
 

 

國立交通大學 
 

物 理 研 究 所 

碩 士 論 文 
 

 

研究氫原子下的 pump probe 過程 

Study of pump probe process in hydrogen atom 

 

 

 

 

 

 

 

 

 

 

研 究 生：鄭玉書 

指導教授：江進福  教授 

 

 

 

中 華 民 國 九 十 九 年 七 月



 

 

研究氫原子下的 pump probe 過程 

Study of pump probe process in hydrogen atom 

 

 

研 究 生：鄭玉書                   Student：Yu-Shu Cheng 

指導教授：江進福 教授              Advisor：Tsin-Fu Jiang 

 

 

國 立 交 通 大 學 

物 理 研 究 所 

碩 士 論 文 

 

 

A Thesis 

 

Submitted to institute of Physics 

College of Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of 

Master 

in 

Physics 

 

July 2010 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國九十九年七月



 

I 
 

研究氫原子下的 pump probe 過程 

 

研究生：鄭玉書                              指導教授：江進福 

國立交通大學物理研究所碩士班 

摘要 

    本篇論文研究以時間延遲的雷射脈衝研究電子波包。通過紅外雷

射游離激發態，脈衝雷射產生激發態和的電子波包，且在延遲下產生

新的連續的電子波包。從這二個步驟，分析分析波包的干涉，反映角

度解析的光電子光譜。使用分析表示，來探索信息的可能性關於雷射

脈衝所引起的電子波包。 
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Study of pump probe process in hydrogen atom 

 

Student : Yu-Shu Cheng                 Advisor : Tsin-Fu Jiang 

 

 

Institute of Physics 

National Chiao Tung University 

 

Abstract 

 

    This thesis studies theoretically the electron wave packet generated 

by an attosecond pulse train (APT) which is then probed with a time- 

delayed laser pulse. The APT creates an excited state and a continuum 

electron wave packet. By ionizing the excited state with an IR, a delayed 

new continuum electron wave packet is created. The interference of the 

wave packets from the two paths, as reflected in angle-resolved 

photoelectron spectra, is analyzed analytically. Using the analytical 

expressions, we examine the possibility of retrieving information on the 

electron wave packet generated by the APT. 
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1. INTRODUCTION 
 

Attosecond pulse trains (APT) in the extreme ultraviolet (XUV) 

region have been produced in the process of high-order harmonic 

generation (HHG) by exposing rare gas atoms to intense femtosecond 

infrared (IR) laser pulses. These APT’s can span a broad spectrum of 

harmonics, each with a relatively narrow bandwidth, and in the time 

domain, a serious of attosecond bursts of radiation. Thus APT is suitable 

for initiating a dynamical atomic or molecular system which evolves 

nontrivially in time, while retaining spectral sensitivity. To probe such a 

wave packet in the laboratory, the most accessible tools are IR pulses 

that were employed to generate the APT, or the second or third 

harmonics of the IR. Such experiments have the advantage that the time 

delay between the APT and the IR can be controlled with high precision– 

at the level of attoseconds. Attoseconds is also the time scale needed in 

order to probe the electron wave packet dynamics generated by the APT.  

The technology for producing APT or single attosecond pulses (SAP) 

is still in its infancy.  Thus today only a handful of laboratories are 

capable of performing APT+IR or SAP+IR experiments. Ideally, the goal of 

a pump-probe experiment is to unravel the dynamic system after the 

pump. Since the dynamic system evolves in time, the probe pulse has to 

be applied at different delay times.  While it may be of interest to 

observe how the results of the probe change with time delay, a more 

interesting and challenging question is how to retrieve information on 

the dynamic system from such pump-probe measurements.   
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2. Two-path interference model 

 

By exposing a hydrogen atom to such an APT, the 2p state will be 

populated prominently among the excited states. In the meantime, the H 

atom can be ionized to the continuum directly. Clearly the efficiency of 

populating the 1s2p state and the width of the photoelectrons depend 

on the pulse duration of the APT. 

