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摘要 

我們都知道容忍區間被廣泛的使用於工業應用，例如醫藥工程、製程

穩定研究等等，都是為了要偵測不良品的數量。不良品的數量通常假

設服從二項式分配；然而，資料過度分散的現象卻很普遍的存在於二

項式分配。在這篇文章中，我們使用 beta 二項式模型去適配過度分

散的資料且提出方法去建立過度分散的資料的容忍區間。 
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Abstract 

It is well known that tolerance intervals are widely used in industrial 

applications, such as pharmaceutical engineering, process reliability 

studies, etc, to control the number of defective units. The number of 

defective units is usually assumed to follow a binomial distribution; 

however, it is common that overdispersion phenomenon exists for 

binomially distributed data. In this study, we use the beta-binomial model 

to fit the overdispersion data and propose an approach to construct 

tolerance intervals for overdispersion data. 

 

Keywords: overdispersion, tolerance interval, beta-binomial distribution. 
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1 Introduction

A tolerance interval is an important statistical tool and widely used in various

practical applications, such as plant or animal inbreeding, and environmental mon-

itoring, etc. A tolerance interval is constructed such that a certain proportion b of

the population will be contained with a stated confidence level (1−a) that gives an

idea of what range each individual measurement should fall within. In other words,

it is a statistical interval within which, with some confidence, a specified propor-

tion of a population falls. Thus there are two different proportions associated with

the tolerance interval: a degree of confidence and a percent coverage.

Let F denote the cumulative distribution for a random variable, X. An interval,

(L(X), U(X)), is said to be a tolerance interval(TI), that is b% of the population

will fall within with 1−a confident, denoted as a (b, 1−a) TI satisfies the equation:

Prθ{[F (U(X))− F (L(X))] ≥ b} = 1− a. (1)

But for discrete distributions, the value of the left hand side of (1) depends

on the parameter θ. For a fixed β, the left side of (1) is not a constant. In this

situation, it is reasonable to modify the definition of (1) for a discrete distribution

as follows:

Prθ{[F (U(X))− F (L(X))] ≥ b} ≥ 1− a (2)

and there exists a θ such that the equality holds. For instance, we may be 95%

confident that 90% of the population will fall within the range specified for a

(0.9,0.95) TI.

Construction of tolerance intervals for univariate distributions has been ex-

tensively studied for continuous distributions or discrete distributions (Wang and

Tung 2009, Perishability and Mathew 2004, Collani and Karl 2002, Mukerjee and
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Reid 2001, Easterling and Weeks 1970, Vangel 1992). However, tolerance intervals

have not been explored in detail for more complex situations, such as the data

with overdispersion.

Because the tolerance intervals for some discrete variables such as binomial

and Poisson distributions are widely used in industrial quality control, some ap-

plications require one-sided lower or upper tolerance bounds for the distribution

of the number of defective units in future samples for the purpose of achieving the

desirable quality control.

However, in industrial applications, a problem has been raised that count data

exhibit variation greater than that predicted by the stochastic component of a

model. In these cases, adopting a binomial model for modeling the data may lead

to an unsatisfactory result. Such data are referred to as overdispersion that exits

the presence of greater variability in a data set than would be expected based

on a given simple statistical model. If the phenomenon of overdispersion occurs

for binomially distributed data, the data is said to have extra-binomial variation.

This reflects a lack of independence or heterogeneity, which is an adjective used to

describe an object or system consisting of multiple items having a large number of

structural variations among individuals.

In this study, we develop procedures for constructing a one-sided tolerance

bound for discrete overdispersion data. The proposed methods are derived from

the concept of generalized compound probability distributions.

This thesis is organized as follows. The methods of testing to check the data

with overdispersion phenomenon are discussed in Section 2. The parameter esti-

mation we use in this study are proposed in Section 3. In Section 4, we use the

distribution-free interval to find the most appropriate quantile, and we demon-

strate the simulation results with three different quantiles. An example from a
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semiconductor manufacturing process data is given in Section 5. Our conclusions

and discussions are mentioned in Section 6.

1.1 Overdispersion with binomial data

Let X1, . . . , Xn be a sample following a binomial distribution bin(n, p), we have

Xi ∼ bin(n, p) (3)

and the variance is

var(Xi) = np(1− p). (4)

When there does not exit a constant p such that the sample mean and sample

variance of Xi simultaneously satisfy (3) and (4), the data is concluded to violate

the binomial assumption. In this case, we conclude that there are overdispersion

phenomenon for the data and we can assume the variance is

var(xi) = ϕ · np(1− p) (5)

which is multiplying the variance with a constant ϕ and ϕ is defined as a dispersion

parameter ( Liang and McCullagh 1993 and Richards 2008).

