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摘   要 

 

隨著現代工業製程的進步，品質的特性經常是以應變量（response）

與共變量（covariate）的函數關係呈現，也就是文獻裡所謂的剖面

資料（profile）。因此，為了因應實際的需求，發展剖面資料的管制

方法是必要的。近年來亦有多篇文獻探討該議題。此篇論文對於具隨

機效應的剖面資料提供了完整的管制方法。首先，我們先考慮服從常

態分配的剖面資料。為了提升管制方法的效率，我們利用主成分分析

得到其主成分記分（principal component score），並利用該記分來

發展管制圖。在此論文，我們對於常態分配的剖面資料分別探討在第

一階段（Phase I）和第二階段（Phase II）的分析。在實際的應用

裡，資料經常並非服從常態分配的假設。因此，在沒有假設資料分配

的情況下，我們亦發展剖面資料的管制方法。為此，我們先對於多變

量資料，發展無分配假設（distribution-free）的第一階段管制方

法。接著，再對剖面資料發展無分配假設的第一及第二階段的管制方



法。在第一階段的分析，我們利用型一錯誤（type-I error）及型二

錯誤（type-II error）來當作衡量準則。而在第二階段的分析裡，

我們利用平均運行步長（average run length）來衡量。透過模擬分

析，我們所發展的管制方法對於各種製程的變化都能有效地偵測，包

含平均位置的位移、資料散佈的位移或是函數形狀的改變。我們亦利

用真實的資料來示範我們所提出的方法的適用性及效率。 
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Abstract

As modern technology advances in many industrial processes, the quality char-

acteristics are often gathered in the form of a relationship between the response

variable and explanatory variable(s), which are often referred to as profiles in the

literature. Therefore, developing schemes for monitoring various types of func-

tional characteristics becomes necessary for practical use and has attracted many

researchers in resent years. The purpose of this dissertation is to provide a compre-

hensive analysis for profiles with random effects. First, the case of the profiles fol-

lowing the Gaussian distribution is considered. To monitor the profiles efficiently,

the principal component scores of profiles obtained from the principal component

analysis are utilized to construct control charts. Both the Phase I analysis and

Phase II monitoring for Gaussian profiles are discussed in this dissertation. Since

the Gaussian assumption may be violated in many practical applications, we also

develop a distribution-free control chart for profiles. To this end, we first develop

a novel distribution-free Phase I control chart for multivariate data. Then, two

distribution-free control charts for profile data are constructed for Phase I and



Phase II applications, respectively. The type-I and type-II error rates are consid-

ered as the performance measures for Phase I analysis whereas the average run

length is used for Phase II analysis. Our simulation studies indicate that the pro-

posed control charts are efficient in detecting shifts in various kinds of aspects,

including the mean, dispersion, and shape of the profile. Some real data analysis

are also provided to demonstrate the applicability and effectiveness of the proposed

control charts.
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Chapter 1

Introduction

Statistical process control (SPC) has been widely used in various areas, especially

in industry. One of the most important purposes in SPC is to monitor crucial

quality characteristics of processes/products in order to control the process to stay

in a stable state. Among SPC tools, the control chart is a proven effective process

monitoring tool used to determine whether the process is in control or not.

The control chart applications are distinguished into Phase I and Phase II

with distinct objectives. The objectives of the Phase I application are to bring

the process to a state of statistical control and further characterize the in-control

process by analyzing historical observations. The control chart would allow the user

to collect in-control data by filtering out the abnormal or so-called “out-of-control”

(OC) observations in the historical data set. The collected in-control (IC) data are

then used to characterize the IC process with a suitable statistical model, which will

be used later to construct the control chart in the Phase II application. Since the

data used in Phase I analysis are gathered in the past, Phase I analysis is regarded

as the retrospective analysis in the literature. Assuming that the process is in

statistical control already, the Phase II application emphasizes the online process

monitoring of the process characteristics. In this phase, practitioners focus on

detecting as efficiently as possible the OC conditions caused by assignable causes

during production. Since the data considered in this phase are coming serially
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from the future on-going process procedure, Phase II analysis is also regarded

as a prospective analysis. Moreover, in Phase II analysis, the necessary process

parameters are usually assumed known; that is, they are already known from

previous knowledge or are well estimated from the historical data after Phase I

analysis.

Traditionally, the quality characteristics that control charts monitor are uni-

variate or multivariate random variables. Nevertheless, in many situations, the

quality-related characteristic of interest is not a variable or a vector but a func-

tional relationship between the response variable and one or more explanatory

variables. Under these circumstances, the monitoring focus should be on the func-

tional characteristic of the data (referred to as the profile in the literature) instead

of on the response values measured at the specific levels of the explanatory vari-

ables. In this case, the observations within a profile are often highly correlated and

their ordering (as the ordering of the explanatory variables) remains unchanged

over time. Moreover, the values of explanatory variables may vary from profile to

profile in many situations. Therefore, although profile data look similar to mul-

tivariate data, the traditional multivariate monitoring schemes often may not be

appropriate for profiles. In addition, the profiles observed from a process usu-

ally have some features in common and hence exhibit similar patterns. For some

cases, the observed profiles can be well represented as a fixed (but needs to be

estimated) function plus independent errors, and hence can be suitably modeled

by a fixed-effect model. However, for more cases in practice, the profiles in general

are of common shapes or similar patterns but still quite different individually, a

situation needs to be modeled with a random-effect model or a mixed-effect model

to accommodate the profile-to-profile variations. It is noted that, in the literature,

the terms “random effects” and “mixed effects” sometimes are used interchange-

ably — a random-effect model becomes a mixed-effect model when the mean of

the random-effect component is deliberately set to zero by moving the mean into

the fixed-effect component.
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In this dissertation, we propose some monitoring schemes for profiles with ran-

dom effects. We first review related research works in the literature and some

background knowledge used in this dissertation in Chapter 2. In Chapter 3, two

monitoring schemes for profiles under Gaussian assumption are developed for Phase

I and II applications, respectively. In practical use of SPC procedures, the distri-

bution of the profiles is often unknown or differs from Gaussian. Before developing

monitoring schemes for profile data, we first construct a novel control chart for

multivariate observations without distribution assumptions for Phase I applica-

tions in Chapter 4. Then, by combining the schemes presented in Chapters 3 and

4, we develop two distribution-free monitoring schemes for profiles in retrospective

and prospective analysis, respectively, in Chapter 5. Finally, the conclusion and

some directions of future works are given in Chapter 6.
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Chapter 2

Literature Review and

Background

This chapter gives a literature review on related research works in process moni-

toring and some background knowledge of this dissertation study in Sections 2.1

and 2.2, respectively.

2.1 Literature Review

In this section, we review some previous works in the literature related to our study.

For easy reference, we tabulate the reference in profile monitoring and multivariate

process monitoring in Tables 2.1 and 2.2, respectively.

2.1.1 Phase II Analysis

The works on the profile monitoring started with the simplest case that the profiles

are characterized by a single covariate and the functional relationship can be de-

scribed by a linear regression model. Assuming that the intercept and slope in the

model are known, Kang and Albin (2000) proposed two approaches to deal with

the Phase II profile monitoring problem. One is the Hotelling’s T 2 chart based on

4



the vector of the least squared estimates of the intercept and slope of the incoming

profile. The other takes the residuals between the sample profile and the reference

profile as a subgroup, then combines the EWMA chart on the average of the resid-

uals and the range-chart (R-chart). The authors preferred the second approach.

Kim et al. (2003) considered three EWMA control charts for monitoring the esti-

mated intercept, slope, and variance of the linear model, respectively. To lessen

the correlations among the estimators of the parameters, the centered linear model

was considered in their method. Based on the same spirit with the methodology

proposed by Kim et al. (2003), Saghaei et al. (2009) utilized the CUSUM chart on

the estimated parameters of the simple linear model. Zou et al. (2006) proposed

a likelihood ratio (LR) based control chart with a change-point model. To avoid

the situation of the paucity of the reference sample, Zou et al. (2007b) developed a

self-starting monitoring scheme for linear profiles. In their methodology, the resid-

ual and the variance are monitored individually via two EWMA charts, and the

estimated parameters are updated immediately when a new observation arrives.

Zhang et al. (2009) constructed a control chart based on the LR to monitor linear

profiles. Instead of taking exponentially weighted average of the LR statistic, they

sequentially update the estimates of the parameters used in the LR statistic via

the EWMA scheme and monitor the corresponding values of the statistic.

In practice, the functional relationship between the response and covariate may

not be linear. Kazemzadeh et al. (2009) extended the simple linear model to

the polynomial model to fit the profiles. For roundness profile data, Colosimo

et al. (2008) considered a spatial autoregressive regression model to account for

the continuity in space of the profile, and construct a control chart to monitor the

parameters in the model. Vaghefi et al. (2009) developed control charts based on

the residuals of the (known) nonlinear model, and several types of metrics were

considered to measure the difference between the incoming profile and the reference

profile.

It sometimes happens that the profile is better characterized by several covari-
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ates. Zou et al. (2007a) extended the simple linear model to the general linear

model including the polynomial and multiple linear regression models for profile

monitoring. Zou et al. (2008) presented a control chart that integrates the usual

multivariate EWMA procedure with the generalized likelihood ratio test proposed

by Fan et al. (2001).

To be more general, Eyvazian et al. (2011) considered the case of the multiple

responses as profiles of multiple covariates, which is the so-called multivariate

multiple profiles. They assumed the profiles can be fitted by the multivariate

multiple linear regression model and proposed several multivariate control charts

to monitor the parameters in the model. Zou et al. (2012a) took the multivariate

multiple linear profiles into account and constructed the control chart based on

the LASSO-based multivariate control chart proposed by Zou and Qiu (2009). Lee

et al. (2011) dealt with the multiple profiles of one covariate in a semiconductor

manufacturing process and no linear structure was assumed in their method.

2.1.2 Phase I Analysis

Kang and Albin (2000) suggested that by replacing the EWMA chart to the She-

whart chart, their proposed chart can be applied to Phase I analysis. Mahmoud

and Woodall (2004) utilized the indicator variables to compare several simple lin-

ear regression lines, and considered the F -statistic to identify which of the profiles

are out of control. As a generalization of simple linear profiles, Kazemzadeh et al.

(2008) discussed that the Phase I monitoring scheme for polynomial profiles. Zhang

and Albin (2009) used the χ2 statistic, which is the sum of squared standardized

residuals between the reference profile and the centered profile to be tested, to de-

tect the outlying profiles. Similar to the work of Zou et al. (2006), Mahmoud et al.

(2007) considered the change-point model in the Phase I monitoring for simple

linear profiles.

In the case of the nonlinear model with multiple covariates, Williams et al.

(2007a) and Williams et al. (2007b) constructed control charts for the parameters

6



in the (known) nonlinear model. Jensen et al. (2008) and Jensen and Birch (2009)

considered the linear and nonlinear mixed models, respectively, to account for the

profile-to-profile variation, and then a T 2-type control chart is used to monitor the

parameters in the model simultaneously.

For the multiple linear regression profile case, Mahmoud (2008) pointed out

that the power of the usual Hotelling’s T 2 control chart would be reduced when

the number of the covariates increases. The author regarded the average of the

fitted values of the historical profiles as a new covariate; and with that only the

simple linear regression model needs to be considered. Since outlying profiles have

abnormal values of the parameters in the new model, the parameters were utilized

to construct a control chart in Phase I. Parallel to Phase II (Eyvazian et al.,

2011), Noorossana et al. (2010) also developed a Phase I monitoring scheme for

multivariate multiple linear regression profiles.

2.1.3 Dimension Reduction Methods

In the profile data analysis, profiles are often discretized and hence can be regarded

as multivariate data. Since the number of the design points (values of the covari-

ate) is usually large, the dimension reduction techniques can be applied to profile

data. Jin and Shi (2001) considered the wavelet transformation for the profile and

constructed a control chart based on the corresponding coefficients to implement

the monitoring scheme. Both the Phase I and II analysis were discussed in their

article. Lada et al. (2002) also developed a Phase II control chart based on the

wavelet coefficients. For the dimension reduction purpose, a novel minimizing cri-

terion was considered to choose a small number of the coefficients. In the use of

the wavelet transformation for profiles, Jeong et al. (2006) proposed a T 2 chart for

Phase II analysis based on the coefficients for which the deviations from the refer-

ence parameters exceed a threshold. Chicken et al. (2009) considered the likelihood

ratio statistic of the coefficients to construct a control chart under a change-point

model.
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Ding et al. (2006) considered the independent component analysis (ref. Hyvärinen

et al., 2001) to the wavelet coefficients to reduce the corresponding dimensions in

Phase I applications. Shiau et al. (2009) applied the principal component analysis

(PCA) to profiles and proposed several control charts based on the scores of the

first few effective principal components (PCs) to implement Phase I and II process

monitoring.

2.1.4 Distribution-Free Methods

The literature involving distribution-free monitoring procedures for profile data is

quite limited. In the development of nonparametric methods, Walker and Wright

(2002) pointed out that the smoothing technique is an important tool to summarize

and capture the structure of a profile. In addition, the authors used the generalized

additive model to fit the profiles and then developed a method to decompose the

sources of the variation of profiles; however, no monitoring schemes were provided

in this paper. Febrero et al. (2008) considered the depth measure for profiles and

detected the outlying cases with lower values of depth. Three types of depthes,

including the Fraiman-Muniz depth (Fraiman and Muniz, 2001), h-modal depth

(Cuevas et al., 2006), and random projection depth (Cuevas et al., 2007), are con-

sidered and the corresponding performances were compared. In Phase II analysis,

Cheng (2009) and Wang (2009) respectively considered the simplicial depth (Liu,

1990) and the Oja depth (Zou and Serfling, 2000) to construct the r-chart, Q-chart,

and DDMA-chart (Liu, 1995; Liu et al., 2004) by using the PC scores of profiles.

Zou et al. (2009) considered the change-point model integrating with the gen-

eralized likelihood ratio (GLR) testing statistic. The GLR statistic measures the

difference between the generalized log-likelihood functions under IC (i.e., no change

point) and OC (i.e., there exists at least a change point) conditions. Taking each

of the profiles as a potential change point, the values of the GLR statistic are cal-

culated and then the maximum value is used to determine whether the process is

OC or not. Qiu and Zou (2010) constructed a nonparametric profile control chart
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by using the smoothed estimates of the scaled residuals of a nonparametric regres-

sion model. The authors also presented a self-starting version of the monitoring

scheme. Qiu et al. (2010) considered the nonlinear mixed effect model to describe

profiles to deal with the correlation within a profile, which is a condition usually

happen in practice; see Section 3.3.3.

2.1.5 Multivariate Process Monitoring

There are vast amount of papers discussing multivariate process monitoring schemes

for either location or dispersion of the process, but only some recent papers are re-

viewed here. For more related references, see the papers described in the following

and the references cited therein.

Among the multivariate monitoring schemes developed under the multivariate

normal distribution, the most popular method could be the Hotelling’s T 2 control

chart. It is widely used for monitoring the location of the process in both Phase I

and Phase II analysis. However, the Hotelling’s T 2 chart is notorious for its poor

power in detecting small location shifts. To get more detecting power for small

shifts, Crosier (1988) and Lowry et al. (1992) proposed the multivariate CUSUM

and multivariate EWMA control charts, respectively. Mason et al. (2003) pointed

out that there would be some special systematic patterns rather than the random

pattern in the Hotelling’s T 2 chart if some specific conditions occur in the process.

Vargas (2003) and Jensen et al. (2007) proposed their T 2 control charts based

on the robust estimators of the location and scatter matrix for Phase I applications.

They claimed that the control chart using the minimum volume ellipsoid (MVE) or

minimum covariance determinant (MCD) estimator is more powerful in detecting

reasonable number of outliers than the regular Hotelling’s T 2 control chart. The

use of the scatter matrix estimated by successive difference was also discussed in

their papers. Later, Williams et al. (2006) derived the asymptotic distribution of

the T 2 statistic based on the successive-difference estimator of the scatter matrix.

Zamba and Hawkins (2006) considered the change-point model for monitoring the
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process mean in both Phase I and Phase II analysis. To avoid a long process of

collecting in-control data, Hawkins and Maboudou-Tchao (2007) developed a self-

starting EWMA procedure to monitor the process mean. Assuming only a few

dimensions of the vector shift, Zou and Qiu (2009) proposed an EWMA control

chart integrating the LASSO-based testing statistic.

The aforementioned methodologies focus mainly on monitoring the process

mean. Nevertheless, the scatter matrix should also be monitored in real appli-

cations. For Phase II applications, Yeh et al. (2004) proposed an EWMA control

chart based on the likelihood ratio test statistic for comparing the sample covari-

ance matrix of the incoming grouped data with that of the reference sample. Yeh

et al. (2005) considered the EWMA of XtX
′
t, where Xt is the observed vector

at time t, as the estimator of the scatter matrix, and proposed the control charts

based on the entries of the estimated scatter matrix to monitor the variability

of the process. Huwang et al. (2007) considered not only the EWMA of XtX
′
t,

but also the EWMA of (Xt − µ̂t)(Xt − µ̂t)
′, where µ̂t is the EWMA of Xt, as

the estimators of the scatter matrix. The trace of each estimated scatter matrix

was utilized to construct a Shewhart-type control chart. Hawkins and Maboudou-

Tchao (2008) adopted the XtX
′
t version of the scatter matrix estimator described

above and applied the Alt’s likelihood ratio statistic (Alt, 1984) to monitor the

process dispersion. To gain more power than the usual two-sided test on the scatter

matrix, Yen and Shiau (2010) derived the likelihood ratio test statistic for testing

one-sided alternative hypothesis of increasing process dispersion and developed a

control chart accordingly. Yen et al. (2012) further developed an effective chart

for detecting dispersion increase and decrease simultaneously by combining two

one-sided charts.

Some authors developed multivariate control charts to monitor the location and

dispersion of the process simultaneously. Reynolds and Cho (2006) constructed

two T 2-type control charts based on the EWMA of each component of Xt and

X2
t , respectively (X2

t refers to the vector of the square of each component of
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Xt), then combined the two T 2 charts to monitor the mean and scatter matrix

simultaneously. Maboudou-Tchao and Hawkins (2011) combined the self-starting

monitoring scheme for the mean in Hawkins and Maboudou-Tchao (2007) and the

EWMA procedure for the scatter matrix in Hawkins and Maboudou-Tchao (2008)

for the same purpose.

The methodologies described above were all developed based on the normality

assumption of the observations. However, this assumption is often violated in prac-

tice. Stoumbos and Sullivan (2002) and Testik et al. (2003) studied the robustness

of the multivariate EWMA control chart. They pointed out that the multivariate

EWMA chart is quite robust to normality if one choose a small weighting param-

eter λ. But how small λ should be depends on the distribution of the data, which

is often difficult to estimate in practical applications. Therefore, distribution-free

schemes for process monitoring are definitely in need.

Qiu and Hawkins (2001, 2003) constructed the CUSUM control chart based on

the so-called antiranks of vectors, in which the antiranks are the indices of the order

statistics. Liu (1995) proposed three control charts, r, Q, and S charts, which can

be viewed as the univariate X, X̄, and CUSUM charts applying on the depth of the

multivariate data. Liu et al. (2004) constructed a nonparametric moving average

(MA)-chart derived from the notation of data depth for multivariate data. The

simplical depth (Liu, 1990) was considered in their methodology. Hamurkaroğlu

et al. (2004) demonstrated the use of the r and Q charts under the Mahalanobis

depth (Mahalanobis, 1936).

Qiu (2008) considered an approach involving the log-linear model to construct

a CUSUM chart based on the Pearson’s χ2 statistic. Zou and Tsung (2011) pro-

posed an EWMA monitoring procedure based on the spatial signs of vectors (in-

troduced in Section 2.2.5). To incorporate the information in the multivariate

data more than just the multivariate direction, Zou et al. (2012b) proposed a spa-

tial rank-based multivariate EWMA control chart. In addition, they incorporated

the self-starting procedure into the the proposed monitoring scheme. Boone and
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Chakraborti (2012) considered the univariate sign and Wilcoxon sign-rank statis-

tics for each component of the multivariate data and constructed the Hotelling’s

T 2-type control charts based on these distribution-free statistics to monitor the

process location.

2.2 Background

Section 2.2.1 reviews several levels of model assumptions often made on distribution

symmetry in the literature. Section 2.2.2 introduces the definition of spatial sign

and related assumptions. Sections 2.2.3 - 2.2.5 describe some applications of spatial

sign, including nonparametric hypothesis testing, robust parameter estimation,

and statistical process monitoring.

2.2.1 Symmetry Property of a Distribution

Let y be a p-variate random vector that can be described by the model

y = µ+ e, (2.1)

where µ is the mean vector and e is the error vector with zero mean and variance-

covariance matrix Σ. Assuming that Σ is positive definite, there exists a full-rank

p × p matrix Ω such that Σ = ΩΩ′. Let ε = Ω−1e be the standardized error

vector with zero mean and identity variance-covariance matrix. Then the model

(2.1) can be re-written as

y = µ+Ωε. (2.2)

Ω is often called the transformation matrix in the literature. Imposing various

assumptions on the distribution of ε leads to various parametric or semiparametric

or nonparametric models. For example, when constructing a semiparametric or

nonparametric multivariate test, the symmetry assumption is often needed. The

symmetry property of the distribution of a standardized variable ε is defined in the
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sense that the distribution is invariant under certain transformations. Note that

the assumption made on ε is equivalent to that made on Ω−1(y − µ), hence the

connection of the probability density functions (pdfs) between ε and y is that

fy(y) = |Ω|−1fε
(
Ω−1(y − µ)

)
,

where fy and fε denote the pdfs of y and ε, respectively. Oja (2010) provided a

good review about the symmetry property with respect to various kinds of trans-

formation. In this dissertation, we only consider the kinds of symmetry described

in this section.

Definition 2.1. The random p-vector ε is called elliptically symmetrical (or spheri-

cally symmetrical) ifOε ∼ ε, for all orthogonal matricesO. It is called symmetrical

(or centrally symmetrical) if −ε ∼ ε.

Here, the symbol “∼” denotes “is distributed as”. Note that the elliptically

symmetrical random vector is also symmetrical since the matrix −Ip is orthogonal.

Thus, the following three “nested” assumptions lead to a hierarchy of symmetrical

models:

(A0) ε ∼ Np(0, Ip);

(A1) ε is elliptically symmetrical;

(A2) ε is symmetrical.

The strongest assumption (A0) is equivalently to the usual assumption, y ∼

Np(µ,Σ), made on random samples in the literature. In many multivariate data

analysis applications, such as principal component analysis (PCA), canonical cor-

relation analysis (CCA), and factor analysis (FA), it relies on the assumption (A0)

to develop good theoretical properties of the methodologies. Because the assump-

tion (A1) or (A2) made on ε is weaker than (A0), it corresponds to a boarder

class of distributions. Also, the model based on the assumption (A1) or (A2) may

be regarded as a semiparametric generalization of the multivariate normal model

based on (A0) in the sense that no particular distribution is assumed.
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2.2.2 Concept of Spatial Sign

In the univariate case, data can be ordered and the sign of an observation indicates

its direction (+1, 0 or −1) from the origin. For any univariate variable y, the

following sign function

U(y) =

 |y|−1y, if y ̸= 0,

0, if y = 0,

gives the sign of y. Although there is no such natural ordering for multivariate

data, the multivariate sign function can be defined in the same manner as

U(y) =

 ||y||−1y, if y ̸= 0,

0, if y = 0,

for any multivariate vector y, where || · || is the Euclidean norm. U(y) is called the

multivariate (spatial) sign vector of y, and sometimes called the direction vector,

since it only indicates the direction of the observation by mapping it on the multi-

dimensional unit sphere. For illustration, Figure 2.1(a) and 2.1(b) show the scatter

plots of a random sample from the bivariate standard normal distribution and the

corresponding spatial sign vectors, respectively.
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Figure 2.1: The scatter plots of a random sample from N2(0, I2) and the corresponding

spatial sign vectors.
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Consider again the model assumption issue mentioned earlier in the last section.

A broader class of distribution models can be obtained if the assumptions are only

made on the sign vector. Let the spatial sign vector of the random vector ε be

u = U(ε). The following assumptions are then considered:

(B1) u is uniformly distributed on the multivariate unit sphere;

(B2) u is symmetrical.

The distributions of ε corresponding to the models (B1) and (B2) are named the

elliptical direction distribution and directionally symmetrical distribution, respec-

tively. Note that there is no additional assumption on the distribution of the radius

r = ||ε||. The radius r and direction u may be dependent, thus skew distributions

are allowed under models (B1) and (B2). Among the models introduced so far, a

hierarchy of the models is straightforward to obtain as follows.

Property 2.1. The models (A0)-(A2) and (B1)-(B2) satisfy the following joint

hierarchy

(A0) ⇒ (A1) ⇒ (A2)

⇓ ⇓

(B1) ⇒ (B2).

The symbol “⇒” denotes “implies”. For the tests or monitoring schemes intro-

duced/developed later, we focus on the distribution-free property under the family

of elliptical direction distributions. For more details about the spatial sign and

symmetrical distribution families, see Chapter 2 of Oja (2010).

2.2.3 Multivariate Sign Test

Consider an independent and identically distributed (i.i.d.) random sample {y1, · · · ,yn}

from F (y−θ), where F (·) represents the cumulative distribution function (cdf) of

a continuous p-dimensional distribution “located” at θ. Consider testing the null

hypothesis H0 : θ = θ0 against the alternative hypothesis H1 : θ ̸= θ0. Without
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loss of generality, θ0 is assumed zero; otherwise, simply replace yi by yi − θ0 for

i = 1, . . . , n. In this testing hypothesis problem, different levels of assumptions

were imposed on F in the literature. For example, for yi’s from the multivariate

normal distribution, the well-known Hotelling’s T 2 test is a powerful test, which

rejects H0 if

T 2 = (n− 1)ȳ′S−1ȳ ≥ (n− 1)p

n− p
Fp,n−p(α),

where ȳ and S are the regular sample mean and sample variance-covariance matrix

of the data, respectively, and Fp,n−p(α) is the upper α quantile of the F distribution

with p and n− p degrees of freedom. However, stronger assumptions made on the

cdf F cause more restrictions in using the test. Thus, one would like to construct

a powerful test with distribution assumptions to be as weak as possible.

Recall that a test statistic t(·) is said to be affine invariant if t(y1, . . . ,yn) =

t(Dy1, . . . ,Dyn) for every (y1, . . . ,yn) and all nonsingular p× p matrix D. This

property ensures that the test will stay the same under certain transformations of

data, e.g., rotating data around the origin or altering the scale of measurements.

