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Abstract

Transcription factors (TFs) play critical roles in controlling gene expressions. To understand
how the cell cycle-regulated_genes can be transcribed just before they are needed, it is
essential to identify their transcriptional regulators.”"We developed a novel relative R squared
method to identify cell cycle TFs in yeast by integrating the ChIP-chip and cell cycle gene
expression data. Our method identified 15 cell cycle TFs, 12 of which are known cell cycle
TFs, while the remaining three (Hap4, Rebl and Tye7) are putative novel cell cycle TFs. Four
lines of evidence are provided to show the biological significance of our prediction. Besides,
for seven of the 15 identified cell cycle TFs, we can further assign a specific cell cycle phase
in which the TFs function. Most of our predictions are supported by previous experimental or
computational studies. Furthermore, we show that our method performs better than five
existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to

different cell cycle gene expression datasets suggests that our method is robust.

Keywords: relative R squared method; transcription factor; gene regulation
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1. Introduction

A transcription factor (TF) is a protein that binds to specific DNA sequences and controls the
transfer genetic information from DNA to mRNA. Transcription factors perform this function
alone or with other proteins in a complex, by promoting, or blocking the recruitment of RNA
polymerase (the enzyme that performs the transcription of genetic information from DNA to
RNA) to specific genes. A defining feature of transcription factors is that they contain one or
more DNA-binding domains, which attach to specific sequences of DNA adjacent to the

genes that they regulate.

Cell cycle transcription factors (TFs) are the genes that regulate the expression of cell
cycle-regulated genes. We regard a TF as-a cell cycle TF if a statistically significant portion of
its regulatory targets are in the:set of 800 cell cycle-regulated genes identified by Spellman et
al. [23]. Eukaryotic cell cycle-is a complex process, which consists of four main phases: DNA
replication (S-phase) and mitosis. (M-phase), separated by two gap phases (G1 and G2) [3].
Proper regulation of the cell cycle process is-erucial to the growth and development of all
organisms. Therefore, understanding this regulation is central to the study of many diseases,
most notably cancer [28]. Since cell cycle is an important biological process which is
regulated at many levels, identifying the cell cycle-regulated genes and their transcriptional
regulators are two essential issues for the study of the cell cycle regulation process at the

transcriptional level.

The major approach developed to identify TFs is ChIP-chip technique. It is a technique that
combines chromatin immunoprecipitation ("ChIP") with microarray technology ("chip"). The
main technique is to isolate and identify the DNA sequences occupied by specific DNA

binding proteins in cells. These binding sites may indicate functions of various transcriptional



regulators and help identify their target genes during animal development and disease
progression. The identified binding sites may also be used as a basis for annotating functional
elements in genomes. The types of functional elements that one can identify using
ChIP-on-chip include promoters, enhancers, repressor and silencing elements, insulators,
boundary elements, and sequences that control DNA replication. So we can identify physical
interactions between TFs and promoters. Although many studies utilize ChIP-chip data to
accomplish the regulation process of yeast cell cycle and build the network of TF-promoter
interactions [22], ChIP-chip data alone cannot tell whether a TF is an activator or a repressor.
In order to solve this problem, we combine time course gene expression data. Typically, time
course gene expression data are collected by microarray experiments in which gene
expression levels of thousands of genes ‘are measured across a number of time points across
the cell cycle [6,23,19]. Many.computational methods have been developed to identify cell
cycle-regulated genes using the time course gene expression data. These methods include
Fourier analysis [23], partial Ieast square regression [ 13], single pulse modeling [36], k-means
clustering [24], QT-clustering {12], singular value decomposition [1], correspondence

analysis [10], and wavelet analysis [14].

Transcription factors play critical roles in controlling gene expressions. To understand how
the cell cycle-regulated genes can be transcribed just before they are needed, it is essential to
identify their transcriptional regulators. Several computational methods have been developed
to identify yeast cell cycle TFs [2,5,7,26,30-35], including statistical methods (ANOVA
analysis [26] and Fisher’s G test [5]), linear regression [7], network component analysis [35],
rule-based modeling [2], and dynamic system modeling [33]. In this paper, we propose a
relative R’ method to identify cell cycle TFs that regulate the expression of cell
cycle-regulated genes. The performance of our method is shown to be better than these

previous approaches (see Discussion section).



