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家族性病例對照資料之統計分析 

      學生：蘇筱嵐                       指導教授：王維菁 博士 

 

國立交通大學統計學研究所 

 

摘  要 

家族性病例對照資料研究方法近年來常使用於探討疾病與致病因子之

關係。本論文回顧了分析家族資料的統計文獻方法：針對得病與否的反應

變數，考慮了邏輯斯迴歸模型; 針對得病時間的反應變數，考慮了 Cox 等

比風險模型。我們討論如何將建立在個別性資料上之研究方法推廣至家族

性資料，並探討如何將適用於前瞻性資料的方法修改為分析病例對照資料

所需做的假設與調整。此外，我們也透過模擬實驗來驗證推論過程中所需

要之條件與比較參數估計之表現。 

 

 

 

 

關鍵字：家族性病例對照資料研究；前瞻性研究；邏輯斯迴歸模型；Cox PH 

模型；Clayton 模型 
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Statistical Analysis for Familial Case-Control Data 
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Abstract 

 

 Familial case-control data are frequently used to study the relationship between disease 

and risk factors. In the thesis, we review literature for analyzing familial data. The logistic 

model is applied to model the probability of disease incidence. The Cox proportional hazards 

model is applied to model the age at onset of the disease. For each model, we discuss how to 

extend the method and model developed for individual data to familial data. In addition, we 

discuss the criteria and modification from prospective data to case-control data. We also 

propose simulation algorithms for generating case-control data and then, based on simulated 

data, examine parameter estimates and crucial properties of the inference procedure.  

 

 

 

 

 

 

Keywords: Familial case-control study; Prospective study; Logistic regression; Cox PH model; 
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Chapter 1 Introduction 

1.1 Motivation 

 Scientists are interested in studying the roles of genetic and environmental factors on the 

development of a disease. Besides the information about whether the disease is present or not, 

age-at-onset has been viewed as a useful quantitative trait for some commonly-seen complex 

diseases. For example, early onset of breast cancer has been viewed as an important hallmark 

for genetic predisposition. Figure 1 highlights the scientific background which motivates this 

thesis. For a quantitative trait, statisticians can perform regression analysis which the effects 

of the explanatory variables on the response. 

 

 

 

 

 

 

 

 

 

Figure 1: Scientific Background 

 We focus on two quantitative traits, namely disease incidence and age-at-onset. Disease 

incidence can be coded as a binary variable. Age-onset variables are continuous but may be 

censored due to termination of the study or loss to follow-up. Genetic, environmental and 

individual factors are treated as observed covariates. Their influences on the chosen response 

variable are of major interest. If disease incidence is the response variable, logistic regression 

models can be adopted. If age-at-onset is studied, failure-time regression models such as Cox 

proportional hazards models can be applied. When genetic information is not directly 
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measured, familial data can be used to detect its influence. Familial aggregation often 

indicates that genetic or shared environmental factors play some role in the development of 

the disease.  

From the aspect of data design, the case-control sampling study is often applied to gather 

the information of rare diseases. It has the advantage that sufficient number of cases can be 

obtained and hence is cheaper and more convenient in comparison with a prospective study. 

In recent years, familial case-control designs have become a popular choice in genetic 

epidemiology. However statistical inference based on familial case-control data deserves 

careful investigation since the underlying probability structure is not straightforward.  

1.2 Outline  

The purpose of the thesis is to review related literature under a unified framework and 

examine some theoretical statements via simulations. In Chapter 2, we provide some 

background for different types of case-control designs. In Chapter 3, we review literature on 

logistic regression for familial prospective studies and case-control designs. Chapter 4 

contains some simulation results which are conducted to verify crucial probability statements 

for logistic regression analysis. In Chapter 5, we review literature on familial age-onset data 

based on case-control designs. Chapter 6 contains simulation studies for checking the 

assumptions that are required in analysis of age-onset data from case-control family studies. 

Concluding remarks are contained in Chapter 7.  
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Chapter 2 An Overview of Case-control Designs 

Case-control designs are preferable because they are cheaper and more convenient. In 

this chapter, we focus on two common case-control designs: namely the conventional and 

familial designs. 

2.1 Conventional Case-control Designs 

  Conventional case-control designs begin by recruiting a group of individuals with a specific 

disease as “cases” and the other group of non-diseased individuals as “controls”. Cases and 

controls are compared based on risk factors including familial history of the disease. Here 

positive familial history is defined as presence of the disease in one or more first-degree 

relatives. However potential bias may arise due to incorrect information of recall. 

Furthermore individuals may differ in their family sizes so that positive family history is more 

likely to occur in a larger family. The family sizes differ in cases and controls can lead to false 

results. Liang (2000) discussed potential biases for conventional case-control designs in 

details.  

2.2 Familial Case-Control Designs 

Familial data obtained from case-control designs are frequently used to detect disease 

aggregation in families. This design begins by identifying a sample of diseased cases and an 

independent sample of disease-free controls, and for each individual, hereafter called a 

“proband”, determines his/her covariates, the family structure, and the disease status and 

covariates of relatives in the family. The disease status of relatives is treated as one part of the 

responses in the model.  

A major difference between the two designs lies in the sampling unit. The sampling unit in 

familial case-control designs is a pre-defined set of family members. Compared to the 

conventional design, familial case-control designs provide direct evaluations of the relatives 

and can avoid misclassification of family history. It is also useful for genetic counseling. 

However familial case-control designs are more expensive.  



4 

2.3 The Issue of Matching in Case-Control Designs 

 In case-control designs, there are some confounding variables that may affect the 

evaluation of the association between disease incidence and risk factors. So, sometimes we 

must consider the necessity to match these confounding variables in the design stage. The 

purpose of matching is to let the units between cases and controls have more comparability. 

 The matching method includes frequency matching and individual matching. In 

conventional case-control design, if individual matching is part of the design, the conditional 

logistic regression method mentioned in Breslow and Day (1980) may be adopted. When in a 

familial case-control design, we note that the sampling units are families. So the matching 

between case probands and control probands doesn’t guarantee the matching between case 

relatives and control relatives. Thus the matching procedure in such studies should be subject 

to some modification. First, the matching in design stage must be run under the condition that 

the confounding variables are familial, for example: races. Second, correlations among 

relatives have to be dealt with. Liang (1987) proposed a method for analyzing the matched 

designs which accounts for the within-family correlation. For age-onset responses, Li et al. 

(1998) also discussed situations under familial structure and matched procedure. 

Finally, Sturmer and Brenner (2000) discussed the issue of the balance between power 

gain and extra costs for doing the matching.  
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Chapter 3 Logistic Regression on Different Designs 

Logistic regression models are commonly adopted for modeling the relationship between 

a binary response and covariates. We first discuss statistical inference based on prospective 

studies which can be easily understood. Then we discuss how to construct the likelihood 

function if the sample is obtained from a case-control design. Finally we will review the 

literature on logistic regression analysis for familial case-control studies.  