Note that the Hotelling’s T 2 statistic is affine invariant. However, the dependency

on the normality assumption could be a serious drawback for Hotelling’s T 2 test

and many parametric methodologies. For example, it is hard to control the type-I

error probability of the Hotelling’s T 2 test at a specified level when the normal

assumption is violated. To circumvent this drawback, Randles (2000) proposed a

test based on the spatial sign, which provides a robust alternative for testing the

hypotheses when the population distribution is unknown.

More specifically, Randles (2000) constructed an affine invariant multivari-

ate sign test utilizing the transformation-retransformation approach proposed by

Chakraborty et al. (1998) and the directional transformation proposed by Tyler

(1987). The transformation-retransformation approach uses a data-determined

nonsingular matrix Ay based on y that has an affine-equivariance property; that

is, when each yi is transformed by a fixed nonsingular p × p matrix D into Dyi,
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then the resulting matrix ADy satisfies

D′A′
DyADyD = cA′

yAy,

where c is a positive scalar that might depend on D and yi’s. After transforming

the data by Ay, the spatial sign vectors of the transformed data are

ui = U(Ayyi) for i = 1, . . . , n. (2.3)

Following the form of the Hotelling’s T 2 test, the test statistic is then constructed

as a quadratic form of the spatial sign vectors,

Q = nū′(AVE{uiu
′
i}
)−1

ū, (2.4)

where AVE{Bi} =
∑n

i=1Bi/n denotes the average of Bi’s over i, in which Bi

can be a vector or a matrix; and ū = AVE{ui}. For Ay, Randles (2000) adopted

the Tyler’s transformation matrix (Tyler, 1987). Tyler’s method is to find a data-

driven scatter matrix, ST , which is a p×p symmetric positive-definite matrix with

trace(ST ) = p, such that

AVE
{
U(ATyi)U(ATyi)

′} =
1

p
Ip,

for any AT satisfying A′
TAT = S−1

T . The ST is called the Tyler’s scatter matrix

and AT is the corresponding Tyler’s transformation matrix.

The Tyler’s scatter and transformation matrices are surprisingly easy to com-

pute empirically as follows. The iterative procedure begins with S ← Ip as the

initial value, and then transform it to the next value via

S ← pS1/2AVE{uiu
′
i}S1/2. (2.5)

Here, “←” means “set to”. Continue updating step given in (2.5) until ||pAVE{uiu
′
i}−

Ip|| is sufficiently small, where the matrix norm is defined as ||A|| =
√
trace(A′A).

The Tyler’s scatter matrix is then set as ST = [p/trace(S)]S and the corresponding

Tyler’s transformation matrix AT is chosen such that A′
TAT = S−1

T .
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Tyler (1987) claimed that the Tyler’s scatter matrix ŜT is the “most robust” es-

timator of the scatter matrix for elliptically symmetric distributions, and is unique

if the sample is from a continuous p-dimensional distribution with n > p(p − 1).

Replacing the Ay in (2.3) by AT , the test statistic (2.4) then becomes

Q = npū′ū, (2.6)

and H0 is rejected for large values of Q. Randles (2000) showed that the test

statistic Q is affine invariant when n > p(p− 1) and is distribution-free under H0

in the class of elliptical direction distributions. The author also illustrated that

the proposed sign-based test is quite powerful under elliptically symmetrical or

some skew distributions, and is well competitive to Hotelling’s T 2 test and other

nonparametric tests.

2.2.4 Multivariate Spatial Median

The center of the distribution under study is usually unavailable in practice and

needs to be estimated from data empirically. Among many statistics, the spatial

median is often recommended in the literature for describing the multivariate center

due to its robustness.

Definition 2.2. Let {y1, . . . ,yn} be a p-variate random sample of size n. The

(sample) spatial median θ̂ is defined as the minimizer of the criterion function

n∑
i=1

||yi − θ||. (2.7)

Taking the gradient of the objective function (2.7), one sees that if θ̂ solves the

equation

n∑
i=1

yi − θ̂

||yi − θ̂||
=

n∑
i=1

U(yi − θ̂) = 0,

then θ̂ is the desired spatial median. Milasevic and Ducharme (1987) showed that

the spatial median is unique if the dimension of data p > 1. Vardi and Zhang
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(2000) provided an algorithm by modifying the Weiszfeld’s algorithm (Weiszfeld,

1937; Weiszfeld and Plastria, 2009) to compute the spatial median. Specifically,

the algorithm takes the regular sample median for each dimension as the initial

estimate of each component of θ and then iterates the following step

θ ← θ +
AVE{U(yi − θ)}
AVE{||yi − θ||−1}

, (2.8)

until convergence. This algorithm is extremely simple and converges quickly and

monotonically.

There is a natural link between the spatial median and the Tyler’s scatter

matrix as described below. Hettmansperger and Randles (2002) proposed a pro-

cedure for estimating the spatial median θ and Tyler’s transformation matrix A

simultaneously. The desired parameters (θ,A) satisfy

AVE{U(A(yi − θ))} = 0,

AVE{U(A(yi − θ))U(A(yi − θ))′} = 1

p
Ip,

and A′A = S−1. These estimators of the location and transformation matrix are

called Hettmansperger-Randles (HR) estimators, and are very easy to compute in

high dimensions. The iterations are described as follows.

1. Initially set (θ,S) ← (θ̃, Ip), where θ̃ is composed of the p regular sample

medians of the p components. Let S1/2 be any p × p matrix such that

S1/2S1/2 = S.

2. Fix S and let zi = S−1/2(yi − θ), for i = 1, . . . , n. Then iterate

θ ← θ +
AVE{U(zi)}
AVE{||zi||−1}

until convergence.

3. Fix θ and let zi = S−1/2(yi − θ), for i = 1, . . . , n. Then iterate

S ← pS1/2AVE{U(zi)U(zi)
′}S1/2
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until ||pAVE{U(zi)U(zi)
′} − Ip|| is sufficiently small, and then let S ←

[p/trace(S)]S.

4. Repeat steps 2 and 3 until both of θ and S converge.

The resulting values of θ and ST are the estimated spatial median and the Tyler’s

scatter matrix. Then the corresponding Tyler’s transformation matrix is an AT

such that A′
TAT = S−1

T . Unfortunately, there is no proof so far to ensure that

the HR algorithm converges, but it actually works in most of situations. The exis-

tence and uniqueness of (θ,A) are shown by Hettmansperger and Randles (2002)

for the directionally symmetrical distributions, and hence the elliptical direction

distributions. They also showed that the distribution-free property holds for the

elliptical direction distributions.

2.2.5 Multivariate Sign-Based Control Chart for Phase II

Application

In Phase II multivariate statistical process control (MSPC), one of the main tasks

is to detect the process change as quickly as possible when the process is out of

control. Usually, the location parameter is one of the process characteristics of con-

cern in practice. Let y−m0+1, . . . ,y0 be m0 i.i.d. historical p-variate observations

and yi be the ith future observation collected over time, for i = 1, 2, . . .. Consider

the following multivariate change-point model

yi ∼

 F (y − θ0) for i = −m0 + 1, . . . , 0, 1, . . . , τ

F (y − θ1) for i = τ + 1, . . . ,

where τ is the unknown change point and θ0 ̸= θ1. Zou and Tsung (2011) proposed

an MSPC methodology incorporating the multivariate sign test (Randles, 2000)

and the exponentially weighted moving average (EWMA) scheme for monitoring

the location parameter of online sequential observations. Their control scheme is

introduced briefly as follows.
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Analogous to regular monitoring schemes, the first step is to estimate the loca-

tion parameter and transformation matrix (or scatter matrix) from the reference

sample. For robustness, the HR estimation method introduced in the last section

was also recommended in Zou and Tsung’s method. Denote the estimated spatial

median and Tyler’s transformation matrix by (θ0,A0). The spatial sign vector of

the observation yi collected online is

ui = U(A0(yi − θ0)) for i = 1, 2, . . . .

Then construct the EWMA sequence by

wi = (1− λ)wi−1 + λui,

where λ is a weighting parameter and u0 = 0. The proposed control chart triggers

a signal if

Qi =
2− λ

λ
pw′

iwi > L,

where L > 0 is a control limit chosen to achieve a specified in-control (IC) average

run length (ARL).

Zou and Tsung (2011) showed that the proposed control chart is affine invari-

ant and distribution-free in the sense that the IC ARL is the same for the class

of elliptical direction distributions. The distribution-free property not only makes

the monitoring scheme robust to the underlying distribution, but also provides a

convenient way to determine the control limit L. More specifically, since the IC

run-length distribution is the same for any continuous process with an elliptical di-

rection distribution, L can be determined from any distribution, e.g., the standard

normal distribution. The control limits for some values of p, λ, and IC ARL were

tabulated in Zou and Tsung (2011). They claimed that the sign-based EWMA

control chart is fast to compute with a computational time similar to the mul-

tivariate EWMA (MEWMA, Lowry et al., 1992) and more efficient in detecting

process shifts, especially for small or moderate shifts when the process distribution
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is heavy tailed or skewed. However, when the shift is quite large, the MEWMA

chart outperforms the sign-based control chart since the sign-based control chart

considers only the directions rather than the distances from the origin.
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Table 2.1: Research works in profile monitoring

Distribution Model Phase I Phase II

Kang and Albin (2000) Kang and Albin (2000)

Simple Mahmoud and Woodall (2004) Kim et al. (2003)

Linear Mahmoud et al. (2007) Zou et al. (2006)

Jensen et al. (2008) Saghaei et al. (2009)

Zhang et al. (2009)

Williams et al. (2007a) Zou et al. (2007a)

Generalized Williams et al. (2007b) Kazemzadeh et al. (2009)

Linear Kazemzadeh et al. (2008) Eyvazian et al. (2011)

Mahmoud (2008) Lee et al. (2011)

Gaussian Noorossana et al. (2010) Zou et al. (2012a)

Distribution Nonlinear Jensen and Birch (2009) Colosimo et al. (2008)

Vaghefi et al. (2009)

Jin and Shi (2001) Jin and Shi (2001)

Lada et al. (2002) Ding et al. (2006)

Jeong et al. (2006) Shiau et al. (2009)

Nonparametric Zou et al. (2008) (This Dissertation)

Chicken et al. (2009)

Shiau et al. (2009)

(This Dissertation)

Febrero et al. (2008) Cheng (2009)

(This Dissertation) Wang (2009)

Distribution- Zou et al. (2009)

Free Nonparametric Qiu and Zou (2010)

Qiu et al. (2010)

(This Dissertation)
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Table 2.2: Research works in multivariate process monitoring

Distribution Detect shift in Phase I Phase II

Vargas (2003) Crosier (1988)

Jensen et al. (2007) Lowry et al. (1992)

Mean Zamba and Hawkins (2006) Zamba and Hawkins (2006)

Hawkins and Maboudou-Tchao (2007)

Zou and Qiu (2009)

Gaussian Yeh et al. (2004)

Distribution Yeh et al. (2005)

Covariance Huwang et al. (2007)

Matrix Hawkins and Maboudou-Tchao (2008)

Yen and Shiau (2010)

Yen et al. (2012)

Mean and Reynolds and Cho (2006)

Covariance Maboudou-Tchao and Hawkins (2011)

Matrix

Liu (1995) Qiu and Hawkins (2001)

Hamurkaroğlu et al. (2004) Qiu and Hawkins (2003)

(This Dissertation) Liu et al. (2004)

Distribution- Mean Qiu (2008)

Free Zou and Tsung (2011)

Zou et al. (2012b)

Boone and Chakraborti (2012)
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Chapter 3

Profile Monitoring Schemes under

Gaussian Assumption

In this chapter, we consider the problem of profile monitoring when the process

is from Gaussian. Equivalently, the discretized profile data are assumed from

the model (A0) described in Section 2.2.1. This chapter is organized as follows.

Sections 3.1 and 3.2 present the proposed process monitoring schemes for Phase I

and II, respectively. Section 3.3 presents results of some simulation studies of our

proposed monitoring schemes and performance comparisons between the proposed

schemes and some existing methods. Section 3.4 demonstrates the applicability of

the proposed control charts with a real example. Section 3.5 concludes this chapter

with a brief discussion on some related issues.
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3.1 Phase I Monitoring

3.1.1 Model Assumptions and Data Smoothing

Assume the observed profile data can be described by the following nonparametric

regression model:

yij = g(xij) + fi(xij) + εij for i = 1, . . . ,m, j = 1, . . . , pi, (3.1)

where g(·) is the mean profile function, i.e., the fix-effect term, fi(·) is the random-

effect term of the ith profile, xij is the jth covariate value of the ith profile, and

(εi1, . . . , εipi)
′ is the i.i.d. random error vector with mean 0 and variance σ2

ε . The

random-effect term fi and the errors εij are assumed independent of each other. In

this chapter, we assume fi is distributed as Npi(0,Σi), where Σi = [σi,jk]j,k=1,...,pi

and

σi,jk = E[fi(xij)fi(xik)].

The collected profile data are often accompanied with noises. To filter out the

noise in the raw data, smoothing profiles as a preprocess step is often adopted.

Moreover, the design points of the covariate may vary from profile to profile in

real applications, a situation the PCA cannot be applied directly. To cope with

this situation, we can simply smooth each individual profile and obtain the values

of the smoothed profile at the same set of design points, say, x = (x1, . . . , xp)
′ for

a certain p. Many popular smoothing techniques, such as kernel smoothing, local

polynomial regression smoothing, smoothing splines, B-splines, and wavelets can

be used and they usually make little difference for this purpose.

In this study, the local linear smoothing method (Fan and Gijbels, 1996) is

adopted for simplicity. Given any x0 in the range of the design points, the local
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linear estimator for the ith profile takes the form of

ỹi(x0) =

p∑
j=1

Wj(x0)yij for i = 1, 2, . . . , (3.2)

Wj(x0) = Uj(x0)

/ p∑
k=1

Uk(x0),

Uk(x0) = Kh(xik − x0)[m2(x0)− (xik − x0)m1(x0)],

ml(x0) =
1

n

p∑
k=1

(xik − x0)
lKh(xik − x0), l = 1, 2,

and Kh(·) = K(·/h)/h with K(·) being a kernel function and h being the band-

width. Generally, the selection of the kernel function K(·) is not crucial (ref. Fan

and Gijbels, 1996); thus the popular Epanechnikov kernel,

K(u) =
3

4
(1− u2)I(|u| ≤ 1),

is adopted in this study.

The local linear smoothing technique has been implemented in R, S-plus, and

some other statistical softwares and is extensively used in applications. Another

benefit of using the local linear smoothing is that the corresponding estimate is

a linear combination of the original profile data so that its distribution can be

obtained easily from the normality assumption of data. Therefore, we can simply

assume the smoothed profiles are distributed as Np(µ,Σ), where µ and Σ are the

mean and variance-covariance matrix of the smoothed profiles, respectively.

In the use of the PCA technique, the choice of the number of effective PCs is

affected by the degree of smoothness; thus the popular generalized cross-validation

(GCV) method proposed by Craven and Wahba (1979) is considered in choosing

the smoothing parameter, i.e., the bandwidth in our case. Without repeating

smoothing, the GCV method is computationally more efficient than the ordinary

cross validation (OCV) method. Moreover, it has been found that the GCVmethod

has a tendency of less under-smoothing than the OCV method. Specifically, for a
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given profile y, define the GCV function as

GCV(h) =
py′[Ip −Wh]y

[tr(Ip −Wh)]2
,

where Ip is the p× p identity matrix and Wh is the smoothing matrix correspond-

ing to a certain bandwidth h. Then the desired bandwidth h is the minimizer of

the GCV function. The minimization of GCV(h) with respect to h will inevitably

involve trying a large number of values of h. Ramsay and Silverman (2005) in-

troduced a greatly-speeding-up computation method by performing a preliminary

generalized eigen-analysis. For more details about GCV, see Gu (2002) or Ramsay

and Silverman (2005).

3.1.2 Phase I Monitoring Scheme

Let y be a profile datum following model (3.1) and ỹ be the corresponding local

linear smoothing estimate. To simplify notation, we suppress the “∼” symbol and

denote the y as a profile datum after smoothing hereafter. During Phase I, the

process may not be stable yet and all the parameters necessary for monitoring

must be estimated from the data on hand. In this study, we simply use the sample

mean vector and sample variance-covariance matrix, denoted as (µ̂, Σ̂), to estimate

(µ,Σ).

The methodologies we propose in this dissertation involves the PCA technique.

In functional PCA, the eigen-functions ν(·) and the corresponding eigen-values λ

are defined to satisfy the equation∫
Q(t, s)ν(s)ds = λν(t),

where Q(t, s) is the covariance function; see Ramsay and Silverman (2005). By

applying the smoothing technique to profiles as a preprocessing step, we obtain

smoothed profiles at a pre-determined set of design points. Thus, the regular

PCA can be applied to the smoothed profiles directly. We adopt the notation of

the regular PCA in what follows for simplicity. Both of the functional form and
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regular form of PCA can be utilized for our purpose, but the function form is more

involved in theory and in computation.

In Phase I monitoring, Shiau et al. (2009) proposed a method based on PCA and

the Hotelling T 2 statistic. The method applies the eigen-analysis to Σ̂ to obtain

the corresponding eigenvalue-vector pairs, denoted as (λ1,ν1), . . . , (λp,νp), where

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. The selection of the “effective” principal components

(PCs) is based on the total variation explained by the chosen PCs along with

the principle of parsimoniousness that we often use in variable selection. Let the

number of the effective PCs be K. Consider the statistic

T 2
0i = (s0i − s̄0)

′B−1
0 (s0i − s̄0), (3.3)

i = 1, ...,m, where s0i is the vector of the first K PC scores for the ith profile,

s̄0 =
∑m

i=1 s0i/m, and B0 =
∑m

i=1(s0i − s̄0)(s0i − s̄0)
′/(m − 1). A large value of

the T 2
0 statistic indicates that the corresponding profile could be abnormal and

perhaps should be deleted from the historical data set. Since the score vectors are

distributed as multivariate normal asymptotically (Anderson, 2003), according to

Tracy et al. (1992) and also Sullivan and Woodall (1996),

m

(m− 1)2
T 2
0i ∼ Beta

(
K

2

m−K − 1

2

)
approximately.

Thus, for a control chart with a false-alarm rate α, the control limit can be set

at the upper α quantile of the beta distribution multiply by (m − 1)2/m, and

observations with T 2
0i values exceeding the control limit are regarded as OC.

The methodology proposed by Shiau et al. (2009) has a drawback that the

information on the PC νK+1, . . . ,νp are ignored and thus the changes in the space

spanned by these PCs will not be monitored. To overcome this drawback, we

consider another T 2 statistic based on the remaining p−K PCs defined as

T 2
1i = (s1i − s̄1)

′B−1
1 (s1i − s̄1) for i = 1, ...m, (3.4)

where s1i is the vector of the last p − K PC scores for the ith profile, s̄1 and

B1 are the corresponding sample mean and sample variance-covariance matrix,
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respectively. Similarly, we also have

m

(m− 1)2
T 2
1i ∼ Beta

(
p−K

2

m− p+K − 1

2

)
approximately,

and then the upper α quantile of the beta distribution multiply by (m − 1)2/m

can be used as the control limit of this chart.

To combine the information from both of the T 2
0 and T 2

1 charts, an observation

is regarded as OC if any of the two charts is triggered out of control. Since both

of the T 2-type charts are Shewhart-type, this control charting scheme is referred

to as the Phase I combined Shewhart (CS) chart hereafter.

3.1.3 Performance Measures

In early researches about the Phase I control chart, some authors considered the

signal probability, defined as the probability of observing at least one OC signal

on the chart, as the measure of performance (ref. Mahmoud and Woodall, 2004;

Champ and Jones, 2004; Jones-Farmer et al., 2009; Jones-Farmer and Champ,

2010). Unfortunately, using the signal probability as the performance measure,

the signaled observations may include both IC and OC cases. Instead of the

signal probability, we consider the type-I and type-II error rates as the measures

of performance (ref. Zhang and Albin, 2009; Shiau and Sun, 2010). The type-I

error rate is defined as the misjudged rate of classifying the IC observations to be

OC, and the type-II error rate is the rate of treating OC cases as IC. To be more

specific, suppose that there are m observations with moc OC cases. After Phase

I analysis, it turns out that there are m1 IC observations incorrectly regarded as

OC and m2 OC observations misclassified as IC. Then the type-I and type-II error

rates are defined as

pI =
m1

m−moc

and pII =
m2

moc

,

respectively. In usual applications, the type-I error rate has to be controlled under

a certain level, say, α0. Since our proposed monitoring scheme involves combining
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two Shewhart control charts, we can take the type-I error rate of each chart to be

α = 1−
√
1− α0 for the purpose of controlling the overall type-I error rate at about

α0. We remark that although the two statistics T 2
0i and T 2

1i are not independent

theoretically, their correlation is very weak for large m.

3.2 Phase II Monitoring

3.2.1 Methodology

We now consider y as an incoming profile datum from model (3.1) after smoothing.

The underlying distribution of an IC y is assumed to be a the p-dimensional

multivariate normal distribution, denoted as Np(µ0,Σ0). Different from the Phase

I application, the parameters (µ0,Σ0) are either known or have been well estimated

from the historical IC dataset. For each incoming profile, the main purpose is to

examine if the profile follows the same mean and variance-covariance structure as

µ0 and Σ0. A profile has a shift either in mean or in variance-covariance matrix

is regarded as an OC case.

Shiau et al. (2009) proposed a methodology based on the PC scores, which

is effective when changes occur in the eigen space spanned by the effective PCs.

In their methodology, the eigen-analysis is applied to Σ0, and the corresponding

eigenvalue-vector pairs, denoted as (λ1,ν1), . . . , (λp,νp), where λ1 ≥ λ2 ≥ . . . ≥

λp ≥ 0, are obtained. The selection of the effective PCs is also based on the total

variation explained by the chosen PCs along with the principle of parsimoniousness.

Let the number of the effective PCs be K and P0 ≡ (ν1, . . . ,νK) be the matrix

of the effective PCs. Then s ≡ (S1, . . . , SK)
′ = P ′

0y is the vector of PC scores

corresponding to the K effective PCs. By the theory of PCA, we know that y

can be well approximated by
∑K

j=1 Sjνj = P0s if the proportion of total variation

explained by the first K PCs is large enough. The T 2-type statistic proposed by
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Shiau et al. (2009) is

T 2
0 = (y − µ0)

′P0Λ
−1
0 P ′

0(y − µ0), (3.5)

where Λ0 =diag[λ1, . . . , λK ]. It can be easily shown that the T 2
0 statistic follows

the χ2 distribution with degrees of freedom K, denoted as χ2
K , under normal

assumption of y. A large value of the T 2
0 statistic that exceeds the upper α quantile

of χ2
K leads to a violation of the hypothesis that the process is IC.

The efficacy of the T 2
0 chart was illustrated in Shiau et al. (2009). The authors

also showed that the chart is powerful when the OC profiles can be approximated

by the effective PCs as well. Unfortunately, one cannot expect this condition holds

for all OC profiles. The T 2
0 chart has no power in detecting the OC profiles residing

in the complementary space of the effective PCs. To cope with this problem, we

propose monitoring the residual vector. Letting P1 ≡ (νK+1, . . . ,νp), the residual

vector is then defined as

e = y −
K∑
j=1

Sjνj = P1P
′
1y.

Since y follows Np(µ0,Σ0), the residual vector is obviously distributed as

Np

(
P1P

′
1µ0,P1P

′
1Σ0P1P

′
1

)
.

Let Λ1 =diag[λK+1, . . . , λp]. Since P ′
1Σ0P1 = Λ1, the variance-covariance matrix

of e can be expressed as P1Λ1P
′
1. Therefore, analogous to the T 2

0 statistic, the

charting statistic

T 2
1 = (y − µ0)

′P1Λ
−1
1 P ′

1(y − µ0) (3.6)

is used to monitor the changes in the space spanned by {νK+1, . . . ,νp}. Under the

normality assumption, the distribution of T 2
1 follows χ2 distribution with degrees

of freedom p−K, denoted as χ2
p−K .

Since the p eigen-vectors form a basis of the p-dimensional space, all the OC

conditions are incorporated. To monitor all the OC conditions, we combine the
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information of the two T 2 statistics. Analogous to the Shewhart chart, appropriate

quantiles of the χ2
K and χ2

p−K distributions are regarded as the control limits for

the T 2
0 and T 2

1 charts, respectively. For the IC average run length (ARL) of the

combined chart to achieve a given ARL0, we take the false-alarm rate of each chart

to be α = 1 −
√
1− α0, where α0 = 1/ARL0, the false-alarm rate corresponding

to ARL0. This chart will be referred to as the Phase II combined Shewhart (CS)

chart hereafter.

It is well known that the Shewhart chart is not powerful in detecting small shifts

of parameters in Phase II monitoring. To detect small shifts, an exponentially

weighted moving average (EWMA) type monitoring scheme is often considered.

For the ith incoming profile, the EWMA sequences based on T 2
0 and T 2

1 statistics

are defined as

W0,i = λ0T
2
0,i + (1− λ0)W0,i−1, (3.7)

W1,i = λ1T
2
1,i + (1− λ1)W1,i−1, (3.8)

respectively, where T 2
0,i and T 2

1,i are the values of T
2
0 and T 2

1 statistics, respectively;

and 0 < λ0, λ1 ≤ 1 are weighting parameters. The initial values are W0,0 =

E(T 2
0,i) = K and W1,0 = E(T 2

1,i) = p −K, since T 2
0,i and T 2

1,i follow χ2
K and χ2

p−K

distributions, respectively, when the process is in control. Note that var(T 2
0,i) = 2K

and var(T 2
1,i) = 2(p−K). Then, the combined EWMA chart is triggered OC if

W0,i > L0 or W1,i > L1,

where

L0 = K + γ0

√
2K

λ

2− λ

[
1− (1− λ)2i

]
,

L1 = p−K + γ1

√
2(p−K)

λ

2− λ

[
1− (1− λ)2i

]
,

and γ0 > 0 and γ1 > 0 are chosen such that the combined chart achieves a prespec-

ified IC ARL. For simplicity, the corresponding individual ARLs of the EWMA

T 2
0 and T 2

1 charts are set to be equal. In this study, the term
[
1 − (1 − λ)2i

]
is
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dropped in both of the control limits for simplification. That is, the control limits

are redefined as

L0 = K + γ0

√
2K

λ

2− λ
, (3.9)

L1 = p−K + γ1

√
2(p−K)

λ

2− λ
. (3.10)

This monitoring scheme combines two EWMA charts, thus we refer to this chart

as the combined EWMA (CE) chart henceforth.

Since the expressions of the T 2
0 and T 2

1 statistics involve the mean vector and

variance-covariance matrix, any shift of the parameters, including location, scale,

or shape, would change the magnitude of the charting statistics. Therefore, the

T 2
0 and T 2

1 statistics can be utilized to monitor various kinds of shifts in process

parameters. Intuitively speaking, the T 2
0 statistic is in charge of the deviations in

the space spanned by the first K PCs whereas the T 2
1 statistic is in charge of the

rest of the deviations.

