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Abstract

Comparisons of reference charts for verifying if two populations of subjects
have the same growth pattern-have received some attention in literature.
However, the proposals of comparison are restricted on equalities of regression
parameters or regression functions. Recently, Zhang ( 2010 ) has a detailed
description for relationships between model parameters and equalities of
reference charts that provides a precise indication for verifying if reference
charts in two models are identical. She also proposed the likelihood ratio
technique as a test for this verification. We re-visit this problem with the
generalized least squares estimation and use it to construct the classical F test.
Through simulation study, we see that this proposal is very competitive in

reference charts comparison.

Key words: Hypothesis testing; linear regression; power; reference chart;

reference interval; regression quantile
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Re-visit the Hypothesis Testing for Equality of Reference Charts

Abstract
Comparisons of reference charts for verifying if two populations of subjects
have the same growth pattern have received some attention in literature.
However, the proposals of comparison are restricted on equalities of re-
gression parameters or regression functions. Recently, Zhang (2010) has a
detailed description for relationships between model parameters and equal-
ities of reference charts that provides a precise indication for verifying if
reference charts in two models are identical. She also proposed the likeli-
hood ratio technique as a test for this verification. We re-visit this problem
with the generalized least squares etsimation and use it to construct the
classical F' test. Through simulation study, we see that this proposal is very

competitive in reference charts comparison.

Key words: Hypothesis testing; linear regression; power; reference chart;

reference interval; regression quantile.

1. Introduction

Growth is a fundamental property of biological systems, occurring at the
level of populations, individual animals and plants, as well as within or-
ganisms while the growth of a‘subject depends on nutritional, health, and
environmental conditions. Typically the growth pattern for a population
group depicts a family of symmetric quantile curves, called reference charts,
as a function of some covariates (age or time). One difficulty in reference
charts problem is that the measurement variables taken over time are gen-
erally not independent.

Much research has been devoted to modelling growth function and con-
structing reference charts in parametric or nonparametric way. For overview
of parametric methodology, linear or nonlinear growth models, see Cole and
Green (1992) and Laird and Ware (1982). When the measurements can be
formulated as parametric regression model, the reference charts may be ex-

pressed as simple functions of parameters involved in the regression model
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so that its estimation may be done through estimations of these parame-
ters. For example, the reference charts of a regression with normal errors
model are linear functions of the mean and standard deviation. For growth
characteristics that are approximately normal, proposals are available for
transformations to normal where, among them, the most successful proposal
is the LMS by Cole (1988). However, the Exponential-Normal distribution
method by Wright and Royston (1997) has the advantage of being paramet-

ric with explicit expressions for estimating parameters and quantiles.

Verifying the similarity of two growth patterns through comparing the
reference charts is an important topic in application. Basically the use of
reference charts tries to summarize individual differences in the growth pat-
tern and it is commonly known that the comparison of reference charts is
done by studying the determinants of these differences. The most common
method of comparison considers parametric growth model that the deter-
minals of growth pattern can be represented by a few model parameters so
that the job can be done by comparison of these parameters. However, the
reference charts comparison.considered in literature mainly restrcited on the
comparison of growth regression functions. For example, it is seen that most
parametric comparison methods consider only those parameters involved in
regression function such astesting equality-of two or several regression pa-
rameter vectors (see, Hoel (1964);.Chi and Weerahandi (1998) and Pan and
Cole (2004)) or comparing relations between regression slope parameters
and (or) intercept parameters (see Zucker, Zerbe and Wu (1995)). Instead
of parametric reference charts comparison, there are nonparametric meth-
ods comparing the unknown regression functions (see, for examples, Scheike
and Zhang (1998), Scheike, Zhang and Juul (1999), Richard, et al. (1989)
and Griffiths, Iles et al. (2004)). Hoel (1964) showed that such methods are

less efficient than those to compare values of regression parameters.

For any comparison exercise, there needs to clarity its precise objectives.
Assessment of growth pattern by charts is the most popular tool for defining
health and nutritional status in both individual and population (country)

level. Hence, there needs more general study for public health purpose in



verifying if two or several populations display in the same or similar growth
pattern. This is an objective important to be answered in public health, es-
pectially, for studying the developing countries. However, little research has
been performed in reference charts comparison in this purpose. It can be
seen that comparisons of mean regression functions or few regression param-
eters can not achieve this public health problem (see Henry (1992)). One
exception with a closely related study is that Heckman and Zamar (2000)
discussed the concepts of similarity and grouping in growth pattern based on
rank correlation coefficient between regression functions. However, besides
this is an estimation procedure that it is difficult to extend to hypothesis
testing of comparison, regression function comparison is not enough to in-
terprete the similarity or equality of growth patterns characterized by the

reference charts.

Recently, Zhang (2010) developed explicit relationships between two pop-
ulation reference charts. This developed the analytic relationships between
model parameters of growth models that achieved equality of population
reference charts. This relationships provides exact. test for comparison of
reference charts and this observation showed that testing equalities of re-
gression parameters or regression mean functions often provides only a crude
approximation to reality so that the conclusions for growth pattern compar-
ison are very questionable. This-approach by Zhang is heading in a right
direction in a general investigation if two growth models are with the same
growth pattern. We concerned that Zhang’s likelihood ratio test is too com-
plicated in parameters estimation. The main interest of this paper is to
develop generalized least squares estimates for parameters estimation and
study the F' test for this comparison and study its efficiencies in all kinds of

situations of reference charts between two models.