Denote Y  as a binary indicator for disease status. Specifically 1Y   represents that the 

individual is diseased while 0Y   indicates that the individual is free of the disease. Denote 

Z  as a 1p  vector of covariates. Consider the following logistic regression model:  

   
exp( )

Pr( 1| )
1 exp( )

T

T

Z
Y Z

Z

 

 


 

 
.               (3.1) 

Let {( , ) ( 1,..., )}i iY Z i n  denote the observed sample. If the data are collected from a 

prospective design, the likelihood function can be written as  

   

1

1

exp( ) 1

1 exp( ) 1 exp( )

i iY Y
Tn

i

T T
i i i

Z

Z Z

 

   





   
   
      

 .                 (3.2) 

A case-control study, by contrast, identify a sample of diseased cases: 1Y   and another 

independent sample of non-diseased controls: 0Y  . The covariate Z  is measured 

afterwards. Notice that the distribution of data from a case-control study is based on 

 Pr |Z Y  instead of  Pr |Y Z  as given in (3.1). However logistic regression analysis can 

still be applied to both sampling designs (Prentice and Pyke, 1979). In Sections 3.1 and 3.2, 

we will review the results of Whittemore (1995) in which the probability structure under 

conventional and familial case-control designs is well examined.  

3.1 Conventional Case-Control Designs 

 Let   be the target population. The logistic regression model in (3.1) is equivalent to 

Pr( 1| , )
log

Pr( 0 | , )

TY Z
Z

Y Z
 

 
 

 
          (3.3) 
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where   is the intercept that represents the log odds for developing the disease of the 

baseline group, and   is the log odds ratio between a subject with covariate Z  and a 

subject of the baseline group. Since   reflects the effect of Z  on Y , it is the parameter of 

major interest.   

 As mention earlier, a sample based on a case-control design involves  Pr | ,Z Y  . 

Applying Baye’s rule, we obtain  

Pr( | 1, ) Pr( 0 | )
exp( )exp( ).

Pr( | 0, ) Pr( 1| )

TZ Y Y
Z

Z Y Y
 

   


   
              (3.4a) 

Whittemore (1995) mentioned that one can imagine a hypothetical population denoted as *  

in which the covariate distribution is the same as in   such that  

  
*

*

Pr( | 1, ) Pr( | 1, ) Pr( 0 | )
exp( )exp( )

Pr( | 0, ) Pr( | 0, ) Pr( 1| )

TZ Y Z Y Y
Z

Z Y Z Y Y
 

     
 

     
.    (3.4b) 

Define  

*

*

Pr( 0 | ) Pr( 1| )
exp( ) exp( )

Pr( 1| ) Pr( 0 | )

Y Y

Y Y
 

    
  

    
.  

One can rewrite (3.4b) as  

   
* *

* *

Pr( | 1, ) Pr( 0 | )
exp( )exp( )

Pr( | 0, ) Pr( 1| )

TZ Y Y
Z

Z Y Y
 

   


   
.      (3.5) 

From (3.5), we can construct the following logistic model based on * :  

*

*

Pr( 1| , )
log

Pr( 0 | , )

TY Z
Z

Y Z
 

 
 

 
.      (3.6) 

 Now we discuss the implication of the above analysis. Comparing the two models in (3.3) 

and (3.6), they differ in the intercept parameter but have the same slope parameter, which is of 

major interest. In a case-control design, the sampling distribution is based on 

 *Pr | 1,Z Y    and  *Pr | 0,Z Y   , where  

   
 

 

*

* *

*

Pr |
Pr | 1, Pr 1| ,

Pr 1|

Z
Z Y Y Z

Y


     

 
; 
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   
 

 

*

* *

*

Pr |
Pr | 0, Pr 0 | ,

Pr 0 |

Z
Z Y Y Z

Y


     

 
. 

Notice that 
 
 

*

*

Pr |

Pr |

Z

Y




 is independent with parameters. The likelihood function for 

case-control data can be constructed based on model (3.6). Accordingly case-control data can 

be treated as prospective data from *  if the following condition holds: 

   
*

*

Pr( | 1, ) Pr( | 1, )

Pr( | 0, ) Pr( | 0, )

Z Y Z Y

Z Y Z Y

   


   
.       (3.7) 

As long as (3.7) is satisfied in collecting the case-control sample, one can proceed the 

regression analysis, by pretending that the sample is from a prospective study, to obtain an 

estimate of   which is still reliable. We will examine the crucial condition in (3.7) via 

simulations.  

3.2 Familial Case-Control Designs 

In analysis of familial data, some studies ignored probands’ information and only focus 

on relatives’ data. Such an approach may lose efficiency by ignoring useful information in 

probands’ data. Whittemore (1995) applied multivariate techniques to analyze familial 

case-control data. Specifically she proposed a two-stage sampling procedure. Specifically in 

the first stage, two types of probands (case and control) are sampled and then, in the second 

stage, their relatives are sampled. To simplify the discussion, we focus on bivariate analysis 

which means that only one relative is sampled based on each proband. The resulting 

likelihood analysis contains two components. One involves the logistic model on probands as 

introduced earlier. The other component is related to the model which measures the 

dependence between a proband and his/her relatives.  

Let ( , )p pY Z  and ( , )r rY Z  be the disease status and covariates for a proband and his/her 

relative respectively. Denote ( , )p rY Y Y  and ( , )p rZ Z Z . We will first discuss likelihood 

inference based on a prospective design and then the modification based on a case-control 
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design.  

3.2.1 Likelihood analysis based on familial prospective data   

A prospective study involves sampling from 

Pr( , | ) Pr( | )Pr( | )r p r pY Z Z Y Z Z Z .       (3.8) 

When only one relative is involved, Pr( | ) Pr( , | , )p p r r p rY Z Y y Y y Z Z  
 
for * 0,1y   and 

*  = ,p r . Note that  

Pr( | )Y Z = Pr( | , )Pr( | , )p p r r pY Z Z Y Y Z . 

Whittemore (1995) mentioned that a reasonable joint model should satisfy the so-called 

“reproducible” assumption such that  

   
1

0

Pr( , | , )
r

r

y

p p r r p r

y

Y y Y y Z Z




  Pr( | )p p pY y Z  ;     (3.9a) 

   

1

0

Pr( , | , )
p

p

y

p p r r p r

y

Y y Y y Z Z





  Pr( | )r r rY y Z  .        (3.9b) 

That is, the covariate of a person is sufficient to determine his/her disease status and hence the 

relative’s covariate does not contribute extra information. The paper examines the plausibility 

of the reproducible assumption. Suppose that the dependence between pY  and rY  within the 

same family may also be attributed to some un-measured latent variable denoted as U . If 

Pr( | ) Pr( )U Z U , the reproducible assumption can be achieved. Whether this assumption 

makes sense depends on the scientific problem at hand.  

