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Outlier Variance for Gene Expression Analysis

SUMMARY
Discovering the existence of outliers in samples of influential genes is a very
new and important approach for gene expression analysis. The outlier sum
or outlier mean technique can detect the shift in central tendency for the
outlier data but not other characteristics such as spreadness for the outlier
data. We propose the outlier variance to measure the spreadness of the
outlier data as an alternative tool for gene expression analysis. Large sam-
ple theory for this outlier variance is then developed and a test based this
outlier variance is then compare with the outlier mean for their power per-
formances. To avoid the inefficiency in estimating densities at tail quantiles
for an estimate of asymptotic variance of the sample outlier variance, we
further consider using the empirical quantile function as the sample cutoff

point to propose an alternative outlier variance based test.

1. Introduction

DNA microarray technology, which simultaneously probes thousands of
gene expression profiles, has been-successfully used in medical research for
disease classification (Agrawal et als (2002); Alizadeh et al. (2000); Ohki et
al. (2005)); Sorlie et al. (2003)). Among the existed techniques in differen-
tial genes detection, common statistical methods for two-group comparisons
such as t-test, are not appropriate due to a large number of genes expressions
and a limited number of subjects available. Several statistical approaches
have been proposed to identify those genes where only a subset of the sam-
ple genes has high expression. Among them, Tomlins et al. (2005) observed
that there is small number of outliers in samples of differential genes and
then introduced a method called cancer outlier profile analysis that identifies
outlier profiles by a statistic based on the median and the median absolute
deviation of a gene expression profile. With this observation, a sequence of
approaches then concentrated on detecting differential genes based on out-
lier samples while Tibshirani and Hastie (2007) and Wu (2007) suggested to

use an outlier sum, the sum of all the gene expression values in the disease
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group that are greater than a specified cutoff point. The common disad-
vantage of these techniques is that the distribution theory of the proposed
methods has not been discovered so that the distribution based p value can
not been applied. Recently Chen, Chen and Chan (2009) proposed a new
version of outlier sum and its corresponding outlier mean and developed its
large sample theory that allows us to formulate the p value based on the
asymptotic distribution. In specific, they considered the parametric study
by specifying the normal distribution and performed simulation studies and

data analysis for gene expression analysis.

According to Tomlins et al. (2005), gene expression analysis should con-
sider to verify if the distributions of variables of disease group subjects and
normal group subjects on the region excessing a specified cutoff point are
identical. The outlier mean approach of Chen, Chen and Chiang (2010) can
detect if the excessive means are different. We know that summarizing the
outlier data by outlier mean or outlier sum may be efficient when the central
tendencies of two outlier distributionson the excessive region are strongly
different. However, it is known that.it;is not enough to detect just the shift
in distributional mean when there exists of a-distributional shift. So, it
requires to measure other characteristics other than the central tendency of
the outlier data as alternatives for ‘detection of influential genes. Here, in
this paper, we consider the measurement of outlier variance to detect the
shift in distributional spread or dispersion as an alternative. Interestingly
this study shows that using outlier variance in detection of influential genes

is much more efficient than the outlier mean test.

In Section 2, we introduce the population outlier variance as a character-
istic for detection of distributional shift. In Section 3, we study large sample
property of the sample outlier variance and, in Section 4, we compare the
power performances between the tests based on outlier mean and outlier
variance. In Section 5, we propose an alternative outlier variance based test
that avoids the estimation of densities and extreme quantiles for computing

the test statistic.



2. Population Outlier Variances

Let X and Y be expression variables for group of normal subject and
group of disease subject, respectively, with distribution functions F'x and
Fy . In a study that consists of ny subjects in the normal control group and
ng subjects in the disease group, suppose that there are m genes to be inves-
tigated. Their gene expression can be represented as X;;,7=1,2,...,n1,j =
1,...,m for normal control group and Y;;,i = 1,2,...,n2,7 = 1,2,...,m for
the disease group.

