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Assessment of Interactions in Chemical Mixtures
by ANOVA Method

Student: Shu-wei Lin Advisors: Dr. Chi-an Lin

Institute of Statistics
National Chiao Tung University

SUMMARY

The investigation of. interactions ‘is  popularly done by classifying the
chemicals into interval levels and verifying it through the analysis of variance
technique which unfortunately can not tell-us if an interaction in a specific level
IS positive (synergistic) or negative (antagonistic). We propose a decomposition
method to define main effects -and-interactions for these interval levels.
Population type formulations of these effects are developed. Estimation and
hypothesis testing are also discussed.
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Assessment of Interactions in Chemical Mixtures
by ANOVA Method

SUMMARY
The investigation of interactions is popularly done by classifying the chem-
icals into interval levels and verifying it through the analysis of variance
technique which unfortunately can not tell us if an interaction in a spe-
cific level is positive (synergistic) or negative (antagonistic). We propose
a decomposition method to define main effects and interactions for these
interval levels. Population type formulations of these effects are developed.

Estimation and hypothesis testing are also discussed.

1. Introduction

The toxicological research has long been devoted to assess the risk with
exposure to single chemicals in the environment. However, organisms are
rarely environmentally exposed to:single chemicals in isolation. More typ-
ically, exposures occur to multiple chemicals simultaneously. It has long
understood that the behavior of one chemical in the body is affected by
other chemicals. Recently=much of the literature has been investigated on
the important area of toxicology of mixed chemicals. One very important
study in chemical mixtures is the detection for existence of interactions and
characterization of an interaction being synergistic or antagonistic effect. It
is important for this study since one may overestimate the true risk asso-
ciated with the mixtures of chemicals with assumption of additive effects
when an antagonistic effects occur and one may underestimate the true risk
with the same assumption when a synergistic effect occur.

There are several approaches for studying the chemical interactions. The
most common technique in analysis of toxicologic interactions is by classify-
ing the chemicals into interval levels and verifying it through the analysis of
variance (ANOVA). This technique can detect the existence of interactions,
however, there is no description of the interaction to be given. The isobolo-
graphic method has a long history but is recently popular as an alternative

method for the study of chemical interactions. Berenbaum (1981) defined
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the interaction index through fixed ratio ray designs to detect if the chemical
mixture is additive, synergistic or antagonistic. However, this techniques of
isobole require experimental iterations to obtain the doses of the studying
chemicals that will cause the same magnitude of effect which is not only
labor extensive and require a large number of animal experiments but is not
applicable in real data analysis. For references of various interaction de-
tecting techniques and discussions, see Rider and LeBlane (2005), Ei-Masri,
Reardon and Yang (1997), Charles et. al. (2002) and Mumtaz et al. (1998).

A systematic investigation of mixed chemicals in the environment or
workplace is highly desired while the isobolographic method is not appli-
cable for this practical investigation of interaction characterization. It is
interesting to see if we can develop an ANOVA like model deserving the
benefit of providing valuable insights into the detection of interactions be-

ing synergistic or antagonistic that is done by the isobolographic method.

In Section 2, we state the fundamental framework of a grouping ANOVA
model for one response variable and several chemical variables and, in Sec-
tion 3, we introduce the parameter type main effects and a theory for for-
mulation of these effects. In Section 4, we introduce the main concept of
interactions and their relationships and, in Section 5, we provide estimation

and hypothesis testing for the unknown interactions.

2. Development of Grouping Two Way ANOVA Model

Let Y be the response variable representing the combined effects and X;
and Xy be two variables representing, respectively, the exposures or doses
of two chemicals. Let Ay = (—o0,a1], A2 = (a1,as],....; Apy = (Qm—_1,00)
and By = (—00,b1], By = (b1,b2],..., By = (by—1,00) be respectively, the
interval types partitions of the spaces of X; and X, where a;’s and b;’s

are two known increasing sequences. We assume that we have observations
Y1 Yn
z11 |-y | T1n |- We can distribute the observations y, ..., y, into rec-
T21 T2n

Z1

tangle sets A; x B, = {< : 21 € Aj,xa € By}, Let’s re-denote the



distributed observations as follows:

B, By By

A1 ylh’,zzl,...,nll y12¢,z:1,...,n12 ylgi,lzl,...,nlg
A2 yzu,z:l,...,nzl yzzi,lzl,...,nz yzgi,lzl,...,nzg
Am ymliaizlv"'anml ymZ’L';?::l?"'aan ymﬁivizlv"'anmﬁ

