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Abstract
It is well known that tolerance intervals are widely used in industrial
applications, such as pharmaceutical engineering, process reliability
studies, etc, to control the number of defective units. The number of
defective units is usually assumed to follow a binomial distribution;
however, it is common- that -overdispersion phenomenon exists for
binomially distributed data. In‘this study, we use the beta-binomial model
to fit the overdispersion data and propose an approach to construct

tolerance intervals for overdispersion data.
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1 Introduction

A tolerance interval is an important statistical tool and widely used in various
practical applications, such as plant or animal inbreeding, and environmental mon-
itoring, etc. A tolerance interval is constructed such that a certain proportion b of
the population will be contained with a stated confidence level (1—a) that gives an
idea of what range each individual measurement should fall within. In other words,
it is a statistical interval within which, with some confidence, a specified propor-
tion of a population falls. Thus there are two different proportions associated with
the tolerance interval: a degree of confidence and a percent coverage.

Let F denote the cumulative distribution for a random variable, X. An interval,
(L(X),U(X)), is said to be a tolerance interval(TI), that is 6% of the population

will fall within with 1—a confident, denoted asa (b, 1 —a) T1 satisfies the equation:
Pro{[F(UX)) — F(L(X))] =z b} =1 —a. (1)

But for discrete distributions; the value of the left hand side of (1) depends
on the parameter 6. For a fixed (3, the left side of (1) is not a constant. In this
situation, it is reasonable to modify the definition of (1) for a discrete distribution

as follows:
Pro{[F(U(X)) — F(L(X)) 2 b} > 1—a 2)

and there exists a 6 such that the equality holds. For instance, we may be 95%
confident that 90% of the population will fall within the range specified for a
(0.9,0.95) TT.

Construction of tolerance intervals for univariate distributions has been ex-
tensively studied for continuous distributions or discrete distributions (Wang and

Tung 2009, Perishability and Mathew 2004, Collani and Karl 2002, Mukerjee and



Reid 2001, Easterling and Weeks 1970, Vangel 1992). However, tolerance intervals
have not been explored in detail for more complex situations, such as the data
with overdispersion.

Because the tolerance intervals for some discrete variables such as binomial
and Poisson distributions are widely used in industrial quality control, some ap-
plications require one-sided lower or upper tolerance bounds for the distribution
of the number of defective units in future samples for the purpose of achieving the
desirable quality control.

However, in industrial applications, a problem has been raised that count data
exhibit variation greater than that predicted by the stochastic component of a
model. In these cases, adopting a hinomial model for modeling the data may lead
to an unsatisfactory result. Such data are referred to as overdispersion that exits
the presence of greater variability in a data set than would be expected based
on a given simple statistical model. If the phenomenon of overdispersion occurs
for binomially distributed data, the data is-said to have extra-binomial variation.
This reflects a lack of independence or heterogeneity, which is an adjective used to
describe an object or system consisting of multiple items having a large number of
structural variations among individuals.

In this study, we develop procedures for constructing a one-sided tolerance
bound for discrete overdispersion data. The proposed methods are derived from
the concept of generalized compound probability distributions.

This thesis is organized as follows. The methods of testing to check the data
with overdispersion phenomenon are discussed in Section 2. The parameter esti-
mation we use in this study are proposed in Section 3. In Section 4, we use the
distribution-free interval to find the most appropriate quantile, and we demon-

strate the simulation results with three different quantiles. An example from a



semiconductor manufacturing process data is given in Section 5. Our conclusions

and discussions are mentioned in Section 6.
1.1 Overdispersion with binomial data
Let X1,..., X, be a sample following a binomial distribution bin(n, p), we have
X; ~ bin(n,p) (3)
and the variance is

var(X;) = np(l —p). (4)

When there does not exit a constant p such that the sample mean and sample
variance of X; simultaneously satisfy (3) and (4); the data is concluded to violate
the binomial assumption. In«this case, we conclude that there are overdispersion

phenomenon for the data and we can assume the variance is

var(zg) = ¢ - np(1—p) ()

which is multiplying the variance with a constant ¢ and ¢ is defined as a dispersion
parameter ( Liang and McCullagh 1993 and Richards 2008).

