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Study of pump probe process in hydrogen atom

Student : Yu-Shu Cheng Advisor : Tsin-Fu Jiang

Institute of Physics
National Chiao Tung University

Abstract

This thesis studies theoretically the electron wave packet generated
by an attosecond pulse train (APT) which is then probed with a time-
delayed laser pulse. The APT creates an excited state and a continuum
electron wave packet. By ionizing the excited state with an IR, a delayed
new continuum electron wave packet is created. The interference of the
wave packets from the two paths,asreflected in'angle-resolved
photoelectron spectra, is analyzed analytically. Using the analytical
expressions, we examine the-possibility of retrieving information on the
electron wave packet generated by the APT.
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1. INTRODUCTION

Attosecond pulse trains (APT) in the extreme ultraviolet (XUV)
region have been produced in the process of high-order harmonic
generation (HHG) by exposing rare gas atoms to intense femtosecond
infrared (IR) laser pulses. These APT’s can span a broad spectrum of
harmonics, each with a relatively narrow bandwidth, and in the time
domain, a serious of attosecond bursts of radiation. Thus APT is suitable
for initiating a dynamical atomic or molecular system which evolves
nontrivially in time, while retaining spectral sensitivity. To probe such a
wave packet in the laboratory, the most accessible tools are IR pulses
that were employed to generate the APT, or the second or third
harmonics of the IR. Such experiments have the advantage that the time
delay between the APT andthe.IR can be controlled with high precision—
at the level of attoseconds. Attoseconds is also the time scale needed in
order to probe the electron wave packet dynamics generated by the APT.

The technology for producing APT.or single attosecond pulses (SAP)
is still in its infancy. Thus-today only a_ handful of laboratories are
capable of performing APT+IR or SAP+IR experiments. ldeally, the goal of
a pump-probe experiment is to unravel the dynamic system after the
pump. Since therdynamic system evolves in time, the probe pulse has to
be applied at different delay times. —-While it may . be of interest to
observe how the results of the probe change with time delay, a more
interesting and challenging question is how_to retrieve information on
the dynamic system from such pump=probe measurements.



2. Two-path interference model

By exposing a hydrogen atom to such an APT, the 2p state will be
populated prominently among the excited states. In the meantime, the H
atom can be ionized to the continuum directly. Clearly the efficiency of
populating the 1s2p state and the width of the photoelectrons depend
on the pulse duration of the APT.

After the pulse is over, another laser will be applied to the target
again. Using laser the 2p state can be ionized by two-photon absorption
to interfere with the wave packet generated directly, then a
single-photon absorption will reach the same energy region.

The electron spectra.are expected to show interference due to the
two paths taken for the electron to reach the same kinetic energy after
the probe. Here «develop pump=probe model ‘below where the
time-delay dependence is given analytically.

For clarity,-we define t=0 to be at the center of the APT pulse.
The time difference between the APT and the IR is defined as the time
delay, T. The various parameters of the APT and the IR are clearly defined
in Fig. 2-1, about pulse defined in Fig. 2-2
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Fig.2-1. Pump-probe process
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Fig.2-2. Single attosecond pulse (SAP)
A= Full-Width-Half-Maximum (FWHM)

pulse duration T = 2.57757AvVn

n=4~6 herealways use n=6
. T T
time range=[—, ——]

2’ 2

H(t) = Hy + zEx (t) + zE; (t—1)

Consider the time evolution operator for the whole pump-probe
cycle, we can write the total evolution operator as

— ooy et Doy o &

Utotal —U(t+2,T Z)U(T K Z)U(Z' 2)

For convenience, wedefine the propagators

UXEU(%X,-%X ; E. (D) 1, = 2.57757Avn
ULEU(t+T7L,t-T7L ; EL(t-1)) 1, = 2.57757AvVn
(2.1)
Such that
Upprat =Upe (2 720y, 2.2)

Here Hg is the field-free Hamiltonian and e_( 2 Z)HO is represented in

terms of bound and continuum eigenstates |n> and eigenenergies €, of
Ho .

e_(r%%)HO:Zn |n > e (73 <n| (2.3)

3



Substituting this into (2.2), we can write the probability amplitude as a
function of the time-delay t for transition from initial bound state |i>to
an ionized state with photoelectron momentum p as

My; ()= ¥ i3 %) M{IME (2.4)

where Mr(l)i() and M;()El) are probability amplitudes for transitions

induced by XUV and IR pulses, respectively,

X)

M& = (n|Uy i)
Mg = (plULIn) (2.5)

Note that |p> is not a plane wave but a scattering wave which is an
eigenstate of Hy with .incoming “boundary conditions. From the
expression (2.4) we can' interpret the ionization process under the
pump-probe as a. coherent sum  of paths represented by the
intermediate states n.

