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Abstract

Parameters in latent class-analysis could be estimated-by some clustering methods. But in
the high-dimensional data, variable selection in cluster analysis is an important problem. Here,
we propose an alternate k-means-clustering methaod to first distinguish clustering and noisy
surrogates and then estimate the parameters in the latent class model. We also create a
classification rule, based on the finite mixture model. This classification procedure can
explicitly recognize the heterogeneous nature of the complex disease, which makes it perfect
in analyzing high-throughput genomic data. The real data analysis demonstrates the

advantages of our proposed methods.

Keywords: latent class analysis; high-dimensional data; variable selection; alternate k-means;

classification; microarray
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1 Introduction

Many concepts in medical research are unobservable, hence valid surrogates must be
measured in place of these concepts. Models that permit exploration of relationships between
unobservable variables and there surrogates are referred to as latent variable models. This
unobservable characteristic can be expressed as an univariate continuous score (the latent trait)
(Rasch, 1960; Lazarsfeld & Henry, 1968; Moustaki, 1996) or a categorical variable
identifying several "classes" that define homogeneous groups of individuals (Goodman, 1974;
Titterington, Smith, & Makov, 1985; Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997;
Huang & Bandeen-Roche, 2004). In this article, we focus on the cases where an underlying
categorical variable (the latent class variable) is used, and thus measured surrogates are
independent of one another within<any:-category of the latent variable. These are commonly
called as finite mixture models:

Parameters in finite mixture models are typically estimated by the maximum likelihood
(ML) for a fixed number of classes. The -Expectation-Maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977) can-be used-to .compute the ML estimates of parameters.
However, the above likelihood function is derived under the assumptions that cannot be
checked directly and may critically affect analytic findings (Bandeen-Roche et al., 1997).
Also, implementing the EM algorithm to estimate parameters in finite mixture models is
typically time-consuming and can be difficult to converge when possible patterns of
surrogates are large and the sample size is moderate or small. To avoid the problem of EM
algorithm, the finite mixture analysis may legitimately be viewed as the analog of cluster
analysis (Huang, Wang & Hsu, manuscript).

Cluster analysis implements a number of different algorithms and methods for grouping
objects of similar kind (i.e., with close distance) into respective categories. But in many case,

the number of surrogates is too large, and this may be due to the presence of several “noisy”



noninformative surrogates. The noisy surrogates will influence the clustering process and let
the result be fault. In this article, we will focus on how to solve this problem. We develop the
alternate k-means clustering methods. This clustering method can select noisy surrogates and
calculate the correlation among other clustering surrogates as the distance measure to group
objects at the same time. For the selected objects that belong to the same latent class, their
clustering surrogates are as close to be independent as possible. By treating the estimated
class membership based on the clustering surrogates as a known predictor, it becomes easy to
estimate the parameters in the finite mixture model. The proposed method can reduce the
dimension of data (i.e., to select surrogates we need), and directly obtain estimated latent
classes that best describe the association among surrogates.

This article also used a classification rule for predicting new objects’ outcome statuses
(e.g., diseased/not diseased, cured/not cured), based on the finite mixture model (Huang,
Wang & Hsu, manuscript). The classification rule is-especially useful for high-dimensional
data (e.g., microarray data). The latent class model explicitly recognizes and hence mitigates
errors in measurement, and gives a well summary of measured surrogates (i.e., the latent
variable). With our proposed parameter estimating procedure, we can easily perform the finite
mixture models on high-dimensional data and thus create classification rules based on the
inferred latent classes.

The rest of the article is organized as follows. In section 2, we introduce the latent class
analysis (LCA), the regression extension of latent class analysis (RLCA) model, and some
clustering methods. Section 3 and 4 provide a model with a new idea and detail the clustering
algorithm for estimating the latent classes underlying a finite mixture and the parameters of
the model. A classification rule based on the finite mixture model is then described in section
5. Gene expression microarray and schizophrenia syndrome scale data are used to illustrate
the proposed methods in section 6. Final, we conclude by discussing the contribution of this

article.



2. Literature Review
2.1 Latent class analysis (LCA)

Goodman (1974) provided an excellent overview of the Latent class analysis (LCA)
model, including a maximum likelihood strategy for estimating model parameters, conditions
to determine local model identifiability, a strategy to test overall model fit, and the use of
constraints to identify models. The idea for this model is that all measured surrogates reflect
the same unobservable characteristic, and that this characteristic fully explains the

associations between observed surrogates. LCA aims to classify objects based on their
responses to a set of categorical items. Here, we let Y, =(Y,,...,Y,, ) denote a set of M

observable polytomous surrogates for the ith individual in a study sample of N samplesY; ,
m=1..,M can take values {L..,K,}, where ‘K, >2. The basic model postulates an
underlying categorical latent variable'S; =1,...,J for individual i; within any category of the

latent variable, the measured indicators are assumed to be independent of one another.

Therefore, the distribution for Y, can be expressed as

J M Ky
Pr(Yil =Y Yiu = Yu ): Z{UJHH pm } '

j=1 m=1 k=1

(2.1)
where y,, =I(y, =k)=1if y,, =k; 0 otherwise; and assumes that 7, =Pr(S, = j) and
Prg = Pr(Yim =k | Si = J)'

(2.2)

i=1.,N;m=1..,M;k=1..,K_;j=1..17.

The model treats class membership probabilities, 7;, and item response probabilities

conditional on class membership, p,,;, as homogeneous over individuals. Heuristically, 7,



is the population prevalence of class j, and p,,; is the probability of an individual in class j

being at levels k of Y, .