If ϕ = 1, the data follows a binomial distribution. We say the data is overdis-

persion or underdispersion if ϕ > 1 or ϕ < 1, respectively. It is common that data

is overdispersion. Richards (2008) points out the following two reasons to lead a

overdispersion phenomenon.

� The model is not accounting for important covariates.

� There are interaction between binary responses (each treatments is not in-

dependent).
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When the variability in the data exceeds what the binomial model can accom-

modate, it will cause standard error’s underestimate and increase of the probability

of Type I error if we still used the binomial model to fit the data. Thus, we should

test whether the data is overdispersion first.

In general, there are three methods to test whether the data is overdispersion

or not. If ϕ > 1, we think the data is overdispersion, so we need test whether ϕ is

1. The testing hypothesis is:

H0 : ϕ = 1

H1 : ϕ > 1

The test procedures are introduced in Section 2. If the p-value associated with a

test is not too small, we do not reject H0. In other words, it means that ϕ is close

to 1, then there is no significant of overdispersion.

1.2 Method Dealing With Overdispersion Data

The first approach involves modeling the causes of overdispersion implicitly

using compound probability distributions (beta-binomial distribution). For exam-

ple, if all subjects of a treatment have the same probability of exhibiting a positive

response (or success), then the number of successes among replicated treatments

will follow a binomial distribution. However, in many cases the variation observed

among replicates is often greater than that predicted by a binomial distribution. In

this situation, we can model overdispersion by using compound probability distri-

butions. Let B(x;n, p) be the cumulative binomial distribution of X which follows

a binomial distribution. We have

B(x;n, p) = Pr(X ≤ x) =
x∑
i=0

(
n

i

)
pi(1− p)n−i (6)

Assume X1, ..., Xn is a sample following a bin(n, p) with unknown p. Suppose

that p varies randomly due to unknown covariates and the variation in p can be
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described by the probability density function f(p). In this case, the probability x

of the n subjects will exhibit a positive response:

Pr(x) =

∫ 1

0

f(p)

(
n

x

)
px(1− x)n−x dp (7)

The second approach ignores the causes of overdispersion and uses Akaikes in-

formation criterion (AIC) as a measure of the goodness of fit of an estimated statis-

tical model. This criterion has been used in various fields of statistics, engineering

and numerical analysis, and has a clear interpretation in model fitting. However,

AIC is not a test of the model in the sense of hypothesis testing, rather it is a test

between models - a tool for model selection. The best approximating model is the

one which achieves the minimum AIC value compared to all models. Let gi be the

probability that if the study was performed, then the outcome indexed by i would

be observed(
∑

i gi = 1) .In this study, the probability distribution defined by the

gi, which we denote g, is referred to as the truth. Suppose a stochastic model is

proposed which predicts that outcome i will be observed with probability qi. Let

the distribution of predicted probabilities be denoted q. An information-theoretic

measure of the difference between the truth and the approximating model is the

Kullback−Leibler distance (KLD):

I(g,q) =
n∑
i

giln(
gi
qi

). (8)

I is often interpreted as the information lost when the truth g is approximated by

q. The smaller the value of I, the better the model approximates the truth.

Let θ denote the set of model parameters (i.e. the gi depend on θ). The

best parameter values for a model according to information theory are those that

minimize I. Unfortunately, because the truth, g, is unknown in realistic cases, it is

not possible to apply (8) directly to find the best θ. However, parameter values can

be estimated readily by fitting the model to the data using maximum likelihood.
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Suppose the study was repeated an infinite number of times and the processes

generating the data did not change from one study to the next. If the model’s

parameters were reestimated each time using maximum likelihood, then the EKLD

of the model would be:

Eg{I(g,q)} =
∑
j

gjI(g,q(θ̂j)) (9)

where θj is the set of maximum likelihood parameter estimates. Akaike (1973)

established a relationship between the maximum likelihood, which is an estimation

method used in many statistical analysis, and the EKLD. The model with the low

EKLD value was usually consider a parsimonious model, because when we fit the

data, it has lowest KLD. The proposed model having the lowest EKLD is referred

to as the best EKLD model and is the model we wish to identify. Suppose a study

resulted in outcome j, for a proposed model, M, its AIC value is defined as:

AIC(M) = 2k − 2lnL(θ̂j) (10)

this can also be written as:

AIC = 2 × (number of fitted parameters) − 2 × log(maximized likelihood for

model)

Hence, K is the number of parameters in the statistical model, and L is the max-

imized value of the likelihood function for the estimated model. It can be shown

that AIC estimates twice the models relative EKLD:

AIC(M) ≈ 2(Ep{I(g,q)} − c) (11)

where c =
∑

i gilngi is a constant common to all models that depends only on g.