Note that Mr(l)i() and M&) are independent of the delay-time t.

Once they are obtained, then we can generate the pump-probe

2
interferogram |Mpi(r)| as a function.of t.for.a given'momentum p by

using (2.4).
For hydrogen atom.in the ground state exposed to the APT

introduced previously, the transition amplitude Mr(l)i() for bound states

other than n=2p is negligible. Thus Mp;(T) can be approximately

written as

+ Zpe (2 ) MGME
(2.6)

where the second term on right-hand side represents the contribution

from the intermediate scattering states |p’>. Since energy and

momentum of a free electron are not changed by a laser field, the IR

introduces a Volkov phase only.

Thus

Y L S
My (=e” (75 2)2r ME) M%)
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M) = 8(p - Pexp| - [ (b -+ A2 d

L = |

N[~
A—— ol

(2.7)

dA(t)
dt

where Ei(t) = - and A is the vector potential describing the IR
laser pulse.

Using this approximation, M,; can be written as a coherent sum of
contributions from the two paths,

Mpi (t):e_i(T_%_%)EZp M(L) M(X) + e_i(t_%_%{)epe_i(TLep‘I'a'p‘l'B) MI())’(I)

p.2p " 2pji
(2.8)
where
a = [%A(dt and B = [2, A*(t)dt
2 2
(2.9)
Here the transition amplitudes M&z)p ,Mg?i, and Mg(i)can be

respectively obtained, for' example, by solving ' the corresponding
time-dependent Schroedinger equations..Introducing their magnitudes
and phases such that

Xx) _ id ST id O i
Mp’i =ape P, sz’i =a,,e*? , and Mp,zp = byape 2

(2.10)

the ionization probability density is expressed as

2 2
|Mpi(t)| = apz + azpsz,zp + Zapazpbp'zp COS[(Dp,Zp - (Ep - EZp)t]

(2.11)
with
Dpap = by = (€T, + & P+ B)-( by + @, 14 € — €p)( 3 +3)
(2.12)

2
Note that the sinusoidal T-dependence of |Mpi(r)| is explicitly shown

in (2.11).



3. Simpler models for the calculation of transition amplitudes

In the previous subsection, the effect of the pump beam is
obtained by solving the time-dependent Schrédinger equation (TDSE)
with a model potential for hydrogen. Since the XUV pump is not
exactly in the strong field regime, it is preferable that the scattering
amplitudes from the pump pulse be solved using perturbation theory.
However, the pump laser is nearly resonant with the 1s to 2p

X)

20 can't be solved by

transition, the scattering amplitude M

first-order perturbation theory . Instead, we solve it by the coupled
channel method. Starting
with the time-dependent Schrodinger equation (TDSE),

iC;—l: = [Hy+ € FEx (D]W(t) (3.1)
expand,

W) = a(t)e ™o, (r)+ b(t)e‘iEZPtcpzp (1) (3.2)

where the transition amplitude Mg)i g azpeid’Zp = b(%x :

The two-state coupled equations can be solved numerically.
Solve detail by :
da

i = EOb(De 41 (1s[¢ - F{2p)

db : R
i = E(Da(t)et! € i) (2p|e - F|1s)

(3.3)
For linearly polarized light € = ¢

€'r= eo\/g—nYlo(F) r (3.4)

E(t) = E,, - f(t) - cos(wt + @) (3.5)
_21n2t2

f(t) = envelope, here always use gaussian =e 2

w= the carrier frequency

= the carrier envelope phase (CEP)

A=FWHM

{ar + ia;

b, +ib; ©=0 (3.6)



i(a, +id;) = E,, - f(t) - cos(wt)[b, + ib;]e (€2p€1s)t(1s|€ - ¥|2p)
i(b, +ib,) = E,, - f(t) - cos(wt)[a, + ia;]et €2p=€1)(2p|e - F|1s)
(3.7)

( 1u)t —1wt)

i(a, +id;) = E,, - f(t) - [b, + ib;]e (€2 ~€1)t (15| - F|2p)