 

After the pulse is over, another laser will be applied to the target 

again. Using laser the 2p state can be ionized by two-photon absorption 

to interfere with the wave packet generated directly, then a 

single-photon absorption will reach the same energy region. 

 

The electron spectra are expected to show interference due to the 

two paths taken for the electron to reach the same kinetic energy after 

the probe. Here develop pump-probe model below where the 

time-delay dependence is given analytically. 

 

For clarity, we define t=0 to be at the center of the APT pulse.   

The time difference between the APT and the IR is defined as the time 

delay, τ. The various parameters of the APT and the IR are clearly defined 

in Fig. 2-1 , about pulse defined in Fig. 2-2  

 

 
Fig.2-1. Pump-probe process 
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Fig.2-2. Single attosecond pulse (SAP) 

Δ= Full-Width-Half-Maximum (FWHM) 

pulse duration τ = 2.57757Δ n 

n=4~6 here always use n=6 

time range= 
τ

2
, −

τ

2
  

H t = H0 + zEX t + zEL(t − τ) 

      

Consider the time evolution operator for the whole pump-probe 

cycle, we can write the total evolution operator as 

Utotal =U(τ+
τL

2
,τ-

τL

2
)U(τ-

τL

2
, 

τx

2
)U(

τx

2
,- 

τx

2
) 

For convenience, we define the propagators 

Ux≡U(
τx

2
,- 

τx

2
 ; Ex t )     τx = 2.57757Δ n   

UL≡U(τ+
τL

2
,τ-

τL

2
 ; EL t − τ )  τL = 2.57757Δ n 

     (2.1) 

Such that 

                   Utotal =ULe
− τ−

τL
2

−
τx
2

 H0 Ux  (2.2) 

Here H0 is the field-free Hamiltonian and e
− τ−

τL
2

−
τx
2

 H0  is represented in 

terms of bound and continuum eigenstates |n> and eigenenergies ϵn of 

H0 : 

              e
− τ−

τL
2

−
τx
2

 H0 = |n >n e
− τ−

τL
2

−
τx
2

 ϵn < 𝑛| (2.3) 
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Substituting this into (2.2), we can write the probability amplitude as a 

function of the time-delay τ for transition from initial bound state |i> to 

an ionized state with photoelectron momentum p as 

                M𝐩i(τ)=  e
−i τ−

τL
2

−
τx
2

 ϵn
n M𝐩n

(L)
Mni

(X)
 (2.4) 

where Mni
(X)

 and M𝐩n
(L)

 are probability amplitudes for transitions 

induced by XUV and IR pulses, respectively, 

Mni
(X)

=  n UX i  

                       M𝐩n
(L)

=  𝐩 UL n  (2.5) 

Note that |p> is not a plane wave but a scattering wave which is an 

eigenstate of H0 with incoming boundary conditions. From the 

expression (2.4) we can interpret the ionization process under the 

pump-probe as a coherent sum of paths represented by the 

intermediate states n. 

Note that Mni
(X)

 and M𝐩n
(L)

 are independent of the delay-time τ.  

Once they are obtained, then we can generate the pump-probe 

interferogram  M𝐩i(τ) 
𝟐

as a function of τ for a given momentum p by 

using (2.4). 

For hydrogen atom in the ground state exposed to the APT 

introduced previously, the transition amplitude Mni
(X)

 for bound states 

other than n=2p is negligible. Thus M𝐩i(τ)  can be approximately 

written as 

     M𝐩i(τ)=e
−i τ−

τL
2

−
τx
2

 ϵ2p  M𝐩,2p
(L)

M2p,i
(X)

+  e
−i τ−

τL
2

−
τx
2

 ϵ𝐩′
𝐩′ M𝐩𝐩′

(L)
M𝐩′i

(X)
  

 (2.6) 

where the second term on right-hand side represents the contribution 

from the intermediate scattering states |p’>. Since energy and 

momentum of a free electron are not changed by a laser field, the IR 

introduces a Volkov phase only. 