2. Methods

2.1 The regression model
The relative R’ method is first proposed by Wang and Li [27] to select the true regulation

relations of miRNAs. We extend it to the selection of regulation relations of TFs here.
Suppose we have microarray expression data of n TFs, z,......,z,, across ¢ times points

and B is a matrix which shows all the TFs that bind to the promoter of a gene of interest

and is obtained from ChIP-chip data. For each gene in the binding matrix B, we can find the

TFs, say z,.......,Zy, such that each of the TFs has this gene as its target. We fit the

microarray expression data of the genein terms of the microarray expression of the N TFs

using the regression model that is written as

v, =B, ¥z, + Brzs,t Bz, + (1)

where Y. represents the target gene’s ‘expression profile at time point ¢, B, represents the
target gene’s basal expression level induced by RNA polymerase II, S, indicates the

regulatory ability of TFi, z, represents the expression profile of TFi at time point ¢ and

€, denotes the stochastic noise due to the modeling error and the measuring error of the

target gene’s expression profile. Here &, is assumed to be a Gaussian noise with mean zero

and unknown standard deviation o.

After writing down the linear regression model of gene regulation, the next step is to estimate
the unknown parameters in the model. We rewrite Equation (1) into the following regression

form:
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Using the yeast cell cycle gene expression data from Pramila et al. [19], we can get the values
of {z,,y}for ief{l, 2, ---,N},re{l, 2, ---, (}. Equation (2) at different time points can be

put together as follows

32 1oz, -z, B, &
Nl el A e g
Yo Loz, - zy || By &,

For simplicity, we define the notations Y, Z, 8 and & to represent Equation (3) as follows

Y'=Zp+e (4)

where Y =[y, - y[]r, Z is the system matrix, f=[8, B - ﬂN]T is the unknown

parameter vector, and ¢ is the error vector, The parameter vector S can be estimated by

the best linear unbiased estimator as follows [17]

p=Z'2y'2'v=[h, B - B (5)

i=1

A N N
Let J3,=(Zp), . Define SS,,., = Z(yi -7)*  and SS,ee = Z(j;l —~73)* , where
i=1

N
y=)_y,/N is the mean of };,¥,,....,¥,. The R’ is defined as SS,,, /SS,,, , which is
i=1

used as an indication of the fitness of the linear regression model. The value of R’ lies



between 0 and 1 and the larger the value means the model fits better. However, we do not

directly use R’ in this study, but use the relative R’ values as a criterion to choose

high-confidence TFs of a gene. The definition of relative R’ is given later.

Now we want to select TFs that significantly affect the level of the target gene among the N

TFs. We rank the TFs according to their p-values---the smaller the p-value, the higher the

rank. The p-value of TF z, is defined as the probability

B

——) (6)
Var(B,)

which is the p-value used to test Hy: B =0, where W denotes the standard normal random

P(W|>

variable. The more detailed explanation is;mentioned as follows : Note that the expected value

of B equals S, the variance of B equals(Z"Z)"'c> and o’ can be estimated by

4 A
sample variance & =) (y, =3,)’ /=7, where r, denotes the rank of Z. Thus, E(S)=J,
i=1

and Var(f3) can be approximated by:the—ith diagonal element of (Z7Z)"'6>. By the

Central Limit Theorem, it is easy to show that

ﬂi _ﬁi ~ N(0,1) 7)

when / is large. So the test statistic which is used to test H,: B, =0 1is ﬁ: /\[Var( ﬁ:) and

P(|W| > ‘ Bl.‘/ \Var( ﬁi)) is the p-value. Note that if ¢ is small, for obtaining more accurate

probability approximation, we may use the T statistic to replace the standard normal random

variable W, where the T statistic follows a ¢ distribution.



