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Hsinchu, Taiwan

Abstract

Familial case-control data are frequently used to-study the relationship between disease
and risk factors. In the thesis;»we review literature for analyzing familial data. The logistic
model is applied to model the probability of disease incidence. The Cox proportional hazards
model is applied to model the age at onset of the disease. For each model, we discuss how to
extend the method and model developed for individual data to familial data. In addition, we
discuss the criteria and modification from prospective data to case-control data. We also
propose simulation algorithms for generating case-control data and then, based on simulated

data, examine parameter estimates and crucial properties of the inference procedure.

Keywords: Familial case-control study; Prospective study; Logistic regression; Cox PH model;
Clayton model
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Chapter 1 Introduction

1.1 Motivation

Scientists are interested in studying the roles of genetic and environmental factors on the
development of a disease. Besides the information about whether the disease is present or not,
age-at-onset has been viewed as a useful quantitative trait for some commonly-seen complex
diseases. For example, early onset of breast cancer has been viewed as an important hallmark
for genetic predisposition. Figure 1 highlights the scientific background which motivates this
thesis. For a quantitative trait, statisticians can perform regression analysis which the effects

of the explanatory variables on the response.
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Figure 1: Scientific Background

We focus on two quantitative traits, namely disease incidence and age-at-onset. Disease
incidence can be coded as a binary variable. Age-onset variables are continuous but may be
censored due to termination of the study or loss to follow-up. Genetic, environmental and
individual factors are treated as observed covariates. Their influences on the chosen response
variable are of major interest. If disease incidence is the response variable, logistic regression
models can be adopted. If age-at-onset is studied, failure-time regression models such as Cox

proportional hazards models can be applied. When genetic information is not directly



measured, familial data can be used to detect its influence. Familial aggregation often
indicates that genetic or shared environmental factors play some role in the development of
the disease.

From the aspect of data design, the case-control sampling study is often applied to gather
the information of rare diseases. It has the advantage that sufficient number of cases can be
obtained and hence is cheaper and more convenient in comparison with a prospective study.
In recent years, familial case-control designs have become a popular choice in genetic
epidemiology. However statistical inference based on familial case-control data deserves
careful investigation since the underlying probability structure is not straightforward.

1.2 Outline

The purpose of the thesis is to _review related literature under a unified framework and
examine some theoretical statements via simulations. In Chapter 2, we provide some
background for different types of:case-control designs. In. Chapter 3, we review literature on
logistic regression for familial prospective studies and case-control designs. Chapter 4
contains some simulation results.which are conducted to verify crucial probability statements
for logistic regression analysis. In Chapter 5, we review literature on familial age-onset data
based on case-control designs. Chapter 6 contains simulation studies for checking the
assumptions that are required in analysis of age-onset data from case-control family studies.

Concluding remarks are contained in Chapter 7.



Chapter 2 An Overview of Case-control Designs
Case-control designs are preferable because they are cheaper and more convenient. In
this chapter, we focus on two common case-control designs: namely the conventional and
familial designs.
2.1 Conventional Case-control Designs

Conventional case-control designs begin by recruiting a group of individuals with a specific
disease as “cases” and the other group of non-diseased individuals as “controls”. Cases and
controls are compared based on risk factors including familial history of the disease. Here
positive familial history is defined as presence of the disease in one or more first-degree
relatives. However potential bias may arise due to incorrect information of recall.
Furthermore individuals may differ in.their family sizes so that positive family history is more
likely to occur in a larger family. The family sizes differ in cases and controls can lead to false
results. Liang (2000) discussed “potential biases for conventional case-control designs in
details.

2.2 Familial Case-Control Designs

Familial data obtained from case-control” designs are frequently used to detect disease
aggregation in families. This design begins by identifying a sample of diseased cases and an
independent sample of disease-free controls, and for each individual, hereafter called a
“proband”, determines his/her covariates, the family structure, and the disease status and
covariates of relatives in the family. The disease status of relatives is treated as one part of the
responses in the model.

A major difference between the two designs lies in the sampling unit. The sampling unit in
familial case-control designs is a pre-defined set of family members. Compared to the
conventional design, familial case-control designs provide direct evaluations of the relatives
and can avoid misclassification of family history. It is also useful for genetic counseling.

However familial case-control designs are more expensive.



2.3 The Issue of Matching in Case-Control Designs

In case-control designs, there are some confounding variables that may affect the
evaluation of the association between disease incidence and risk factors. So, sometimes we
must consider the necessity to match these confounding variables in the design stage. The
purpose of matching is to let the units between cases and controls have more comparability.

The matching method includes frequency matching and individual matching. In
conventional case-control design, if individual matching is part of the design, the conditional
logistic regression method mentioned in Breslow and Day (1980) may be adopted. When in a
familial case-control design, we note that the sampling units are families. So the matching
between case probands and control probands doesn’t guarantee the matching between case
relatives and control relatives. Thus the: matching procedure in such studies should be subject
to some modification. First, the matching in design stage must be run under the condition that
the confounding variables are familial, for example: races. Second, correlations among
relatives have to be dealt with. Liang (1987) proposed a method for analyzing the matched
designs which accounts for the within-family correlation. For age-onset responses, Li et al.
(1998) also discussed situations under familial structure and matched procedure.

Finally, Sturmer and Brenner (2000) discussed the issue of the balance between power

gain and extra costs for doing the matching.



Chapter 3 Logistic Regression on Different Designs

Logistic regression models are commonly adopted for modeling the relationship between
a binary response and covariates. We first discuss statistical inference based on prospective
studies which can be easily understood. Then we discuss how to construct the likelihood
function if the sample is obtained from a case-control design. Finally we will review the
literature on logistic regression analysis for familial case-control studies.

Denote Y as a binary indicator for disease status. Specifically Y =1 represents that the
individual is diseased while Y =0 indicates that the individual is free of the disease. Denote

Z asa px1 vector of covariates. Consider the following logistic regression model:

Pr(Y =1]Z) = exp(a+8'2)

_ ) (31)
l+exp(a+pf 2)

Let {(Y;,Z) (i=1...,n)} denote theobserved sample. If the data are collected from a

prospective design, the likelihood function can be written-as

v [ expla+BZ) | 1 .
1;[{1+exp(a+,8TZi)} {1+exp(a+ﬂTzi)} ' 3.2)

A case-control study, by contrast, identify a-sample of diseased cases: Y =1 and another

independent sample of non-diseased controls: Y =0. The covariate Z is measured

afterwards. Notice that the distribution of data from a case-control study is based on

Pr(Z|Y) instead of Pr(Y|Z) as given in (3.1). However logistic regression analysis can

still be applied to both sampling designs (Prentice and Pyke, 1979). In Sections 3.1 and 3.2,
we will review the results of Whittemore (1995) in which the probability structure under
conventional and familial case-control designs is well examined.