Thus 
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M𝐩𝐩′
(L)

≈ δ(𝐩 − 𝐩′)exp

 
 
 
 

−
i

2
 (𝐩 + 𝐀(t))2

τ
2

−
τ
2

dt

 
 
 
 

 

 (2.7) 

where 𝐄𝐋 t = −
d𝐀(t)

dt
 and A is the vector potential describing the IR 

laser pulse. 

Using this approximation, M𝐩i  can be written as a coherent sum of 

contributions from the two paths, 

M𝐩i(τ)=e
−i τ−

τL
2

−
τx
2

 ϵ2p  M𝐩,2p
(L)

M2p,i
(X)

+ e
−i τ−

τL
2

−
τx
2

 ϵ𝐩e−i(τL ϵ𝐩+𝛂∙𝐩+β) M𝐩,i
(X)

 

 (2.8) 

where 

𝛂 =  𝐀 t dt
τ

2

−
τ

2

 and β =  A2 t dt
τ

2

−
τ

2

 

 (2.9) 

Here the transition amplitudes M𝐩,2p
(L)

 ,M2p,i
(X)

, and M𝐩,i
(X)

can be 

respectively obtained, for example, by solving the corresponding 

time-dependent Schröedinger equations. Introducing their magnitudes 

and phases such that 

M𝐩,i
(X)

= a𝐩eiφ𝐩  , M2p,i
(X)

= a2p eiφ2p  , and M𝐩,2p
(L)

= b𝐩,2peiϕ𝐩,2p  , 

 (2.10) 

 

the ionization probability density is expressed as 

 M𝐩i(τ) 
𝟐

= a𝐩
2 + a2p

2b𝐩,2p
2 + 2a𝐩a2pb𝐩,2p cos Φ𝐩,2p − (ϵ𝐩 − ϵ2p)τ  

 (2.11) 

with 

Φ𝐩,2p = φ𝐩 − (ϵ𝐩τL + 𝛂 ∙ 𝐩 + β)-( φ2p + ϕ𝐩,2p )+( ϵ𝐩 − ϵ2p )( 
τL

2
+

τx

2
) 

 (2.12) 

Note that the sinusoidal τ-dependence of  M𝐩i(τ) 
𝟐

 is explicitly shown 

in (2.11). 
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3. Simpler models for the calculation of transition amplitudes 

 

In the previous subsection, the effect of the pump beam is 

obtained by solving the time-dependent Schrödinger equation (TDSE) 

with a model potential for hydrogen. Since the XUV pump is not 

exactly in the strong field regime, it is preferable that the scattering 

amplitudes from the pump pulse be solved using perturbation theory. 

However, the pump laser is nearly resonant with the 1s to 2p 

transition, the scattering amplitude M2p,i
(X)

can’t be solved by 

first-order perturbation theory . Instead, we solve it by the coupled 

channel method. Starting 

with the time-dependent Schrödinger equation (TDSE), 

                  i
dΨ

dt
=  H0 + ϵ ∙ r EX t  Ψ(t) (3.1) 

expand, 

             Ψ t = a t e−iϵ1stϕ1s
 r + b t e−iϵ2ptϕ2p

 r  (3.2) 

where the transition amplitude M2p,i
(X)

≡ a2peiφ2p = b(
𝜏𝑋

2
) .  

The two-state coupled equations can be solved numerically. 

Solve detail by : 

i
da

dt
= E t b(t)e−i(ϵ2p −ϵ1s )t 1s ϵ ∙ r  2p  

i
db

dt
= E t a(t)e+i(ϵ2p −ϵ1s )t 2p ϵ ∙ r  1s  

 (3.3) 

For linearly polarized light ϵ = ϵ0 

ϵ ∙ r = ϵ0 
4π

3
Y1

0(r ) ∙r (3.4) 

E t = Em ∙ f(t) ∙ cos ωt + ϕ  (3.5) 

f t = envelope , here always use gaussian = e
−

2ln2
Δ2 t2

 

ω= the carrier frequency 

ϕ= the carrier envelope phase (CEP) 

Δ=FWHM 

 
ar + iai

br + ibi

    ϕ = 0 (3.6) 
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⟹  
i(a r + iai ) = Em ∙ f(t) ∙ cos(ωt) br + ibi e

