,my, where my, is the first j such that é(é(’”l’j)) > E(é(k)). Set 9+ =
Ok+Lme) for k= 0,1,2,... until |[S(O*D)|| < & for some small positive value e, e.g.,
e=1073.
When ST(0®).J-1(®)S(HP®) #£ 0 for some non-negative integer k, it follows from
the first-order Taylor expansion that
0%+
= £(0™) + ST(0®) [sgn(ST(O®)THOM)SOW)) M T OP)S(OP) | + o(N)
= L6 + N [ST(O®) T 1(0F)S(O®)] + o(N) (24)
as j — 0o, which implies that £(0%+1)) > ¢(6®)) for large j and thus my, is well-defined.
Now consider the case where the sample size n tends to infinity. Assume that the

following conditions hold:



(i) the minimum eigenvalue of 1(#) tends to infinity as n — oo;
(i) Egp(maxi<i<n |00;(0)/06;])/[V are(0(0)/00,)]1/* — 0 as n — oo for j =1,...,d;

(iit) I=Y2(0)J(0)I/2(0) & I; as n — oo , where I; denotes the identity matrix of

order d; and

(iv) [diag{I11(6), ..., L1sa(0)}]"/21(6)[diag{[11(0),. .., Laa(0)}]7/* — %(6) as n — oo,
where ;;(0) denotes the jth diagonal element of /() for j =1,...,d and 3(f) is a

positive definite covariance matrix.

Let M (0) denote either 1(#) or J(6). Then, by Theorem 1.80 of Prakasa Rao (1999),
M~Y2(0)S(0) < Na(Oaxa, 1) (25)

as n — 00, where Ny(04x1, ;) denotes the d-variate normal distribution with mean vec-

tor Ogx1 and covariance matrix [;. Assume that
I7Y2(0){S(6) =[S(8y<.] (6)(8 — 0)]} = 0,(1) (26)
as n — oo. Then, by condition (iii) ‘and equations (25) and (26),
MY2(0)(6 — 0) = M2(0)S(0) + 0p(1) 4 Na(0gx1, 1) (27)

as n — oo. Thus, by condition (i) and equation (27), § is a weakly consistent estimator
of 0. Assume that I-Y2(0)I(0)I~/2(0) & I, and JY2(0)J(0).J/2(0) L I, as n — oo.
Then, by equation (27),

MY2(6)(6 — 6) = MY2(0)(6 — 6) + 0,(1) % Na(Oax, La) (28)

as n — oQ.

2.3 Hypothesis Testing and Confidence Regions

In this subsection, let w (= (YT, xT)T € 2 C R?) be a one-to-one reparameterization
of 6§ such that det(90/0w”) # 0 and 8%6;/0x0x" is a continuous function of x for j =
1,...,d, where v is the do-dimensional parameter vector of interest and y is a (d — dy)-
dimensional nuisance parameter vector with dy € {1,...,d}. Here x does not exist when
dy = d. Suppose that we are interested in testing the null hypothesis Hy: 1) = 1)y versus
the alternative Hy: v # 1.



Set Sy(x) = 90(0) /X, Iy(x) = Cov,(Sy(x)), and Jy(x) = —0Sy(x)/0xT for w € Q.
Then Sy (x) = [00" /0x]S(0), L (x) = [00" /0x]1(6)[00/0x"], and

89T d 32«9
= § 2

for w € Q, where S(0) = (S(0)1,...,5(0)q)". Assume that, given y, there exists a unique
MLE x4 (y) (= Xy) of x for fixed ). Then x, solves the score equation Sy (Xy) = O(g—dg)x1
for x, where 0(4_qy)x1 denotes the (d — dy) x 1 vector (0,...,0)%.

Set W (1) = 2[0(0) — €(6(v, )] Assume that 1" (x) Jy (X)L, > (0) 2 La—ao,

0200 (R — x) = I, (080 (x) + 0,(1), (30)

~

£(6) = €0) + STO)6 — ) ~ 56~ T IO)O — ) + 0,(1), (31)

and

0(0) = 00, X)) + Sy (Xe) (X = X) — %(X = Xu) o () (X = Xu) +0p(1)  (32)

as n — oo. Then, by equations (27) and(28),

W)
— ST {fd -0 | G f”?(e)} 1/%(0)5(0)
+0p(1)
5 X (33)
as n — oQ.

Let a € (0,1) be fixed, e.g., a = 0.05. The likelihood ratio test with asymptotic size «
is to reject Hy: 1 = 1y if and only if the likelihood ratio test statistic W (1) > va,do’
where Xi,do denotes the upper a quantile of the x? distribution with dy degrees of freedom.
To evaluate W (vy), we need to evaluate xy,. One possible approach to evaluate xy, is
to utilize a modified Newton-Raphson method in Section 2.2. Therefore, {tg: W (1)) <

Xi’do} is an asymptotic size 1 — « confidence region for .