If ¢ =1, the data follows a binomial distribution. We say the data is overdis-
persion or underdispersion if ¢ > 1 or ¢ < 1, respectively. It is common that data
is overdispersion. Richards (2008) points out the following two reasons to lead a

overdispersion phenomenon.
e The model is not accounting for important covariates.

e There are interaction between binary responses (each treatments is not in-

dependent).



When the variability in the data exceeds what the binomial model can accom-
modate, it will cause standard error’s underestimate and increase of the probability
of Type I error if we still used the binomial model to fit the data. Thus, we should
test whether the data is overdispersion first.

In general, there are three methods to test whether the data is overdispersion
or not. If ¢ > 1, we think the data is overdispersion, so we need test whether ¢ is
1. The testing hypothesis is:

Hy:p=1

Hi:p>1
The test procedures are introduced in Section 2. If the p-value associated with a
test is not too small, we do not reject Hy. In other words, it means that ¢ is close

to 1, then there is no significant of overdispersion.

1.2 Method Dealing With Overdispersion Data

The first approach involves modeling the causes of overdispersion implicitly
using compound probability distributions (betasbinomial distribution). For exam-
ple, if all subjects of a treatment have the same probability of exhibiting a positive
response (or success), then the number of successes among replicated treatments
will follow a binomial distribution. However, in many cases the variation observed
among replicates is often greater than that predicted by a binomial distribution. In
this situation, we can model overdispersion by using compound probability distri-
butions. Let B(z;n,p) be the cumulative binomial distribution of X which follows
a binomial distribution. We have

B(x;n,p) = Pr(X <z) = C.L)pi(l -p)" (6)
i=0

Assume X7, ..., X,, is a sample following a bin(n, p) with unknown p. Suppose

that p varies randomly due to unknown covariates and the variation in p can be

4



described by the probability density function f(p). In this case, the probability x

of the n subjects will exhibit a positive response:

Prioy = [ (M) -0 @)

The second approach ignores the causes of overdispersion and uses Akaikes in-
formation criterion (AIC) as a measure of the goodness of fit of an estimated statis-
tical model. This criterion has been used in various fields of statistics, engineering
and numerical analysis, and has a clear interpretation in model fitting. However,
AIC is not a test of the model in the sense of hypothesis testing, rather it is a test
between models - a tool for model selection. The best approximating model is the
one which achieves the minimum AIC.value eompared to all models. Let g; be the
probability that if the study was performed, then the outcome indexed by ¢ would
be observed (), g; = 1) .In this study, the probability distribution defined by the
gi, which we denote g, is referred to as the truth. 'Suppose a stochastic model is
proposed which predicts that outcome ¢ will be observed with probability ¢;. Let
the distribution of predicted probabilities be.denoted q. An information-theoretic
measure of the difference between the truth and the approximating model is the

Kullback—Leibler distance (KLD):

I(g,q) = Zgiln(%)- (8)

I is often interpreted as the information lost when the truth g is approximated by
q. The smaller the value of I, the better the model approximates the truth.

Let 6 denote the set of model parameters (i.e. the g; depend on #). The
best parameter values for a model according to information theory are those that
minimize /. Unfortunately, because the truth, g, is unknown in realistic cases, it is
not possible to apply (8) directly to find the best §. However, parameter values can

be estimated readily by fitting the model to the data using maximum likelihood.



Suppose the study was repeated an infinite number of times and the processes
generating the data did not change from one study to the next. If the model’s
parameters were reestimated each time using maximum likelihood, then the EKLD

of the model would be:
EfI(g.q)} = g1l(g.a(6) (9)
J

where 6, is the set of maximum likelihood parameter estimates. Akaike (1973)
established a relationship between the maximum likelihood, which is an estimation
method used in many statistical analysis, and the EKLD. The model with the low
EKLD value was usually consider a parsimonious model, because when we fit the
data, it has lowest KLD. The proposed model having the lowest EKLD is referred
to as the best EKLD model and.is the model we wish to identify. Suppose a study

resulted in outcome j, for a proposed-model, M, its' AIC value is defined as:
AIC(M) = 2k —2InL(6;) (10)

this can also be written as:

AIC = 2 x (number of fitted parameters) —2 x log(maximized likelihood for
model)