2.2 Regression extension of latent class analysis (RLCA)

Huang and Bandeen-Roche (2004) extend the latent class analysis to allow both the
probabilities of latent class membership and the distribution of observed responses given
latent class membership to be functionally related to concomitant variables, while preserving
model identifiability. By allowing covariate effects on latent class probabilities, we
summarize the effect of risk factors on the underlying mechanism. In the case of incorporation
covariates into conditional probabilities, we can adjust for characteristics that determine
responses other than underlying classes, hence hopefully improving the accuracy of
classifying individuals. For instance, in’ evaluating functional disability, some data have
suggested that women tend to rate tasks as “difficult” more readily than men independently of
ability (Bandeen-Roche, Huang, Munoz, & Rubin, 1999). Without adjusting for the gender
effect, the model might well classify some men and women with identical underlying
functioning differently (men as “able”, women as “disabled”). In the literature, they also
provided an excellent overview of the RLCA model, including model identification,
Expectation-Maximization algorithm for parameter estimation, standard error calculation,
convergent properties, and comparison of the RLCA model with models underlying existing

latent class modeling software.

In RLCA models, let (x,,z;) be the concomitant covariates of the ith sample.

X; = (1, Xigsees xip)T are defined as primary covariate hypothesized to be associated with latent

class membership, S,, and z, =(z,,...zy, ) With z,, =L, 2,30 X, ) »M=1...,M , are

secondary covariates used to build direct effects on measured surrogates. The sets of

covariates can include any combination of continuous and discrete measures, and two sets of



covariates can be mutually exclusive or overlap. The regression extension of LCA may then
be stated as follows:

J M Ky
Pr(Ya= Yo, Yiw = Yu [%,2;) = Z{U] (X.TB)HH ki ('ij +Zi 0, )}

=1 m=1 k=1
(2.3)

with nj(xiTB) and pymk(ymj+z.Tu ) defined as in the generalized linear framework

mkj im~'m

(McCullagh and Nelder, 1989). Usually, (2.3) is implemented assuming generalized logit

(Agresti, 1984) link functions:

o {m(XTB)

=B + B Xy + -+ L%, for i=L.,N;j=1..J-1
g W:| ﬂOJ ﬁlj i1 ﬂp] ip J

(2.4)

and

Iog{ Prni ('ij + ZiTmam)

= Vi + U Zig + QL Zi
T 7/ka 1mk Sim1 Lmk “imL
mej (ij + Zimam):|

(2.5)

for i=1..,N;m=1..,M;k=1...,(K,-D;j=1..J.
The model is also necessary to unambiguously distinguish covariate effects on measured
response probabilities from covariate effects on class probabilities. Three assumptions

complete (2.3):
(C]-) Pr(Yil = yl""’YiM =Ym |Si 1 X 'Zi) = Pr(Yu = yl""’YiM =Ym |Si ’Zi);
(C2) Pr(si:jlxi’zi):Pr(Si:j|Xi);
(C3) Pr(Yil = Y1’---’Yi|v| =Ym | Sini ) :H::]_Pr(Yim =Ynm | Si’zim )

Notice that, in the conditional probability of model (2.5), we allow unrestricted intercepts

and level-and item-specific covariate coefficients, but the coefficients varying across classes



is unallowable (i.e., «,, is dependent on m, k but independent of j ). This constraint is

reasonable if the primary purpose of modeling conditional probabilities is to prevent possible

misclassification by adjusting for characteristics associated with item measurements.

2.3 Marginalization of the regression extension of latent class model

We introduce a process to “eliminate” the covariates effect, hence “marginalize” the
RLCA model (2.3). The marginalization process (Huang 2005) includes two stages. Stage 1
aims to eliminate z, effect. At stage 2, we apply the marginalization property; proposed by

Bandeen-Roche et al. (1997), to average Xx; effect out of the latent prevalence.

2.3.1 Marginalizing the covariate effects-on-conditional probabilities
For achieving the RLCA model assumption.(C3), we need to eliminate the covariate
effect. The key to marginalizing over z. is that the process must yield random variables that
follow a finite mixture distribution that is both independent of z, and has J mixing
components. A method for achieving such marginalization can be motivated by the properties
of added variable plots for linear regression models.
Consider the linear model
Y =x/B, +X;B, +¢
(2.6)
where & with mean 0 and variance matrix V. Let Y denote the residuals of regressing

Y on x,, and W=V" be the weight matrix. Then, it is well known that if x, and x,

are orthogonal (i.e., x,Wx} =0), Y has mean X, B, and variance V. That is, the simple

linear regression of Y on x, yields exactly the same inferences about B, as if we

performed the analysis on the more complicated model (2.6) (Cook and Weisberg, 1982).
Now, viewing the just-described stability of B, as analogous to the desired stability of latent

6



class dimension, J, the added variable property can be applied to model (2.6) to obtain the
marginalized conditional probabilities.

To present the key ideas more clearly, we let the measured indicators (Y,,...,Y,,) are
assumed to be binary (i.e., K, =---=K,, =2). Notice that (2.5) can be viewed as fitting a
logistic regression of Y, on S. adjusting for z

separately for each m. Now, we make

the analogy to (2.6), let S; =I(S; = j) fori=1..,N; j=1..,J-1. We can reparameterize
(2.5) as
logit [E(Y,,, 1S,. 25, )| =Sy, +(25, ) @, for i=1...N;m=1..M
(2.7)
T .
where S; :[1,Sil,...,8i(H)] ;

Z8 =(ziy = Zg s (zis = Z:0)]T, (centered” covariate vector);

N

Zyy =N 27,0

i1
Yo = oo Voo ooy ) 58007 0 = [0, gt |
Therefore, for any realization of S, , (2.7) is a logistic regression with dependent variable: Y,
and predictors: S,, Z; .
Next, the problem becomes how to calculate residuals form the generalized linear model
logit[E(Y,,, |S,,2¢, )= (25, ) o, for i=1..,N;m=1..M

(2.8)

The “pseudo-residuals” are given by

(2.9)

Here “hat” represents the estimated values;



Ym = [Ylm""'YNm]T ’ Vm = diag(vlm ""’VNm);Vim = Var(Yim); Z(r:n = [Zim L Z?\lm]
If x, and z,, areindependent, we can extractthe Z; from conditional probabilities by

treating the residuals form the model (2.8) as new response variables and regressing them on

S, . We substitute the estimate of y in the linear model

R, =S'v: +&,, i=1.,N;m=1..,M.