What is appropriate definition of the conditional mean of y on rectangle
level A; x B,?7 We denote the joint probability density function (pdf) of
Y, X1 and Xy by fy 2,2, and joint pdf of X; and X, by f; 5,. Further
letting fy|z, 2, (¥) be the conditional pdf of y given X; = z; and Xy = x>,
the conditional pdf of y given A; x By, denoting by fy1a,xB,(y), can be
defined as the average of f;, »,(y) with respect to variable X; and X3 on
Aj X By, i.e.,

fy|Aj><Bg (y) = A B fy|a:1,:v2 (y) ((Xl ) )
i%Bg P € A; x B
X2> J g

since L fz1 2. (€1, %3) is-the truncated pdf of X; and X5 on

P(<X; > €A, xB,)
A; x By. However, it may be reformulated as

fyia;xB, y) = Elfyx, x: L (X1, X2) €45 X By)]

1
B X / fy:$1,$2 (y7$1,$2)dx1d:n2,
P(<X;>6AJXBQ) AjxBy

The group mean (conditional means) of the response variable y given an

1

fmlmg (5171, l‘z)dlldxz

interval level A; x By is pjg = ffooo Yfyla,xB,(y)dy for j = 1,...,m,g =
1,...,£. Furthermore, by defining the error variables as €;4; = Yjgi — ftjq, We
may transform the bivariate sample into location models that we call it an

interval grouping ANOVA model as

By B By
A, Y11 = 11 + €114 Y12 = M12 + €125 Y1ei = P1e + €104
1=1,...,n11 t1=1,...,n12 1=1,...,n1
A, Y21; = M21 t+ €215 Y22i = 22 + €22; Yoaui = Mg + €20
1=1,...,n91 1=1,...,n9 t=1,...,n9
A Ymli = Uml T Emli  Ym2i = Im2 T €m2i Ymei = Hme T Emei
m ..

1=1,...,nm1 1=1,...,m2 1=1,...,my



where €41, ..., €jgn,, are iid random variables with zero means.

Let’s define grand mean p = pu,, = ﬁ Zf;:l Z;n:l [jg, ETOUD Means
¢ .

Wi = %Zg:l Migs] = 1,....m and f.g = %ZT:1 Hig: g = ]_,...,f. The
parameters for classical ANOVA model are o = pj. — p1,5 = 1,...,m, By =
pg—pi,g=1,...0and vj; = pjg—(p+a;+04),7=1,....,m,g =1, ..., while
we call a;’s the row effects, 3,’s the column effects and v,,’s the interaction
effects. The two way classical ANOVA technique applying on this interval
grouping problem is assuming the follwoing ANOVA model

ngi:/L—Faj—i—ﬁg—l-’ng-l-ngi,i: 1,...,njg (2.1)

where Z;n:l @ = 2521 By = Z;n:l Tig = Ef,:l Vjg = 0

There are several comments drawn from this ANOVA model for analyzing
the health effects caused by chemical mixtures:

(a) Model (2.1) is classically analyzed through the assumption, for error vari-
ables €;4;’s, of normality and constant variance.. However, this assumption
has never been validated by theory:

(b) The fact 375", vjg = 2221 vjg = 0 indicates that the term +;, doesn’t
characterize the interaction effects at level A; x B, since its sign to be pos-
itive or negative is parametrized. With this; a; and-3, do not, respectively,
represent the main effects for«hemical variables' X; and Xo.

(c) Once we have observation of the exposure or dose for the chemicals from
the environment, we are expected to estimate or test hypothesis for the
interacation to be synergistic or antagonistic at this level. However, this

model do not allow us to achieve this aim.

3. Formulation of Grouping Individual Effects
Consider an experiment in an enviroment that there is only one chemical
to affect the response variable and we may define the main effect. Assume

that we have response variable Y and chemical variable X; with a joint

()=o) (22 )

distribution as



The population mean of response variable Y on interval level A; is B =
ElY|X; € Aj]. We consider if there are constants p,; and b such that
this population mean 7 can be decomposed uniformly in j as Bi = py1 +
bE[X1I(A;)]. We then call nf = bE[X11(A;)] the main effect of chemical

X, at interval level A; and the population mean decomposition is

1y = ty1 + 15

The response variable Y and chemical variable X5 have a joint distribution

2
() () (22 %)
Similarly, if there is a decomposition on the interval level conditional mean
p,g = E[Y|X, € By] as
Hy = iy + 1
with b = dE[X,1(B,)] for some constant b, we call 7> the main effect of
chemical X, at interval level Bj.

Following the results derived in-Chan et al. (2008), we have the following

theorem.

