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國立交通大學統計學研究所 

 

 

 

摘要 

    潛在群體模型中的參數估計可以利用群體分析的方法。但是在高維度的資料下，群

體分析中的變數選擇問題就更顯重要。這裡，我們發展了群體方法中的交替 k 均值分群，

並利用此想法先找出干擾變數以及此模型中最佳的潛在族群體分群，再利用分群後的結

果對其他參數做估計。我們並針對潛在群體模型創造一種分類規則。這個程序不但能完

整的分析複雜疾病，對於基因資料分析中也有極大的幫助。我們將分析實際的資料來證

實這種方法的優點。 

 

關鍵字: 潛在群體分析、高維度資料、變數選擇、交替 k 均值、分類、微陣列 
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Abstract 

    Parameters in latent class analysis could be estimated by some clustering methods. But in 

the high-dimensional data, variable selection in cluster analysis is an important problem. Here, 

we propose an alternate k-means clustering method to first distinguish clustering and noisy 

surrogates and then estimate the parameters in the latent class model. We also create a 

classification rule, based on the finite mixture model. This classification procedure can 

explicitly recognize the heterogeneous nature of the complex disease, which makes it perfect 

in analyzing high-throughput genomic data. The real data analysis demonstrates the 

advantages of our proposed methods. 

 

Keywords: latent class analysis; high-dimensional data; variable selection; alternate k-means; 

classification; microarray 
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1    Introduction 

Many concepts in medical research are unobservable, hence valid surrogates must be 

measured in place of these concepts. Models that permit exploration of relationships between 

unobservable variables and there surrogates are referred to as latent variable models. This 

unobservable characteristic can be expressed as an univariate continuous score (the latent trait) 

(Rasch, 1960; Lazarsfeld & Henry, 1968; Moustaki, 1996) or a categorical variable 

identifying several "classes" that define homogeneous groups of individuals (Goodman, 1974; 

Titterington, Smith, & Makov, 1985; Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; 

Huang & Bandeen-Roche, 2004). In this article, we focus on the cases where an underlying 

categorical variable (the latent class variable) is used, and thus measured surrogates are 

independent of one another within any category of the latent variable. These are commonly 

called as finite mixture models. 

Parameters in finite mixture models are typically estimated by the maximum likelihood 

(ML) for a fixed number of classes. The Expectation-Maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977) can be used to compute the ML estimates of parameters. 

However, the above likelihood function is derived under the assumptions that cannot be 

checked directly and may critically affect analytic findings (Bandeen-Roche et al., 1997). 

Also, implementing the EM algorithm to estimate parameters in finite mixture models is 

typically time-consuming and can be difficult to converge when possible patterns of 

surrogates are large and the sample size is moderate or small. To avoid the problem of EM 

algorithm, the finite mixture analysis may legitimately be viewed as the analog of cluster 

analysis (Huang, Wang & Hsu, manuscript).  

Cluster analysis implements a number of different algorithms and methods for grouping 

objects of similar kind (i.e., with close distance) into respective categories. But in many case, 

the number of surrogates is too large, and this may be due to the presence of several “noisy” 
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noninformative surrogates. The noisy surrogates will influence the clustering process and let 

the result be fault. In this article, we will focus on how to solve this problem. We develop the 

alternate k-means clustering methods. This clustering method can select noisy surrogates and 

calculate the correlation among other clustering surrogates as the distance measure to group 

objects at the same time. For the selected objects that belong to the same latent class, their 

clustering surrogates are as close to be independent as possible. By treating the estimated 

class membership based on the clustering surrogates as a known predictor, it becomes easy to 

estimate the parameters in the finite mixture model. The proposed method can reduce the 

dimension of data (i.e., to select surrogates we need), and directly obtain estimated latent 

classes that best describe the association among surrogates. 

This article also used a classification rule for predicting new objects’ outcome statuses 

(e.g., diseased/not diseased, cured/not cured), based on the finite mixture model (Huang, 

Wang & Hsu, manuscript). The classification rule is especially useful for high-dimensional 

data (e.g., microarray data). The latent class model explicitly recognizes and hence mitigates 

errors in measurement, and gives a well summary of measured surrogates (i.e., the latent 

variable). With our proposed parameter estimating procedure, we can easily perform the finite 

mixture models on high-dimensional data and thus create classification rules based on the 

inferred latent classes. 

The rest of the article is organized as follows. In section 2, we introduce the latent class 

analysis (LCA), the regression extension of latent class analysis (RLCA) model, and some 

clustering methods. Section 3 and 4 provide a model with a new idea and detail the clustering 

algorithm for estimating the latent classes underlying a finite mixture and the parameters of 

the model. A classification rule based on the finite mixture model is then described in section 

5. Gene expression microarray and schizophrenia syndrome scale data are used to illustrate 

the proposed methods in section 6. Final, we conclude by discussing the contribution of this 

article. 



 

 3 

2.    Literature Review 

2.1    Latent class analysis (LCA) 

    Goodman (1974) provided an excellent overview of the Latent class analysis (LCA) 

model, including a maximum likelihood strategy for estimating model parameters, conditions 

to determine local model identifiability, a strategy to test overall model fit, and the use of 

constraints to identify models. The idea for this model is that all measured surrogates reflect 

the same unobservable characteristic, and that this characteristic fully explains the 

associations between observed surrogates. LCA aims to classify objects based on their 

responses to a set of categorical items. Here, we let  TiMii YY ,...,1Υ denote a set of M 

observable polytomous surrogates for the ith individual in a study sample of N samples imY , 

Mm ,...,1 can take values  mΚ,...,1 , where 2mΚ . The basic model postulates an 

underlying categorical latent variable JSi ,...,1 for individual i; within any category of the 

latent variable, the measured indicators are assumed to be independent of one another. 

Therefore, the distribution for iΥ can be expressed as 

 1 1

1 1 1

Pr ,...,
m

mk

KMJ
y

i iM M j mkj

j m k

Y y Y y p
  

 
    

 
  , 

 (2.1) 

where   1 kyIy mmk if kymk  ; 0 otherwise; and assumes that   jSij  Pr  and 

 jSkYp iimmkj  |Pr , 

(2.2) 

Ni ,...,1 ; Mm ,...,1 ; mKk ,...,1 ; Jj ,...,1 . 

The model treats class membership probabilities, j , and item response probabilities 

conditional on class membership, mkjp , as homogeneous over individuals. Heuristically, j  
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is the population prevalence of class j, and mkjp  is the probability of an individual in class j 

being at levels k of imY . 