3.2.2 Control Limit Determination and ARL Calculation

To construct a CE chart that achieves a specified ARL0, we need to search for an

appropriate control limit. Hence, finding an efficient way to calculate the ARL0 for

given trial control limits is necessary. Fortunately, the ARL0 of the CE chart can

be approximated via a two-dimensional Markov chain. Morais and Pacheco (2000)

proposed a Markovian approach to calculate the ARL of the combined EWMA

X̄-lnS2 chart. For our proposed combined EWMA T 2-type chart, we imitate

their method to obtain an efficient computing procedure, which is provided in

the Appendix B.1. Our experience shows that the computing procedure is fairly

efficient. We remark that the Markovian approach to approximating the OC ARL

works only when the process change is on the mean. For other OC conditions when

the variance-covariance matrix changes, or mean and variance-covariance matrix

shift simultaneously, the OC ARL can only be obtained via simulations.
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3.2.3 Diagnosis

When the process is out of control, diagnosing the source of process change is very

important in SPC. We regard the space spanned by the first few effective PCs as the

“primary space” because it contains primary variations among IC profiles. Recall

that the monitoring statistics T 2
0i (and W0i) are designed to detect shifts within the

primary space whereas T 2
1i (and W1i) can detect shifts within the complementary

space. Thus, our proposed monitoring scheme has capability of distinguishing the

OC conditions. If the shift resides in the primary space, we can further observe

the pattern of scores along each of the effective PCs to pursue the source of the

process shift.

In regular PCA, the effective PCs are chosen and ordered according to the

proportion of the variation they explain. However, the first few PCs are not neces-

sarily explicable. In order to make the primary PCs more meaningful, we borrow

the VARIMAX rotation tool from factor analysis. Let P0 be the p × K matrix

consisting of the first K PCs as defined earlier and R0 be

R0 = H∗P0,

where H∗ is the orthogonal matrix that maximizes the variance of the squared

elements of each rotated PCs. In other words, H∗ satisfies

argmax
H

K∑
j=1

{ p∑
i=1

(HP0)
4
ij −

1

p

( p∑
i=1

(
HP0

)2
ij

)2}
.

Maximizing the variance of the squared elements of a rotated PC can only occur

if these values tend to be either relatively large or near zero; thus, the values

of the elements of rotated PCs are either shrunk to zero or strongly positive (or

negative). Then the rotated PCs could be utilized to diagnose where the shifts

might be possibly from if an OC condition occurs in the process. The VARIMAX

rotation procedure is conveniently available in the “fda” package in R software.
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Figure 3.1: (a) 200 generated profiles from the multivariate normal distribution with

mean and variance-covariance matrix expressed as (3.12) and (3.13), respectively, and

(b) the corresponding smoothed estimates.

3.3 Simulation Studies

In this section, we compare the performances of our proposed charts with some

existing monitoring schemes. Advantages and drawbacks of these control charts

are investigated. For Phase I, the performance is measured by the type-I and

type-II error rates introduced in Section 3.1.3. The usual ARL is adopted as the

performance measure for Phase II.

3.3.1 Model Description

An example of nonlinear profiles regarding the dissolving process of aspartame (an

artificial sweetener) was first described in Kang and Albin (2000) but not studied.

The quality of aspartame is characterized by the amount of aspartame dissolved

per liter of water at different levels of temperature. Since there are no available

aspartame data, Shiau et al. (2009) considered profiles of the following form to
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imitate aspartame profiles. Consider y = (y1, ..., yp)
′ with

yj = I +MeN(xj−1)2 + εj for j = 1, . . . , p, (3.11)

where (x1, . . . , xp)
′ is a given vector of the covariate values, I ∼ N(µI , σ

2
I ), M ∼

N(µM , σ2
M), N ∼ N(µN , σ

2
N), εj ∼ N(0, σ2

ε), and all the random components are

independent of each other. Unfortunately, the distribution of y in model (3.11) is

too complicated and departs from the multivariate normal distribution. Instead of

model (3.11), following Shiau et al. (2009), we consider the simplified case that the

IC profiles are from a multivariate normal distribution with mean µ = (µ1, . . . , µp)
′

and variance-covariance matrix Σ = [σij]i,j=1,...,p as follows. For i, j = 1, . . . , p,

µj = µI + µMeµN (xj−1)2 , (3.12)

σij = σ2
I +

(
µ2
M + σ2

M

)[
eµN [(xi−1)2+(xj−1)2]+

σ2
N
2

[(xi−1)2+(xj−1)2]2
]

− µ2
MeµN [(xi−1)2+(xj−1)2]+

σ2
N
2

[(xi−1)4+(xj−1)4] + σ2
εδij, (3.13)

where δij = 1, if i = j, and 0, otherwise. Note that the variance-covariance matrix

Σ is the same as that of model (3.11). An analysis for non-Gaussian profiles from

model (3.11) will be given in Chapter 5.

Let p = 19 and (x1, . . . , xp) be equally spaced and range from 0.64 to 3.52.

The IC profiles are generated by setting (µI , σI) = (1, 0.2), (µM , σM) = (15, 1),

(µN , σN) = (−1.5, 0.3), and σε = 0.3. We first smooth the generated profiles

by using the local linear smoother with bandwidth h = 0.357 (according to the

GCV) as a preprocessing step before monitoring. Figure 3.1 displays 200 generated

IC profiles (left panel) and the corresponding smoothed estimates (right panel).

From the figures we can observe that the smoothed profiles preserve the important

features while the noises at set points of temperature are successfully removed.

To assess the performance of the proposed control schemes, we consider some

OC scenarios by changing the parameters (µ,Σ). The magnitude of shifts in mean

and/or variance-covariance matrix are listed in Table 3.1. 50 profiles generated

from each of these OC models along with 200 IC profiles are shown in Figure 3.2.
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Model (a) has the shift mainly from the space spanned by the effective PCs and

mostly around the peak of the profiles. Model (b) simulates the case that OC

profiles cannot be approximated by the effective PCs at all, a situation that the

process may have lost control in an unexpected way. This kind of OC conditions

potentially could be a more serious problem than OC conditions when the shift

still resides in the primary space such as Model (a). The middle row of Figure 3.2

shows that the OC profiles are more wiggly than the IC ones. Model (c) illustrates

the situation that the shift comprises components from both of the primary and

complementary spaces. The bottom row of Figure 3.2 shows OC profiles are quite

different from the IC ones. Since OC conditions may not be predicted in practice,

a good monitoring scheme should have the capability of detecting situations like

Model (c). We evaluate the performance of the proposed monitoring schemes via

the simulated data described above.

3.3.2 Phase I Application

The simulation results for Phase I analysis are presented in this section. Since

the distribution of the profile data is assumed to be multivariate normal and the

design points are the same for all profiles, multivariate control charts could be

utilized directly. One of the charts is the well-known Hotelling’s T 2 control chart.

For a sample {y1, . . . ,ym} from a p-variate normal distribution, the Hotelling’s T 2

Table 3.1: The shifts in mean and/or variance-covariance ma-

trix of the OC models

Model mean variance-covariance matrix

(a) δ1e
µN (x−1)2 δ2

∑3
i=1 λiνiν

′
i

(b) δ1
∑6

i=4

√
λiνi δ2

∑6
i=4 λiνiν

′
i

(c) δ1
∑

i=1,4,5

√
λiνi δ2

∑
i=1,4,5 λiνiν

′
i
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Figure 3.2: Plots of IC and OC samples from Model (a)(top row), (b)(middle row) and

(c)(bottom row).

statistic is defined as

T 2
i = (yi − ȳ)′B−1(yi − ȳ) for i = 1, . . . ,m,

where ȳ and B are the sample mean and sample variance-covariance matrix, re-

spectively. In Phase I analysis, the T 2 statistic is approximately distributed as a

beta distribution (Tracy et al., 1992), so the control limit can be conveniently set

at

(m− 1)2

m
βα,p/2,(m−p−1)/2,
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Table 3.2: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (a) for α = 0.05 and δ2 = 0.

pI pII

δ1 T 2 CS(2) CS(3) CS(4) CS(5) T 2 CS(2) CS(3) CS(4) CS(5)

0.625 0.0749 0.0722 0.0692 0.0706 0.0683 0.9162 0.9095 0.9155 0.9168 0.9210

(.0005) (.0005) (.0005) (.0005) (.0004) (.0013) (.0014) (.0013) (.0013) (.0013)

1.250 0.0735 0.0688 0.0677 0.0682 0.0666 0.8976 0.8552 0.8765 0.8869 0.8967

(.0005) (.0005) (.0004) (.0005) (.0004) (.0014) (.0018) (.0016) (.0015) (.0014)

1.875 0.0709 0.0645 0.0643 0.0654 0.0644 0.8711 0.7561 0.8082 0.8348 0.8514

(.0005) (.0005) (.0004) (.0005) (.0004) (.0016) (.0024) (.0021) (.0019) (.0018)

2.500 0.0704 0.0642 0.0624 0.0636 0.0629 0.8347 0.5908 0.6944 0.7479 0.7836

(.0005) (.0005) (.0004) (.0005) (.0004) (.0019) (.0033) (.0030) (.0027) (.0024)

3.125 0.0680 0.0677 0.0642 0.0639 0.0629 0.7935 0.3343 0.4850 0.6030 0.6827

(.0005) (.0005) (.0004) (.0005) (.0004) (.0023) (.0035) (.0041) (.0039) (.0035)

3.750 0.0672 0.0727 0.0687 0.0675 0.0646 0.7466 0.1174 0.2091 0.3313 0.4693

(.0005) (.0005) (.0005) (.0005) (.0004) (.0028) (.0021) (.0035) (.0051) (.0054)

4.375 0.0667 0.0759 0.0730 0.0729 0.0698 0.6885 0.0295 0.0557 0.0950 0.1689

(.0005) (.0005) (.0005) (.0005) (.0005) (.0037) (.0009) (.0014) (.0024) (.0044)

5.000 0.0669 0.0771 0.0742 0.0744 0.0727 0.6057 0.0066 0.0130 0.0210 0.0344

(.0005) (.0005) (.0005) (.0005) (.0005) (.0058) (.0004) (.0006) (.0008) (.0014)

where α is the nominal type-I error probability, and βα,a,b is the upper α quantile

of the beta distribution with shape parameters a and b. The observations with

values of T 2 statistic larger than the control limit are considered as OC cases.

Suppose the IC profiles are from Np(µ,Σ), where µ and Σ are given in (3.12)

and (3.13), respectively, and the OC profiles are from the models described in Table

3.1. Various values of δ1 and δ2 are considered. For each scenario, a sample of 450

IC and 50 OC profiles is generated. Let the false-alarm rate α = 0.05. The type-I

and type-II error rates accompanied with their standard errors (in the parentheses)

for the six OC conditions are summarized in Tables 3.2 - 3.7, respectively. Each

value of error rates is obtained by averaging 1,000 replications.
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Table 3.3: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (a) for α = 0.05 and δ1 = 0.

pI pII

δ2 T 2 CS(2) CS(3) CS(4) CS(5) T 2 CS(2) CS(3) CS(4) CS(5)

0.875 0.0721 0.0688 0.0668 0.0676 0.0663 0.8507 0.8045 0.7928 0.8082 0.8246

(.0005) (.0005) (.0005) (.0005) (.0004) (.0016) (.0019) (.0020) (.0019) (.0018)

1.750 0.0719 0.0691 0.0676 0.0682 0.0665 0.7812 0.7016 0.6761 0.7007 0.7240

(.0005) (.0005) (.0004) (.0005) (.0005) (.0020) (.0022) (.0022) (.0023) (.0022)

2.625 0.0713 0.0685 0.0677 0.0682 0.0664 0.7265 0.6314 0.6014 0.6285 0.6533

(.0005) (.0005) (.0005) (.0005) (.0004) (.0022) (.0023) (.0023) (.0023) (.0023)

3.500 0.0724 0.0698 0.0681 0.0681 0.0666 0.6744 0.5759 0.5427 0.5694 0.5951

(.0005) (.0005) (.0005) (.0005) (.0004) (.0024) (.0023) (.0024) (.0024) (.0024)

4.375 0.0721 0.0698 0.0686 0.0687 0.0679 0.6283 0.5312 0.4965 0.5220 0.5459

(.0005) (.0005) (.0005) (.0005) (.0005) (.0025) (.0024) (.0025) (.0025) (.0025)

5.250 0.0720 0.0698 0.0684 0.0686 0.0679 0.5913 0.4941 0.4639 0.4867 0.5053

(.0005) (.0005) (.0005) (.0005) (.0004) (.0026) (.0024) (.0025) (.0025) (.0025)

6.125 0.0721 0.0706 0.0691 0.0693 0.0676 0.5619 0.4641 0.4320 0.4551 0.4767

(.0005) (.0005) (.0005) (.0005) (.0004) (.0026) (.0024) (.0024) (.0024) (.0024)

7.000 0.0726 0.0712 0.0696 0.0698 0.0678 0.5327 0.4403 0.4105 0.4313 0.4526

(.0005 ) (.0005) (.0005) (.0005) (.0005) (.0026) (.0023) (.0023) (.0024) (.0024)

Consider the OC Model (a), the type-I and type-II error rates of applying the

Hotelling’s T 2 control chart and CS chart are given in Tables 3.2 and 3.3. The

value in the parentheses of the CS chart is the number of the chosen PCs. It is

noticed that the type-I error rates of both Hotelling’s T 2 and CS charts are a little

bit larger than the nominal value 0.05. We figure that this is mainly caused by the

iterative procedure of removing the observations exceeding the trial control limit

from the historical dataset. Note that, in each iteration, each IC observation has

a certain probability to be removed, hence the false-alarm rate would accumulate

and exceed the nominal value as the iteration proceeds. The large size of our

simulated historical data (i.e., 500 profiles) also plays a role in accumulating the
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Table 3.4: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (b) for α = 0.05 and δ2 = 0.

pI pII

δ1 T 2 CS(2) CS(3) CS(4) CS(5) T 2 CS(2) CS(3) CS(4) CS(5)

0.625 0.0736 0.0727 0.0694 0.0674 0.0670 0.9030 0.9128 0.9156 0.9011 0.9065

(.0005) (.0005) (.0005) (.0005) (.0004) (.0014) (.0013) (.0013) (.0014) (.0014)

1.250 0.0705 0.0714 0.0682 0.0634 0.0637 0.8561 0.8860 0.8871 0.8163 0.8337

(.0005) (.0005) (.0004) (.0004) (.0004) (.0018) (.0015) (.0015) (.0021) (.0020)

1.875 0.0673 0.0691 0.0657 0.0620 0.0623 0.7848 0.8490 0.8425 0.6187 0.6811

(.0005) (.0005) (.0004) (.0004) (.0004) (.0023) (.0019) (.0019) (.0037) (.0034)

2.500 0.0666 0.0686 0.0632 0.0687 0.0677 0.6867 0.8065 0.7836 0.1924 0.2733

(.0005) (.0005) (.0004) (.0005) (.0005) (.0037) (.0024) (.0026) (.0035) (.0053)

3.125 0.0686 0.0685 0.0647 0.0761 0.0749 0.4950 0.7613 0.6071 0.0255 0.0302

(.0005) (.0005) (.0005) (.0005) (.0005) (.0083) (.0034) (.0056) (.0008) (.0009)

3.750 0.0747 0.0687 0.0755 0.0763 0.0752 0.2183 0.6852 0.1199 0.0018 0.0020

(.0006) (.0005) (.0005) (.0005) (.0005) (.0099) (.0070) (.0067) (.0002) (.0002)

4.375 0.0772 0.0696 0.0780 0.0769 0.0752 0.0941 0.5971 0.0008 0.0000 0.0000

(.0005) (.0005) (.0005) (.0005) (.0005) (.0074) (.0096) (.0004) (.0000) (.0000)

5.000 0.0783 0.0705 0.0784 0.0764 0.0751 0.0523 0.5202 0.0000 0.0000 0.0000

(.0005) (.0005) (.0005) (.0005) (.0005) (.0058) (.0109) (.0000) (.0000) (.0000)

false-alarm rate, because a large sample size results in more iterations. Apart from

this, the type-I error rates of both charts are steadily around 0.07 as the size of

the shift increases gradually. In addition, the type-I error rates of the CS chart

are similar in spite of the different number of PCs. Tables 3.4 - 3.7 present the

simulation results of OC Models (b) and (c). The type-I error rates are similar to

that of Model (a).

Tables A.1 - A.3 in Appendix A.1 give the proportion of the total variation

explained by K PCs for K = 1, . . . , 4. According to the principle of parsimonious-

ness in choosing K, one should choose the minimum number of the PCs for which

the total variation explained has reached a prespecified satisfactory level. If we set
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the satisfactory level at 95%, then for Model (a), one may select K = 2 for most of

cases under δ1 = 0 or δ2 = 0. However, K = 2 does not perform the best in terms

of the type-II error rates for the cases under δ1 = 0. Moreover, choosing larger K

does not necessarily give a better result for type-II error rates. The reason is: if

we include some additional PCs that are more than needed, the superfluous PCs

would dilute the significance of the meaningful PCs in the charting statistic T 2
0 ;

and since the chosen K usually is not large, a few superfluous PC scores would

reduce the power of the T 2
0 part of the CS chart significantly. Meanwhile, tak-

ing away few of the PCs from the complementary space has a little effect to the

T 2
1 statistic since the number of the “non-effective” PCs is often large. On the

other hand, if we choose a K too small such that the primary space is not large

enough to approximate the IC profiles well then the power of the CS chart would

be reduced. Therefore, choosing an appropriate K is an important issue. Since

Phase I analysis is an off-line operation, practitioners can try various values of K

and inspect the OC cases detected carefully, then pick the one that gives the most

reasonable results. For the example of Model (a), one may choose K = 2 or 3

based on the parsimoniousness principle, but can also try K = 2, 3 or 4 to see

which one is better.

For type-II error rates, the CS chart outperforms the Hotelling’s T 2 chart in

most of the OC conditions regardless of the chosen K when the OC cases are

generated from Model (a). That is because the charting statistic of the Hotelling’s

T 2 chart puts equal weights on all the design points. Therefore, it detects the

shift in a particular direction less efficiently. That is, the Hotelling’s T 2 chart

sacrifices the detecting power to trade for a comprehensive monitoring on shifts in

all dimensions. On the other hand, the CS chart puts more weights on the effective

PCs thus it combines the information in a more efficient way if the shift is mainly

in the primary space.

Consider the OC cases from Model (b), when the shift is in the complementary

space, choosing too small K, say 2, gives the CS chart a poor ability in detecting
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Table 3.5: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (b) for α = 0.05 and δ1 = 0.

pI pII

δ2 T 2 CS(2) CS(3) CS(4) CS(5) T 2 CS(2) CS(3) CS(4) CS(5)

0.875 0.0723 0.0719 0.0682 0.0665 0.0661 0.8497 0.8756 0.8769 0.8271 0.8361

(.0005) (.0005) (.0005) (.0005) (.0005) (.0016) (.0015) (.0015) (.0019) (.0018)

1.750 0.0719 0.0718 0.0686 0.0666 0.0661 0.7832 0.8207 0.8205 0.7359 0.7506

(.0005) (.0005) (.0005) (.0005) (.0004) (.0020) (.0019) (.0018) (.0021) (.0021)

2.6250 0.0714 0.0708 0.0683 0.0665 0.0663 0.7251 0.7731 0.7700 0.6629 0.6805

(.0005) (.0005) (.0005) (.0004) (.0004) (.0023) (.0021) (.0022) (.0023) (.0023)

3.500 0.0719 0.0717 0.0684 0.0664 0.0666 0.6740 0.7282 0.7257 0.6048 0.6212

(.0005) (.0005) (.0005) (.0005) (.0005) (.0024) (.0023) (.0024) (.0024) (.0024)

4.375 0.0718 0.0718 0.0686 0.0677 0.0674 0.6290 0.6862 0.6819 0.5562 0.5747

(.0005) (.0005) (.0005) (.0004) (.0005) (.0025) (.0025) (.0025) (.0025) (.0024)

5.250 0.0721 0.0712 0.0684 0.0676 0.0676 0.5931 0.6501 0.6463 0.5247 0.5390

(.0005) (.0005) (.0005) (.0005) (.0005) (.0025) (.0024) (.0025) (.0025) (.0025)

6.125 0.0721 0.0717 0.0693 0.0684 0.0675 0.5611 0.6187 0.6103 0.4919 0.5068

(.0005) (.0005) (.0005) (.0005) (.0004) (.0026) (.0025) (.0026) (.0025) (.0025)

7.000 0.0724 0.0717 0.0695 0.0686 0.0679 0.5317 0.5875 0.5798 0.4665 0.4819

(.0005) (.0005) (.0005) (.0005) (.0005) (.0026) (.0026) (.0027) (.0023) (.0024)

OC observations. However, it can be improved through choosing an appropriate

K (choose K ≥ 4 in the case of δ1 = 0 or δ2 = 0).

Consider the Model (c), the CS chart performs better than the Hotelling’s T 2

chart for the mean and variance-covariance matrix shifts when choosing K = 2 ∼ 5

and K ≥ 4, respectively. Since the shift is in both of the primary and complemen-

tary spaces, the CS chart is quite sensitive in detecting the OC observations.

To sum up, generally, for a given type-I error rate, one can obtain a better

results in terms of type-II error rate than the Hotelling’s T 2 chart by using the CS

chart if the number of effective PCs is selected appropriately in Phase I applica-

tions.
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Table 3.6: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (c) for α = 0.05 and δ2 = 0.

pI pII

δ1 T 2 CS(2) CS(3) CS(4) CS(5) T 2 CS(2) CS(3) CS(4) CS(5)

0.625 0.0736 0.0716 0.0684 0.0675 0.0668 0.9026 0.9009 0.9084 0.8993 0.9055

(.0005) (.0005) (.0005) (.0005) (.0004) (.0014) (.0014) (.0014) (.0014) (.0014)

1.250 0.0704 0.0666 0.0655 0.0634 0.0635 0.8539 0.8303 0.8526 0.8089 0.8298

(.0005) (.0005) (.0004) (.0004) (.0004) (.0018) (.0019) (.0018) (.0022) (.0021)

1.875 0.0675 0.0620 0.0614 0.0624 0.0618 0.7836 0.7098 0.7599 0.6023 0.6730

(.0005) (.0004) (.0004) (.0004) (.0004) (.0023) (.0027) (.0024) (.0040) (.0034)

2.500 0.0669 0.0629 0.0601 0.0701 0.0683 0.6872 0.4935 0.6058 0.1562 0.2440

(.0005) (.0005) (.0004) (.0005) (.0005) (.0039) (.0041) (.0038) (.0033) (.0052)

3.125 0.0685 0.0704 0.0652 0.0761 0.0747 0.4992 0.1580 0.2886 0.0148 0.0197

(.0005) (.0005) (.0005) (.0005) (.0005) (.0080) (.0038) (.0054) (.0006) (.0007)

3.750 0.0752 0.0764 0.0742 0.0760 0.0743 0.2125 0.0103 0.0194 0.0007 0.0010

(.0006) (.0005) (.0005) (.0005) (.0005) (.0098) (.0006) (.0013) (.0001) (.0001)

4.375 0.0774 0.0775 0.0755 0.0764 0.0741 0.0928 0.0006 0.0008 0.0000 0.0000

(.0005) (.0005) (.0005) (.0005) (.0005) (.0074) (.0001) (.0001) (.0000) (.0000)

5.000 0.0783 0.0778 0.0756 0.0759 0.0742 0.0518 0.0000 0.0000 0.0000 0.0000

(.0005) (.0005) (.0005) (.0005) (.0005) (.0059) (.0000) (.0000) (.0000) (.0000)

3.3.3 Phase II Application

We now investigate the performance of the proposed CS and CE charts in Phase II

applications. For comparison, the multivariate EWMA (MEWMA) chart (Lowry

et al., 1992) applying to the discretized smoothed profiles is considered. Sup-

pose that each of the incoming profiles yi = (yi1, . . . , yip)
′ follows Np(µ0,Σ0) and

(µ0,Σ0) are assumed known. Then the charting statistic of the MEWMA control

chart is defined as

T 2
M,i =

2− λ

λ
Z ′

iΣ
−1
0 Zi,
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Table 3.7: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (c) for α = 0.05 and δ1 = 0.

pI pII

δ2 T 2 CS(2) CS(3) CS(4) CS(5) T 2 CS(2) CS(3) CS(4) CS(5)

0.875 0.0721 0.0694 0.0670 0.0665 0.0662 0.8505 0.8455 0.8609 0.8189 0.8311

(.0005) (.0005) (.0005) (.0005) (.0004) (.0017) (.0017) (.0016) (.0019) (.0018)

1.750 0.0720 0.0687 0.0666 0.0671 0.0663 0.7788 0.7695 0.7915 0.7171 0.7348

(.0005) (.0005) (.0004) (.0005) (.0004) (.0021) (.0020) (.0019) (.0022) (.0021)

2.625 0.0714 0.0680 0.0660 0.0664 0.0661 0.7272 0.7148 0.7412 0.6539 0.6740

(.0005) (.0005) (.0005) (.0004) (.0004) (.0023) (.0022) (.0022) (.0024) (.0024)

3.500 0.0722 0.0689 0.0659 0.0671 0.0664 0.6746 0.6633 0.6906 0.5905 0.6126

(.0005) (.0005) (.0004) (.0005) (.0005) (.0023) (.0023) (.0022) (.0024) (.0024)

4.375 0.0720 0.0686 0.0666 0.0680 0.0673 0.6260 0.6188 0.6443 0.5445 0.5654

(.0005) (.0005) (.0004) (.0004) (.0005) (.0025) (.0024) (.0024) (.0024) (.0024)

5.250 0.0723 0.0681 0.0663 0.0678 0.0674 0.5900 0.5826 0.6110 0.5102 0.5287

(.0005) (.0005) (.0004) (.0005) (.0004) (.0026) (.0024) (.0025) (.0025) (.0025)

6.125 0.0718 0.0691 0.0667 0.0687 0.0675 0.5614 0.5529 0.5828 0.4772 0.4957

(.0005) (.0005) (.0004) (.0005) (.0004) (.0026) (.0025) (.0025) (.0025) (.0026)

7.000 0.0724 0.0692 0.0666 0.0685 0.0675 0.5333 0.5267 0.5530 0.4529 0.4722

(.0005) (.0005) (.0005) (.0005) (.0005) (.0026) (.0025) (.0025) (.0024) (.0024)

where 0 < λ ≤ 1 is the weighting parameter and Zi is a vector operating in a

recursive form by setting Z0 = µ0, and

Zi = λyi + (1− λ)Zi−1 for i = 1, 2, . . . .