2.4 Prediction Region of Future Observations

Suppose that
h(Ynt4; A) = f(@n4j; B) + €ntj (34)

8



for j = 1,...,m, where m is a known positive integer, y,; is the future observation for
subject n + j with support (a,b), x,+; is a known covariate vector for subject n + j,
and £,,; is an error distributed as either N(0, ¢*(f(%ntj;3), 2ntj;7v) 02) or truncated
N0, ¢*(f(Znvs; B)s Znsj;v) 0%) with known covariate vector z,.;, and ei,...,E,4m are
independent. For 0 € ©, u € [a,b], and j = 1,...,m, set

h(u; A) = f(@ns538)  _ h(us A) = fury(B)
9 @nsji B) 2nrgs V)0 guai(By)o
Let a € (0,1) be fixed, e.g., @« = 0.05. For § € © and j = 1,...,m, let &, ;(-;6)

(35)

€n+j (u7 9) =

denote the c.d.f. of €,,4; and ¢,4;4(6) the a quantile of v, ;. Then

Gntjal0) = h7 (fori(B) + @1 5(as0); ) (36)

with MLE qnﬂ-,a(é) for € ©® and j = 1,...,m, where

71,(010) = gues(B1) 0B (1~ 0) eres(@:60)) + a Blensy (b))
= gnﬂ(ﬁ,y)aégij(oz,a,b;@). (37)

Assume that g,,+;(0) is a continuously differentiable function of 6 with ¢, (6)/00 #
Ogx1 for 0 € ©® and j =1,...,m. Then

aQnJrj,a(e) _ afn+]( )/89 +o (I)n—I—j (Oé, ay b; 9) agnJrj(ﬂ’ 7)/89
89 h (Qn—i-] a(e)' >‘)
+gn+3 (6 ’Y) n—i—] (Oé a, b 9) a O-/ae + gTH‘J (6 ’Y) o aq)n—i-j (OC, a, b7 9)/89

h’ (qn+3,a (9>7 )‘)

Oh(u; )‘)/amu:%ﬁa(@)

38
W (30 V) (38)

for € © and j =1,...,m, where
D00 0,50) (1) O(ens:0))/00 + 0 00(ensy (B0)/00 o

00 B P(®, 1 (a,a,b;0))

with both 0®(e,,;(a;0))/00 and 0P (e,4;(b;0))/00 being evaluated by similar formulas
in Appendix A.
By equations (27) and (28),

0 n+j,a 0 0 n+j,o 0 e A
i) o1 gy Dsac OV 0 Gy @] S NOLY) (40
00 00
and
aQnJrj a(e) —1/) aQnJrj a(e) i/ A d
—— M) —— [@n+4.0(0) — Gntja(0)] = N(0,1) (41)
00 0—6 00 0d

9



asn — oo for 6 € ©® and j =1,...,m, where M denotes either I or J.

Set o, = [1— (1 —a)Y™]/2. Since Ypi1, .., Ynim are independent,
(ﬂ{yn-w qn+] am (0)7 An+jl-am (9)]})
H {yn+s € [Gr+jam(0), Gnrji-an (0)]}) = (1 -2ap)" = 1—-a, (42)

which implies that [¢ui1.00,(0); Gri11-am (0)] X -+ X [Gntm.am(0)s Gntmi-a,, (0)] is a size
1 — a prediction region for (Yni1, - - ., Ynsm)? With MLE [gni1.a,, (0); Gni11—ap, (0)] X -+ X
[Qn+m,am (é)’ An+m,1—om, (é)]
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3 Two Real Data Sets

In this section, the proposed methodology is applied to two real data sets in Box and

Cox (1964).

3.1 A Biological Experiment Using a 3x4 Factorial Design

Table 1 shows the survival times of animals in a 3 x 4 factorial experiment, the factors
being A with three poisons and B with four treatments. Each combination of these
two factors is replicated for four animals, the allocation to animals being completely

randomized. The two-way analysis-of-variance (ANOVA) effects model is
Yijk = i+ 7o + By + (T8)ij + €iji (43)

for i = 1,2,3 and j,k = 1,2,3,4, where y;;;, is the kth observation for the ith poison of
factor A and the jth treatment of factor B; pu is the overall mean, 7; is the main effect of
the ith level of factor A, §; is the main effect of the jth level of factor B, (73);; is the
interaction between the ith level of factor A and the jth level of factor B, and ¢;;;s are
i.i.d. N(0,0?%) errors with unknown positive standard deviation o. Figure 2(a) shows the
residual plot against fitted values for the original data under the two-way ANOVA effects
model. It is seen that Var(y;;;) increases as E(y;ji) increases.