 

2.2 Regression extension of latent class analysis (RLCA) 

    Huang and Bandeen-Roche (2004) extend the latent class analysis to allow both the 

probabilities of latent class membership and the distribution of observed responses given 

latent class membership to be functionally related to concomitant variables, while preserving 

model identifiability. By allowing covariate effects on latent class probabilities, we 

summarize the effect of risk factors on the underlying mechanism. In the case of incorporation 

covariates into conditional probabilities, we can adjust for characteristics that determine 

responses other than underlying classes, hence hopefully improving the accuracy of 

classifying individuals. For instance, in evaluating functional disability, some data have 

suggested that women tend to rate tasks as “difficult” more readily than men independently of 

ability (Bandeen-Roche, Huang, Munoz, & Rubin, 1999). Without adjusting for the gender 

effect, the model might well classify some men and women with identical underlying 

functioning differently (men as “able”, women as “disabled”). In the literature, they also 

provided an excellent overview of the RLCA model, including model identification, 

Expectation-Maximization algorithm for parameter estimation, standard error calculation, 

convergent properties, and comparison of the RLCA model with models underlying existing 

latent class modeling software. 

In RLCA models, let  izx ,i  be the concomitant covariates of the ith sample. 

 T
ipi xx ,...,,1 1i x  are defined as primary covariate hypothesized to be associated with latent 

class membership, iS , and  TiMi zz ,...,1i z with  TimLim xz ,...,,1 1im z , Mm ,...,1 , are 

secondary covariates used to build direct effects on measured surrogates. The sets of 

covariates can include any combination of continuous and discrete measures, and two sets of 
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covariates can be mutually exclusive or overlap. The regression extension of LCA may then 

be stated as follows: 

     1 1 i

1 1 1

Pr ,..., | ,
m

mk

KMJ
yT T

i iM M i j i mkj mj im m

j m k

Y y Y y p
  

 
    

 
 x z x β γ z α  

(2.3) 

with  βx
T

ij  and  m

T

immj

y

mkj
mkp αzγ   defined as in the generalized linear framework 

(McCullagh and Nelder, 1989). Usually, (2.3) is implemented assuming generalized logit 

(Agresti, 1984) link functions: 

 
  ippjijjT

iJ

T

ij
xx 

















110log

βx

βx
 for Ni ,...,1 ; 1,...,1  Jj  

(2.4) 

and  

 
  imLLmkimmkmkj

m

T

immjmKj

m

T

immjmkj
zz

p

p
 
















11log

αzγ

αzγ
 

(2.5) 

for Ni ,...,1 ; Mm ,...,1 ; )1(,...,1  mKk ; Jj ,...,1 . 

The model is also necessary to unambiguously distinguish covariate effects on measured 

response probabilities from covariate effects on class probabilities. Three assumptions 

complete (2.3): 

(C1)    1 1 1 1Pr ,..., | , , Pr ,..., | ,i iM M i i i i iM m i iY y Y y S Y y Y y S    x z z ; 

(C2)    iiiii jSjS xzx |Pr,|Pr  ; 

(C3)    1 1 1
Pr ,..., | , Pr | , .

M

i iM M i i im m i imm
Y y Y y S Y y S


   z z   

Notice that, in the conditional probability of model (2.5), we allow unrestricted intercepts 

and level-and item-specific covariate coefficients, but the coefficients varying across classes 
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is unallowable (i.e., qmk  is dependent on m, k but independent of j ). This constraint is 

reasonable if the primary purpose of modeling conditional probabilities is to prevent possible 

misclassification by adjusting for characteristics associated with item measurements.  

     

2.3    Marginalization of the regression extension of latent class model 

    We introduce a process to “eliminate” the covariates effect, hence “marginalize” the 

RLCA model (2.3). The marginalization process (Huang 2005) includes two stages. Stage 1 

aims to eliminate iz  effect. At stage 2, we apply the marginalization property; proposed by 

Bandeen-Roche et al. (1997), to average ix  effect out of the latent prevalence. 

 

2.3.1    Marginalizing the covariate effects on conditional probabilities 

    For achieving the RLCA model assumption (C3), we need to eliminate the covariate 

effect. The key to marginalizing over iz  is that the process must yield random variables that 

follow a finite mixture distribution that is both independent of iz  and has J mixing 

components. A method for achieving such marginalization can be motivated by the properties 

of added variable plots for linear regression models. 

    Consider the linear model 

εβxβxY  2

T

21

T

1                         

(2.6) 

where ε  with mean 0  and variance matrix V . Let Y
~

 denote the residuals of regressing 

Y  on 2x , and -1
VW   be the weight matrix. Then, it is well known that if 1x  and 2x  

are orthogonal (i.e., 021 
Wxx ), Y

~
 has mean 1

T

1βx  and variance V . That is, the simple 

linear regression of Y
~

 on 1x  yields exactly the same inferences about 1β  as if we 

performed the analysis on the more complicated model (2.6) (Cook and Weisberg, 1982). 

Now, viewing the just-described stability of 1β  as analogous to the desired stability of latent 
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class dimension, J, the added variable property can be applied to model (2.6) to obtain the 

marginalized conditional probabilities. 

    To present the key ideas more clearly, we let the measured indicators  iMi YY ,...,1  are 

assumed to be binary (i.e., 2K1  MK ). Notice that (2.5) can be viewed as fitting a 

logistic regression of imY  on iS  adjusting for  imz , separately for each m. Now, we make 

the analogy to (2.6), let )( iij jSS   for Ni ,...,1 ; 1,...,1  Jj . We can reparameterize 

(2.5) as 

     m

c

immi

c

imiimY αZγSZS
  ,|logit  for Ni ,...,1 ; Mm ,...,1  

(2.7) 

where    11i ,...,,1 Jii SSS ; 

           mLimLmim

c

im zzzz ,...,11Z , (“centered” covariate vector); 

       



N

i

i m pmp zN
1

/1z ; 

         110 ,...,, Jmmmm γ ; and   Lmmmm  ,...,, 21α . 

Therefore, for any realization of iS , (2.7) is a logistic regression with dependent variable: imY  

and predictors: iS , c

imZ . 

Next, the problem becomes how to calculate residuals form the generalized linear model 

     *
αZZS m

c

im

c

imiimY


 ,|logit  for Ni ,...,1 ; Mm ,...,1  

(2.8) 

The “pseudo-residuals” are given by 

   mm

-

mNmmm RR μYVR ˆˆ,..., 1

1 


. 

(2.9) 

Here “hat” represents the estimated values; 
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  Nmmm YY ,...,1Υ ;  Nmmm VV ,...,diag 1V ;  imim YV Var ;  c

Nm

c

m

c

m ZZZ ,...,1  

If ix  and imz  are independent, we can extract the c

imZ  from conditional probabilities by 

treating the residuals form the model (2.8) as new response variables and regressing them on 

iS . We substitute the estimate of *

mγ  in the linear model 

imm

Τ

iim εR  *
γS , Ni ,...,1 ; Mm ,...,1 . 