An important observation by Tomlins et al. (2005) from a study of
prostate cancer, outlier genes are over-expressed only in a small number
of disease samples. With defining a cutoff point 7 determined from the
data of the variable X, Tibshirani and Hastie (2007) and Wu (2007) con-
sidered the sum of variables Y/s that are over higher cutoff point 7 given
by Y2, V;I(Y; > 7)) as a test statistic for detection if the disease group
distribution is different from the normal group distribution. Latter Chen,
Chen and Chan (2010) developed the asymptotic distribution for its aver-
age, called the outlier mean, Y., =" (> oy d(Y; > 7))~ Y2, YiI(Y; > 7)
for constructing a distribution based p value. liet 1 be the population coun-
terpart of the sample cutoff point 7. Basically the idea in this series of study

is to verify if the unknown population outlier'means as follows
HX,out = E(X|X Z 77) and My, out = E(Y|Y Z 77) (21)

are the same. From now on, we suggest the population cutoff point of the
form n = 2F5'(1 — ) — Fx'(). For stimulating the approach of outlier
variance, we show that testing equality of outlier means are not sufficient
for verifying equality of two distributions on excess region.

Consider the following distribution settings:
X ~ N(0,1),Y ~ 0.9N(5,1) + 0.1N (0, 0?). (2.2)

For given o and ¢, we display, in the following table, the parameter values

of 0 that induces p1x out = Hy,out-



Table 1. Table of parameter 6 making f1x out = fy,out When o = 0.5

o' 0 =-0.1 —0.15 —0.20 —0.25 —0.5
a = 0.05 3.952 3.952 3.952 3.952 3.952
a=0.1 3.182 3.182 3.182 3.182 3.182
a=0.2 2.278 2.280 2.280 2.281 2.280
a=0.3 1.674 1.682 1.688 1.692 1.693
a=04 1.227 1.254 1.275 1.291 1.321

The existence of equal population outlier means indicates that the outlier
mean approach can not solve this problem that two distributions on regions
exceeding 7 are definitely un-equal.

Known not enough to detect the difference in outlier means, a natural

alternative is to infer population outlier variance

0-12/',out = B;lE{(Y - ,U/Y,out)ZI(Y > 77)} (22)

for variable Y where Sy = P(Y > n). This is to measure the degree to
which outlier observations are (or are not) clustered around the outlier mean
Iy, out- This measure of a truncated dispersion do not take every observation
into account. The idea behind this approaeh is to verify if ‘712/,01“5 is different

from the population outlier variance for variable X as

U%(,out = /8)_(1E{(X _ 'U/X,out)zj(X 2 77)} (23)

where Bx = P(X > 7).
We design situations that the population outlier means are identical for
comparing their corresponding population outlier variances. For the follow-

ing distribution setting:
X ~ N(0,1) and Y ~ 0.9N(—0.1,1) + 0.1N (0, o?), (2.4)

we choose parameters o and 6 so that their corresponding outlier means
are identical and then to compute the ratios agf,out / a%,,out. The results of

population outlier variances are listed in Table 2.

Table 2. Ratio of population outlier variances a%out / cr)z,’out when popula-

tion outlier means are identical
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o o2 = 0.01 0.05 0.15

0.05 3.944 1.710 1.258
(6 = 5.115) (6 = 4.961) (6 = 4.468)

0.1 5.301 1.963 1.349
(6 = 4.074) (6 = 3.971) (6 = 3.591)

0.2 6.920 2.387 1.486
(6 = 2.845) (6 = 2.798) (6 = 2.557)

0.3 3.016 2.010 1.414
(6 = 2.007) (6 = 1.991) (6 = 1.853)

0.4 1.613 1.467 1.262
(6 = 1.375) (6 = 1.373) (6 = 1.320)

When the ratio is 1, the population outlier variances are also identical and
there is no chance to detect a distributional difference through outlier vari-
ance approach. Interestingly, the computed ratios in Table 2 for that their
corresponding outlier means are identical are all larger than 1 indicating
that a test based on outlier variance has an addtional chance for observing

distributional difference.