3.1 Conventional Case-Control Designs

Let Q be the target population. The logistic regression model in (3.1) is equivalent to

Pr(Y =1|2,Q) _

Pr(Y=0|Z,Q)_a+'BZ (3.3)




where « is the intercept that represents the log odds for developing the disease of the
baseline group, and £ is the log odds ratio between a subject with covariate Z and a

subject of the baseline group. Since [ reflects the effect of Z on Y, it is the parameter of

major interest.

As mention earlier, a sample based on a case-control design involves Pr(Z |Y,Q).

Applying Baye’s rule, we obtain

Pr(Z|Y =1,Q) Pr(Y =0|Q)

PIZIY =0, Pr(Y 1] ) (@ &P 2) (3.42)

Whittemore (1995) mentioned that one can imagine a hypothetical population denoted as Q"

in which the covariate distribution is the same as in Q such that

PrZ|Y =1,Q") Pr(Z|Y=19Q) Pr(Y=0|Q)
Pr(Z|Y =0,Q) Pr(Z]Y-=0,Q) - Pr(Y =1|Q)

exp(a)exp(B'2). (3.4b)

Define

exp(s) = {exp(a) P =0] Q)} PI(Y =1]©)

Pr(Y =1|Q) | Pr(Y =0|Q")

One can rewrite (3.4b) as

Pr(Z|Y =1,Q°) " /Pr(Y =0]| Q")
Pr(Z|Y =0,Q) Pr(Y =1|Q)

exp(o)exp(5'Z). (3.5)

From (3.5), we can construct the following logistic model based on Q":

o P =112,
Pr(Y =0/Z,Q)

S+p'Z. (3.6)

Now we discuss the implication of the above analysis. Comparing the two models in (3.3)
and (3.6), they differ in the intercept parameter but have the same slope parameter, which is of

major interest. In a case-control design, the sampling distribution is based on
Pr(z|Y=1,Q") and Pr(Z|Y=0,Q"), where

Pr(z|Q)

Pr(z|Y=1,Q")=Pr(Y =1/Z,0 )xmi



Pr(Z|Y =0,Q")=Pr(Y =0| z,Q*)xng)*.
Pr(y=0|Q)

Pr(z|Q
Notice that M is independent with parameters. The likelihood function for

Pr(Y|Q’)
case-control data can be constructed based on model (3.6). Accordingly case-control data can

be treated as prospective data from Q" if the following condition holds:

PrZ|Y =1,Q") PrZ|Y=10)

2= . (3.7)
Pr(Z|Y =0,Q) Pr(Z|Y =0,Q)

As long as (3.7) is satisfied in collecting the case-control sample, one can proceed the
regression analysis, by pretending that the sample is from a prospective study, to obtain an
estimate of B which is still reliable. We will examine the crucial condition in (3.7) via
simulations.
3.2 Familial Case-Control Designs

In analysis of familial data, some studies ignored probands’ information and only focus
on relatives’ data. Such an approach may lose-efficiency by ignoring useful information in
probands’ data. Whittemore (1995) applied multivariate techniques to analyze familial
case-control data. Specifically she proposed a two-stage sampling procedure. Specifically in
the first stage, two types of probands (case and control) are sampled and then, in the second
stage, their relatives are sampled. To simplify the discussion, we focus on bivariate analysis
which means that only one relative is sampled based on each proband. The resulting
likelihood analysis contains two components. One involves the logistic model on probands as
introduced earlier. The other component is related to the model which measures the

dependence between a proband and his/her relatives.

Let (Y,,Z,) and (Y,,Z,) be the disease status and covariates for a proband and his/her

relative respectively. Denote Y =(Y,,Y,) and Z=(Z,,Z,). We will first discuss likelihood

inference based on a prospective design and then the modification based on a case-control



design.
3.2.1 Likelihood analysis based on familial prospective data

A prospective study involves sampling from

PI(Y,Z,1Z,)=Pr(Y |2)Pr(Z, |Z,). (38)
When only one relative is involved, Pr(Y|Z)=Pr(Y,=vy,Y, =y, |Z,,Z) for y.=0,1 and
* =p,r. Note that

Pr(Y | Z)=Pr(Y, |Z,,Z,)Pr(Y, |Y,,Z).

Whittemore (1995) mentioned that a reasonable joint model should satisfy the so-called
“reproducible” assumption such that

yr=1

Zpr(Yp:yp’Yr:yrlzp’zr):Pr(Yp:yplzp); (398‘)

yr=0
Yp=1

Zpr(\(pzyp,\(r =V 1Z,,2,) =Pr(Y.=V,1Z,). (3.90b)
¥p=0

That is, the covariate of a person is sufficient to.determine his/her disease status and hence the

relative’s covariate does not contribute extra information. The paper examines the plausibility
of the reproducible assumption. Suppose that the dependence between Y and Y within the

same family may also be attributed to some un-measured latent variable denoted as U . If

Pr(U|Z)=Pr(U), the reproducible assumption can be achieved. Whether this assumption
makes sense depends on the scientific problem at hand.

When (3.9a) is true, it follows that
Pr(Y [Z)=Pr(Y, | Z,)Pr(Y, |Y,,Z). (3.10)

Notice that Pr(Y,|Z,) can be modeled as



P =11Z)

=a+8'Z .
Pr(Y, =0|Z,) Pz,

The second quantity Pr(Y, [Y,,Z)=Pr(Y,|Y,,Z,,Z,) in (3.10) involves the dependence

between a proband and his/her relative which is of major interest. Denote observed data
as{(Yy Yi»Z,,Zy) (i=1..,n)}. If the data is collected from a prospective sampling design,
the likelihood function can be written as
L(p,a,ﬂ):ler(Ypi,Y,i,Z,i 1Z,)

OCI:[PI’(Ypi |Zpi)1:[Pr(Yri 1¥,.Z:)

=LY (a, B)xL? (p,a,B), (3.11)
where L(l)(a,ﬂ) has the form as in_(3.2)-and ,p denotes additional parameter in
Pr(Y,|Y,,Z) . Additional joint ‘model assumption is -required to specify the form of
Pr(Y, |Y,,Z).

One model choice is the following model-first proposed by Bahadur (1961):

Pr((Yp1Yr) | (Zp’ Zr)) = (pp)yp (1_ pp)l—)’p ( pr)yr (1_ pr)liyr (1+ptptr) (312)
where
Ve — Ps
L =—F———— *=p,r,
p.(1-p.)
and
exp(a+ £'Z.)

L =Pr(Y,.=1|Z,) = *=npn,r.
P (Y. =1]2.) 1+exp(a+ B'Z.) P

The coefficient p satisfies the following constraint:

i P,P: J@pJ@pJ oo [p@Rd [pl2on,)
r)a-rp) " e 7T E=p) e V@R, |




We will check whether this model satisfies the reproducible assumption via simulations. The

following table summarizes the joint probability of (Y, ,Y,) given (Z,,Z,).