This chart is triggered for large values of T 2
M . Note that we drop the term 1 −

(1− λ)2i from the regular EWMA form of the charting statistic for simplicity. We

remark that, for a fair comparison, we apply the MEWMA chart to the smoothed

profile data.

Moreover, a Phase II profile monitoring scheme proposed by Qiu et al. (2010)

is also included in our comparative study. The authors considered the nonpara-

metric mixed-effect (NME) model to fit the IC profiles as follows. Considering the
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same model as (3.1), the authors used the following local weighted negative log

likelihood:

WL(a, b; s, λ, t) =
t∑

i=1

pi∑
j=1

[
yij − a− b(xij − s)

]2
Kh(xij − s)(1− λ)t−i/ν2(xij)

(3.14)

for any point s ∈ [0, 1] and present time t, where λ is a weighting parameter; and

ν2(x) = γ(x, x)+σ2 is the variance function of the response profile at x. The func-

tion (3.14) combines the local linear kernel smoothing procedure with the EWMA

scheme in time through the term (1 − λ)t−i. Moreover, the heteroscedasticity of

the observations is also considered through ν2(xij).

In order to obtain the local linear kernel estimator of g(s), the authors proposed

minimizing (3.14) with respect to a and b. Then the solution can be expressed as

ĝt,h,λ(s) =
t∑

i=1

pi∑
j=1

U
(t,h,λ)
ij (s)yij

/ t∑
i=1

pi∑
j=1

U
(t,h,λ)
ij (s), (3.15)

where

U
(t,h,λ)
ij =

(1− λ)t−iKh(xij − s)

ν2(xij)
×

[
m

(t,h,λ)
2 (s)− (xij − s)m

(t,h,λ)
1 (s)

]
,

m
(t,h,λ)
l (s) =

t∑
i=1

(1− λ)t−i

pi∑
j=1

(xij − s)lKh(xij − s)/ν2(xij) for l = 1, 2.

Assume g0 is the known population mean function based on the previous knowl-

edge and let ξij = yij − g0(xij) for each i and j, and ξ̂t,h,λ be the estimator defined

as (3.15) after replacing yij by ξij. Then, the charting statistic used for SPC is

Tt,h,λ = ct,λ

∫
[ξ̂t,h,λ(s)]

2

ν2(s)
Γ1(s)ds, (3.16)
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where

ct,λ = a2t,λ/bt,λ,

at,λ =
t∑

i=1

(1− λ)t−ipi,

bt,λ =
t∑

i=1

(1− λ)2(t−i)pi,

and Γ1 is some prespecified probability density function.

In practical use, the discretized version of the testing statistical quantity

Tt,h,λ ≈
ct,λ
n0

n0∑
k=1

[ξ̂t,h,λ(sk)]
2

ν2(sk)
,

where {sk, k = 1, . . . , n0} are n0 i.i.d. random variates generated from the p.d.f.

Γ1. An OC signal is triggered when the value of Tt,h,λ exceeds the control limit.

The control limit is searched for by the resampling algorithm presented in the

paper. This chart is referred to as the mixed-effects nonparametric profile control

(MENPC) chart hereafter.

Without imposing any distribution assumptions on the model, the methodology

of MENPC scheme is distribution-free. We include the MENPC chart in our

comparative study because it incorporates the within-profile correlation as what

we study in this dissertation, a situation seldom considered in the literature. Note

that the estimation obtained from the equation (3.15) incorporates both smoothing

and EWMA schemes, thus the MENPC chart is directly applied to the raw profile

data in the following simulation studies.

Consider again the example that the IC profiles are from Np(µ,Σ), in which

µ and Σ are given in (3.12) and (3.13), respectively. Let S be the local linear

smoother, in which the bandwidth h = 0.357 is chosen by the GCV method.

Then the variance-covariance matrix of the smoothed IC profile is SΣS′. Denote

Σ0 = SΣS′. Apply the eigen-decomposition to Σ0 to obtain the corresponding

eigenvalues and eigenvectors, (λ1,ν1), . . . , (λp,νp). It is found that the first three

eigenvectors explain 97.32% of the total variation, so we choose K = 3 in the CS
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Figure 3.3: The effect-visualizing plots of the first three PCs, µ0 ± 3νr, r = 1, 2, 3.

and CE control charts. To visualize the effects of the PCs, Ramsay and Silverman

(2005) proposed a technique that plots µ ± cνr, where c is a suitable multiple.

Figure 3.3 presents the plots of the first three PCs. From the plots, we can observe

that 75.2% of the total variation are in the vertical level shifts among profiles

(excluding the tail area), which is captured by the first PC; the second PC (19.38%)

explains mainly the various declining rates among the profiles, and the third PC

(2.74%) captures the variation in the area after x = 2.24.

The performance of control charts in Phase II applications are usually evaluated

through the ARL. For a good control chart, not only the IC ARL, denoted as ARL0,

should be controlled at a nominal value, one would like to have the OC ARL as

small as possible meaning that an OC signal needs to be flagged as soon as possible

when the process is out of control.

In this simulation study, the ARL0 is set at 370. Then the control limits of the

CS chart are chosen as χ2
3,α′ and χ2

16,α′ for T 2
0 and T 2

1 statistics, respectively, where

α′ = 1−
√

1− 1/370. In order to compare the performance of the charts involving

EWMA, the weight parameter λ is set at 0.2. For the control limits of the CE

chart, the Markovian approach (see Section 3.2.2) is applied to calculate the IC

ARL and used to tune the control limits such that the IC ARL of the CE chart

achieves 370. To get this, the parameters γ0 and γ1 in equations (3.9) and (3.10)

are then chosen to be 3.783 and 3.25, respectively, for which the IC ARLs of T 2
0

and T 2
1 EWMA chart are 735. The control limits of the MEWMA and MENPC
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Figure 3.4: ARL comparison among the CE, CS, MEWMA, and MENPC charts under

Model (a) for given δ2 (top row) and δ1 (bottom row).

charts are chosen to be 29.915 and 85.678, respectively, by simulations. All the

ARL values reported in this section are averages of 10,000 replications. Moreover,

as suggested by Hawkins and Olwell (1998), we focus on the steady-state OC ARL

of a chart, and assume that shifts occur right after time point t = 30. When

computing the OC ARL, any signals occur before 30 will be ignored.

Comparing the performances between the CS and CE charts first. The CE

chart outperforms the CS chart in most of the OC conditions except some extreme

OC conditions (e.g. given δ1 = 3 in Models (b) and (c)). It matches our intu-

ition because the Shewhart-type control charts are less efficient than their EWMA

versions for small to moderate shifts of process parameters but would be more

powerful for large shifts.

Consider OC Model (a), the plots of ARLs for given δ1 or δ2 (size of the mean

or variance-covariance shift) are shown in Figure 3.4. We can observe that the

MEWMA chart performs quite well in most of cases. The CE chart is efficient in
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Figure 3.5: ARL comparison among the CE, CS, MEWMA, and MENPC charts under

Model (b) for given δ2 (top row) and δ1 (bottom row).

detecting shifts in the variance-covariance matrix (δ2 ̸= 0) and performs the best

when the shift is only on the variance-covariance matrix (δ1 = 0, δ2 ̸= 0). The CE

chart is not as efficient as the MEWMA chart for moderate to large shifts on mean

when δ2 is given (see upper panel in Figure 3.4) since the shift is in the primary

space and only the T 2
0 part of the charting statistics works in this case. However,

when the shift size gets large, especially in the variance-covariance matrix, the

CE chart outperforms the MEWMA chart. Although the MENPC chart is a

distribution-free method, it is quite comparative with the others for most cases,

especially in the case that only the mean shifts but not the variance-covariance

matrix (i.e., δ1 ̸= 0, δ2 = 0). However, the charting statistic of MENPC considers

only the variance of profiles at the design points instead of the whole covariance

structure, so it is not such sensitive even for large shifts in the variance-covariance

matrix.

Figure 3.5 shows the values of ARL under OC Model (b). The performance

51



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

0
20

0
30

0
40

0

δ2 = 0

δ1

A
R

L

CE
CS
MEWMA
MENPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

δ2 = 0.3

δ1
A

R
L

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80
10

0

δ2 = 0.6

δ1

A
R

L

0.0 0.1 0.2 0.3 0.4 0.5 0.6

50
10

0
20

0
30

0

δ1 = 0

δ2

A
R

L

0.0 0.1 0.2 0.3 0.4 0.5 0.6

5
10

15
20

25
δ1 = 1.5

δ2

A
R

L

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1.
4

1.
6

1.
8

2.
0

2.
2

δ1 = 3

δ2
A

R
L

Figure 3.6: ARL comparison among the CE, CS, MEWMA, and MENPC charts under

Model (c) for given δ2 (top row) and δ1 (bottom row).

of the MEWMA chart outperforms the others in many cases. However, the CE

chart is better than the MEWMA chart if the shift occurs only on the variance-

covariance matrix. When the mean and variance-covariance matrix shift at the

same time, the performances of the MEWMA and CE charts are comparative.

However, under extreme cases when both the mean and variance-covariance matrix

shift severely, the CE chart is more efficient in detecting OC observations. The

MENPC chart is not competitive in this case, especially in detecting shifts in the

variance-covariance matrix. This may be due to the facts that the MENPC chart

ignores the covariance of profiles in the charting statistic and the shifts in the

complementary space mainly effect the covariance structure but the variance of

profiles. The CS chart is the best among the four methods under the extreme OC

condition (given δ1 = 3).

Model (c) is the case when the shift is in both of the primary and complemen-

tary spaces, and Figure 3.6 presents the ARL performances of the four methods
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Figure 3.7: (a) Plots of the IC and OC profiles from Model (a) before (left panel) and

after (right panel) smoothing.

under comparison. The results are similar to that of Model (a), but the MENPC

chart is more comparable with the others. It is noted from the plot given δ1 = 3

that the CS chart becomes the most powerful one if a severe change occurs in the

process; the performances of the MENPC and MEWMA charts are similar but the

worst; and the CE chart performs in between.

Next, we demonstrate how the OC conditions might be diagnosed. As an

example, first generate 100 IC profiles from a multivariate normal distribution

with parameters (µ,Σ) as in (3.12) and (3.13) and then 100 OC profiles from

Model (a) with δ1 = 5 and δ2 = 0. That is, the OC condition is the scale change in

the mean function. The scale change has effects on all three PCs, but the extent

could be different. Figure 3.7 shows the plots of these profiles before and after

smoothing. We can clearly observe that the differences between the IC and OC

profiles are mostly at the first 2/3 of the profiles; in particular, the peak of the OC

profiles is much higher than the IC ones.

To diagnose the OC conditions, the PC scores are explored and presented in

Figure 3.8(a). The magnitude of the first two PC scores enlarges dramatically after

the 100th profile, but not the third one. Therefore, it is difficult to reveal the OC

53



0 50 100 150 200

0
10

20
30

40

PC Scores

Index

sq
ua

re
d 

st
an

da
rd

iz
ed

 s
co

re

PC 1     
PC 2     
PC 3     

(a)

0 50 100 150 200

0
10

30
50

Rotated PC Scores

Index

sq
ua

re
d 

st
an

da
rd

iz
ed

 s
co

re

PC 1     
PC 2     
PC 3     

(b)

Figure 3.8: (a) The scores of the first three PCs and (b) the scores of the first three

rotated PCs by VARIMAX rotation.

condition from the pattern of the regular PCs.

Denote ν∗
1 , . . . ,ν

∗
p the rotated PCs (RPCs) found through the VARIMAX ro-

tation of the IC profiles. Figure 3.9 shows the effect-visualizing plots of the first

three RPCs after rotating. It is clearly seen that each of the three RPCs is in

charge of the variation in about 1/3 of the region — the first part by the second

RPC, the second part by the first RPC, and the third part by the third RPC.

Figure 3.8(b) shows the RPC scores of the same 100 IC profiles and the 100 OC

ones. Now, the patterns for the RPCs differentiate the effects of the three PCs
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Figure 3.9: The effect-visualizing plots of the first three rotated PCs, µ0±3ν∗
r , r = 1, 2, 3.

on the scale change. The second RPC scores enlarge drastically after the 100th

profile, indicating that the primary change in the OC profiles is on the first part

of the profile, the peak area. The VARIMAX rotation provides a great aid for

practitioners to search for the assignable causes when an OC signal flags. In this

case, the RPCs provide more information than the original PCs in seeking the

assignable causes for the OC profiles. However, for cases, the original PCs may be

more helpful than the RPCs sometimes. Thus, both the original PC and the RPC

scores can be considered as diagnostic aids for OC observations.

If there are OC conditions that can not be explained by the first few effective

PCs or rotated PCs (e.g., Model (b)), no unusual patterns will be observed from

the first few PC scores. In those cases, it indicates that the process may already

be seriously changed and the profiles are no longer suitably fitted by the effective

PCs.

3.4 Real Data Application

In this section, we demonstrate our proposed monitoring schemes with a real data

set. A manufacturing process of aluminum electrolytic capacitors (AEC’s), which

was first described in Qiu et al. (2010), is a process that transforms raw materials,

such as anode and cathode aluminum foil, guiding pin, electrolyte sheet, plastic

cover, aluminum shell, and plastic tube, into AEC’s that are appropriate for use
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Figure 3.10: The original and the smoothed profiles of the three of the AEC data.

in low-leakage circuits and are well adapted to a wide range of environmental

temperatures. The whole manufacturing process consists of multiple operations,

e.g., clenching, rolling, soaking, etc., and a careful quality monitoring is required

before packing. The dissipation factor (DF), which is measured automatically by

an electronic device, is regarded as an important characteristic in monitoring the

quality of AEC’s. However, the DF is affected significantly by the temperature

of the environment and hence the profile of the DF as a function of temperature

is a characteristic of interest regarding the quality of the AEC. To monitor the

adaptability, the sampled AEC’s are put in a container in which the temperature

can be controlled. The temperature in the container is gradually increased from

−26◦F to 78◦F and recorded by a sensor. In this process, the measurements of

DF and the corresponding temperature are taken at 53 equally-spaced time points

for a total of 144 AEC profiles. Note that the actual temperature measured in

a container at each time point is fluctuant but around its nominal level at each

observation time. Therefore, the temperature records are different from profile to

profile although the differences are small.

To cope with the non-consistent temperature recording problem and filter out
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Figure 3.11: The first 15 records of the three profiles and their corresponding smoothing

estimates.

the noise as well, the local linear smoothing technique is applied to the data before

analysis. Figure 3.10 depicts three AEC profiles and their smoothing estimates

(using bandwidth h = 6.54 from GCV). According to the Q-Q plots of data at

each set point, neither the original nor the smoothed 144 AEC profiles with 53 set

points follow the multivariate normal distribution. To overcome this problem, we

choose only a segment of the AEC profiles to alleviate the effect of non-normality.

According to the Q-Q plots for each of the first 15 set points (not shown here) and

the p-value (about 0.085) of the multivariate normality test proposed by Mardia

(1970), the evidences are not strong enough to reject the normality. Therefore, the

144 profiles with 15 set points are used to demonstrate our proposed methodology.

Three of the original and smoothed profiles after truncation are shown in Figure

3.11.

Qiu et al. (2010) regarded the first 96 profiles as the training data in Phase

I analysis and the rest as testing data in Phase II analysis. To use the CS chart

in Phase I analysis, we apply PCA to the sample covariance matrix of the first

96 smoothed profiles, which leads to choose K = 3 because the first three PCs
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Figure 3.12: The effect-visualizing plots of the first three PCs, µ0 ± 3νr, r = 1, 2, 3.

explain 91.96% of the total variation. As a result, none of the profiles is regarded

as an OC profile by our proposed CS chart for Phase I application. Thus all the

96 profiles are used to estimate the mean and covariance matrix for Phase II.

Let µ0 and Σ0 be the sample mean vector and sample variance-covariance

matrix of the 96 IC profiles (after smoothing). The effect-visualizing plots are

also used to interpret the effect of the three PCs and shown in Figure 3.12. From

these plots, we observe that the mean curve is mound-shaped; the first two PCs

explain the variation from the temperature less than −5◦ and greater than −18◦,

respectively; and the two crosses at temperatures −18◦ and −4◦ on the plot for

the third PC indicate that the third PC explains the variation of the profiles in

the rate of declining from the top.

Next, the rest of the 48 AEC profiles are used to demonstrate our proposed

Phase II monitoring scheme. By setting λ = 0.2, the values of the T 2-type and

EWMA-type statistics corresponding to T 2
0 and T 2

1 are shown in Figure 3.13. Set

the ARL0 at 200. Then the control limits in the CS chart is χ2
3,α′ and χ2

12,α′ for

T 2
0 and T 2

1 charts, respectively, where α′ = 1 −
√
1− 0.005. The parameters γ0

and γ1 in equations (3.9) and (3.10) are chosen to be 3.38 and 3.004, respectively,

and the control limits of CE charts are then L0 = 5.76 and L1 = 16.91. From

Figure 3.13(a), based on the T 2
0 statistic, the Shewhart chart detects only the

139th profile, whereas the EWMA chart regards the profiles from 114th to 125th

and 139th to 144th as OC cases. For the T 2
1 -based charts, Figure 3.13(b) shows
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Figure 3.13: The values of the charting statistics based on T 2
0 (panel (a)) and T 2

1 (panel

(b)) for the AEC data.

that the results of the two charts are fairly consistent — the 105th, 115th, 131st,

and 137th profiles are detected by the Shewhart chart and a little bit more by the

EWMA chart. The OC cases considered by the CS (CE) chart is the union of the

OC cases claimed by the two Shewhart (EWMA) charts based on the T 2
0 and T 2

1

statistics.

Figure 3.14 shows the effect-visualizing plots with respect to the first three

RPCs. From these plots, the three RPCs explain the variation in the front, middle,

and end areas (with some overlaps) of the profiles, respectively. To search for the
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Figure 3.14: The visualized plots of the first three rotated PCs, µ0 ± 3ν∗
r , r = 1, 2, 3.

source of the process shift, one can examine the scores of the primary PCs or the

RPCs for each OC case detected by the T 2
0 -based charts. The plots of the scores of

the first three original PCs as well as the RPCs are shown in Figure 3.15. For each

OC-flagged profile, at least one of the scores is abnormally large. For example,

the 115th profile, detected by both T 2
0 and T 2

1 of the CE chart and only T 2
1 of

the CS chart, has a large value on the second PC score indicating the shift could

be in the last 2/3 part of the profile and may be quite different from the general

pattern of the IC profiles; the 139th profile, detected by both T 2
0 of the CS and

CE charts, has an unusually large value on the score of the first original PC as

well as the first RPC, exhibiting a pattern quite different from others at the front

part of the profile; the 140th profile has a large score value on the second RPC,

indicating that the change affects mainly on the middle 2/3 of the profile and it

may have an unusually high or low peak. Note that a large score value appears on

the first PC at point 112, but it was not signaled by either the CS or CE chart.

A closer look shows that the T 2
0 statistics on both CS and CE charts are very

close to the control limits. In addition, the EWMA chart exhibits an increasing

trend beginning at the 112nd profile. It indicates that some OC conditions may

have occurred in the process at or before the 112nd but not signaled until the

114th profile. The aforementioned OC profiles are shown in Figure 3.16 and their

patterns match what we observe from the PC or RPC scores.
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Figure 3.15: The scores of the first three rotated PCs for the AEC data.

3.5 Conclusions

In this chapter, we present a comprehensive monitoring procedure incorporating

the Phase I and Phase II for profiles under Gaussian assumption. Each profile is

projected onto the eigen-vectors of the variance-covariance matrix, and then two

T 2-type statistics, T 2
0 and T 2

1 , are used to monitor the profile. Intuitively speaking,

the T 2
0 statistic is in charge of the component in the primary space that explains the

most of the variation in the IC profiles, whereas the T 2
1 statistic is used to monitor

the residuals. An OC signal triggered by the T 2
0 part of the control chart indicates
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Figure 3.16: The 112nd, 115th, 139th, 140th AEC profile and the mean curve.

that the OC condition occurs in the space spanned by the first few effective PCs,

whereas triggered by the T 2
1 part indicates that the OC condition occurs in an

unexpected way, a more serious problem in the process. A profile is regarded as

an OC case when any of the two T 2 charts signals. In order to monitor both

kinds of shifts simultaneously, we consider combining the two Shewhart control

charts based on the T 2
0 and T 2

1 statistics in Phase I analysis. In Phase II, in

addition to the combined Shewhart chart, a combined EWMA-type control chart

is also considered to enhance the power of monitoring small to moderate changes

in process parameters. Some numerical studies show that our proposed charts are

powerful in detecting shifts in the mean or variance-covariance matrix and perform

quite well when compared with some existing monitoring schemes. In the real case

study, we use a segment of the AEC data to demonstrate our proposed methods

and show that the monitoring schemes can be easily implemented. Moreover, in

Phase II applications, exploring the original and rotated PC scores provides an

62



intuitive and meaningful diagnosis on OC conditions.

The profile monitoring tools presented in this chapter are developed based on

the normality assumption, which may not hold in many applications. In the next

two chapters, we will develop distribution-free monitoring schemes for multivariate

data and profiles, respectively.
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Chapter 4

A Distribution-Free Multivariate

Control Chart for Phase I

Applications

In Phase I analysis, one of the most important goals is to detect and remove the

OC cases from the historical data, and then the parameters needed in Phase II

monitoring can be well estimated from a “clean” reference sample. To this end, it

is common to connect the OC-cases-detection problem with hypothesis testing on

process parameters. Since the process often is not stable yet and an OC case may

arise anytime during Phase I, the Shewhart control chart is often advised instead

of the EWMA chart; see Mahmoud and Woodall (2004) and Montgomery (2009).

In this chapter, we only focus on detecting observations with a significant mean

shift for a multivariate process. To be free of the distribution assumption, the

multivariate sign test described in Section 2.2.3 is considered to develop a robust

monitoring scheme. The organization of this chapter is as follows. In Section

4.1, we elaborate our distribution-free Phase I control chart for multivariate data.

A performance comparison between our proposed and some traditional methods

via simulations is presented in Section 4.2. Moreover, a real-case application is
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illustrated in Section 4.3. Finally, conclusions are given in Section 4.4.

4.1 Methodology

4.1.1 A Multivariate Sign-Based Control Chart

Let {yik, i = 1, . . . ,m, k = 1, . . . , n} be an i.i.d. random sample consisting of m

subgroups, each of size n, with a continuous p-dimensional distribution function

F (y − θ0), where θ0 is the IC location parameter. An OC case is an observation

having the same distribution function F but with a different location parameter;

that is, F (y−θ1), where θ1 ̸= θ0. Analogous to the multivariate sign-based EWMA

control chart proposed by Zou and Tsung (2011), we estimate the multivariate

spatial median and the Tyler’s transformation matrix (θ,A) by the HR estimators,

which are the solutions of the following two equations (ref. Section 2.2.4):

1

mn

m∑
i=1

n∑
k=1

U(A(yik − θ)) = 0, (4.1)

1

mn

m∑
i=1

n∑
k=1

U(A(yik − θ))U(A(yik − θ))′ =
1

p
Ip. (4.2)

Denote the estimated (θ,A) by (θ̂, Â). The corresponding sign vector of each yik

is

uik = U(Â(yik − θ̂)).

Then, for i = 1, . . . ,m, let the charting statistic be

Qi = npū′
iūi,

where ūi =
∑n

k=1 uik/n. A large value of Qi could indicate an OC signal. This

chart will be referred to as the multivariate sign Shewhart (MSS) chart hereafter.

The following propositions can be obtained from Randles (2000) directly.

Proposition 4.1. The statistic Q is affine invariant when n > p(p− 1).
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Proposition 4.2. The MSS chart is distribution-free such that the type-I error

rate is the same for the class of elliptical direction distributions.

Proposition 4.3. If the underlying distribution of yik is directionally symmetric

about the origin, then

Qi
d→ χ2

p,

as n→∞.

Proposition 4.1 is appealing because it ensures that the performance of the MSS

chart is free of the coodinate system. The type-I error rate in Proposition 4.2 means

the probability of misclassifying an IC observation as an OC case. This proposition

assists us to determine the control limit of our control chart and will be discussed

in the next section. Finally, Proposition 4.3 shows the limiting distribution of the

Q statistic.

4.1.2 Control Limit Determination

Although Proposition 4.3 gives the asymptotic distribution of the charting statistic

Q, in practice, it is impossible to have a subgroup size large enough for it to be

useful in constructing a control chart. The rational subgroup concept means that

the subgroup should be selected such that if assignable causes occur, the chance

for differences due to these assignable cases between subgroups will be maximized,

while the chance for differences within a subgroup will be minimized. However,

too large a subgroup size increases the chance for assignable causes to occur within

a subgroup. The subgroup size is usually fairly small, about 3 to 6. Under such

circumstances, the 100(1−α)% percentile of χ2
p distribution cannot be considered

as the control limit for the MSS chart. On the other hand, the distribution-free

property stated in Proposition 4.2 ensures that the type-I error rate remains the

same for all the elliptical direction distributions. Thus, the control limit of the

MSS chart can be obtained by simulating samples from a known elliptical direction
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distribution. The following procedure finds the control limits by simulating samples

from the standard multivariate normal distribution:

1. Set the dimension p, subgroup size n, and type-I error probability α.

2. Generate n×B samples from Np(0, Ip) for a large B.

3. Calculate the corresponding Q statistic values for each of the B subgroups.

4. Take the sample upper α quantile from the B values of Q.

The tables in Appendix A.2 list the control limits of the MSS chart for α values

equal to 0.1, 0.05, 0.025, and 0.01 with various combinations of p and n by setting

B = 50, 000. The desired control limits can be easily computed by a simple

computer program.

4.1.3 One-at-a-Time Procedure

One goal for Phase I analysis is to detect and remove the OC observations to ob-

tain a reference sample of all IC observations. One would like both of the type-I

and type-II error rates of a control chart to be as small as possible. Unfortunately,

similar to the hypothesis testing, reducing the type-I error rate usually results in in-

creasing the type-II error rate and vice versa. Thus, common practice is to control

the type-I error rate within a preset tolerable level and then try to make the type-II

errors as less frequent as possible. In SPC terminology, to construct a good control

chart, one should control the false-alarm rate under a level that practitioners can

bear first and then enhance the detecting power of the control chart as much as

possible. Recall that the Phase I monitoring scheme is an iterative procedure: at

each iteration, establish a trial control limit(s) using the current historical data

set; check if any of the current data would exceed the control limit(s); if there are

any, remove them all and re-establish the control limit(s) with the rest of the data;

repeat the iteration until no more OC cases found; then the remaining observa-

tions are regarded as the IC samples. In our empirical experiments, by using this
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conventional Phase I procedure described above, IC observations are excessively

misjudged as OC; as a result, the type-I error rate cannot be held under the preset

level. Shiau and Sun (2010) introduced a new strategy of Phase I procedure: in-

stead of removing all the signaled OC observations, only the observation with the

most extreme value of the charting statistic is removed at each iteration; and then

like the conventional procedure, the process keeps going until all the observations

left are within the control limits. This procedure is referred to as the “one-at-a-

time” (OAAT) procedure. Using the X̄-chart as a demonstration, Shiau and Sun

(2010) showed that the OAAT procedure can reduce greatly the false alarm rate

of a control chart when compared with the conventional procedure. We will later

compare the performances between the conventional and OAAT procedures when

used in our proposed control chart via simulation studies.