Theorem 3.1. With normality assumption, we have the decomposition

5= py1 + 15

with pty1 = pty — py1 Z—i’ i1 and main effects for chemical variable X; as

a_ Oy Pyi0y o h(mFEL)
= Py1— M1 — € 7t
Ui Py o1 H /271_@( ala—llll )

1% —1"H1\2 1,25 THL\2
a __ Oy Pyl10y _5( - ) _E( - )
n; —Pyl_ﬂl+ a;—p1 a;_1—H1 {6 ! —€ . }
J o1 Vam(@(L ) _g(ti=1TrL))

a Oy Py10y —1(im=o17FLy2
= — —+ 2 o1
Nm = Pyl o1 H1 \/%(1 _ (b(am—1—u1 ))

o1




where p,1 = :yall is the correlation coefficient between Y and X; and ® is
Y

the distribution function of the standard normal distribution.

On the other hand, we have the decomposition

po = py2 + 0.

with piyo = py — pyzg—z fo and the main effects for chemical variable X» as

b1 —no 2
b Oy Py20y —Ll(biznay
M =py2—pe— —F—- € > 2
02

Vord(2TE)

bg_1—KH2\2 1,bg—m2\2
b _ Ty Py20y —3(2) -3 (2
ng py2 [} /,[/2 + m(¢(bg;2u2 )_@(bg—;2_u2 )) 2 € 2
g=2,..,0—1 (3.2)
b oy Py20y _1,be—1—k2 )2
Me = py2—_H2 + <kELL, .
£ 0y V2r(1 - &( Ptz

where p,o = :’i is the correlation coefficient between Y and X,.
Yy
Let us consider an example to illustrate the main effects where we have Y

and X; with bivariate normal distribution with mean‘and covariance matrix,

- 0 - 1 O'yl
= (sl

We also consider only three levels ANOVA with cuoff points a; = F1(1/3)

respectively as

and as = F.'(2/3). The corresponding main effects associated with o, are

displayed in the following table.

Table 1. Main effects

nt ny ns
o1y = 0.2 0.781 1 1.218
o1y = —0.2 —0.781 —1 —1.218
o1y = 0.4 1.563 2 2.436
o1, = 0.6 2.345 3 3.654

This example shows that the main effects may be all positive or all negative.

We then have a theorem for one property of the main effects.




Theorem 3.2. The group main effects 7}’s satisty one of the following
three orderings:

(a) Nt =n3 = ... = g, if pyr =0,

(b) i <mg < oo <y if py1 >0,

(c) nf >ng > ...>n% if p,1 <O0.

The conclusions for main effects n?’s are similar.

The above theorem indicates one important property that showing mono-
tone main effects is equivalent to showing nonzer p,;. This topic belongs to
the restricted statistical inferences discussed in Robertson et al. [11] where
likelihood ratio tests are the main techniques applied. However, the tests
developed in literature are not appropriate to apply on the interval group-
ing ANOVA model since the assumptions for likelihood ratio tests require
known or partial known variances that are not true in this framework.
With the established main effect formulations, we may define a new one

way ANOVA model as

Aq Ay A
Y1i = Byl T 07 T €1 Y2 Hy1EN3 € Ymi = Myl + My + €mi
t=1,....,mn t=1,....,n9 t=1,...,npy
For chemical variable X5, the one way ANOVA model is
B, B> By
Y1i = fy2 + 7% + €1 Yoi = fyatagh e Yoi = y2 + 15 + o
1=1,....,n1 1=1,..n9 1=1,...,ny

These one way ANOVA models are not identical to the classical one way

ANOVA models since their main effects are not restricted to have zero sums.

4. Additive Effects Model and Additive with Interactions Effects
Model

The aim in this section is to formulate the interaction effects in an
ANOVA model. We assume that the response variable Y and two chemical

variables (X1, X3) are jointly normal as

Y [y cr; O1y 02y
X1 | ~Ns(| g1 || oyn 0F o012 )) (4.1)

2
X2 H2 Oy2 021 O3



2
Hy Oy Oyl Oy2
where | pp | is the mean vector and | o ol o ) is the covariance
ly 1 12
2
K2 02y 021 03

matrix.
Again, when the level A; x B, conditional mean p;, = E[Y|X; € Aj, X5 €
By] may be written as a + g’E[<§1> I(X, € Aj, Xy € By)], we call
2

njcgmb = ¢'FE <§1§Egj ;) the level A; x B, combined effect for chemicals
2 g
X; and X5. We define the difference between the combined effect and the

sum of two main effects as the interaction as 7;, = n;?;mb - (77]“ + 172).