Rank a TF as the jth significant TF if its p-value is the jth smallest p-value. Consider the TFs
that have a p-value less than a critical value, say p,. Assume that there are M TFs,

,Zy » Whose p-values are less than p,. We can use the M TFs to fit the microarray

expression data of the target gene. The model is

Y, =Byt Bz, + Byzy et Bz TE, (8)

Denote the R’ for the regression model (1) asg, and the R’ for the regression model (8)
asg, .- If g,/gy=s,these M TFs are regarded as the high-confidence TFs of the target
gene, where s is a given threshold. The value g,, /g, is defined as the relative R’ value in

Wang and Li [27]. We use the relative R’ values to evalute the fitness of model (8) instead of

using the standard R’. It is because that even if “gy +is not high, it is still possible that the
gene is the true target for some TFs among these N ' TFs. In our study, the smaller of M
value means the better of the results because we want to find small proportion of the

high-confidence TFs from the potential TFs.

From the above analysis, we can refine the TF-promoter binding matrix B=[), ;] into a
TF-gene regulatory matrix C=[c,,]. In this matrix, ¢, =1 if b, ;=1 and if TF; is

shown by the relative R’ method to exert a significant regulatory effect on the expression of

gene i.Otherwise, ¢, =0.

2.2 Identification of cell cycle TFs
From the high-confidence TF-gene regulatory matrix, the regulatory targets of each of the TFs
in yeast can be inferred. Then a TF is said to be a cell cycle TF if a statistically significant

portion of its regulatory targets are in the set of 800 cell cycle-regulated genes identified by



Spellman et al. [23]. The hypergeometric distribution is used to test the statistical significance
[17,29]. The procedure for checking whether TF j is a cell cycle TF is as follows. Let F be
the set of genes that are bound by TF j (inferred from the TF-promoter binding matrix), G

be the set of genes that are regulated by TF j (inferred from the TF-gene regulatory matrix),
V' be the set of cell cycle-regulated genes that are also bound by TF j, and T be the set of
cell cycle-regulated genes that are also regulated by TF j. Then the p-value for rejecting the

null hypothesis (Ho: TF j 1s not a cell cycle TF) is calculated as

(e

= P(x>|T|) = 9
pePzib=2, ) ©
o

where |G| means the number of genes in set G. TF j .is said to be a cell cycle TF if its

p-value is less than 0.05. This procedure is‘applied to each of the TFs under study.

2.3 Identification of the cell cycle phase in which a cell cycle TF functions

For each of the identified cell cycle TFs in section 2.2, we want to determine in which cell
cycle phase it functions. We regard that a cell cycle TF functions in the X phase (X = MGy, G,
S, SG;, G;M) if a statistically significant portion of its regulatory targets belong to the X
phase cell cycle-regulated genes identified by Spellman et al. [23]. Equation (9) is again used
to test the statistical significance. While G and F are defined as before, V' now denotes the
set of X phase cell cycle-regulated genes that are also bound by the cell cycle TF j under
study and 7' now denotes the set of X phase cell cycle-regulated genes that are also regulated
by the cell cycle TF under study. We say that a cell cycle TF functions in the X phase (X =

MG, Gy, S, SG,, GoM) if its p-value is less than 0.05.



3. Data Analysis

The flowchart of our method is as follows (see Figure 1). Using the ChIP-chip data of
Harbison ef al. [11], we derived a TF-promoter binding matrix. From this binding matrix, we
can know all the TFs that bind to the promoter of a gene of interest. These TFs are regarded as
the potential transcriptional regulators of the gene of interest. However, binding of a TF to the
promoter of a gene does not necessarily imply regulation. A TF may bind to the promoter of a
gene but has no regulatory effect on that gene’s expression. Hence, additional information is
required to solve this ambiguity inherent in the TF-promoter binding matrix. In this study, we
use the additional information provided by the yeast cell cycle gene expression data [19] to
solve this problem. We use a linear regression model to describe how the target gene’s
expression during cell cycle is controlled by the TFs that bind to its promoter (inferred from
the TF-promoter binding matrix). Among these bound TFs, those that have significant
regulatory effects on the target gene’s expression can be-extracted (see Methods). From this
procedure, we can refine the -TF-promoter binding matrix into a high-confidence TF-gene
regulatory matrix. Each TF-gene ‘regulatory relationship in this matrix is supported by the
ChIP-chip and gene expression data. From the high-confidence TF-gene regulatory matrix,
the regulatory targets of each of the 203 TFs in yeast can be inferred. Finally, a TF is said to
be a cell cycle TF if a statistically significant portion of its regulatory targets are cell

cycle-regulated genes.