(2.10)

For the estimate of y_ in the model (2.7), a formal justification shows that y~ and y

can be very close under reasonable regularities. The above results can be extended to the

cases where (Y,,...,Y;, ) is polytomous as in (2.1) and (2.3).

2.3.2 Marginalizing the covariate effects on latent prevalences

For the marginalization of model (2.3) over X, we-use the nice property of the RLCA

model that the covariates associated with latent class prevalences, x;, can be ignored.

2.4 K-means method

MacQueen (1967) suggests the term K-means for describing an algorithm that assigns
each item to the cluster having the nearest centroid (mean). In its simplest version, the process
is composed of these three steps:

1. Partition the items into K initial clusters.

2. Proceed through the list of items, assigning an item to the cluster whose centroid (mean)
is nearest. (Distance is usually computed using the Euclidean distance with either
standardized or unstandardized observations.) Recalculate the centroid for the cluster
receiving the new item and for the cluster losing the item.

3. Repeat Step 2 until no more reassignments take place.



Rather than starting with a partition of all items into K preliminary groups in
Step 1, we could specify K initial centroids (seed points) and then proceed to Step 2.

The final assignment of items to clusters will be, to some extent, dependent upon the
initial partition or the initial selection of seed points. Experience suggests that most major

changes in assignment occur with the first reallocation step.

2.5 Lasso regression

When the data have high dimension or high correlation, variable selection is very
important. Tibshirani (1996) proposed Lasso regression. It is popular to solve this problem.
Unlike the original least square method, Lasso uses the panelized least square, which can
avoid high correlation problem and estimate some parameter to O at the same time. Frank and

Friedman (1993) propose the Bridge regression, and Lasso is the special case. The Bridge

regression is based on least-square, and limit the parameter by Z‘,Bj‘r <t(t>0). The

)

where r>0 (if r <0, the panelize function will be concave function, that is, ,éB”“ge has no

parameter estimated can be

pm}

BB (1) = argﬂmin{ (yi - xiT,B)2 +ﬂ,zp:‘,8j

i=1

(2.11)

minimum value), and A4 is the tuning parameter. When r=1, we called this Lasso
regression. And r =2, we called Ridge regression.
We compare the difference of Lasso regression and Rigde regression. Assume there are

two parameters in the model. Note that,

=1

S (A) =argmin {
p

(v -XB) +23 |8, \}

i=1

(2.12)

(o]



BT (1) = argﬂmin {Zn:(yi — xiTﬂ)2 +Azpl‘ﬂj ‘2}
i=1 j=1
(2.13)
In the figure 1, the limited region of Lasso and Ridge regression will be blue square and
blue circle. The least square method with no constraint will be red ellipse, and the center is the
solution of least square estimate. The advantage of Lasso regression is the limited region has
corners. If ellipse touches the square at the corner, it means Lasso regression will estimate

some parameters to 0. That is, Lasso can select variable and estimate parameters at the same

time.

2.6 Penalized model-based clustering
Variable selection in clustering analysis is both challenging and important. Pan and Shen

(2007) propose a penalized likelihood approach with-an™ L, penalty function, automatically

realizing variable selection via thresholding and delivering a sparse solution. For the original

model-base clustering method, given the observation x is drawn from a finite mixture
K

distribution f(X;@)ZZﬂ'k f (x;6,) , with the proportion =z, , component-specific
k=1

distribution f, and its parameters 6, . The log-likelihood is

logL(®) = ilog [i”k fk(xj;ek)}.

(2.11)
With the same motivation as in penalize regression, they propose a penalized likelihood:
log L(®) = ,i“ log [ki‘/rk f (X;; ek)} -h,(0),
(2.12)

where h,() is a penalty function with penalization parameter A. The choice of h,()
depend on the goal of the analysis. The EM algorithm can be applied to obtain the maximum

likelihood estimator of ©® .The K-means algorithm can be used in this process, and find the

10



variable cluster. More importantly, this process can select variable automatic.

2.7 Sparse k-means method

The standard k-means method can assign each item to the cluster with the features, and
there usually are large set of features. We might expect that the true underlying clusters
present in the data differ only with respect to a small fraction of the features, and will be
missed if one clusters the observations using the full set of features. Witten and Tibshirani
(2010) propose a method for sparse clustering, which allows us to group the observations

using only an adaptively-chosen subset of the features. Suppose we want to cluster n

observations on p dimensions. Let X; e R" denote feature j. Many clustering methods can

be expressed as optimizing criteria of the from
- - p
maximize ; f, (X5,0)
(2.13)

where f, (X j,G)) is some function that involves.enly the jth feature of the data, and ® isa

parameter restricted to lie in a set D. Then, they define sparse clustering as the solution to the

problem

P
ma@féglze{jzl“wj f; (Xj,@))} subject to ||w||2 <1, |w],<s w; 20 V]
(2.14)

where w; is the weight corresponding to feature j.
We optimize (2.14) using an alternate algorithm: holding w fixed, we optimize (2.14)
with respect to ®, and holding ©® fixed, we (2.14) with respect to w. In general, we do not

achieve a global optimum of (2.14) using this alternate approach; however, we are guaranteed

that each iteration increases the objective function. Notice that, to optimize (2.14) with repect

11



to wwith ® held fixed, we note that the problem can be re-written as

mainize{w"aj subjectto [uff <1, i, <5, v, 0]

(2.15)

where a; = f,(X;,®).Details are referred to Tibshirani (2010).