(2.10) 

.   For the estimate of mγ  in the model (2.7), a formal justification shows that *

mγ  and mγ  

can be very close under reasonable regularities. The above results can be extended to the 

cases where  iMi YY ,...,1  is polytomous as in (2.1) and (2.3). 

 

2.3.2    Marginalizing the covariate effects on latent prevalences 

    For the marginalization of model (2.3) over ix , we use the nice property of the RLCA 

model that the covariates associated with latent class prevalences, ix , can be ignored. 

 

2.4    K-means method 

MacQueen (1967) suggests the term K-means for describing an algorithm that assigns 

each item to the cluster having the nearest centroid (mean). In its simplest version, the process 

is composed of these three steps: 

1. Partition the items into K initial clusters. 

2. Proceed through the list of items, assigning an item to the cluster whose centroid (mean) 

is nearest. (Distance is usually computed using the Euclidean distance with either 

standardized or unstandardized observations.) Recalculate the centroid for the cluster 

receiving the new item and for the cluster losing the item. 

3. Repeat Step 2 until no more reassignments take place. 
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Rather than starting with a partition of all items into K preliminary groups in  

Step 1, we could specify K initial centroids (seed points) and then proceed to Step 2. 

    The final assignment of items to clusters will be, to some extent, dependent upon the 

initial partition or the initial selection of seed points. Experience suggests that most major 

changes in assignment occur with the first reallocation step. 

 

2.5    Lasso regression 

    When the data have high dimension or high correlation, variable selection is very 

important. Tibshirani (1996) proposed Lasso regression. It is popular to solve this problem. 

Unlike the original least square method, Lasso uses the panelized least square, which can 

avoid high correlation problem and estimate some parameter to 0 at the same time. Frank and 

Friedman (1993) propose the Bridge regression, and Lasso is the special case. The Bridge 

regression is based on least square, and limit the parameter by ( 0)
r

j t t   . The 

parameter estimated can be  

 
2

1 1

ˆ ( ) arg min
pn

r
Bridge T

i i j

i j

y x


    
 

 
   

 
   

(2.11) 

where 0r   (if 0r  , the panelize function will be concave function, that is, ˆ Bridge  has no 

minimum value), and   is the tuning parameter. When 1r  , we called this Lasso 

regression. And 2r  , we called Ridge regression.  

We compare the difference of Lasso regression and Rigde regression. Assume there are 

two parameters in the model. Note that,  

 
2

1 1

ˆ ( ) arg min
pn

Lasso T

i i j

i j

y x


    
 

 
   

 
   

(2.12) 
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 
2 2

1 1

ˆ ( ) arg min
pn

Ridge T

i i j

i j

y x


    
 

 
   

 
   

(2.13) 

In the figure 1, the limited region of Lasso and Ridge regression will be blue square and 

blue circle. The least square method with no constraint will be red ellipse, and the center is the 

solution of least square estimate. The advantage of Lasso regression is the limited region has 

corners. If ellipse touches the square at the corner, it means Lasso regression will estimate 

some parameters to 0. That is, Lasso can select variable and estimate parameters at the same 

time. 

 

2.6    Penalized model-based clustering 

    Variable selection in clustering analysis is both challenging and important. Pan and Shen 

(2007) propose a penalized likelihood approach with an 1L  penalty function, automatically 

realizing variable selection via thresholding and delivering a sparse solution. For the original 

model-base clustering method, given the observation x  is drawn from a finite mixture 

distribution 
1

( ; ) ( ; )
K

k k k

k

f x f x 


  , with the proportion k , component-specific 

distribution kf  and its parameters k . The log-likelihood is 

1 1

log ( ) log ( ; )
N K

k k j k

j k

L f x 
 

 
   

 
  . 

(2.11) 

With the same motivation as in penalize regression, they propose a penalized likelihood: 

 
1 1

log ( ) log ( ; )
N K

k k j k

j k

L f x h 
 

 
    

 
  , 

(2.12) 

where ( )h   is a penalty function with penalization parameter  . The choice of ( )h   

depend on the goal of the analysis. The EM algorithm can be applied to obtain the maximum 

likelihood estimator of  .The K-means algorithm can be used in this process, and find the 
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variable cluster. More importantly, this process can select variable automatic. 

 

2.7    Sparse k-means method 

The standard k-means method can assign each item to the cluster with the features, and 

there usually are large set of features. We might expect that the true underlying clusters 

present in the data differ only with respect to a small fraction of the features, and will be 

missed if one clusters the observations using the full set of features. Witten and Tibshirani 

(2010) propose a method for sparse clustering, which allows us to group the observations 

using only an adaptively-chosen subset of the features. Suppose we want to cluster n 

observations on p dimensions. Let n

jX   denote feature j. Many clustering methods can 

be expressed as optimizing criteria of the from 

 
1

maximize ,
p

j j
D

j

f X




 
 

 
  

(2.13) 

where  ,j jf X   is some function that involves only the jth feature of the data, and   is a 

parameter restricted to lie in a set D. Then, they define sparse clustering as the solution to the 

problem 

 
2

1;
1

maximize ,  subject to 1,  ,  0 
p

j j j j
w D

j

w f X w w s w j




 
     

 
  

(2.14) 

where jw  is the weight corresponding to feature j. 

    We optimize (2.14) using an alternate algorithm: holding w fixed, we optimize (2.14) 

with respect to  , and holding   fixed, we (2.14) with respect to w. In general, we do not 

achieve a global optimum of (2.14) using this alternate approach; however, we are guaranteed 

that each iteration increases the objective function. Notice that, to optimize (2.14) with repect 
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to w with   held fixed, we note that the problem can be re-written as 

 
2

1;
maximize  subject to 1,  ,  0 T

j
w D

w a w w s w j


     

(2.15) 

where  ,j j ja f X  .Details are referred to Tibshirani (2010). 
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3    Model 

Let )Y,,Y ( 1 iMi   denote a set of M observable surrogates and iS  denote the 

unobservable class membership, for the ith individual in a study sample of N samples. Unlike 

traditional LCA model, we think that some surrogates have no difference among unobservable 

latent classes. We call these surrogates as “ noisy surrogates “. The other surrogates that have 

different distributions in different latent classes are called “ clustering surrogates “. We hope 

to find the noisy surrogates and exclude their influences in estimating latent classes. So, under 

this idea, we let  

               
1 2

1 2 1 1 2 2

1 1 1,..., , ,..., , ,...,i iM i i i iM i iMY Y Y Y Y Y Y Y Y    , where  1

iY  denote the 

noisy surrogates,  2

iY denote the clustering surrogates, and 1 2M M M  . imY  can be either 

continuous, ordinal or categorical , for Mm ,...,1 , and iS  can take values J,...,1 . The 

distribution for  iMi YY ,...,1  can be expressed as the finite mixture density: 