Theorem 4.1. With the normality assumption, we have

comb

Njg = 'u/y12 + 7739

) -1
. g a
with fuy12 = py — (o1, 0y2) <(7211 01%2> <Z2> and

b 1 or o)
com _
; = (Uyla 0y2) 2

lig X o
1 21 O3
P(<X2> € Ajx Bg)

(fBg fAj T1 o1 a0 (T1, T2)dT1das )

4.2
Ip, Ja, 2far osl@, vo)dindics (4.2)

With the above theorem, the response variables y;4; in interval A; x B,

may be formulated into an additive effects model.
Definition 4.2. We call the response variable follows the two way ANOVA

model if it may be written as

Yigi = Hy12 +nj + 772 + Njg T €girt = 1, ..., njg

with n;, = njc-gmb— (773-’—#772) and where 7 and ng main effects defined in (3.1)

and (3.2) and 7,4 is called the interaction effect at interval level A; x By.

The combination of chemical variables X; and X5 contributes to toxicity

Y through the a common mechanism of the sum of individual effects and
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the interaction effect. When interaction 7;, > 0 the interaction is charac-
terized as synergistic and when 7n;, < 0 the interaction is characterized as
antagonistic.

The combined effects are available estimated from sample drawn from
the natural environment. An interesting question is when will the combin-
ing effects be the sum of two main effects such that the ANOVA model
is additive? Generally, the combination of chemicals variables X; and X
contributes to toxicity Y through the a common mechanism of the sum of
individual effects and the interaction effect.

Let us give an example for explanation of interactions where we consider
the three dimensional normal distribution for Y, X7, X, having mean and

covariance matrix as

10 1 05 05
p=1 5 and ¥ =105 1 p
5t 05..p 1

Here we choose py1 = py2 =0.5 > 0 because chemicals in our research are
health harmful quantified by variable Y. The interval levels are determined
with aq = F 1(1/3), a2 = F;1(2/3) and by = F;'(1/3),b, = F;'(2/3). In

the following table, we display the true interactions for these inetrval levels.

Table 2. Interaction effects

p=0.5 p=-—04 p=0
11 —1.383 2.777 0
M3 —1.670 3.344 0
721 —1.449 3.069 0
731 —1.663 3.329 0

There are comments for the results displayed in Table 2:
(a) The interactions are antagonistic when p is positive values, are synergis-

tic when p is negative values and it is an additive model when p is zero.
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(b) There is monotone property for the interactions with

Nij < Ni+15 and nij < Nij41.-

This is interesting but not available to be theoretically verified.
(c) Being synergistic or antagonistic is determined from the sign of correla-
tion coefficient p for variables X; and X5. We have interactions negative if

p > 0 and positive if p < 0.

For further investigation of interactions, we consider the following design:

1 02.0.2 10 "
=102 1 P =1 545pjs = ajgb
02 p 1 5 1y + g

where p;j, measures the ratio between interaction and the sum of main ef-
fects. The true interactions and interaction to main effects ratio are dis-
played in Table 3.

Table 3. Interaction effects and their relative proportions
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p=—0.2 p=—-04 p=—0.6 p=—0.28
0.416 1.144 2.584 7.120
1 (0.266) (0.732) (1.653) (4.553)
0.443 1.218 2.756 7.515
2 (0.249) (0.684) (1.547) (4.217)
0.493 1.335 3.008 7.992
3 (0.246) (0.667) (1.504) (3.996)
0.460 1.223 2.766 7.579
121 (0.258) (0.686) (1.552) (4.253)
0.497 1.325 3.016 7.960
122 (0.248) (0.662) (1.508) (3.980)
0.553 1.455 3.234 8.448
123 (0.249) (0.656) (1.458) (3.808)
0.507 1.334 3.006 8.030
a1 (0.253) (0:667) (1.503) (4.015)
0.556 1.442 3.202 8.443
1132 (0.250) (0.650) (1.443) (3.806)
0.570 1.513 3.379 8.979
133 (0.234) (0.621) (1.386) (3.685)

We have two comments drawn from the results showing in Table 3:
(a) The magnitude of the interaction-increases when the magnitude of the
correlation coefficient increases.
(b) The magnitude of the interaction to main effect ratio also increases when
the magnitude of the correlation coefficient increases.

The additive model in this new ANOVA model is defined in the following

definition.

Defintion 4.3. A two way ANOVA model is addditive if it may be wriiten

as

Yjgi = Hy12 + 77;1’ + 773 + Ejgi,j = ]-7 sy My g = ]-, 7£ (33)

where i =1, ...,nj4.