3. Sample Outlier Variance Based Gene Expression Analysis
Let ﬁ’)} ! be the empirical quantile function for estimating population
quantile function F'y 1 and we estimate the cutoff point n by 7 = 2}7} 1(1 —

a) — Fx!(a) for some 0 < o < 0.5. We propose-a sample outlier variance as

Stour =(Q_ 1{Y; 2 2P (1= a) — FH(@)) ™
=1

n2
A~

SOV~ Vo PI{Y 2 25 (1~ 0) — Py (@)} (3.1)

i=1
This statistic using those observations from disease group exceeding the
sample cutoff point does provide a concise summary of dispersion for the
outlier data.
Let us now display the asymptotic properties of the outlier variance
S%,Out. A Bahadur representation of S%,’Om and its asymptotic distribution

are stated in the follwoing theorem.

Theorem 3.1. Suppose that assumptions (Az) and (A3) in the Appendix

are true.
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(a) A Bahadur representation of the outlier variance is

1 2
/ (SY out C7-12/',out)

=101 - 0l U )+ 200l U (1= )}y Y TG < P (@)
+aafx {Fx (@)} + 20af H{F5 (1 - a) 1/ZZI{F a) < X; < Fy'(l—a)}
+laafx {Fr (@)} —2(1 - a)afx {Fx (1 — a)}ny /? ZI{X > Fyl(1—a)}

+ 87 5 Y (Vi = pviout)? = 03 0u (Vi > 1) + 0p(1),
i=1

where
a =By {(n— tv.out)’ — 0% oue -y (MVL}

(b) 1/2(552/ out — O%.our) CONVerges in distribution to N(0,vy) where

vy =a[—(1 — a)afx {FgH{a)y42eaf {Fx (1 — )}
+ (1= 20)[eafx  {FY ek 4 20afx {Fx' (1 — o)}
+ofoafx HFx ()} =200 = a)afx {Fx ' (1 - @)}]?
+ 07 E{(Y = pvout)” = 03,000} T(Y > ).

Following Theorem 3.1, the following variable

1/2 —1/2 2
Ny Vy (SYout O-Y,out)
converge to N(0,1) in distribution. For testing if the distributions of Y
and X by outlier variance, we are testing this hypothesis by comparing two
outlier variances o2 . and % . and then we should choose 6% .., an

estimate of 0% _,, and an estimate ¢ to form a test statistic

n;/2@_1/2(5§2’,0ut 0-%( out) (32)



However, in literature, there are two choices for 0, it can be an estimate of

vy or an estimate of vy with

vx =a[-(1 — a)afx {Fx (@)} + 2aaf3 {F5' (1 - a)})?
+ (1= 20)[eafx {Fx (@)} + 20afx {Fx' (1 - a)}]
+ofaafxH{Fx'(a)} —2(1 — )afx {Fx' (1 — a)}]?
+ 05 E{(X — pix o) = 0% ou ) T(X > 1)).

Hence there are two tests available based on outlier variance as
rejecting Hy if n1/2 A;l/z(Slz/yout 6% out) = Za- (3.3)

and

rejecting Hy if n;/Q@)—(l/?(S)Z/’OUt a§( out) = Za- (3.4)

where Uy and Ux are, respectively, estimates of vy and vx.
But how good are these two tests? An‘important part for an evaluation
is to verify its power performance when there exists positive outlier in data

of disease group.