3.1 Datasets and data preprocessing

We use two data sources in this study. First, the ChIP-chip data are from Harbison et al. [11].
They used genome-wide location analysis to determine the genomic occupancy of 203 TFs
(See Table 5) in rich media conditions. Second, the yeast cell cycle gene expression data are

from Pramila ef al. [19]. The alpha30 data set is used because it has the largest number of time



points. Samples for all genes in the yeast genome are collected with a sampling interval of 5
minutes and a total of 25 time points, which cover two cell cycles. That is, each gene has a 25

time points gene expression profile.

Using the ChIP-chip data from Harbison et al.’s paper [11], we can construct a TF-promoter

binding matrix B =[5, ;], where b, ;=1 if the p-value for TF j to bind the promoter of gene

i is < 0.001. Otherwise, b, ;=0. We have a matrix B that includes 4305 binding

relationships between the promoters of genes and TFs. However, binding of a TF to the
promoter of a gene does not necessarily imply regulation. Hence, additional information is
required to solve this ambiguity inherent in the TF-promoter binding matrix. Using our
relative R’ method, we can refine.the TF-promoter binding matrix B into a high-confidence

TF-gene regulatory matrix C:

3.2 Fit the regression model

We now apply relative R’ method to the alpha30 data set. The data set includes 4774 genes
across 25 time points. The microarray expressions of the 4774 genes across 25 time points can
be represented by a 4774%25 matrix, and the 203 TFs across 25 time points can be represented
by a 203x25 matrix. To apply the relative R’ method to an gene in the 4774 genes, we first
normalize the expression data of the genes using the 4774 expression data for each time point.
The normalization method is first to calculate the mean and standard deviation of the 4774
expression values for each time point. Then, for each time point, the normalized expression
data is the original expression data minus the mean and then divided by the standard deviation.
The procedure can reduce systematic biases. We fit the regression model with the expression
profiles of several TFs (inferred from the TF-promoter binding matrix B ) as the inputs and the

gene expression profile of the target gene as the output. Using relative R° method with



P, =0.72 and s=0.97, we obtain a high-confidence TF-gene regulatory matrix C and

there are 2494 elements of C whose values are equal to 1.

3.3 Identification of 15 cell cycle TFs

From the high-confidence TF-gene regulatory matrix C, the regulatory targets of each of the
TFs in yeast can be inferred. Using the p-value in (9), our method identified 15 cell cycle TFs
(see Table 1). Among them, 12 are known cell cycle TFs according to the MIPS database [18],
including the eight well-known major cell cycle TFs (Ace2, Fkhl, Fkh2, Mbpl, Mcm1, Swi4,

Swi5, and Swi6), Abfl, Hir3, Stb1, and Yoxl1.

The remaining three predicted novel cell cycle TFs (Hap4, Rebl and Tye7) are supported by
four lines of evidence. First, Hap4, Rebl and Tye7 are shown in literature [25,34] to have
physical or genetic interactions with some known cell cycle TFs (see Figure 2), suggesting
that these three TFs may play a role in the‘yeast cell cycle. Second, Hap4, Rebl and Tye7 are
shown in literature [25,34] to regulate some known cell cycle-regulated genes or have
protein-protein interactions with some known cell cycle proteins (see Table 2), indicating that
our prediction is biologically meaningful. Third, Hap4, Rebl and Tye7 are also predicted as
novel cell cycle TFs by previous computational studies [5,26,35]. Since the same results are
predicted by different computational methods, it indicates that our predictions are not
happened by chance and may represent novel findings. Fourth, Hap4 and Rebl were predicted
to be cell cycle-regulated by previous studies [8,19]. Being cell cycle regulated themselves,
these TFs may play a role in the cell cycle process. Since we provided many lines of evidence
to justify our prediction, our results are worthy of further experimental investigation by

molecular biologists.
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3.4 The cell cycle phases in which a cell cycle TF functions

After identifying the cell cycle TFs, it is desirable to determine in which cell cycle phase a
cell cycle TF functions. We regard that a cell cycle TF functions in the X phase (X = MG, G,
S, SG;, G;M) if a statistically significant portion of its regulatory targets belong to the X
phase cell cycle-regulated genes defined by Spellman et al. [23] (see Methods). For seven of
the 15 identified cell cycle TFs, we are able to determine the cell cycle phase in which they
exert their functions (see Table 1). On average, 86% of our predictions have literature support
(57% with experimental evidence and 29% with computational evidence), suggesting that our

results may have biological meaning.
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4. Discussion