In Section 2, we develop conditions on parameters between models to
guarantee equality of reference charts and apply this concept to build up
test for hypothesis of equal reference charts when the response variable fol-
lows a simple linear regression model. In Section 3, we select one interesting

longitudinal linear model- the random intercept model - as example to dis-



play these relations. Tests for this random intercept model are developed
for models of without and with covariate, respectively, in Sections 3 and 4.

All tests are evaluated with simulations.

2. Characterization of Reference Charts
We consider that the response variable has a population type linear re-

gression model
y(t) = 2(t)' By + ey ().t € S = (0,1) (2.1)

where z(t) is vector of independent variables indexed in ¢, and €, (t) is error
variable with mean zero and S is the set of age. The «th reference chart is

the plot of the function Fy'(v|t) against ¢ in S that can be reprented as

Cy(7) ={F, (7]t : t € S}

where F,° L(y|t) is the conditional quantile of y given age t. The class of

reference charts for a population of variable y is

{Cy() : v.€ (0,1)}:

Suppose that there is another population of subjects with a response
variable z(t) that follows.the same linear regression model with possible

different parameters as

z(t) = 2t) B, +e5(t) (2.2)

where €,(t) is also error variable independent of €, (¢) with mean zero. Using
the same explanatory variables z(t) indicates the balanced design that all
the subjects in two groups are measured on the same set of time points. This
design is for simplicity of discussion while the theory and method developed
in this paper are valid for the unbalance design. For response variable z(t),

the yth reference chart may be analogously represented as

C.(v) ={F;'(ylt) : t € S}

where F, !(y|t) is the yth quantile of z at time ¢ and the class of reference

charts for the population of variable z is {C,(y) : v € (0,1)}.



The interest of the comparison of reference charts is that the two sets
of reference charts, respectively, constructed by these two regression models
are identical. The parametric approaches of reference charts comparison

consider to test equality of regression parameters as
Hg: B, =pB,. (2.3)

However, the general hypothesis for comparison of reference charts from our

formulation then is

Hy : Cy(v) = C;(7),v € (0, 1) (2.4)

that generally is not the problem of (2.3).
With linear model assumption (2.1), it is seen that the ~yth reference
chart may be written as F, '(y|t) = x(t)'8, + Fe_yl(’y) = z(t)' By, where
F—l
Byy =By + | ™
0,1
Bassett (1978)). The 100y%th reference chart then is

is called the regression quantile (see Koenker and

Cyla) = {zt) Byy 1t € S}

This reflects the obaservation by Hoel (1964) that the estimation of reference
charts is reduced to estimating the regression guantile 3.

The ~th regression quantile’ for model (2.2) is F, !(y|[t) = z(t)'B, +
F7Hy) = z(t) Bsy with B,y = B, + <F6:1(7)> Then the yth reference

€, p—]_
chart for response variable z is

C.(y) = {x(t)/ﬂzv :t e S}

It is agreed, as investigated by Hoel (1964), that comparison of reference
charts is more efficient conducted by comparing model parameters. It is
then desired to verify when equality of reference charts in hypothesis (2.4)
can be re-written into equations in terms of model parameters. The fol-
lowing theorem was provided by Zhang (2010) that gives a rule for testing

hypothesis of equal reference charts.



Theorem 2.1. (a) The hypothesis of equal reference charts may be formu-

lated as

HT@f : /By = BZ7F6;1(7) = Fe:1(7)7 Y € (07 1)
(b) If we further assume that Fezl(q/) = o,F; () and Fl(vy) = 0. Fy ()
where o, and o, are two unknown constants not dependent of time ¢. Then

the hypothesis reduces to

Hyep : By = B, 0y = 0. (2.5)

Result of (b) in Theorem 2.1 tells us that solving a comparison of reference
charts is valid to be treated as a problem of testing hypothesis for equalities
of some model parameters. However, different growth models lead to varying
hypothesis testing problems.

We know that each individual (subject) practically is repeated measured
with n-observations yi, ..., y, and 1, ..., x,, available from model (2.1). Let
us define vectors y = (y1, ..., yn)"s X' =1(@15+., Tn) and €, = (€, (1), .., €y(n)).

A matrix form of this regression model for this individual is
y =Xy +ey (2.6)

where we consider that €,(#;)'s are not independent-with means 0’s and ¢,
has covariance matrix as Y. Snppose that each individual from another
population also has n—observations from model(2.2) so that a matrix form

of observations for one individual is
z=Xp,+e, (2.7)

where we consider that €,(¢;)'s are not independent with means 0's and e,
has covariance matrix as X,.

The difficulty in reference chart problem of estimation and hypothesis
testing is that the measurement variables taken over time are not statisti-
cally independent. Hence, generally the variables in {¢,(¢) : t € S} have a
complicated structure including correlation. In this consideration, we may

test equalities of all model parameters as

Hﬁ,z : /By = B,, Z]y =X,. (28)



3. Comparison of Two Unknown Reference Charts

When the reference chart is used for public health purposes, it is to
compare general health and nutrition of two or more populations (developed
and developing world). In this situation, exact test for reference charts
comparison for populations is desired to be proposed and evaluated.