Now consider the following Box-Cox transformed truncated normal mode regression
model:

A
yz(jk) = p+ 7+ B+ (78)ij + €ij (44)

for i = 1,2,3 and j,k = 1,2,3,4, where each y;;; has support (0,00), A is am unknown
real-valued transformation parameter and €;;;s are independent errors distributed as either
N(0,0%) or truncated N(0,0?) with unknown positive scale parameter o. Figure 2(b)
shows the residual plot against fitted values for the transformed data under the Box-Cox
transformed truncated normal mode regression model.

One possible way to find a good initial value 6© in this case is put in Appendix C.
How to plot the normal probability plot in this case is put in Appendix D. Table 2
shows the MLEs under the false normality assumption and under the truncated normality
assumption, respectively. Figure 3 shows the normal probability plots under the false

normality assumption and the truncated normality assumption, respectively.
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First, test the null hypothesis Hy: (78);; = 0 for all (i, ) versus the alternative Hy:
(18)ij # 0 for some (7, 7). Then the asymptotic p-value is 0.3168 and thus it fails to reject
the null hypothesis Hy.

Table 3 shows the MLEs without interactions under the false normality assumption and
the truncated normality assumption, respectively. Figure 4 shows the normal probability
plots under the false normality assumption and the truncated normality assumption,
respectively, without interactions.

Similarly, we are also interested in testing the null hypothesis Hy: A = —1 and (75);; =
0 for all (,j) versus the alternative H;: A # —1 or (783);; # 0 for some (7,5). The
asymptotic p-value is 0.2829 under the truncated normality assumption, and thus it also
fails to reject the null hypothesis Hy.

Table 4 shows the MLEs with A = —1 under the false normality assumption and
the truncated normality assumption, respectively. Figure 5 shows the normal probability
plots under the false normality assumption and the truncated normality assumption,
respectively, with A = —1. Table 5 shows the:MLEs under the false normality assumption
and under the truncated normality assumption; respectively, without interactions and
with A = —1. Figure 6 shows the normal probability plots under the false normality
assumption and the truncated normality assumption, respectively, without interactions
and with A = —1.

Suppose that

A
yi(lj?kz = o+ Ty + By + i, (45)

for | = 1,...,m, where m is a positive integer, v, is the kjth observation with the
iith poisson of factor A and the jth treatment of factor B, all (i, ji, k;)s are different for
ki > 5, €k, is an error distributed as either N(0,0?) or truncated N(0,0?), and &;;s
and €;,j,1,5 are independent.

Let a € (0,1) be fixed, e.g., 0.05. For [ =1,...,m, let ®;,(-;0) denote the c.d.f. of

ik, ad Qi k.0 (0) the a quantile of y;,j,5,. Then

_ 1/X
Qizjzkl7a(9) = {1 + A ['u + 7+ sz + (I)iljllkl<a; 9)}} / (46)
for{ =1,...,m, where
_ _ —1/)\—M—Ti—ﬁ'
P, 1 (a;0) =0 ®7! (a<1>( — ﬂ)). (47)

12



Thus, [Giyjikr,am (0)s Girjrkr1—am (0)] X - X [Gigombmcm (0)s Qi gk, 1—am (0)] 18 @ size 1 —

prediction region for (Yi,jikys - - - s Yimjmbm ). With MLE [qiljlkham(é)? thlkl,l—am(é)] X e X

[Qimjmkmaam (é)7 qimjmkmal_am (é)]7 Where Qm = []‘ - (1 - a)l/m]/Q

3.2 A Textile Experiment Using a Single Replicate of a 3% Design

Table 6 shows the numbers of cycles to failure, y, obtained in a single replicate of a
3% factorial experiment in which the factors are

x1: length of test specimen (250, 300, 350 mm),

xo: amplitude of loading cycle (8, 9, 10 mm),

xg: load (40, 45, 50 gm).
In Table 6, the levels of the xq,x9, and x3 are coded as —1,0, 1, respectively. Consider

the following quadratic regression model:

3
vi=Po+ > Bz + Y Byt & (48)

Jj=1 1<5<k<3
fori =1,...,27, where y; is the response for (&, 2, x3) = (1, Ti2, Ti3), Bo is the intercept,

B;s and (s are regression coefficients, and ¢;s are i.i.d. N(0,0?) errors with unknown
positive standard deviation o. Figure 7(a) shows the residual plot against fitted values
for the original data under the quadratic regression model. It is easily seen that there is
an obvious pattern in Figure 7(a).

Now consider the following Box-Cox transformed truncated normal mode regression

model: 5
A
y =By + Z Bjwy; + Z BiktijTik + €; (49)
J=1 1<j<k<3
for i = 1,...,27, where y; has support (0,00) and ¢;s are independent errors distributed

as either N(0,0?) or truncated N(0,0?) with unknown positive standard deviation o.
Figure 7(b) is the residual plot against fitted values for the transformed data under the
Box-Cox transformed truncated normal mode regression model.