We note that these individual effects may be obtained from experiments
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in laboratories but they are not shown in natural environment unless that

there is no combinational effects for chemicals.

Theorem 4.4. Let us assume that X; and X, are uncorrelated, i.e., o152 =
0. We have

comb

g™ = ni +n, (4.3)

indicating that n;, = 0 for al (jg)’s and the two way ANOVA model is
additive with

_ Oy1 Oy2
Hy12 = Hy — 2 1 — 2 M2 -

We conduct a simulation with replication number 100, 000 from a normal

distribution with mean and covariance matrix, respectively, as

0 1 02 0.2
p=|5),2=(02 1 —02
5 0.2 —02 1

and the levels are setting as a3 = 13';11(0.3) and b; = 13';21(0.3). Let the
sample means and sample variances for Y, X1, Xs be respectively denoted
as §, 71, T2 and S}, 57,83, «Also,~we denote the sample correlation coeffi-
cients for {Y, X1} and {Y, X} be respectively denoted as r,; and rys. The

estimates are defined below:

Sy Sy

fly1 = Tyl $1M2 ZJ—T2—~T2
Yy ysl » 'Y ySZ

y—
. z yil (—oo < iy < FN08)) 10,0 o il (F1(0.3) < wy; < 00)

y o = o ~_
! z I(—o00 < wy; < B! (0 3) 7 N I(Fnt(0.3) < 2y; < o0)
J

'[7‘70’:[1, /Aj,yl,j—]_ 2andng—,u/g ﬂy2,g:1’2

. : RN
Hijg = ﬁ leiI(l'li € Aj,l'% S Bg), H2jqg = ﬁ szzj(l’li S Aj,l'g,’ € Bg),

ﬁjg:ﬁZI(quA],meBg)
=1

1 S2 G\ [ i
peomb . — (4 ~ 1 12 Hijg 5. — pcomb N ~b
/1’_79 7/_\‘_]9 (O-yla O-yZ) <6’21 S% > ﬂ2jg 7739 )u’]g (77] + 779)
1 100,000
~ 2
’ i=1



The simulated interaction estimates and the corresponding MSE’s (

are displayed in Table 4.

Table 4. Performance of Interaction effect Estimation

13

Njg
MSEjg

sample size n11 = 0.4318 N2 = 0.4937 121 = 0.4884 122 = 0.5179
"= 30 <(L4003> <(L4908> ((l4898> <(L5198>
0.3526 0.4191 0.4187 0.4352
— 50 0.4157 0.4889 0.4879 0.5197
0.1922 0.2117 0.2169 0.2250
= 100 0.4188 0.4905 0.4891 0.5219
0.0878 0.0985 0.0985 0.1016

5. Detection of Interactions

The practical problem in interaction detection is that we have a data
set of variabes Y, X; and X, and we want to detect if the interaction on
some interval level of X; and X5 is positive or greater than some specified
critical point. This can be answered by statistical inferences for the unknown
population interaction on that level while it is very popular to discuss this
through the hypothesis testing. ~However, the point estimation can also
achieve this purpose.

The first we want to investigate is the efficiencies of point estimation
in detection of existence of positive interactions. That is, we evaluate the
probability of positive interaction. when there exists positive interactions.
We now evaluate, in a number of 100, 000 replications, the power in observ-
ing positive interaction by estimation when the true interaction 74 is some

value greater than zero as

100,000

> I(ijgr > Olnjg > 0)
k=1

1
100, 000

for various situations of positive inetractions where 74 is estimate at kth

replication. The simulation will have data drawn from the following distri-

bution
Y 0 1 02 0.2
1 | ~N(|5],102 1 r |).
To 5 0.2 r 1
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We consider ANOVA model of two levels with cutoff points a; = F )}11(0.3)
and by = F'¢!(0.3).
The simulated levels are displayed in Table 5 where n represents the

sample size.

Table 5. Confidence level performance

sample size 11 112 121 122
r=—0.2 (0.4318) (0.4937) (0.4884) (0.5179)
n =30 0.7587 0.7964 0.7966 0.8147
n = 50 0.8435 0.8784 0.8788 0.8968
n = 100 0.9391 0.9623 0.9621 0.9726
r=-04 (1.1366) (1.3042) (1.3179) (1.3786)
n =30 0.9374 0.9557 0.9560 0.9625
n = 50 0.9850 0.9911 0.9905 0.9931
n = 100 0.9994 0.9998 0.9998 0.9998
r=—0.6 (2.5216) (2.9593) (2.9624) (3.0788)
n =30 0.9938 0.9938 0.9939 0.9941
n = 50 0.9993 0.9994 0.9994 0.9994
n = 100 1 1 1 1

We have two comments drawn from-the results.in Table 5:

(a) For interpretation, the.powers are 0.7587,0.8435,0.9391 respectively for
sample sizes being 30, 50, 100 when #;1 = 0.4318 with » = —0.2. The power
values are all more than 0.75 with true interaction value being 0.43 or more.
(b) The power increases when the sample size is larger. This satisfies our

expectation.