12



3 Model

Let (Y,,--,Y,,) denote a set of M observable surrogates and S, denote the
unobservable class membership, for the ith individual in a study sample of N samples. Unlike
traditional LCA model, we think that some surrogates have no difference among unobservable
latent classes. We call these surrogates as “ noisy surrogates ““. The other surrogates that have
different distributions in different latent classes are called “ clustering surrogates “. We hope
to find the noisy surrogates and exclude their influences in estimating latent classes. So, under

this idea, we let

Y = (Yoo Yar ) = (40 %®) = (Y2, Y Y, Y0 ) where YO denote the

noisy surrogates, YJ(Z)denote the clustering:-surrogates, and M, +M, =M . Y, can be either

continuous, ordinal or categorical ,for- m=1..,M", and S, can take values {1J} The

distribution for (Y,,...,Y,,) Can be expressed as the finite mixture density:

Pr(Y)

> Pr(S =DPrLIS=1)

M- 1M |

Pr(S; = D)Pr(Y @ 1Y, 8, = Pr(Y®|S; = ])

1]
—_

i

assumption 1

J
= Pr(Y®Y?)D Pr(S; = )Pr(Y? S, = |)

j=1
assumption 2 2) J M, K,
B (~ )XZ{UJHH pmkjymk}
j=1 m=1 k=1

where P =PI’(Yi,(nZ)=k|Si:j) are the “conditional probabilities” of the measured
responses given the underlying variable category, 7, =Pr(S;=j)are the “latent class

probabilities” of each underlying variable category and yfnzk) =1 if yfnz) =k ; 0 otherwise. This

13
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finite mixture model will be completed by two assumptions:
2 2 vz 2
(A1) PG Yo 19) =TT ProGe 19);
m=1

(w2) PrY 1Y, 5) =Pr(Y® Y ™),
Heuristically, 7; is the population prevalence of class j, and p,,; is the probability of

an individual in class j being at levels k of Y, and we do not explore the influence of Y.”

im !
in the following article.
Some authors have extended the finite mixture model to describe the effects of measured

covariates on the underlying mechanism and/or on measured surrogate distributions within

latent levels. One can summarize the effect of risk factors on the underlying mechanism by

allowing covariates X; = (L Xiga 3 Xip )T to be functionally related to latent class S; (Dayton

& Macready, 1998; Bandeen-Roche et al:;+1997; Huang& Bandeen-Roche, 2004). And we
implement the generalized linear: framework (McCullagh & Nelder, 1989) to incorporate

covariate effects into S;:

lo 77J'(Xi) _ i = = -
g = o T BXutot Byx, for i=1.,N;j=1..,J-1,

1, (Xi)
3.2)
To adjust for characteristics associated with surrogates, hence prevent possible
misclassification of underlying variable categories, we can incorporate individual-level
independent variables into the within-class distributions of measured surrogates

(Melton,Liang, & Pulver, 1994; Huang, & Bandeen-Roche, 2004; Muthen, & Muthen, 2007).
Let Z,=(ZyZyy ) With 2, =(L 2y, % ) »M=L..,M be covariates used to build

direct effects on measured surrogates within latent classes for the ith individual. When

14



surrogates are ordinal or categorical variables, we assume that

(Yi2[8; = i, 2y ) ~ Multinomial (L py; (2 ).+, P ; (Zim)) - @0

log M =V T Pk Lim 0 X Zim,
Pk, j (Zim ) J ’

(3.3)

where k=1,..,(K, -1, K., >2,and m=1..,M

If surrogates are continuous variables, we assume that

(Y28, = .2, ) ~ Normal( 4 (2,,),0% ), and

Hij (Zim) = emj + TmZima T T Tim il -

(3.4)

By incorporating (x;,z; ), we relax-the homogeneous probability (i.e., P, in the model

(3.1) ) in the sense that the -probabilities vary with some individual characteristics. In the

conditional distribution models(3.3) and (3.4), we allow-unrestricted intercepts, but we do not

2
m?

allow the covariate coefficients to‘vary across classes (i.e., o,, 7,,, and ¢, , 1=1..,L

are independent of j). This constraint is logical if the primary purpose of modeling conditional
probabilities is to prevent possible misclassification by adjusting for characteristics associated

with surrogates. In addition, after adjusting covariate effects, the conditional independence

assumption is also conditioning on z,, that is

MZ
PV, Y 1S, 2) = [ [PrOL2 1S, 2i)
m=1

(3.5)
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4 Parameter Estimation by Clustering Algorithm

Parameters in RLCA model are typically estimated using the EM algorithm (Goodman,
1974; Bandeen-Roche et al., 1997; Huang & Bandeen-Roche, 2004). Although this method
has notable advantages (e.g., obtaining consistent and asymptotically normally distributed
estimations, and directly providing standard error estimates for parameters), it can be
vulnerable to the violation of model assumptions and be difficult to converge when fitting
models with large numbers of surrogates and/or latent classes. Here, we propose an alternative
strategy for estimating parameters. The proposed method consists of two stages: first, the
alternate k-means method used in cluster analysis can find some noisy surrogates and
implemented to estimate the underlying latent class membership. Second, the estimated class

membership is treated as a known variable and-other parameters are then estimated.

4.1 Latent class membership estimation when not incorporating covariate effects
Finite mixture analysis is-a useful-tool to classify objects based on there responses to a

set of surrogates. The basic’ model postulates an underlying categorical latent

variable S, e{l,...,J}, and, within any category of the latent variable, measured clustering

surrogates are assumed to be independent of one another, and noisy surrogates are assumed to
be no difference in each class when given clustering surrogates. But when we want to control

more than one assumption, the traditional k-means algorithm will fail to work. So, we

proposed the alternate k-means clustering method and to estimate S, by applying this

method to find noisy surrogates, and to group the objects into J subgroups such that objects in
one subgroup will have a set of statistically independent clustering surrogates. Unlike the
traditional EM approach that intends to derive the grouping of objects under the assumption,
the proposed method tries to find the “optimal” grouping that is the most satisfying of the

assumption.
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41.1 The measurement for complete the assumption Al
The assumption (A1) means the clustering surrogates should be independent when they
in the same latent class. So, we just to use clustering surrogates Y@ to calculate the sample

covariance matrix. For continuous surrogates, the sample covariance matrix is a M,xM,

matrix with component (m, t), being the sample variance between Y. ) and Y . For

~ilo ~

polytomous categorical surrogates, each component of ( @) --,Y.Mz(z)) is represented as a

vector with elements being the indicators of each category:

g@):(\ﬁf),...,\figjz)):(Yiﬁ),...,v.@) Y2y P 1))

i(K,-1)? T TiMpLr et M, (K, -

(4.1)

with Y\ =1(Y =k)=1 if ¥~k 0otherwise;m=1..,M,; k=L..,(K,-L). Then,

Bll BlZ BlM2
Cov (Y( ) {COV (Ylmk) ’Ylt(SZ) )} _ .21 .22 | 2.M2
_BM21 BM22 BM2M2 ]