For statistical inferences, we have m individuals and there are n obser-
vations for each individual. For jth individual, there are y; and ¢; follow
model of (2.6) as y; = X3, + ¢,; for j = 1,...,m. By setting vertical join-
ings y with y = (41,92, .-, Um)" and €, with €, = (€}, ..., €,,,)", vector y has

linear regression model of matrix form as
y= (1 ® X)By + €y, E(ey) = 1, ® Op, cov(ey) = Iy, @ 5y, (3.1)

where ® represents the Kronecker product, 1,, is m-vector of values 1’s
and I,, is m x m identity matrix. Models of this type is interesting since
the covariance matrices for various subjects-are identical. Suppose that for
reference population there are 'k -subjects and n-obsevations follow model
(2.7) as

Zjr= Xﬁz-l-ezj,j =1,..5k

where €/, ;S are iid with mean 0,,. and common covariance matrix >,. By set-
ting vertical joinings z with z =421, 25yww2;) and e with €, = (€,,q,...,€,;.)’,

vector z has linear regression model
z= 1@ X)B, + €, E(€,) = 11, ® 0y, cov(e,) = I, @ X2, (3.2)

We here consider in this section the classical simple regression with ¥, =
‘75[" and X, = aﬁ[n. This is the linear regression with repeated measures.
First we consider hypothesis Hy : 3, = (3, with assumption that o, = 0o,.

The LSEs of 3, and (3, are, respectively,

~

By

e

X'X)7'Y X'y; and B, =

j=1

:E(

k
(X'X)™'> X'z (3.3)
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With normality assumption, the F' statistic for this hypothesis is

Fbeta =
05 + )~ (By — B:)' X' X (B, — )
[(m+ k) (n = 2] [, (v — XBy) (= XBy) + X5 (2 — XB2)' (2 — X )]

which follows the distribution f(2, (m + k)(n — 2)) when Hj is true and the

rule for testing Hj is

rejecting Hy if Fpetq > fa(2, (M + k) (n — 2)). (3.4)

For all experiments, we conduct a simulation with replications 10,000
under some settings of numbers of subjects m and k ans sample size n. The
parameter values under Hy is 3, = #, = (1,1)" and 0, = 0, = 1. Table 1

displays the resulted sizes of the test.

Table 1. Type I error probabilities unedr F' test

n = 50 n = 100 n = 200 n = 1,000
m=k=2>5 0.0452 0.0466 0.0504 0.0484
m =k =10 0.0477 0.0484 0.0514 0.0511
m=k=15 0.0442 0.0465 0.0471 0.0504
m =k =20 0.0425 0.0461 0.0516 0.0496
m =k =25 0.0481 0.0456 0.0496 0.05
m =k =30 0.0416 0.0486 0.044 0.0508

The results showing in Table 1 indicates that this test is approximately with

sizes very close to the significance level o = 0.05.

We then further conduct simulation with various design of deviation from
H, to verify the power performance. The simulated results are displayed in
Table 2.

Table 2. Power performance unedr F' test for hypothesis of equal regression

parameters



Parameters power Parameters power
(75:05:1 0520325
Boy = 1.14 0.7351 Boy = 1.32 0.7508
Boy = 1.16 0.8503 Boy = 1.5 0.9887
Boy = 1.2 0.9679 Boy = 1.65 1
By = 1.008 0.7524 By = 1.018 0.7551
By = 1.01 0.9147 By = 1.025 0.9639
By = 1.02 1 By = 1.038 1
0520522.5 05205210
Boy = 1.25 0.8423 Boy = 1.5 0.8374
Boy = 1.3 0.9503 Boy = 1.6 0.9481
Boy = 1.4 0.998 Boy = 1.7 0.9894
By = 1.014 0.8375 Biy = 1.03 0.8852
By = 1.03 1 Biy = 1.05 0.9999

We have two comments drawn from the results showing in Table 2:
1. The power is increasing when the parameter 3y, or 31, moves away from
the value under Hj.

2. The power is very sensitive to the changein slope parameter 31, and it is
relatively less sensitive for a'departure inlocation parameter (3,,. However,

the performance seems to be satisfactory.

We next consider a test for hypothesis-of differences in variances as Hy :

oy =0, vs Hy : 0y # 0,. We consider the following test statistic

S (i — XB,) (y; — XBy)/(mn — 2)
S (2 — XB) (2 — X )/ (kn — 2)

Fsz’gma -

and the rule for testing Hy is

rejecting Ho if Fyigma < fay2(mn—2,kn—2) or Fegmae > fi_a/2(mn—2,kn—2).

We first, again, verify the size of this test.

Table 3. Type I error probabilities unedr F' test for hypothesis of equal

variances
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n =20 n =30 n = 50

a = 0.05
m=k=10 0.0487 0.0477 0.0491
m=k=20 0.0496 0.0522 0.0522
m=k =230 0.05 0.0492 0.053

a=0.1
m=k=10 0.1003 0.1005 0.1028
m=k=20 0.0987 0.1045 0.0947
m=k =230 0.0994 0.101 0.1001

a=0.15
m=k=10 0.1454 0.1499 0.1568
m=k=20 0.1513 0.1457 0.1451
m=k =230 0.1461 0.1516 0.1437

The sizes in most cases are very close to the set significance levels. Hence,

this test is approximately level « test.
For power comparison, we consider the following design in cases that Hy

is not true:

ﬁy = (1’ 1)/,/32 5 (a,b),ﬂz = 1,0’3 = c.