Hence, K is the number of parameters in the statistical model, and L is the max-
imized value of the likelihood function for the estimated model. It can be shown

that AIC estimates twice the models relative EKLD:
AIC(M) = 2E,{I(g, @)} — (1)

where ¢ = ). g;lng; is a constant common to all models that depends only on g.
Hence, models with a low AIC value are more likely to be the best EKLD model.
Although we know the method to find the model for the data with overdispersion,
we have no idea to find the tolerance interval for these data. In This study, I try

some method to find tolerance interval for data with overdispersion.
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2 Testing for overdispersion data

The method of test is discussed in Ennis and Bi (1998), and Yinong and Chan
(2008). Suppose an experiment involves n subjects being exposed to a treatment,
and let p be the probability each individual in the replicate treatment exhibits a
positive response. We will review the definition of the binomial distribution:

n

f(X =) = ( )pxu—p)“, 0<p<1 (12)

x
where z is the number of successes in a sequence of n independent experiments,
and p is probability for success, and let the probability p follow a beta distribution

with two parameters o and 3, and the definition of the beta distribution is

Plasf 5)
DT (3)

where T" is the gamma function I'(@) = (a.— 1)} and o and (3 are two positive

fp) = s (13)

parameters.
In this study, we assume‘that, f(p) can be well described by a beta density
function because its flexibility and its_ability to provide good approximations.

The beta-binomial density function is

Pr(X =)= /pio ( )p””(l -p)" _”pra‘l(l —p)?ldp

(@)T'(8)
“()re

n +
(;1:) T(B) F(a+n+p)

Fin+ DI'(a+ )z + ) (B+n —x)
r+1DI'(n—x+ DI («)D(B)Na+ 5 +n)

a+z—1 (1

?) P —p)
BT

n—z+ﬂ+1dp

8

a—l—x)F(n—x—l—ﬁ)

[(a
[(a)
IN(e!
()

I
where = 0,1,2..n, a and (3 are two positive parameters, n is the total number
of treatments, and x is the total number of subjects of defective units.

Hence, let p; = z;/n;,i = 1,2,...k, where i indexes each studies, x; is the

number of events in the ith study and n; is the sample size of the study. With the

7



sample size n; and binomial probability p; that the proportion of defective units,
the binomial distribution describes variation fully not possibly by itself, when p;
varies, the data therefore are fitted with a beta distribution with parameters («a, 3).

In short, we construct two model:

Xilps ~ bin(n;, p;)

p; ~ Beta(a, B)(Fach p; is independent)

Blp) = =5 = (14)
N ap
var(pi) = (A BR2(dl+ 53 + 1)
o« 15} 1
T laEBa+Bat+B41
= p(l —p)y (15)

where v = 1/(a+  + 1), hence, we can know the marginal expect value and

variance of Y:
E(X;) = E(E(Xi|p:))
= E(nzpz)

= il (16)

Var(X;) = E(var(Xi|p:)) + Var(E(X;|p;))
= E(nipi(1 — pi)) + Var(nip;)
= ni(p— Var(p) — p?) +nip(l — p)y
= ni(p — p(1 = )y — ) + 0 (1 — p)y
= ni(p(l = p))(1 =) +nip(l = p)y

= nip(1 = p)(1+ (n—1)7) =nyp(l — p) - ¢ (17)



We can view the term ~ as a multiplier of the binomial variance. In other words,
it models the overdispersion. So we can test v > 0 or ¢ > 1 to see whether the
data is overdispersion or not.
For discrete distributions, Pearson’s x? statistic is often used for testing goodness-
of-fit. The test hypothesis is:
Hy:p=1
Hi:p>1

and the test-statistic for Pearson’s y?(Ismail, N. and Jemain, A.A., 2007) is:

2 _ > i(wi — Mz’)Q

a nipi(1 = ;) (18)
= (19)

Under H, the statistic y? is chissquare distributed with DF = n — k degrees
of freedom, where n denotes total number of treatments and k the number of
parameters. In other words, When the systematicpart of the model is correct and
the binomial assumption holds, y? s approximately chi-square distributed with
DF = n — k degrees of freedom. Hence y? has an expectation of DF and ¢ ~ 1.
However, this test, has been found to be less sensitive in detecting departure from
the binomial model because boundary problems arise as we test whether a positive-
valued parameter is greater than 0.