4. Power Performance Evaluation
We evaluate the powers of test (3.3) for several distributional settings.

An approximate power function for this test may be derived as follows:

Doy = PFY {nl/zA_l/z(S%out UX out) > Za}

1 2 1 2 —1/2 Al 2 1/2
- PFy{n / / (SYout UYout) > Uy / ( / +n / ( OX out — Ulz/',out))}
—1/2 ~1/2 1/2
~P{Z > vy , (zady” 4+ 1y (0% ous = 0% o))}

~ P{Z 2 2o+ 1y 07 (0% out = 0% o)} (4.1)
Similarly, the test of (3.4) has an approximate power as

Py~ P{Z > 2G5 4020y (0% g — oY)} (42)
Y



We are ready to study asymptotic powr for comparison with outlier mean
where the following distributional settings
Normal: X ~ N(0,1),Y ~ N(0,0?)
Mixed normal: X ~ N(0,1),Y ~ 0.9N(0,1) +0.1N (0, 0?)
Mixed x? : X ~ N(0,1),Y ~ 0.9N(0,1) + 0.1(x*(10) + 9)
are considered where p,,, and p, represent, respectively, the powers for outlier

mean and outlier variance.tests.

Table 3. Power performances of outlier mean and outlier variance tests

o 0 =2 =4 =6
Normal
a=0.1,p, 0.700 0.968 1
Do 0.044 0.161 0.517
a=0.2,pn 0.926 0.999 1
Do 0.918 0.987 0.998
a=0.3,pm 0.984 1 1
Do 0.980 0.998 0.999
a=04,pn, 0:996 1 1
Do 0.992 0.999 0.999
Mixed normal
a=0.1,p, 0.232 0.421 0.670
Do 0.291 0.372 0.506
a=0.2,pnm 0.282 0.492 0.726
Do 0.681 0.780 0.852
a=0.3,pn 0.212 0.324 0.434
Do 0.755 0.864 0.937
a=04,pn, 0.177 0.253 0.316
Do 0.762 0.860 0.925
Mixed x?
a=0.1,pn, 0.924 0.985 0.998
Do 0.767 0.768 0.768
a=0.2,pnm 0.929 0.975 0.991
Do 0.838 0.831 0.818
a = 0.25,pm, 0.773 0.823 0.854
Do 0.881 0.880 0.874
a=04,pn, 0.383 0.397 0.407
Do 0.945 0.965 0.978

We have several comments for the results in this table:



(a). The power increases as location parameter  increses indicating that
when there are more wide outliers the outlier means and the outlier variance
are more efficient in detection the existence of distributional difference.
(b). Consider the location shift models (Normal, Laplace and ¢ distribu-
tions). The outlier means and outlier variances with cutoff point of larger
percentage « are relatively more powerful. Hence, choosing smaller cut-
off point (larger «) is advisable for application when there is a difference
in location parameter. However, in this distributional settings, the outlier
variance with smaller « (0.1) is not a poweful one.
(c). For a distributional difference of only a small proportion of sample
points (Mixed normal), the outlier mean with all percentages are inefficient
with small powers. However, the outlier variances are relatively more pow-
erful especially for larger o's.
(d). In an over all comparison, since there is specific distribution being
known in nonparametric hypothesis testing and it is supposed to have only
a small proportion of outliers in the influential genes, the outlier variance
with cutoff point of a larger than 0.25 is recommended.

For verification of the above conclusions, we consider the mixed normal

distribution case with ¢ = 3 to compute the following ratios

_ -1 -1
Tm, — PIX,Out//'Y,outv Ty — O-X’OutO-Y,out-

Table 4. Outlier mean ratio and outlier standard deviation ratio

o' 0=2 =4 0=
a = 0.05, T, 1.273 1.370 1.514
Ty 7.369 9.003 10.98
a=0.1,m, 1.391 1.543 1.767
Ty 6.744 8.251 9.972
a=0.2,my, 1.593 1.880 2.278
Ty 5.821 7.178 8.622
a=0.3,m, 1.549 1.931 2.420
Ty 4.600 6.163 7.912
a=04,m, 1.430 1.770 2.192
Ty 3.102 4.379 5.867
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The ratios of population outlier variance are much larger than the corre-
sponding ratios of population outlier means that provides a message for the
efficiencies in powers obtained from the outlier variance test.