Y, =1 Y. =0
R =(p,)(P,) P, = (p,)-P,)
Y, =1
1- pP 1- P 1- pp —P:
1 1
SN e SV s L I o B N g
P~ p,)(p,) P, (- p,)-P,)
Y, =0
_pp 1- pr _pp _pr
1 1
SN N N oy LA K e e W N Crp

Table 3.1 Joint probability for (Y ,Y,) given (Z,,Z))

3.2.2 Likelihood analysis based on familial case-control data

A case-control study involves two independent samples from Pr(Y,,Z|Y, =1) and
Pr(Y,,Z|Y, =0). Notice that Pr(Y,,Z|Y,)=Pr(Y, |Z,Y,)Pr(Z]Y,) and
Pr(Z|Y,)=Pr(Z,,Z,1Y,)=Pr(Z,|Y,)Pr(Z,|Y,.Z,).
The reproducible assumption implies that, given Z , Y, and Z_ are independent. Hence
Pr(Z|Y,)=Pr(Z,|Y,)Pr(Z, |Z,). In summary we have
Pr(Y,.Z1Y,)=Pr(Y,.Z|Y,)Pr(Z,1Y,)Pr(2.1Z,)
={Pr(Z, [Y,)}{Pr(Y,1Z,Y,)Pr(Z,|Z,)}. (3.13)

Recall that Pr(Z,|Y,) can be analyzed assuming that the data is from a prospective sample

from the model

10



Pr(Y, =1|Z,,Q")
Pr(Y,=0|Z,,Q")

+p4'Z,.
Accordingly the retrospective likelihood function is given by
L' (p,6,a,8) Hmaﬂ, ")
mHm@ Hpmun,J
i1
=LY (s, 8)xL? (p,a, B).

Notice that the information of « is also contained in familial case-control data when the

reproducible assumption holds for the joint model.

11



Chapter 4 Simulations for Logistic Regression Analysis
In this chapter, we propose data generation algorithms to simulate case-control data for
logistic regression analysis. Some crucial probability statements will be examined to verify
whether the simulated data are reliable for statistical inference.
4.1 Data Generation for Individual Data
4.1.1 Prospective data of the true population

First of all, we generate population data from the model:

exp(a+fZ)
1+exp(a+p2)

Pr(Y =1/2,Q)=

Then set the values of the parameters: «, g and p. The algorithm is summarized below:

e Step 1: Generate Z; ~ Bernoulli(p)

. . ex + [Z.
e Step 2: Given Z,, generate Y.~Bernoulll( p(a P ') J

1+exp(a+ pZ,)

The procedure is repeated for i=1..,N - for very.large N , say N =10000. Denote
Q={(Y,,Z)(i=1..,N)}.

4.1.2 Case-control data from the true population

Suppose that we generate n<< N observations from the population with n, persons

from the case group with Y =1 and n,=n-n, persons from the control group Y =0.
The procedure is stated as follows.

e Step 1: Randomly select n, subjects from the case group and record their values of Z;

e Step 2: Randomly select n, subjects from the control group and record their values of

Z

12



We briefly discuss how to implement Step 1 since Step 2 follows a similar procedure. First

N

identify the case population: Q ={(Y,=12,) (i=1...,N,)} where N1=ZI(Yi=1). The
i=1

objective is to select n, observations from N, subjects. Label the subjects in Q, from 1 to

N,. At the first time, generate U ~U (0,1) and define s=[N,xU], where [ | isthe Gauss
function. A subject with label “s™ is selected into the case-control sample and removed

from Q,. The procedure is repeated n, times. Specifically at the kth time, generate
Uu-~u (0,1) and a subject with a re-defined label s:[(Nl—k+1)><U] is selected from the
remaining case population containing N, —k+1 subjects. Finally the case sample is formed

and denoted as {(Y, =17,) (k=1.4,1n,)}. The control sample can be generated in a similar

way.
4.2. Analysis on Individual Data

We examine whether the proposed case-control' sampling procedure produces reliable

data. We let
iuzi:*,vi:l)/iwi:l)
R =2 5 (*=0.1)
ZI(Z‘:*’Y‘:O)/ZI(Y‘:O)
and
V' 1(2,=%Y, =1)/n,
L= (*=0))

Pr(z=>y=19) Pr(z=*Y =1,Q")

a respectively.
Pr(z =*|Y =0,Q) Pr(z=*Y=0,Q") P Y

be the empirical estimates of

The first criteria to evaluate the quality of data is checking whether r. is close to R.. The

intention is to examine whether equation (3.7) holds. Then we run logistic regression based on

13



the combined case-control data: {(Y, =1,2,) (k=1...,n)} and {(Y,=0,Z,) (k=1...,ny)}.

The MLE of § and S are obtained. By checking whether A is close to the true value, we

can examine whether the case-control data provide reliable information of £ . The results are

summarized in Tables 4.1. We observe that the empirical estimate r. is close to R.

obtained from the population data, the estimations of ,B are also stable and close to the true

value.
Table 4.1: Logistic regression analysis of case-control data
£ =0.5 N =10000, Replications =100
n, =100,n, =100
_0 Tl ( B )><103 G
= % | - E of
R, R, pr SEof f
p=0.3 1.013132 1.018201 —22.336209 0.034299
p=05 1.024408 0.992022 —33.755393 0.027108
p=0.7 1.021804 1.003206 =1.477217 0.028456
m, =50,n, =150
_0 Tl ( B )><103 3
- T - SE of
R, R, pF ot p
p=0.3 0.991638 1.044951 31.116517 0.033287
p=0.5 0.978128 1.033878 56.818868 0.032211
p=0.7 1.013979 1.004441 20.400237 0.036247
n, =150,n, =50
_0 Tl ( B ))(103 3
= — - E of
R, R, pr SEof f
p=0.3 1.018330 1.038011 —17.547938 0.036607
p=0.5 1.037552 1.021409 —27.831059 0.038455
p=0.7 1.042732 1.009384 —6.449529 0.038106

14




4.3 Data Generation for Familial Data
4.3.1 Familial prospective data of the true population
We first generate data following the model proposed by Bahadur (1961). First set the

values of the parameters: «, £, p and p.The algorithm is summarized below:

* Step 1. Generate Z, following Bernoulli(p) and Z_ independently also following
Bernoulli(p);
e Step2: Given Z, and Z ,compute R,P,, B, P, mentioned in Table 3.1;

* Step3: Generate U; ~ Uniform(0,1);

LY =1if 0<U;<h
=0, Y, =1 if B<U <B+PR
=LY, =0 if B+P, sU <BE+P+P

YPi
Y,
e Step 4: Set '
YPi
Y, =0, Y, =0if B+B +PsU; <1

The procedure is repeated for—i=1,...,N for N =10000-

4.3.2 Familial case-control data from the true population

The procedure is stated as follows.