This allows us to verify both regression parameters.and error variances are

varied in two growth models.

Table 4. Powers under F' test for hypopthesis of equal variances

(a,b,c) n.= 20 n = 30 n = 50
(1,1,1.2) 0.6056 0.7818 0.9401
(1, 1, 1.3) 0.8936 0.9742 0.9994
(1,1,1.5) 0.9983 1 1
(1,1,2) 1 1 1
(2,2,1.2) 0.6022 0.7772 0.9402
(2,2,1.4) 0.9857 0.9991 1
(2,2,2) 1 1 1

We have two comments drawn from the results showing in Table 4:

1. In the case that (a,b) = (1,1), regression parameters in two growth

models are set equal. The power performance is showing satisfactory. This

indicates that a test for equality of regression parameters is not sufficient

for comparison of reference charts.
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2. In cases with (a, b) = (2, 2), the regression parameters and error variances
are both unequal. It also shows satisfactory in power performance.

We consider the hypothesis

Hy: By =p.,0y =0, (3.5)

By Bonferroni, by simulation, we choose & = 1 —1/0.9434 and set the rule

as

rejecting Ho if Fyeta > fi—a(2, (m+k)(n —2)) or

Fsigma < fa/Z(mn — 2, kn — 2) or > fl—a/2(mn - 2,kn - 2)
(3.6)

The simulated probability of type I error is 0.049, very close to the aquired

significance level 0.05.

Table 5. Power comparison when regression parameters and error variances
are both changed (o = 0.05)

parameters power parameters power
(/80117 g) (/301170—;3,0-2)
(1.1,1.1) 0.4705 (1.1,1.3,1.1) 0.7249
(1.2,1.1) 0.9486 (1.1,1.4,1.1) 0.9407
(1.3,1.1) 0.9997 (1.1,1.6,1.1) 0.9998
(1.1,1.2) 0.802
(1.1,1.4) 0.9992 (Bry,00,02)
(1.01,1. 2 1.1) 0.8515
(Boy, 02, B12) (1.01,1.3,1.1) 0.9257
(1.1,1.1,1.02) 0.9987 (1.01,1.4,1.1) 0.9842
(1.3,1.1,1.01) 0.8623 (1.02,1.1,1.1) 1

We have several comments for the power simulation results:

(a) Consider the departures in fy, and o2. The power is low when two
parameters are changed slightly as (1.1,1.1). However, it rapidly increse
when there departures slightly bigger in either one.

(b) The case (Boy,02, 1) = (1.1,1.1,1.02) has power 0.9987, by compar-
ison with case for (Bpy,02) = (1.1,1.1), showing that a very small shift in

regression slope parameter 31, makes power greatly improved.
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(c) The settings for (Boy,07,02) fix changes in fy, and o2 and then the

2
Yy

(d) The settings for (31,,07,07) also results that power is much more sen-

power performance corresponds to the change in o7 is mild but satisfactory.

sitive for a change in slope parameter 31, than changes in intercept or error

variances.

Table 6. Power comparison when regression parameters and error variances

are both changed (« = 0.1)

parameters power parameters power
(Boy, 2) (Boy, 02, Brz)
(1.1,1.1) 0.6193 (1.1,1.1,1.01) 0.636
(1.2,1.1) 0.9771 (1.3,1.1,1.01) 0.9251
(1.3,1.1) 1 (1.4,1.1,1.01) 0.9988
(1.1,1.2) 0.8874 (1.1,1.3,1.01) 0.9892
(1.1,1.4) 0.9994 (1.1,1.1,1.02) 0.9999

(ﬁoyvasvag)

(1.1,1.3,1.1) 0.8297

(1.1,1.5,1.1) 0.9979

When the significance level is0:1; the simulated results also show that the
power performances for intercept and error variances-are not so sensitive as
it did for slope parameter. However, these results show that this technique

is satisfactory.

4. Reference Charts Comparison for Random Intercept Model

In this section, we consider one interesting repeated measurements re-
gression model as example to formulate specification of hypothesis in (2.5)
and develop procedures to test hypothesis of equal reference charts in this
model.

The random intercept model for one individual is of the form

y(tj) = ﬂoy + Vy + 61yl’1(tj) + 6y(tj),j = 1, ey M

where V,, has normal distributions N(0,07,) and 8,(¢;)'s are independent

normal distributions N(0,07). Also, variables V;, and d,(t;) are assumed to
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be independent. This is a model of (2.1) with z(t)'8, = Boy + P1y21(t) and
€y(t) =V, + 6,(t). This random intercept model allows each individual to
have its own intercept term and then the starting level for this individual is
Boy + vy where various subjects may have different observations v;s of V.
This random intercept regression model has the form of (2.6) with designed

matrix X and parameter vector (3, as

1 I
1 i) /3

X=|. By = (éz) Sy =01, + 00, (4.1)
1 =z,

with z; = z(t;) and J is n x n matrix of 1’s. The set of reference charts for

this random intercept model is

Cy(7) = {Boy + Pryz1(t) + \/ 03y + 02y it €S} (4.2)

where z, is the yth quantile point for the standard normal distribution.
Since the covariances are identical, this random intercept model is also called
the uniform correlation model.