(4.2)
where B, =Cov(Y\?,Y?) isa (K, —1)x(K,—1) block matrix. Various component of

the above covariance matrix are

Pr(Y\y =1)—Pr(Ys) =1)Pr(Y =1 if m=t,k=s
Cov(Yie, Y ) =1 —Pr(Y =1)Pr(v,? =1) if m=t,k=s
Pr(Yey =LY =1)=Pr(Y\Y =1)Pr(Y? =1) if m=tk=s

(4.3)

The sample covariance matrix is obtained by replacing the probabilities with the sample
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averages. Let ACov; be the average of absolute values of entries in off diagonal elements

(continuous surrogates) / blocks (polytomous surrogates) of the sample covariance matrix

using objects in class j. Then, we define the “loss of independence” as

J - . .
Lol =3 w, ACov, withw, = the number of ;bjects in class j |
j=1

(4.4)

Notice that, the Lol is the weighted average of ACov; over all classes with weights

proportional to numbers of objects in each class. Lol can be used as the measure for
evaluating assumption (Al). The smaller the value of Lol, the more satisfying the

assumption (Al).

4.1.2 The measurement for complete the assumption A2

The assumption (A2) means the conditional expectations in any group should be equal,

that is, E(Y.(l)m(z),si:1):---=E(\g(l)|\g(2),si:J)zE(Y.(l)|YA(2)), and we use a non

~ ~ ~

-parametric method to evaluate the conditional expectation. In order to complete our
algorithm, we need to create a measurement, which is called the between class variation.

For the continuous surrogates, using the “nearest neighbor” approach, we define
(\gm(l) Mz)):\g; and estimate Y, ~ by

ij* = E Z Ykm(l)

r keC;
(4.5)

wherei=1---,N, m=1---,M, ,and C, be the set of indices of the r nearest neighbors of

Y? among {Yl(z),---,\ﬁ,ﬂz)}. Here we define the “distance” between Y. and Y by

~
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Y —Y{(Z)Hz . Then, we fixed r and take
Co={ (i,i)c(L2N)]
6747,
I, = argmin :
ke{g - 2
izzke?rg min HY -y, Hz
i = i @ _y|?
I, = argmin H\[k =Y, H }
kel NP\iig iy} 2
(4.6)
Let z m » we can have the over all conditional expectation mean

Yo=Y Y )t. On the other hand, we define (\gm(l) ‘\Q(Z),Si = j):Y.* (j) and estimate

m

(4.7)

where i=1---N, m=1-- Mg, j=1---,J and C/(j) be the set of indices of the r

nearest neighbors of Y,”) among {\(jgz),---,\fj(j_)}, where S, =S, =--=S, =j. Let

_ 1 U

Y. (i)==->Y,(j), and we can also have the conditional expectation mean
j i=l

. . — 0\t . .
Y (J)=(Yl (j),~--,YM1(J)) for the jth class, j=1,---,J. Now, we create the between class

variation matrix by

(4.8)

Then, we define the “between class variation”, the distance measure used when
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performing alternate k-means clustering. The “between class variation” is then defined as

J - . .
BCV = > w, BCov, with w, = the number of K,bJeCtS in class j
j=1

(4.9)

The BCV is the weighted average of BCov; over all classes with weights

proportional to numbers of objects in each class. BCV can be used as the measure for

evaluating assumption (A2). The smaller the value of BVC, the more satisfying the
assumption (A2).

When the surrogates are polytomous categorical, each component of \(j(” and \g(z)

should represent as a vector with elements being the indicators of each category:

T (V0,0 VL) SAEL ¥ )

|1(K1_1)!' ] iMll""’ iMl(Km*]-

(4.10)

m

with Y =1(Ye) =k)=1 if-¥ =k, O otherwise; m=1..,M,; k=1..,(K,-1), and
define the length of Y” =M, “And

T = (710, V2 ) = (VN Y2 Y2 )

(4.11)

with YS9 = 1(Y =k)=1 if Y\? =k, 0 otherwise; m=1,..,M,; k=1..,(K,-1), and

define the length of Yi(z) =M, . Then, we can do above process with these new Y and

v
A

4.1.3 The measurement for our alternate k-means algorithm
We have to create a criterion for our alternate k-means algorithm. The idea is from the

sparse k-means clustering method (Daniela M. Witten, &Robert Tibshirani, 2009). Let
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pLol =Lol , +AxBCV
Y

oo Where Lol , is the loss of independence calculated on
y \!” y®

Y®, BCV,, , is the between class variation calculated on Y™ given Y, and 1 is the

e

tuning parameter.

4.1.4 The alternate k-means algorithm

The alternate k-means algorithm is carried out through following steps to obtain the
estimated class membership for individuals and surrogates:

IK1. Randomly partition the objects into j initial classes.

IK2. Let all the surrogates be clustering surrogates. Proceed through the list of objects,
assigning objects to latent classes with the "loss of independence™ as the distance
measure.

IK3. Randomly assign the surrogates to the clustering group with probability 0.8 and to the
noisy group with probability 0.2.

IK4. Fix the object class obtained. from IK2. Proceed through the list of surrogates, assigning
surrogates to clustering or noisy group with the pLol as the distance measure.

IK5. Fix the surrogate group obtained from IK4. Proceed through the list of objects,
assigning objects to latent classes with the pLol as the distance measure.