When (3.9a) is true, it follows that  

Pr( | )Y Z = Pr( | )Pr( | , )p p r pY Z Y Y Z .        (3.10) 

Notice that Pr( | )p pY Z  can be modeled as  
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Pr( 1| )

log
Pr( 0 | )

p p T

p

p p

Y Z
Z

Y Z
 


 


.  

The second quantity Pr( | , ) Pr( | , , )r p r p p rY Y Z Y Y Z Z  in (3.10) involves the dependence 

between a proband and his/her relative which is of major interest. Denote observed data 

as{( , , , ) ( 1,..., )}pi ri pi riY Y Z Z i n . If the data is collected from a prospective sampling design, 

the likelihood function can be written as  

   
1

, , Pr , , |
i i i i

n

p r r p

i

L Y Y Z Z  


  

   
1 1

Pr | Pr | ,
i i i i

n n

p p r p i

i i

Y Z Y Y Z
 

   

   (1) (2), , ,L L      ,          (3.11) 

where  (1) ,L    has the form as in (3.2) and   denotes additional parameter in 

Pr( | , )r pY Y Z . Additional joint model assumption is required to specify the form of 

Pr( | , )r pY Y Z . 

One model choice is the following model first proposed by Bahadur (1961):  

1 1
Pr(( , ) | ( , )) ( ) (1 ) ( ) (1 ) (1 )p p r r

y y y y

p r p r p p r r p rY Y Z Z p p p p t t
 

          (3.12) 

where 

 
* *

*

* *

      * ,
1

y p
t p r

p p


 


, 

and  

*
* * *

*

exp( )
Pr( 1| )      * ,

1 exp( )

T

T

Z
p Y Z p r

Z

 

 


   

 
. 

The coefficient   satisfies the following constraint: 

  

    

 
 

 

1 1 11
min , min , .

11 1 1

p r r pp r p r

p r r pp r p r

p p p pp p p p

p p p pp p p p


        
     

        
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We will check whether this model satisfies the reproducible assumption via simulations. The 

following table summarizes the joint probability of ),( rp YY  given ),( rp ZZ .  

 

 1rY 
 

0rY 
 

1pY 

 

1 ( )( )p rP p p

1 1
(1 )

(1 ) (1 )

p r

p p r r

p p

p p p p


 


 
 

3 ( )(1 )p rP p p 

1
(1 )

(1 ) (1 )

p r

p p r r

p p

p p p p


 


 
 

0pY 

 

2 (1 )( )p rP p p 

1
(1 )

(1 ) (1 )

p r

p p r r

p p

p p p p


 


 
 

4 (1 )(1 )p rP p p  

(1 )
(1 ) (1 )

p r

p p r r

p p

p p p p


 


 
 

Table 3.1 Joint probability for ( , )p rY Y  given ( , )p rZ Z  

3.2.2 Likelihood analysis based on familial case-control data   

 A case-control study involves two independent samples from Pr( , | 1)r pY Z Y   and 

Pr( , | 0)r pY Z Y  . Notice that Pr( , | ) Pr( | , )Pr( | )r p r p pY Z Y Y Z Y Z Y  and  

   Pr( | ) Pr( , | ) Pr( | )Pr( | , )p p r p p p r p pZ Y Z Z Y Z Y Z Y Z  .  

The reproducible assumption implies that, given pZ , pY  and rZ  are independent. Hence 

Pr( | ) Pr( | )Pr( | )p p p r pZ Y Z Y Z Z . In summary we have  

       Pr , | Pr , | Pr | Pr |r p r p p p r pY Z Y Y Z Y Z Y Z Z  

  Pr( | ) Pr( | , )Pr( | )p p r p r pZ Y Y Z Y Z Z .             (3.13) 

Recall that Pr( | )p pZ Y  can be analyzed assuming that the data is from a prospective sample 

from the model  
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*

*

Pr( 1| , )
log

Pr( 0 | , )

p p T

p

p p

Y Z
Z

Y Z
 

 
 

 
.  

Accordingly the retrospective likelihood function is given by  

   *

1

, , , Pr , |
i i

n

r i p

i

L Y Z Y   


  

   
1 1

Pr | Pr | ,
i i i i

n n

p p r p i

i i

Z Y Y Y Z
 

   

   *(1) (2), , ,L L      . 

Notice that the information of   is also contained in familial case-control data when the 

reproducible assumption holds for the joint model.  
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Chapter 4 Simulations for Logistic Regression Analysis 

In this chapter, we propose data generation algorithms to simulate case-control data for 

logistic regression analysis. Some crucial probability statements will be examined to verify 

whether the simulated data are reliable for statistical inference. 

4.1 Data Generation for Individual Data 

4.1.1 Prospective data of the true population  

First of all, we generate population data from the model:  

 
 

 

exp
Pr 1| ,

1 exp

Z
Y Z

Z

 

 


  

 
.  

Then set the values of the parameters:  ,   and p . The algorithm is summarized below:  

 Step 1: Generate Bernoulli( )iZ p  

 Step 2: Given iZ , generate 
 

 

exp
Bernoulli .

1 exp

i

i

i

Z
Y

Z

 

 

 
    

 

The procedure is repeated for 1,...,i N  for very large N , say 10000N  . Denote 

{( , )( 1,..., )}i iY Z i N  .  

4.1.2 Case-control data from the true population 

 Suppose that we generate n N  observations from the population with 1n  persons 

from the case group with 1Y   and 0 1n n n   persons from the control group 0Y  . 

The procedure is stated as follows. 

 Step 1: Randomly select 1n  subjects from the case group and record their values of 
iZ ;  

 Step 2: Randomly select 0n  subjects from the control group and record their values of 

iZ .  
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We briefly discuss how to implement Step 1 since Step 2 follows a similar procedure. First 

identify the case population: 1 1{( 1, ) ( 1,..., )}i iY Z i N    where 
1

1

( 1)
N

i

i

N I Y


  . The 

objective is to select 1n  observations from 1N  subjects. Label the subjects in 1  from 1 to 

1N . At the first time, generate  0,1U U  and define  1s N U  , where    is the Gauss 

function. A subject with label “ s ” is selected into the case-control sample and removed 

from 1 . The procedure is repeated 1n  times. Specifically at the thk  time, generate 

 0,1U U  and a subject with a re-defined label  1( 1)s N k U     is selected from the 

remaining case population containing 1 1N k   subjects. Finally the case sample is formed 

and denoted as 1{( 1, ) ( 1,..., )}k kY Z k n  . The control sample can be generated in a similar 

way.  