We further consider the following distributional settings for comparison:

Model I: X ~ Laplace(0,1),Y ~ 0.9Laplace(0,1) + 0.1Laplace(6, 10)
Model II: X ~ £(10),Y ~ 0.9£(10) + 0.1(x*(10) + 6)

and the results are listed in Table 5.

Table 5. Power performances of outlier mean and outlier variance tests

o 0=2 0 =4 =6
Model 1
a=0.1,p, 0.2289 0.260 0.3009
Do 0.6293 0.6418 0.6549
a=0.2,pm, 0.2172 0.2511 0.2939
Do 0.6645 0.6799 0.6958
a=0.25,pp 0.2088 0.2403 0.277
Do 0.673 0.6899 0.7079
a=0.4,p, 0.1971 0.2222 0.2485
Do 0.6851 0.7044 0.7251
Model I
a=0.1,p, 0.872 0.968 0.995
Do 0.527 0.536 0.542
a=0.2,pm, 0.863 0.928 0.96
Do 0.823 0.828 0.824
a=0.25,pp 0.719 0.771 0.803
Do 0.887 0.902 0.908
a=0.3,pm 0.542 0.571 0.591
Do 0.938 0.963 0.978
a=0.4,p, 0.385 0.401 0.412
Do 0.942 0.963 0.977

We have several comments drawing from the results in the above table:

(a) On Model I, the two methods are both not very powerful in detection
of influential genes. However, the outlier variance seems to be much more
better.

(b) On Model II, the two methods are more powerful in the purpose. The

outlier means show better in smaller o’s and the outlier variances show bet-
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ter in larger o's. This provides a guidence for users in choosing appropriate
outlier mean and outlier variance.

(c¢) In overall evaluation, the outlier variance method seems to be quite
robust of with powers larger than 0.5 in all situations. This observation
indicates that the outlier variance approach for gene expression analysis
seems to be desirable in application since, in gene expressions, the underlying
distribution is generally non-normal.

Suppose that an outlier mean test is conducted and it results in accep-
tance of equal outlier means. From Table 2, it is seen that larger values
of a%yout than ag(yout shows that an left handed one sided outlier variance
based test in this situation is appropriate. We propose the following left
handed outlier variance test:

2 A
/’U

Y—l/Z(

. . . 1 2 ~2
rejecting Hy if n; SY.out = X out) < —Za

An approximate power function may be derived as follows:

1/2 —1/2
PyvB ~ P{Z S —Za +n2/ (%% / (Ugf,out - J%,Out)}'

We list the computed powers for distributions of (2.4) with ¢ = 1 in Table
6.

Table 6. Power performance for outlier variance B test when outlier means

are identical

o 0 =—0.01 —0.1 —0.5 —-1.0 —-1.5
DPm 0.05 0.05 0.05 0.05 0.05
PbvB
0.05 0.352 0.352 0.352 0.352 0.352
0.1 0.970 0.971 0.973 0.974 0.974
0.2 0.820 0.917 1 1 1
0.3 0.233 0.284 0.686 0.999 1
0.4 0.135 0.160 0.302 0.668 0.997

This observation shows that when we accept the null hypothesis of equal
outlier means through the outlier mean based test it suggests to further test

the outlier variance by left hand one sided test.
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5. Outlier Variance With Quantile Based Cutoff Point

The test based on outlier variance S%,Out requires to estimate density
points fx{Fx'(a)} and fx{Fx'(1 — )} ((b) of Theorem 3.1). There is
generally no satisfactory solution for this estimation unless the sample sizes
are large enough. Here we consider an alternative design of the cutoff point

for a new outlier variance. We let n = F'(y) and /) = F'(y). In the

following, we state the large sample theory for this outlier variance.

Theorem 5.1. Suppose that assumptions (Ay) and (As) in the Appendix
are true.