Table 7 shows the MLEs under the false normality assumption and under the truncated
normality assumption, respectively. It is seen that the MLEs under the false normality
assumption are nearly the same as under the truncated normality assumption. Figure 8
shows the normal probability plots under the false normality assumption and the trun-

cated normality assumption, respectively.
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First, test the null hypothesis Hy: f;; = 0 for all (j, k) versus the alternative Hy:
Bjr # 0 for some (j, k). Then the asymptotic p-value is 0.3487 and thus it fails to reject
the null hypothesis Hy.

Table 8 shows the MLEs under the false normality assumption and under the truncated
normality assumption, respectively, without quadratic effects and interactions. Figure 9
shows the normal probability plots under the false normality assumption and the trun-
cated normality assumption, respectively, without quadratic effects and interactions.

Similarly, we are also interested in testing the null hypothesis Hy: A =0 and 3;; =0
for all (j, k) versus the alternative Hy: A # 0 or 8 # 0 for some (j, k). The asymptotic
p-value is 0.4313 under the truncated normality assumption, and thus it also fails to reject
the null hypothesis H.

Table 9 shows the MLEs with A = 0 under the false normality assumption and the
truncated normality assumption, respectively. Figure 10 shows the normal probability
plots under the false normality assumption and the truncated normality assumption, re-
spectively, with A\ = 0. Table 10 shows the MLEs under the false normality assumption
and the truncated normality assumption; respectively, without quadratic effects and in-
teractions and with A = 0. Figure 11 shows the normal probability plots under the
false normality assumption and the truncated normality assumption, respectively, with-
out quadratic effects and interactions and with A = 0.

Suppose that

3
yl(/\) = [y + Z Bixi; + & (50)
j=1
for | =27+ 1,...,27 4+ m, where m is a positive integer, y; is the [th observation for

(m1, T2, 3) = (711, T2, 213), €1 is the (I — 27)-th future error distributed as either N (0, 0?)
or truncated N(0,0?), and €y, ..., 974, are independent. Let a € (0,1) be fixed, e.g.,
0.05. For 1 =27+1,...,27+m, let ®;(+; ) denote the c.d.f. of g, and ¢; ,(f) the o quantile
of ;. Then

3 1/A
Bo+ Y Bjmy +q>;1(a;9)” (51)

j=1

qua(e) = {1 + A

for | =27+1,...,27 4+ m, where

o (;0) =0 @7 (mb(AM_ﬁo_ZFlﬁjx”)). (52)

g

Thus, [g27+1,0, (0), 2741,1-0,, (0)] X+ -+ X [@271m.0,n (0), G274m,1- 0, (0)] 1 & size 1 — a predic-
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tion region for (Y2711, - - ., Yor4m)? With MLE [ga741.0,, (0), @2741.1—a, (0)] X+ - - X [G274m.c, (8),
q27+m,17am(é>], where a,,, = [1 — (1 — a)l/m]/z
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4 Conclusions and Discussion

Now consider the following transformed truncated normal mean regression model:
hyis A) = (23 8) + & (53)

for i = 1,...,n, where y; is the response for subject ¢ with known support (a,b) (C R);
A is an unknown finite-dimensional transformation vector; h(-;A) is a known strictly
increasing and differentiable real-valued function on (a,b); x; is a known covariate vector
for subject ¢; B is an unknown finite-dimensional regression parameter vector; f(-; /)
is a known regression function for each f; and ¢;s are independent errors distributed
as either N(0, ¢?(f(zs; 8), 2i;7) 02) or truncated N (p;(6),02(0)) such that p;(6) is an
unknown mean parameter, ¢;(f) is an unknown positive standard deviation parameter,
z; is a known covariate vector for subject 7; v is an unknown finite-dimensional parameter
vector; ¢g(-,-;7y) is a known positive function for each v; and ¢ is an unknown positive
scale parameter. Notice that, for i = 1,... n, f(z;; §) is the mean of h(y;; A) when it is
in the support of h(y;; \), and ¢*( f(xs 8)szi37)c? is the variance of h(y; \).

By Johnson and Kotz (1994); using well-known formulas for the truncated normal
distributions, it can show that suppose&; ~ N (;(0), 0;(#)) has a normal distribution and
lies within the interval ¢; € (a;, b;). Set'al'= |a; — p;(6)]/0:(0), b, = [b; — wi(0)]/0:(0), €

conditional on a; < ¢; < b; has a truncated normal distribution with probability density

function
(D). o). by = PUE = pi(0))/0u(0)
sl 0 0o b) = ) (o) — )] oy
Then
Bu(el{os < 2 < b)) = 1l6) + i o (0 (59
and

Varg(ei|{a; < &; < b;}) =07(0) |1+ aé;z)ﬁ((;é))_—g(ﬁi({?é) B {gEZ;;)) :gilj})} ] . (56)

(3 2

Since simultaneously solving equations (55) and (56), it will take too much time to evaluate
the MLEs and the corresponding likelihood inference.