    
 2 2

1

(1) (2) (2)

1

assumption 1
(1) (2) (2)

1

assumption 2
1 2

1 1 1

Pr( )

Pr( ) Pr( | )

Pr( ) Pr( | , ) Pr( | )

Pr( | ) Pr( ) Pr( | )

Pr
m

mk

J

i i

j

J

i i i

j

J

i i

j

KMJ
y

i i j mkj

j m k

Y

S j Y S j

S j Y Y S j Y S j

Y Y S j Y S j

Y Y p







  

  

   

  

 
   

 







 

             

(3.1) 

where 
  2

Pr |mkj im ip Y k S j   are the “conditional probabilities” of the measured 

responses given the underlying variable category,  Prj iS j   are the “latent class 

probabilities” of each underlying variable category and
 2

1mky   if
 2

my k ; 0 otherwise. This 
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finite mixture model will be completed by two assumptions: 

(A1) 
     

2

2

2 2 2

1

1

Pr( ,..., | ) Pr( | )
M

i iM im

m

Y Y S Y S


 ; 

(A2) 
       1 2 1 2

Pr( | , ) Pr( | )iY Y S Y Y ; 

Heuristically, j  is the population prevalence of class j, and mkjp  is the probability of 

an individual in class j being at levels k of  2

imY , and we do not explore the influence of  1

imY  

in the following article. 

Some authors have extended the finite mixture model to describe the effects of measured 

covariates on the underlying mechanism and/or on measured surrogate distributions within 

latent levels. One can summarize the effect of risk factors on the underlying mechanism by 

allowing covariates  T
ipi xx ,...,,1 1i x  to be functionally related to latent class iS  (Dayton 

& Macready, 1998; Bandeen-Roche et al., 1997; Huang& Bandeen-Roche, 2004). And we 

implement the generalized linear framework (McCullagh & Nelder, 1989) to incorporate 

covariate effects into iS : 

 

  0 1 1log
j i

j j i pj ip

J i

x x


  


 
    

 

x

x
 for Ni ,...,1 ; 1,...,1  Jj ,  

 (3.2) 

To adjust for characteristics associated with surrogates, hence prevent possible 

misclassification of underlying variable categories, we can incorporate individual-level 

independent variables into the within-class distributions of measured surrogates 

(Melton,Liang, & Pulver, 1994; Huang, & Bandeen-Roche, 2004; Muthen, & Muthen, 2007). 

Let  i 1,...,
T

i iMz zz with  TimLim xz ,...,,1 1im z , 1,...,m M  be covariates used to build 

direct effects on measured surrogates within latent classes for the ith individual. When 
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surrogates are ordinal or categorical variables, we assume that 

      (2)

1, ~ Multinomial 1; , ,
mim i im m j im mK j imY S j z p z p z , and  

 

 
1 1log

m

mkj im

mkj mk im Lmk imL

mK j im

p z
z z

p z
  

 
    

 
 

   ,     

(3.3) 

where 1,..., ( 1)mk K  , 2mK  , and 1,...,m M  

If surrogates are continuous variables, we assume that  

    (2) 2, ~ Normal ,im i im mj im mY S j z z  , and 

  1 1mj im mj m im Lm imLz z z       .               

(3.4) 

By incorporating  ,i ix z , we relax the homogeneous probability (i.e., mkjp in the model 

(3.1) ) in the sense that the probabilities vary with some individual characteristics. In the 

conditional distribution models (3.3) and (3.4), we allow unrestricted intercepts, but we do not 

allow the covariate coefficients to vary across classes (i.e., 2

m , lm , and lmk , 1,...,l L  

are independent of j). This constraint is logical if the primary purpose of modeling conditional 

probabilities is to prevent possible misclassification by adjusting for characteristics associated 

with surrogates. In addition, after adjusting covariate effects, the conditional independence 

assumption is also conditioning on iz , that is  

     
2

2

2 2 2

1

1

Pr( ,..., | , ) Pr( | , )
M

i iM i i im i im

m

Y Y S z Y S z


 .              

(3.5) 
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4    Parameter Estimation by Clustering Algorithm 

Parameters in RLCA model are typically estimated using the EM algorithm (Goodman, 

1974; Bandeen-Roche et al., 1997; Huang & Bandeen-Roche, 2004). Although this method 

has notable advantages (e.g., obtaining consistent and asymptotically normally distributed 

estimations, and directly providing standard error estimates for parameters), it can be 

vulnerable to the violation of model assumptions and be difficult to converge when fitting 

models with large numbers of surrogates and/or latent classes. Here, we propose an alternative 

strategy for estimating parameters. The proposed method consists of two stages: first, the 

alternate k-means method used in cluster analysis can find some noisy surrogates and 

implemented to estimate the underlying latent class membership. Second, the estimated class 

membership is treated as a known variable and other parameters are then estimated. 

 

4.1    Latent class membership estimation when not incorporating covariate effects 

Finite mixture analysis is a useful tool to classify objects based on there responses to a 

set of surrogates. The basic model postulates an underlying categorical latent 

variable  1,...,iS J , and, within any category of the latent variable, measured clustering 

surrogates are assumed to be independent of one another, and noisy surrogates are assumed to 

be no difference in each class when given clustering surrogates. But when we want to control 

more than one assumption, the traditional k-means algorithm will fail to work. So, we 

proposed the alternate k-means clustering method and to estimate iS  by applying this 

method to find noisy surrogates, and to group the objects into J subgroups such that objects in 

one subgroup will have a set of statistically independent clustering surrogates. Unlike the 

traditional EM approach that intends to derive the grouping of objects under the assumption, 

the proposed method tries to find the “optimal” grouping that is the most satisfying of the 

assumption. 
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4.1.1    The measurement for complete the assumption A1 

The assumption (A1) means the clustering surrogates should be independent when they 

in the same latent class. So, we just to use clustering surrogates (2)Y  to calculate the sample 

covariance matrix. For continuous surrogates, the sample covariance matrix is a 
2 2M M  

matrix with component (m, t), being the sample variance between  2

imY  and  2

itY . For 

polytomous categorical surrogates, each component of     
2

2 2

1 , ,i iMY Y  is represented as a 

vector with elements being the indicators of each category:  