Hence, models with a low AIC value are more likely to be the best EKLD model.

Although we know the method to find the model for the data with overdispersion,

we have no idea to find the tolerance interval for these data. In This study, I try

some method to find tolerance interval for data with overdispersion.
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2 Testing for overdispersion data

The method of test is discussed in Ennis and Bi (1998), and Yinong and Chan

(2008). Suppose an experiment involves n subjects being exposed to a treatment,

and let p be the probability each individual in the replicate treatment exhibits a

positive response. We will review the definition of the binomial distribution:

f(X = x) =

(
n

x

)
px(1− p)n−x, 0 < p < 1 (12)

where x is the number of successes in a sequence of n independent experiments,

and p is probability for success, and let the probability p follow a beta distribution

with two parameters α and β, and the definition of the beta distribution is

f(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (13)

where Γ is the gamma function Γ(a) = (a − 1)! and α and β are two positive

parameters.

In this study, we assume that f(p) can be well described by a beta density

function because its flexibility and its ability to provide good approximations.

The beta-binomial density function is

Pr(X = x) =

∫ 1

p=0

(
n

x

)
px(1− p)n−x Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

∫ 1

p=0

pα+x−1(1− p)n−x+β+1dp

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(n− x+ β)

Γ(α + n+ β)

=
Γ(n+ 1)Γ(α + β)Γ(x+ α)Γ(β + n− x)

Γ(x+ 1)Γ(n− x+ 1)Γ(α)Γ(β)Γ(α + β + n)

where x = 0, 1, 2...n, α and β are two positive parameters, n is the total number

of treatments, and x is the total number of subjects of defective units.

Hence, let pi = xi/ni, i = 1, 2, ...k, where i indexes each studies, xi is the

number of events in the ith study and ni is the sample size of the study. With the
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sample size ni and binomial probability pi that the proportion of defective units,

the binomial distribution describes variation fully not possibly by itself, when pi

varies, the data therefore are fitted with a beta distribution with parameters (α, β).

In short, we construct two model:

Xi|pi ∼ bin(ni, pi)

pi ∼ Beta(α, β)(Each pi is independent)

E(pi) =
α

α + β
= µ (14)

var(pi) =
αβ

(α + β)2(α + β + 1)

=
α

α + β

β

α + β

1

α + β + 1

= µ(1− µ)γ (15)

where γ = 1/(α + β + 1), hence, we can know the marginal expect value and

variance of Y:

E(Xi) = E(E(Xi|pi))

= E(nipi)

= niµ (16)

V ar(Xi) = E(var(Xi|pi)) + V ar(E(Xi|pi))

= E(nipi(1− pi)) + V ar(nipi)

= ni(µ− V ar(pi)− µ2) + n2
iµ(1− µ)γ

= ni(µ− µ(1− µ)γ − µ2) + n2
iµ(1− µ)γ

= ni(µ(1− µ))(1− γ) + n2
iµ(1− µ)γ

= niµ(1− µ)(1 + (n− 1)γ) = niµ(1− µ) · ϕ (17)
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We can view the term γ as a multiplier of the binomial variance. In other words,

it models the overdispersion. So we can test γ ≥ 0 or ϕ ≥ 1 to see whether the

data is overdispersion or not.

For discrete distributions, Pearson’s χ2 statistic is often used for testing goodness-

of-fit. The test hypothesis is:

H0 : ϕ = 1

H1 : ϕ > 1

and the test-statistic for Pearson’s χ2(Ismail, N. and Jemain, A.A., 2007) is:

χ2 =

∑
i(xi − µi)2

niµi(1− µi)
(18)

ϕ̂ =
χ2

DF
(19)

Under H0 the statistic χ2 is chi-square distributed with DF = n − k degrees

of freedom, where n denotes total number of treatments and k the number of

parameters. In other words, When the systematic part of the model is correct and

the binomial assumption holds, χ2 is approximately chi-square distributed with

DF = n− k degrees of freedom. Hence χ2 has an expectation of DF and ϕ̂ ≈ 1.

However, this test, has been found to be less sensitive in detecting departure from

the binomial model because boundary problems arise as we test whether a positive-

valued parameter is greater than 0.