* Step 1: Randomly select n, probands from the case families with Y, =1 and record the
valuesof (Z,.Y,.Z,);
* Step 2: Randomly select n, probands from the control families with Y, =0 and record

their values of (Z,,Y,,Z,).

4.4. Analysis on Familial Data

We first examine whether the algorithm for generating perspective data satisfies the

reproducible assumption. For z,,z, =0,1, define
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N
Zl(Ypi =Y, 2y =2,,Z;=1,)
(Y, 2,02) = = and

Z I (Zpi = Zp’zri = Zr)
i=1

il(Ypi = Y5l =7p)
Gy, .2,)=""— ;
> UZ,=1,)

N
ZI(Yri = yr’Zpi = Zp’Zri :Zr)
qZ(yr’Zp’Zr): = N , and

ZI(Zpi = Zp'Zri = Zr)
i=1

il(Yri = yr’Zri =Zr)

qZ(yr’Zr) = = N
ZI(Zri :Zr)

The reproducible condition should“imply that -q,(y,,z,,z,) = G,(y,,z,) and q,(y,,z,,Z,)

~0,(Y,,z,). The results of these quantities based on prospective data and case-control data

from the true population are recorded in Table 4.2~ 4.4.-In analyzing the case-control familial
data, we assume « and g are known and.then obtain the MLE of p. By checking
whether p is close to the true value, we can examine whether the familial case-control data
provide reliable information of the association in a family. This result is given in Table 4.5.
We observe that the performance of the reproducible properties is good in our population
data which means that the model is appropriate. But sometimes the reproducible properties do
not reflected in the simulated case-control data. Accordingly the estimations of 5 will have

worse results in these situations.
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Table 4.2.A: Checking reproducible properties of the population data (p=0.3)

N =10000

(Y5, 2,) =(11)

(¥p,2,)=(10)

(¥5,2,)=(0.1)

(¥,,2,)=(0,0)

z,=1 | q,=0.734649 | g, =0.630283 | q,=0.265351 | g, =0.369717
z,=0 | q,=0729743 | g, =0.638770 | q,=0.270257 | g, =0.361230
G, =0.731267 | G, =0.636183 | G, =0.268733 | G, =0.363817
Y z2)=@D | (V,z)=@0) | (¥..z)=0O1 | (Y,,2)=(0,0)
z,=1 | q,=0.718202 | g, =0.607213 | q,=0.281798 | g, =0.392787
z,=0 | q,=0.752438 | g, =0:642232 |, =0.247562 | q, =0.357768
G, =0.742251 | G, =0.632012 | G, =0.257749 | §,=0.367988

Table 4.2.B: Checking reproducible properties based on case-control data (p=0.3)

N =10000, n-=100,

n, =100

(Yp,2,) =11

(Y53 2,)=(LO)

(¥,:2,) = (01

(¥,:2,) =(0,0)

z,=1 | q,=0545455 | ¢ =0547170 | g, =0.454545 | g, =0.452830
z.=0 | ¢,=0.696970 | g =0.391304 | g, =0.303030 | g, =0.608696
G, =0.636364 | G, =0.448276 | G, =0.363636 | g, =0.551724
Y.z)=@D | (v,2)=@0) | (¥..2)=(01) | (¥,,2)=(0,0)
z,=1 | q,=0.590909 | g, =0.575758 | g, =0.409091 | @, =0.424242
z,=0 | g,=0.698113 | q,=0521739 | g, =0.301887 | g, =0.478261
G, =0.666667 | G, =0.536000 | G, =0.333333 | g, =0.464000
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Table 4.2.C: Checking reproducible properties based on case-control data (p=0.3)

N =10000, n, =50, n, =150

(Y5, 2,) =(11)

(¥p,2,)=(10)

(¥5,2,)=(0.1)

(¥,,2,)=(0,0)

z,=1 | 0,=0.363636 | ¢, =0.282609 | g, =0.636364 | g, =0.717391
7.=0 | ¢,=0222222 | ¢ =0.218750 | q,=0.777778 | g, =0.781250
G, =0.275862 | G, =0.239437 | G, =0.724138 | g, =0.760563
Y z2)=@D | (V,z)=@0) | (¥..z)=0O1 | (Y,,2)=(0,0)
z,=1 | q,=0.590909 | q,=0.222222 | g, =0.409091 | @, =0.777778
z,=0 | q,=0652174 | g, =0:427083 |, =0.347826 | q, =0.572917
G, =0.632353 | G, =0.371212 | G, =0.367647 | G, =0.628788

Table 4.2.D: Checking reproducible properties based on case-control data (p=0.3)

N =10000,n, =150, n, =50

(¥p,2,)=(11)

(Y53 2,)=(LO)

(¥,:2,) = (01

(¥,:2,) =(0,0)

z,=1 | ¢,=0.782609 | ¢, =0.763158 | q,=0.217391 | g, =0.236842
z,=0 | ¢,=0.818182 | ¢, =0.690476 | q,=0.181818 | g, =0.309524
G,=0.807692 | G, =0.713115 | G, =0.192308 | G, =0.286885
Y.z)=@D | (v,2)=@0) | (¥..2)=(01) | (¥,,2)=(0,0)
z,=1 | q,=0.695652 | g, =0.527273 | q,=0.304348 | g, =0.472727
z,=0 | q,=0.842105 | g, =0.619048 | g, =0.157895 | g, =0.380952
G, =0.786885 | G, =0.582734 | G, =0.213115 | G, =0.417266
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Table 4.3.A: Checking reproducible properties of the population data (p=0.5)

N =10000

(Y5, 2,) =(11)

(¥p,2,)=(10)

(¥5,2,)=(0.1)

(¥,,2,)=(0,0)

z, =1 | q,=0725902 | g =0.611177 | q,=0.274098 | g, =0.388823
z,=0 | q,=0739654 | g, =0.627195 | g, =0.260346 | g, =0.372805
G, =0.732735 | G, =0.619038 | G, =0.267265 | G, =0.380962
Y z2)=@D | (V,z)=@0) | (¥..z)=0O1 | (Y,,2)=(0,0)
z,=1 | q,=0.729869 | g, =0.611089 | g, =0.270131 | g, =0.388911
z,=0 | q,=0.726092 | g, =0:616170{q, =0.273908 | g, =0.383830
G, =0.727973 | G, =0.613609 | g, =0.272027 | §, =0.386391

Table 4.3.B: Checking reproducible properties based on case-control data (p=0.5)

N =10000, n, =100, n, =100

(Yp,2,) =11

(Y53 2,)=(LO)