4.2. Analysis on Individual Data  

 We examine whether the proposed case-control sampling procedure produces reliable 

data. We let 

1 1
*

1 1

( *, 1) / ( 1)

( *, 0) / ( 0)

N N

i i i

i i

N N

i i i

i i

I Z Y I Y

R

I Z Y I Y

 

 

  



  

 

 
    * 0,1  

and 

 

 

1

1
*

1

1

*, 1 /

*, 0 /

n

i i

i

n

i i

i

I Z Y n

r

I Z Y n





 



 




            * 0 , 1  

be the empirical estimates of 
 

 

Pr *| 1,

Pr * | 0,

Z Y

Z Y

  

  
 and 

 
 

*

*

Pr *| 1,

Pr * | 0,

Z Y

Z Y

  

  
 respectively. 

The first criteria to evaluate the quality of data is checking whether *r  is close to *R . The 

intention is to examine whether equation (3.7) holds. Then we run logistic regression based on 
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the combined case-control data: 1{( 1, ) ( 1,..., )}k kY Z k n   and 0{( 0, ) ( 1,..., )}k kY Z k n  . 

The MLE of ̂  and ̂  are obtained. By checking whether ̂  is close to the true value, we 

can examine whether the case-control data provide reliable information of  . The results are 

summarized in Tables 4.1. We observe that the empirical estimate 
*r  is close to 

*R  

obtained from the population data, the estimations of ̂  are also stable and close to the true 

value. 

Table 4.1: Logistic regression analysis of case-control data 

0.5, 10000,Replications 100N   
 

1 0100, 100n n   

 
0

0

r

R
 1

1

r

R
   3ˆ 10    SE of ̂  

0.3p   1.013132 1.018201 22.336209 0.034299 

0.5p   1.024408 0.992022 33.755393 0.027108 

0.7p   1.021804 1.003206 1.477217 0.028456 

1 050, 150n n   

 
0

0

r

R
 1

1

r

R
   3ˆ 10    SE of ̂  

0.3p   0.991638 1.044951 31.116517 0.033287 

0.5p   0.978128 1.033878 56.818868 0.032211 

0.7p   1.013979 1.004441 20.400237 0.036247 

1 0150, 50n n   

 
0

0

r

R
 1

1

r

R
   3ˆ 10    SE of ̂  

0.3p   1.018330 1.038011 17.547938 0.036607 

0.5p   1.037552 1.021409 27.831059 0.038455 

0.7p   1.042732 1.009384 6.449529 0.038106 
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4.3 Data Generation for Familial Data 

4.3.1 Familial prospective data of the true population 

We first generate data following the model proposed by Bahadur (1961). First set the 

values of the parameters:  ,  ,   and p . The algorithm is summarized below: 

 Step 1: Generate 
ipZ
 
following Bernoulli  p  and 

ir
Z

 
independently also following  

Bernoulli  p ;    

 Step 2:  Given 
ipZ
 
and

 ir
Z , compute 1 2 3 4, , ,P P P P  mentioned in Table 3.1; 

 Step 3:  Generate  Uniform 0,1iU ; 

 Step 4: Set 

1

1 1 2

1 2 1 2 3

1 2 3

1,  1  if  0

0,  1  if  

1,  0  if  

0,  0  if  1

i i

i i

i i

i i

p r i

p r i

p r i

p r i

Y Y U P

Y Y P U P P

Y Y P P U P P P

Y Y P P P U

   


    


      
       .

 

The procedure is repeated for 1,...,i N  for 10000N  . 

4.3.2 Familial case-control data from the true population  

The procedure is stated as follows. 

 Step 1: Randomly select 1n  probands from the case families with 1
ipY 

 
and record the 

values of ( , , )
i i ip r rZ Y Z ;  

 Step 2: Randomly select 0n  probands from the control families with 0
ipY 

 
and record 

their values of ( , , )
i i ip r rZ Y Z .  

4.4. Analysis on Familial Data  

 We first examine whether the algorithm for generating perspective data satisfies the 

reproducible assumption. For , 0,1p rz z  , define  
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1
1

1

( , , )

( , , )

( , )

N

pi p pi p ri r

i
p p r N

pi p ri r

i

I Y y Z z Z z

q y z z

I Z z Z z





  



 




, and 

1
1

1

( , )

( , )

( )

N

pi p pi p

i
p p N

pi p

i

I Y y Z z

q y z

I Z z





 








;  

1
2

1

( , , )

( , , )

( , )

N

ri r pi p ri r

i
r p r N

pi p ri r

i

I Y y Z z Z z

q y z z

I Z z Z z





  



 




, and 

2 ( , )r rq y z  1

1

( , )

( )

N

ri r ri r

i

N

ri r

i

I Y y Z z

I Z z





 








.     

The reproducible condition should imply that 1( , , )p p rq y z z 1( , )p pq y z  and 2( , , )r p rq y z z  

2( , )r rq y z . The results of these quantities based on prospective data and case-control data 

from the true population are recorded in Table 4.2 ~ 4.4. In analyzing the case-control familial 

data, we assume   and   are known and then obtain the MLE of  . By checking 

whether ̂  is close to the true value, we can examine whether the familial case-control data 

provide reliable information of the association in a family. This result is given in Table 4.5. 

We observe that the performance of the reproducible properties is good in our population 

data which means that the model is appropriate. But sometimes the reproducible properties do 

not reflected in the simulated case-control data. Accordingly the estimations of ̂  will have 

worse results in these situations.  
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Table 4.2.A: Checking reproducible properties of the population data (p=0.3) 

10000N 
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.734649 1q  0.630283 1q  0.265351 1q  0.369717 

0rz   1q  0.729743 
1q  0.638770 

1q  0.270257 
1q  0.361230 

 1q  0.731267 
1q  0.636183 

1q  0.268733 
1q  0.363817 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.718202 2q  0.607213 2q  0.281798 2q  0.392787 

0pz   
2q  0.752438 2q  0.642232 2q  0.247562 2q  0.357768 

 2q  0.742251 2q  0.632012 2q  0.257749 2q  0.367988 

Table 4.2.B: Checking reproducible properties based on case-control data (p=0.3) 

1 010000, 100, 100N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.545455 1q  0.547170 1q  0.454545 1q  0.452830 

0rz   1q  0.696970 1q  0.391304 1q  0.303030 1q  0.608696 

 1q  0.636364 1q  0.448276 1q  0.363636 1q  0.551724 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.590909 2q  0.575758 2q  0.409091 2q  0.424242 

0pz   
2q  0.698113 2q  0.521739 2q  0.301887 2q  0.478261 

 2q  0.666667 2q  0.536000 2q  0.333333 2q  0.464000 
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Table 4.2.C: Checking reproducible properties based on case-control data (p=0.3) 

1 010000, 50, 150N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.363636 1q  0.282609 1q  0.636364 1q  0.717391 