        
 
   

 
  2 21 2 2

2 2 2 2 2 2 2

1 11 11 1 1
,..., ,..., , , ,...,

m
i i iM i iMi K iM K

Y Y Y Y Y Y Y
 

   

(4.1) 

with     2 2
1imk imY I Y k    if  2

imY k , 0 otherwise; 21,...,m M ;  1,..., 1mk K  . Then, 

        

2

2

2 2 2 2

11 12 1

21 22 22 2 2

1 2

,

M

M

i imk its

M M M M

B B B

B B B
Cov Y Cov Y Y

B B B

 
 
 

 
 
 
  

,  

(4.2) 

where 
   2 2

( , )mt im itB Cov Y Y  is a    1 1m tK K    block matrix. Various component of 

the above covariance matrix are 

    

        
     

          

2 2 2

2 2 2 2

2 2 2 2

Pr 1 Pr 1 Pr 1               if  ,

, Pr 1 Pr 1                                  if  ,

Pr 1, 1 Pr 1 Pr 1   if  ,

imk imk its

imk its imk its

imk ist imk its

Y Y Y m t k s

Cov Y Y Y Y m t k s

Y Y Y Y m t k s

      



     

       


                                                                 

(4.3) 

The sample covariance matrix is obtained by replacing the probabilities with the sample 
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averages. Let 
jACov  be the average of absolute values of entries in off diagonal elements 

(continuous surrogates) / blocks (polytomous surrogates) of the sample covariance matrix 

using objects in class j. Then, we define the “loss of independence” as  

1

the number of objects in class 
LoI  with 

J

j j j

j

j
w ACov w

N

  . 

(4.4) 

Notice that, the LoI  is the weighted average of 
jACov  over all classes with weights 

proportional to numbers of objects in each class. LoI  can be used as the measure for 

evaluating assumption (A1). The smaller the value of LoI , the more satisfying the 

assumption (A1). 

 

4.1.2    The measurement for complete the assumption A2 

The assumption (A2) means the conditional expectations in any group should be equal, 

that is,               1 2 1 2 1 2

i i i i i i| , 1 | , |i iE Y Y S E Y Y S J E Y Y     , and we use a non 

-parametric method to evaluate the conditional expectation. In order to complete our 

algorithm, we need to create a measurement, which is called the between class variation. 

For the continuous surrogates, using the “nearest neighbor” approach, we define 

    1 2 *

im i imY Y Y  and estimate *

imY  by  

 1* 1

i

im km

k C

Y Y
r 

     

                                                                 (4.5) 

where 1, ,i N , 
1K1, ,Mm  , and iC  be the set of indices of the r nearest neighbors of 

 2

iY  among 
    2 2

1 , , NY Y . Here we define the “distance” between 
 2

sY  and 
 2

tY  by 
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   
2

2 2

2
s tY Y . Then, we fixed r and take  

   

   

   

   

   

   

   

1

1 1

1

2
2 2

1
21, , \

2
2 2

2
21, , \ ,

2
2 2

21, , \ , ,

{   , , 1, 2, , |

             arg min ,

            arg min ,

                           

         arg min  }
r

i r

k i
k N i

k i
k N i i

r k i
k N i i i

C i i N

i Y Y

i Y Y

i Y Y








 

 

 

 

 

                                                                 (4.6) 

Let * *

1

1 N

m im

i

Y Y
N 

  , we can have the over all conditional expectation mean 

 
1

* * *

1 , ,
t

MY Y Y . On the other hand, we define       1 2 *,im i i imY Y S j Y j   and estimate 

 *

imY j  by  

   

 

1* 1

i

im km

k C j

Y j Y
r 

  ,  

                                                                 (4.7) 

where 1, ,i N , 
1

1, , Km M , 1, ,j J  and  iC j  be the set of indices of the r 

nearest neighbors of 
 2

iY  among 
    1

2 2
, ,

N j
j jY Y , where 

1 2 N j
j j jS S S j    . Let 

   * *

1

1 jN

m im

ij

Y j Y j
N 

  , and we can also have the conditional expectation mean 

      
1

* * *

1 , ,
t

MY j Y j Y j  for the jth class, 1, ,j J . Now, we create the between class 

variation matrix by  

     * * * * *

1

1

    

J
t

m m t t

j

J

j

j

B Y j Y Y j Y

BCov





  






, 

                                                                 (4.8) 

Then, we define the “between class variation”, the distance measure used when 
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performing alternate k-means clustering. The “between class variation” is then defined as  

1

the number of objects in class 
BCV  with 

J

j j j

j

j
w BCov w

N

   

                                                                (4.9) 

The BCV  is the weighted average of 
jBCov  over all classes with weights 

proportional to numbers of objects in each class. BCV can be used as the measure for 

evaluating assumption (A2). The smaller the value of BVC, the more satisfying the 

assumption (A2). 

When the surrogates are polytomous categorical, each component of  1

iY  and  2

iY  

should represent as a vector with elements being the indicators of each category:  

        
 
   

 
  

1 11 1

1 1 1 1 1 1 1

1 11 11 1 1
,..., ,..., , , ,...,

m
i i iM i iMi K iM K

Y Y Y Y Y Y Y
 

   

                                                                 (4.10) 

with     1 1
1imk imY I Y k    if  1

imY k , 0 otherwise; 11,...,m M ;  1,..., 1mk K  , and 

define the length of 
 

1

1

i KY M . And 

        
 
   

 
  

21 2

2 2 2 2 2 2 2

1 11 11 1 1
,..., ,..., , , ,...,

m
i i iM i iMi K iM K

Y Y Y Y Y Y Y
 

   

                                                                 (4.11) 

with     2 2
1imk imY I Y k    if 

 2

imY k , 0 otherwise; 21,...,m M ;  1,..., 1mk K  , and 

define the length of 
 

2

2

i KY M . Then, we can do above process with these new  1

iY  and 

 2

iY . 

 

4.1.3    The measurement for our alternate k-means algorithm 

 We have to create a criterion for our alternate k-means algorithm. The idea is from the 

sparse k-means clustering method (Daniela M. Witten, &Robert Tibshirani, 2009). Let 
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     2 1 2
pLoI LoI BCV

Y Y Y
    where  2LoI

Y
 is the loss of independence calculated on 

 2
Y , 

   1 2
BCV

Y Y
 is the between class variation calculated on  1

Y  given  2
Y , and   is the 

tuning parameter. 

 

4.1.4    The alternate k-means algorithm 

 The alternate k-means algorithm is carried out through following steps to obtain the 

estimated class membership for individuals and surrogates: 

IK1. Randomly partition the objects into j initial classes. 