(a) A Bahadur representation of the outlier variance is

1/2
n2/ (S%,out - C7-)2’,011,15)

= = B {FE () = o) = e (F ()5 (P (1) () 202 3 (0 = 1,
< FR )+ 5 S (00— i) — 0%l (% 2 ) + 0p(1)

(b) n;/2(532,,0ut — 0% pyy) converges in distribution to N (0, vy) where

vy =Y(1 =B (1) = i) =0 auid” (fy (Fx ' (0) fx (Fx ' ()))*¥ay
+ By E{(Y = pyout)® = 0% out TV 2 Fy ()]

We may consider asymptotic variance vy under the assumption that Y

and X have the same distribution setting by

vx = Ox Y= D{Ex (1)~ 1 0ut) =0 % out } Yoy HEH (X —px,0ut)* =% oue  T(X 2 Fxc*(7))]].

This variance save the effort in estimating unknown density points. An

outlier variance based test may be stated as

rejecting Hy if n;/Q@)—(l/?(S)Z/’OUt — X out) = Za- (5.1)

It is interesting to study the power performance of this outlier variance

based nonparametric test for models with only a small proportion of the data
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in disease group been shifted. Observed from Tomblins et al. (2005), this
happen in some regular cancer genes. We first consider the mixed normal

distribution.

Table 7. Power performances of new outlier mean and outlier variance test

for mixed normal distribution

=2 =4 =6
p=0.1
v =0.8,pm 0.523 0.701 0.805
j 0.764 0.864 0.930
v = 0.85,pm, 0.541 0.709 0.809
j 0.764 0.866 0.936
v =0.9pm 0.557 0.716 0.812
Do 0.762 0.868 0.941
v = 0.95,pm, 0.563 0.711 0.810
Do 0.754 0.861 0.934
p=0.2
v =0.8,pm 0.710 0.866 0.936
Do 0.871 0.957 0.991
v = 0.85,pm, 0.710 0.863 0.935
j 0.867 0.955 0.990
v =0.9pm 0.705 0.857 0.933
Do 0.860 0.950 0.986
v = 0.95,pm, 0.679 0.837 0.924
Do 0.840 0.932 0.971

The use of quantile to construct the cutoff point still shows the advantage
better performance by the outlier variance approach. Also, by comparing
with the results in Table 3, the use of quantile for constructing the cutoff
point is competitive with using quantile combination for constructing the
cutoff point.

We further consider the following distribution settings:

Case I: X ~ N(0,1) and Y ~ 0.9N(0,1) + 0.1(x*(10) + 6)
Case IT: X ~ (10) and Y ~ 0.9£(10) + 0.1(x*(10) + 6)

for investigation and the results are displayed in Table 8.

Table 8. Power performances of new outlier variance test
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0=2 0 =4 =6
Case I
v =0.8,pm 0.895 0.907 0.916
Do 0.950 0.971 0.983
v = 0.85,pmn 0.896 0.908 0.916
Do 0.955 0.976 0.989
v =0.9pm, 0.897 0.909 0.917
Do 0.957 0.979 0.991
v =0.95,pmn 0.899 0.911 0.919
Do 0.935 0.953 0.964
Case 11
v =0.8,pm 0.881 0.896 0.907
Do 0.946 0.968 0.982
v = 0.85,pmn 0.880 0.896 0.906
Do 0.950 0.973 0.987
v =0.9pm, 0.879 0.895 0.905
Do 0.950 0.975 0.989
v =0.95,pmn 0.873 0.892 0.903
Do 0.921 0.943 0.957

The outlier mean and outlier variance are performed quite well in models
Case I and Case II. This support the observation by Tomlins et al. (2005)
that when outliers exist in influential genes the gene expression techniques
should take the outliers into more consideration. The following table is to
display the results with designing the use of vy for constructing the quantile

based outlier variance.