4.2 A Comparative Simulation Study

To evaluate the performance of the proposed MSS chart, we conduct a simulation

study to compare it with some existing multivariate control charts, including the

Hotelling’s T 2, T 2
MVE, and T 2

MCD charts.

In Phase I applications, the traditional Hotelling’s T 2 control chart is also

powerful and widely used in practice. When the Hotelling’s T 2 control chart is

applied to a historical data set consisting of m subgroups, each of size n, the

sample mean and sample variance-covariance matrix are first calculated for each

subgroup individually; denoted them as ȳi and Si, i = 1, . . . ,m. Then the charting

statistic of the Hotelling’s T 2 control chart is defined as

T 2
i = n(ȳi − ¯̄y)′S̄−1(ȳi − ¯̄y),

where ¯̄y = AVE{ȳi} and S̄ = AVE{Si}. Preset the tolerable false alarm rate at

α. A subgroup would be regarded as OC if

T 2
i >

p(m− 1)(n− 1)

mn−m− p+ 1
Fp,mn−m−p+1(α), (4.3)
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where Fp,mn−m−p+1(α) is the upper α quantile of the F distribution with degrees

of freedom p and mn−m− p+ 1.

However, since the Hotelling’s T 2 chart is developed under normality assump-

tion, the type-I error rate may not be controlled at the nominal level if it is used

to monitor a non-gaussian process. In addition, the estimators used in Hotelling’s

T 2 statistic, the sample mean and sample variance-covariance matrix, would be

severely affected by OC cases. To be more robust, Jensen et al. (2007) consid-

ered two high breakdown estimation methods, the MVE and MCD methods, in

constructing their control charts.

The MVE and MCD methods, which were first proposed by Rousseeuw (1984),

provide robust estimators for the location and scatter matrix of data with a high

breakdown point. The breakdown point refers to the minimum proportion of

the OC observations that would contaminate the estimator severe enough that it

becomes meaningless (Rousseeuw and Leroy, 1987). That is, the breakdown point

is the percentage of “bad” data that would “break down” the estimator to a state

that it is no longer meaningful. Here, the “good” and “bad” data are referred to the

majority and minority of the data, respectively. Therefore, the highest breakdown

point would be 50%. A high breakdown estimator for the location or dispersion

can be obtained by using suitably selected the “good” observations from the data

set, say, by the MVE or MCD method.

The MVE procedure seeks the ellipsoid with the minimum volume that contains

the subset of at least a certain number, say h, of data points. Then the location

estimator is defined as the geometrical center of the ellipsoid and the scatter esti-

mator is the ellipsoid itself multiplied by an appropriate constant for consistency.

The size of the chosen subset h is sometimes called the “halfset” since it is usually

selected to be more than half of the data points. The MCD method considers the

subset for which the covariance matrix has the minimum determinant. The idea

of MCD is intuitive: since a small value of determinant leads to small eigenvalues

and hence suggests that the data are near linearly dependent; and a near linear

69



dependency of data makes similar observations to cluster and hence forms a group

of data suitable for estimating parameters. Then the MCD estimators correspond

to the sample mean and sample variance-covariance matrix of a specific halfset. To

achieve the highest breakdown point in both of the estimators, the subset size h is

often selected to be (m+ p+ 1)/2 (Lopuhaa and Rousseeuw, 1991). The ideas of

the MVE and MCD procedures are quite simple, but the computation can be very

difficult because the number of possible subsets with size h increases vastly in m

and p. For example, for a sample with m = 20 and p = 3, h = (20+ 3+ 1)/2 = 12

and there are total C20
12 = 125, 970 possible subsets to be considered. To overcome

this difficulty, Rousseeuw and Leroy (1987) proposed an algorithm to approximate

the MVE estimator and Rousseeuw and van Driessen (1999) proposed the so-called

FAST-MCD algorithm for the MCD estimator. Both algorithms are widely used

for finding MVE and MCD estimators, and have been implemented in statistical

softwares, such as S-plus and SAS, etc.

Jensen et al. (2007) incorporated the ideas of MVE and MCD estimators with

the SPC in Phase I monitoring. For each profile yi, the authors defined the “robust

T 2 statistics” analogous to the Hotelling’s T 2 statistic as

T 2
MVE,i = (yi − ŷMVE)

′S−1
MVE(yi − ŷMVE),

T 2
MCD,i = (yi − ŷMCD)

′S−1
MCD(yi − ŷMCD),

where (ŷMVE,SMVE) and (ŷMCD,SMCD) denote the MVE and MCD estimators,

respectively, for the mean and variance-covariance matrix. Note that the T 2
MVE

and T 2
MCD control charts are individual charts. The normality of the observations

was assumed in their methodology, thus the control limits of the T 2
MVE and T 2

MCD

control charts can be found via simulation. Jensen et al. (2007) considered the

signal probability, the probability of at least one observation being detected by the

control chart, as the performance measure. Thus, for a historical data set, it only

needs to check whether the maximum value of the charting statistics exceeds the

control limit or not. To control the signal probability at 5%, one can generate a
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large number of data sets, say M , with size m from the p-variate standard normal

distribution, record the maximum value of the charting statistics for each of the

M data sets, then use the 95% percentile of the M maximum values as the control

limit.

For the performance measures in our Phase I studies, we prefer the type-I and

type-II error rates (ref. Section 3.1.3) to the signal probability. Using the control

limits listed in Jensen et al. (2007) results in a smaller type-I error rate than the

nominal α value. Therefore, for a fair comparison between the control charts, the

control limits used in what follows are selected such that the T 2
MVE and T 2

MCD

charts would achieve the nominal type-I error rate under normal assumption. In

addition, the T 2
MVE and T 2

MCD charts were developed for individual observations

whereas the MSS chart is for subgroups. Thus, we apply the T 2
MVE and T 2

MCD

charts on the mean vectors of each subgroup.

To compare the robustness and power between the candidates, we consider

p-variate random vectors from the following models:

(a) multivariate normal distribution, denoted as Np(0,Σ),

(b) multivariate t distribution with degrees of freedom ν, denoted as tp(ν),

(c) multivariate Gamma distribution with shape parameter ξ and scale param-

eter 1, denoted as Gamp(ξ).

The same definitions of multivariate t and Gamma distributions in Stoumbos and

Sullivan (2002) are followed and briefly described as follows. Let x ∼ Np(0,Σ),

R ∼ χ2
ν and x and R are independent. Then the multivariate t random vector

is defined as x/
√

R/ν. The multivariate Gamma random vector has the form

of diagonal{X ′X}/2, where X is a ξ × p data matrix with each of the ξ rows

following Np(0,Σ) and diagonal{·} denotes the vector of the diagonal elements of

a matrix. Note that the shape parameter ξ in the multivariate Gamma distribution

should be an integer. The multivariate t and multivariate Gamma distributions
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Table 4.1: The pI and pII and their standard errors (in parentheses) for Model (a).

pI pII

δ MSS T 2 T 2
MVE T 2

MCD MSS T 2 T 2
MVE T 2

MCD

0.000 0.0509 0.0531 0.0497 0.0496 - - - -

(.0003) (.0008) (.0011) (.0016) - - - -

0.375 0.0514 0.0547 0.0472 0.0482 0.9173 0.9011 0.9154 0.9170

(.0003) (.0008) (.0011) (.0018) (.0013) (.0030) (.0030) (.0035)

0.750 0.0523 0.0564 0.0425 0.0445 0.7971 0.7011 0.7840 0.7997

(.0003) (.0008) (.0010) (.0017) (.0018) (.0050) (.0052) (.0057)

1.125 0.0551 0.0610 0.0420 0.0450 0.5620 0.3586 0.5297 0.5411

(.0003) (.0008) (.0010) (.0016) (.0024) (.0054) (.0068) (.0074)

1.500 0.0585 0.0657 0.0466 0.0534 0.2757 0.1039 0.2392 0.2510

(.0003) (.0009) (.0011) (.0020) (.0021) (.0033) (.0051) (.0055)

1.875 0.0606 0.0733 0.0491 0.0578 0.0934 0.0151 0.1151 0.1197

(.0004) (.0009) (.0011) (.0021) (.0014) (.0013) (.0021) (.0023)

2.250 0.0627 0.0783 0.0477 0.0590 0.0209 0.0008 0.0917 0.0907

(.0004) (.0009) (.0011) (.0021) (.0007) (.0003) (.0011) (.0011)

2.625 0.0636 0.0888 0.0490 0.0582 0.0039 0.0001 0.0869 0.0854

(.0004) (.0010) (.0011) (.0021) (.0003) (.0001) (.0011) (.0011)

3.000 0.0639 0.0976 0.0493 0.0577 0.0006 0.0000 0.0819 0.0827

(.0004) (.0010) (.0012) (.0020) (.0001) (.0000) (.0012) (.0012)

represent the heavy-tailed and skewed distributions, respectively. More details

on the multivariate t and multivariate gamma distributions can be found in the

appendix of Stoumbos and Sullivan (2002). In the following simulation studies,

the variance-covariance matrix used in Models (a) - (c) is set as Σ = [σij], where

σij = 0.5|i−j|, i, j = 1, . . . , p, and ν = ξ = 3.

Let α = 0.05 and dimension p = 3. Each data set consists of 90 IC and 10 OC

subgroups, each of size n = 5. The OC observations are generated from the same

models as the IC ones except that the first component is shifted by δ, i.e., yi+δe1,

where e1 = (1, 0, . . . , 0)′. As for the control limits, select 7.3357 for the MSS chart
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Table 4.2: The pI and pII and their standard errors (in parentheses) for Model (b).

pI pII(modified)

δ MSS T 2 T 2
MVE T 2

MCD MSS T 2 T 2
MVE T 2

MCD

0.000 0.0510 0.1170 0.1444 0.1481 - - - -

(.0003) (.0012) (.0018) (.0027) - - - -

0.375 0.0511 0.1149 0.1399 0.1420 0.9228 0.9457 0.9439 0.9465

(.0003) (.0013) (.0017) (.0025) (.0012) (.0023) (.0023) (.0023)

0.750 0.0528 0.1195 0.1356 0.1332 0.8261 0.9201 0.9298 0.9333

(.0003) (.0012) (.0018) (.0023) (.0018) (.0028) (.0027) (.0027)

1.125 0.0537 0.1180 0.1296 0.1284 0.6619 0.8708 0.8971 0.9001

(.0003) (.0012) (.0017) (.0023) (.0023) (.0035) (.0036) (.0037)

1.500 0.0558 0.1172 0.1301 0.1355 0.4630 0.7424 0.8216 0.8196

(.0003) (.0012) (.0017) (.0027) (.0025) (.0051) (.0053) (.0056)

1.875 0.0588 0.1189 0.1349 0.1453 0.2882 0.5192 0.6447 0.6357

(.0003) (.0012) (.0017) (.0028) (.0023) (.0064) (.0076) (.0075)

2.250 0.0606 0.1199 0.1393 0.1512 0.1755 0.2659 0.4052 0.4155

(.0003) (.0012) (.0018) (.0029) (.0018) (.0058) (.0077) (.0076)

2.625 0.0610 0.1176 0.1420 0.1532 0.1086 0.1035 0.2245 0.2345

(.0004) (.0012) (.0018) (.0029) (.0015) (.0039) (.0051) (.0054)

3.000 0.0622 0.1229 0.1409 0.1535 0.0677 0.0309 0.1369 0.1441

(.0004) (.0012) (.0018) (.0029) (.0011) (.0020) (.0027) (.0029)

from Table A.4 in the Appendix A.2, 7.8202 for the Hotelling’s T 2 control chart

from the control limit in (4.3), and 9.4961 and 12.25 for the T 2
MVE and T 2

MCD charts

obtained via simulation, respectively. The listed type-I and type-II error rates are

obtained with 1,000 replications.

The conventional Phase I procedure is considered first because the OAAT proce-

dure is more time-consuming, especially for the MVE- and MCD-based methodolo-

gies. The type-I and type-II error rates and their standard errors (in parentheses)

for OC Models (a) - (c) are summarized in Tables 4.1 - 4.3, respectively.

Look at the type-I error rates first. Under Model (a), the misclassification

73



Table 4.3: The pI and pII and their standard errors (in parentheses) for Model (c).

pI pII(modified)

δ MSS T 2 T 2
MVE T 2

MCD MSS T 2 T 2
MVE T 2

MCD

0.000 0.0506 0.0768 0.2902 0.1092 - - - -

(.0003) (.0010) (.0029) (.0024) - - - -

0.375 0.0505 0.0751 0.2613 0.1049 0.9264 0.9254 0.9286 0.9343

(.0003) (.0010) (.0029) (.0024) (.0011) (.0027) (.0030) (.0028)

0.750 0.0516 0.0768 0.2827 0.0981 0.8312 0.8580 0.7124 0.8986

(.0003) (.0010) (.0030) (.0022) (.0017) (.0037) (.0079) (.0036)

1.125 0.0531 0.0765 0.2846 0.0969 0.6173 0.7179 0.2373 0.8179

(.0003) (.0010) (.0031) (.0023) (.0026) (.0052) (.0071) (.0055)

1.500 0.0565 0.0781 0.2809 0.1017 0.2978 0.4870 0.0939 0.6516

(.0003) (.0010) (.0030) (.0025) (.0027) (.0060) (.0013) (.0073)

1.875 0.0593 0.0804 0.2843 0.1102 0.0789 0.2170 0.0889 0.4144

(.0003) (.0011) (.0031) (.0026) (.0014) (.0051) (.0010) (.0078)

2.250 0.0607 0.0843 0.2836 0.1185 0.0141 0.0450 0.0851 0.2142

(.0004) (.0011) (.0030) (.0028) (.0006) (.0024) (.0011) (.0053)

2.625 0.0621 0.0844 0.2829 0.1205 0.0023 0.0033 0.0823 0.1170

(.0004) (.0011) (.0030) (.0029) (.0002) (.0006) (.0012) (.0026)

3.000 0.0623 0.0888 0.2851 0.1190 0.0003 0.0000 0.0775 0.0931

(.0004) (.0011) (.0030) (.0028) (.0001) (.0000) (.0013) (.0014)

rate can be roughly held at the nominal value 0.05 for all the four control charts

under comparison when the process is in control. However, when the shift size, δ,

increases for the OC samples, a clear increasing trend in the type-I error rate is

observed for the Hotelling’s T 2 control chart. The reason is that the parameter

estimation used in the Hotelling’s T 2 control chart gets poorer as the OC state

further departs from the IC state. If robust estimators of parameters are utilized,

as in the T 2
MVE and T 2

MCD charts, the increasing pattern is greatly alleviated. The

proposed MSS chart also exhibits an slightly increasing trend but much milder.

Note that the MSS chart behaves about the same for all the three models, which
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Table 4.4: The pI and their standard errors (in parentheses) of the MSS chart and

Hotelling’s T 2 control chart when using the OAAT procedure.

MSS T 2

δ (a) (b) (c) (a) (b) (c)

0.000 0.0486 0.0483 0.0478 0.0501 0.1157 0.0789

(.0007) (.0007) (.0007) (.0007) (.0012) (.0010)

0.375 0.0487 0.0493 0.0478 0.0524 0.1136 0.0744

(.0007) (.0007) (.0007) (.0008) (.0013) (.0010)

0.750 0.0485 0.0503 0.0490 0.0523 0.1179 0.0760

(.0007) (.0007) (.0007) (.0008) (.0012) (.0010)

1.125 0.0479 0.0499 0.0499 0.0523 0.1155 0.0752

(.0007) (.0007) (.0007) (.0007) (.0012) (.0010)

1.500 0.0485 0.0498 0.0483 0.0498 0.1143 0.0754

(.0007) (.0007) (.0007) (.0008) (.0012) (.0010)

1.875 0.0496 0.0484 0.0461 0.0501 0.1146 0.0750

(.0007) (.0007) (.0007) (.0008) (.0012) (.0011)

2.250 0.0496 0.0490 0.0475 0.0487 0.1143 0.0774

(.0007) (.0007) (.0007) (.0008) (.0012) (.0011)

2.625 0.0500 0.0481 0.0475 0.0503 0.1114 0.0744

(.0007) (.0007) (.0007) (.0008) (.0012) (.0010)

3.000 0.0478 0.0485 0.0468 0.0509 0.1157 0.0766

(.0007) (.0007) (.0007) (.0008) (.0012) (.0011)

demonstrates the distribution-free property. In contrast, since the other three

charts are constructed relying on the normality assumption, they perform poorly

for the non-Gaussian Models (b) and (c). In summary, the results indicate that

the MSS chart is not only distribution-free but also more robust to the magnitude

of the shift in OC observations than the other three control charts. We will see

later that the problem of the increasing pattern observed in the type-I error rates

can be solved by implementing the OAAT procedure.

The larger-than-normal values of the type-I error rate indicate that the corre-
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sponding control limits of control charts are too low for monitoring. To obtain a

fair comparison among control charts in terms of the type-II error rate, we adjust

the control limits to achieve the specified type-I error rate 0.05 when δ = 0. Un-

der Model (b), the control limits of the Hotelling’s T 2, T 2
MVE, and T 2

MCD charts

are tuned, respectively, to 11.88, 16.95, and 20.93, and to 9.35, 31.25, and 16.99

under Model (c). Consider the type-II error rate under Gaussian Model (a), the

Hotelling’s T 2 performs the best among the four control charts. When the model

assumption holds, the Hotelling’s T 2 control chart is quite powerful in detecting

outliers comparing with the methodologies based on the robust tools. In addition,

the T 2
MVE and T 2

MCD charts outperform the MSS chart under small shifts of out-

liers, e.g., δ ≤ 1.5. On the other hand, the performances in the type-II error rate

under Models (b) and (c) are quite different from Model (a): the MSS chart per-

forms the best for most of the OC conditions except for some large shifts under the

multivariate t and Gamma distributions. Reasons for this phenomenon are: (i) the

detecting power of the MSS chart outperforms the other three control charts for

small to moderate shifts beacuse of its distribution-free property and (ii) since the

charting statistic of the MSS chart incorporates only the direction of observations

but not the magnitude, it is comparatively less sensitive in detecting large shifts of

outliers than other three charts. Note that the type-II error rates are not available

when δ = 0 since no OC cases are generated in the data.

We now compare the performance between the MSS chart and Hotelling’s T 2

control chart by using the OAAT procedure instead of the conventional procedure.

The resulting type-I and type-II error rates are shown in Tables 4.4 and 4.5, re-

spectively. The type-I error rates of the MSS chart are quite stably controlled

around 0.05 under various models and shift sizes of outliers. The type-I error

rates of the Hotelling’s T 2 control chart are somewhat stable as the shift size of

outliers increases; but they are still higher than 0.05 under non-Gaussian models.

Moreover, the type-II error rates are nearly the same as that of the conventional

Phase I procedure. To sum up, for the proposed MSS chart, the simulation results
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Table 4.5: The pII and their standard errors (in parentheses) of the MSS chart and

Hotelling’s T 2 control chart when using the OAAT procedure.

MSS T 2

δ (a) (b) (c) (a) (b) (c)

0.375 0.9157 0.9262 0.9290 0.9054 0.9422 0.9224

(.0028) (.0025) (.0026) (.0030) (.0024) (.0027)

0.750 0.7962 0.8401 0.8378 0.7017 0.9145 0.8510

(.0041) (.0038) (.0041) (.0051) (.0028) (.0038)

1.125 0.5552 0.6732 0.6281 0.3533 0.8616 0.7051

(.0056) (.0049) (.0056) (.0055) (.0036) (.0053)

1.500 0.2924 0.4697 0.3034 0.0984 0.7191 0.4739

(.0049) (.0053) (.0059) (.0032) (.0053) (.0060)

1.875 0.0949 0.3069 0.0867 0.0139 0.4891 0.2001

(.0030) (.0049) (.0035) (.0012) (.0063) (.0049)

2.250 0.0227 0.1810 0.0165 0.0008 0.2426 0.0399

(.0015) (.0041) (.0014) (.0003) (.0056) (.0022)

2.625 0.0046 0.1145 0.0040 0.0001 0.0926 0.0024

(.0007) (.0033) (.0006) (.0001) (.0037) (.0005)

3.000 0.0005 0.0694 0.0004 0.0000 0.0263 0.0000

(.0002) (.0026) (.0002) (.0000) (.0017) (.0000)

indicate that, when the OAAT procedure is utilized, the misclassification rate of

the IC observations can be controlled around the nominal level, while the detecting

power stays almost the same as that of the conventional procedure. Since there is

not much difference between the type-II error rates of the OAAT and conventional

procedures, the comparisons with the T 2
MVE and T 2

MCD charts are omitted here.

Naturally, it takes more CPU time for the OAAT procedure than the conventional

one. However, the longer computing time is no more a concern because (i) Phase

I analysis is an off-line process and (ii) it is still acceptable. Thus, we recommend

the OAAT procedure for Phase I applications.
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4.3 A Real Data Application

In this section, we demonstrate a real data application of our proposed Phase I

monitoring scheme. Consider a real dataset from a white wine production process,

which is publicly available in the UC Irvine Machine Learning Repository (ref.

http://archive.ics.uci.edu/ml/datasets/Wine+Quality). This dataset consists of

4898 observations with 12 variables collected from May 2004 to February 2007.

Due to privacy and logistic issues, the data contain only the physicochemical and

sensory variables. The variables involving confidential information, e.g., the grape

types, wine brand, and wine selling price, etc., are not included. The data are

contained at the official certification entity, an inter-professional organization with

the goal of improving the quality and marking of Portuguese Vinho Verde wine. For

each observation, variables of physicochemical measurements include fixed acidity,

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur

dioxide, density, pH, sulphates, and alcohol (denoted by x1, . . . , x11), and one

categorical variable, the quality graded by experts, ranging from 0 (the worst)

to 10 (the best). There are much more normal wines (say, levels 5-7) than the

excellent (level≥ 8) or poor (level≤ 4) ones. For more detail of this dataset, see

Cortez et al. (2009).

Considering the quality control issue of this wine production process, we first

focus on the wines of level 7 with size 880. Figure 4.1 shows the scatter plots

between variables citric acid (x3), residual sugar (x4), and density (x8) and the

corresponding normal Q-Q plots. We can observe that the joint distributions of

each pair of the three variables are far from bivariate normal, and the Q-Q plots

indicate all three variables are not normally distributed. Moreover, the p-value

of Mardia’s multivariate normality test (Mardia, 1970) is quite close to zero, also

showing the violation of the normality assumption. All the evidences indicate that

the multivariate normality assumption is invalid for this data set. In addition, some

scatter plots exhibit patterns between variables and the covariance matrix of the
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Figure 4.1: (a) - (c) are the scatter plots between variables citric acid (x3), residual sugar

(x4), and density (x8); (d) - (f) are the corresponding normal Q-Q plots.

data (not shown here) contains many large entries. This suggests that there exist

considerable relationships between variables, thus it is inappropriate to monitor

each of the variables individually.

Next, we use the level 7 wines to demonstrate our proposed MSS control chart

for Phase I applications. Since the MSS chart is designed for grouped data, we

group the measurements of the white wine production process in subgroups. We

choose a small subgroup size, n = 5, to prevent the effect of outliers from di-

minishing in the subgroup. Then, there are m = 880/5 = 176 subgroups to be

monitored. Setting α = 0.01, the control limit of the MSS chart is chosen to be

22.4674 from Table A.4. By using the recommended OAAT procedure, it turns

out that 66 subgroups are regarded as outliers, i.e., 550 observations are preserved
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Table 4.6: The type-I and type-II error rates from mixing the level 7 and level 6 wines.

pI pII

index MSS T 2 T 2(mod) MSS T 2 T 2(mod)

1 0.0000 0.2364 0.0182 0.6 0.0 0.7

2 0.0000 0.2000 0.0091 0.4 0.2 0.6

3 0.0091 0.2182 0.0091 0.6 0.3 0.7

4 0.0091 0.2091 0.0091 0.6 0.3 0.7

5 0.0000 0.2091 0.0091 0.9 0.5 1.0

6 0.0000 0.2364 0.0091 0.3 0.0 0.8

7 0.0000 0.2364 0.0091 0.3 0.0 0.6

8 0.0000 0.2091 0.0091 0.6 0.2 0.7

9 0.0000 0.2545 0.0091 0.4 0.2 0.5

after our Phase I analysis. Note that there might be some IC observations within

the signaled OC subgroups. It is worth to note that lots of the wines were detected

as OC even they were all classified to level 7 by experts. This could be caused by

the fact that the level classification by experts is very subjective, and the human

taste perception usually is not consistent over time.

To compare with the Hotelling’s T 2 control chart, we mix the 550 IC observa-

tions with some OC ones — wines from other levels. Recall that the Hotelling’s

T 2 chart has an excessive type-I error rate if the underlying distribution of the

data is not Gaussian. Thus, in addition to the regular Hotelling’s T 2 control chart,

we also include the T 2 chart with the control limit adjusted to achieve the type-I

error rate at about 1% for a fair comparison. Regard the preserved 550 level 7

wines as IC, and 50 wines from level 6 (or 5) as OC. Since there are 2198 and 1457

observations classified as level 6 and 5, respectively, we can choose different sets of

OC wines as replications. The OAAT procedure is adopted for both of the control

charts. The results of 9 replications for mixing with levels 6 and 5 are listed in
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Table 4.7: The type-I and type-II error rates for mixing the level 7 and level 5 wines.

pI pII

index MSS T 2 T 2(mod) MSS T 2 T 2(mod)

1 0.0000 0.2364 0.0182 0.7 0.1 0.5

2 0.0000 0.2091 0.0091 0.5 0.1 0.4

3 0.0000 0.2091 0.0091 0.8 0.4 0.9

4 0.0091 0.2364 0.0182 0.6 0.1 0.7

5 0.0000 0.2364 0.0182 0.3 0.0 0.5

6 0.0000 0.2364 0.0091 0.5 0.1 0.5

7 0.0000 0.2364 0.0091 0.4 0.0 0.7

8 0.0000 0.2364 0.0091 0.3 0.0 0.6

9 0.0000 0.2364 0.0273 0.1 0.0 0.5

Tables 4.6 and 4.7, respectively. The type-I error rates of the MSS chart are under

the nominal level 0.01 in all of the replications, but that of the regular Hotelling’s

T 2 are much larger than 0.01. After tuning the control limit of the Hotelling’s T 2

control chart to achieve the type-I error rate around 0.01, the type-II error rates

of the MSS chart outperforms the T 2 chart in both of the OC conditions for the

most of the replications. Comparing with the level 6 wines, the level 5 wines are

more different from the IC ones (the level 7 wines) physicochemically. In other

words, the outlying condition is more severe. As explained earlier, the MSS chart

is sometimes less sensitive than the modified Hotelling’s T 2 control chart when

the outlying condition is severe; and the results in Table 4.7 also demonstrate this

phenomenon. Similar results are obtained when the size of OC wines is increased

to 20 subgroups and are summarized in Appendix A.4.
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4.4 Conclusions

In this chapter, we construct a distribution-free Phase I monitoring scheme for

multivariate observations with subgroups. By using the spatial median and the

Tyler’s scatter estimator, the observations are transformed to a charting statistic

based on the spatial sign vectors. Then an observation with the statistic exceed-

ing the control limit is regarded as an OC case. Through simulation studies, we

demonstrate that our proposed MSS chart is indeed distribution-free such that the

type-I error rate can be controlled at the specified value for non-Gaussian distribu-

tions. In addition, the chart is also robust to the extent of outlying in terms of the

type-I error rate. Moreover, the MSS chart is quite powerful in detecting outliers

in the data. Comparing with the existing monitoring schemes, the Hotelling’s T 2,

T 2
MVE, and T 2

MCD charts, the MSS chart is more robust and powerful in most of

the OC conditions (after adjusting the T 2 control charts to achieve the nominal

type-I error rate). However, since the charting statistic of the MSS chart considers

only the multivariate direction of an observation, it carries less information on the

magnitude of the outlying conditions. Thus, the MSS chart is less sensitive than

the traditional Hotelling’s T 2 control chart for extreme outliers.