We may use a likelihood ratio test(Yinong and Chan 2008) that can also be
used to test for overdispersion. The null hypothesis is that distribution is binomial
versus the alternative hypothesis is that the distribution is beta-binomial. The

log-likelihood for the binomial model is

n

InL = ln< ) + zin(p) + (n — x)In(1 — p) (20)

T



The likelihood ratio test is

X2 = 2(Lbetabinom - Lbinom) (21)

where Lpetapinom 18 the log-likelihood value for the beta-binomial model and Ly;,om
is log-likelihood value for the binomial model.

The third method, we can use Tarone’s Z statistic(Ennis and Bi 1998) to test
the goodness of fit test for binomial against beta binomial distribution. This has
been shown to be more sensitive than the parameter test (e.g. test for v being

zero) and the log-likelihood ratio test:

E -V
Z izt M (22)
\/2 Z?:l ni(n; ~1)
where
~ (2 — n.p)”
B=3— (23)
i=1 P(l — p)
k .
p=iy —= (24)
i1 |k

This statistic Z on (22) has an asymptotic standard normal distribution under the
null hypothesis of a binomial distribution.

Rejection of test can be used to detect if the data of the model exit overdis-
persion. So, once we detect the presence of overdispersion, there are usually
two approaches to deal effectively with overdispersion. The first approach in-
volves modeling the causes of overdispersion implicitly using compound probability
distributions(beta-binomial distribution). The second approach ignores the causes

of overdispersion and uses Akaike’s information criterion (AIC) as a criterion.

10



3 Parameter estimation

For overdispersion data xi,...,x,, we suggest to model them with a beta-

binomial distribution. There are two true parameters, § = («, ) that we need

to estimate. We adopt two methods introduced as follows to estimate o and 3.

3.1 Method 1 to estimate o and f3

Let a = g and 8 = 1%, 0 <n<1,0< ¢ < 1. The likelihood function of

L1y, Ty 1S

_ I'(n 4+ DI (o + B)I' (i + )I'(n — z; + B)
Lin.¢) = H (2, + D)I(n —2; + DT()T(B)T(n+a + B)°

7

We need to derive 7 and é such that

~

maxﬁ,¢L(n7 ¢) — L(ﬁ? ¢)

Then we can derive a and 3 estimators

. 1-7
ST
o)

a =

=)

Note that the condition
0<n<l 0<op<l.
leads to
0<a<oo, 0<pf<oo.

Let

m m

fn.0) = In(L) = In(] [ f(2)) = > inf((x:))

i=1

The following steps is used to find a value of (7, ¢) to maximize L:

11

(25)

(26)

(27)



e Step 1: Let A={(n, ¢) : n = i=0,1,2,--,999,j =0,1,2,---,999}

i — _J
1000’¢ ~ 1000°

e Step 2: Calculate the likelihood function L at the points in A. The likelihood

function L is

I L(n+ 12 + S0 (x; + DT (n — z; + 52)
T(z; + 1)T(n — 2; + DD T(n + 1)

e Step 3: We select the point (n*, ¢*) in set A of Step 1such that the likelihood
function L is maximized at the point (n*,¢*). Then (n*,¢*) are desirable

estimators of (1, ¢)

3.2 Method 2 to estimate o and f3

The second method is to derive the maximum.likelihood estimators of a and
B. Although the method 1 s also-a method to derive estimators of a and
such that the likelihood funetion has the maximum value when « and [ occurs
at these estimators, it transform the arand g to n and ¢. The second method
directly maximize likelihood estimators by a numerical approach. The Maximum
likelihood estimation(MLE) seeks the value of the parameter vector to maximizes
the likelihood function. It is a totally analytic maximization procedure. It begins
with a mathematical expression known as the Likelihood function, that is the
probability of obtaining that particular set of data, given the chosen probability
distribution model.

MLE is a common statistical method used to fitting the model by sample
data, and corresponds to many famous estimation method in statistics. From
a statistical viewpoint, the mle is more robust and yields estimators with good
properties by considering. The MLE method is many-sided, and is suitable for
the major part model and the different type data. Moreover, they provide the

high efficiency method for the quota uncertainty through the confidence region.

12



Although the maximum likelihood estimate’s methodology is simple, implements
in mathematics are intense. However, complex mathematics formula is not a big

problem by using present’s computer science and technology.