−i(ϵ2p −ϵ1s )t 1s ϵ ∙ r  2p 

i(br + ibi) = Em ∙ f(t) ∙ cos(ωt) ar + iai e
+i(ϵ2p −ϵ1s )t 2p ϵ ∙ r  1s 

  

 (3.7) 

⟹

 
 

 i(a r + iai ) = Em ∙ f(t) ∙
 eiωt + e−iωt 

2
 br + ibi e

−i(ϵ2p −ϵ1s )t 1s ϵ ∙ r  2p 

i(br + ibi) = Em ∙ f(t) ∙
 eiωt + e−iωt 

2
 ar + iai e

+i(ϵ2p −ϵ1s )t 2p ϵ ∙ r  1s 

  

 (3.8) 

ω −  ϵ2p−ϵ1s ≈ 0        ∶ slowly  varying  in  time 

ω +  ϵ2p−ϵ1s ≈ 2ω     ∶  fast  charge  in  time 

With Rotating wave approximation (RWA)  

drop the fast oscillating term keep the slowly varying term. 

⟹  
i a r + iai  ≈

Em

2
∙ f t  br + ibi e+i ω− ϵ2p −ϵ1s  t   1s ϵ ∙ r  2p 

i b r + ib i ≈
Em

2
∙ f t  ar + iai e−i ω− ϵ2p −ϵ1s  t   2p ϵ ∙ r  1s 

  

 (3.9) 

 

 

ω21 ≡ ϵ2p−ϵ1s    ∆ω ≡ ω − ω21 = ω − (ϵ2p−ϵ1s) (3.10) 

 

⟹  
i a r + iai  ≈

Em

2
∙ f t  br + ibi  cos ∆ωt + i sin ∆ωt   1s ϵ ∙ r  2p 

i b r + ib i ≈
Em

2
∙ f t  ar + iai  cos ∆ωt − i sin ∆ωt   2p ϵ ∙ r  1s 

  

 (3.11) 

 

⟹  
a r + iai ≈

Em

2
∙ f t  −ibr + bi  cos ∆ωt + i sin ∆ωt   1s ϵ ∙ r  2p 

b r + ib i ≈
Em

2
∙ f t  −iar + ai  cos ∆ωt − i sin ∆ωt   2p ϵ ∙ r  1s 

  

 (3.12) 
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⟹

 
 
 

 
 

a r =
E m

2
∙f t ∙     br sin ∆ωt+b i cos ∆ωt 

a i =
E m

2
∙f t ∙ −br cos ∆ωt+b i sin ∆ωt 

b r =
E m

2
∙f t ∙ −ar sin ∆ωt+ai cos ∆ωt 

b r =
Em

2
∙f t ∙ −ar cos ∆ωt−ai sin ∆ωt 

   (3.13) 

 

assume  

a r  −∞ =1
a i −∞ =0

b r  −∞ =0

b r  −∞ =0

  (3.14) 

 

M2p,i
(X)

≡ a2p eiφ2p = b(
𝜏𝑋

2
) (3.15) 

 

Two-state population history of hydrogen ground state to 2p state in  

Fig. 3-1 and Fig. 3-2 

 

 

 
 

Fig.3-1. The red bar line is hydrogen ground state population history , the 

green cross line is 2p state population history ,and the blue star line is   

envelop of the pulse in 3fs FWHM and 2.5 TW/cm2  
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Fig.3-2. The red bar line is hydrogen ground state population history , the 

green cross line is 2p state population history ,and the blue star line is   

envelop of the pulse in 3fs FWHM and 93 TW/cm2  

 

 

 

Although using different intensity , the result of two state 

population after fluctuation will be similar . 
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4. Numerov method 

For transition amplitudes  M𝐩,i
(X)

 , and M𝐩,2p
(L)

 need calculate 

incoming scattering wave Ψ𝐩
− r   , here using numerov method to solve. 