One question is more interesting in showing the interaction estimate to
be higher than a critical point, saying 0.5 when the true interaction is some

value ¢ more than 0.5. This can be evaluated in the following index,

100,000

Z I(Mjgk > 0.5[njg = c).
k=1

1
100, 000

We display the simulated results in the following table.

Table 6. Confidence level performance
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sample size N1 712 N21 7122

r=—0.27(c) (0.6240) (0.7180) (0.7355) (0.7688)
n =30 0.5097 0.5743 0.5752 0.5925
n = 50 0.5550 0.6289 0.6296 0.6567
n = 100 0.6212 0.7219 0.7236 0.7623
n = 500 0.8003 0.9363 0.9358 0.9664

r = —0.33(c) (0.8521) (0.9587) (0.9771) (1.0175)
n =30 0.6244 0.6951 0.6966 0.7140
n = 50 0.7049 0.7782 0.7782 0.8028
n = 100 0.8159 0.8908 0.8912 0.9161
n = 500 0.9861 0.9986 0.9986 0.9996

r = —0.43(c) (1.2864) (1.4728) (1.4949) (1.5593)
n =30 0.8022 0.8072 0.8574 0.8724
n = 50 0.8951 0.9350 0.9349 0.9457
n = 100 0.9742 0.9901 0.9896 0.9932
n = 500 1 1 1 1

The simulated results show that the estimation technique is satisfactory for
observing that the interaction estimate reaches the risk point.

In the next, we consider a hypothesis-testing Ho : n;, = 1o vs Hy : 14 >
Yi
No- Suppose that we have observation | xy; | from a normal distribution
L2;
of (4.1). We consider a test for this hyppothesis as
rejecting Hy if fjg 10 > h

: @

Sjg
where 7);4 is an estimate of 14, 54 18 scale estimate of 7);, for standardization
and h,, is the level « critical point. For power performance evaluation, we

conduct this data generation m times and we have corresponding estimates

Nj, and sj,,c=1,...,m, the power is estimated as
1=, 7155 =10
=—> I(2— > h,). 5.2
p m 02::1 ( 859 = a) ( )

We then need to decide scale estimate s;, and level « critical point h,.
The distribution theory of interaction estimator of interaction 7;, does not
support in using normal distribution to construct h.

We propose the following bootstrapping process technique:
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(a) We resample k£ = 1000 times from this data set and compute the resulted
estimates 775, .
(b) The scale parameter estimate is defined as 57, = 1555 Ziiolo(ﬁj.g —1jg)%

(c) The level « critical point h, is defined as £100(1 — a)% order statistic
of Mig=m

(d) We resample 2000 samples from (4.1) and we denote the interaction

estimates be denoted as 77,, ¢ = 1,...,2000. The simulated power is

1 2000 ge o
p= —;I(MST > hq).
Unfortunately there is no fixed value h, making the probabilities of type
I error for different sample sizes equal. Hence, we search h, for each size
n so that the level of significance is fixed to be 0.05 and then we evaluate
the powers when H; is true with some given values of 7;,. The simulated

results are displayed in Table 7 where the true value is ng = 0.49778.

Table 7. Power performance when significance level is fixed

sample size Hy o= 0.8626 |n5 = 1.3255 g = 2.0048|n; = 3.0169
n =50 0.0512(hgy = 1.2815) 0.154 0.3796 0.656 0.8845
n = 100 0.049(hy= 1.3105) 0.244 0.635 0.918 0.995
n = 500 0.049(hy = 1.645) 0.623 0.995 1 1

The results are not very satisfactory..But this s the first step in developing

interaction detection for ANOVA like model.

6. ANOVA Analysis for Unknown Quantiles

It is desired to develop the large sample theory for the estimator of the
interactions so that we may construct distribution based test for hypothesis
of interactions. However, we have tried but it is difficult to accomplish this
task. In the following, we display a result on the asymptotic distribution
for the group means that will help in deriving asymptotic distributions of
main effects.