IK6. Iterate IK4 and IKS5, until the surrogate group assignment convergence. (i.e., there is no
surrogate changing group)

In the algorithm 1K4 and IK5, we use an standard k-means clustering method to
assigning an object to the class and assigning surrogates to clustering/noisy group with the
pLol as the distance measure. The following algorithm describes how the standard K-means
clustering method work:

K1. First, all objects (or surrogates) are partitioned into K initial clusters.

K2. Proceed through the list of objects (or surrogates), assigning an object (or surrogates) to
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the cluster where the minimum pLol is reached.
K3. Repeat step 2 until no more reassignments take place.
The flow chart for alternate k-means and standard k-means algorithm are showing in

Figure 2 and Figure 3.

4.1.5 Estimation of tuning parameter A
Our alternate k-means algorithm is sensitive to the tuning parameter A. We have to

choose an appropriate value of A . Here, we propose an idea to select this parameter. First, we

calculate the loss of independence Lol . on Y® and the between class variation

BCV on Y given Y? after the algorithm step IK1 and IK2. Then, we set

Y(l) ‘\f(z)

A= El)_g\l/ . This setting can reduce the effect resulting from the difference of these two values.

We believe the large difference “between Lol and BCVY(U will make the algorithm

@
failed, and we find the appropriate A not only-shrinks the difference of two values, but also

makes a good prediction result.

4.2 Latent class membership estimation when incorporating covariate effects
The alternate k-means clustering algorithms are based on the assumption (Al) and (A2).
If covariates z,, are incorporated into the conditional distributions as in model (3.3) and
(3.4), the conditional independence assumption is also conditioning on incorporated
covariates (i.e., the assumption (3.5)). To apply these algorithms to model (3.3) and (3.4), one
would need to “eliminate” the covariate effects, hence “marginalize” model (3.3) and (3.4).
Here, we adopt the marginalization process develop in 3.3.1 of (Huang, 2005). To

present the process, we first reparameterize models (3.3) and (3.4) as
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Pr(yim =K ‘Sil""’ Si(J—l))

= Vmko F YmkarSis 7 V(01 Si(a-1)

‘o, 2o+ toy, zo fork :1,---,(Km —1)
(4.12)

and

S-S

i(3-1) Zim) = Ono + 0 Sy +--F ‘9m(J— S,

1) i(3-1)
+ Ty 2y T+ T L

imL

(4.13)
where S; =1(S,=j), j=1---,(J-1). In brief, the process assumes that the incorporated
covariates z,, and the class membership S, are orthogonal, and calculates the residual of

regressing Y,, on z, separately for each me{L:<,M}. One can then extract z,, from

m

conditional distributions by treating these residuals as-new response variables and regressing
themon S,. Therefore, the conditional independent assumption (3.5) is considered satisfied if

objects belonging to the same_latent class have a. set of M, statistically independent

residuals.

Now, we consider Y = (Y., Yin )= (YJ(),YJ( )) When Y, 's are continuous, the
typical residuals of linear regressions R, (i.e., the differences between observed responses
and their modeled predictors) are computed. When Y, 's are categorical, the problem

becomes how to calculate residual from the generalized linear model

Pr (Y, =k|z;,)

Pr( K|Z ) :almkzim1+---+a|_mkzimL,for k:]_,___,(Km_l).

log

(4.14)

We propose to use the “pseudo-residual”
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(4.15)

where Y,, is as defined in section, p,, = E(Vim |Zim), and “hat” denotes the estimated values

based on (4.13). The pseudo-residual (4.14) is defined by analogizing the alternately
reweighted least-squares of generalized linear models with the least-square estimates of linear

regressions (Landwehr, Pregibon, & Shoemaker, 1984; Huang, 2005). We then classify
objects based on new response variables R. ~(continuous surrogates) or ﬁim (categorical

surrogates) as done in the previous subsection.
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5 Classification Using Finite Mixture Models

In many researches, it is major interest to predict new observations’ unknown disease
statuses based on their measurements on surrogates. Some literature develops the method to
create the classification rules (Huang, Wang &Hsu, manuscript), and we use their ideas to

create the classification rules base on our model. Consider a set of N objects with known

disease statues D, and measured surrogates Y, plus incorporated covariate x,z, if

existing, for i=1,---,N, where D, takes values {1,---,C}. We use these to fit finite mixture
models  (3.1), (3.2), (3.3) and/or (3.4) . Then. We can obtain estimations

S B (émj,f,m,&ri) and (7. G ) » for all i, j,m p,Lk . For a new object with

*

measurements on surrogates YX=(Y,--Y, ) dnd covariates X',z =(z,--,z,), we

assume that

pr(D* =c’S* = j,Y*,x*,z*): Pr(D* :C‘S* = J'),

(5.1)
then the posterior probability of classifying him/her as the disease status D" =c is
J
Pr(D"=clY',x,2 )=> {Pr(D" =c|S = j)Pr(S =jlY ,x,z°
(0 =elv )= 3 fpr(0" s = )pr(s"= i}
(5.2)

where S” is the presumed latent class membership of the new object. In other word, the
latent class can fully capture the association between the disease status and observed
surrogates, which is reasonable when viewing the latent class variable as well summary of
measured surrogates. We can estimate the right hand side of (5.2) by

il(§i:j)l(Di=c)

§'=j)="=

(5.3)



and

(5.4)

where 7, (x) is the estimated latent prevalence of the jth class for new observation X",
evaluated at estimator ﬁpj. Notice that, only surrogates in the clustering group
{yfz)*,---,yﬁ,fz)*} are used in the prediction. fj(yfnz)*‘z;) is the estimated conditional

distribution of the mth surrogate given the jth class for the new observation (y(z)* z*),

m 7 m

evaluated at estimators (6..,7,,62) ‘and (%.:.é,.). We propose to choose ¢ for the
mj? “Im 7ka Imk

m

maximum estimated posterior probability is-reached, 1.e.,
¢ =arg maxﬁr(D*zc‘Y*,x*,z*),
cefl,++C}
(5.5)
In this classification rule, a new object’s disease status is predicted through his/her

inferred latent class variable S, and it can be viewed as the summary of the new object’s

measured surrogates through the training set {Y1,~--,YN }
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6 Example