Table 9. Power performances of new outlier variance test with implemet

of estimate vy (p =0.1)

=2 0 =4 =6

Case 1
v=0.8 0.507 0.602 0.687
v =0.85 0.527 0.637 0.739
v=0.9 0.535 0.656 0.767
v =0.95 0.455 0.519 0.566

Case 11
~v=0.8 0.500 0.595 0.682
v =0.85 0.516 0.627 0.731
v=0.9 0.518 0.639 0.752
v =0.95 0.436 0.499 0.548
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The results showed above are less powerful than the implement of estimate
vx. The test (5.1) that is based on vy is not with benefit of avoiding the

estimation of density points.

6. Simulation study

We consider a simulation study in the comparison of the quantile based
outlier variance with the outlier mean and classical two sample ¢ test. Defin-

ing estimates

1 & . ) "UXGI(X > Fyl(y
B = £ 31X > Bt ), frxsous = izt N X 2 Fe ()

(8 2121 I(X; > Fy (7))
~2 Z:L—ll(Xz - ﬂX,out)ZI(Xz > F)?l('}’))

Suppose that we have test statistic T' = n;/zﬁ)_{lm (5% out — T% our) and

its observation at ith replication is T;. We search constant ¢ such that

1 m
0.0 ~ — I(T; > ¢elHy Fy = F 0.1
m;( >'e|Ho  Fy = Fx) (6.1)

and then apply this constant as the cutoff point to evaluate the following
power

m

1
— Y I(T; > c|Hy).
m

=1

In the follwoing tables, we list the simulated probability under Hy at the
simulated constant ¢ and the simulated powers under distributions Case 1
and Case II.

Table 10. Power performance comparison by simulation (Case I, ny = ny =
30)
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H, 0=2 0=14 =6
j 0.049 0.459 0.482 0.504
v=0.5
Pm(c = 2.16) 0.0527 0.9109 0.9303 0.9419
Py (c = 4.48) 0.051 0.9569 0.9597 0.9597
v =0.55
Pm (c = 2.23) 0.0501 0.9167 0.9332 0.9443
py(c = 4.98) 0.0508 0.9588 0.959 0.9592
v=0.6
Pm (c = 2.28) 0.0504 0.9192 0.9355 0.9443
Py (c = 5.35) 0.0506 0.9581 0.9596 0.9596
v = 0.65
Pm (¢ = 2.37) 0.0523 0.9227 0.9394 0.9474
py(c=6.1) 0.0508 0.9582 0.9602 0.9599
v=0.7
Pm (¢ = 2.48) 0.0513 0.9227 0.9387 0.9469
Py (c = 6.68) 0.0503 0.9581 0.9599 0.9493
v=0.75
Pm(c = 2.74) 0.0511 0.9225 0.9388 0.9493
Py (c = 8.23) 0.0492 0.9562 0.9589 0.9606
v=0.8
Pm (¢ = 2.96) 0.0526 0.9243 0.9388 0.9486
py(c=9.5) 0.0498 0.9559 0.9576 0.9589
v =0.85
Pm(c = 3.8) 0.0508 0.9169 0.9332 0.942
py(c = 13.9) 0.0519 0.9496 0.952 0.9528
v=10.9
Pm (c = 4.81) 0.051 0.9034 0.926 0.9368
py(c = 21.3) 0.0507 0.9388 0.944 0.9444
v =0.95
Pm (¢ = 20.8) 0.0502 0.6608 0.7208 0.7659
Py (c = 200) 0.2932 0.9296 0.9315 0.9293