(¥,:2,) = (01

(¥,:2,) =(0,0)

z,=1 | ¢,=0.500000 | g, =0.390244 | g, =0.500000 | g, =0.609756
7. =0 | ¢,=0548387 | g, =0529412 | q,=0.451613 | g, =0.470588
G, =0527778 | G, =0.467391 | G, =0.472222 | g, =0.532609
Y.z)=@D | (v,2)=@0) | (¥..2)=(01) | (¥,,2)=(0,0)
z,=1 | q,=0.695652 | g, =0.532258 | g, =0.304348 | g, =0.467742
z,=0 | q,=0.609756 | g, =0.470588 | g, =0.390244 | g, =0.529412
G, =0.655172 | G, =0.504425 | G, =0.344828 | G, =0.495575
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Table 4.3.C: Checking reproducible properties based on case-control data (p=0.5)

N =10000, n, =50, n, =150

(Y5, 2,) =(11)

(¥p,2,)=(10)

(¥5,2,)=(0.1)

(¥,,2,)=(0,0)

z,=1 | 0, =0.325581 | ¢, =0.245614 | q,=0.674419 | g, =0.754386
7. =0 | ¢,=0.306122 | g =0.137255 | q,=0.693878 | g, =0.862745
G,=0.315217 | G,=0.194444 | G, =0.684783 | g, =0.805556
Y z2)=@D | (V,z)=@0) | (¥..z)=0O1 | (Y,,2)=(0,0)
z,=1 | q,=0.604651 | g, =0.244898 | g, =0.395349 | g, =0.755102
z,=0 | g,=0.614035 | g, =0.215686 | q, —=0.385965 | g, =0.784314
G, =0.610000 | G, =0.230000 | g, =0.390000 | g, =0.770000

Table 4.3.D: Checking reproducible properties based on case-control data (p=0.5)

N =10000,n, =150, n, =50

(¥p,2,)=(11)

(Y53 2,)=(LO)

(¥,:2,) = (01

(¥,:2,) =(0,0)

z,=1 | 0,=0.825397 | ¢, =0.636364 | q,=0.174603 | g, =0.363636
7. =0 | ¢,=0.733333 | g, =0.787879 | q,=0.266667 | g, =0.212121
G,=0.780488 | ,=0.701299 | g, =0.219512 | g, =0.298701
Y.z)=@D | (v,2)=@0) | (¥..2)=(01) | (¥,,2)=(0,0)
z,=1| q,=0.777778 | q,=0.550000 | g, =0.222222 | g, =0.450000
z,=0 | q,=0.727273 | q,=0.727273 | q,=0.272727 | @, =0.272727
G, =0.757009 | ¢, =0.612903 | §,=0.242991 | @, =0.387097
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Table 4.4.A: Checking reproducible properties of the population data (p=0.7)

N =10000

(Y5, 2,) =(11)

(¥p,2,)=(10)

(¥5,2,)=(0.1)

(¥,,2,)=(0,0)

z,=1 | ¢, =0.725744 | ¢, =0.631256 | q,=0.274256 | g, =0.368744
z.=0 | ¢, =0713138 | g, =0.625140 | q,=0.286862 | g, =0.374860
G,=0.721928 | G, =0.629445 | G, =0.278072 | G, =0.370555
Y z2)=@D | (V,z)=@0) | (¥..z)=0O1 | (Y,,2)=(0,0)
z,=1 | q,=0.718154 | g, =0.607750 | g, =0.281846 | g, =0.392250
z,=0 | q,=0.731822 | g, =0:622896 | q, —=0.268178 | g, =0.377104
G, =0.722294 | G, =0.612238 | G, =0.277706 | G, =0.387762

Table 4.4.B: Checking reproducible properties based on case-control data (p=0.7)

N =10000, n, =100, n, =100

(Yp,2,) =11

(Y53 2,)=(LO)

(¥,:2,) = (01

(¥,:2,) =(0,0)

z,=1 | q,=0505155 | ¢ =0.428571 | q,=0.494845 | g, =0.571429
7. =0 | q,=0577778 | 0, =0.437500 | g, =0.422222 | g, =0.562500
G, =0.528169 | ,=0.431034 | G, =0.471831 | G, =0.568966
Y.z)=@D | (v,2)=@0) | (¥..2)=(01) | (¥,,2)=(0,0)
z,=1 | q,=0.659794 | q, =0.422222 | g, =0.340206 | g, =0.577778
z,=0 | q,=0.642857 | g, =0.375000 | g, =0.357143 | g, =0.625000
G, =0.654676 | G, =0.409836 | G, =0.345324 | g, =0.590164
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Table 4.4.C: Checking reproducible properties based on case-control data (p=0.7)

N =10000, n, =50, n, =150

(Y5, 2,) =(11)

(¥p,2,)=(10)

(¥5,2,)=(0.1)

(¥,,2,)=(0,0)

z,=1| q,=0261364 | q =0.111111 | q,=0.738636 | g, =0.888889
7. =0 | ¢,=0.363636 | g =0.260870 | q,=0.636364 | g, =0.739130
G, =0.295455 | G, =0.161765 | G, =0.704545 | G, =0.838235
Y z2)=@D | (V,z)=@0) | (¥..z)=0O1 | (Y,,2)=(0,0)
z,=1 | q,=0431818 | ¢, =0.386364 | g, =0.568182 | g, =0.613636
z,=0 | g, =0.600000 | g=0:521739 (g, =0.400000 | g, =0.478261
G, =0.488722 | G, =0.432836 | G, =0.511278 | g, =0.567164

Table 4.4.D: Checking reproducible properties based on case-control data (p=0.7)

N =10000,n, =150, n, =50

(¥p,2,)=(11)

(Y53 2,)=(LO)

(¥,:2,) = (01

(¥,:2,) =(0,0)

z,=1 | q,=0.724490 | g, =0.575758 | q,=0.275510 | @, =0.424242
7. =0 | ¢,=0.857143 | g, =0.900000 | g, =0.142857 | g, =0.100000
G,=0.768707 | G, =0.698113 | G, =0.231293 | g, =0.301887
Y z2)=@1 | (V,z)=@0) | (¥..z)=0O1 | (y,,2)=(0,0)
z,=1 | q,=0.734694 | q,=0.755102 | g, =0.265306 | g, =0.244898
z,=0 | q,=0.787879 | g, =0.800000 | g, =0.212121 | g, =0.200000
G, =0.748092 | §,=0.768116 | G, =0.251908 | g, =0.231884
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Table 4.5: The MLE of p based on case-control familial data

N =10000, #=0.5
p=05
n, =100, n, =100 n, =50, n, =150 n, =150,n, =50
p=0.3 p =0.522000 p =0.400637 »=0.473103
p=05 0 =0.467715 p=0.614172 p =0.519416
p=0.7 0 =0.562765 0 =0.534639 0 =0.399379
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Chapter 5 Regression Analysis Based on Familial Data

For those who have developed the disease, the age at onset may be informative. As
mentioned in Li et al. (1998), early age of onset has been a hallmark for genetic predisposition
in most of diseases that aggregate in families. When age-at-onset is chosen as the primary
response, the effect of censoring has to be considered in the analysis.