Numerov's method is an efficient algorithm for solving second-order 

differential equations of the form 

 

                      
d2y

dx2
= U x + V x ∙ y (4.1) 

 

using numerov method can find the relation: 

 

 1 −
h2

12
Vn+1 yn+1 =  1 +

5h2

12
Vn+1 2yn −  1 −

h2

12
Vn−1 yn−1 +

h2

12
 Un+1 + 10Un+1 + Un−1 + O h6  

 (4.2) 

The continuum wave function Ψ𝐤
− r   then satisfies the Schrödinger 

equation 

                     −
∇2

2
+ V r −

k2

2
 Ψ𝐤

− r  = 0 (4.3) 

where the Couloumb potential in hydrogen atom v r =
−1

r
 

(no short-range v) 

 

The incoming scattering wave can be expanded in termsof partial 

waves as 

Ψ𝐤
− r  =

1

 k
  ile−iσl REl (r)Yl

m Ωr Yl
m ∗

(

l

−l

∞

l=0

Ωk) 

 (4.4) 

here σl  is the Coulomb phase shift 

 

γ = −
Z

k
 ; σl = argΓ(l + 1 + iγ) 

 (4.5) 

 

with the asymptotic nuclear charge z=1. REl  is the energy normalized 

radial wave function such that 
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 REl (r)RE ′l(r)
∞

𝟎

r2dr = δ E − E′  

 (4.6) 

and has the asymptotic form 

REl (r)
    ∞    
    

1

r
 

2

πk
 sin  kr −

lπ

2
− γ ln 2kr + σl  

 (4.7) 

d2y

dx2
ul r =  

l l + 1 

r2
+

2mv r 

ℏ2
− k2 ul r  

 (4.8) 

 

For the Coulomb project consider the hygrogrn atom  

Ψ r =
ul r 

r
Yl

m θ, ϕ  (4.9) 

V r = −
1

r
   E =

ℏ2k2

2m
 (4.10) 

⟹
d2ul r 

dx2
=  

l l+1 

r2
+

2

r
− 2E ul r  (4.11) 

ul r = 0 = 0 

ul r = h = he−
h2

2  

 (4.12) 

 

the numerical result in Fig.4-1. ,Fig.4-2. . 
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Fig.4-1. Compare asymptotic form and Numerov method in 1ev l=0. The 

Red bar line is using asymptotic form , green cross line is using numerov 

method , and blue star line is error of Numerov minus asymptotic. 
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Fig.4-2. Compare asymptotic form and Numerov method in 5ev l=0. The 

Red bar line is using asymptotic form , green cross line is using numerov 

method , and blue star line is error of Numerov minus asymptotic. 

 

 

    Form Fig.4-1. and Fig.4-2. can find when use higher E the numerov 

method will quick match asymptotic form in r . 
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5. First order time-depended perturbation to continuum 

 

The ionization amplitudes of the pump pulse can be solved by 

first-order perturbation theory. The transition amplitude to the 

continuum states is calculated from Quantum Physics textbook : 

M𝐩,i
 X 

= −i  dt

𝜏𝑋
2

−
𝜏𝑋
2

e−i(ϵ1s−ϵ𝐩)(t−
𝜏𝑋
2

) Ψ𝐩
− r   ϵ ∙ r EX t  ϕ1s r    

 (5.1) 

where the incoming scattering wave Ψ𝐩
− can be found in Chapter 4. 

with the gaussian E t = ϵ Em ∙ e
−

2ln 2

Δ2 t2

∙ cos ωt + ϕ  the CEP phase ϕ 

can be set to 0 , polarization ϵ  is along z-axis , the photoelectron energy 

is ϵ𝐩 =
 𝐩 2

2
 .  The ionization probability density is shown in 

Fig.2b, which is in good agreement with results from solving the TDSE. 