4 Distribution-free tolerance interval

We briefly describe the distribution-free tolerance interval in this section. Let
Prr and Pgg is the proportion of the population fall within the range specified by
the tolerance interval. If we want to find an upper bound, because we hoped that
the bound is smaller, therefore it is essential to seek for the smallest integer v such

that
Pr(y <w)=B(vin,p) 2L (28)

is an upper probability bound on the number-of defective units. And if we want
to find the lower bound, because we hoped that the hound is greater, therefore it

is essential to seeks for the the largest integer w such that

Pr(y >w) =1="B(win,p) > Fer (29)

For example, the sample size n is 30, P = 0.90, and p = 0.03 is the one-sided
upper 95% confidence bound for the population proportion p of defective units the
population proportion p of defective units. Because, Pr(y < 1) = B(1;30,0.03) =
0.77, and Pr(y < 2) = B(2;30,0.03) = 0.94, the upper tolerance bound is 2. In
other words, we are 95% confident that at least 90%(more precisely, at least 0.94)

of the products, the number of defective units will less or equal than 2.

4.1 Tolerance bound

We briefly describe the approach of deriving the distribution-free tolerance

bound. Let X,..., X, benindependent random variables. Suppose (X, ..., X))

13



are the order statistics that comes from (X7,...,X,) is one of the data set from
(X1,...,X,). That is, X1y < X(o) < -+ < X(). Hence, X(;) has the minimum
observed value, and X,) has the maximum observed value.

Let F,.(x) denote the cumulative density function(cdf) of the rth order statistic
Xy, and 7 = 1,2,...,n. Then the cdf of the largest order statistic X, is given
by

Fo(x) = Pr{X@ < x}

= P(max X; < x)

=Pr(X;<a,--, X, <x)

= (Ex(x))" (30)
Likewise we have the smallest order statistic X1y is given by

Fi(x) =Pr{Xa) <}
= P(min X; < )
=1—p(min X; > z)
=1-Pr(X;>x,-,X,>2x)
zl—ﬁP(Xin)

i=1

— 1 (1 Fy(2)" (31)
There are important special cases of the general result for F,.(z):

Fi(@) = Pr{X) <)
= Pr{at least r of the X; < z}

- i (7;) (Fy(2))/(1 — Fy(z))" (32)

14



We now assume that X; is continuous with probability density function(pdf) p(z) =
F'(z). If f.(x) denote the pdf of X,y we have

n!

frlx) = (IO (F () (1= F(xe)" ™" () (33)

hence, the general result for F,.(z):

n

HOEDY (”) (Fx(x)) (1 — Fx(z))"™

j=r N

= /OFX(I) = 1)7!1(!” T (F () (1= F(x)" ™ () dagy

= Ipy(y(r,n — 7+ 1) (34)
where

I,(a,b) = /Op /M= 1. /01 (1 — ) dt
= /D : N1 — ) dtB(a, b) (35)
and
Bla.b) LRt

The joint density function of X,y and X,)(1 < r < s < n) is conveniently denoted

by frs(x,y). It follows that for x <y

i (F(@) ™ (F(y) — F(@)" (1= F(y))"*p(@)n(y)(36)

frs<x7y) = (7" — 1)!(5 —r— 1)!(n — S).

Let &, be the pth quantile. We shall now show that if X is continuous the
random interval (X, X(s)) covers &, with a probability which depends on r,s,n
and p, thus allowing the construction of distribution-free confidence intervals for

&§p- Since X(5) < &y, we have, whether X is continuous or not,
PAXp) <& < X} = P{X@) <& — P{X() <6} (37)

15



It follows from F,(z) = I (r,n —r + 1) that (X, X)) covers &, with prob-

ability 7(r, s,n,p) given by

W(T,S,n,p) = Fr(w) - Fs(x)

=I,(r,n—r+1)—IL(s,n—s+1)
s—1

=X (7)o )

To obtain a distribution-free TI, the requirement of a TI(X(,, X(s)) is that it
contains at least a proportion v of the population with probability 1 — a. Thus, if

h(z) is continuous we seek Xy, X(5) such that

X(s)
P.{ h(z)de > v} =1—-a (39)
X
and we can write as
X(s)
Pq h(z)dzz ot = BAP(X(g) =P (X)) = 7} (40)
X(r)