The random intercept model for subject from another population is
2(t5) = Bo. + Vot Bizwr(ty) +02(t;),0=1,....,n

where V, has normal distributions IV (0,02;) and 6,(¢;)’s are independent
normal distributions N(0,02). The set of reference charts for this random

intercept model is

C.(v) = {Bo + Przx1(t) + /o2, + 022, : t € S}
The equality of reference charts from these two populations indicates
Boy+0ryw1(t)+y/02, + 022y = o +0r01(t)++/ 02, + 022, for all z1(t) and v € (0,1)

giving that testing equalities of reference charts is equivalent to test the

following hypothesis

Hycr: B, = ﬁz,az + agy = (72 + ng. (4.3)
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When we test the hypothesis Hg, acceptance of 3, = 3, obviously does not
indicate equality of reference charts since equality of variance sum o +o7, =
02+02, may not be guaranteed. Since o, = o, and \/cgy = /02, indicates
that 05 + ng =02 + 02, is true, so, when we test hypothesis Hg y; and the
hypothesis is accepted then we are sure that the two reference charts are
equal. However, there is a risk that these two reference charts are really
equal when we reject Hg s since o7 + 05, = 02 + o2, doesn’t indicate that
oy = 0, and o,y = 0y, are true.

When we are allowed to assume that o, = o,. The hypotsheis is reduced

to the following

/By - BZ7 Oy = 0z,0py = Oyz (44)

and then testing hypothesis Hg 5, is then appropriate.
We now restrict on the following no-covariate random intercept model.

From (3.1), the random intercept model may be re-written as
Y = Boylmn + €y, E(ey) =1 ® 0y, cov(ey) = ((7; + agy)([m ® Loy)

where Yo, is n X n matrix.with diagonal elements 1’s and off diagonal ele-
2

ments . Similarly the random intercept model-for z may be re-written

Ty
2 2
cry—{—trvy

as
2 = Loz lin + €2, E(€;) = 15 Q@ Uyycov(és) = (aﬁ + ng)(Ik ® o).

Equality of refernce charts in this no-covariate model requires to test the

following hypothesis
Hy : foy = Poz, 0, + 05, =05 + 00, (4.5)
We first consider hypothesis
Hy : Boy = Bo.-

We assume that the response variable for subjects in two groups both have

random intercept models that leads us to consider the intercept parameter
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estimators Boy and Bgz so that their difference Boy — Bgz has (asymptotic)
covariance natrix achieving the Cramer-Rao lower bound J—ﬂg (1%2@11”)_1 +
% (17,551,)~1. Available estimators of By, and Sy, for this kind include
mle and generalized least squares estimator. Suppose that we have error
variances 62 and 67 and covariance matrix estimators f]oy and Y,. With

normality assumption, the F' statistic for this hypothesis is

Fbeta, —

(BOy - BOz ) 2A

o
+ i
k1,551,

52
O-CL
1 =1
mlnEOy 1,

when Hj is true and the rule for testing Hy is

rejecting Hy if Fyera > X2 (1).

First we consider mle methed to perform the above test. Let us denote
the followings (see the formulas in' McCulloch and Searle ( 2001)):

_ S i S Uis DI SR, Ui AL _
o= it 5 Sl SRR gop SN SN, g

i=1 j=1
SSA?J = Zn(gz - Y )27 SSEy = ZZ(%J —Yi )2
=1 1=1 5=1
MST, = %’M‘S’Ay = SSAyaMSEy - mf:l—?yl)

o [MSE, if(1-2X)MSA,> MSE,
v\ MST, if(1-L)MSA,<MSE,’

o { (=) MSA,=MSBy 3¢ (1 — L)\SA, > MSE,

n

0 if (1-L)MSA, < MSE,

m m

. N " 1 . . .

Boy = (m1, 55, 1) ™Y 1,55, y;, 60 = — > (y; = Boyln)'Eq, (45 — Boyln)
j=1 j=1
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and
DY R S D oD S A 0
= A= T 2= p— 7SSTZZZZ(ZU_Z..) ,
=1 5=1
k k n
SSA, =Y n(z. —2.)%8SE, = Y (z; — 7.)
=1 =1 j5=1
T, A, E,

MST, = 55 ,MSA, = 55 ,MSE, = 558

k—1 k(n—1)
.o [ MSE, if(1- %)MSAZ > MSE,
7T\ MST, it(1-1)Ms4, < MSE,
52 _ { Q-)MSA—MSE. ¢ (1 _ L)\SA, > MSE,

" 0 if (1-7)MSA, < MSE,
k k
. o NP 1 . . .
ﬁ()z = (kl;zzo;ln) ! 32::1 12202123'7 0'1? = m ;(Zj — ,8()21”)/2021 (Zj — ﬂozln).
Based on the above settings, the test for hypothesis Hy : 3y, = (o, is
-2
rejecting Hy if F' = (f—;‘ < fajamn—=1,kn—"1)0r > fi_o/2(mn—1,kn—1).
T

To test if this test is appropriate, we conduct a simulation with m = k,
n = 30 and a = 0.05. From now on, each simulation performs 10,000
replications and the parameters not been specified are given values 1’s. The

following we list the simulated probabilities of type I error:

m=k=2 10 15 20 30

0.242 0.057 0.058 0.059 0.051

This test seems to be reasonable for its size in testing differences of location
parameters based on the simulated results when n = k£ > 10. We next

conduct a simulation to verufy the power of this test.