4.1 Performance comparison with existing methods

Five previous studies also tried to identify the yeast cell cycle TFs. Tsai et al. [26] identified
30 cell cycle TFs by applying a statistical method (ANOVA analysis) and Cheng et al. [5]
identified 40 cell cycle TFs by applying another statistical method (Fisher’s G test). Cokus ef
al. [7] identified 12 cell cycle TFs by applying linear regression analysis. Andersson et al. [2]
identified 15 cell cycle TFs by applying rule-based modeling. Wu et al. [33] identified 17 cell
cycle TFs by using a time-lagged dynamic model of gene regulation (See Table 6). Since
these five approaches are different from ours, a performance comparison should be done. As
suggested by de Lichtenberg et al. [8], we tested the ability of each of these five methods to
retrieve the known cell cycle TFs- annotated in- the MIPS database [18]. Performance
comparison was based on the Jaccard similarity score[21], which scores the overlaps between
a method’s output and the list-of known cell cycle TEs (i.e., the true answers). The definition
of Jaccard similarity score is given later. Therefore, the higher the Jaccard similarity score, the
better the ability of a method to retrieve.the known cell cycle TFs. As shown in Table 3, our
method has the highest Jaccard similarity score among the six methods. Therefore, our

method outperforms the five existing methods.

Before giving definition of Jaccard similarity score, we first describe the origin of Jaccard
similarity score. It is evolved from the Jaccard coefficient, which measures similarity between
sample set A and sample set B. The Jaccard coefficient is defined as the size of the

intersection of the sample sets divided by the size of the union of the sample sets and can be

written as J. (A,B)=|A N B| / |A v, B| . Given two objects, A and B, each with n binary attributes,

the Jaccard coefficient is a useful measure of the overlap that A and B share with their

12



attributes. Each attribute of A and B can either be 0 or 1. The total number of each
combination of attributes for both A and B are specified as follows: M,, represents the total
number of attributes where A and B both have a value of 1. M, represents the total number
of attributes where the attribute of A is 0 and the attribute of Bis 1. M,, represents the total
number of attributes where the attribute of A is 1 and the attribute of B is 0. M, represents
the total number of attributes where A and B both have a value of 0. Each attribute must fall
into one of these four categories, meaning that M, +M,, +M,,+ M, =Q, The Jaccard
similarity coefficient, J, is given as J =M,,/(M, +M,,+M,,). In our study, suppose each
attribute of A and B represents the number of positives deriving from fact and our method,
respectively. Then M,, means true positives and was renamed as TP, M, means false

positives and was renamed as FP and «M,, ‘means false negatives and was renamed as FN.

Therefore, the Jaccard similarity coefficient, J, is given as

= M, TP
My, + Mg+ M, TP+FPEN (10)

and was renamed as the Jaccard similarity score.

4.2 Robustness against different cell cycle gene expression datasets

Besides the above analysis, we also apply the relative R° method to another cell cycle gene
expression dataset: alpha38 dataset [19]. This dataset has a sampling interval of 5 minutes and
a total of 25 data points. In our method, we identified 18 cell cycle TFs. Among them, 13
(Ace2, Cin5, Fkhl, Fkh2, Hir3, Mbpl, Mcml, Rapl, Swi, Swi5, Swi6, Ume6, Yoxl) are
known cell cycle TFs according to MIPS database [18] and the remaining five cell cycle TFs
are Fhll, Ino2, Leu3, Met32 and Yapl. In this analysis, the relative R’ method also leads to
high Jaccard similarity score 0.317. Besides, we found that among the 15 cell cycle TFs

identified in this study which uses alpha30 dataset [19], 10 TFs are also identified using the

13



alpha38 dataset (see Figure 3). This suggests that our method is robust against different cell

cycle gene expression datasets.