Consider the following transformed truncated normal median regression model:

h(yi; A) = f(zs; 8) + & (57)
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where ¢;s are independent errors distributed as either N (0, g(f(z;; 8), zi;7) 02) or trun-
cated N (p;(0),02(0)), Notice that, for i = 1,...,n, f(x; 3) is the median of h(y; \), and
g(f(x; B), zi;7v) o is the interquartile range of h(y;; \).

One way to obtain p;(6)s is to utilize the Newton-Raphson method, but p;(0) generally
it has no closed-form to be evaluated directly. It will take too much time to evaluate p;(0).

In this paper, we propose the transformed truncated normal mode regression model.
The important advantage of our model is that the MLEs are easy and fast to compute. In
the proposed model, we utilize the MLEs and likelihood function to do hypothesis testing
and statistic intervals, and we compare the MLEs under truncated normality assumption
with the MLEs under false normality assumption.

Under the false normality assumption, the log-likelihood function for 6 is

log[L(0)] = ¢(0) = Z@(e), (58)

where

Gi(0) = log[o(e:(@))]+108[hi(N)] —log[gi(8,7)] — log(o). (59)

Then the score function for 8 is

L) _ En: 060y _ i S:(6) = S(9). (60)

We compare equations (59) and (60) with equations (16) and (19).

Consider the standard deviation is fixed, if the sample size is not large enough, the
difference between the score function for # under the false normality assumption and
under the truncated normality assumption will be small. Hence, the MLEs under the
false normality assumption are similiar with under the truncated normality assumption.

Consider the sample size is fixed, if the standard deviation is very small, e;(b; 0) tends
to be oo and e;(a;6) tends to be —oo generally. Thus, the difference between the score
function for # under the false normality assumption and under the truncated normality
assumption will be small. Hence, the MLEs under the false normality assumption are
similiar with under the truncated normality assumption.

In Tables 2-5, there is no significant differences between the MLEs under the false
normality assumption and the truncated normality assumption. A possible reason is that

the sample size in Example 3.1 is not large enough.
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In Tables 6-10, the MLEs under the false normality assumption are nearly the same
as under the truncated normality assumption. Some possible reasons are that A\ and o
are closed to 0, and the sample size is also not large enough in Example 3.2.

When the range of the response transformation is possibly different from R, the like-
lihood inference under the coventional normality assumption is inappropriate and thus
should not be used. Therefore, when the range of the response transformation is possi-
bly different from R, we may assume that the proposed model holds and the likelihood

inference under the proposed model in Section 2 can be used.
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Appendix A

Fori=1,..., n,
o 9(€(0))]0ei(6)/06] | ORi(N)/08 Do /08  Og(B,v)/00
SO = Te@) TR o g
OP(e;(b;0))/00 — 0P (ei(a; 0))/90
D(e;(b;0)) — P(ei(a; 0))
where
¢'(ei(0)) = —ei(0)p(ei(0))
and for e;(u;0) € R,
Oei(u;0)  Oh(u; \)/ON
ox  oglBy) ]
Oei(u;0)  _ Of(2:;8)/08  h(u; A) — f(xi; 8) 0gi(5,7)
op o 9i(8,7) o g} (8,7) 8
de;i(u; 0) _ _ei(u;Q)
oo Q>
Oci(u;0) __ eu;0),09:(B, )
o gi(Bsq) Oy |
0P (ei(u;0)) s oeiu; 0) '
— a0 = (b(ei(“’e))T 1z (ei(u;0)).

As an example, when a = 0, b = 0o, h(u; \) = u

€ (0,00) and i =1,...

7n7

de;(0)

IR
1-X i
00 Yi

00

00

—ei(0)—

20

N, f(8) = 7B, and g,(8,7) = 1 for

¢(€z‘(0§ 9))
— O(e;(0;0))

0e;(0;0))
a0




where

y — 2l
O_ b
log(y:)y — y

oA

hi(A)

and

Ohi(A)
O\

log(y:)y; .
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Appendix B

Fori=1,..., n,

_¢"(ei(0))[0ei(0)/08)[0ei(0)/00"] + ¢’ (ei())[0%ei(6) /0006 ]
¢(ei(0))
¢/ (e:(0))]*[0ei(0)/00][0ei(0) /06™]  9*hi(N)/0600"
2 (ci(0)) )
[Ohi(N)/00)[ON) /8] | P0/0096" (900600 /6]

Ji(0) =

+

(h7)*(A) o o
L 99(8,7)/0606" _ 09(5,7)/98][09(8,7)/96"]

9(6,7) 92(8,7)
| OP0(cx(6:9))/0090" — 5 (ex(a: 0))/0006"
P(e;(b;0)) — P(ei(a; 0))
0 e4(0:0)) /90 — 0% (ex(a 0))/O0)[%(eu(b:0)) 07 — (sl ) /6")