Table 7. Power performance for hypothesis 3y, = (o, based mle with

/802 =1
Boy Power Boy Power
Boy = 1.5 0.102 Boy = 3.0 0.083
2.0 0.514 3.2 0.993
2.5 0.859 3.5 1
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The power gradually increases when fy, is moving away from (3y,. The

results indicates that this test is satisfactory.

We now propose a new estimation of these covariance matrices. Model

for the j-th subject is

Yj = (501/ + Uy)ln + dy.

Instead of estimating regression parameters through whole set of data, we
consider combination of estimates from individual regression models. We

introduce the idea and process in this estimation in the followings:

(a) Suppose that the least squares estimator of this model for j-th subject
is boj. The estimate by; actually estimate the sum of intercept [y, and
variable v,. Since V), is a variable having zero mean, we may denote Boy =

% Z;n:l bo; as estimate of intercept parameter (3, .

(b) By letting 9,; = bo; — Boy,j =,...,m, then ©,,’s are appropriate as

predictors of intercept error.variables V,;’s.” We then have variance estimator

~2 _ 1 Nm a2
JGL,vy “m Zj:l ij.
(c) Since by; is estimate of vector (Bo, +uy, the residual y,; —b; is one predictor

2
Yy

6hr.y = m > ie1(yj —boj1n)" (95 =bojln). The n x n matrix estimates

of error vector d,. Hence the‘estimator of variance o is appropriate to be

are

~2
O-G’L,vy
62, . + 02
GL,y G’L,vg<4_6)

Yar,y: diagonal elements 1’s, off diagonal elements

and

~2
UGL,vz

Ycr,.: diagonal elements 1’s, off diagonal elements

~

UGL,z + 6-%}’L,1)z(47)

The generalized LSEs for regression paramters By, and fy, and error
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variances o2 = agy + a; and o = 02, + o2 are, respectively,
m g7 -1 k 1 -1
B . Zj:l 1n20y Yi A - Zj:l 1n202 Zj
GL,Oy - SN—1 9 GL,OZ - SN—1 Y
/ !/
mly, ¥, 1, k1%, 1y,
2, — Ly Sar,091n) SG1 3a1,0y1n) and
0GLa= 7 (yj — Bar,oyln) Xar (Y5 — Bar,oyln) an
j=1
1 k
2 Z 3 -1 %
OGL,p = n— 1 (Zj - /BGL,Ozln) EGL,z(Zj - /BGL,Ozln)-
j=1

To test if this test is appropriate, we conduct a simulation with m = k,
n = 30 and o = 0.05. The following we list the simulated probabilities of

type I error:
m=k=2 10 15 20 30

0.235 0.052 0.049 0.054 0.053
Besides m = k = 2, this technique has size close to the specified significance

level. We then further study the power performance of this test.

Table 8. Power performance for-hypothesis (o, = (o, based generalized
LSE with £y, =1

Boy Power Boy Power
Boy = 1.5 0.193 Boy = 3.0 0.988

2.0 0.52 3.2 0.996

2.5 0.855 3.5 1

The power performance based on generalized least squares estimator is also
acceptable for its monotone power property.

We next consider the following hypothesis
Hy : 05 + 012,y =0 +02,.
From normal theory, a F' test is defined as

~2
o
rejecting Ho if Fyigma = —o2% < foja(mn—1,kn—1) or > fi_q/a(mn—1,kn—1).
OGL.,b
We now consider the generalized LSE method. We conduct a simulation

with m = k, n = 30 and o = 0.05. The following we list the simulated
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probabilities of type I error:

m=k=5 10 15 20 25 30

0.055 0.057 0.062 0.056 0.052 0.059

This is also close to the specified significance level although they are a bit

larger than that.

Table 9. Power performance for hypothesis 02 = o7 based generalized LSE

a =

Sample size o2, =0-=1 1.5 2 3
m=k=2
n =30 0.061 0.367 0.739 0.989
n = 50 0.059 0.52 0.921 1
n = 100 0.08 0.768 0.997 1
m =k =10
n = 30 0.057 0.923 1 1
n = 50 0.069 0:991 1 1
n = 100 0.085 1 1 1

The power is gradually increasing, although fluctuated in several cases, in

2

sample size n and o2, and o2. The test for equality of reference charts of

two variance sum is appropriate.

It is then considered the combination of the above two tests for hypothesis
(3.5). By choosing significance level 0:05,-we set o = 0.05 with the following
test:

5 A 2
rejecting Hy if Fz = &(foy ﬂoz)&g > X2 (1)
m1;, 3, 1, T k1 35, ,
~2
o
or Fuigma = % < faja(mn —1,kn—1) or > fi_q/o(mn —1,kn —1).
GL,b

The powers are listed in Table 10.

Table 10. Powers for simultaneous F' test
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power power

ﬁOyv qu)ya Boz BOy; 0'12;y7 0'3

2.5,1.1,1.1 0.788 2.5,1.1,1.1 0.837
2.7,1.1,1.1 0.877 2.7,1.1,1.1 0.909
3,1.1,1.1 0.974 3,1.1,1.1 0.98
1.1,2,1.1 0.829 1.1,2.2,1.1 0.853
1.1,2.2,1.1 0.93 1.1,2.4,1.1 0.927
1.1,2.5,1.1 0.99 1.1,2.8,1.1 0.987

We set, two cases in departure of null hypothesis Hy. The simulated results
indicate that the test for equality of reference charts is appropriate by the

generalized least squares method.