IK2. Let all the surrogates be clustering surrogates. Proceed through the list of objects, 

assigning objects to latent classes with the "loss of independence" as the distance 

measure. 

IK3. Randomly assign the surrogates to the clustering group with probability 0.8 and to the 

noisy group with probability 0.2. 

IK4. Fix the object class obtained from IK2. Proceed through the list of surrogates, assigning 

surrogates to clustering or noisy group with the pLoI  as the distance measure. 

IK5. Fix the surrogate group obtained from IK4. Proceed through the list of objects, 

assigning objects to latent classes with the pLoI  as the distance measure. 

IK6. Iterate IK4 and IK5, until the surrogate group assignment convergence. (i.e., there is no 

surrogate changing group) 

    In the algorithm IK4 and IK5, we use an standard k-means clustering method to 

assigning an object to the class and assigning surrogates to clustering/noisy group with the 

pLoI  as the distance measure. The following algorithm describes how the standard K-means 

clustering method work: 

 K1.  First, all objects (or surrogates) are partitioned into K initial clusters. 

 K2. Proceed through the list of objects (or surrogates), assigning an object (or surrogates) to 
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the cluster where the minimum pLoI  is reached. 

 K3.  Repeat step 2 until no more reassignments take place. 

The flow chart for alternate k-means and standard k-means algorithm are showing in 

Figure 2 and Figure 3. 

 

4.1.5    Estimation of tuning parameter   

 Our alternate k-means algorithm is sensitive to the tuning parameter  . We have to 

choose an appropriate value of  . Here, we propose an idea to select this parameter. First, we 

calculate the loss of independence  2LoI
Y

 on  2
Y  and the between class variation 

   1 2
BCV

Y Y
 on  1

Y  given  2
Y  after the algorithm step IK1 and IK2. Then, we set 

LoI

BCV
  . This setting can reduce the effect resulting from the difference of these two values. 

We believe the large difference between  2LoI
Y

 and    1 2
BCV

Y Y
 will make the algorithm 

failed, and we find the appropriate   not only shrinks the difference of two values, but also 

makes a good prediction result.  

 

4.2    Latent class membership estimation when incorporating covariate effects 

 The alternate k-means clustering algorithms are based on the assumption (A1) and (A2). 

If covariates imz  are incorporated into the conditional distributions as in model (3.3) and 

(3.4), the conditional independence assumption is also conditioning on incorporated 

covariates (i.e., the assumption (3.5)). To apply these algorithms to model (3.3) and (3.4), one 

would need to “eliminate” the covariate effects, hence “marginalize” model (3.3) and (3.4). 

 Here, we adopt the marginalization process develop in 3.3.1 of (Huang, 2005). To 

present the process, we first reparameterize models (3.3) and (3.4) as 
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(4.12) 

and  

      1 0 1 11 1 1

1 1

, , ,

                                       

im i im m m ii J m J i J

m im Lm imL

E Y S S z S S

z z

  

 

  
   

  
 

                                                                (4.13) 

where  ij iS I S j  ,  1, , 1j J  . In brief, the process assumes that the incorporated 

covariates imz  and the class membership iS  are orthogonal, and calculates the residual of 

regressing imY  on imz  separately for each  1, ,m M . One can then extract imz  from 

conditional distributions by treating these residuals as new response variables and regressing 

them on iS . Therefore, the conditional independent assumption (3.5) is considered satisfied if 

objects belonging to the same latent class have a set of 2M  statistically independent 

residuals. 

 Now, we consider       1 2

1,..., ,i iM i iY Y Y Y Y  . When 'imY s  are continuous, the 

typical residuals of linear regressions imR  (i.e., the differences between observed responses 

and their modeled predictors) are computed. When 'imY s  are categorical, the problem 

becomes how to calculate residual from the generalized linear model 

 
  1 1

Pr
log

Pr

im im

mk im Lmk imL

im im

Y k z
z z

Y K z
 

 
   

  
, for 1,..., ( 1)mk K  . 

                                                               (4.14) 

We propose to use the “pseudo-residual” 
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    
1

im im im imR Cov Y Y p


  , 

(4.15) 

where 
imY  is as defined in section,  im im imp E Y z , and “hat” denotes the estimated values 

based on (4.13). The pseudo-residual (4.14) is defined by analogizing the alternately 

reweighted least-squares of generalized linear models with the least-square estimates of linear 

regressions (Landwehr, Pregibon, & Shoemaker, 1984; Huang, 2005). We then classify 

objects based on new response variables imR  (continuous surrogates) or 
imR  (categorical 

surrogates) as done in the previous subsection.  
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5    Classification Using Finite Mixture Models 

In many researches, it is major interest to predict new observations’ unknown disease 

statuses based on their measurements on surrogates. Some literature develops the method to 

create the classification rules (Huang, Wang &Hsu, manuscript), and we use their ideas to 

create the classification rules base on our model. Consider a set of N objects with known 

disease statues 
iD  and measured surrogates 

iY  plus incorporated covariate ,i ix z  if 

existing, for 1, ,i N , where 
iD  takes values  1, ,C . We use these to fit finite mixture 

models      3.1 ,  3.2 ,  3.3  and/or  3.4 . Then. We can obtain estimations 

 2ˆ ˆ ˆ ˆ ˆ,  ,  , ,i pj mj lm mS      and  ˆ ˆ,mkj lmk  , for all , , , , ,i j m p l k . For a new object with 

measurements on surrogates  * * *

1 , , MY Y Y  and covariates  * * * *

1, , , Mx z z z , we 

assume that  

   * * * * * * *Pr , , , PrD c S j Y x z D c S j     , 

(5.1) 

then the posterior probability of classifying him/her as the disease status *D c  is  

      * * * * * * * * * *

1

Pr , , Pr Pr , ,
J

j

D c Y x z D c S j S j Y x z


      

(5.2) 

where *S  is the presumed latent class membership of the new object. In other word, the 

latent class can fully capture the association between the disease status and observed 

surrogates, which is reasonable when viewing the latent class variable as well summary of 

measured surrogates. We can estimate the right hand side of (5.2) by 

 
   

 
* * 1

1

ˆ

P̂r
ˆ

N

i i

i

N

i

i

I S j I D c

D c S j

I S j





 

  






 

(5.3) 
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and 

  
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2

2
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1 1
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t m
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x f y z







 

  
 
 
 



 

, 

(5.4) 

where  *ˆ
j x  is the estimated latent prevalence of the jth class for new observation *x , 

evaluated at estimator ˆ
pj . Notice that, only surrogates in the clustering group 

    
2

2 * 2 *

1 , , My y  are used in the prediction.   2 * *ˆ
j m mf y z  is the estimated conditional 

distribution of the mth surrogate given the jth class for the new observation   2 * *,m my z , 

evaluated at estimators  2ˆ ˆ ˆ, ,mj lm m    and  ˆ ˆ,mkj lmk  . We propose to choose c for the 

maximum estimated posterior probability is reached, i.e.,  

 
 * * * * *

1, ,

ˆarg max Pr , ,
c C

c D c Y x z


  . 