[®(ei(b;0)) — P(ei(a; 0))]?

where

¢'(ei(0)) = =eild)d(e:(0)),
¢"(€i(0)) 5= lesl @)=+ ef (0)d(ei(9))

and for e;(u;0) € R,
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oA 9:(B, 7)o
Oei(uw;0) _ 0fi(B)/9B  h(u; A) — fi(B) 9gi(5,7)
ap 9i(B,7) 0 g} (B,7) o op
dei(u;0)  ey(u;0)
oo g
Oei(u;0) _ ei(u;0) 9gi(B,7)
oy 9:(B,y) Oy
O%ei(u;0)  0*h(u; A)/ONONT
ONONT 9i(B,y)o
0ei(u;0) _ _anz( )/aﬁfwT+afi(5)/3ﬂagi(5,7) +afi(5)/aﬁagz‘(5,7)
opopT 9:(B, 7)o g (B,y)o 0BT g (B,y)o 0BT
1o h(u; A) = fi(B) 9gi(B,7) 9gs(B,7)  h(ws A) = fi(B) 9°gi(B, )
g2 (B,7) o ap opT gi(B,y)o  0BopT
Pei(u;0) NG
Jo? o2
Pei(w;0) _ews0) 0gi(3 V) 9guDsy) e ilui0) 9i(65,)
Iy g;(B,7) Oy ayr 9:(8,7) Oy
Pei(u;0)  Oh(u; \) /ONDgi(B, )
o2BT @B aBE
0?%e;(u; 0) B Oh(u; N)/OA
oo giBy)o*]
Pei(u;0) h(u; A)/OX Dgi(B, )
AN gBe Oy
Pe(w8) _ 0f(B)/0B | h(wA) — fi(B) 99:(5,)
0poo 9i(B,) o 9:(B,7) o? o’
%ei(u; ) 8fi(5)/8689i(ﬁ,7)+2h(usk)—fi(ﬁ)agi(ﬁ,’y)c‘?gi(ﬂ,’v)
oo™ g (B,y)o T g (B,7)o op o’

Ch(w;A) = fi(B) Pgi(B,7)
g:(B,y)o 0BT 7

0%e;(u; 0) _ ei(u; 0) 0gi(8,7)
000y 9(B,v)o Oy
0®(ei(u;0)) o Oei(u; 0) .
g = ole(w0) =5 In(e(w: 0)),

and

*®(e;(u;0)) ' o 0ei(w; 0) e (u; 0) '
00007 —e;(u; 0)¢(ei(u; 0)) 90 00T 1r(€i(u; 6))

82i ;9
toesfus o) o)

1 (ei(u;8)).
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As an example, when a = 0, b = oo, h(u; \) = u™, fi(B) = 273, and ¢;(3,v) = 1 for

u€ (0,00)andi=1,...,n,

Ji(0) = [1—el(0)][0e;(0)/00][0e(0)/06"] + 6¢(§)[52€¢(9)/5939T]
+e2(0)[0e.(0) 08]0e,(0) /06" ] — 1> L)
2 (1-x) ON; () ORj(N) ., 0% _, 00 0o
T 00 oot 7 oot ° Bgoor
€i(0;0)¢(ei(0;0)) 0e;(0;0) 9ei(0;0)  dleo(us b)) 0%¢;(0;0)
1= B(e,(0:0) 90 00T 1—d(a(0;0)) 90007

_{ ¢(ei(0;0)) }2361-(0;9)361'(0;9)

1 — ®(e;(0;0)) 00 oo’
where
N _ 1
at) = W00
o

dei(6) _ log(yi)y — ui”

o\ oA ’
dei(0) _  m

o3 o’

do o’
e;(0) _ [log(yi)Pyr - foalyu — v /A log(yi)y) — uy”

ON? oA o \? ’
82€i<0) B

opz:
8261‘(9) . 261(0)

do? o2’
D%ei(0) 0
op
O%ei(d)  log(y)yd —
oNdo o2\ ’
Pei(0)
0B0s  o?’

1 T
e(0:0) = AT
o
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and

(962'(0; 9)

o\
de;(0;0)
op
0e;(0; 0)
do
d%¢;(0;0)
ON?
d%¢;(0;0)
posT
8262‘(0§ 0)
002
8262‘(0; 0)
ONOf
0%¢;(0;0)
ONOo
d%¢;(0;0)
toJstoles

do

do
hi(A)
OR}(N)

O\

D*NL(N)
ON?

log(y:)]

2, A—1

Y;
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Appendix C

Consider the following Box-Cox transformed truncated normal two-way ANOVA model:

A
yz(ﬂz = Wij +Eijk = B+ T; + ﬁj + (Tﬁ)ij + €ijk

fori=1,...,a; j=1,...,b; and k = 1,...,n, where a,b,n € {2,3,...} and ¢;;;s are
independent errors distributed as either N(0,0?) or truncated N(0,0?) with unknown

positive standard deviation o.