— 2
( 1u)t —1wt) _
i(b, +ib;) = E,, - f(t) - > [a, + ia;]eTi(€2p €108 2p|e - F|1s)
(3.8)
w - (e2p—€15) * 0 : slowly varying in time
w + (e2p—€15) * 2w : fast charge in time
With Rotating wave approximation (RWA)
drop the fast oscillating termkeep the slowly.varying term.
E :
i(a, +id,) » 7”‘ f()=iby)etilor(@pe)lt (3512 - 72p)
=
i(b, + ib; )= 7‘“ - f(D)(a; +ia))e 1w(epre)lt (e - 7|1s)
(3.9)
Wy = €p €5 AW =W -Wwy = w - (€2p-€14) (3.10)
s/ .. Em . . . A D
i(a, +iay) = = f(t)(b, + ib;)(cos Awt + isin Awt) (1s|€ - r|2p)
=
. .. E. )
i(br + ibi) X - f(t)(a, +ia;)(cos Awt - isin Awt) (2p|€ - r|1s)
(3.11)
o .. Em . . . A D
a, +ia; = - f(t)(-ib, + b;)(cos Awt + isin Awt) (1s|€ - ¥|2p)
=

. . E. )
b, +ib; = - f(t)(-ia, + a;)(cos Awt - isin Awt) (2p|€ - F|1s)
(3.12)



fér=ETm-f(t)-( b, sin Awt+b; cos Awt)

a’11=ETm-f(t)-(—br cos Awt+bj sin Awt)

=1 (3.13)
br=7m-f(t)-(—ar sin Awt+a; cos Awt)
\ lz')r=ETm-f(t)-(—ar cos Awt-a; sin Awt)
ar (=e0)=1
assume () =0 (3.14)
l?r(_“)=0 .
br(_°°)=0
My = agpe'® = b(Z (3.15)

Two-state population history of thydrogen ground state to 2p state in
Fig. 3-1 and Fig. 3-2

A=3fs ; [=2.5TW/ cn™2
1 HHEHHHHHEEER = T g

Ils—i—

Ip
envelop of the pluse—#%—
n.8r
“g 0.6 —
?E
=
& 04+ —
D‘ y
0.2r
[ Loterrasmaeismmeons ! ! L 1 R et oottt
-400 =200 -200 -100 1] 100 200 300 400

time {an)

Fig.3-1. The red bar line is hydrogen ground state population history , the
green cross line is 2p state population history ,and the blue star line is
envelop of the pulse in 3fs FWHM and 2.5 TW/cm?



A=3fs ; [=03TWAZ

1 R T ¢ T T T
3 ls ——
] Ip
4 3 envelop of the pluse—%—
0.ar MPH—H—!—H—!—!—H—H—!—H—H—H+|—|—¢—|+
E 0.6 .
-
=
& 04+ —
o
0.2r g
[ Loterrasmaeismmeons ! 1 L 1 R et oot
-400 =200 -200 -100 1] 100 200 300 400

time {an)
Fig.3-2. The red bar line.is-hydrogen ground state population history, the
green cross line is 2p state population history ,and the blue star line is
envelop of the pulse in 3fs FWHM and 93 TW/ecm”

Although using different intensity , the result of two state
population after fluctuation will be similar..



4. Numerov method

For transition amplitudes MI()Xi) , and M& need calculate

p.2p
incoming scattering wave ‘P;,(F) , here using numerov method to solve.

Numerov's method is an efficient algorithm for solving second-order
differential equations of the form

& U0+ V) y (4.1)

using numerov method can find the relation:
h? 5h? h? h? .
(1 - _Vn+1) Yn+1 = (1 + —Vn+1] ZYn > (1 - Evn—l] V-1t E (Un+1 + 10Un+1 + Un—l) + O[h )

12 12

(4.2)
The continuum wave function Wi (r) then satisfies. the Schrédinger
equation

-2+ v - wi® =0 (4.3)

where the Couloumb potential in hydrogen atom v(r) = —
(no short-range v)

The incoming scattering wave-can be expanded in termsof partial
waves as

oo

1 1
Vi@ = =) D e Re (DY @Y™ ()
|

1=0
(4.4)
here o, is the Coulomb phase shift
y=—§ ;op =argl'(l+ 1 +1iy)
(4.5)

with the asymptotic nuclear charge z=1. R, is the energy normalized
radial wave function such that

10



JxREl (ORg (D) r?dr =6(E-E)
0

and has the asymptotic form

1

00 . I
Rg (r) — T [ sin kr - =7 yIn(2kr) + g

2
d_ul()_[1(1+1)

r2

For the Coulomb project consider-the-hygrogrn atom

w(r) =22y (e, ¢)

1 h2Kk?
Vi =-7 E=zr
d 10+1
0 = 42 - 2E] ()
ul(r = O) =0
h2
u;(r =h) = he 2.

the numerical result in Fig.4-1. Fig.4-2. .