When implementing conventional Phase I monitoring schemes, the signaled

observations would be all removed and then the process parameters would be

re-estimated. This detecting procedure will continue until all the remaining ob-

servations are regarded as IC. However, there are excessive IC observations got

misclassified by using the conventional procedure, especially when the data con-

tain some extreme outliers. Instead of deleting all the signaled observations, the

OAAT procedure proposed by Shiau and Sun (2010) removes only the observation

with the largest value of the charting statistic to diminish the problem with the

type-I error rate. It is shown by simulation that the control charts implemented

with the OAAT procedure are able to control the type-I error rate at the nominal

level. Thus, we recommend adopting the OAAT procedure in Phase I analysis.
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The profile monitoring is the major theme of this dissertation, and it is worth-

while to develop a distribution-free control chart for profiles as well. Although the

discretized profile can be viewed as a special kind of multivariate data, there are

intrinsic differences between profiles and multivariate observations. For example,

the design points of profiles are often different from profile to profile, but not for

multivariate data. In addition, since the dimension of a discretized profile is often

fairly large, it could be very time-consuming if the control chart developed for mul-

tivariate data is used directly. The efficiency of a control chart is of great concern

in Phase II on-line monitoring. In the next chapter, we will focus on constructing

monitoring schemes for profiles with no distribution assumptions for both Phase I

and Phase II applications.
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Chapter 5

Distribution-Free Profile

Monitoring Schemes

In this chapter, instead of assuming a specific distribution for profile data as in

Chapter 3, no distributional assumptions are impose on profiles. We combine the

ideas of PCA and distribution-free multivariate data monitoring methodologies to

construct a new control chart for profile monitoring. The sections of this chapter

are organized as follows. Our proposed schemes for Phase I and II profile moni-

toring are elaborated in Section 5.1 and 5.2, respectively. In Section 5.3, results of

simulation studies of the proposed methods and a performance comparison with

existing methods are presented. A real-data application is demonstrated in Section

5.4. A short conclusion is given in the last section of this chapter.

5.1 Phase I Monitoring

5.1.1 Methodology

We now consider the model of the form (3.1) with no assumptions imposed on the

distribution of the random-effect term. That is, for the ith profiles, i = 1, . . . ,m,
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the profile data can be written as

yij = g(xij) + fi(xij) + εij for j = 1, . . . , p,

where g(·) and fi(·) are the fixed-effect and random-effect terms, respectively, xij

denotes the value of the covariate for the jth observation and (εi1, . . . , εip)
′ is the

i.i.d. random error vector with mean 0 and variance σ2
ε . The random-effect term

fi and the errors εij are assumed independent of each other and fi is assumed a

zero-mean process. The case of univariate covariate is considered here.

To filter out the noise in a profile, a smoothing technique is applied to profile

data before monitoring. Suppose that there are m subgroups of profiles with

subgroup size n in the historical data set. To simplify notation, denote the n

profiles of the ith subgroup after smoothing by (yi1, . . .yin), i = 1, . . . ,m. In

Phase I analysis, it is common to obtain the parameters used for monitoring by

averaging the estimates from each of the subgroups. For example, the estimated

mean and variance-covariance matrix used in the Hotelling’s T 2 chart are obtained

by first calculating the sample mean and sample variance-covariance matrix from

each of the m subgroups, denoted by (µ̂1, . . . , µ̂m) and (Σ̂1, . . . , Σ̂m), respectively.

Then the estimated mean and variance-covariance matrix are:

µ̂ =
1

m

m∑
i=1

µ̂i,

Σ̂ =
1

m

m∑
i=1

Σ̂i.

In this method, one should note that the subgroup size must be larger than the

number of the design points in a profile for the sample variance-covariance ma-

trix of a subgroup to be non-singular. However, the number of design points are

usually large in practice in order to keep important features of profiles. Thus, we

recommend that the sample mean and sample variance-covariance matrix of the

whole data set are taken directly to be the estimators of the mean and scatter
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matrix; that is,

µ̂ =
1

mn

m∑
i=1

n∑
k=1

yik, (5.1)

Σ̂ =
1

mn− 1

m∑
i=1

n∑
k=1

(yik − µ̂)(yik − µ̂)′. (5.2)

Applying the eigen-analysis to Σ̂, the corresponding eigenvalue-vector pairs are

obtained and denoted as (λ1,ν1), . . . , (λp,νp), where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. Let

the number of the effective PCs be K and the two T 2-type statistics be

T 2
0,ik = (s0,ik − s̄0)

′B−1
0 (s0,ik − s̄0), (5.3)

T 2
1,ik = (s1,ik − s̄1)

′B−1
1 (s1,ik − s̄1), (5.4)

where s0,ik and s1,ik are the vectors of the first K and last p − K PC scores

for the kth observed profile in the ith subgroup, respectively, i = 1, . . . ,m, k =

1, . . . , n, (s̄0,B0) and (s̄1,B1) are the corresponding sample mean vectors and

sample variance-covariance matrices of s0,ik’s and s1,ik’s, respectively. Note that

the statistics T 2
0,ik and T 2

1,ik may not be uncorrelated because the squares of two

uncorrelated random variables may be correlated.

Since no distribution assumptions are imposed on the profiles, the theoretical

distribution of (T 2
0 , T

2
1 ) is unavailable. Thus, the distribution-free Phase I monitor-

ing scheme introduced in Section 4.1 is applied to the vector of the two T 2 statistics,

(T 2
0 , T

2
1 )

′. The monitoring procedure with respect to (T 2
0 , T

2
1 )

′ is basically the same

as that described in Section 4.1. We elaborate the steps of profile monitoring as

follows. For a profile data set consisting of m subgroups with subgroup size n,

1. Estimate the mean and variance-covariance matrix, (µ̂, Σ̂), of the smoothed

profiles according to (5.1) and (5.2). Then apply the eigen-decomposition to

Σ̂ to obtain the corresponding eigenvalues and eigenvectors, (λ1,ν1), . . . , (λp,νp).

2. Compute the vector of the T 2 statistics Tik = (T 2
0,ik, T

2
1,ik)

′ as in equations

(5.3) and (5.4) for i = 1, . . . ,m and k = 1, . . . , n.
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3. Estimate the spatial median and Tyler’s transformation matrix (θT ,AT ) by

solving

1

mn

m∑
i=1

n∑
k=1

U(AT (Tik − θT )) = 0, (5.5)

1

mn

m∑
i=1

n∑
k=1

U(AT (Tik − θT ))U(AT (Tik − θT ))
′ =

1

2
I2. (5.6)

4. Calculate the spatial sign vector for each of the m× n observations as

uik = U(AT (Tik − θT )) for i = 1, . . . ,m, k = 1, . . . , n.

5. Then the charting statistic is defined as

Qi = 2nū′
iūi,

where ūi =
∑n

k=1 uik/n. The observations with Qi > Lα,n,2 are regarded as

OC cases, where Lα,n,2 is the control limit for the specific n and type-I error

rate α.

6. (For the conventional procedure) If there are any OC cases detected, delete

them and go back to step 1. This process goes on until all the remaining

observations are within the control limit.

6′ (For the OAAT procedure) Among the detected OC cases, delete the obser-

vation with the largest value of Q statistic, and then go back to step 1. This

process goes on until all the remaining observations are within the control

limit.

The control limit used in the 5th step is available in Appendix A.2. This scores-

based multivariate sign Shewhart chart is referred to as the SMSS chart hereafter.

The information from all design points is extracted and separated into two

T 2-type statistics, (T 2
0 , T

2
1 )

′. Any type of changes in profiles, including location,

dispersion, or shape, would cause the location shift of the vector (T 2
0 , T

2
1 )

′, and then
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an alarm may be signaled by the SMSS chart. Although there is no proof to ensure

that the distribution of the vector (T 2
0 , T

2
1 )

′ follows the elliptical direction distribu-

tion, the spatial-sign-based control chart performs quite robust to the distribution

of the profile data empirically. As a result, the SMSS chart works in detecting out-

liers and performs comparatively with conventional Phase I monitoring methods.

We will show that via simulations in Section 5.3.

5.2 Phase II Monitoring

5.2.1 Methodology

Consider again the data from model (3.1) with no distribution assumptions on the

random-effect term. We first construct a control chart for monitoring individual

profiles for Phase II monitoring. The chart can be modified easily for the data

with subgroups as shown later. As most of Phase II studies, the mean vector

and variance-covariance matrix of the profiles are assumed known or have been

well estimated from the reference sample. Suppose the mean vector and variance-

covariance matrix of the smoothed profiles are given as (µ0,Σ0)
′. The eigen-

analysis is then applied to Σ0 and the corresponding eigenvalues and eigenvectors,

(λ1,ν1), . . . , (λp,νp), where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, are obtained. Choose K to

be the number of effective PCs. Then the following two T 2-type statistics of yt,

the incoming smoothed profile at time t, are considered as:

T 2
0t = (yt − µ0)

′P0Λ
−1
0 P ′

0(yt − µ0), (5.7)

T 2
1t = (yt − µ0)

′P1Λ
−1
1 P ′

1(yt − µ0), (5.8)

where P0 and P1 are the matrices consisting of the first K and the last p−K eigen-

vectors, respectively. Treat (T 2
0t, T

2
1t)

′ as a two-dimensional vector Tt, and similar

to the Phase I method described in Section 5.1, we apply some nonparametric

or distribution-free monitoring procedures to Tt. The multivariate sign EWMA
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control chart proposed by Zou and Tsung (2011) and introduced in Section 2.2.5

is considered to monitor the vectors Tt. The monitoring procedure for nonlinear

profiles is given as follows. Note that we need a set of historical data to estimate

the spatial median and Tyler’s transformation matrix (θT ,AT ).

1. Apply the eigen-decomposition to Σ0 to obtain the corresponding eigen-

values and eigenvectors, (λ1,ν1), . . . , (λp,νp). For the historical data set

{y1, . . . ,ym}, compute the corresponding T 2 vectors {T1, . . . ,Tm} according

to equations (5.7) and (5.8).

2. Estimate the spatial median and Tyler’s transformation matrix (θT ,AT ) by

solving

1

m

m∑
i=1

U(AT (Ti − θT )) = 0, (5.9)

1

m

m∑
i=1

U(AT (Ti − θT ))U(AT (Ti − θT ))
′ =

1

2
I2. (5.10)

3. For an incoming profile yt, calculate the corresponding T 2 vector, Tt, and

the spatial sign vector as

ut = U(AT (Tt − θT )).

4. Define the EWMA sequence as

wt = (1− λ)wt−1 + λut,

where λ is a weighted parameter and the initial vector being 0. Then the

proposed control chart triggers a signal if

Qt =
2(2− λ)

λ
w′

twt > L,

where L > 0 is the control limit to achieve the prespecified IC ARL.

It is straightforward to modify the above control chart for data in subgroups as

follows. For a data set with m subgroups with subgroup size n, say, {yi1, . . . ,yin}
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for i = 1, . . . ,m, modify the constraints (5.9) and (5.10) in the 2nd step to the

form of equations (5.5) and (5.6). For an incoming subgroup {yt1, . . . ,ytn}, the

sign vector in the 3rd step is replaced by

ut =
1

n

n∑
k=1

U(AT (Ttk − θT )),

where Ttk is the vector of the T 2 statistics obtained from the kth profile of the

incoming subgroup, k = 1, . . . , n. Finally, the 4th step can be followed directly.

The control limits for some specific values of IC ARL and λ can be found in

Appendix A.3. Control limits for more values of λ and dimension p are available in

Table 1 of Zou and Tsung (2011). Since this EWMA control chart is based on the

spatial sign of the T 2 statistics of the PC scores, we refer to it as the score-based

multivariate spatial-sign EWMA (SMSE) chart hereafter.

The proposed control chart in Zou and Tsung (2011) is distribution-free for

distributions under the elliptical direction family. Unfortunately, as mentioned

earlier, the theoretical distribution of the charting statistic is very difficult to obtain

analytically. Nevertheless, the spatial-sign-based EWMA control chart is quite

robust to the distribution of the multivariate variable; consequently our proposed

control chart is also robust to the distribution so that the IC ARL can be controlled

at the specified value, say, 200 or 370, when the underlying distribution is unknown.

Moreover, it is also quite effective to signal an alarm if an OC condition occurs

in the process. In addition, if a profile changes in any aspects, the change will

reflect as a location shift of the T vector to trigger the alarm. We will see that via

simulation in the following section.

5.3 Simulation Studies

5.3.1 Phase I Applications

First, we consider simulated profiles that imitate the dissolving process of aspar-

tame under different levels of temperature, an example of profiles first described
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in Kang and Albin (2000). Instead of generating profiles from multivariate nor-

mal distribution as we did in Section 3.3.1, the IC aspartame profiles are directly

generated from equation (3.11). That is,

y = I +MeN(x−1)2 + ε,

where all the random components I, M , N , and ε are independently generated

from normal distributions. The same settings of the parameters of the random

components as before are followed, i.e., (µI , σI) = (1, 0.2), (µM , σM) = (15, 1),

(µN , σN) = (−1.5, 0.3), and σε = 0.3. Let p = 20, x = (x1, . . . , xp)
′ are equally

spaced ranging from 0.64 to 3.68. Choosing h = 0.48, 200 generated aspartame pro-

files and the corresponding smoothed estimators by using the local linear smoother

are shown in Figure 5.1. Note that the pattern of the generated aspatame profiles

is quite similar to the profiles generated from the multivariate normal distribution

as in Section 3.3.1. The OC profiles considered are generated from the following

models:

(a) I ∼ N(µI + δσI , σ
2
I );

(b) M ∼ N(µM + δσI , σ
2
M);

(c) I ∼ N(µI , (δ
∗σI)

2);

(d) M ∼ N(µM , (δ∗σM)2);

(e) y ∼ δ(y − µ) + µ.

The first four OC models simulate the situations that one of the parameters

of the random components is shifted by an amount quantified by δ, while Model

(e) considers the case that the variance-covariance matrix of the profile data y

is multiplied by a constant and the mean vector stays unchanged. Since there

exists no distribution-free methodology for profile monitoring in the literature, we

consider the method developed under parametric model for comparison. In this

simulation study, the discretized profiles are considered and the design points of all
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Figure 5.1: (a) 200 generated aspartame profiles and (b) the corresponding smoothing

estimates.

the profiles are the same, thus we can simply treat the profiles as multivariate data.

Here, the Hotelling’s T 2 control chart introduced in Section 4.2 is also considered.

The performances of the control charts are also measured via the type-I and type-II

error rates introduced in Section 3.1.3. The error rates reported in what follows

are the average of 1,000 replications.

In Phase I applications, the reference sample is usually mixed with both IC and

OC observations. To simulate the historical data set in Phase I, 500 subgroups

of profiles with subgroup size 10 (i.e., m = 500 and n = 10) are generated, and

among them there are 450 IC and 50 OC cases. We first compare the type-I error

rates of the SMSS chart between using the conventional procedure and the OAAT

procedure for each of the five OC conditions. Choosing α = 0.05, the control

limit of the SMSS chart is then 5.8551 (from Table A.4 in Appendix A.2 with

n = 10 and p = 2). The shift size of the parameters δ = 0(0.6)3 in Models (a)

and (b), δ∗ = 1(0.4)3 in Models (c) and (d). We choose the number of effective

PCs K = 3 for demonstration. The results are summarized in Table 5.1. From

the table, we can see that the type-I error rate is increasing in the shift size when

the conventional procedure is used for all the OC models. In contract, for the
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Table 5.1: The type-I error rates of the SMSS chart by using the conventional

and OAAT detecting procedures.

Conventional OAAT

δ δ∗ (a) (b) (c) (d) (a) (b) (c) (d)

0.6 1.4 0.0505 0.0508 0.0507 0.0511 0.0491 0.0494 0.0492 0.0495

1.2 1.8 0.0514 0.0520 0.0524 0.0527 0.0500 0.0504 0.0504 0.0507

1.8 2.2 0.0529 0.0531 0.0571 0.0544 0.0507 0.0505 0.0506 0.0508

2.4 2.6 0.0569 0.0540 0.0649 0.0557 0.0499 0.0500 0.0493 0.0503

3.0 3.0 0.0638 0.0554 0.0695 0.0580 0.0492 0.0500 0.0492 0.0500

OAAT procedure, the error rate is quite robust to the shift size and stays around

0.05 stably. To ensure the type-I error rate to be controlled at a nominal level, we

adopt the OAAT procedure in what follows.

We next compare the performances between the SMSS chart and the Hotelling’s

T 2 chart. It is well known that the type-I error rate is hard to control at the

prespecified value when a parametric control chart is applied on processes with

distributions different from the assumption. Therefore, for a fair comparison, we

adjust the control limit of the Hotelling’s T 2 chart to achieve the specified type-I

error rate, say, α = 0.05 in this case. Tables 5.2 - 5.6 tabulate the simulation

results including the type-I and type-II error rates and their standard errors for

OC Models (a) - (e), respectively. The columns labeled “T 2(mod)” indicate the

results of the Hotelling’s T 2 chart after modifying the control limit to achieve the

nominal false-alarm error rate α = 0.05. The columns “S” indicate the results of

the SMSS chart and the numbers in the parentheses are the number of the effective

PCs used in T 2
0 statistic. The type-II error rates are unavailable and labeled “-”

in the tables when δ = 0, since there are no OC profiles in the data.

The results for Models (a) and (b) (Tables 5.2 and 5.3) are similar since both

models are related to the mean shift. The type-I error rates of the Hotelling’s T 2

chart are stably around 0.053, slightly exceeding the nominal value 0.05. This is
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Table 5.2: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (a) for α = 0.05

pI pII

δ T 2 S(2) S(3) S(4) S(5) T 2(mod) S(2) S(3) S(4) S(5)

0.0 0.053 0.049 0.049 0.049 0.049 - - - - -

(.0003) (.0003) (.0003) (.0003) (.0003) - - - - -

0.6 0.0530 0.0489 0.0491 0.0493 0.0491 0.9074 0.9505 0.9499 0.9494 0.9505

(.0003) (.0003) (.0003) (.0003) (.0003) (.0014) (.0010) (.0009) (.0010) (.0010)

1.2 0.0523 0.0497 0.0500 0.0502 0.0497 0.6881 0.9479 0.9239 0.9299 0.9338

(.0003) (.0003) (.0003) (.0003) (.0003) (.0024) (.0010) (.0012) (.0011) (.0012)

1.8 0.0529 0.0494 0.0507 0.0504 0.0502 0.2035 0.9312 0.7972 0.8324 0.8604

(.0003) (.0003) (.0003) (.0003) (.0003) (.0022) (.0012) (.0021) (.0019) (.0017)

2.4 0.0529 0.0497 0.0499 0.0505 0.0502 0.0113 0.8969 0.4186 0.5429 0.6361

(.0003) (.0003) (.0003) (.0003) (.0003) (.0005) (.0015) (.0033) (.0034) (.0031)

3.0 0.0532 0.0499 0.0492 0.0492 0.0496 0.0001 0.8372 0.0574 0.1047 0.1754

(.0003) (.0003) (.0003) (.0003) (.0003) (.0001) (.0020) (.0013) (.0019) (.0027)

the effect of violating the normality assumption; however, the deviation is fairly

small. On the other hand, the type-I error rates are well controlled around 0.05

for the SMSS chart despite of the shift size in mean. To obtain a fair comparison

for the type-II error rates, we adjust the control limit of the T 2 chart to achieve

0.05 for the type-I error rate. The type-II error rates of the modified Hotelling’s

T 2 chart are slightly larger than that of the regular (unmodified) T 2 chart but

the modified T 2 chart still outperforms the SMSS chart. This is because the T 2

statistics of the generated profiles do not depart much from the distribution it

would have followed when the normality assumption holds. As it is well known,

a parametric method usually is more efficient than a nonparametric method when

the assumed parametric model is correct. Thus the Hotelling’s T 2 chart has better

performance than the SMSS chart in these models.
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Table 5.3: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (b) for α = 0.05

pI pII

δ T 2 S(2) S(3) S(4) S(5) T 2(mod) S(2) S(3) S(4) S(5)

0.0 0.053 0.049 0.049 0.049 0.049 - - - - -

(.0003) (.0003) (.0003) (.0003) (.0003) - - - - -

0.6 0.0533 0.0491 0.0492 0.0494 0.0493 0.8877 0.9414 0.9446 0.9461 0.9465

(.0003) (.0003) (.0003) (.0003) (.0003) (.0015) (.0011) (.0010) (.0010) (.0010)

1.2 0.0525 0.0506 0.0504 0.0505 0.0500 0.5343 0.8179 0.8570 0.8794 0.8950

(.0003) (.0003) (.0003) (.0003) (.0003) (.0027) (.0020) (.0016) (.0015) (.0015)

1.8 0.0531 0.0502 0.0506 0.0506 0.0506 0.0538 0.3392 0.4832 0.5917 0.6721

(.0003) (.0003) (.0003) (.0003) (.0003) (.0011) (.0028) (.0030) (.0030) (.0027)

2.4 0.0529 0.0493 0.0493 0.0499 0.0497 0.0005 0.0272 0.0583 0.1071 0.1718

(.0003) (.0003) (.0003) (.0003) (.0003) (.0001) (.0008) (.0012) (.0018) (.0025)

3.0 0.0532 0.0490 0.0492 0.0490 0.0492 0.0000 0.0006 0.0024 0.0052 0.0101

(.0003) (.0003) (.0003) (.0003) (.0003) (.0000) (.0001) (.0002) (.0003) (.0005)

The ability of detecting outliers of the SMSS chart comes from the change of

the directions of the spatial signs of the T 2
0 and T 2

1 statistics. For example, the

shift in the mean of I indicates the vertical shift in the profiles, which enlarges

both the T 2
0 and T 2

1 statistics; thus, the corresponding spatial sign vectors cluster

around the upper side of the unit circle (see Figure 5.2(a)). On the other hand, the

change in the mean of M affects mainly the T 2
0 statistic hence the corresponding

spatial sign vectors are closer to the right side of the unit circle (see Figure 5.2(b)).

The clustering of the spatial sign vectors enlarges the value of the Q statistic and

hence the SMSS chart has the ability to detect outliers.

Both Models (c) and (d) indicate the variance-covariance structure is changed

in the process, so the results are analogous as summarized in Tables 5.4 and 5.5.

The type-I error rates for both of the regular and modified Hotelling’s T 2 charts are

decreasing in δ∗. Since the shift in the variance of the random component I or M
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Table 5.4: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (c) for α = 0.05

pI pII

δ∗ T 2 S(2) S(3) S(4) S(5) T 2(mod) S(2) S(3) S(4) S(5)

1.0 0.053 0.049 0.049 0.049 0.049 - - - - -

(.0003) (.0003) (.0003) (.0003) (.0003) - - - - -

1.4 0.0521 0.0488 0.0494 0.0493 0.0493 0.9406 0.9463 0.9310 0.9346 0.9377

(.0003) (.0003) (.0003) (.0003) (.0003) (.0011) (.0010) (.0011) (.0011) (.0011)

1.8 0.0501 0.0498 0.0504 0.0503 0.0498 0.9217 0.9379 0.8729 0.8898 0.9008

(.0003) (.0003) (.0003) (.0003) (.0003) (.0012) (.0011) (.0015) (.0014) (.0013)

2.2 0.0494 0.0495 0.0505 0.0505 0.0503 0.8993 0.9159 0.7859 0.8164 0.8354

(.0003) (.0003) (.0003) (.0003) (.0003) (.0014 ) (.0013) (.0019) (.0018) (.0017)

2.6 0.0482 0.0498 0.0500 0.0505 0.0500 0.8744 0.8864 0.6857 0.7265 0.7612

(.0003) (.0003) (.0003) (.0003) (.0003) (.0015) (.0015) (.0024) (.0022) (.0022)

3.0 0.0474 0.0497 0.0500 0.0499 0.0503 0.8523 0.8598 0.5861 0.6352 0.6784

(.0003) (.0003) (.0003) (.0003) (.0003) (.0017) (.0017) (.0023) (.0023) (.0023)

leads to a change in the variance-covariance structure of the profiles (see equation

(3.13)), consequently it changes the estimate of the eigen-vectors. As a result, the

type-I error rates cannot be controlled at a specified level. Moreover, when the

reference sample is contaminated by the outliers with large dispersion, the scatter

matrix would be “inflated” when estimated by the sample variance-covariance

matrix. More severe outlying condition makes most IC profiles to have smaller

T 2 statistic values to signal an alarm, hence the type-I error rate is decreased. In

contrast, the performance of the SMSS chart in type-I error is still quite robust

to the magnitude of the shift in the variance of I or M . On the other hand, the

type-II error rates indicate that the SMSS chart is more powerful than the T 2 chart

in detecting outliers. Since the variation in I or M is incorporated in the first few

PCs, the change in the variance leads to the change in the T 2
0 statistic and hence

the directions of the corresponding spatial sign vectors are more concentrated to
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Table 5.5: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (d) for α = 0.05

pI pII

δ∗ T 2 S(2) S(3) S(4) S(5) T 2(mod) S(2) S(3) S(4) S(5)

1.0 0.053 0.049 0.049 0.049 0.049 - - - - -

(.0003) (.0003) (.0003) (.0003) (.0003) - - - - -

1.4 0.0545 0.0494 0.0495 0.0495 0.0494 0.9360 0.9038 0.9153 0.9228 0.9266

(.0003) (.0003) (.0003) (.0003) (.0003) (.0011) (.0014) (.0012) (.0012) (.0012)

1.8 0.0519 0.0504 0.0507 0.0504 0.0502 0.9095 0.7919 0.8304 0.8530 0.8681

(.0003) (.0003) (.0003) (.0003) (.0003) (.0013) (.0019) (.0017) (.0016) (.0015)

2.2 0.0503 0.0505 0.0508 0.0507 0.0504 0.8799 0.6483 0.7095 0.7425 0.7744

(.0003) (.0003) (.0003) (.0003) (.0003) (.0015) (.0023) (.0022) (.0021) (.0020)

2.6 0.0480 0.0499 0.0503 0.0506 0.0502 0.8487 0.5199 0.5884 0.6391 0.6777

(.0003) (.0003) (.0003) (.0003) (.0003) (.0017) (.0025) (.0025) (.0025) (.0023)

3.0 0.0468 0.0497 0.0500 0.0498 0.0505 0.8211 0.3995 0.4723 0.5305 0.5743

(.0003) (.0003) (.0003) (.0003) (.0003) (.0020) (.0026) (.0025) (.0026) (.0026)

the right (see Figure 5.2(c) and (d)). However, the clustering patterns of Models

(c) or (d) are not as obvious as that of Models (a) or (b), thus the powers are

actually lower than that in Models (a) and (b).