0rz   1q  0.222222 
1q  0.218750 

1q  0.777778 
1q  0.781250 

 1q  0.275862 
1q  0.239437 

1q  0.724138 
1q  0.760563 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.590909 2q  0.222222 2q  0.409091 2q  0.777778 

0pz   
2q  0.652174 2q  0.427083 2q  0.347826 2q  0.572917 

 2q  0.632353 2q  0.371212 2q  0.367647 2q  0.628788 

Table 4.2.D: Checking reproducible properties based on case-control data (p=0.3) 

1 010000, 150, 50N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.782609 1q  0.763158 1q  0.217391 1q  0.236842 

0rz   1q  0.818182 1q  0.690476 1q  0.181818 1q  0.309524 

 1q  0.807692 1q  0.713115 1q  0.192308 1q  0.286885 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.695652 2q  0.527273 2q  0.304348 2q  0.472727 

0pz   
2q  0.842105 2q  0.619048 2q  0.157895 2q  0.380952 

 2q  0.786885 2q  0.582734 2q  0.213115 2q  0.417266 
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Table 4.3.A: Checking reproducible properties of the population data (p=0.5) 

10000N 
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.725902 1q  0.611177 1q  0.274098 1q  0.388823 

0rz   1q  0.739654 
1q  0.627195 

1q  0.260346 
1q  0.372805 

 1q  0.732735 
1q  0.619038 

1q  0.267265 
1q  0.380962 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.729869 2q  0.611089 2q  0.270131 2q  0.388911 

0pz   
2q  0.726092 2q  0.616170 2q  0.273908 2q  0.383830 

 2q  0.727973 2q  0.613609 2q  0.272027 2q  0.386391 

Table 4.3.B: Checking reproducible properties based on case-control data (p=0.5) 

1 010000, 100, 100N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.500000 1q  0.390244 1q  0.500000 1q  0.609756 

0rz   1q  0.548387 1q  0.529412 1q  0.451613 1q  0.470588 

 1q  0.527778 1q  0.467391 1q  0.472222 1q  0.532609 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.695652 2q  0.532258 2q  0.304348 2q  0.467742 

0pz   
2q  0.609756 2q  0.470588 2q  0.390244 2q  0.529412 

 2q  0.655172 2q  0.504425 2q  0.344828 2q  0.495575 
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Table 4.3.C: Checking reproducible properties based on case-control data (p=0.5) 

1 010000, 50, 150N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.325581 1q  0.245614 1q  0.674419 1q  0.754386 

0rz   1q  0.306122 
1q  0.137255 

1q  0.693878 
1q  0.862745 

 1q  0.315217 
1q  0.194444 

1q  0.684783 
1q  0.805556 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.604651 2q  0.244898 2q  0.395349 2q  0.755102 

0pz   
2q  0.614035 2q  0.215686 2q  0.385965 2q  0.784314 

 2q  0.610000 2q  0.230000 2q  0.390000 2q  0.770000 

Table 4.3.D: Checking reproducible properties based on case-control data (p=0.5) 

1 010000, 150, 50N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.825397 1q  0.636364 1q  0.174603 1q  0.363636 

0rz   1q  0.733333 1q  0.787879 1q  0.266667 1q  0.212121 

 1q  0.780488 1q  0.701299 1q  0.219512 1q  0.298701 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.777778 2q  0.550000 2q  0.222222 2q  0.450000 

0pz   
2q  0.727273 2q  0.727273 2q  0.272727 2q  0.272727 

 2q  0.757009 2q  0.612903 2q  0.242991 2q  0.387097 
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Table 4.4.A: Checking reproducible properties of the population data (p=0.7) 

10000N 
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.725744 1q  0.631256 1q  0.274256 1q  0.368744 

0rz   1q  0.713138 
1q  0.625140 

1q  0.286862 
1q  0.374860 

 1q  0.721928 
1q  0.629445 

1q  0.278072 
1q  0.370555 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.718154 2q  0.607750 2q  0.281846 2q  0.392250 

0pz   
2q  0.731822 2q  0.622896 2q  0.268178 2q  0.377104 

 2q  0.722294 2q  0.612238 2q  0.277706 2q  0.387762 

Table 4.4.B: Checking reproducible properties based on case-control data (p=0.7) 

1 010000, 100, 100N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.505155 1q  0.428571 1q  0.494845 1q  0.571429 

0rz   1q  0.577778 1q  0.437500 1q  0.422222 1q  0.562500 

 1q  0.528169 1q  0.431034 1q  0.471831 1q  0.568966 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.659794 2q  0.422222 2q  0.340206 2q  0.577778 

0pz   
2q  0.642857 2q  0.375000 2q  0.357143 2q  0.625000 

 2q  0.654676 2q  0.409836 2q  0.345324 2q  0.590164 
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Table 4.4.C: Checking reproducible properties based on case-control data (p=0.7) 

1 010000, 50, 150N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.261364 1q  0.111111 1q  0.738636 1q  0.888889 

0rz   1q  0.363636 
1q  0.260870 

1q  0.636364 
1q  0.739130 

 1q  0.295455 
1q  0.161765 

1q  0.704545 
1q  0.838235 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.431818 2q  0.386364 2q  0.568182 2q  0.613636 

0pz   
2q  0.600000 2q  0.521739 2q  0.400000 2q  0.478261 

 2q  0.488722 2q  0.432836 2q  0.511278 2q  0.567164 

Table 4.4.D: Checking reproducible properties based on case-control data (p=0.7) 

1 010000, 150, 50N n n  
 

 ( , ) (1,1)p py z   ( , ) (1,0)p py z   ( , ) (0,1)p py z   ( , ) (0,0)p py z   

1rz   1q  0.724490 1q  0.575758 1q  0.275510 1q  0.424242 

0rz   1q  0.857143 1q  0.900000 1q  0.142857 1q  0.100000 

 1q  0.768707 1q  0.698113 1q  0.231293 1q  0.301887 

 

 ( , ) (1,1)r ry z   ( , ) (1,0)r ry z   ( , ) (0,1)r ry z   ( , ) (0,0)r ry z   

1pz   
2q  0.734694 2q  0.755102 2q  0.265306 2q  0.244898 

0pz   
2q  0.787879 2q  0.800000 2q  0.212121 2q  0.200000 

 2q  0.748092 2q  0.768116 2q  0.251908 2q  0.231884 
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Table 4.5: The MLE of   based on case-control familial data 

 
10000, 0.5N    

0.5   

 1 0100, 100n n   1 050, 150n n   1 0150, 50n n   

0.3p   ̂ 0.522000 ̂ 0.400637 ̂  0.473103 

0.5p   ̂ 0.467715 ̂ 0.614172 ̂  0.519416 

0.7p   ̂ 0.562765 ̂ 0.534639 ̂  0.399379 
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Chapter 5 Regression Analysis Based on Familial Data 

For those who have developed the disease, the age at onset may be informative. As 

mentioned in Li et al. (1998), early age of onset has been a hallmark for genetic predisposition 

in most of diseases that aggregate in families. When age-at-onset is chosen as the primary 

response, the effect of censoring has to be considered in the analysis. 