11

- kz] u (1)

(4.6)

(4.7)

(4.8)

(4.9)
(4.10)

(4.11)

(4.12)



E=lev ; 1=0

T
Asvmptotic ———
0.4 K Mumerov ——

Brror —#—

E {1}

1] 20 40 &l a0 100
r (aun)

E=lev ; 1=0

0,00z T -
Asvmptotlc —H—
Mumerovw ——

0.00154
0.001

0.0005

R {1}

-0.0005%

-0.001

-0.0015

-0.002 : : :
Qa0 az0 040 Q40 950 100l

rofan)
Fig.4-1. Compare asymptotic form and Numerov method in 1lev [=0. The
Red bar line is using asymptotic form , green cross line is using numerov
method, and blue star line is error of Numerov minus asymptotic.

12



E=5%ev ; 1=0

T

3 Asvmptotic ———

0.4 FE Mumerov ——
Brror —#—

E {1}

0.0015 T T T T -
Asvmptotlc —+H—

Mumerov ——
eBripr —#—

0.001

0.0005

E {1}

-0.0005

-0.001 2

Pk

-0.0015% :
o0 020 040 0a0 oa0 100c

r (au)
Fig.4-2. Compare asymptotic form and Numerov method in 5ev |=0. The
Red bar line is using asymptotic form , green cross line is using numerov
method, and blue star line is error of Numerov minus asymptotic.

Form Fig.4-1. and Fig.4-2. can find when use higher E the numerov
method will quick match asymptotic forminr.
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5. First order time-depended perturbation to continuum

The ionization amplitudes of the pump pulse can be solved by
first-order perturbation theory. The transition amplitude to the

continuum states is calculated from Quantum Physics textbook :
Tx

. s _ _T_X — > A = 2
MO = i j dte Cs DD (Y (7)[e - Py (6)| by (7))
“x
2
(5.1)

where the incoming scattering wave ¥, can be found in Chapter 4.

2In2 o

with the gaussian E(t) = Eg ‘e 22 '  ¢cos(wt + ¢) the CEP phase ¢
can be set to 0, polarization € is along z-axis , the photoelectron energy

2
is €p = IpZI . The.ionization-probability density is shown in

Fig.2b, which is in good agreement with results from solving the TDSE.
For hydrogen from ground state to continuous state of incoming

boundary condition, for pulse in [—%‘,%‘]
then
TX
X —_
MO = - j dte i3 DE@(WS D¢ Flo, D)

2
(5.2)

keep the slowly varying term

Ix
2In2 2

N e 1
~ —i J- dte i(e;—ep)(t Z)Em Y t _Ee—lwt <w5(r)|€ . rlmls(r))

2
22,
_ (_1)21Em e [01-—(€p €1s)] f 2 dtel(e-cs—wt . o757 b, (pl’é-f"l(pls(F))

2In2
A2

a

(5.3)

14



x

2
1
_ (-1)'Ey ei[O’]_TTX(Ep_Els)] ) <p|'é . F"pls (?)) J dt ei(ep—€1s—w)t . e‘atz
X

2
2
(5.4)
ei(ep-€1s‘w)t . e—atz = exp{—[atz - i(ep_els - w)t]} (5-5)
2 2
= exp{- atZ _ i(ep_els _ w)t _ (Gp_€1:1 = (U) ] + (Gp_€1; - w) }
- . 2 2
= expl-[vae - 1(ep f/las w)] N (ep 61; 00) }
(5.6)

2
‘(ep‘els“*’) Tt

R AN ) R N

[t anz (ep-ets=w) 2’
Ml()),(l) — (_1)le1[01 ) (ep Gls)]Em m . @ 3In2 . <p|’e‘ . ?l('pls (f))

(5.7)

Ml()xi) _ (_1;lEm ei[ol—%x(ep—els)] ) (

1

- * =
(ble- o, ) = Y. Yo Re "0 @I @) EYf(r)'r'Rlo(r)Yé’rdedr

1=0 m=-1
(5.8)
use [ Ylelrln’*dQ = 8,6,
A 2 - 1 0 * 3
(ple-t|o, D) = §Y1 (Qk)fREO (r)Ryo(r) - r°dQdr
1 *
= ’EcoseijEo (r) Ry (r) - r3dQdr
(5.9)

Rgo solve by Numerov method
MS’? real and image term amplitudes and probability density in Fig. 5-1.

and Fig. 5-2.