In this section, we consider the Breast cancer data (continuous) and Schizophrenia
syndrome scale data (categorical) examples, and use standard k-means and alternate k-means
clustering method to estimate the parameters in original LCA model and our model.
Furthermore, we use the proposed classification rule (Huang, &Wang, &Hsu) for prediction.
Here, we introduced a useful tool for clustering. Heatmap has the notion of rearranging the
columns and rows to show structure in the data. A heatmap is a two-dimensional, rectangular,
colored grid, and shows data that themselves come in the form of a rectangular matrix. The
color of each rectangle is determined by the value of the corresponding entry in the data
matrix. The rows and columns of the matrix can be rearranged independently. Usually they
are using clustering methods for rearder such-that similar rows are placed next to each other,
and the same for columns. Ameng the orderings that are widely used are those derived from a
hierarchical clustering, but many other orderings are possible. If hierarchical clustering is
used, then it is customary that the -dendrograms are provided as well. Here, we use
non-hierarchical clustering methods (i.e., k-means-and alternate k-means clustering methods)
to find some subgroup for individuals and plot the heatmap by these groups. On the other
hand, we use agglomerative hierarchical clustering methods to grouping the surrogates with
distance measurement using one minus correlation. We will use the heatmap figures to show

our result.

6.1 Breast cancer data

The data come from a study of using gene expression profiling to predict breast cancer
outcome (\Veer et al., 2002). The 78 sporadic lymph-node-negative patients under 55 years of
age were selected specifically to search for a prognostic signature in their gene expression

profiles. Forty-four patients remained free of disease after their initial diagnosis for an interval
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of at least 5 years (good prognosis group, mean follow-up of 8.7 years), and 34 patients had
developed distant metastases within 5 years (poor prognosis group, mean time to metastases
2.5 years). From each patient, total RNA was isolated from tumor material and used to drive
cRNA. A reference cRNA pool was made by pooling equal amounts of cRNA from each of
the sporadic carcinomas. Fluorescence intensities were quantified, normalized and corrected
to yield the transcript abundance of a gene as an intensity ratio with respect to that of the
signal of the reference pool (Hughes et al., 2001).

Here, we aim to predict good and poor prognostic patients through gene expression
profiling. We use a two-step selection process was performed to retain genes in the analysis.
Firstly, 4741 genes selected from 24481 genes with the intensity ratio > 2 or < 0.5 (i.e., more
than two-fold difference) and the significance of regulation p-value < 0.01 in more than 3
patients. This was used in the original paper and focused the attention to the most informative
genes. In the second step, we applied a selection of genes based on the ratio of their
between-group to within-group sums of squares, as suggested by (Dudoit, Fridlyand, & Speed,

2002). For a gene m, that ratio is

(6.1)
where y. ~ denotes the intensity ratio of gene m in the patient i, d. is the indicator of
good (=1) or poor (=0) prognosis group of patient i, and y,, and Yy are the average
intensity ratio of gene m across samples belonging to prognosis group ¢ only and across
all patients, respectively. We use (6.1) to compute BW ratio for each gene and selected top
200 genes with the largest BW ratios for finite mixture analysis.

Using 200 selected expression ratios as observed surrogates, a finite mixture model (3.1),

(3.2), (3.4) was fitted. In the fitted model, age at diagnosis (year) was chosen to be associated

with conditional probabilities, and latent prevalence was also modeled as depending on age at
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diagnosis. We used the standard k-means clustering approach to group patients and resulted in
3 classes of size 40, 21, and 17. In the alternate k-means clustering method, only needs to
decide the tuning parameter A; and the nearest neighbors r. We choose 1=130 (the

initial Lol , = 0.058633 and BCV , , =0.154481) and r=3. The alternate k-means

Y(l) ‘Y(Z)

clustering method selected 154 out of 200 genes as the clustering surrogates. This approach
resulted in 3 classes of size 33, 22, and 23. The heatmap for the 200-gene (original) and
154-gene (selected) expression profile are displayed in Figures 4 and 5.

An additional independent set of primary tumors from 19 young, lymph-node-negative
breast cancer patients was used to validate the above 154-gene prognosis classifier. This
group consisted of 7 patients who remained free of disease for at least five years, and 12
patients who developed distant metastases within five years. Table 1 and 2 shows the result of
prediction from the standard -k-means-and alternate k-means. Consequently, the standard
k-means approaches had 4 out of 19 incorrect classifications, but the alternate k-means

approaches had 3 out of 19 incorrect classifications.

6.2 Schizophrenia syndrome scale data

The data were collected from a series of projects, aiming at investigating the clinical
manifestations of schizophrenia and searching for neuropsychological, environmental and
genetic factors underlying schizophrenia. Details of study design and eligibility criteria were
described previously (Liu, Hwu, & Chen, 1997; Chen et al., 1998; Chang et al., 2002). The
analyzed data include 164 acute-state patients of schizophrenia who were recruited within one
week of index admission and 155 subsided stage patients who were living with community
and under family care.

In this study, schizophrenia symptoms were assessed by the Positive and Negative

Syndrome Scale (PANSS) (Cheng, Ho, Chang, Lane, & Hwu, 1996). The PANSS has 30
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items and consists of three subscales: positive (seven symptoms: P1-P7), negative (seven
symptoms: N1-N7) and general psychopathology (sixteen symptoms: G1-G16). Each item
was originally rated on a 7-point scale (1=absent, 7=extreme), but we reduced the 7-point
scale by merging the points that had the response percentages less than 10%. This study
considered external covariates including demographic variables and environmental /
neuropsychological factors. Demographic variables included gender, age at recruitment, years
of education, and occupation (having versus no occupation). The category of no occupation
included housewives, students, unemployed and retired people. The environmental factors
were related to obstetric complications, prenatal growth retardation, special personal behavior
and psychological adjustment problems. And the neuropsychological batteries assessed
reaction time, attention, speed of_information. processing, and active problem solving.
Specifically, the test batteries included several standard.neuropsychological instruments with
demonstrated reliability and validity, and we concentrated on the Continuous Performance
Test (CPT), which had been widely used to measure sustained attention deficits in psychotic
disorders (Chen et al., 1998).