5. Reference Charts Comparisons for Random Intercept with Co-
variate Model
In this section, we consider the random intercept with covariate model.

From (3.1), this model may be re-written as

Y= (1m ® X)By + €, E(€y) =1 @ 0,y ¢00(ey) = 02(I;, @ Xoy)  (5.1)

2 __

where o, = 05 + o2

vys S0y 180 x nomatrix with diagonal elements 1’s and off
2

diagonal elements .-oimilarly the random intercept model for z may

Oy
2 2
Uy—{—crvy

be re-written as
2= 1 ® X)B, + €, E(€x) =1 ® 0,,.coul€,) = a?([k ® 302) (5.2)

where 02 = 02+ 02, and X, is n X n matrix with diagonal elements 1’s and

2
off diagonal elements 52 ii(’;%zy. We first consider the following hypothesis

We assume that the response variable for subjects in two groups both have
random intercept models that leads us to consider the regression parame-
ter estimators By and Bz so that their difference By — Bz has (asymptotic)
covariance natrix achieving the Cramer-Rao lower bound U—ﬂj‘i‘ (X' Egle )+
%g(X '35, X)7t. Available estimators of 8, and 3, for this kind include

mle and generalized least squares estimator. Suppose that we have error
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variances &Z and &f and covariance matrix estimators ¥, and Yg,. With

normality assumption, the F' statistic for this hypothesis is

R - P - U
Freta = (By — ﬁz)/(E(X/EOle) L f(X'Eo;X) H7HBy — B

when Hj is true and the rule for testing Hy is
rejecting Hy if Fyerq > X2(2). (5.4)

We now propose a new estimation of these covariance matrices. Model

for the j-th subject is

y; =X (ﬂoyﬁt vy> +6,. (5.5)

Again, we consider combination of estimates from individual regression mod-
els. We introduce the idea and process in this estimation in the followings:

(a) Suppose that the least squares estimator of this model for j-th subject

is Bj = <Z(1)J ) The estimate bp; actually estimate the sum of regression
intercept ﬁo?j and variable vy.” Since V) is-a variable having zero mean, we
may denote BO = % Z;n:l boj as estimate of regression intercept parameter
Boy.

(b) By letting 9,; = bo; — Bo,j =1,...,m, then 9,;’s are appropriate as pre-
dictions of intercept error variables.V,;’s. We then have variance estimator
&éL,vy - % Z;'n:l 1751--

(¢) Since Bj is estimate of vector (50yﬁ‘i‘ Uy>, the residual y; — Xéj is

2

one predictor of error vector d,. Hence the estimator of variance o, is

appropriate to be ¢, = m Z;.n:l(yj — XBj)’(yj — XBJ-). The n X n

matrix estimates are

~2
UGL,vy

Yar,y: diagonal elements 1’s, off diagonal elements

A

OGry T 6%?L,vg(5.6)
and

~2
O-GL,vz
62,  + 062 :
GL,z GL,vz(5.7)

Yar,»: diagonal elements 1’s, off diagonal elements
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The generalized LSEs for regression paramters 3, and 3, and error vari-

2 _ ;2 2 2 _ 2 2 :
ances o, = 0, + 0, and o; = 0,,, + 0; are, respectively,

m k
. 1 ey o PR 1 o .
Bary = E(X'EOle) P XS5 g Bor,s = %(X'Z();X) PP S
j=1 J=1
. R . .
UéL,a = m—2 Z(?JJ - XﬁGL,y)/EGi,y(yj — XBgL,y) and
7=1
1 & . .
Gonp = PR > (25— XPar,:) 251, (2 — XBar,.).
7j=1

To verify if the test of (5.4) based on generalized least squares estimators
is appropriate, we conduct a simulation with m = k and a = 0.05. The

following we list the simulated probabilities of type I error:
m=k=2 10 15 20 30
0.2012 0.0557 0.0544 0.0522 0.0494
Again, m = k = 2 has error probabilities too large. The others are satisfac-
tory.

To evaluate the power performance, we design shifts in some regression

parameters and we list the powers in the following table.

Table 11. Powers for testing Hy : 3, =, with generalized LSE (n = 30)

Parameter shift Power Parameter shift Power
k=m=10
Boy = 1.5 0.149 Boy = 1.2, 81, = 1.02 0.48
2.0 0.400 Boy = 1.2, B1, = 1.05 1
2.5 0.759 Boy = 1.5, B1y = 1.02 0.618
2.8 0.8989 Boy = 1.5, B1y = 1.05 0.998
3 0.952 Boy = 2.0, 81, = 1.02 0.834
3.2 0.9806 Boy = 2.0, B1y = 1.05 1
By = 0.96 0.973
0.97 0.788
0.98 0.407
1.02 0.405
1.04 0.982
1.05 0.999
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The powers resulted from simulation seem to be very strong when there
is shift in slope parameter (3i,. This fulfills our expectation in regression
model.

The second hypothesis of interest is
Hy : agy + 02 =02, + o2

w . ) ) ; .
Suppose that we have regression parameter estimators 3, and 3, and estima
tors of covariance matrices X, and g,. We have estimates of 03 = 05 —Hff,y

2 _ 424 2
and o = o5 + 05, as

L1 & . :
0—2 T — 9 ;(y] ‘Xﬁy)/E Yy (y; — XBy) and
1 & . .
&Z = In_9 Z(ZJ XBZ)/E_;(ZJ’ - Xp.).
7=1

From normal theory, a F' test«is defined as

~

rejecting Hy if F' = —5 < foo(mn—2,kn=2) or-> f1_q/2(mn—2,kn—2).
T

Q

To perform this test, it requires estimates of 5, 3, and covariance matrices
Yoy and g,. Again, we consider mle method-and generalized least squares
estimation for comparison.