4.3 Threshold setting

There are three thresholds that we need to decide in the above analysis, p,, s and «. In
the relative R square method, we first use the criterion involving p, to select TFs that
have significant effect on a gene, then use the criterion involving s to check whether the TFs
left are able to account for the dynamics of the target gene’s expression (see Methods for
details). Since a p-value indicates the significance of regulation of a TF on the gene, it is
reasonable to require that p, can not be too large. As mentioned in Wang and Li [27] that
the selection of p, should be more. relaxed, swhile the selection of s can be more strict
because the selection of s value‘is the main criterion. We suggest choosing s more than 0.9
to ensure the accuracy of results. To achieve highest Jaccard similarity score, we conduct
simulations for different cases by varying the values of p, and s (see Table 4). Finally,

D, 1sselected as 0.72 and s 1S selected as 0.97.

For the hypergeometric significant level a selection, o is commonly selected as 0.05. In

this case, we identified 15 cell cycle TFs which included 12 true positive and 3 false positive

for p,= 0.72 and s=0.97 and obtained Jaccard similarity score 0.308. But if we relax the
significant level value to 0.15, under the same p,and s, we identified 28 cell cycle TFs
which included 16 true positive (Abfl, Ace2, Fkhl, Fkh2, Hir3, Mbpl, Mcml, Ndd1, Rfx1,
Stb1, Swi4, SwiS5, Swi6, Ume6, Yhpl, Yox1) and 12 false positive (Dal81, Datl, Fhll, Gal4,
Hap4, Msn4, Pdrl, Phdl, Rebl, Tye7, Yapl, Yap5). This Jaccard similarity score for this case

1s 0.333.
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5. Conclusions

We developed a method to identify cell cycle TFs in yeast by integrating the ChIP-chip [11]
and cell cycle gene expression data [19]. We identified 15 cell cycle TFs, 12 of which are
known cell cycle TFs. The remaining three TFs (Hap4, Rebl and Tye7) are putative novel cell
cycle TFs. Our predictions are supported by the interaction (physical or genetic) data and
previous studies. In addition, for seven of the 15 identified cell cycle TFs, our method can
assign a specific cell cycle phase in which the TFs function. On average, 86% of our
predictions have literature support (57% with experimental evidence and 29% with
computational evidence). Besides, a high-confidence TF-gene regulatory matrix is derived as
a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported
by the ChIP-chip and gene expression data. Moreover, we compared the performance of our
method with five existing methods and showed that our method has a better ability to retrieve
the known cell cycle TFs. Finally, applying our method to-different cell cycle gene expression

datasets, we identify similar sets of TFs, suggesting that our method is robust.
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Figure 1: Flowchart of the procedure of our method
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Figure 2: Interactions between a novel cell cycle TF and the other identified cell cycle

TFs

The physical or genetic interactions between a novel cell cycle TF ((a) Rebl, (b) Tye7, and (c)
Hap4) and the other identified cell cycle TFs are shown. Each oval indicates an identified cell
cycle TE. A TF name is colored purple if it is a known cell cycle TF [18] but black otherwise.
Two ovals are connected by an undirected red line if these two TFs have physical interactions
indicated by the current protein-protein interaction data [34]. Two ovals are connected by a
directed blue line if the two TFs have genetic interactions indicated by ChIP-chip or/and
mutant data [25]. For example, Rebl — Swi5 means that either TF Rebl binds to the promoter
of gene SWI5 or the disruption of TF Rebl results in a significant change of the expression of
gene SWI5.
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Figure 3: The results of using different cell cycle gene expression datasets

Our method identified 15 and 18 cell cycle TFs using Pramila et al.’s alpha30 dataset and
alpha38 dataset [19]. Both datasets have a sampling interval of 5 minutes and a total of 25
data points for each gene in the yeast genome. We found that among the 15 cell cycle TFs
identified using alpha30 dataset, 10 TFs are also identified using alpha38 dataset. This

suggests that our method is robust against different cell cycle gene expression datasets.
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Table 1: The 15 identified cell cycle TFs

The twelve known cell cycle TFs (according to the MIPS database [18]) are bold-faced and
colored blue. The 15 identified TFs are ordered by the confidence of being cell cycle TFs
(according to the hypergeometric p-value calculated using Equation (9)). For seven of the 15
identified cell cycle TFs, the cell cycle phase in which the TFs function are shown. “E” means
that the prediction is supported by experimental evidence, “C” means that the prediction is

supported by previous computational studies, and “N” stands for our novel prediction.