Let W, = P(X()) — P(X{). The density function is

1
wi T = w,)" T 0 < w, <1 (41)

f<wr8):B(S—T,n—S+T+].) s

which is a beta distribution Beta(s-r,n+1-s+r). Therefore,
PriW,s >y} =1-IL(s—rn—s+r+1) (42)

Hence, we want to find r such that Pr{W,; >y} =1—-I,(s—r,n—s+r+
1) = 0.95 with the proportion v = 0.9, n = 1000, and s = 1000. By numerical
calculation, we have r = 84. It also means that the TT (X (s4), X(1000)) contains at

least a proportion 0.9 of the population with probability 0.95

4.2 Procedure

The following is the simulation procedure for obtain the coverage probabilities

of (0.1,0.95) distribution-free tolerance bound.

16



Table 1: The coverage probability for tolerance bound of gy, g4 and x99 quantile

a 1 2 3 4 5 6 7 8 9
quantile

80th 0.9680 0.9728 0.9472 0.9641 0.9699 0.9606 0.9644 0.9583 0.9711

90th 0.9230 0.9209 0.9225 0.9189 0.9197 0.9119 0.9259 0.9302 0.9333

84th 0.9539 0.9602 0.9400 0.9468 0.9508 0.9538 0.9426 0.9414 0.9687

e Step 1: Suppose o and 3 are known. Generate p;,7 = 1,1000 from the beta

distribution beta(c, 3).

e Step 2: Generate ; ~ binomial(n, p;), i = 1,...,1000. of . Let TRUETI=x (100

and then we derive estimators &, B for o and 5, by method 1 or method 2.

e Step 3: Generate p; o beta(d,ﬁ), i = 1,...,1000. Then generate x; ~

binomial(n,p;) , z;,1 =1, ..., 1000 Let TI=xq).

e Step 4: Repeat Step 1 to'Step 3 to calculate the proportion that TIs derived
in Step 3 are less than TRUETI. 'The proportion is the coverage probability

of the tolerance bound.

4.3 Simulation result

The tolerance bound g4 derived before, we also calculate the coverage proba-
bility for different tolerance bound based on the order statistics x(sp) and x(gg) for
different o and 3 values. The results are presented in Table 1 for § =1,...,9 and

a=1,..,9.

Table 1 shows that the coverage probability based on the tolerance bound xgg

is always higher than 0.95, and the coverage probability of tolerance bound xg is
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always lower than 0.95. Compare with these two tolerance bounds, the coverage

probability of 84th is closer to 0.95.

5 Real data example

5.1 Introduction of data

In this section, we use a real data example to illustrate the method. The
real data is from a semiconductor manufacturing process. The location of chips
on a wafer that is measured on 30 wafers. On each wafer, 50 chips are measured
and a defective is defined whenever a misregistration, in terms of horizontal and/or

vertical distances from the center, is recorded. The chips data are listed in Table 2.

Table2: The semiconductor data
Sample number fraction defectives  Sample number fraction defectives

1 0.24 16 0.16
2 0.3 17 0.2

3 0.16 18 0.1

4 0.2 19 0.26
) 0.08 20 0.22
6 0.14 21 0.4

7 0.32 22 0.36
8 0.18 23 0.48
9 0.28 24 0.3

10 0.2 25 0.18
11 0.1 26 0.24
12 0.12 27 0.14
13 0.34 28 0.26
14 0.24 29 0.18
15 0.44 30 0.12

The data can be obtained from the NIST/SEMATECH e-Handbook of Statisti-
cal Methods: http:// www.itl.nist.gov/div898 /handbook /pmc/section3 /pme332.htm.

We first assume that the defective numbers follow a binomial distribution, Bin(50,0),
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then test if the overdispersion parameter ¢ is equal to 1. It reveals that the data
are overdisperion. Therefore, we fit the data with a beta-binomial model.

To obtain tolerance bounds for the data, we adopted method 1 and method
2(MLE method) to estimate the parameters (a, ) in a beta distribution. If we
let real data be the population, and sampling 15 values from population without
replacement. The estimated a and [ values are & = 4.3333, 5’ = 6.7778 and
& = 3.6078, 3 = 6.8662(MLE method) respectively. The true tolerance bound
calculating by real data is 5. The coverage probability by method 1 is about
0.9828 by average, and by method 2 is about 0.9332 by average.