We first, consider the mle estimates Bmle,y, Bmle,z and f]mle,y, f)mle,z. Let

us denote the followings:

_ 2?21 Yij Do Yij D i 2?21 Yij Z?:1 T

%277?]:77?/: T =
n m nm n
n n
Syw = Z(g] - g)(l'] - i')asa:x - Z(x] - j)2,
j=1 j=1
n
Sex Yy (2 —Z2.)(x; —T).

j=1

The following maximum likelihood estimates are used to construct the
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estimators of covariance matrices:

Sys o o ey (Wis — (0. + Pry(j — 7))

Poy = ¥.. = Py, Pry = s v m(n — 1)
) Loyt (5 —9.)° .
0-121y = maX{O, ﬁ( =1 Trz - 0-5)}7

Soo 5 i iy (zig — (2. + Pra(z; — 2)))?

’0- -

Boz = Z. — B1:%, B1, =

Sex” * k(n—1)
ko 5 \2
1 =1 (Zi. — R
52— max{0), —(”Zml(z' 25y,
n

We now state the mle estimates of regression parameters and nxn covariance

matrices Yo, and Yo, as

3 _ ( Poy 3 _( DPoz 22 A2 | 22 A2 A2 | 22
Bmle,y—<A >7ﬁmle,z—< >7O'a—0'y+0',uy70-b—0'2+0-1}2,

/Bly Blz (58)

5'2
Ymie,y: matrix, diagonal elements 1’s, off diagonal elements szy

%a (5.9)
and

5’2
Yimle,»: matrix, diagonal elements 1’s, off diagonal elements —=5*.

b (5.10)

The power performance_based on mle method is listed in the follwoing

table.

Table 12. Powers for F test with 2 =¢2, =1 with mle method

y y
sample size o2, =02=1 2 3 5
k=m=2
n = 30(df =2 x 30 — 28) 0.0517 0.4853 0.8596 0.9947
n = 50(2 x 50 — 57) 0.0544 0.6082 0.9398 0.9996
n = 100(2 x 100 — 145) 0.0520 0.7136 0.9809 1
k=m =10
n = 30(10 x 30 — 150) 0.05 0.99 1 1
n = 50(10 x 50 — 308) 0.051 0.998 1 1
n = 100(10 x 100 — 761) 0.05 1 1 1
The powers when 02, = o2 = 1 are probabilities of type I error. These

values shows that this test is appropriate. Then the powers for departure

of null hypothesis Hj are also reasonably good.
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The generalized least method apply regression parameter estimates BG Ly
and BGL,Z and variance estimates 6gr,, and 6grp. To test if this test is
appropriate, we conduct a simulation with m = k£ and a = 0.05. The

following we list the simulated probabilities of type I error:
m=k=5 10 15 20 25 30

0.056 0.069 0.049 0.056 0.052 0.06
The type I error probabilities are a bit too large. This needs more studies

and modifications.

Table 13. Powers for F test with 05 = g2

vy = 1 with generalized least

squares method

sample size o2, =0>=1 1.5 2 3 5
k=m=2

n = 30 0.062 0.341 0.764 0.986

n = 50 0.068 0.514 0.904 0.999

n = 100 0.089 0.781 0.994 1
k=m =10

n = 30 0.061 0.944 1 1

n = 50 0.056 0.995 1 1

n = 100 0.091 1) 1 1

The power performance as‘the other cases looks satisfactory.

We now consider simultaneous testing for -hypothesis

Hy : 8, = B and 05 +03y =2+ o2
The F test for this hypothesis is

rejecting Ho if Fyerq > X2 (2) or F =

S
SR N

< fa/2(mn_2, kn—2) or > fl—a/Z(mn_2, kn_z)

Table 14. Powers for simultaneous F' test

Boy, agu, o2, power By, agu, o2, power
1.1,2,1.1 0.7 1.03,1.1,1.1 0.795
1.1,2.2,1.1 0.828 1.04,1.1,1.1 0.973
1.1,2.4,1.1 0.928 1.05,1.1,1.1 0.995
1.1,1.1,2 0.683 1.06,1.1,1.1 1
1.1,1.1,2.3 0.9 Boys Brys 02, 02
1.1,1.1,2.6 0.972 1.1,1.03,1.1,1.1 0.752
1.1,1.04,1.1,1.1 0.966
1.1,1.05,1.1,1.1 0.998
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Table 15. Powers for simultaneous F' test

2 2
B()ya O-y’ Uz

power Boy, 05, Boz power
2.5,1.1,1.1 0.849 2.5,1.1,1.1 0.806
2.7,1.1,1.1 0.938 2.7,1.1,1.1 0.889
3,1.1,1.1 0.99 3,1.1,1.1 0.978
1.1,2,1.1 0.817 1.1,2,1.1 0.91
1.1,2.2,1.1 0.926 1.1,2.2,1.1 0.967
1.1,2.5,1.1 0.99

The simulated results show that this proposal has good performance in

power.
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