The analysis aims to explore the subtype (groups) of schizophrenia patients based on
PANSS measurement. In our application, the latent class model of (3.1), (3.2), and (3.3) was
applied to 30 PANSS items. We let the covariates associated with conditional probabilities
include variables of sex, age (year), years of education (year), and occupation (with versus
without occupation), and the covariates associated with latent prevalence include variables of
age of onset (year), envirll, envir2l, envir22, envir3l, envir32, and dprime. We used the
standard k-means clustering approach to group patients and resulted in 4 classes of size 231,

31, 52, and 5. We choose the tuning parameter 1 =30 (the initial Lol ., = 1.174653 and

BCV

Y(l) ‘Y(Z)

=1.898806) and r =3 in alternate k-means process. Eighteen (3 positive, 2

negative, and 13 general psychopathology) out of 30 items were selected as clustering
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surrogates. This approach grouped patients in 4 classes of size 221, 41, 47, and 10. The
heatmap for the 30-item (original) and 19item (selected) are showed in Figures 6 and 7.

In general, class 1 appeared to represent a group who had severe/extreme positive
symptoms and moderate negative symptoms; class 2 was a group who had moderate positive
symptoms but mild negative symptoms; class 3 represented a group who had widespread
whole syndrome of severe positive and negative symptoms; and class 4 was a remitted group
who rarely had any symptom.

Then, we are interested in using the PANSS ratings to predict patients’ phases of
chronicity of disease (acute versus subsided). There has 10 patients in the prediction group
which is consisted of 5 acute patients and 5 subsided patients. Table 3 and 4 shows the result
of predicts. Consequently, the standard ' k-means approaches had 3 out of 10 incorrect
classifications, and the alternate” k-means approaches had just 1 out of 10 incorrect

classifications.
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7 Discussion

We have proposed to use the alternate k-means clustering methods to search for the
optimal class allocation that can make clustering surrogates as independent as possible for
objects belonging the same class, select the surrogates for estimating parameters in the model
and create classification rule. By treating the identified class allocation as a known predictor,
the parameters underlying a finite mixture model can then be estimated. We further use a
classification rule, based on the finite mixture model. From the real data analysis, we
demonstrate the ability in surrogate selection and handling the high-dimensional data and the
accuracy of the classification rule in predicting new observations' unknown disease statuses.
Here, we can see that the alternate k-means clustering method can reduce the size of
surrogates and predict new observations' unknown disease statuses more accurate than

original K-means clustering method.
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Table 1: Predictions of class membership of 19 tumors by standard k-means clustering method

o Posterior
Prediction  propability
class True class
Individual membership® class1 class 2 membership
1 1 0.550  0.450 1
2 1 0.706  0.294 1
3 1 0.550  0.450 1
4 1 0.550  0.450 1
5 1 0.706  0.294 1
6 1 0.550  0.450 1
7 1 0.550  0.450 1
8 1 0.550  0.450 1
9 1 0.550  0.450 1
10 1 0.550  0.450 1
11 1 0.706  0.294 1
12 1 0.550." ~0.450 1
13 2 0.001" -0.999 2
14 1 0,5509m +0:450 2
15 2 0.001  0.999 2
16 1 0.550, 10450 2
17 1 0.550.,_0.450 2
18 1 0.706 "< 0:294 2
19 2 0.001  0.999 2

“Values in bold are misclassification
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Table 2: Predictions of class membership of 19 tumors by alternate k-means clustering

method
o Posterior
Prediction by opability
class True class
Individual membership® class1 class 2 membership
1 1 0.576 0.424 1
2 1 0.565  0.435 1
3 1 0.572  0.428 1
4 1 0.576 0.424 1
5 1 0.565  0.435 1
6 1 0.573  0.427 1
7 1 0.575 0.425 1
8 1 0.565  0.435 1
9 1 0.570  0.430 1
10 1 0.565 *.0.435 1
11 1 0.565 ~ 0.435 1
12 1 0.576 0.424 1
13 2 0.091  0.909 2
14 1 0574 0.426 2
15 2 0.091 1 0.909 2
16 1 0.576 0.424 2
17 2 0.469  0.531 2
18 1 0.565  0.435 2
19 2 0.091  0.909 2

“Values in bold are misclassification
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Table 3: Predictions of class membership of 10 schizophrenia patient by standard k-means

clustering method

o Posterior
Prediction by opability
class True class
Individual membership® class1 class 2 membership
1 2 0.494  0.506 2
2 2 0.115 0.885 2
3 2 0.494  0.506 2
4 2 0.115 0.885 2
5 2 0.494  0.506 2
6 1 0.968  0.032 1
7 1 0.958  0.042 1
8 2 0.494  0.506 1
9 2 0.497 0.503 1
10 2 0.494 0.506 1

“Values in bold are misclassification

Table 4: Predictions of class membership of 10 schizophrenia patient by alternate k-means

clustering method

o Posterior
Prediction s papility
class True class
Individual membership® class1 class 2 membership
1 2 0.489  0.511 2
2 2 0.128  0.872 2
3 2 0.488  0.512 2
4 2 0.170  0.830 2
5 2 0.471  0.529 2
6 1 0.826  0.174 1
7 1 0.699  0.301 1
8 1 0519 0481 1
9 1 0.803  0.197 1
10 2 0.488  0.512 1

“Values in bold are misclassification
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Figure 1: Lasso and Ridge regression
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Figure 2: The flow chart of alternate k-means
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Figure 3: The flow chart of standard k-means
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Figure 4: The heatmap for the 200-gene (original)
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Figure 5: The heatmap for the 154-gene (selected)
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Figure 6: The heatmap for the 30-item (original)
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Figure 7: The heatmap for the 18-item (selected)
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