If we treat real data as the sample values which sampling from 100 population
without replacement. The estimated ‘@ and 3 wvalues are & = 2.8571, B = 4.2857
and a = 3.0737, B = 4.8203(MLE method) respectively. The mean lower tolerance

A

bounds corresponding to these two sets of (&, ) are 5-and 4, respectively.

5.2 AIC value comparison

~

We know AIC = 2k — 2InL(#;), and at this'real data example:

b=TT [ T8 ey (- (13)

(2

where

and

JEE P

“(1—p)" " d
T@T0) )pz( p) p

()

B (n> F(§+n—mi)
i) T(B)T (@ + BL(@)(x; + A)T(B +n + @)
The AIC value for Method 1 is about 183, and it is 61 for Method 2. Thus, we

conclude that Method 2 leads to better estimators for the unknown parameters «

and (3 because it has a lower AIC value.
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6 Conclusion

In industrial or other applications, the overdispersion phenomenon usually oc-
curs for binomial data or poisson data. Since in this case, the conventional toler-
ance limit does not lead to a satisfactory result, in this study, we develop procedures
for constructing a one-sided tolerance bounds for discrete overdispersion data.

In this study, we fit the data with a beta-binomial distribution and use two
methods to estimate the unknown parameters for the beta distribution. Procedures
for deriving distribution-free tolerance intervals are established. We also conduct
a simulation to calculate the coverage probability of the derived tolerance bound.

The results show that the proposed method can lead to a satisfactory result.
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A The main matlab code

A.1 real data example by method 1

err=0;
m=30;
n=30; mm=50; s=0;
eta=0;
#To read data from computer
x=load(’D:/data.txt’);
x=x%*50;
#To find eta and phi such that maximizes likelihood function
for i = 1:mm
max=-10000;
while(eta<1)
phi=0;
eta=eta+0.01;
while(phi<1)

phi=phi+0.01;

=1

if (eta<l)

sumf=0;
for j = 1:m
f=log(gamma(n+1) /(gamma (x(j)+1)*gamma (n-x(j)+1))
*xgamma (x (j)+eta/phi) *gamma (n-x(j)+(1-eta)/phi));
sumf=sumf+f;

end
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ff=m*xlog(gamma(1/phi)/gamma(eta/phi)/gamma((1-eta)/phi)/gamma(1l/phi+n));
total=sumf+ff;
#To choose the phi and eta such that maximizes likelihood function
if (max<total)
max=total;
truephi=phi;
trueeta=eta;
end
end
end
end
ahead=trueeta/truephi; % ‘alpha=eta/phi
bhead=(1-trueeta)/truephi; % beta=(1-eta)/phi
a=ahead;
b=bhead;
x=sort(x); %sort the x of the population
TRUETI=x(3); % let TRUETI=the 10th quantile of x
k=0;
3j=1;
for jj = 1:mm
p=betarnd(a,b,1000,1);
xx=binornd(n,p);
xx=sort (xx) ;
TI(jj)=xx(84);
if (TI(jj)<=TRUETI)

k=k+1;
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end
end
point = k/mm;
s=s+point;
end
#To calculate the mean of the proportion

s/mm
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A.2 real data example by method 2

nn=30;
m=50;
s=0;
#To start iterations
for i = 1:m
#To read data from the computer}
population=load(’D:/data.txt’);
population=population*50;
x=sort (population) ;
#To be TRUETI=the 10th quantile of x
TRUETI=x(3); let TRUETI=the 10th/ quantile of x
#To rand sampling from population by 15 times-without replacement
sample=randsample(population,15,”’false?)
data = sample/nn;
j=1;
#To be all data unequal O or 1
for j = 1:15

if data(j) == 1

data(j) = data(j)-0.01;

end

if data(j) ==

data(j) = data(j)+0.01;

end

3=i+1;

end
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#To find the MLE of alpha and beta
phat = betafit(data);
k=0;
i=1
#To compare TI with TRUETI m times
for j = 1:m
#To generate p from beta distribution with parameter alpha and beta of MLE
p=betarnd(phat(1,1),phat(1,2),1000,1);
#To generate x from beta distribution with parameter nn and p
x=binornd(nn,p);
x=sort(x);
#To be TI=the 8.4th quantile of|x
TI(j)=x(84);
#To calculates how many TI is smaller than TRUETI in m times
if(TI(j) <= TRUETI)
k=k+1;
end
end
#To calculate the proportion that TI is smaller than TRUETI in m times
point = k/m;
To add all proportion that TI is smaller than TRUETI in m times
s=s+point;
end
#To calculate the coverage probability