Consider the OC Model (e), which indicates that the variance at each of the

design points dilates or shrinks and the covariance structure is unchanged. It is

equivalent to changing the eigen-values of the variance-covariance matrix but not

affecting the corresponding eigen-vectors. The results are summarized in Table

5.6. When δ > 1, which indicates the dilation of process dispersion, the type-I

error rates of the Hotelling’s T 2 chart are roughly controlled at a certain level but

not quite stable. In the case that the dispersion of the outliers shrinks, the type-I

error rate of the T 2 chart increases as the level of shrinkage increases. This is

because that the smaller dispersion of the outliers makes their T 2 statistics smaller

and hence it is harder to detect them, whereas IC profiles have relatively larger T 2
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Table 5.6: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (e) for α = 0.05

pI pII

δ T 2 S(2) S(3) S(4) S(5) T 2(mod) S(2) S(3) S(4) S(5)

0.500 0.0953 0.0493 0.0491 0.0495 0.0495 1.0000 0.0000 0.0000 0.0000 0.0000

(.0005) (.0003) (.0003) (.0003) (.0003) (.0000) (.0000) (.0000) (.0000) (.0000)

0.625 0.0854 0.0494 0.0497 0.0496 0.0495 0.9998 0.0000 0.0000 0.0000 0.0000

(.0004) (.0003) (.0003) (.0003) (.0003) (.0001) (.0000) (.0000) (.0000) (.0000)

0.750 0.0739 0.0497 0.0497 0.0497 0.0493 0.9993 0.0057 0.0055 0.0057 0.0055

(.0004) (.0003) (.0003) (.0003) (.0003) (.0001) (.0003) (.0003) (.0003) (.0003)

0.875 0.0634 0.0501 0.0503 0.0501 0.0504 0.9938 0.5399 0.5404 0.5392 0.5397

(.0004) (.0003) (.0003) (.0003) (.0003) (.0004) (.0025) (.0025) (.0025) (.0025)

1.000 0.053 0.049 0.049 0.049 0.049 - - - - -

(.0003) (.0003) (.0003) (.0003) (.0003) - - - - -

1.143 0.0446 0.0498 0.0502 0.0502 0.0501 0.7982 0.6039 0.6021 0.6008 0.5999

(.0003) (.0003) (.0003) (.0003) (.0003) (.0019) (.0024) (.0024) (.0025) (.0024)

1.333 0.0407 0.0496 0.0498 0.0498 0.0494 0.4595 0.0362 0.0355 0.0356 0.0350

(.0003) (.0003) (.0003) (.0003) (.0003) (.0025) (.0008) (.0008) (.0008) (.0008)

1.600 0.0466 0.0494 0.0497 0.0496 0.0495 0.1128 0.0001 0.0001 0.0002 0.0002

(.0003) (.0003) (.0003) (.0003) (.0003) (.0015) (.0000) (.0001) (.0001) (.0001)

2.000 0.0519 0.0493 0.0491 0.0495 0.0493 0.0090 0.0000 0.0000 0.0000 0.0000

(.0003) (.0003) (.0003) (.0003) (.0003) (.0004) (.0000) (.0000) (.0000) (.0000)

statistics and hence easier to be misclassified. On the other hand, our proposed

SMSS chart is quite robust to the change in dispersion in term of the type-I error

rate. For the type-II error rate, the Hotelling’s T 2 chart is able to detect outliers

only in the dilation case but is almost useless in the shrinkage case. On the con-

trary, the SMSS chart is very powerful in detecting outliers whether the dispersion

dilates or shrinks. Since both the dilatation and shrinkage of the dispersion lead

to changes in the values of the T 2
0 and T 2

1 statistics, especially the T 2
1 statistic, the

directions of the corresponding spatial sign vectors change and tend to concentrate
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Figure 5.2: The scatter plots of the spatial sign vectors of the profiles generated from

OC Models (a) - (e).

to the upper side of the unit circle for δ > 1 (see Figure 5.2(e)), or the lower side

for δ < 1 (see Figure 5.2(f)). The more concentrated pattern of the spatial signs of

the vectors (T 2
0 , T

2
1 )

′ within a subgroup leads to a larger values of the Q statistic

in the SMSS chart. It should be noticed that, although the Hotelling’s T 2 chart

was originally developed for the mean change, it has some power for detecting the

process dispersion change because the contamination of the reference sample in

dispersion also affects the estimation of the variance-covariance matrix. Neverthe-

less, we consider the Hotelling’s T 2 chart in the comparison simply because there

is no existing nonparametric monitoring scheme for the variance-covariance matrix

of profiles or multivariate data so far.
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Table 5.7: The type-I and type-II error rates and their standard errors (in parentheses) of OC

Model (5.11) for α = 0.05

pI pII

δ T 2 S(2) S(3) S(4) S(5) T 2(mod) S(2) S(3) S(4) S(5)

0.0 0.248 0.050 0.050 0.050 0.050 - - - - -

(.0007) (.0003) (.0003) (.0003) (.0003) - - - - -

0.6 0.2511 0.0505 0.0503 0.0503 0.0496 0.9357 0.9170 0.9236 0.9164 0.9235

(.0008) (.0003) (.0003) (.0003) (.0003) (.0011) (.0013) (.0013) (.0013) (.0012)

1.2 0.2473 0.0510 0.0503 0.0501 0.0505 0.8603 0.4521 0.5286 0.3869 0.4763

(.0008) (.0003) (.0003) (.0003) (.0003) (.0017) (.0052) (.0040) (.0034) (.0034)

1.8 0.2469 0.0495 0.0499 0.0493 0.0492 0.2845 0.0484 0.0374 0.0119 0.0188

(.0007) (.0003) (.0003) (.0003) (.0003) (.0058) (.0037) (.0016) (.0005) (.0008)

2.4 0.2465 0.0498 0.0494 0.0489 0.0489 0.0010 0.0017 0.0013 0.0010 0.0003

(.0007) (.0003) (.0003) (.0003) (.0003) (.0001) (.0003) (.0007) (.0008) (.0001)

3.0 0.2457 0.0488 0.0494 0.0495 0.0495 0.0000 0.0000 0.0000 0.0000 0.0000

(.0007) (.0003) (.0003) (.0003) (.0003) (.0000) (.0000) (.0000) (.0000) (.0000)

Analogous to the CS and CE charts introduced in Section 3.1.2, choosing the

number of effective PCs K is also an issue in implementing the SMSS chart. Ac-

cording to the tables of total variation explained (in Appendix A.5), one may

choose K = 3 for all the five OC models. However, the best choice of K is 2 for

OC Models (b) and (d) from the aspect of the type-II error rate. Therefore, we

suggest that one should try several candidates of K according to the percentage of

the total variation explained. Note that the performance is not necessarily better

when a larger K is chosen. If an unnecessary PC is chosen in computing the T 2
0

statistic, the weights of the effective PCs are diluted and hence the power of the

SMSS chart degrades. Recall that a similar phenomenon was observed for the CS

and CE charts and the same issue was discussed in Section 3.3.2.

To emphasize the ability in detecting outliers with mean shifts, we next con-

sider profiles distributed further depart from the multivariate normal distribution.
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Consider the IC profiles of the form:

yij = g0(xj) + fi(xj) + εij, i = 1, . . . ,m, j = 1, . . . , p, (5.11)

where {x1, . . . , xp} is the set of the design points equally spaced ranging from

0.025 to 0.975 with p = 20, g0(·) is the fixed effect of the profile, fi(·) is assumed

following the multivariate t distribution tp(ν) described in Section 4.2 with degrees

of freedom ν = 3 (the variance-covariance matrix used is Σij = 0.5|i−j|) and

{εi1, . . . , εip} is the i.i.d. random noise from N(0, σ2
ε), σε = 0.3. This model is used

to simulate profiles with the heavy-tailed distribution. Assume that g0(x) = 0 and

the OC profiles are generated by shifting the fixed effect to g1(x) = δ sin(2π(x −

0.5)) where δ = 0(0.6)3. Choose α = 0.05. The results are summarized in Table

5.7. Note that the type-I error rates of the Hotelling’s T 2 chart are quite stable but

much larger than 0.05. As before, we adjust the control limit to control the type-I

error rates around 0.05 for fair comparison. From Table 5.7, we observe that the

SMSS chart outperforms the T 2 chart in terms of the type-II error rate. It shows

that the SMSS chart has a better detecting power than the Hotelling’s T 2 chart

not only in the dispersion but also in the mean change when the underlying profile

distribution is not too close to the normal distribution.

When implementing the SMSS chart, the spatial median and the Tyler’s trans-

formation matrix of the vector (T 2
0 , T

2
1 ) need to be estimated numerically. We

remark that, when solving equations (5.5) and (5.6), the solutions may not exist

when the historical data contain very extreme outliers. Other than that, the SMSS

chart is an efficient and powerful tool for monitoring profiles in Phase I applications

and very easy to use for practitioners.

5.3.2 Phase II Applications

In this section, we demonstrate the use of the proposed SMSE chart in Phase II

applications. The IC profiles are assumed from the simulated aspartame model

of the form (3.11) in Section 3.3.1 and the same setting of the parameters in the
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model are followed as in the last section. In Phase II analysis, the necessary

parameters are assumed known or have been well estimated from the reference

sample. In this study, the mean vector µ = (µ1, . . . , µp)
′ and variance-covariance

matrix Σ = [σij]i,j=1,...,p of the aspartame model can be easily obtained as follows,

for i, j = 1, . . . , p,

µj = µI + µMeµN (xj−1)2+
σ2
N (xj−1)4

2 (5.12)

σij = σ2
I +

(
µ2
M + σ2

M

)[
eµN [(xi−1)2+(xj−1)2]+

σ2
N
2

[(xi−1)2+(xj−1)2]2
]

− µ2
MeµN [(xi−1)2+(xj−1)2]+

σ2
N
2

[(xi−1)4+(xj−1)4] + σ2
εδij. (5.13)

Note that the variance-covariance matrix is the same as that of the model used in

Section 3.3.1, thus the corresponding eigen-values and eigen-vectors are the same

as shown in Figure 3.3. Choose the number of the effective PCsK = 3 as presented

in Section 3.3.3. The spatial median and the Tyler’s transformation matrix of the

vector (T 2
0 , T

2
1 )

′ used in the SMSE chart can be obtained from the IC profiles in

the historical data.

For comparison, the MENPC chart introduced in Section 3.3.3 is also considered

in this case. Let the IC ARL be 200 and the weight parameter λ used in both

EWMA charts be 0.2. Then the control limits for the SMSE chart and MENPC

chart are 7.831 and 80.464, respectively. The results for different λ and IC ARL

are similar, so we only present the results for λ = 0.2 and ARL0 = 200. The ARLs

reported in what follows are computed from 20,000 replications. In this case, the

IC ARL computed by using the SMSE chart and the MENPC chart are 198.712

and 203.407, respectively; and the standard deviations of the run length (SDRL)

are 193.036 and 197.295, respectively. Thus both charts show the distribution-free

property in terms of the IC ARL.

Next, the ability of quickly detecting the OC condition in the process is evalu-

ated and measured by the OC ARL. The OC profiles are generated from Models

(a) - (e) in the last section, and the steady-state ARL is also considered when com-

paring the performance of the control charts. Recall that the steady-state ARL
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Table 5.8: The ARL and SDRL of the SMSE and MENPC charts for Models (a) and (b).

Model (a) Model (b)

SMSE MENPC SMSE MENPC

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.375 189.2151 189.7918 114.9635 111.2247 180.3218 181.0382 83.4508 80.2040

0.750 161.3417 160.5739 58.0028 54.7279 108.1268 104.7291 30.9931 26.8459

1.125 91.8636 88.7935 29.3029 25.2197 44.3060 39.1574 14.3316 10.0885

1.500 42.6466 37.4506 16.4312 12.0432 20.0643 14.8101 8.5383 4.8375

1.875 21.2911 16.0736 10.6402 6.4070 11.6113 6.7260 5.9502 2.8908

2.250 13.0676 8.1239 7.5461 3.8377 8.3089 3.7028 4.5815 1.9489

2.625 9.3023 4.6640 5.8841 2.6161 6.7974 2.4478 3.7561 1.4626

3.000 7.4911 3.0190 4.8182 1.9150 6.0389 1.8154 3.1900 1.1701

considers the case that the OC condition occurs only after (τ + 1)th observation

and thus any OC signal before τ would be discarded. Choose τ = 60, and the

results are summarized in Tables 5.8 - 5.10.

The results show that the MENPC has better performance in the mean shift

and the SMSE is more powerful in detecting the dispersion change of the process.

Roughly speaking, the charting statistic used in the MENPC chart considers the

“smoothed” residual profiles that measures the departure between the incoming

profile and the estimated mean profile g(·). Since the SMSE chart considers only

the multivariate direction of (T 2
0 , T

2
1 )

′, the MENPC is more sensitive in the mean

change of the process than the SMSE chart. On the other hand, the charting

statistic of the MENPC chart considers only the variance of the profiles at each

set point xj; but ignores the covariance structure of the profile, hence it is not as

powerful as the SMSE chart in detecting variance-covariance matrix changes in the

process.

Consider the OC Model (e) that simulates the situation that the dispersion of

the process is dilated (δ > 1) or shrunk (δ < 1); and the results are tabulated

in Table 5.10. For the ability of detecting shifts in dispersion, the SMSE chart
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Table 5.9: The ARL and SDRL of the SMSE and MENPC charts for Models (c) and (d).

Model (c) Model (d)

SMSE MENPC SMSE MENPC

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.125 183.0544 183.5335 179.2851 177.2393 168.3171 167.2262 156.1793 154.7999

1.250 154.2734 153.5871 157.5040 155.7514 127.7672 125.3543 120.7838 118.6060

1.375 122.4067 119.4684 138.3895 139.8465 91.5064 88.2415 91.3288 89.6974

1.500 93.6533 90.9547 117.1738 114.9733 65.9507 61.2346 70.1929 68.1510

1.625 73.7578 70.8436 102.1484 101.3781 50.8848 45.8203 54.6011 53.9370

1.750 57.8421 52.6144 85.1966 85.2647 40.2904 35.4151 42.2975 40.7447

1.875 47.3645 42.5198 72.0350 70.9165 32.8041 27.7809 34.9871 34.3236

2.000 39.6148 34.2434 60.2192 59.0845 27.4082 22.4492 28.6340 27.5080

is still better than the MENPC chart, especially in the shrinking case. When

the dilation of the dispersion happens, the actual dispersion of the OC profiles is

larger than the dispersion estimated from the reference sample; thus the values of

the charting statistic of OC profiles would be larger than that of the IC profiles,

making OC profiles easier to be detected by the MENPC chart. Oppositely, when

the dispersion shrinks, OC profiles would be harder to detect. Therefore, the ARL

of the MENPC chart becomes larger as the degree of the shrinkage gets larger.

However, as described in the last section, both situations of the dispersion dilation

and shrinkage lead to the directions of the spatial signs of the statistics T 2
0 and T 2

1

clustering to a certain side of the unit circle. Therefore, the SMSE chart performs

better than the MENPC chart.

From the simulation results, the SMSE chart seems to be an omnibus method

and any abnormal situations in the process could trigger the SMSE chart and

signal an OC alarm. For diagnostic aids, one can observe patterns of the PC or

rotated scores introduced in Section 3.2.3 to explore which part of the profiles has

been out of control (see the demonstration in Section 3.3.3). It should be pointed

out that for the SMSE chart to be effective, the OC condition has to sustained for
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Table 5.10: The ARL and SDRL of the SMSE and MENPC charts for Model (e).

δ > 1 δ < 1

SMSE MENPC SMSE MENPC

δ ARL SDRL ARL SDRL δ ARL SDRL ARL SDRL

1.0667 59.6925 53.8713 135.5452 134.3693 0.9375 57.1975 52.5514 286.7925 287.2256

1.1429 19.5107 13.6950 93.5927 92.4735 0.8750 17.0960 11.6072 428.2851 413.7034

1.2308 10.7207 5.4747 61.9159 59.9307 0.8125 9.0943 4.2046 660.2913 563.7220

1.3333 7.8351 2.9708 42.1941 41.1881 0.7500 6.6970 2.2430 931.4656 669.3491

1.4545 6.6311 2.0034 28.8630 27.2735 0.6875 5.8155 1.5481 1227.2587 697.9550

1.6000 6.0891 1.6027 19.8745 18.5785 0.6250 5.4617 1.3275 1485.3408 641.1092

1.7778 5.8423 1.4257 13.5191 12.2218 0.5625 5.2921 1.2512 1676.4782 534.1689

2.0000 5.6890 1.3670 9.3716 8.3404 0.5000 5.2225 1.2262 1795.8508 411.8930

a while such that the spatial sign of the two T 2 statistics would tend to cluster to

a certain direction and hence leads to a large value of the charting statistic. The

SMSE chart is not designed for detecting the abrupt and short-lived shifts in the

process.

5.4 Real Data Application

In this section, we use the etching process in the semiconductor manufacturing to

demonstrate our proposed distribution-free monitoring scheme. Lee et al. (2011)

illustrated profiles of five sensors variables, denoted by V1-V5, for 364 wafers from

16 lots of an industrial etching process. For the original data, the lengths of

profiles are different from wafer to wafer. They interpolated the profiles by using

Akima splines (Akima, 1970) to synchronize the design points of the profiles. There

are 547 synchronized points for each profile and they are divided into 23 steps.

According to Lee et al. (2011), the variables V1-V4 are known to be related to

plasma operations and V5 is the chamber temperature. In this dissertation, we

analyze the profiles of variable V3 at step 9 with wafer size 363 from 16 lots and
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Figure 5.3: The plots of the profile segments of variable V3 at step 9. (a) To show the

long-term aging trend from wafer to wafer (the profiles of the last lot are highlighted in

red) (b) To show the short-term first-wafer effect within a lot, the first wafer is highlighted

in red.

78 design points. The scatter plot of the profiles is shown in Figure 5.3. Note

that these data have been re-scaled to range from 3 to 4. A careful examination

of the profiles in time order would reveal two unusual trends among wafers. One

is a long-term aging trend that a lot produced at a later time would have lower

profiles. Figure 5.3(a) illustrates this by highlighting the profiles of the last lot in

red. The other is a short-term trend observed within a lot that the profile of the

first wafer is substantially lower than the other wafers and the profiles move up

gradually in order within the lot. Figure 5.3(b) plots the profiles of the first lot

and highlights the first wafer in red. The peculiar behavior of the first wafer of

a lot is the so-call “first-wafer effect”. According to the subject-matter experts,

both the long- and short-term trends are normal and should not cause alarms.

To eliminate the long-term aging and short-term first-wafer effects, we follow

the procedure used in Lee et al. (2011) as follows. Denote yi the ith profile with
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78 design points, Lee et al. (2011) obtained the residual profiles as

ei = yi − µ̂− b̂i1, (5.14)

where

µ̂ ≡ (µ̂1, . . . , µ̂p)
′ =

1

m

m∑
i=1

yi,

b̂i =

p∑
j=1

ŵij(yij − µj),

ŵij =
1/σ̂2

j∑p
j′=1 1/σ̂

2
j′
,

σ̂j =
1

d2m

m∑
i=1

{|yij − yi−1,j|},

1 = (1, . . . , 1)′, d2 = 1.128, p = 78, m is the size of the reference sample. Note

that the level shifts caused by the long- and short-term effects can be captured by

µ̂ and b̂i, respectively. Thus, the level shift caused by these unstable effects can be

eliminated if we use the residual profiles for monitoring. It should be noticed that

the parameter estimators µ̂ and b̂i’s used for future profile monitoring (in Phase

II) have to be estimated from the IC profiles obtained from Phase I analysis.

To apply our proposed monitoring scheme, we need to group data in subgroups.

Although these data were collected by lots, it is not appropriate to take the ob-

servations in a lot as a subgroup for two reasons. One is that the wafer size varies

from lot to lot in this data set, a situation our methodology is not yet adapted to.

The other is that the variation of the profiles within a lot is significant, which vio-

lates the principle of choosing subgroups. To demonstrate our monitoring scheme,

we choose a small number of subgroup size, n = 3, to alleviate the effect caused

by the variation between profiles.

Analogous to Lee et al. (2011), the first 222 profiles are treated as the historical

data set in Phase I analysis. The corresponding residual profiles as in (5.14) are

shown in Figure 5.4(a). Since the residual profiles look wiggly so we first smooth the

data. In this case, we adopt the smoothing spline with the smoothing parameter

107



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Residual Profiles

x

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Smoothed Residual Profiles

x

y

(b)

Figure 5.4: (a) The plots of the first 222 residual profiles and (b) the corresponding

smoothed estimates.

for each profile determined by the GCV method. This is easily done by using

the R function “smooth.spline” with the default setting. Figure 5.4(b) shows the

smoothed estimates of the residual profiles. By taking 3 profiles in a row to be a

subgroup, we have 74 subgroups for Phase I analysis.

In this case, the mean vector and the variance-covariance matrix are estimated

by equations (5.1) and (5.2). Applying PCA to the sample variance-covariance

matrix of the historical data, the eigen-values-vectors and the corresponding PC

scores are obtained. Since the first 3 PCs explain 94.51% of the total variation,

we choose K = 3 to implement the SMSS chart. Let α = 0.01. The control limit

calculated from simulation is 5.8596 for n = 3. As a result, the 6th subgroup, i.e.,

the 16th, 17th, and 18th profiles, is detected by the proposed SMSS chart. The

spatial signs of (T 2
0 , T

2
1 )

′ and the values of the charting statistic Q are shown in

Figure 5.5. From the figures, it can be observed that a subgroup with consistent

multivariate directions for its observations tend to have a large value of the chart-

ing statistic. We remove the 6th subgroup and repeat the above steps with the

remaining 219 profiles and find that no more subgroup is out of control. We take

108



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Values of the Spatial Sign

T0
2

T
12

16

17
1818

(a)

0 20 40 60

0
1

2
3

4
5

6

Values of the Charting Statistic

Index

Q

(b)

Figure 5.5: (a) The spatial sign vectors of (T 2
0 , T

2
1 )

′ and (b) the values of the charting

statistic Q.

these 219 profiles as the reference sample for IC profiles. The first three eigenvec-

tors of the sample variance-covariance matrix explain 94.57% of the total variation

and their effect-visualizing plots are shown in Figure 5.6. It can be seen that most

of the variation (77.89%) is from the front part of the profiles (x < 0.2) and is

captured by the first PC. The second PC captures the variation on the interval

0.2 ≤ x ≤ 0.5 and explains 12.32% of the total variation. Both the second and

third PCs explain the variation for the design points larger than 0.5.

Next, the last 141 wafers are used to demonstrate the Phase II monitoring.

The residual profiles obtained by subtracting the long- and short-term effects are

monitored instead of the original profiles. Figure 5.7 show the plots of the resid-

ual profiles before and after smoothing by smoothing splines. Choosing K = 3,

ARL0 = 370, and λ = 0.2, the control limit is then 8.567 (from the table in Ap-

pendix A.3). Figure 5.8 shows the values of the charting statistic of the SMSE

chart and it can be observed that there are many observations exceeding the con-

trol limit and should be regarded as OC cases. The corresponding spatial signs

of the detected observations are labeled in red in Figure 5.9(a), and they tend to
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Figure 5.6: (a) The first three PCs and (b)-(d) the corresponding effect-visualizing plots.

concentrate to the upper-right part of the unit circle. Comparing with the refer-

ence profiles, 5.9(b) shows the reference and detected profiles colored by black and

red, respectively. We can see that the detected profiles have similar patterns with

lower values between 0.2 ≤ x ≤ 0.5 and higher values at x > 0.5. The monitoring

scheme we proposed regards the in-control state as profiles that vary randomly

but within a normal level. Therefore, the profiles with similar patterns in a row

tend to have larger values of charting statistic Q and are signaled by our proposed

control chart.
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Figure 5.7: (a) The plots of the 141 residual profiles used in Phase II analysis and (b)

the corresponding smoothing estimates.

It should be pointed out that if we use the profiles after smoothing as the refer-

ence sample, the estimated scatter matrix may not be full-rank. In this example,

the rank of the sample variance-covariance matrix is 58 but there are 78 design

points. Thus, we only consider the PCs with positive eigen-values in the compu-

tation of T 2
1 . Nevertheless, the computed first few eigenvectors can still explain

the majority of the variation and then the T 2 statistic calculated based on the

corresponding scores still has the ability to detect most changes of a process.

The analysis results of our proposed control charts in Phase I and II are quite

different from that in Lee et al. (2011). The authors mentioned that, by taking

the sum of square of the scaled residual profiles as the monitoring statistic, the

58th wafer in Phase I monitoring and the 287th and 357th wafers in Phase II

were detected. However, the random effects of profiles were not considered in their

monitoring procedure. In addition, the normality assumption was assumed in their

method. However, from the normal Q-Q plots of the residual profiles at the first

three design points, shown in Figure 5.10, the normality seems not satisfied for

the data, and many of the entries of the variance-covariance matrix of the residual
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Figure 5.8: The values of the charting statistic of the SMSE chart (the dashed line is

the control limit of ARL0 = 370).

profiles (not shown here) are significantly large.