We may use a likelihood ratio test(Yinong and Chan 2008) that can also be

used to test for overdispersion. The null hypothesis is that distribution is binomial

versus the alternative hypothesis is that the distribution is beta-binomial. The

log-likelihood for the binomial model is

lnL = ln

(
n

x

)
+ xln(p) + (n− x)ln(1− p) (20)

9



The likelihood ratio test is

χ2 = 2(Lbetabinom − Lbinom) (21)

where Lbetabinom is the log-likelihood value for the beta-binomial model and Lbinom

is log-likelihood value for the binomial model.

The third method, we can use Tarone’s Z statistic(Ennis and Bi 1998) to test

the goodness of fit test for binomial against beta binomial distribution. This has

been shown to be more sensitive than the parameter test (e.g. test for γ being

zero) and the log-likelihood ratio test:

Z =
E −

∑k
i=1 ni√

2
∑k

i=1 ni(ni − 1)
(22)

where

E =
k∑
i=1

(xi − nip̂)2

p̂(̂1− p)
(23)

p̂ =
k∑
i=1

xi
nk

(24)

This statistic Z on (22) has an asymptotic standard normal distribution under the

null hypothesis of a binomial distribution.

Rejection of test can be used to detect if the data of the model exit overdis-

persion. So, once we detect the presence of overdispersion, there are usually

two approaches to deal effectively with overdispersion. The first approach in-

volves modeling the causes of overdispersion implicitly using compound probability

distributions(beta-binomial distribution). The second approach ignores the causes

of overdispersion and uses Akaike′s information criterion (AIC) as a criterion.

10



3 Parameter estimation

For overdispersion data x1, ..., xn, we suggest to model them with a beta-

binomial distribution. There are two true parameters, θ = (α, β) that we need

to estimate. We adopt two methods introduced as follows to estimate α and β.

3.1 Method 1 to estimate α and β

Let α = η
φ

and β = 1−η
φ

, 0 < η < 1, 0 < φ < 1. The likelihood function of

x1, ..., xn is

L(η, φ) =
∏
i

Γ(n+ 1)Γ(α + β)Γ(xi + α)Γ(n− xi + β)

Γ(xi + 1)Γ(n− xi + 1)Γ(α)Γ(β)Γ(n+ α + β)
. (25)

We need to derive η̂ and φ̂ such that

maxη,φL(η, φ) = L(η̂, φ̂).

Then we can derive α and β estimators

α̂ =
η̂

φ̂
, β̂ =

1− η̂
φ̂

. (26)

Note that the condition

0 < η < 1, 0 < φ < 1.

leads to

0 < α <∞, 0 < β <∞.

Let

f(η, φ) = ln(L) = ln(
m∏
i=1

f(xi)) =
m∑
i=1

lnf((xi)) (27)

The following steps is used to find a value of (η, φ) to maximize L:

11



� Step 1: Let A={(η, φ) : η = i
1000

, φ = j
1000

, i = 0, 1, 2, · · · , 999, j = 0, 1, 2, · · · , 999}

� Step 2: Calculate the likelihood function L at the points in A. The likelihood

function L is

L =
∏
i

Γ(n+ 1)Γ( η
φ

+ 1−η
φ

)Γ(xi + η
φ
)Γ(n− xi + 1−η

φ
)

Γ(xi + 1)Γ(n− xi + 1)Γ( η
φ
)Γ(1−η

φ
)Γ(n+ 1

φ
)

� Step 3: We select the point (η∗, φ∗) in set A of Step 1such that the likelihood

function L is maximized at the point (η∗, φ∗). Then (η∗, φ∗) are desirable

estimators of (η, φ)

3.2 Method 2 to estimate α and β

The second method is to derive the maximum likelihood estimators of α and

β. Although the method 1 is also a method to derive estimators of α and β

such that the likelihood function has the maximum value when α and β occurs

at these estimators, it transform the α and β to η and φ. The second method

directly maximize likelihood estimators by a numerical approach. The Maximum

likelihood estimation(MLE) seeks the value of the parameter vector to maximizes

the likelihood function. It is a totally analytic maximization procedure. It begins

with a mathematical expression known as the Likelihood function, that is the

probability of obtaining that particular set of data, given the chosen probability

distribution model.

MLE is a common statistical method used to fitting the model by sample

data, and corresponds to many famous estimation method in statistics. From

a statistical viewpoint, the mle is more robust and yields estimators with good

properties by considering. The MLE method is many-sided, and is suitable for

the major part model and the different type data. Moreover, they provide the

high efficiency method for the quota uncertainty through the confidence region.
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Although the maximum likelihood estimate’s methodology is simple, implements

in mathematics are intense. However, complex mathematics formula is not a big

problem by using present’s computer science and technology.