In this chapter, we discuss several important issues on analyzing familial age-onset data.
Specifically denote T as the age-onset variableand Z asa px1 vector of covariates. The
Cox proportional hazards model is the most well-known model for failure time variables

which can be written as
A(t1Z)=2(t)exp(5'2), (5.1)
where A,(t) is the baseline hazard function-and ©#. measures the effect of Z on the hazard

and is of major interest. In familial failure-time analysis, the Cox model is imposed on
probands. For inference of S, we first review the analysis based on a prospective sample
and then extend the discussion to a valid case-control-sample. Finally we will discuss the
modeling and inference frameworks when familial case-control data are collected.
5.1 Likelihood Analysis Based on Probands

Under right censoring, let C be the censoring variable. One observes that X =T AC,

o =1(T <C) and covariates Z . In prospective studies, we identify a sample of individuals
with specified covariates: Z, and then determine their observed time and disease status:
(X;,0,) for i=1,..,n.Attime t, the risk set can be denoted as R(t)={i: X, >t,i=1,...,n}.
Given the risk set information, a subject failing at time t with covariate Z; given jeR(t)

will contribute to the partial likelihood by
At1Zy)  A(exp(s7Z)) _ exp(8'Z;) 62

> A(t1Z) ) > Atyexp(8'Z) exp(,BTZi)-

icR(t) icR(t) icR(t)

24



Prentice and Breslow (1978) discussed the likelihood formulation based on case-control
age-onset data. It is important to first introduce the sampling procedure which involves how
to match a case subject with a control subject. Specifically at time t, m(t) observations are
sampled from the case population containing those who develop the disease at time t and,
independently, n(t) observations are sampled from the control population containing those

who have not developed the disease up to time t. Observed data can be summarized in Table

5.1.
Time:t, Case: (X =t;,6=1) Control: (X =t,,6=0)
t m(t,) individuals n(t,) individuals
t. m(t.) - individuals n(t.) individuals
t, m(t,) individuals n(t,) individuals

Table 5.1 Age-matched.case-control data

The case-control design for collecting age-onset data considers sampling from the

conditional distribution of Z based on (X,d). To establish the relationship between
prospective and retrospective samples, Prentice and Breslow (1978) extended the result of

Cornfield (1951) to age-onset data and derived the following condition:

Pr(Z | X =t,6=1)/Pr(Z =0| X =t,6 =1)

Pr(Z| X =t,6 =0)/Pr(Z =0| X =t,5 =0)
_Pr(X =t,6=1|Z)/Pr(X =t,6 =1|Z =0)
T Pr(X =t,6=0|2)/Pr(X =t,6=0|Z =0)

(5.3)

Notice that when C is independent of both T and Z, we have
Pr(X =t,0=11Z) Pr(T =t,C>t|Z) Pr(T =t|Z)Pr(C>t) A(t) .
Pr(X =t,6=0|Z) Pr(T>t,C=t|Z) PrT>t|Z)Pr(C=t) A.(t)’
Pr(X =t,6=1|Z=0) Pr(T=t|Z=0)Pr(C>t) A(t)
Pr(X =t,6=0|Z=0) Pr(T >t|Z=0)Pr(C=t) A(t)
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Hence the right-hand side of (5.3) equals A(t)/A,(t) and, under the proportional hazard

model, (5.3) becomes

Pr(Z|X =t,6 =1)/Pr(Z =0| X =t,5=1) _

Pr(Z | X =t,6=0)/Pr(Z =0| X =t,5 =0) =exp(f Z). (5.4)

Rearranging (5.4), we obtain

Pr(Z =0| X =t,5 =1)

Pr(Z| X =t,6=1)=Pr(Z| X =t,5 =0)exp(5'Z
(Z] ) =Pr(Z] )exp(f )Pr(Z=0|X=t,5=O)

which is equation (2) in Li et al. (1998). The left-hand side of (5.4) is identifiable based on

case-control data which implies that £ is also identifiable based on such data.

Prentice and Breslow (1978) proposed a conditional likelihood approach for estimating
S based on case-control data. At time t, define R(m(t),n(t)) as a set of all subsets of size

m(t) from a total of m(t)+n(t) subjects. Given this risk set information, the first m(t)

subjects with covariates Z,,...,Z, ;" respectively actually belonging to the case group will

contribute the probability
m(t)
[T4(t1Z))
i=1

m(t) !

> LA(t12,)

IeR(M(U),N(t) j=L

(5.5)

where Z, denotes the covariate value for jth subject in the 1th combinations. Notice that

m(t)

]i:l[i(t 1Z,) ={A O} exp{B" (Z, +...+ Z,,))}

and
m(t)

[14(t12,) =" 0087 Z, .+ Zu

It follows that

m(t)

A(t]Z,
Atz epp) 56
m(t) - ) .
> [laltizy) > exp(sA)
leR(m(t),n(t)) j=1 leR(m(t),n(t))
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where s=Z +..+Z , and s =Z,+..+Z,, . Finally the likelihood can be written as

ﬁ exp(s' ) | 5.7
= exp(s, )
Z T

leR(M(t;).n(t;))

where t <...<t, denote observed failure times for the case group. It is important to note that
R(m(t),n(t)) only includes subjects who are sampled from the retrospective study at time t.
Hence it does not have the nested property of a regular risk set such as R(t) c R(t-). It is

important to mention that computation of (5.7) involves all possible permutations in the

denominator which is very time-consuming if m(t)+n(t) is not small. Several authors

proposed algorithms to approximate the likelihood.

We provide a numerical example to illustrate construction of R(m,n) in which the label

t is ignored to simply the presentation.Suppose the case-sample contains subjects with

covariates Z, and Z, respectively and the matched control-sample contains subjects with
. ! . 4 " :
covariates Z, and Z, respectively. Hence R(2,2)) consists of (2] combinations which

can be labeled by 1=1..,6 corresponding to
(2,,2,),(Z2,,2,),(Z2,,2,),(Z,,2,),(Z5,Z,):(Z5;Z,) ~ sets of covariates respectively. For
example Z,,=Z, corresponds to the second covariate with 1=2. It follows that
s=2,+2,, s,=2,+2,, S,=2,+Z,, S,=2,+2,, S,=2,+Z,, S,=Z,+Z, and
Ss=2,+7Z,.

5.2 Likelihood Analysis Based on Familial Data

Table 5.2 summarizes observed case-control familial data in which probands’ times

(onset or censored) are matched. Specifically at time t, , we sample m(ti) case probands
and their relatives and matched with n(t;) control probands and their relatives. Denote

X =(X,,X,) as observed times and 6=(5,,5,) as the corresponding indicators for a

proband and his/her relative respectively.