(i) Choose several initial values AOs in a non-empty set S, e.g., S = {—2,-7/4,-3/2,
—5/4,—1,-3/4,—1/2,—1/4,0,1/4,1/2,3/4,1,5/4,3/2,7/4,2}.

(ii) For each A in S, choose the initial values

a0 = g,
I
5 = gtz
By FFAPE - 50 + 50,
and
£2(0) A ) ,\<0))
7 - abn—ab—lZZ [y’ﬂk’

=1 j=1 k=1

fore=1,...,a;5=1,...,b;and k= 1,...,n, where

1 a b n
%Zzzyiﬂm

i=1 j=1 k=1

<
Il

< <
<

Il Il
Sl= Sl=
- 1]
S <
S S

=1 k=1
and
_ 1
Yij. = — Zyzjk
n
k=1
(iii) Denote these §@s as §O1_§©2)  §OIS) where |S| denotes the number of ele-

ments in S. Choose §© as §©) such that 00 = max,<,<|5//(§*9)
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In Example 3.1, when we choose PO —3/4, we have the largest log-likelihood
function for ), £(§)) = 55.6467, then we use the initial value to iterate the equation

(23) in Section 2.2, finally we get the MLEs for 6.
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Appendix D

Suppose that the transformed truncated normal mode two-way ANOVA model is
N _ , . - -
Yijre = B+ Ti + B+ (75)ij + €iji

for i = 1,2,3 and j,k = 1,2,3,4, where each y;;; has support (0,00) and e;,8 are
independent errors distributed as either N(0,0?) or truncated N(0,0?) with unknown
positive standard deviation ¢ and with support (—oo, —=1/A — pu — 1, — B; — (75);;) for
A < 0. Thus, the c.d.f. of ;5 /0 is
®(u)
(/A= p—=7 =B = (7B)il/0)
By the probability integral transformation,
D(eijr/0)

O([-1/A = p—7i = B; = (78)i5]/0)

which implies that

-1 P(ein/a) N
P ((I)q_l/)\_u_n_ﬁj_(Tﬁ)ij]/a)) N(0,1).

Py({eiju/o < u}) = %

~ uniform(0, 1),
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Table 1: Survival times (1 unit = 10 hours) of animals in a 3x4 factorial experiment.

B (Treatment)

A (Poison) 1 2 3 4

1 031 0.82 043 0.45
045 1.10 045 0.71
0.46 0.88 0.63 0.66
043 0.72 0.76 0.62

2 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 031 0.71
0.23 1.24 040 0.38

3 0.22 0.30 0.23 0.30
0:21 037 0.25 0.36
0.18 "0.38 0.24 0.31
0.23-°029 0.22 0.33
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Table 2: MLEs under the false normality assumption and the truncated normality as-

sumption, respectively, for Example 3.1.

False Truncated

MLE Normality Normality

A —0.8073  —0.8077
i —1.4175  —1.4179
7 0.6797 0.6799
7 0.2878 0.2879
By —0.7383  —0.7386
s 0.6451 0.6453
By —02778  —0.2779

(8)11 0.1359 0.1360
(78)12 —0.0658  —0.0659
(78)1377 —0:2160 0.2161
(78)21  —0.1043 - —0.1043
(TB)23 + 0:1142 0.1142
(78)23  —011234  —0.1234

6 0.3567 0.3569
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Table 3: MLEs without interaction under the false normality assumption and the trun-

cated normality assumption, respectively, for Example 3.1.

False Truncated

MLE Normality Normality

A —0.7440  —0.7441
i —13576  —1.3577
# 0.6393 0.6394
7 0.2696 0.2697
B —0.7383  —0.6938
s 0.6123 0.6124
By —02778  —0.2644
& 0.3636 0.3637
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Table 4: MLEs with A = —1 under the false normality assumption and the truncated

normality assumption, respectively, for Example 3.1.

False Truncated

MLE Normality Normality

i ~1.6232  —1.6228
# 0.8213 0.8219
7 0.3526 0.3524
e —0.8961  —0.8965
B 0.7596 0.7608
Bs —0.3240  —0.3244

(7B 0.2111 0.2106
(78)12  —0.1211  —0.1193
(76)13 0.2632 0.2626
(78)210 -~ =0s1017~. —0.1015
(78)22  0.1126 0.1120
(78)23 0 ~0.1194/~ —0.1192

& 0:4235 0.4241
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Table 5: MLEs without interaction and with A = —1 under the false normality assumption

and the truncated normality assumption, respectively, for Example 3.1.