(5.5) 

    In this classification rule, a new object’s disease status is predicted through his/her 

inferred latent class variable *S , and it can be viewed as the summary of the new object’s 

measured surrogates through the training set  1, , NY Y .  
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6 Example 

In this section, we consider the Breast cancer data (continuous) and Schizophrenia 

syndrome scale data (categorical) examples, and use standard k-means and alternate k-means 

clustering method to estimate the parameters in original LCA model and our model. 

Furthermore, we use the proposed classification rule (Huang, &Wang, &Hsu) for prediction. 

Here, we introduced a useful tool for clustering. Heatmap has the notion of rearranging the 

columns and rows to show structure in the data. A heatmap is a two-dimensional, rectangular, 

colored grid, and shows data that themselves come in the form of a rectangular matrix. The 

color of each rectangle is determined by the value of the corresponding entry in the data 

matrix. The rows and columns of the matrix can be rearranged independently. Usually they 

are using clustering methods for reorder such that similar rows are placed next to each other, 

and the same for columns. Among the orderings that are widely used are those derived from a 

hierarchical clustering, but many other orderings are possible. If hierarchical clustering is 

used, then it is customary that the dendrograms are provided as well. Here, we use 

non-hierarchical clustering methods (i.e., k-means and alternate k-means clustering methods) 

to find some subgroup for individuals and plot the heatmap by these groups. On the other 

hand, we use agglomerative hierarchical clustering methods to grouping the surrogates with 

distance measurement using one minus correlation. We will use the heatmap figures to show 

our result. 

 

6.1    Breast cancer data 

    The data come from a study of using gene expression profiling to predict breast cancer 

outcome (Veer et al., 2002). The 78 sporadic lymph-node-negative patients under 55 years of 

age were selected specifically to search for a prognostic signature in their gene expression 

profiles. Forty-four patients remained free of disease after their initial diagnosis for an interval 
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of at least 5 years (good prognosis group, mean follow-up of 8.7 years), and 34 patients had 

developed distant metastases within 5 years (poor prognosis group, mean time to metastases 

2.5 years). From each patient, total RNA was isolated from tumor material and used to drive 

cRNA. A reference cRNA pool was made by pooling equal amounts of cRNA from each of 

the sporadic carcinomas. Fluorescence intensities were quantified, normalized and corrected 

to yield the transcript abundance of a gene as an intensity ratio with respect to that of the 

signal of the reference pool (Hughes et al., 2001). 

    Here, we aim to predict good and poor prognostic patients through gene expression 

profiling. We use a two-step selection process was performed to retain genes in the analysis. 

Firstly, 4741 genes selected from 24481 genes with the intensity ratio > 2 or < 0.5 (i.e., more 

than two-fold difference) and the significance of regulation p-value < 0.01 in more than 3 

patients. This was used in the original paper and focused the attention to the most informative 

genes. In the second step, we applied a selection of genes based on the ratio of their 

between-group to within-group sums of squares, as suggested by (Dudoit, Fridlyand, & Speed, 

2002). For a gene m, that ratio is  

 
  

  

2

.

2

i cm mi c

i im cmi c

I d c y y
BW m

I d c y y

 


 

 

 
,                

 (6.1) 

where imy  denotes the intensity ratio of gene m  in the patient i , id  is the indicator of 

good (=1) or poor (=0) prognosis group of patient i , and cmy  and .my  are the average 

intensity ratio of gene m  across samples belonging to prognosis group c  only and across 

all patients, respectively. We use (6.1) to compute BW ratio for each gene and selected top 

200 genes with the largest BW ratios for finite mixture analysis. 

 Using 200 selected expression ratios as observed surrogates, a finite mixture model (3.1), 

(3.2), (3.4) was fitted. In the fitted model, age at diagnosis (year) was chosen to be associated 

with conditional probabilities, and latent prevalence was also modeled as depending on age at 



 

 29 

diagnosis. We used the standard k-means clustering approach to group patients and resulted in 

3 classes of size 40, 21, and 17. In the alternate k-means clustering method, only needs to 

decide the tuning parameter  ; and the nearest neighbors r . We choose 130   (the 

initial  2LoI
Y

  0.058633  and 
   1 2

BCV 0.154481
Y Y

 ) and r =3. The alternate k-means 

clustering method selected 154 out of 200 genes as the clustering surrogates. This approach 

resulted in 3 classes of size 33, 22, and 23. The heatmap for the 200-gene (original) and 

154-gene (selected) expression profile are displayed in Figures 4 and 5. 

 An additional independent set of primary tumors from 19 young, lymph-node-negative 

breast cancer patients was used to validate the above 154-gene prognosis classifier. This 

group consisted of 7 patients who remained free of disease for at least five years, and 12 

patients who developed distant metastases within five years. Table 1 and 2 shows the result of 

prediction from the standard k-means and alternate k-means. Consequently, the standard 

k-means approaches had 4 out of 19 incorrect classifications, but the alternate k-means 

approaches had 3 out of 19 incorrect classifications. 

 

6.2    Schizophrenia syndrome scale data 

The data were collected from a series of projects, aiming at investigating the clinical 

manifestations of schizophrenia and searching for neuropsychological, environmental and 

genetic factors underlying schizophrenia. Details of study design and eligibility criteria were 

described previously (Liu, Hwu, & Chen, 1997; Chen et al., 1998; Chang et al., 2002). The 

analyzed data include 164 acute-state patients of schizophrenia who were recruited within one 

week of index admission and 155 subsided stage patients who were living with community 

and under family care.  

In this study, schizophrenia symptoms were assessed by the Positive and Negative 

Syndrome Scale (PANSS) (Cheng, Ho, Chang, Lane, & Hwu, 1996). The PANSS has 30 
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items and consists of three subscales: positive (seven symptoms: P1-P7), negative (seven 

symptoms: N1-N7) and general psychopathology (sixteen symptoms: G1-G16). Each item 

was originally rated on a 7-point scale (1=absent, 7=extreme), but we reduced the 7-point 

scale by merging the points that had the response percentages less than 10%. This study 

considered external covariates including demographic variables and environmental / 

neuropsychological factors. Demographic variables included gender, age at recruitment, years 

of education, and occupation (having versus no occupation). The category of no occupation 

included housewives, students, unemployed and retired people. The environmental factors 

were related to obstetric complications, prenatal growth retardation, special personal behavior 

and psychological adjustment problems. And the neuropsychological batteries assessed 

reaction time, attention, speed of information processing, and active problem solving. 