27



Case family: Control family:
Time
(Xp:ti’5p:1) (Xp:ti’5p:0)
: m(t,) probandsand their | n(t,) probands and their
1
relatives relatives
: m(t;) probandsand their | n(t) probands and their
relatives relatives
, m(t, ). probands.and their | n(t,) probands and their
k
relatives relatives

Table 5.2 Age-matched case-control familial data

To simply the presentation, assume that there are two members in one family (one

proband and one relative). Observed information for a case subject includes

(X,=t,0,=L2,,X,,6,,Z,) while the information for the corresponding age-matched
control  subject includes (X, =t,6,=0,Z,,X,,6,Z) . Two samples from
Pr((X,.5,).2,.Z,|(X, =t.8,=1)) and Pr((X,.s,).Z,.Z |(X,=t,5,=0)) are drawn

independently.
Li et al. (1998) extended the discussions in Whittemore (1995) from binary data to

age-onset data. The model assumption consists of two stages. In the first stage, the model on

the proband namely Pr(Z |( X0, )), is assumed to follow the Cox model. In the second

stage, the model on Pr((xr,ér)|(xp,5p),2) is constructed where Z=(Z,,Z). Itshould
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be mentioned that a crucial reproducible assumption to simply the analysis is given by

Pr{(X.,6.)12,,Z,) =Pr{(X..6)1Z.) (*=p.r). (5.8)

This assumption only holds when covariates Z within a family do not depend on any

unmeasured variables responsible for the correlation of age-onset. One can write
Pr((X,.8,),Z,.Z,1(X,.8,)) = Pr((X,.5,).Z, 1(X,.6,). Z,)P(Z, | (X,. 5, ).
Note that
Pr((X,.5,.)Z, 1(X,.8,).Z,) =Pr((X,.8,)1(X,.6,). Z,. Z,)Pr(Z, |(X,. 6, ). Z,).
By (5.8), we know that, given Z,, (X,,5,) and Z, are independent. So, we have
Pr(Z, |(X,.5,).Z,)=Pr(Z,1Z,).

Therefore, formulated the likelihood function for familial case-control data can be based on

the following decompositions:
Pr(Z, |(X5:8, ) PH(Xi8 ) (X .3, )2 Z) Pr(Z, | Z,) . (5.9)

The first component of (5.9) can be analyzed based on probands’ data which can be

performed in the first stage. Recall the under'the Cox model assumption discussed in Section

5.1, the form of Pr(Z, |(Xp,§p)) can be specified and equation (5.7) can be applied to
estimate S . The third component Pr(Z, |Z,) in (5.9) can be treated as a constant.

To specify the form of Pr((X,,5,)|(X,.5,).Z) in (5.9), Li et al. (1998) adopted the

Clayton model (Clayton, 1978) which is the most popular assumption for bivariate

failure-time data. Recall that T, and T, represent the failure times of a proband and his/her

relative respectively. When (T,,T,) follows the Clayton model , the joint survival function

can be written as
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1
1-a 1-a 1o .
S(s,t)=Pr(T, >s,T, > )= S,(s) 8, (1) 1] ifa>1
) ifa=1  (5.10)

where S, ( exp[ Iﬂo exp(B'Z. )dv}_s (t)exp(“) for *=p,r assuming that the

Cox model (5.1) and « is an association parameter measuring the increased risk of an

individual if his/her relative has the disease rather than being disease free at a given age. Note

that a:?—r,where 7 is Kendall’s tau.
-7

The next objective is to derive the joint probability of (X,0)=(X,X,,d,,5,) where

X.=T.AC., o.=I(T.<C.) and (T,,T,) are subject to censoring independently by

(C,,C,). Notice that

as*(t)_a{so(t)eXp(ﬂTz*)}_ . exp(p72.)1) [0S, (1)
a7 Z*){S"(t) }{T}

and

asgt(t) _ aexp{gjo (S)ds} =1, (t)exp{—

Accordingly, we have

O —

|

3S.(t)
ot

=—J, (t)exp(ﬁTZ*){S (t)exp( )} (5.11)

Define

{[u“’ Ve jlla if @ >1

uxv if a=1.

By (5.11), it follows that Pr(X, =x,, X, =X,,5, =10, =1|Z) is proportional to
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0°C,, (u,v)
OX,0X

r

(U,V)={Sp (Xp )8 (%)}

l —_
- a[ul‘“ +Ve —1]5 2lu o v v
axp OX

r

(u vv):{sp (Xp ):Se (%)}

1
- a[sp (xp)lfa +S. (%) " —1}1‘“ 2

)(l—a)exp( £'Z,)

xS, (X, (%, )exn(8'Z,)
xS, (Xr )(1—a)exp(/fzr) 2, (xr)eXp(ﬁTZ, ) .
Similarly Pr(X, =x,,X, =x.,6, =106, =0|Z) is proportional to

_aC, (uv)

(U,V)={Sp (Xp)vsr (%)}

P v)=(5; (% )iS: (%)}

_ [Sp (%, )H +S(x)0 —1}1‘“—1
() L E (2, )

_aC, (uv)

Pr(Xp:xp,Xr:xr,Sp:O,5r:1|Z)oc 5
X

r

(U,V)={Sp (Xp)vSr (%)}

e ]
z—[ul +V —1]1 {v p }

r

(U)={S (xp).S (%)}

“ (So (x, )(1—a)exp(ﬁTzr) Zo(x)exp( 572, )) ;

Pr(X, =x,, X, =x.,6,=0,8,=0|Z) e« C_(u,v)

(UV)={Sp (%).5 (%)}

1
=[ut v 1]

(u ,V)={Sp (Xp ):Se (%)}
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= [sp (x,) "+, (%)™ —1}1‘1“ .

Accordingly we obtain

1 5

Pr(X,5|2)oc [so (3, )7 s, (x, et —1}“‘
XH{I:CZ] ~1)+2- ][5y (x )] ex”(M)z,o(xj)exp(ﬂsz)} (5.12)

where D is the number of individuals with disease among the proband and the relative. Let

A, (t) be a baseline cumulative hazard function up to time t. The conditional probability

Pr( 6.) o),z) for a control family is obtained by dividing (5.12) by
Pr(X,=x,.8,=0|Z)= exp(—AO(xp)exp(,BTZp)) . In addition, the probability
Pr( 6.) 1),2) for  a .. case - family is dividing (5.12) by
Pr(X, =x,.8,=1Z)= exp(—AO(Xp)exp(ﬂTZp))ﬂo(xp)exp(ﬂTZp) . Finally, the

L(t)= 1} | Pr((xﬁ' ’aﬁ)’zi |(ij’5p,~ ))

m(t )+n(t) m(t, )+n(t)
= 1 Pr(z,,1(,,.9,)) ] Pr((x,.0,)1(X5,.6,,).2))
=L (B)<L¥ (Ba) (5.13)

The resulting likelihood is then the product of terms (5.13) over the k distinct times:
k

L=]JL(t). So we can obtain the MLE of B and « through this likelihood for a
i=1

case-control study.
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Chapter 6 Simulations for Analysis of Age-onset Data from Case-control
Family Studies
We examine some probability statements based on the case-control design by

simulations. We generate probands’ data based on the Cox model in (5.1) which follows

t
exp[ J'ﬂo exp ﬁ Z) } The generation procedure can be stated as follows. Let

0

S(T)=U~U(0,1) . Under the assumption of Cox proportional model, we have

= T X impli = -1_IL(U)
- {}[20 (s)ds expﬂz)} . It implies that T=A, pr(,@TZ)] . where

—log(U)

N0 n(2)

Ao (s)ds. If we set T|Z=0~Exp(1). Hence it follows that T =

[ S———

where —log(U) follows Exp(1).