TF name | Hypergeometric p-value MG, G, S SG, G,M
Mbp1 <10™ C [30]
Rebl <10™ N
Swi4 0.003
Fkh1l 0.004 C[26,30] E[4,22]
C[26,30]
Fkh2 0.004
E[16,22]
C[26,30]
Swis 0.006
E[4,9,22]
Swi6 0.008 C[26,30,5]
C[26,30]
Ace2 0.012
E[4,15,22]
Abf1 0.014
Hir3 0.016
Stb1 0.021
Yox1 0.039
Mcml 0.041
Tye7 0.043
Hap4 0.047
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Table 2:

Known cell cycle genes and proteins that have genetic or physical interactions

with the three novel cell cycle TFs (Rebl1, Tye7, and Hap4)

Known cell cycle genes which are

regulated by Rebl [25]

CDCS5, CDCY, CDC21, CDC39,

CDC50, CLB2, CLB3, SWI5

Known cell cycle proteins which have
protein-protein interaction with Rebl

[34]

ADbf1, Ace2, Cdc28, Fkh2, Hcml, Hirl,
Hir2, Hir3, Mcml, Mecl, Pafl, Swi4,

Swi5, Swi6, Tos4, Tos8, Yox1

Known cell cycle genes which are

regulated by Tye7 [25]

CDC19, HIR?2

Known cell cycle proteins which have
protein-protein interaction with Tye7

[34]

Ace2, Cdc28, Cdc37, Clb5, Cln3, Fkh2,
Gtsl, Hcml, Hirl, Hir2, Hir3, Mcml,
Met30, Pafl,.Rebl, Sis2, Stbl, Swi4,

Swi5, Swi6, Tds4, Tds8, Yox1, Yrbl

Known cell cycle genes which-are

regulated by Hap4 [25]

CDC31, CDC36, CDC50, YOXI

Known cell cycle proteins which have
protein-protein interaction with Hap4

[34]

Bubl, Stbl

20




Table 3: Performance comparison of six cell cycle TF identification methods to retrieve

the known cell cycle TFs annotated in the MIPS database

Performance comparison was based on the Jaccard similarity score [21], which scores the
overlaps between a method’s output and the list of known cell cycle TFs. Specifically, the
Jaccard similarity score is defined as TP/(TP+FP+FN), where TP stands for true positives, FP
for false positives, and FN for false negatives. Note that the higher the Jaccard similarity score,

the better the ability of a method to retrieve the known cell cycle TFs.

TP FP FN Jaccard similarity score
Our method 12 3 24 0.308
Wu et al.’s method 12 5 24 0.293
Tsai et al.’s method 13 17 23 0.245
Anderson ef al.’s method 10 5 26 0.244
Cokus et al.’s method 9 3 27 0.231
Cheng et al.’s method 13 29 23 0.200

Table 4 :  Jaccard similarity scoxe with different values of p and s

We conduct simulations for different cases by varying the values of p, and s and had the

highest Jaccard similarity score when p, is selected as 0.72 and s is selected as 0.97.

Do § 0.995 0.99 0.97 0.95 0.85 0.7
0.9 0.028 0.028 0.027 0.027 0.027 0.027

0.8 0.195 0.184 0.216 0.211 0.105 0.053

0.72 0.154 0.180 0.308 0.275 0.237 0.189

0.7 0.205 0.205 0.293 0.256 0.237 0.189

0.6 0.209 0.209 0.238 0.196 0.225 0.175

0.5 0.163 0.140 0.159 0.196 0.149 0.174

0.4 0.167 0.171 0.179 0.233 0.190 0.182

0.3 0.048 0.048 0.095 0.114 0.143 0.190
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Table 5: List of 203 TF from Harbison et al.