In this chapter, we discuss several important issues on analyzing familial age-onset data. 

Specifically denote T  as the age-onset variable and Z  as a 1p  vector of covariates. The 

Cox proportional hazards model is the most well-known model for failure time variables 

which can be written as 

     0| exp ,Tt Z t Z                           (5.1) 

where 0 ( )t
 
is the baseline hazard function and   measures the effect of Z  on the hazard 

and is of major interest. In familial failure-time analysis, the Cox model is imposed on 

probands. For inference of ,  we first review the analysis based on a prospective sample 

and then extend the discussion to a valid case-control sample. Finally we will discuss the 

modeling and inference frameworks when familial case-control data are collected.  

5.1 Likelihood Analysis Based on Probands  

Under right censoring, let C  be the censoring variable. One observes that X T C  , 

( )I T C    and covariates Z . In prospective studies, we identify a sample of individuals 

with specified covariates: iZ  and then determine their observed time and disease status: 

( , )i iX   for 1,...,i n . At time t , the risk set can be denoted as ( )R t  { : , 1,..., }ii X t i n  . 

Given the risk set information, a subject failing at time t  with covariate jZ  given ( )j R t  

will contribute to the partial likelihood by  

  
 

 

   

   

 

 

0

0

( ) ( ) ( )

exp exp|
.

| exp exp

T T

j jj

T T

i i i

i R t i R t i R t

t Z Zt Z

t Z t Z Z

  

   
  

 

  
         (5.2) 
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Prentice and Breslow (1978) discussed the likelihood formulation based on case-control 

age-onset data. It is important to first introduce the sampling procedure which involves how 

to match a case subject with a control subject. Specifically at time t , ( )m t  observations are 

sampled from the case population containing those who develop the disease at time t  and, 

independently, ( )n t  observations are sampled from the control population containing those 

who have not developed the disease up to time t . Observed data can be summarized in Table 

5.1.  

Time: it  Case:  , 1iX t    Control:  , 0iX t    

1t  1( )m t  individuals 1( )n t  individuals 

   

it  ( )im t  individuals ( )in t  individuals 

   

kt  ( )km t  individuals ( )kn t  individuals 

Table 5.1 Age-matched case-control data 

 

The case-control design for collecting age-onset data considers sampling from the 

conditional distribution of Z  based on ( , )X  . To establish the relationship between 

prospective and retrospective samples, Prentice and Breslow (1978) extended the result of 

Cornfield (1951) to age-onset data and derived the following condition: 

Pr( | , 1) / Pr( 0 | , 1)

Pr( | , 0) / Pr( 0 | , 0)

Pr( , 1| ) / Pr( , 1| 0)
    .

Pr( , 0 | ) / Pr( , 0 | 0)

Z X t Z X t

Z X t Z X t

X t Z X t Z

X t Z X t Z

 

 

 

 

    

    

    


    

     (5.3) 

Notice that when C  is independent of both T  and Z , we have  

  
Pr( , 1| ) Pr( , | ) Pr( | ) Pr( ) ( )

;
Pr( , 0 | ) Pr( , | ) Pr( | ) Pr( ) ( )C

X t Z T t C t Z T t Z C t t

X t Z T t C t Z T t Z C t t

 

 

     
  

     
 

  0 ( )Pr( , 1| 0) Pr( | 0) Pr( )
.

Pr( , 0 | 0) Pr( | 0) Pr( ) ( )C

tX t Z T t Z C t

X t Z T t Z C t t



 

     
 

     
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Hence the right-hand side of (5.3) equals 
0( ) / ( )t t   and, under the proportional hazard 

model, (5.3) becomes 

    
Pr( | , 1) / Pr( 0 | , 1)

exp( )
Pr( | , 0) / Pr( 0 | , 0)

TZ X t Z X t
Z

Z X t Z X t

 


 

    


    
.      (5.4) 

Rearranging (5.4), we obtain  

Pr( 0 | , 1)
Pr( | , 1) Pr( | , 0)exp( )

Pr( 0 | , 0)

T Z X t
Z X t Z X t Z

Z X t


  



  
    

  
 

which is equation (2) in Li et al. (1998). The left-hand side of (5.4) is identifiable based on 

case-control data which implies that   is also identifiable based on such data.   

 Prentice and Breslow (1978) proposed a conditional likelihood approach for estimating 

  based on case-control data. At time t , define ( ( ), ( ))R m t n t  as a set of all subsets of size 

( )m t  from a total of ( ) ( )m t n t  subjects. Given this risk set information, the first ( )m t  

subjects with covariates 1 ( ),..., m tZ Z  respectively actually belonging to the case group will 

contribute the probability  

      

 

 

( )

1

( )

( ( ), ( )) 1

|

,

|

m t

i

i

m t

lj

l R m t n t j

t Z

t Z







 



 
             

(5.5) 

where ljZ  denotes the covariate value for j th subject in the l th combinations. Notice that  

 
( )

( )

0 1 ( )

1

| { ( )} exp{ ( ... )}
m t

m t T

i m t

i

t Z t Z Z  


    

and   

 
( )

( )

0 1 ( )

1

| { ( )} exp{ ( ... )}.
m t

m t T

lj l lm t

j

t Z t Z Z  


    

It follows that  

    

 

 

( )

1

( )

( ( ), ( ))( ( ), ( )) 1

|
exp( )

,

exp( )|

m t

i T

i

m t
T

llj
l R m t n tl R m t n t j

t Z
s

st Z








 




 
        

  (5.6) 
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where 1 ( )... m ts Z Z    and 1 ( )...l l lm ts Z Z   . Finally the likelihood can be written as  

1

( ( ), ( ))

exp( )
,

exp( )
j j

Tk

Tj
l

l R m t n t

s

s










           (5.7) 

where 
1 ... kt t   denote observed failure times for the case group. It is important to note that 

( ( ), ( ))R m t n t  only includes subjects who are sampled from the retrospective study at time t . 

Hence it does not have the nested property of a regular risk set such as ( ) ( )R t R t  . It is 

important to mention that computation of (5.7) involves all possible permutations in the 

denominator which is very time-consuming if ( ) ( )m t n t  is not small. Several authors 

proposed algorithms to approximate the likelihood.  