6.1 Data Generation for Individual Data
6.1.1 Prospective data of the true population

First of all, we generate the population data based on Cox PH model (5.1) and the afore
mentioned assumptions. Set the values of £ and p. The algorithm is summarized below:

e Step 1: Generate Z, ~ Bernoulli(p);

* Step 2: Generate U, ~U(0,1);

—log(V,) .

e Step 3: Generate T. = ;
exp(ﬂTZi)

* Step 4: Generate C, ~U (0,K), K isa fixed number;

* Step5:Wehave {(X;,5).Z}, where X, =T, AC, and & =1(T,<C,).

The procedure is repeated for i=1,...,N =10000.
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6.1.2 Case-control data from the true population

Suppose that we generate n<< N observations from the population with n, =n/2

persons from the case group with (Xi,éizl) and then we construct the matched

n,=n,=n/2 control group with (X;,8 =0). The procedure is stated as follows.
e Step 1: Randomly select n, subjects from the case group and record their values of Z;;
* Step 2: For each case we match with a control from control group with |X, —X,|<0.1,

where X, and X, are observed times for a case and a control respectively.
The method of Step 1 is the same as Step 1 in section 4.1.2. And when a control has been
collected to match a case, he/she will not be picked up again to match another case individual.
6.2 Analysis on Individual Data

Now we want to know whether the 'case-control 'sampling procedure produces reliable

> Z, =1 X0, =D NZ= 0,5, =1)
data. Let Q=-= =L be the empirical estimate of

n

ZI(Zi =1,X,,0. =0)/Z|(zi =0,X,,0,=0)

Pr(Z =1| X =t,6 =1)/Pr(Z =0| X =t;5=1)
Pr(Z =1| X =t,6=0)/Pr(Z =0| X =t,5 = 0)

. We then examine whether the equation (5.4)

can be achieved by checking whether Q is close to exp( ﬁxl).

Then we analyze the case-control data by solving the MLE of £ and then check whether

B is close to the true value of 4. The results are summarized in Table 6.1. We obtain that

when Q isclose to exp(ﬂTZ) , the estimation of A is also closer to our true value.
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Table 6.1: Analysis of age-onset data
based on case-control studies
N =10000, n, = n, =100, Replications =100

£=05

Q—exp(p) (ﬂ‘—ﬂ)xm” SEof
p=0.3 —0.047896 30.762727 0.029843
p=05 —0.043819 24.623113 0.028702
p=0.7 ~0.020804 —18.990294 0.031158

6.3 Data Generation for Familial Data
6.3.1 Familial prospective data of the true population
We now generate familial data.following the.Clayton model of the form in (5.10). We

also let T|Z=0~Exp(1), so-S,(t)=exp(-t). Then we can modify the data generation

procedure for the Clayton model originally proposed “by Prentice and Cai (1992). The

algorithm is summarized below:

Step 1: Generate Z. ~ Bernoulli( p)-for *=p,r;

1-1).

e Step2:Set =05 = 0:(

27

*  Step 3: Generate independent variables (U, .U, ), U, ~U(0,1) for *=p,r;

*  Step 4: Generate (Tpi',Tri’): the baseline group with Z. =0,and T. ~Exp(1) for

*=p,r by setting

)
T, =6log {(1—a)+a<1_u pi )12}

T, =—log{(1-U, )}

e Step5:Set f#=05;
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*

e  Step 6: Generate (TpuTri): T. =W for *=p,r;

*  Step7: Generate (C,,C,), C, ~U(0,K) for *=p,r,where K isafixed number;
e  Step 8: We have {(xpi,xri),(5pi,5ﬁ),(zpi,z,i)} , where X. =T. AC, and

6. =1 (T,ki SC*i) for *=p,r.
The procedure is repeated for i=1,..,N for N =10000.

6.3.2 Case-control data from the true population

Suppose that we generate n<< N families from the population with n,=n/2 families

from the case families with (Xpi 0, :1). Then we match n,=n,=n/2 control families:

(X 0 ,5pi = 0) to the case families:

The procedure is stated as follows.

e Step 1: Randomly select -n, probands from the case-families and record their values of
Z, and data on his/her relative: {Zri (X9, )} ;

e Step 2: Each case proband is matched with a control proband from the control group with

|X,—X,|<0.1, where X, and X, are observed times for a case proband and a control

proband respectively. And also record their values of Z, and data on his/her relative:

{Z,.(x,.0,)}-

6.4 Analysis on Familial Data

We analyze the simulated familial case-control data by calculating the MLE of the
parameters: B and o based on the likelihood function (5.13) and then check whether S

and & are close to their true value. We also check whether the probands’ data can achieve

equation (5.4). These results are summarized in Table 6.2. We observe that when Q is close
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to exp( [J’TZ) , the estimation of S is also close to the true value, that means the conditional

likelihood function can represent the first part of our decomposition of the likelihood function

(5.13).
Table 6.2: Analysis of familial age-onset data
based on case-control studies
N =10000, n, = n, =100, Replications =100
7=05,=05
Q-op(f) | (B-B)10" | sEof p | (F-e)x10' | sEof ¢
p=03 | -0.076737 23.221662 0.008890 —1.859457 0.004787
p=0.5 0.023449 10.732187 0.009518 5.252649 0.004348
p=0.7 0.018496 —6.228642 0.009259 —12.534723 0.004334
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Chapter 7 Concluding Remarks

In the thesis, we study and review the literature on two regression models: logistic
regression model and Cox proportional hazards model based on the prospective design and
the case-control design to analyze the familial disease incidence data and familial age-onset
data respectively. For inference, it has been shown that the data from a case-control design
can be analyzed as if it is from a prospective design if some crucial properties like (3.7), (5.4)
and reproducible properties hold. We perform simulations to examine these properties and
check the properties of the parameter estimates. It allows us to see how the quality of
generated data affects subsequent inference results.

The variables that we are interested in include disease incidence and age-onset data. For
age-onset data, we treat an individual ‘without .the disease as being censored. But, these
censored individuals may be actually censored or be non-susceptible. In such a situation, cure

model can be adopted. This topic deserves future investigation.
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