Table 11. Power performance comparison by simulation ( Case II, n; =

No = 30)
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H, =2 =14 =6
j 0.049 0.448 0.473 0.492
v=0.5
pm(c = 2.35) 0.0497 0.8881 0.9119 0.9281
py(c = 6.35) 0.05 0.9506 0.9562 0.9582
v =0.55
Pm(c = 2.42) 0.0501 0.8932 0.9166 0.9304
py(c = T7.18) 0.0501 0.9496 0.9565 0.9587
v=0.6
Pm(c = 2.47) 0.0508 0.8918 0.9159 0.9336
py(c = T7.64) 0.0509 0.9483 0.9552 0.9596
v = 0.65
pm(c = 2.65) 0.0492 0.8925 0.9167 0.9316
py(c = 8.83) 0.0507 0.9467 0.9545 0.9582
v=0.7
pm(c = 2.75) 0.051 0.8956 0.917 0.9344
pu(c=9.8) 0.0497 0.9465 0.9541 0.9592
=0.75
Pm(c = 3.05) 0.05 0.8924 0.9168 0.9308
py(c = 11.87) 0.0508 0.9429 0.9532 0.9572
v=0.8
pm(c = 3.36) 0.0494 0.8847 0.9109 0.9288
Py (c = 13.67) 0.0496 0.9378 0.95 0.9548
v =0.85
pm(c = 4.25) 0.0503 0:868 0.9001 0.9185
po(c = 20.5) 0.0505 0.9221 0.9366 0.9439
v=10.9
Pm(c = 5.45) 0.0505 0.8366 0.8775 0.9019
py(c = 31) 0.0506 0.8935 0.9152 0.9258
v =0.95
Pm(c = 23) 0.0502 0.5262 0.588 0.6364
Py (c = 200) 0.3004 0.9289 0.9281 0.927

We have several comments on these simulated results:

(a) The outlier mean and outlier variance techniques are both more powerful

than the two samples ¢ test showing that applying all data for inferences is

not appropriate.

(b) More interestingly the outlier variance is the most efficient method in

this comparison.
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7. Appendix
Three assumptions for the two sample outlier variance test are as follows.
ASSUMPTION 1: The limit v = limnl,m_,oonl_lnz exists.
ASSUMPTION 2: Pobability density function fx of distribution Fx is
bounded away from zero in neighborhoods of F);l(a) for o € (0,1) and the
population cutoff point n.
ASSUMPTION 3: Probability density function fy is bounded away from
zero in a neighborhood of the population cutoff point 7.
Proof of Theorem 3.1: With Assumption 2, a representation of F)}l(a)

such as
m{Fx @)= Fx' (@)} = [ {Fx @) Y lo—1{Xi < Fx' (@)} +o,(1),

(7.1)
implies that i) = 2F5 (1 — a) — Fx () satisfies T = n}/z(ﬁ —1n) = 0,(1)
(Ruppert & Carroll, 1980). First, we can rewrite the sample outlier variance

as

no na
Stout = O 1(Yi =)™y (5= pvisia)” + Your — pv,ou)’]- (7.2)

A Bahadur representation of Y, in Chen, Chen and Chan (2009) indicates
that n;/2(170ut — py.out) = Op(1) which leads to the fact that n;/z(ffout —
Ly.out)? = 0p(1) and we may write the-sample outlier variance in the fol-

lowing

1/2
TL2/ (Siz/',out - U%’,out)

N9 na
=y (Y 1Y > )7 D[V = iviou)” = 0ud L(Ys = n4 05 /*T) = 1(Y; > )]
i=1 i=1
+ n;/z(ZI(YTL Z ﬁ))_l Z[(Y; - P'Y,out)z - O-iz’,out]I(Yti Z 77) + Op(l)' ( )
o~ s 7.3

With (A1), Assumptions 1 and 3, and techniques from Ruppert & Carroll

(1980) and Chen & Chiang (1996), we may see that
no
ny 2 S O1Y — yout)® = 0%l IV > 0+ 13 V°T) = 1(Y; > )]
i=1 (7.4)

= _{(77 - /ij,out)z - Oizf,out}fy(n)T + Op(l)'
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The first term on the right hand side of (7.2) may be formulated as

gt Y I(Yi =) =nz' Y 1(Y; =) +o0p(1). (75)
i=1 i=1
Plugging (6.1) into (7.4), the theorem is followed from (7.3)-(7.5). O

The proof of Theorem 5.1 is quite similar to the above one so tat we skip it.
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