4 Distribution-free tolerance interval

We briefly describe the distribution-free tolerance interval in this section. Let

PLE and PGE is the proportion of the population fall within the range specified by

the tolerance interval. If we want to find an upper bound, because we hoped that

the bound is smaller, therefore it is essential to seek for the smallest integer ν such

that

Pr(y ≤ ν) = B(ν;n, p) ≥ PLE (28)

is an upper probability bound on the number of defective units. And if we want

to find the lower bound, because we hoped that the bound is greater, therefore it

is essential to seeks for the the largest integer ω such that

Pr(y ≥ ω) = 1−B(ω;n, p) ≥ PGE (29)

For example, the sample size n is 30, PLE = 0.90, and p̃ = 0.03 is the one-sided

upper 95% confidence bound for the population proportion p of defective units the

population proportion p of defective units. Because, Pr(y ≤ 1) = B(1; 30, 0.03) =

0.77, and Pr(y ≤ 2) = B(2; 30, 0.03) = 0.94, the upper tolerance bound is 2. In

other words, we are 95% confident that at least 90%(more precisely, at least 0.94)

of the products, the number of defective units will less or equal than 2.

4.1 Tolerance bound

We briefly describe the approach of deriving the distribution-free tolerance

bound. LetX1, . . . , Xn be n independent random variables. Suppose (X(1), . . . , X(n))
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are the order statistics that comes from (X1, . . . , Xn) is one of the data set from

(X1, . . . , Xn). That is, X(1) ≤ X(2) ≤ · · · ≤ X(n). Hence, X(1) has the minimum

observed value, and X(n) has the maximum observed value.

Let Fr(x) denote the cumulative density function(cdf) of the rth order statistic

X(r), and r = 1, 2, . . . , n. Then the cdf of the largest order statistic X(n) is given

by

Fn(x) = Pr{X(n) ≤ x}

= P (max Xi ≤ x)

= Pr(X1 ≤ x, · · · , Xn ≤ x)

=
n∏
i=1

P (Xi ≤ x)

= (FX(x))n (30)

Likewise we have the smallest order statistic X(1) is given by

F1(x) = Pr{X(1) ≤ x}

= P (min Xi ≤ x)

= 1− p(min Xi ≥ x)

= 1− Pr(X1 ≥ x, · · · , Xn ≥ x)

= 1−
n∏
i=1

P (Xi ≥ x)

= 1− (1− FX(x))n (31)

There are important special cases of the general result for Fr(x):

Fr(x) = Pr{X(r) ≤ x}

= Pr{at least r of the Xi ≤ x}

=
n∑
j=r

(
n

j

)
(FX(x))j(1− FX(x))n−j (32)
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We now assume that Xi is continuous with probability density function(pdf) p(x) =

F ′(x). If fr(x) denote the pdf of X(r) we have

fr(x) =
n!

(r − 1)!(n− r)!
(F (x(r)))

r−1(1− F (x(r)))
n−rf(x(r)) (33)

hence, the general result for Fr(x):

Fr(x) =
n∑
j=r

(
n

j

)
(FX(x))j(1− FX(x))n−j

=

∫ FX(x)

0

n!

(r − 1)!(n− r)!
(F (x(r)))

r−1(1− F (x(r)))
n−rf(x(r)) dx(r)

= IFX(x)(r, n− r + 1) (34)

where

Ip(a, b) =

∫ p

0

ta−1(1− t)b−1dt/
∫ 1

0

ta−1(1− t)b−1dt

=

∫ p

0

ta−1(1− t)b−1dtB(a, b) (35)

and

B(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

The joint density function of X(r) and X(s)(1 ≤ r < s ≤ n) is conveniently denoted

by frs(x, y). It follows that for x ≤ y

frs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
(F (x))r−1(F (y)− F (x))s−r−1(1− F (y))n−sp(x)p(y)(36)

Let ξp be the pth quantile. We shall now show that if X is continuous the

random interval (X(r), X(s)) covers ξp with a probability which depends on r,s,n

and p, thus allowing the construction of distribution-free confidence intervals for

ξp. Since X(s) < ξp, we have, whether X is continuous or not,

Pr{X(r) ≤ ξp ≤ X(s)} = Pr{X(r) ≤ ξp} − Pr{X(s) ≤ ξp} (37)
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It follows from Fr(x) = Ip(x)(r, n− r + 1) that (X(r), X(s)) covers ξp with prob-

ability π(r, s, n, p) given by

π(r, s, n, p) = Fr(x)− Fs(x)

= Ip(r, n− r + 1)− Ip(s, n− s+ 1)

=
s−1∑
i=r

(
n

i

)
P i(1− p)n−i (38)