We provide a numerical example to illustrate construction of ( , )R m n  in which the label 

t  is ignored to simply the presentation. Suppose the case-sample contains subjects with 

covariates 1Z  and 2Z  respectively and the matched control-sample contains subjects with 

covariates 3Z  and 4Z  respectively. Hence (2,2)R  consists of 
4

2

 
 
 

 combinations which 

can be labeled by 1,...,6l   corresponding to 

1 2 1 3 1 4 2 3 2 4 3 4( , ),( , ), ( , ), ( , ), ( , ), ( , )Z Z Z Z Z Z Z Z Z Z Z Z  sets of covariates respectively. For 

example 22 3Z Z  corresponds to the second covariate with 2l  . It follows that 

1 2s Z Z  , 1 1 2s Z Z  , 2 1 3s Z Z  , 3 1 4s Z Z  , 4 2 3s Z Z  , 5 2 4s Z Z   and 

6 3 4s Z Z  .  

5.2 Likelihood Analysis Based on Familial Data  

Table 5.2 summarizes observed case-control familial data in which probands’ times 

(onset or censored) are matched. Specifically at time it  , we sample  im t  case probands 

and their relatives and matched with  in t  control probands and their relatives. Denote 

( , )p rX X X  as observed times and ( , )p r    as the corresponding indicators for a 

proband and his/her relative respectively. 
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Time 

Case family: 

 , 1p i pX t    

Control family: 

 , 0p i pX t    

1t  
 1m t  probands and their 

relatives 

 1n t  probands and their 

relatives 

   

it  
 im t  probands and their 

relatives 

 in t  probands and their 

relatives 

   

kt  
 km t  probands and their 

relatives 

 kn t  probands and their 

relatives 

Table 5.2 Age-matched case-control familial data 

 

To simply the presentation, assume that there are two members in one family (one 

proband and one relative). Observed information for a case subject includes 

( , 1, , , , )p p p r r rX t Z X Z    while the information for the corresponding age-matched 

control subject includes ( , 0, , , , )p p p r r rX t Z X Z   . Two samples from 

   Pr( , , , | , 1 )r r p r p pX Z Z X t    and    Pr( , , , | , 0 )r r p r p pX Z Z X t    are drawn 

independently. 

Li et al. (1998) extended the discussions in Whittemore (1995) from binary data to 

age-onset data. The model assumption consists of two stages. In the first stage, the model on 

the proband namely  Pr( | , )p p pZ X  , is assumed to follow the Cox model. In the second 

stage, the model on    Pr( , | , , )r r p pX X Z   is constructed where ( , )p rZ Z Z .  It should 



29 

be mentioned that a crucial reproducible assumption to simply the analysis is given by 

   * * * * *Pr{( , ) | , ) Pr{( , ) | )p rX Z Z X Z   (* = p,r).                (5.8) 

This assumption only holds when covariates Z  within a family do not depend on any 

unmeasured variables responsible for the correlation of age-onset. One can write 

   Pr( , , , | , )r r r p p pX Z Z X        Pr( , , | , , )P( | , )r r r p p p p p pX Z X Z Z X   . 

Note that  

         Pr( , , | , , ) Pr( , | , , , )Pr( | , , )r r r p p p r r p p p r r p p pX Z X Z X X Z Z Z X Z     . 

By (5.8), we know that, given pZ ,  ,p pX   and rZ  are independent. So, we have  

 Pr( | , , ) Pr( | )r p p p r pZ X Z Z Z  .  

Therefore, formulated the likelihood function for familial case-control data can be based on 

the following decompositions:  

     Pr( | , )Pr( , | , , )Pr( | )p p p r r p p r pZ X X X Z Z Z   .    (5.9) 

 The first component of (5.9) can be analyzed based on probands’ data which can be 

performed in the first stage. Recall the under the Cox model assumption discussed in Section 

5.1, the form of  Pr( | , )p p pZ X   can be specified and equation (5.7) can be applied to 

estimate  . The third component Pr( | )r pZ Z  in (5.9) can be treated as a constant.  

To specify the form of    Pr( , | , , )r r p pX X Z   in (5.9), Li et al. (1998) adopted the 

Clayton model (Clayton, 1978) which is the most popular assumption for bivariate 

failure-time data. Recall that pT  and rT  represent the failure times of a proband and his/her 

relative respectively. When ( , )p rT T  follows the Clayton model , the joint survival function 

can be written as  
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       

   

1
1 1 11     if 1

, Pr ,

                          if 1          (5.10)

p r
p r

p r

S s S t
S s t T s T t

S s S t

   



  

   
     
  

 

where        *exp

* 0 * 0

0

exp exp ( )
T

t
ZTS t v Z dv S t


 

 
   

 
  for * ,p r  assuming that the 

Cox model (5.1) and   is an association parameter measuring the increased risk of an 

individual if his/her relative has the disease rather than being disease free at a given age. Note 

that 
1

1










, where   is Kendall’s tau. 

The next objective is to derive the joint probability of ( , ) ( , , , )p r p rX X X    where 

* * *X T C  , * * *( )I T C    and ( , )p rT T  are subject to censoring independently by 

( , )p rC C . Notice that  

   
   

    
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exp 1* 0 0

* 0
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
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   
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 , 
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0 ( )S t

t






 

   
0

0

0 0

0

exp
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t
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

 

 
  

      
  


 .  

Accordingly, we have  

 
      *exp*

0 * 0exp ( )
T ZT

S t
t Z S t

t


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By (5.11), it follows that Pr( , , 1, 1| )p p r r p rX x X x Z      is proportional to  
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Similarly Pr( , , 1, 0 | )p p r r p rX x X x Z      is proportional to  
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Accordingly we obtain  
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where D  is the number of individuals with disease among the proband and the relative. Let 

 0 t  be a baseline cumulative hazard function up to time t . The conditional probability 

    Pr , | , 0 ,r r p pX X Z    for a control family is obtained by dividing (5.12) by 

      0Pr , 0 | exp exp T

p p p p pX x Z x Z     . In addition, the probability 

    Pr , | , 1 ,r r p pX X Z    for a case family is dividing (5.12) by 

          0 0Pr , 1| exp exp expT T

p p p p p p pX x Z X Z X Z       . Finally, the 

retrospective likelihood function at the time it  is given as: 
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       1 2
,i iL L                                       (5.13) 

The resulting likelihood is then the product of terms (5.13) over the k  distinct times: 

 
1

k

i

i

L L t


 . So we can obtain the MLE of   and   through this likelihood for a 

case-control study. 
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Chapter 6 Simulations for Analysis of Age-onset Data from Case-control 

Family Studies 

We examine some probability statements based on the case-control design by 

simulations. We generate probands’ data based on the Cox model in (5.1) which follows 

     0

0

exp exp

t

TS t s Z ds 
 

  
 
 . The generation procedure can be stated as follows. Let 

   0,1S T U U . Under the assumption of Cox proportional model, we have 

   0

0

exp exp

T

TU s ds Z 
 

   
 
 . It implies that 

 
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1

0

log

exp T

U
T
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
 
  
  

, where 

   0 0

0

t

t s ds   . If we set  | 0 Exp 1T Z  . Hence it follows that 
 

 
log

exp T

U
T

Z


 , 

where  log U  follows Exp(1). 