For hydrogen from ground state to continuous state of incoming 

boundary condition, for pulse in  −
τx

2
,

τx

2
   

then 

M𝐩,i
 X 

= −i  dt

𝜏𝑋
2

−
𝜏𝑋
2

e−i(ϵ1s−ϵ𝐩)(t−
𝜏𝑋
2

)E t  Ψ𝐩
− r   ϵ ∙ r  ϕ1s

 r    

 (5.2) 

keep the slowly varying term 

≈ −i  dt

𝜏𝑋
2

−
𝜏𝑋
2

e−i(ϵ1s−ϵ𝐩)(t−
𝜏𝑋
2

)Em ∙ e
−

2ln2

Δ2 t2

∙
1

2
e−iωt  Ψ𝐩

− r  ϵ ∙ r ϕ1s
 r   

=
 −1 l Em

2
e

i σl−
𝜏𝑋
2

(ϵ𝐩−ϵ1s ) 
 dt

𝜏𝑋
2

−
𝜏𝑋
2

ei(ϵ𝐩−ϵ1s−ω)t ∙ e
−

2ln 2

Δ2 t2

∙  𝐩 ϵ ∙ r  ϕ1s
 r     

a ≡
2ln2

Δ2  

 (5.3) 
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=
 −1 lEm

2
e

i σl−
𝜏𝑋
2

(ϵ𝐩−ϵ1s ) 
∙  𝐩 ϵ ∙ r  ϕ1s

 r    dt

𝜏𝑋
2

−
𝜏𝑋
2

ei(ϵ𝐩−ϵ1s−ω)t ∙ e−at2
 

 (5.4) 

ei ϵ𝐩−ϵ1s−ω t ∙ e−at2
= exp − at2 − i ϵ𝐩−ϵ1s − ω t   (5.5) 

= exp  −  at2 − i ϵ𝐩−ϵ1s − ω t −
 ϵ𝐩−ϵ1s − ω 

2

a
 +

 ϵ𝐩−ϵ1s − ω 
2

a
  

= exp  −   at −
i ϵ𝐩−ϵ1s − ω 

 a
 

2

+
 ϵ𝐩−ϵ1s − ω 

2

a
  

 (5.6) 

M𝐩,i
 X 

=
 −1 lEm

2
e

i σl−
𝜏𝑋
2

(ϵ𝐩−ϵ1s ) 
∙  𝐩 ϵ ∙ r  ϕ1s

 r   ∙ e
− ϵ𝐩−ϵ1s−ω 

2

a ∙  
π

a
 

M𝐩,i
 X 

=  −1 le
i σl−

𝜏𝑋
2

(ϵ𝐩−ϵ1s ) 
Em

 
πΔ2

8ln2
∙ e

− ϵ𝐩−ϵ1s−ω 
2

Δ2

8ln2 ∙  𝐩 ϵ ∙ r  ϕ1s
 r    

 (5.7) 

 𝐩 ϵ ∙ r  ϕ1s
 r   =    REl

∗ r Yl
m ∗ Ωr Yl

m Ωk 

l

m=−l

∞

l=0

 
4π

3
Y1

0(r ) ∙ r ∙ R10 r Y0
0r2dΩdr 

 (5.8) 

use Yl
m Y

l′
m ′∗

dΩ = δll′δmm ′  

 𝐩 ϵ ∙ r  ϕ1s
 r   =  

1

3
Y1

0 Ωk  RE0
∗ r R10 r ∙ r3dΩdr 

                             =  
1

4π
cosθk  RE0

∗ r R10(r) ∙ r3dΩdr 

 (5.9) 

RE0 solve by Numerov method 

M𝐩,i
 X 

 real and image term amplitudes and probability density in Fig. 5-1. 

and Fig. 5-2. 
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Fig. 5-1. The red bar line is M𝐩,i
 X 

 real term amplitude and green cross is 

M𝐩,i
 X 

 image term amplitude , 3fs FWHM and 75TW/cm2  

 

Fig. 5-2. The red bar line is M𝐩,i
 X 

 probability density with photoelectron 

energy. The laser pulse use 3fs FWHM and 75TW/cm2 
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With M𝐩,i
(X)

 and M2p,i
(X)

 obtained, the time evolution of the 

electronic wave packet can be easily obtained. In an experiment, of 

course the goal is to apply a probe pulse at different time delays from 

which information about this wave packet can be uncovered. We note 

that the whole electron wave packet actually includes the contribution 

from the 1s part. However, the 1s state is energetically well separated 

from the 2p and the continuum electrons, we can use a low-energy 

probe pulse without perturbing the 1s part of the wave packet. 