To obtain a distribution-free TI, the requirement of a TI(X(r), X(s)) is that it

contains at least a proportion γ of the population with probability 1− a. Thus, if

h(x) is continuous we seek X(r), X(s) such that

Pr{
∫ X(s)

X(r)

h(x)dx ≥ γ} = 1− a (39)

and we can write as

Pr{
∫ X(s)

X(r)

h(x)dx ≥ γ} = Pr{P (X(s))− P (X(r)) ≥ γ} (40)

Let Wrs = P (X(s))− P (X(r)). The density function is

f(wrs) =
1

B(s− r, n− s+ r + 1)
ws−r−1rs (1− wrs)n−s+r 0 ≤ wrs ≤ 1 (41)

which is a beta distribution Beta(s-r,n+1-s+r). Therefore,

Pr{Wrs ≥ γ} = 1− Iγ(s− r, n− s+ r + 1) (42)

Hence, we want to find r such that Pr{Wrs ≥ γ} = 1 − Iγ(s − r, n − s + r +

1) = 0.95 with the proportion γ = 0.9, n = 1000, and s = 1000. By numerical

calculation, we have r = 84. It also means that the TI (X(84), X(1000)) contains at

least a proportion 0.9 of the population with probability 0.95

4.2 Procedure

The following is the simulation procedure for obtain the coverage probabilities

of (0.1, 0.95) distribution-free tolerance bound.
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Table 1: The coverage probability for tolerance bound of x80, x84 and x90 quantile

a 1 2 3 4 5 6 7 8 9
quantile

80th 0.9680 0.9728 0.9472 0.9641 0.9699 0.9606 0.9644 0.9583 0.9711

90th 0.9230 0.9209 0.9225 0.9189 0.9197 0.9119 0.9259 0.9302 0.9333

84th 0.9539 0.9602 0.9400 0.9468 0.9508 0.9538 0.9426 0.9414 0.9687

� Step 1: Suppose α and β are known. Generate pi, i = 1, 1000 from the beta

distribution beta(α, β).

� Step 2: Generate xi ∼ binomial(n, pi), i = 1, ..., 1000. of x. Let TRUETI=x(100)

and then we derive estimators α̂, β̂ for α and β, by method 1 or method 2.

� Step 3: Generate pi ∼ beta(α̂, β̂), i = 1, ..., 1000. Then generate xi ∼

binomial(n, pi) , xi, i = 1, ..., 1000. Let TI=x(90).

� Step 4: Repeat Step 1 to Step 3 to calculate the proportion that TIs derived

in Step 3 are less than TRUETI. The proportion is the coverage probability

of the tolerance bound.

4.3 Simulation result

The tolerance bound x(84) derived before, we also calculate the coverage proba-

bility for different tolerance bound based on the order statistics x(80) and x(90) for

different α and β values. The results are presented in Table 1 for β = 1, ..., 9 and

α = 1, ..., 9.

Table 1 shows that the coverage probability based on the tolerance bound x80

is always higher than 0.95, and the coverage probability of tolerance bound x90 is
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always lower than 0.95. Compare with these two tolerance bounds, the coverage

probability of 84th is closer to 0.95.

5 Real data example

5.1 Introduction of data

In this section, we use a real data example to illustrate the method. The

real data is from a semiconductor manufacturing process. The location of chips

on a wafer that is measured on 30 wafers. On each wafer, 50 chips are measured

and a defective is defined whenever a misregistration, in terms of horizontal and/or

vertical distances from the center, is recorded. The chips data are listed in Table 2.

Table 2: The semiconductor data
Sample number fraction defectives Sample number fraction defectives
1 0.24 16 0.16
2 0.3 17 0.2
3 0.16 18 0.1
4 0.2 19 0.26
5 0.08 20 0.22
6 0.14 21 0.4
7 0.32 22 0.36
8 0.18 23 0.48
9 0.28 24 0.3
10 0.2 25 0.18
11 0.1 26 0.24
12 0.12 27 0.14
13 0.34 28 0.26
14 0.24 29 0.18
15 0.44 30 0.12

The data can be obtained from the NIST/SEMATECH e-Handbook of Statisti-

cal Methods: http:// www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.htm.

We first assume that the defective numbers follow a binomial distribution, Bin(50,θ),
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then test if the overdispersion parameter φ is equal to 1. It reveals that the data

are overdisperion. Therefore, we fit the data with a beta-binomial model.

To obtain tolerance bounds for the data, we adopted method 1 and method

2(MLE method) to estimate the parameters (α, β) in a beta distribution. If we

let real data be the population, and sampling 15 values from population without

replacement. The estimated α and β values are α̂ = 4.3333, β̂ = 6.7778 and

α̂ = 3.6078, β̂ = 6.8662(MLE method) respectively. The true tolerance bound

calculating by real data is 5. The coverage probability by method 1 is about

0.9828 by average, and by method 2 is about 0.9332 by average.