6.1 Data Generation for Individual Data 

6.1.1 Prospective data of the true population 

  First of all, we generate the population data based on Cox PH model (5.1) and the afore 

mentioned assumptions. Set the values of   and p . The algorithm is summarized below: 

 Step 1: Generate Bernoulli( )iZ p ; 

 Step 2: Generate  ~ 0,1iU U ; 

 Step 3: Generate 
 

 
log

exp

i

i T

i

U
T

Z


 ; 

 Step 4: Generate  0,iC U K , K  is a fixed number; 

 Step 5: We have   , ,i i iX Z , where i i iX T C   and  i i iI T C   . 

The procedure is repeated for 1,..., 10000i N  .  

 



34 

6.1.2 Case-control data from the true population 

 Suppose that we generate n N  observations from the population with 
1 / 2n n  

persons from the case group with  , 1i iX    and then we construct the matched 

0 1 / 2n n n   control group with  , 0i iX   . The procedure is stated as follows. 

 Step 1: Randomly select 
1n  subjects from the case group and record their values of 

iZ ;  

 Step 2: For each case we match with a control from control group with 1 0 0.1X X  , 

where 1X  and 0X  are observed times for a case and a control respectively. 

The method of Step 1 is the same as Step 1 in section 4.1.2. And when a control has been 

collected to match a case, he/she will not be picked up again to match another case individual. 

6.2 Analysis on Individual Data 

Now we want to know whether the case-control sampling procedure produces reliable 

data. Let 1 1

1 1

( 1, , 1) / ( 0, , 1)

( 1, , 0) / ( 0, , 0)

n n

i i i i i i

i i

n n

i i i i i i

i i

I Z X I Z X

Q

I Z X I Z X

 

 

 

 

   



   

 

 
 be the empirical estimate of 

Pr( 1| , 1) / Pr( 0 | , 1)

Pr( 1| , 0) / Pr( 0 | , 0)

Z X t Z X t

Z X t Z X t

 

 

     

     
. We then examine whether the equation (5.4) 

can be achieved by checking whether Q  is close to  exp 1  .  

Then we analyze the case-control data by solving the MLE of   and then check whether 

̂  is close to the true value of  . The results are summarized in Table 6.1. We obtain that 

when Q  is close to  exp T Z , the estimation of ̂  is also closer to our true value. 
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Table 6.1: Analysis of age-onset data 

based on case-control studies 

1 010000, 100,Replications 100N n n     

0.5   

  expQ     3ˆ 10    SE of ̂  

0.3p   0.047896 30.762727 0.029843 

0.5p   0.043819 24.623113 0.028702 

0.7p   0.020804 18.990294 0.031158 

 

6.3 Data Generation for Familial Data 

6.3.1 Familial prospective data of the true population  

We now generate familial data following the Clayton model of the form in (5.10). We 

also let  | 0 Exp 1T Z  , so    0 expS t t  . Then we can modify the data generation 

procedure for the Clayton model originally proposed by Prentice and Cai (1992). The 

algorithm is summarized below: 

 Step 1: Generate  * Bernoulli
i

Z p  for * ,p r ; 

 Step 2: Set 0.5   
 1

 
2







  ; 

 Step 3: Generate independent variables  ,
i ip rU U ,  * 0,1

i
U U  for * ,p r ; 

 Step 4: Generate  , :
i ip rT T   the baseline group with * 0

i
Z  , and  * Exp 1

i
T   for 

* ,p r  by setting 

 
1

1
ir

a U 


  , 

   
1

1log 1 1
i ip pT a a U 




 
     

 
, 

  log 1
i ir rT U    ; 

 Step 5: Set 0.5  ; 
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 Step 6: Generate  ,
i ip rT T : 

 
*

*

*exp

i

i

i

T
T

Z


  for * ,p r ; 

 Step 7: Generate  ,
i ip rC C ,  * 0,

i
C U K  for * ,p r , where K  is a fixed number; 

 Step 8: We have       , , , , ,
i i i i i ip r p r p rX X Z Z   , where * * *i i i

X T C   and 

 * * *i i i
I T C    for * ,p r . 

The procedure is repeated for 1,...,i N  for 10000N  . 

6.3.2 Case-control data from the true population 

 Suppose that we generate n N  families from the population with 1 / 2n n  families 

from the case families with  , 1
i ip pX   . Then we match 0 1 / 2n n n   control families: 

 , 0
i ip pX    to the case families. 

The procedure is stated as follows. 

 Step 1: Randomly select 1n  probands from the case families and record their values of 

ipZ  and data on his/her relative:   , ,
i i ir r rZ X  ;  

 Step 2: Each case proband is matched with a control proband from the control group with 

1 0 0.1X X  , where 1X  and 0X  are observed times for a case proband and a control 

proband respectively. And also record their values of 
ir

Z  and  data on his/her relative: 

  , ,
i i ir r rZ X  . 

6.4 Analysis on Familial Data 

 We analyze the simulated familial case-control data by calculating the MLE of the 

parameters:   and   based on the likelihood function (5.13) and then check whether ̂  

and ̂  are close to their true value. We also check whether the probands’ data can achieve 

equation (5.4). These results are summarized in Table 6.2. We observe that when Q  is close 
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to  exp T Z , the estimation of ̂  is also close to the true value, that means the conditional 

likelihood function can represent the first part of our decomposition of the likelihood function 

(5.13). 

Table 6.2: Analysis of familial age-onset data 

based on case-control studies 

1 010000, 100,Replications 100N n n     

0.5, 0.5    

  expQ     3ˆ 10    SE of ̂    3ˆ 10    SE of ̂  

0.3p   0.076737 23.221662 0.008890 1.859457 0.004787 

0.5p   0.023449 10.732187 0.009518 5.252649 0.004348 

0.7p   0.018496 6.228642 0.009259 12.534723 0.004334 
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Chapter 7 Concluding Remarks 

In the thesis, we study and review the literature on two regression models: logistic 

regression model and Cox proportional hazards model based on the prospective design and 

the case-control design to analyze the familial disease incidence data and familial age-onset 

data respectively. For inference, it has been shown that the data from a case-control design 

can be analyzed as if it is from a prospective design if some crucial properties like (3.7), (5.4) 

and reproducible properties hold. We perform simulations to examine these properties and 

check the properties of the parameter estimates. It allows us to see how the quality of 

generated data affects subsequent inference results. 

The variables that we are interested in include disease incidence and age-onset data. For 

age-onset data, we treat an individual without the disease as being censored. But, these 

censored individuals may be actually censored or be non-susceptible. In such a situation, cure 

model can be adopted. This topic deserves future investigation. 
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