15



amplitudes

W pi ; w=16.6eV ; I=75TW/ cm’2

2 T T T T T
_real part—+—
lmage part
1.5 1
i
1r F 4 B
T B
0.5F koY S 1
Fx | kR f‘d*%%
: # . + 01 ¥
= B [ \ [ | TP
0 M!"’H‘%% f J', i \ ; MM 4
D 5 L kgk‘; I 'I E" :;l .
V1O AS
:1_ +
-1 F ) _‘: —
.
1.5F 1
_2 1 1 1 1 1
1.5 2 2.5 3 3.5 4 4.5
Ek (a¥)

Fig. 5-1. The red bar line is MS,? real term amplitude and green cross is

MS’? image term amplitude;,3fs FWHM and 75TW/cm”

prob, density

M pl ; w=16.6eV ; I=75TW/ cm’2

2 T T T T N
pertubation——
1.5F f\i 4
f
i F JZ .
/ +
/ Y
+ \
£ ¥
4 3
0.5 / % T
/ 5
[1 ""::::.‘:::::.“"’/ . \"\\“‘.:::::':::::::::::::
1.5 2 1.5 3 3.5 4 4.5

Ek (e¥)

Fig. 5-2. The red bar line is M& probability density with photoelectron

pl

energy. The laser pulse use 3fs FWHM and 75TW/cm?
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With M( ) and Mgp)l obtained, the time evolution of the

electronic wave packet can be easily obtained. In an experiment, of
course the goal is to apply a probe pulse at different time delays from
which information about this wave packet can be uncovered. We note
that the whole electron wave packet actually includes the contribution
from the 1s part. However, the 1s state is energetically well separated
from the 2p and the continuum electrons, we can use a low-energy
probe pulse without perturbing the 1s part of the wave packet.

For the one-photon absorption by the probe pulse, first-order
perturbation theory gives

t+T7L
-i - —(e-TL - -
MY =i f dteiCeplt-(c 2)]< N rEL(t—r)|¢zp(r)>
=
(5.10)
( ) _21n2t2
M, 5, also with.the gaussian E(t) =<E, e 225 - cos (wt+ q)p) the

CEP phase @, can be set0, too. The polarization € is.also along z-axis.
For hydrogen from ground state to continuous state of incoming
boundary condition, for pulse:in [r - %,r + %L

Use the same method

gt /T[Az ~(epmep-v) s ~ = >
M]E)Lz)p _ (—1)1e1[°l L (ep ezp)+<pp]E T 8In2 -<p|e-r|(p2p(l‘)>

(5.11)
N * m * m 4n 0/ 0z 2
(bl oz, @) =Y. D [ R’ Y™ @)W @) [FHE -1 Rar V() - Pk
1=0 m=-1

(5.12)

. . 3 371 1 314 m V4t
YY@®Y(®) = Ecos2 0= E[§(3cos2 0—-1) +§] = E[g\/ngo —Yol

(5.13)

17



<p|€-F|<pzp(F)> = j%vg(ok) f Re" () Ryo(r) - r*ddr + j%vg(ok) f Reo” () Ryo(r) - r*dQdr

1 1
= /m (3cos? B — 1) f Rgz" (1) Ryg (r) - r*dQdr + E.f Rgo"(r) Ry (1) - rdQdr

(5.14)

R, and Ry, are also solve by Numerov method.

)
As well as , M;;

density in Fig. 5-3. and Fig. 5-4. .

real and image term amplitudes and probability

LM _plp ; w=6.7eV ; I=55TW cn"2

2 T T T T T T
real part ——
image part
1.5 B R
b g
1 ¥ f% ]
£ |
* f J \
0.5 £ 7 | x4 4 7
s gL [ A
¥ 1 | !

amplitudes
[
wn [ }
T T
gih
*,r**
——
4__—4r*~“+_—_*F

1r i i xE .
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Fig. 5-3. The red bar line is M;(),Lz)p real term amplitude and green cross is
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6. Results

When get the transition amplitudes M& - M® and MS’? ,than

p.2p " "2p,i’

2
combine to find |Mpi (r)| in Fig. 6-1. and Fig. 6-2.