If we treat real data as the sample values which sampling from 100 population

without replacement. The estimated α and β values are α̂ = 2.8571, β̂ = 4.2857

and α̂ = 3.0737, β̂ = 4.8203(MLE method) respectively. The mean lower tolerance

bounds corresponding to these two sets of (α̂, β̂) are 5 and 4, respectively.

5.2 AIC value comparison

We know AIC = 2k − 2lnL(θ̂j), and at this real data example:

L =
10∏
i=1

∫ 1

p=0

Γ(α̂ + β̂)

Γ(α̂)Γ(β̂)
pα̂−11− pβ̂−1

(
n

xi

)
pxi (1− p)

n−xi dp (43)

where

k = 2

and ∫ 1

p=0

Γ(α̂ + β̂)

Γ(α̂)Γ(β̂)
pα̂−1(1− p)β̂−1

(
n

xi

)
pxi (1− p)

n−xi dp

=

(
n

xi

)
Γ(β̂ + n− xi)

Γ(β̂)Γ(α̂ + β̂)Γ(α̂)Γ(xi + α̂)Γ(β̂ + n+ α̂)

The AIC value for Method 1 is about 183, and it is 61 for Method 2. Thus, we

conclude that Method 2 leads to better estimators for the unknown parameters α

and β because it has a lower AIC value.
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6 Conclusion

In industrial or other applications, the overdispersion phenomenon usually oc-

curs for binomial data or poisson data. Since in this case, the conventional toler-

ance limit does not lead to a satisfactory result, in this study, we develop procedures

for constructing a one-sided tolerance bounds for discrete overdispersion data.

In this study, we fit the data with a beta-binomial distribution and use two

methods to estimate the unknown parameters for the beta distribution. Procedures

for deriving distribution-free tolerance intervals are established. We also conduct

a simulation to calculate the coverage probability of the derived tolerance bound.

The results show that the proposed method can lead to a satisfactory result.
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A The main matlab code

A.1 real data example by method 1

err=0;

m=30;

n=30; mm=50; s=0;

eta=0;

#To read data from computer

x=load(’D:/data.txt’);

x=x*50;

#To find eta and phi such that maximizes likelihood function

for i = 1:mm

max=-10000;

while(eta<1)

phi=0;

eta=eta+0.01;

while(phi<1)

phi=phi+0.01;

j=1;

if(eta<1)

sumf=0;

for j = 1:m

f=log(gamma(n+1)/(gamma(x(j)+1)*gamma(n-x(j)+1))

*gamma(x(j)+eta/phi)*gamma(n-x(j)+(1-eta)/phi));

sumf=sumf+f;

end
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ff=m*log(gamma(1/phi)/gamma(eta/phi)/gamma((1-eta)/phi)/gamma(1/phi+n));

total=sumf+ff;

#To choose the phi and eta such that maximizes likelihood function

if(max<total)

max=total;

truephi=phi;

trueeta=eta;

end

end

end

end

ahead=trueeta/truephi; % alpha=eta/phi

bhead=(1-trueeta)/truephi; % beta=(1-eta)/phi

a=ahead;

b=bhead;

x=sort(x); %sort the x of the population

TRUETI=x(3); % let TRUETI=the 10th quantile of x

k=0;

jj=1;

for jj = 1:mm

p=betarnd(a,b,1000,1);

xx=binornd(n,p);

xx=sort(xx);

TI(jj)=xx(84);

if(TI(jj)<=TRUETI)

k=k+1;
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end

end

point = k/mm;

s=s+point;

end

#To calculate the mean of the proportion

s/mm
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A.2 real data example by method 2

nn=30;

m=50;

s=0;

#To start iterations

for i = 1:m

#To read data from the computer}

population=load(’D:/data.txt’);

population=population*50;

x=sort(population);

#To be TRUETI=the 10th quantile of x

TRUETI=x(3); let TRUETI=the 10th quantile of x

#To rand sampling from population by 15 times without replacement

sample=randsample(population,15,’false’)

data = sample/nn;

j=1;

#To be all data unequal 0 or 1

for j = 1:15

if data(j) == 1

data(j) = data(j)-0.01;

end

if data(j) == 0

data(j) = data(j)+0.01;

end

j=j+1;

end
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#To find the MLE of alpha and beta

phat = betafit(data);

k=0;

j=1;