False Truncated

MLE Normality Normality

i —1.6232  —1.6216
# 0.8213 0.8242
7 0.3527 0.3512
B, —0.7383  —0.8978
B 0.7596 0.7635
By —0.3240  —0.3256
& 0.4607 0.4627
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Table 6: Cycles to failure of worsted yarn: 33 factorial experiment without replication.

Factor levels

xr1 xo x3 Cycles to failure

-1 -1 -1 674
-1 -1 0 370
-1 -1 1 292
-1 0 -1 338
-1 0 0 266
-1 0 1 210
-1 1 -1 170
-1 1 0 118
-1 1 1 90

0 -1 =1 1414

0 1 0 1198

0 -1 1 634

0 07 =1 1022

0 0 0 620
0 0 1 438
0 1 -1 442
0 1 0 332
0 1 1 220

1 -1 -1 3636
1 -1 0 3184
1 -1 1 2000

1 0 -1 1568
1 0 0 1070

1 0 1 566
1 1 -1 1140
1 1 0 884
1 1 1 360
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Table 7: MLEs under the false normality assumption and the truncated normality as-

sumption, respectively, for Example 3.2.

False Truncated

MLE Normality Normality

~0.2158  —0.2158

34929  3.4929

02142  0.2142
~0.1626  —0.1626
0.0954  —0.0954
Bia 0.0541  —0.0541
By 0.0232  —0.0232
Bys  —0.0124  —0.0124
B —0.0219 0.0219
Bay < —0:0030 0.0030
Bas =0.0164 |- —0.0164

& 0.0435 /= 0.0435

}Jb> MQ> §> éb> S
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Table 8: MLEs without quadratic terms under the false normality assumption and the

truncated normality assumption , respectively, for Example 3.2.

False Truncated

MLE Normality Normality

A —0.0363  —0.0363
Bo 5.6577 5.6577
8 0.6611 0.6611
By —0.5010  —0.5010
By —0.2950  —0.2950
& 0.1541 0.1541
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Table 9: MLEs with A\ = 0 under the false normality assumption and the truncated

normality assumption , respectively, for Example 3.2.

False Truncated

MLE Normality Normality

B 6.4763 6.4763
B 0.8324 0.8324
By —0.6310  —0.6310
By —03716  —0.3716

Bis  —0.0383  —0.0383
Bz —0.0684  —0.0684
Bos  —0.0208  —0.0208
B —0.1275  —0.1275
Bey  —0.0176  —0.0176
Bys < —0:0466 = —0.0466

& 0.1758 0.1758
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Table 10: MLEs with A = 0 and without quadratic terms under the false normality

assumption and the truncated normality assumption, respectively, for Example 3.2.

False Truncated

MLE Normality Normality

Bo 6.3486 6.3486
B 0.8323 0.8323
By  —06310  —0.6310
By —0.3716  —0.3716
& 0.1950 0.1950
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Figure 1: Some different modified power transformations.
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Figure 2:

(a) Residual plot against fitted values for the original data under the two-way ANOVA
effects model for Example 3.1.
(b) Residual plot against fitted values for the transformed data under the Box-Cox trans-

formed mode regression model for Example 3.1.
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(a) Normal probability plot under the false normality assumption for Example 3.1.

(b) Normal probability plot under the truncated normality assumption for Example 3.1.
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Figure 4:

(b)

(a) Normal probability plot under the false normality assumption without interactions for

Example 3.1.

(b) Normal probability plot under the truncated normality assumption without interac-

tions for Example 3.1.
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Figure 5:

(b)

(a) Normal probability plot under the false normality assumption with A\ = —1 for Ex-

ample 3.1.

(b) Normal probability plot under the truncated normality assumption with A\ = —1 for

Example 3.1.
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(a) Normal probability plot under the false normality assumption without interactions

and with A = —1 for Example 3.1.

(b) Normal probability plot under the truncated normality assumption without interac-

tions and with A = —1 for Example 3.1.
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Figure 7:

(b)

(a) Residual plot against fitted values for the original data under the quadratic regression

model for Example 3.2.

(b) Residual plot against fitted values for the transformed data under the Box-Cox trans-

formed mode regression model for Example 3.2.
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(a) Normal probability plot under the false normality assumption for Example 3.2.

(b) Normal probability plot under the truncated normality assumption for Example 3.2.
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(a) Normal probability plot under the false normality assumption without quadratic effects

and interactions for Example 3.2.

(b) Normal probability plot under the truncated normality assumption without quadratic

effects and interactions for Example 3.2.
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(a) Normal probability plot under the false normality assumption with A = 0 for Example
3.2.

(b) Normal probability plot under the truncated normality assumption with A = 0 for
Example 3.2.
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(a) Normal probability plot under the false normality assumption without quadratic effects
and interactions and with A = 0 for Example 3.2.
(b) Normal probability plot under the truncated normality assumption without quadratic

effects and interactions and with A = 0 for Example 3.2.
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