s/m
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Table 3: The coverage probability with 80th

b 1 2 3 4 5 6 7 8 9 average
a=1 09116 0.9408 0.9388 09960 0.9440 0.9872 0.9964 0.9976 1.0000  0.968
a=2 0.8872 0.9336 09872 0.9656 0.9960 0.9964 1.0000 0.9960 0.9928  0.9728
a=3 0.8448 0.9136 09316 0.9480 0.9704 0.9408 0.9960 0.9980 0.9812  0.9472
a=4 0.8816 0.9668 0.9548 0.9528 0.9880 0.9880 0.9808 0.9812 0.9832  0.9641
a=5 0.9136 0.9368 09616 0.9868 0.9656 0.9928 0.9812 0.9984 0.9924  0.9699
a=6 0.8404 0.9440 09680 0.9784 0.9656 0.9884 0.9984 0.9792 0.9828  0.9606
a=7 0.8904 09112 09744 0.9732 09812 0.9828 0.9844 0.9964 0.9852  0.9644
a=8 0.8808 0.9416 09528 0.9720 0.9808 0.9496 0.9888 0.9652 0.9932  0.9583
a=9 0.9060 0.9520 0.9800 0.9900 09752 0.9968 0.9984 0.9688 0.9728  0.9711

Table 4: The coverage probability with 84th

b 1 2 3 4 5 6 7 8 9 average
a=1 0.8360 0.9556 0.9368 0.9996: " 0.9488 ~ 0.9188  0.9912 0.9988 0.9996  0.9539
a=2 0.8492 0.9200 09464 09628 0.9928 0.9956. 0.9892 0.9856 1.0000  0.9602
a=3 0.8092 0.9252 09160 09516 0.9324 .0.9728 09664 1.0000 0.9864  0.9400
a=4 0.8552 0.9060 0.9552 0.9244 0.9752 0.9556 0.9864 0.9832 0.9800  0.9468
a=5 0.8768 0.9480 0.9188"" 0.9372  0.9748 0.9464 0.9920 0.9664 0.9972  0.9508
a=6 0.8240 0.9288 09712 0.9360. 0.9940 0.9720 09736 0.9976 0.9868  0.9538
a=7 0.8184 0.9588 09432 <0.9336. 0.9588 ~0.9600 /0.9596 0.9540 0.9968  0.9426
a=8 0.8116 0.9332 09532 09252.0.9720 0.9800 0.9616 0.9560 0.9796  0.9414
a=9 0.9188 0.9580 0.9652 0.9520 © 0.9796 | 0.9952 0.9616 0.9896 0.9984  0.9687
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Table 5: The coverage probability with 90th

b 1 2 3 4 5 6 7 8 9 average

a=1 0.8576 0.8848 0.8276 0.9996 0.9200 0.8772 0.9564 0.9844 0.9996  0.9230

a=2 0.7216 0.8248 0.9164 0.9472 0.9760 0.9424 0.9840 0.9760 1.0000 0.9209

a=3 0.8692 0.7952 0.8964 0.9096 0.9728 0.9512 0.9800 0.9532 0.9748  0.9225

a=4 0.7528 0.8932 0.8788 0.9720 0.9316 0.9800 0.9360 0.9484 0.9772  0.9189

a=5 0.8628 0.8496 0.8608 0.8792 0.9568 0.9628 0.9432 0.9772 0.9848  0.9197

a=6 0.7132 0.8736 0.8540 0.9428 0.9704 0.9720 0.9592 0.9784 0.9432  0.9119

a=7 0.7836 0.9208 0.9460 0.9080 0.9284 0.9748 0.9368 0.9436 0.9908 0.9259

a=8 0.8120 0.9264 0.8732 0.9372 0.9668 0.9396 0.9636 0.9564 0.9968  0.9302

a=9 0.8020 0.9428 0.8988 0.9364 0.9304 0.9544 0.9920 0.9672 0.9756  0.9333
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