Practically the quantile functions F, '(a;)'s are unknown and then the

interval levels A;-s need to be estimated. We also assume that there is a
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random sample " s eeey Yn is available from this distribution. It is
X1 XN
generally define the cutoff points as quantiles of the observations of grouping

variable X and a monotone and disjoint interval levels as

A

Ag = (—oo,ﬁ';l(al)],fll = (ﬁ’_l(al),ﬁ’gl(az)], o Ap = (Fm_l(ak),oo).

(6.1)
. > XY o S YiI(F (o) SXi<Fr (o)) s
By letting ¥ = ==, Yy = S Mo <xi<fs ey 7~ bk

we define two parameters estimates fi, = Y and 47 = Yj, the main effect

estimate is setting as

i =i — iy (6.2)

The following theorem provides a step for constructing tests for testing

the main effects.

Theorem 6.1.

_ 1 3 .
V(Yj — pa;) = oo y$ Z(%’(Yi,Xﬁ) — Elv; (Y, X)]) + 0,(1)
J+1 7] i=1
E(Y = py| FxH(a))) if X < Fy'(ay)
with v;(Y, X) = \ if Fiy' () < X < Fx'(aji1)
IE(Y—My|F§1(aj_+11)) X > Fi'(ajsn)
and pa; = fiy + ajr1—a; ElY — iy I(Fx (@) < X S Fx (aj41))]-

Corollary 6.2. /n(Y; — pa,) is-asymptotically normal with distribution

N(0,02%(aj, aj4+1)) where

o*(aj, 1) = m{%[E(Y — py|Fx (o)) + (1 = o )[E(Y — py|F'(aj11))]?
+ EB[(Y — )’ I(Fx*(a) < X < FxYajp)] + (@ BIY — py| Fx ' ()]

+ (1= o) B[Y — py|Fx (1)) + B[(Y = ) I(Fx (o) < X < Fy'az41))])7}

From this theory, we may expect that the main effects are asymptotically
normal that help in constructing tests for hypotheses of main effects. How-
ever, in our try, we found that the estimators of interactions are quite like
products of two correlated normal variables so that their asymptotic distri-

butions are unable to develop since the correlations are two complicated.
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7. Appendix

The following proof is rewritten from Chan, et. al. (2008).
Proof of Theorem 3.1: From the well known property E(y|z1) = py, +

—py;lay (z1 — p1) where x1 is a given value, we have
[e/e]

py = / yfyia, (y)dy
— o0

- /_ooyp()(l—<al/ fy, x1)dz1dy
1 a1l )
M/ [/ yf(ylz1)dyl fz, (z1)dz:

—oo J —00

B s /al 1y + PuLTy (1 — p1)] [, (1)dy
P(X1<ay) J_oo" Y o1 !

1 Py10y “
= < Y _ <
P(Xi1<a ){MyP(X1 <a)+ o1 [/_oo 1fe(E1)der — i P(Xy < a1)]}
1 pyla'y _l(a1*M1)2
— + e 2 o1
A G

o1

( a— Hz)2

. The

other pa,’s may be derived analogously and are sklpped. We here note

from the fact that [*! zfs(@)de= pPlr < ay) =

that the main effects, showing in this proof, may also be represented as
oy fAj 1 f1(z1)dz, b 0y3 fBg z2 fo(x2)dxo
i T o7 T P(Xiea,) A4y Ty T PGen,)
Proof of Theorem 3.2: Next, from the proof of Theorem 3.1, we may
see that the group means for this interval grouping ANOVA model have an
alternative form that can be expressed as the followings:
O'y fﬂﬁl (‘TI)

— o Y JnlT)_
77]_ pyl ZEIP(XI A) T

2, (T
Ny = Pyl_/ f - 1 v 4T
P(X; € As)

a Oy fxl(xl)
= py1-L d
Mm—1 pylal /Am1 xlp(Xl € A1) T1

Oy fCU1 ('rl)

a _ Yy AL el Y |
nm py10_1 /I;mxlp(XleAm) T
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where Ay, ..., A, is a monotone sequence of intervals forming a partition on
the support of the grouping variable. Since P{é(}#l)‘ is a truncated pdf on
1€A;)

space A;, then we have

fﬂﬁl (‘TI) / fwl(xl) / fwl(xl)
e\ g < LR VR I
/Al NPXied) T L, T P(X € Ay a YP(X € Ay) Tt

and possible values of p,; must fall in one of the 3 sets [-1,0), {0}, or (0, 1]
which leads to the theorem. [

Proof of Theorem 4.1:

Lig = / yfymjxsg(y)dy

:/ Yy X / / fys x1, x2)drdrady
—00 1
P(<X2> € A; x By)
= X / / / yr Z/|$1,:L‘z)dy]fxl,@(xl,xz)dl-ldxz
1
P(<X2> € A; x By)
52 o -1 . .
12 1 .
) o+ o)7L T2 ) ()= U D)
Xl / / <0'21 05 ) To 115
P(<X2> € Aj x By)
fml,x2($1,$2)dx1d$2
1 2 -1
= :U’ylz + (O-ylv Uy2) 01 0'122
2 021 03
P({ X ) €45 x By)

<fBg fAj xlf:m,ih (3317 x2)d331d$2 >
fBg fAj T2 far o, (%1, T2)dz1dTs

which leads to the result in Theorem 4.1. O

Proof of Theorem 4.4: Assuming that X; and X5 are uncorrelated, they

are independent in this normal case and the formula is derived from the
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followings:

0 = Ly + ! (Oy1,0 )<U% > {IAJ fnglfl
Mo =T P e 4P € By) N0 a3 ) L[ [, wafa(an

9 -1
(Oy1,0y2) ( 0 o2 ) <H2 )

1

(X2 € By) fAj $1f1($1)d$1>

1
=P
=, + Oy1, O o
Hy P(Xl € AJ)P(XZ € Bg)( yl yZ) %P(Xl € AJ) fBg .I‘zfz(l‘z)dl‘z
N Uyl 0y2
[0_% + 0_ :u2]
fAj w1 f1(w1)dry Ty fBg T2 fo(x2)dzo

o
= Hy i21( - M1 +—2(
(o P(Xl € AJ) (o5 P(X2 € Bg)

= piy1z +0f + 1. O

— p2)

Proof of Theorem 6.1. Sample group mean may formulated as YJ =

+ 2 1(Y lffy)I(F 1(0‘3)<X <F (O‘J+1))
Hy I () SXG<E o)
re-written as

The trimmed mean f, may be

V(T = ) = 03 (o) < Xpdy Netg)) " 02 S0 (Vi — )
(1(X: < B (ag0)) — 106 < FyMagaa)) - 0 0/ (% - ) (1(X <

By letting T, = /n(F; (a) — F;Y(a)), we see that I(X; < Fl(a)) =
I[(X; < Fx'(@) +n~Y2T,) with T, = /n(E; Y(a) — F Y ()).

T

W 2SOV~ (K < Fih ) + 07 2T, — (X, < F (o)

= E(Y — py| Fx " (o)) fx (Fy () T + 0p(1) (7.2)
for any sequence T;, = Op(1).

A

Vi(E (@) =F (@) = fil(Fil(a))n_l/ZZ(a—[(Xi < Fx'(a)))+o,(1).
= (7.3)

xl)fz(l‘z
) f2(z2

)d$1d$2
)d$1d$2

|



21

Moreover, we also have
n~t Y I ) < X < BN o)) = aji —aj+0p(1). (T4)
i=1

Imposing the results in (7.2)-(7.3) into (7.1), we have the theorem. [

REFERENCES

Berenbaum, M. C. (1981). Criteria for analyzing interactions between bio-

logically active agents. Advances in Cancer Research, 35, 269-335.

Charles, G. D., Gennings, C., Zacharewski, T. R., Gollapudi, B. B. and
Carney, E. W. (2002). An approach for assessing estrogen receptor-
mediated interactions in mixtures of three chemicals: a pilot study.
Toxicological Sciences, 68, 349-360.

Ei-masri, H. A., Reardon, K. F. and Yang, R. S. H. (1997). Integrated
approaches for the analysis of: toxicologic interactions of chemical mix-

tures. Critical Reviews in. Toxicology, 27, 175-197.
Mumtaz, M. M., De Rosa, C. T., Groten, J.; Feron, V. J., Hansen, H.

and Durkin, P. R. (1998). Estimation of toxicity of chemical mixtures
through modeling of chemical interactions. Enuvironmental Health Per-
spectives, 106, 1353-1360.

Rider, C. V. and LeBlanc, G. A./(2005):-An integrated addition and inter-
action model for assessing toxicity of chemical mixtures. Toxicological
Sciences, 87, 520-528.

Robertson, T., Dykstra, R. L. and Wright, F. T. (1988). Order Restricted
Statistical Inference. Barnes & Noble.

Wenyaw Chan, Lin-An Chen and Younghun Han (2008). Interval grouping

analysis of variance model. Submitted for possible publication.



	組合 1
	論文前面1-3
	Contents.pdf

	ganova.pdf