#To compare TI with TRUETI m times

for j = 1:m

#To generate p from beta distribution with parameter alpha and beta of MLE

p=betarnd(phat(1,1),phat(1,2),1000,1);

#To generate x from beta distribution with parameter nn and p

x=binornd(nn,p);

x=sort(x);

#To be TI=the 8.4th quantile of x

TI(j)=x(84);

#To calculates how many TI is smaller than TRUETI in m times

if(TI(j) <= TRUETI)

k=k+1;

end

end

#To calculate the proportion that TI is smaller than TRUETI in m times

point = k/m;

To add all proportion that TI is smaller than TRUETI in m times

s=s+point;

end

#To calculate the coverage probability

s/m
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Table 3: The coverage probability with 80th
b 1 2 3 4 5 6 7 8 9 average

a=1 0.9116 0.9408 0.9388 0.9960 0.9440 0.9872 0.9964 0.9976 1.0000 0.968

a=2 0.8872 0.9336 0.9872 0.9656 0.9960 0.9964 1.0000 0.9960 0.9928 0.9728

a=3 0.8448 0.9136 0.9316 0.9480 0.9704 0.9408 0.9960 0.9980 0.9812 0.9472

a=4 0.8816 0.9668 0.9548 0.9528 0.9880 0.9880 0.9808 0.9812 0.9832 0.9641

a=5 0.9136 0.9368 0.9616 0.9868 0.9656 0.9928 0.9812 0.9984 0.9924 0.9699

a=6 0.8404 0.9440 0.9680 0.9784 0.9656 0.9884 0.9984 0.9792 0.9828 0.9606

a=7 0.8904 0.9112 0.9744 0.9732 0.9812 0.9828 0.9844 0.9964 0.9852 0.9644

a=8 0.8808 0.9416 0.9528 0.9720 0.9808 0.9496 0.9888 0.9652 0.9932 0.9583

a=9 0.9060 0.9520 0.9800 0.9900 0.9752 0.9968 0.9984 0.9688 0.9728 0.9711

Table 4: The coverage probability with 84th
b 1 2 3 4 5 6 7 8 9 average

a=1 0.8360 0.9556 0.9368 0.9996 0.9488 0.9188 0.9912 0.9988 0.9996 0.9539

a=2 0.8492 0.9200 0.9464 0.9628 0.9928 0.9956 0.9892 0.9856 1.0000 0.9602

a=3 0.8092 0.9252 0.9160 0.9516 0.9324 0.9728 0.9664 1.0000 0.9864 0.9400

a=4 0.8552 0.9060 0.9552 0.9244 0.9752 0.9556 0.9864 0.9832 0.9800 0.9468

a=5 0.8768 0.9480 0.9188 0.9372 0.9748 0.9464 0.9920 0.9664 0.9972 0.9508

a=6 0.8240 0.9288 0.9712 0.9360 0.9940 0.9720 0.9736 0.9976 0.9868 0.9538

a=7 0.8184 0.9588 0.9432 0.9336 0.9588 0.9600 0.9596 0.9540 0.9968 0.9426

a=8 0.8116 0.9332 0.9532 0.9252 0.9720 0.9800 0.9616 0.9560 0.9796 0.9414

a=9 0.9188 0.9580 0.9652 0.9520 0.9796 0.9952 0.9616 0.9896 0.9984 0.9687
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Table 5: The coverage probability with 90th
b 1 2 3 4 5 6 7 8 9 average

a=1 0.8576 0.8848 0.8276 0.9996 0.9200 0.8772 0.9564 0.9844 0.9996 0.9230

a=2 0.7216 0.8248 0.9164 0.9472 0.9760 0.9424 0.9840 0.9760 1.0000 0.9209

a=3 0.8692 0.7952 0.8964 0.9096 0.9728 0.9512 0.9800 0.9532 0.9748 0.9225

a=4 0.7528 0.8932 0.8788 0.9720 0.9316 0.9800 0.9360 0.9484 0.9772 0.9189

a=5 0.8628 0.8496 0.8608 0.8792 0.9568 0.9628 0.9432 0.9772 0.9848 0.9197

a=6 0.7132 0.8736 0.8540 0.9428 0.9704 0.9720 0.9592 0.9784 0.9432 0.9119

a=7 0.7836 0.9208 0.9460 0.9080 0.9284 0.9748 0.9368 0.9436 0.9908 0.9259

a=8 0.8120 0.9264 0.8732 0.9372 0.9668 0.9396 0.9636 0.9564 0.9968 0.9302

a=9 0.8020 0.9428 0.8988 0.9364 0.9304 0.9544 0.9920 0.9672 0.9756 0.9333
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