=T + TLIZ
3-5 T T T T T T
. 100 pi 142 ——
' 500 2pi 142+1 10 p2p | 2
L IMpi 142 —%— |
2.50 -
B
g7 |
la=]
S 15t -
o
1_ .
0.5t -
1 mj? Hc bl

1.5 e oS 3 45 Ty 4.5 5
Ek (e¥)

2

Fig.6-1. Photoelectron energy spectrum |Mpi(r)| (blue star line)
. g8 . sacc ¥ K .

obtained by 6,=45°and time-delay T = i with |Mpi | (red bar line)

2
and |M(X) M%&) | (greencross line)

2p,i “p.2p
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T=TH/2 + TL/2 + 1

3.5 T T T T T T
| %0_pi|#3 ——
130 2pi |42+ L0 pdp | 42
Mpi |42 —%— |

(=]
b2 N

—
n

prob, density

Ek (e¥)

2

Fig.6-2. Photoelectron energy spectrum |Mpi(r)| (blue star line)
. o : o T . x)|?

obtained by 0,=45° and time-delay T.= ?+;+1 with |Mpi | (red bar

2
line) and |M(X) m& | (green cross line)

2pii p.2p
The interference in theangular. distribution ‘in. Fig.6-3. can be

understood from _the "angular momentum < components of the
photoelectrons.
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Ek=3.1eV
3.5 T T T T T

)
]

T
I:II:I

[ 5]
T
2i]

prob, density

Bk in BI
Fig.6-3. Angular distribution of photoelectron for a fixed energy €=3.1eV

at several delay-times. Here-t = %L + %‘ +Td so Td = %L + %X +1

For the narrow energy range where the electron yields are large, we
can expect all the'other parameters are nearly energy independent, thus
the peaks of the spectra occur-when

Dpop — (€p — €2p)T =207

where n is a positive or negative integer. This equation shows that the
peak shall follow a hyperbola with the peak shifts to smaller t for larger €.
Thus the hyperbola is tilted toward smaller t for larger € (and larger t for
smaller €). The tilt is more toward the horizontal axis as T increases.

These general features can be clearly seen in Fig.6-4. and Fig.6-5.
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Fig.6-5. Interferogram for fix time-delay T =%+%‘ and depend on

0, =[0,2m] .
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7. Conclusion
The model of pump-probe process using by pump and probe laser.

The pump process combination by two step. First, using laser for
bound-bound excitaion (from 1s to 2p),and second 1%-order
perturbation for bound (2p) to continuum state.

The probe pulse also have two effects. First, the continuous wave
packet is Volkov like, time-delay t=0 with Gaussia pulse. 1s2p + laser
calculated by 1*-order perturbation.

The interferogram show by hyperbola and peaks of the spectra
occur when @, - (€, - €3,)T = 2nm. , which in the ionization

probability density cosine term.
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Appendix
Atomic units

Atomic units (au) form a system of units convenient for atomic physics,
electromagnetism, and quantum electrodynamics, especially when the focus is on
the properties of electrons.

In au, the numerical values of the following four fundamental physical constants
are all unity by definition:

Electron mass :m, =1
Elementary charge el =1
reduced Planck's constant . h =1

(1) Unit of change = change of electron = |e| =1.602.x 10*° C
(2) Unit of mass = mass of electron =mg=9:109 x 103" kg

(3) Unit of length = radius of ground state

= 1'bohr
=0.53 x 10"’ m
=0.53A
(4) Unit of time = period of ground state electron orbiting
= Va—o = mh—; =242% 10" s

(5) Unit of velocity = speed of electron

e2

= — =22 10° cm/s

C
137.037

(6) Unit of angular frequency = Yo -41x10%s?

a

e2

(7) Unit of energy = - = 1 Hartree = 2 Rydberg = 27.2 eV

le]

(8) Unit of electric field = i 5.14 x 10° Volt/cm

2
. e 1
o fine structure constant= — =
hc 137.037

c: speed of light = 137.037
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Laser intensity in vacuum

(1) =time averaged laser intensity
- S yr2
= —(E%)

137.037 12

41 <E )

7.0192 x 10+ (E2) wW/cm?

E = : a.u
T A/7.0192x1016 7"

1la.u. (intensity)

1 Hartree
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