5.5 Conclusions

In this chapter, we propose distribution-free control charts for profile monitoring

in the retrospective and prospective analyses. For Phase I, analogous to the last

chapter, we consider the data with subgroups and the OAAT detecting procedure

is used as well. The proposed SMSS chart is based on the spatial signs of the vector

of T 2 statistics, (T 2
0 , T

2
1 )

′, which are calculated from the standardized PC scores.

Any kind of OC conditions, including location and scatter matrix shifts, lead to a

concentration of the spatial signs to a certain direction and then would be detected

by the SMSS chart. In addition, not only the dilation but also the shrinkage of

the scatter matrix would be alarmed when using the SMSS chart. The simulation

studies show that the SMSS chart is also robust to the outliers in the sense that

the type-I error rate can be controlled at the specified level. In comparison, the

traditional Hotelling’s T 2 chart performs better in the case of the location shift
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Figure 5.9: (a) The spatial sign vectors of (T 2
0 , T

2
1 ) (the red circles are the spatial signs

detected as OC). (b) The detected OC profiles (red curves) and the reference profiles

(black curves).

when the profiles are normally distributed. On the other hand, when the scatter

matrix of the profile changes or the normality assumption is violated, the SMSS

chart outperforms the Hotelling’s T 2 chart.

It is well known that Shewhart-type control charts are not sensitive to small or

moderate shifts in the process, so EWMA-type control charts are often considered

in Phase II analysis. Similarly, the spatial signs of (T 2
0 , T

2
1 )

′ are also considered and

then the exponentially weighted sum of the signs are used to construct the control

chart called the SMSE chart. In comparison, the MENPC chart, a distribution-

free control chart proposed by Zou and Tsung (2011), performs better than the

SMSE chart in the case of location shifts since their charting statistic measures

the difference between the incoming profile and the target of the process while

the SMSE chart considers only the multivariate directions. However, the SMSE

chart outperforms the MENPC chart in the cases that the scatter matrix dilates

and shrinks since both cases change the spatial sign vectors of (T 2
0 , T

2
1 )

′ and hence

provide the detecting power. We also perform a real case study in Phase I and II
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Figure 5.10: The Q-Q plots of the residual profiles at the first three design points.

monitoring to demonstrate the use of our proposed control charts.

Finally, in the use of our proposed sign-based control chart, the OC conditions

occurring in the process are assumed to be the same within a subgroup in Phase

I, and have to sustain for a period of time in Phase II applications. The detect-

ing ability of the sign-based method relies on the cumulative effect of the signs

of the observations concentrated to a certain part of the multi-dimensional unit

circle when an OC condition occurs in the process. In Phase I application, if the

observations within a subgroup are separately affected by different OC conditions,

the directions of the corresponding spatial signs may not cluster on the unit circle

and then the sign-based control chart might fail to detect them in this case. In

Phase II monitoring, if a similar situation happens to the incoming observations,

the sign-based EWMA chart might also fail to detect this kind of OC conditions.
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Chapter 6

Conclusions and Future Works

In this dissertation, we have studied three topics for process monitoring. One

is on the nonparametric control charting schemes of Phase I and II for profile

data under the normality assumption. The second topic is on the distribution-free

process monitoring methodology for multivariate data with rational subgroups in

Phase I applications. Finally, the third topic is on the distribution-free profile

monitoring methods for Phase I and II applications.

In Chapter 3, two control charts based on the PC scores of the profiles are

developed for monitoring changes in the process. By choosing proper number of

effective PCs, the profiles are projected onto the space spanned by the effective PCs

and the corresponding complementary space, then the two T 2 statistics are used to

summarize the information of a profile in these two spaces, respectively. A profile

with a large value of any of the T 2 statistics could be regarded as an OC case. In

Phase I analysis, a combined Shewhart-type control chart is constructed to detect

the OC profiles in the historical data set and check the stability of the process. In

Phase II process monitoring, the EWMA-type chart is more recommended than

the Shewhart-type chart to enhance the ability of detecting small or moderate

changes in the process. An combined EWMA-type chart is constructed for Phase

II profile monitoring. Compared with the Hotelling’s T 2 chart in Phase I and the

MEWMA chart in Phase II that put an equal weight on each of the design points,
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our methods emphasize more on the primary space and would be more efficient in

detecting shifts in the primary space. Simulation studies show that our proposed

control charting schemes are efficient and outperform some existing methods in

detecting OC conditions, especially in the variance-covariance matrix. A real data

set is used to demonstrate our methods. In addition, the PC scores or the rotated

PC scores can help diagnose the OC conditions.

In Chapter 4, to obtain a distribution-free control chart, a charting statistic

based on the spatial sign of a multivariate observation is utilized. By using the

spatial sign function, multivariate observations are transformed to locate on the

multi-dimensional unit circle and hence only the multivariate directions are pre-

served. Consider the data with subgroups, the subgroup with its observations

clustering toward the same direction tends to have a large value of the charting

statistic to trigger the OC alarm. It is shown by simulations that the sign-based

control chart is robust to the distribution of the observations and the outlying sub-

groups in the historical data set. In addition, it is also very powerful in detecting

outliers, especially when the data distribution is far from normal. Moreover, the

OAAT detecting procedure is shown to be useful to control the type-I error rate

at a specified level and is recommended for all Phase-I analysis.

In Chapter 5, we combine the ideas of spatial-sign-based methodology and the

T 2 control chart to develop distribution-free schemes for profile monitoring. The

two T 2 statistics based on the PC scores are computed as in Chapter 3. The

distribution-free control chart for Phase I analysis is constructed by treating these

T 2 statistics as two-dimensional vectors and then applying the sign-based control

chart developed in Chapter 4 to the subgroups of the T 2 vectors directly. The

proposed SMSS chart also shows the robustness property to the distribution of

profiles and to the magnitude of shifts of the OC conditions. Moreover, it has

ability detecting the outliers caused by not only the mean but also the dispersion

shifts in the historical data set. In Phase II, we construct an EWMA chart for

monitoring individual profiles (in contrast to the grouped profiles for the SMSS
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chart in Phase I) based on the spatial sign of the two T 2 statistics. Comparing with

some existing methods, the sign-based control chart is competitive in detecting

mean shifts and much better in detecting dispersion changes. Since both the

dilation and shrinkage of the dispersion will change the multivariate directions of

the T 2 statistics, the sign-based control charts performs well in detecting the OC

conditions caused by the dispersion increases or decreases.

Two issues arise in implementing the control charts proposed in this disser-

tation. One is the selection of the number of the effective PCs K. From the

simulation studies (see Sections 3.3 and 5.3), we can observe that the charts are

not necessary to perform better with a larger K. Practitioners can still choose a

reasonable K with the help from experts. Nevertheless, it would be helpful to have

an objective method to decide how many effective PCs one should use. Perhaps,

one may construct a monitoring scheme by combining the information from the

control charts with various numbers of the effective PCs. The other issue is on

how many design points should be chosen when smoothing profiles. It is obvi-

ous that some features of the profile may lose if we choose too few design points.

On the other hand, too many design points would lead to poor estimation of the

variance-covariance matrix of the smoothed profiles with the limited amount of

sample profiles. We would consider these two issues in our future studies.

There are limitations in the use of our proposed control charts. First, in the

distribution-free monitoring schemes for multivariate data and profile data, the

sample has to be collected in the manner of the rational subgroups. The process

change is assumed to occur between the subgroups rather than within a subgroup.

However, data in the form of rational subgroups are not always available, or it

is sometimes hard to ensure that shifts only occur between the subgroups in real

applications. Therefore, developing a distribution-free chart for individual multi-

variate data or profile data in Phase I analysis is regarded as one of our future

works. Second, there is an inherent drawback of the sign-based control chart that

it is not particularly sensitive to very large shifts since the magnitude of the shift
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does not reflect on the sign vector fully. Thus, when extreme cases occur in the

process, the sign-based chart is inferior to the Hotelling’s T 2 chart, which utilizes

the magnitude of the shift in the observations. It is worth to develop a distribution-

free scheme that can overcome this drawback for profile data, which would be our

immediate future study.
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A.1 The Proportion of the Total Variation

Explained by the CS Chart in Section 4.2

Table A.1: The proportion of the total variation explained by the CS chart for OC

Model (a)

δ2 = 0 δ1 = 0

δ1 K = 1 K = 2 K = 3 K = 4 δ2 K = 1 K = 2 K = 3 K = 4

0.625 0.7528 0.9468 0.9737 0.9818 0.875 0.7580 0.9483 0.9755 0.9831

1.250 0.7523 0.9489 0.9748 0.9826 1.750 0.7650 0.9508 0.9772 0.9843

1.875 0.7560 0.9521 0.9764 0.9837 2.625 0.7722 0.9530 0.9787 0.9853

2.500 0.7621 0.9561 0.9784 0.9851 3.500 0.7821 0.9556 0.9801 0.9863

3.125 0.7736 0.9603 0.9804 0.9865 4.375 0.7904 0.9578 0.9814 0.9872

3.750 0.7879 0.9645 0.9825 0.9879 5.250 0.7978 0.9595 0.9823 0.9878

4.375 0.8040 0.9685 0.9845 0.9893 6.125 0.8061 0.9614 0.9833 0.9884

5.000 0.8224 0.9720 0.9863 0.9905 7.000 0.8131 0.9631 0.9841 0.9890
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Table A.2: The proportion of the total variation explained by the CS chart for OC

Model (b)

δ2 = 0 δ1 = 0

δ1 K = 1 K = 2 K = 3 K = 4 δ2 K = 1 K = 2 K = 3 K = 4

0.625 0.7519 0.9453 0.9727 0.9816 0.875 0.7507 0.9441 0.9716 0.9815

1.250 0.7502 0.9433 0.9706 0.9814 1.750 0.7495 0.9422 0.9697 0.9813

1.875 0.7470 0.9395 0.9671 0.9813 2.625 0.7483 0.9407 0.9682 0.9814

2.500 0.7431 0.9343 0.9626 0.9813 3.500 0.7460 0.9387 0.9665 0.9813

3.125 0.7372 0.9279 0.9585 0.9814 4.375 0.7450 0.9370 0.9649 0.9813

3.750 0.7311 0.9204 0.9570 0.9816 5.250 0.7443 0.9354 0.9635 0.9814

4.375 0.7246 0.9116 0.9569 0.9818 6.125 0.7431 0.9335 0.9621 0.9814

5.000 0.7168 0.9017 0.9571 0.9820 7.000 0.7406 0.9315 0.9607 0.9814

Table A.3: The proportion of the total variation explained by the CS chart for OC

Model (c)

δ2 = 0 δ1 = 0

δ1 K = 1 K = 2 K = 3 K = 4 δ2 K = 1 K = 2 K = 3 K = 4

0.625 0.7579 0.9468 0.9735 0.9820 0.875 0.7675 0.9484 0.9740 0.9827

1.250 0.7745 0.9495 0.9743 0.9832 1.750 0.7790 0.9504 0.9746 0.9836

1.875 0.7982 0.9537 0.9758 0.9850 2.625 0.7903 0.9522 0.9753 0.9844

2.500 0.8227 0.9585 0.9778 0.9870 3.500 0.8010 0.9543 0.9761 0.9853

3.125 0.8473 0.9635 0.9801 0.9888 4.375 0.8102 0.9560 0.9768 0.9860

3.750 0.8697 0.9683 0.9825 0.9905 5.250 0.8182 0.9576 0.9775 0.9866

4.375 0.8887 0.9727 0.9847 0.9919 6.125 0.8272 0.9594 0.9782 0.9873

5.000 0.9051 0.9764 0.9867 0.9931 7.000 0.8334 0.9607 0.9788 0.9877

121



A.2 Tables of Control Limits of the

Multivariate Sign Shewhart Chart

Table A.4: The control limits of the MSS chart under various type-I error rate α and

dimension p for subgroup size n = 5 and 10

n = 5 n = 10

p \ α 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

2 4.5389 5.7682 6.7792 7.7785 4.5715 5.8551 7.0586 8.5575

3 6.0667 7.3357 8.5102 9.7727 6.1737 7.6045 8.9379 10.5843

4 7.5077 8.8700 10.0660 11.5485 7.6566 9.1953 10.6565 12.4936

5 8.8922 10.3998 11.6049 13.0823 9.0830 10.7347 12.2848 14.2150

6 10.2713 11.7759 13.2359 14.8293 10.4537 12.2223 13.8789 15.9152

7 11.5540 13.2178 14.7163 16.3313 11.8151 13.6604 15.3782 17.4833

8 12.8584 14.5475 16.0664 17.9817 13.1033 15.0439 16.8603 19.0399

9 14.1725 15.8923 17.5245 19.3744 14.4277 16.4375 18.2856 20.5399

10 15.4006 17.2440 18.9378 20.8904 15.7302 17.8252 19.7704 22.1752

11 16.6419 18.5921 20.3916 22.4674 16.9885 19.1807 21.1643 23.6199

12 17.9034 19.8679 21.5413 23.7267 18.2477 20.4850 22.5448 25.0914

13 19.1541 21.1886 22.9394 25.2508 19.4842 21.8235 23.9474 26.5164

14 20.3148 22.4179 24.3059 26.5638 20.7035 23.0850 25.2360 27.8857

15 21.5662 23.6894 25.6323 27.8837 21.9343 24.3785 26.5912 29.3195

16 22.8057 25.0329 27.0073 29.4227 23.1556 25.6759 27.9395 30.6781

17 23.9828 26.2942 28.3212 30.8493 24.3848 26.9657 29.3021 32.1036

18 25.0949 27.4015 29.3765 31.8791 25.6196 28.2124 30.6244 33.5328

19 26.2793 28.6728 30.8581 33.3985 26.7922 29.4739 31.9594 34.8218

20 27.4470 29.8996 32.0873 34.7946 27.9576 30.6992 33.1977 36.2590

25 33.3205 36.0910 38.4579 41.5408 33.9202 36.8936 39.6033 42.9360

30 39.1625 42.0398 44.6561 47.8261 39.7118 42.9243 45.8312 49.3391
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Table A.5: The control limits of the MSS chart under various type-I error rate α and

dimension p for subgroup size n = 15 and 20

n = 15 n = 20

p \ α 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

2 4.5948 5.8987 7.1748 8.8162 4.5749 5.9201 7.2021 8.8511

3 6.1961 7.6485 9.0442 10.8323 6.2061 7.7120 9.1500 11.0124

4 7.6904 9.2785 10.7962 12.6838 7.7131 9.3499 10.8945 12.8687

5 9.1237 10.8420 12.4617 14.5048 9.1686 10.9125 12.5810 14.6331

6 10.5325 12.3693 14.0671 16.1757 10.5595 12.4142 14.1588 16.3678

7 11.8915 13.8148 15.5928 17.7889 11.9041 13.8440 15.6789 17.9441

8 13.2105 15.2424 17.1085 19.4374 13.2336 15.2844 17.1981 19.6085

9 14.4891 16.5736 18.4977 20.9268 14.5462 16.6549 18.6058 21.1165

10 15.8339 17.9918 19.9934 22.4393 15.8702 18.0531 20.1194 22.6562

11 17.0645 19.3292 21.4278 23.9792 17.1307 19.4354 21.5705 24.1854

12 18.3266 20.6495 22.7847 25.4407 18.3880 20.7335 22.9135 25.6144

13 19.5746 21.9864 24.1762 26.8358 19.6605 22.1047 24.3477 27.1126

14 20.8375 23.2869 25.5302 28.3439 20.8902 23.3543 25.6411 28.4310

15 22.0739 24.5764 26.8830 29.7576 22.0950 24.6778 27.0605 29.9846

16 23.2740 25.8547 28.2195 31.1366 23.3689 26.0200 28.4325 31.3664

17 24.4967 27.1260 29.5482 32.4618 24.6034 27.2845 29.7590 32.7777

18 25.7506 28.4538 30.9518 33.9521 25.8153 28.5557 31.0746 34.1523

19 26.9336 29.6845 32.2148 35.3386 27.0267 29.8468 32.3885 35.5418

20 28.1275 30.9316 33.4771 36.6063 28.1868 31.0855 33.6976 36.9528

25 34.0688 37.1609 40.0127 43.3410 34.1323 37.2538 40.0952 43.5510

30 39.8844 43.1692 46.1795 49.8073 39.9551 43.3526 46.4096 50.1125
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Table A.6: The control limits of the MSS chart under various type-I error rate α and

dimension p for subgroup size n = 25 and 30

n = 25 n = 30

p \ α 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

2 4.5969 5.9323 7.2532 9.0101 4.5758 5.9259 7.2485 9.0051

3 6.2078 7.7049 9.1790 11.0241 6.2331 7.7519 9.2297 11.1513

4 7.7203 9.3569 10.9231 12.8965 7.7342 9.3907 10.9716 13.0132

5 9.1614 10.9274 12.6019 14.7518 9.1799 10.9619 12.6337 14.7992

6 10.5650 12.4407 14.2176 16.4556 10.5954 12.5019 14.2797 16.5167

7 11.9317 13.9013 15.7464 18.0505 11.9504 13.9441 15.8339 18.1980

8 13.2761 15.3493 17.2716 19.6415 13.2920 15.3580 17.2825 19.7480

9 14.5949 16.7419 18.7153 21.1827 14.5837 16.7397 18.7789 21.3008

10 15.8750 18.1014 20.2147 22.8614 15.9003 18.1677 20.2380 22.8513

11 17.1554 19.4623 21.5732 24.2315 17.1565 19.5131 21.6699 24.3546

12 18.4181 20.8187 23.0376 25.8133 18.4289 20.8098 23.0430 25.8060

13 19.7097 22.1626 24.4559 27.2530 19.7085 22.1698 24.4997 27.2885

14 20.8986 23.4305 25.7247 28.6052 20.9408 23.4863 25.8037 28.7288

15 22.1728 24.7444 27.1174 30.1143 22.1892 24.7839 27.1377 30.1685

16 23.3560 26.0232 28.4791 31.4578 23.3953 26.0618 28.5017 31.4997

17 24.6418 27.3516 29.8263 32.8996 24.6458 27.3835 29.8989 32.9755

18 25.8307 28.5542 31.1184 34.2296 25.8474 28.6315 31.2225 34.3444

19 27.0128 29.8253 32.4208 35.5711 27.0559 29.9278 32.5072 35.7386

20 28.2325 31.1411 33.7572 36.9613 28.2953 31.2305 33.8721 37.1395

25 34.1595 37.3272 40.2456 43.6676 34.2010 37.3909 40.2615 43.7520

30 40.0298 43.4266 46.5425 50.3403 40.0452 43.5088 46.6283 50.3244
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A.3 Table of Control Limits of the Multivariate

Sign EWMA Chart

Table A.7: The control limits of the multivariate sign EWMA chart for p = 2

λ \ ARL0 200 370 500

0.4 6.009 6.276 6.390

0.2 7.831 8.576 8.904

0.1 8.043 9.183 9.716

0.05 7.225 8.605 9.265

0.025 5.895 7.399 8.126

125



A.4 The Results of the Type-I and Type-II

Error Study of the Wine Data

Table A.8: The type-I and type-II error rates for size 20

Level 6 pI pII

index MSS T 2 T 2(mod) MSS T 2 T 2(mod)

1 0.0000 0.2818 0.0182 0.50 0.10 0.75

2 0.0091 0.3273 0.0091 0.60 0.15 0.80

3 0.0091 0.2727 0.0091 0.65 0.25 0.95

4 0.0000 0.3000 0.0182 0.50 0.00 0.75

5 0.0000 0.3091 0.0182 0.60 0.10 0.60

6 0.0000 0.3000 0.0182 0.60 0.00 0.75

7 0.0000 0.3000 0.0091 0.15 0.00 0.10

8 0.0000 0.2818 0.0091 0.65 0.05 0.75

9 0.0000 0.3000 0.0182 0.65 0.05 0.60

Level 5 pI pII

1 0.0000 0.3000 0.0182 0.50 0.00 0.50

2 0.0000 0.3000 0.0182 0.45 0.00 0.55

3 0.0000 0.3000 0.0182 0.40 0.00 0.20

4 0.0000 0.3000 0.0091 0.65 0.00 0.60

5 0.0000 0.3000 0.0091 0.65 0.05 0.70

6 0.0000 0.3273 0.0182 0.70 0.25 0.85

7 0.0000 0.3000 0.0182 0.40 0.00 0.70

8 0.0000 0.3000 0.0182 0.40 0.00 0.65

9 0.0000 0.3000 0.0091 0.15 0.00 0.50
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A.5 The Proportion of the Total Variation

Explained by the SMSS Chart of

Simulations in Section 5.3.1

Table A.9: The proportion of the total variation explained by the SMSS chart

for OC Model (a) and (b)

Model (a) Model (b)

δ K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

0.6 0.9504 0.9800 0.9879 0.9936 0.9516 0.9803 0.9881 0.9937

1.2 0.9491 0.9802 0.9880 0.9936 0.9537 0.9811 0.9886 0.9939

1.8 0.9468 0.9804 0.9881 0.9937 0.9566 0.9823 0.9893 0.9943

2.4 0.9439 0.9806 0.9882 0.9938 0.9600 0.9837 0.9902 0.9948

3.0 0.9405 0.9810 0.9885 0.9939 0.9638 0.9852 0.9911 0.9953

Table A.10: The proportion of the total variation explained by the SMSS

chart for OC Model (c) and (d)

Model (c) Model (d)

δ K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

1.4 0.9495 0.9801 0.9880 0.9936 0.9528 0.9808 0.9884 0.9938

1.8 0.9479 0.9803 0.9880 0.9937 0.9552 0.9817 0.9889 0.9941

2.2 0.9457 0.9805 0.9882 0.9937 0.9578 0.9828 0.9896 0.9945

2.6 0.9432 0.9807 0.9883 0.9938 0.9604 0.9839 0.9902 0.9948

3.0 0.9407 0.9809 0.9884 0.9939 0.9634 0.9851 0.9909 0.9952

127



Table A.11: The proportion of the total variation explained by the SMSS chart for OC

Model (e)

δ > 0 δ < 0

δ K = 2 K = 3 K = 4 K = 5 δ K = 2 K = 3 K = 4 K = 5

1.143 0.9509 0.9800 0.9879 0.9936 0.875 0.9509 0.9800 0.9879 0.9936

1.333 0.9510 0.9800 0.9879 0.9936 0.750 0.9510 0.9800 0.9879 0.9936

1.600 0.9509 0.9800 0.9879 0.9936 0.625 0.9509 0.9800 0.9879 0.9936

2.000 0.9508 0.9800 0.9879 0.9936 0.500 0.9508 0.9800 0.9879 0.9936
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Appendix B

B.1 ARL Calculation of The Combined EWMA

Chart

An approximation of the ARL of the CE chart can be obtained via approximating

the properties of the continuous-state two-dimensional Markov chain {(W0,i,W1,i, i =

0, 1, · · · )} by a two-dimensional Markov chain with discrete-state space. By the

independency of the T 2
0 and T 2

1 statistics as well as the W0,i and W1,i, the two-

dimensional chain can be described by two one-dimensional chains, one for each

individual EWMA chart. Following Morais and Pacheco (2000) and others, the

Markovian ARL approximation is introduced as follows.

First, dividing the in-control interval Cl = (0, Ll) into v − 1 subintervals with

equal range, l = 0, 1, where L0 and L1 are defined in equations (3.9) and (3.10),

respectively. That is, for each subinterval Ej = (ej, ej+1), where ej = Ll(j−1)/(v−

1), j = 1, . . . , v. Define the absorbing state of each chain as (−∞, 0) ∪ (Ll,∞)

for each l. Then an approximation of the probability transition matrix of each

individual Markov chain is

Pl(δ) =

 Ql(δ) [Iv−1 −Qi(δ)]× 1v−1

0′
v−1 1

 ,
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where 1v−1 and 0v−1 are vectors of ones and zeros with dimension v−1, respectively,

Iv−1 is the identity matrix with rank v − 1, δ is the vector of mean difference

between IC and OC cases, and the matrix Ql(δ) has entries given by

ql,jk = P

{
Wl,i ∈ Ej

∣∣Wl,i−1 =
ek + ek+1

2
, δ

}
.

Under the normality assumption, the T 2
0 and T 2

1 follow the non-central χ2 distri-

bution with degrees of freedom K and n − K and the non-centrality parameters

δ′P0Λ
−1
0 P ′

0δ and δ′P1Λ
−1
1 P ′

1δ, respectively, where P0, P1, Λ0, and Λ1 are given

in Section 3.2. Therefore, the entries of Ql(δ) are of the form

ql,jk = Fd(aj,k+1)− Fd(aj,k),

where

aj,k =
Ll

λ(v − 1)

(
(k − 1)− (1− λ)(j − 0.5)

)
,

j, k = 1, . . . , v − 1,

and Fd is the distribution function of χ2 distribution with degrees of freedom d,

and d = K if l = 0, n−K if l = 1.

Let RLα
0 (δ), RLβ

1 (δ), and RLα,β
CE(δ) denote the run length of the T 2

0 , T
2
1 , and

CE charts, respectively, conditional on δ and the initial values of W0,0 and W1,0,

which belong to the transient states Eα and Eβ, respectively. Define pα to be a

vector with one at the position α and zeros at the rest, and pβ similarly. Then the

survival function of RLα
0 , RLβ

1 , and RLα,β
CE can be approximated by

FRLα
0 (δ)

(s) = P
[
RLα

0 (δ) > s
]

=

 1, if s < 1

p′
α ×

[
Q0(δ)

][s] × 1v−1, if s ≥ 1

FRLβ
1 (δ)

(s) = P
[
RLβ

1 (δ) > s
]

=

 1, if s < 1

p′
β ×

[
Q1(δ)

][s] × 1v−1, if s ≥ 1
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FRLα,β
CE(δ)(s) = P

[
RLα,β

CE(δ) > s
]

= P
[
min{RLα

0 (δ), RLβ
1 (δ)} > s

]
= FRLα

0 (δ)
(s)× FRLβ

1 (δ)
(s) for −∞ < s <∞,

where [s] denotes the integer part of s. Finally, the approximations of the ARLs

of the T 2
0 , T

2
1 , and CE charts are given by

ARLT 2
0
(δ) =

∞∑
s=0

FRLα
0 (δ)

(s)

= p′
α ×

[
Iv−1 −Q0(δ)

]−1 × 1v−1,

ARLT 2
1
(δ) =

∞∑
s=0

FRLβ
1 (δ)

(s)

= p′
β ×

[
Iv−1 −Q1(δ)

]−1 × 1v−1,

ARLCE(δ) =
∞∑
s=0

FRLα
0 (δ)

(s)× FRLβ
1 (δ)

(s).

Note that the number of partition of the in-control interval, v − 1, should be odd.

Moreover, one should choose a larger v for the wider range of the in-control interval.

In our simulations and real case studies, v is chosen to be 52 for the T 2
0 part of the

CE chart, and 102 for the T 2
1 part.
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