Specifically, the test batteries included several standard neuropsychological instruments with 

demonstrated reliability and validity, and we concentrated on the Continuous Performance 

Test (CPT), which had been widely used to measure sustained attention deficits in psychotic 

disorders (Chen et al., 1998). 

The analysis aims to explore the subtype (groups) of schizophrenia patients based on 

PANSS measurement. In our application, the latent class model of (3.1), (3.2), and (3.3) was 

applied to 30 PANSS items. We let the covariates associated with conditional probabilities 

include variables of sex, age (year), years of education (year), and occupation (with versus 

without occupation), and the covariates associated with latent prevalence include variables of 

age of onset (year), envir11, envir21, envir22, envir31, envir32, and dprime. We used the 

standard k-means clustering approach to group patients and resulted in 4 classes of size 231, 

31, 52, and 5. We choose the tuning parameter 30   (the initial  2LoI
Y

  1.174653  and 

   1 2
BCV 1.898806

Y Y
 ) and r =3 in alternate k-means process. Eighteen (3 positive, 2 

negative, and 13 general psychopathology) out of 30 items were selected as clustering 
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surrogates. This approach grouped patients in 4 classes of size 221, 41, 47, and 10. The 

heatmap for the 30-item (original) and 19item (selected) are showed in Figures 6 and 7. 

In general, class 1 appeared to represent a group who had severe/extreme positive 

symptoms and moderate negative symptoms; class 2 was a group who had moderate positive 

symptoms but mild negative symptoms; class 3 represented a group who had widespread 

whole syndrome of severe positive and negative symptoms; and class 4 was a remitted group 

who rarely had any symptom. 

Then, we are interested in using the PANSS ratings to predict patients’ phases of 

chronicity of disease (acute versus subsided). There has 10 patients in the prediction group 

which is consisted of 5 acute patients and 5 subsided patients. Table 3 and 4 shows the result 

of predicts. Consequently, the standard k-means approaches had 3 out of 10 incorrect 

classifications, and the alternate k-means approaches had just 1 out of 10 incorrect 

classifications.  
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7    Discussion 

We have proposed to use the alternate k-means clustering methods to search for the 

optimal class allocation that can make clustering surrogates as independent as possible for 

objects belonging the same class, select the surrogates for estimating parameters in the model 

and create classification rule. By treating the identified class allocation as a known predictor, 

the parameters underlying a finite mixture model can then be estimated. We further use a 

classification rule, based on the finite mixture model. From the real data analysis, we 

demonstrate the ability in surrogate selection and handling the high-dimensional data and the 

accuracy of the classification rule in predicting new observations' unknown disease statuses. 

Here, we can see that the alternate k-means clustering method can reduce the size of 

surrogates and predict new observations' unknown disease statuses more accurate than 

original K-means clustering method.  
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Table 1: Predictions of class membership of 19 tumors by standard k-means clustering method 

Individual  

Prediction 

class 

membership
＊

 

Posterior 

Probability 
True class 

membership class 1 class 2 

1 1 0.550 0.450 1 

2 1 0.706 0.294 1 

3 1
 

0.550 0.450 1 

4 1 0.550 0.450 1 

5 1 0.706 0.294 1 

6 1 0.550 0.450 1 

7 1 0.550 0.450 1 

8 1 0.550 0.450 1 

9 1 0.550 0.450 1 

10 1 0.550 0.450 1 

11 1 0.706 0.294 1 

12 1 0.550 0.450 1 

13 2 0.001 0.999 2 

14 1 0.550 0.450 2 

15 2 0.001 0.999 2 

16 1 0.550 0.450 2 

17 1 0.550 0.450 2 

18 1 0.706 0.294 2 

19 2 0.001 0.999 2 
*Values in bold are misclassification 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 37 

Table 2: Predictions of class membership of 19 tumors by alternate k-means clustering 

method 

Individual  

Prediction 

class 

membership
＊

 

Posterior 

Probability 
True class 

membership class 1 class 2 

1 1 0.576 0.424 1 

2 1 0.565 0.435 1 

3 1
 

0.572 0.428 1 

4 1 0.576 0.424 1 

5 1 0.565 0.435 1 

6 1 0.573 0.427 1 

7 1 0.575 0.425 1 

8 1 0.565 0.435 1 

9 1 0.570 0.430 1 

10 1 0.565 0.435 1 

11 1 0.565 0.435 1 

12 1 0.576 0.424 1 

13 2 0.091 0.909 2 

14 1 0.574 0.426 2 

15 2 0.091 0.909 2 

16 1 0.576 0.424 2 

17 2 0.469 0.531 2 

18 1 0.565 0.435 2 

19 2 0.091 0.909 2 
*Values in bold are misclassification 
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Table 3: Predictions of class membership of 10 schizophrenia patient by standard k-means 

clustering method 

Individual  

Prediction 

class 

membership
＊

 

Posterior 

Probability 
True class 

membership class 1 class 2 

1 2 0.494 0.506 2 

2 2 0.115 0.885 2 

3 2
 

0.494 0.506 2 

4 2 0.115 0.885 2 

5 2 0.494 0.506 2 

6 1 0.968 0.032 1 

7 1 0.958 0.042 1 

8 2 0.494 0.506 1 

9 2 0.497 0.503 1 

10 2 0.494 0.506 1 
*Values in bold are misclassification 

 

 

Table 4: Predictions of class membership of 10 schizophrenia patient by alternate k-means 

clustering method 

Individual  

Prediction 

class 

membership
＊

 

Posterior 

Probability 
True class 

membership class 1 class 2 

1 2 0.489 0.511 2 

2 2 0.128 0.872 2 

3 2
 

0.488 0.512 2 

4 2 0.170 0.830 2 

5 2 0.471 0.529 2 

6 1 0.826 0.174 1 

7 1 0.699 0.301 1 

8 1 0.519 0.481 1 

9 1 0.803 0.197 1 

10 2 0.488 0.512 1 
*Values in bold are misclassification 
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Figure 1: Lasso and Ridge regression 
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Figure 2: The flow chart of alternate k-means  
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Figure 3: The flow chart of standard k-means  
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Figure 4: The heatmap for the 200-gene (original) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 43 

Figure 5: The heatmap for the 154-gene (selected) 
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Figure 6: The heatmap for the 30-item (original) 
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Figure 7: The heatmap for the 18-item (selected) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