MATAI1 ABF1 ABT1 ACALI ACE2 ADRI1 AFT2
ARGR80 ARGS81 AROS80 ARR1 ASH1 ASK10 AZF1
BASI1 BYEI CAD1 CBFl1 CHA4 CINS CRZ1
|CSTo6 CUP9 DALSO DALSI DALS2 DAT1 DIG1
DOT6 ECM22 EDS1 FAP7 FHL1 FKH1 FKH2
FZF1 GAL3 GAL4 GALSO0 GATI GAT3 GCN4
IGCR1 GCR2 GLN3 GTS1 GZF3 HAA1 HACI1
HAL9 HAP1 HAP2 HAP3 HAP4 HAPS5 HIR1
HIR2 HIR3 HMS1 HMS2 HOGI1 HSF1 IFH1
IME1 IME4 INO2 INO4 IXR1 KRE33 KSS1
LEU3 MACI1 MALI13 MAL33 MBF1 MBP1 MCM1
MDS3 MET18 MET?28 MET?31 MET32 META4 MGAI1
MIG1 MIG2 MIG3 MOT3 MSNI1 MSN2 MSN4
MSS11 MTH1 NDDI1 NDTS80 INNEF2 NRG1 OAF1
OPI1 PDC2 PDR1 PDR3 PHD1 PHO2 PHO4
PIP2 PPR1 PUT3 RAPI RCO1 RCSI1 RDRI1
RDS1 REB1 RFX1 RGM1 RGTI1 RIM101 RLM1
RLR1 RME1 ROX1 RPH1 RPI1 RPN4 RTG1
RTG3 RTS2 SFL1 SFP1 SIG1 SIP3 SIP4
SKN7 SKO1 SMK1 SMP1 SNF1 SNT2 SOK2
SPT10 SPT2 SPT23 SRD1 STB1 STB2 STB4
STBS5 STB6 STE12 STP1 STP2 STP4 SUMI1
SUT1 SUT2 SWIi4 SWI5 SWI6 TBSI1 TEC1
THI2 TOS8 TYE7 UGA3 UME6 UPC2 USV1
WARI1 WTMI1 WTM2 XBP1 YAPI1 YAP3 YAP5
YAPO6 YAP7 TODG6 YBR239¢ |REIl YDRO026¢c [YDR049w
YDR266¢ |[URC2 JHD1 YER130c |[YER184c¢ |OTU1 YFLO052w
YGR067¢ |[YHP1 YJL206c  |[YKL222¢ |OAF3 YLR278¢ |[YMLOS81w
YNRO63w [YOX1 YPR022¢ [YPR196w |YRRI ZAP1 ZMS1
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Table 6 : Cell cycle TFs which is identified by the six methods.

The number of true positives, false positives, and false negatives are expressed as (TP, FP,
FN). The known cell cycle TFs (according to the MIPS database) are colored red.

Our method Wu Tsai Anderson Cokus Cheng
(12,3,24) | (12,5,24) | (13,17,23) | (10,5,26) 9,3,27) | (13,29,23)
Abfl Ace2 Ace2 Ace2 Ace2 Abfl Swi4
Ace2 Ashl Basl Azfl Basl Ashl Swi5
Fkhl Cin5 Digl Digl Fkh2 Basl Swi6
Fkh2 Cst6 Fhll Fkhl Mbpl Dal80 Tbsl
Hap4 Fkhl Fkhl Fkh2 Mcml Fkh2 Tye7
Hir3 Fkh2 Fkh2 Mcml Nddl1 Fzfl Uga3
Mbpl Mbpl Gal4 Mpbl Spt2 Gat3 Upc2
Mcml Mcml Gat3 Ndd1 Stel2 Ger2 Yap7
Rebl Nddl Haal Stbl Swi4 Hap2 YER184C
Stb1 Rlml Hap4 Stel2 Swid Hap3 YGRO067C
Swi4 Stbl Hir1 Swi4 Swi6 Hirl Yox1
Swis Stel2 Hir2 Swi6 Yox1 Hir2 YPR196W
Swi6 Stpl Mbpl Tecl Hir3
Tye7 Swi4 Mcml Xbpl Ithl
YoxlI Swi5 Met31 Yox1 Kssl
Swi6 Met4 Mbpl
Tecl Metl8 Mcml
Migl Met32
Mig2 Met4
Msn2 Msnl
Msn4 Ndd1
Ndd1 Nrgl
Stbl Otul
Stel2 Pho2
Swi4 Rebl
Swid Rgml
Swib Rmel
Tecl Spt2
Yap5 Srdl
Yox1 Stp4
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