 

    For the one-photon absorption by the probe pulse, first-order 

perturbation theory gives 

 

M𝐩,2p
(L)

= −i  dt

τ+
τL
2

τ−
τL
2

e
−i(ϵ2p −ϵ𝐩) t− τ−

𝜏𝐿
2

  
 Ψ𝐩

− r   ϵ ∙ r EL t − τ  ϕ
2p

 r    

 (5.10) 

M𝐩,2p
(L)

 also with the gaussian E t = ϵ Em ∙ e
−

2ln 2

Δ2 t2

∙ cos  ωt + ϕp  the 

CEP phase ϕp  can be set 0 , too. The polarization ϵ  is also along z-axis. 

For hydrogen from ground state to continuous state of incoming 

boundary condition, for pulse in  τ −
τL

2
, τ +

τL

2
  

Use the same method 

M𝐩,2p
(L)

=  −1 lei σl−
𝜏𝐿
2

 ϵ𝐩−ϵ2p  +ϕp  Em
 

πΔ2

8ln2
∙ e

− ϵ𝐩−ϵ2p −ω 
2

Δ2

8ln 2 ∙  𝐩 ϵ ∙ r  ϕ2p
 r    

 (5.11) 

 𝐩 ϵ ∙ r  ϕ2p
 r   =    REl

∗ r Yl
m ∗ Ωr Yl

m Ωk 

l

m=−l

∞

l=0

 
4π

3
Y1

0(r ) ∙ r ∙ R21 r Y1
0(r ) ∙ r2dΩdr 

 (5.12) 

Y1
0 r  Y1

0 r  =
3

4π
cos2 θ =

3

4π
 
1

3
 3cos2 θ − 1 +

1

3
 =

3

4π
 
4

3
 

π

5
Y2

0 +
 4π

3
Y0

0  

 (5.13) 
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 𝐩 ϵ ∙ r  ϕ2p
 r   =  

4

15
Y2

0 Ωk  RE2
∗ r R10 r ∙ r3dΩdr +  

1

4π
Y0

0 Ωk  RE0
∗ r R10 r ∙ r3dΩdr 

=  
1

12π
 3cos2 θk − 1  RE2

∗ r R10 r ∙ r3dΩdr +
1

4π
 RE0

∗ r R10 r ∙ r3dΩdr 

 (5.14) 

 

RE2 and RE0 are also solve by Numerov method. 

As well as , M𝐩,2p
(L)  real and image term amplitudes and probability 

density in Fig. 5-3. and Fig. 5-4. . 

 

 

 

Fig. 5-3. The red bar line is M𝐩,2p
(L)  real term amplitude and green cross is 

M𝐩,2p
(L)  image term amplitude , 3fs FWHM and 55TW/cm2  
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Fig. 5-4. The red bar line is M𝐩,2p
(L)  probability density with photoelectron 

energy. The laser pulse use 3fs FWHM and 55TW/cm2 
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6. Results 

    When get the transition amplitudes M𝐩,2p
(L)

 ,M2p,i
(X)

, and M𝐩,i
(X)

 ,than 

combine to find  M𝐩i(τ) 
𝟐

 in Fig. 6-1. and Fig. 6-2. 

 

Fig.6-1. Photoelectron energy spectrum  M𝐩i(τ) 
𝟐

 (blue star line) 

obtained by θk=45° and time-delay τ =
τL

2
+

τx

2
 with  M𝐩,i

(X)
 

2
(red bar line) 

and   M2p,i
(X)

 M𝐩,2p
(L)

 
2

(green cross line) 
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Fig.6-2. Photoelectron energy spectrum  M𝐩i(τ) 
𝟐

 (blue star line) 

obtained by θk=45° and time-delay τ =
τL

2
+

τx

2
+1 with  M𝐩,i

(X)
 

2
(red bar 

line) and   M2p,i
(X)

 M𝐩,2p
(L)

 
2

(green cross line) 

 

    The interference in the angular distribution in Fig.6-3. can be 

understood from the angular momentum components of the 

photoelectrons. 
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Fig.6-3. Angular distribution of photoelectron for a fixed energy ϵ=3.1eV 

at several delay-times. Here τ =
τL

2
+

τx

2
+ Td so Td =

τL

2
+

τx

2
+ τ 

 

 

For the narrow energy range where the electron yields are large, we 

can expect all the other parameters are nearly energy independent, thus 

the peaks of the spectra occur when 

Φ𝐩,2p − (ϵ𝐩 − ϵ2p )τ = 2nπ 

where n is a positive or negative integer. This equation shows that the 

peak shall follow a hyperbola with the peak shifts to smaller τ for larger ϵ.  

Thus the hyperbola is tilted toward smaller τ for larger ϵ (and larger τ for 

smaller ϵ). The tilt is more toward the horizontal axis as τ increases. 

These general features can be clearly seen in Fig.6-4. and Fig.6-5. 
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Fig.6-4. Interferogram forθ k=π depend on time-delay τ . 

 

 

Fig.6-5. Interferogram for fix time-delay τ =
τL

2
+

τx

2
 and depend on 

θk =   0 , 2π   . 
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7. Conclusion 

     

    The model of pump-probe process using by pump and probe laser. 

 

The pump process combination by two step. First, using laser for 

bound-bound excitaion (from 1s to 2p),and second 1st-order 

perturbation for bound (2p) to continuum state. 

    The probe pulse also have two effects. First, the continuous wave 

packet is Volkov like, time-delay τ=0 with Gaussia pulse. 1s2p + laser 

calculated by 1st-order perturbation. 

 

The interferogram show by hyperbola and peaks of the spectra 

occur when Φ𝐩,2p − (ϵ𝐩 − ϵ2p )τ  = 2nπ , which in the ionization 

probability density cosine term. 
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Appendix 

 

Atomic units 

 
Atomic units (au) form a system of units convenient for atomic physics, 

electromagnetism, and quantum electrodynamics, especially when the focus is on 

the properties of electrons. 

    In au, the numerical values of the following four fundamental physical constants 

are all unity by definition: 

 

Electron mass    :  me = 1 

Elementary charge    :  e   = 1 

reduced Planck's constant   :   ℏ  = 1 

 

(1) Unit of change = change of electron = |e| =1.602 x 10-19 C 

(2) Unit of mass  = mass of electron  = me =9.109 x 10-31 kg 

(3) Unit of length = radius of ground state 

= 1 bohr 

   = 0.53 x 10-10 m 

   = 0.53 Å 

(4) Unit of time = period of ground state electron orbiting 

           = 
a

V0
 = 

ℏ3

me4
 = 2.42 x 10-17 s 

(5) Unit of velocity = speed of electron 

               = 
e2

ℏ
 = 2.2 x 108 cm/s 

               = αc = 
c

137.037
 

(6) Unit of angular frequency = 
V0

a
 = 4.1 x 1016 s-1  

(7) Unit of energy = 
e2

a
 = 1 Hartree = 2 Rydberg = 27.2 eV 

(8) Unit of electric field = 
 e 

a2
 = 5.14 x 109 Volt/cm 

 

α: fine structure constant = 
e2

ℏc
 = 

1

137.037
 

c: speed of light = 137.037 
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Laser intensity in vacuum 

 
  I   = time averaged laser intensity  

= 
c

4π
 E2    

= 
137.037

4π
 ∙   E2    

= 7.0192 x 1016 ∙   E2   W/cm2  

 

E  =  
I

7.0192 x 1016
 a.u. 

 

1 a.u.  ( intensity )  = 
1 Hartree

 1 a.u.time   a2  
  

= 
4.36 x 10−18  J

 2.42 x 10−17  s  0.53 x 10−8  cm 2  
  

= 6.44 x 1015 W/cm 
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