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ABSTRACT

Identification of DNA-binding proteins is not ondykind of key challenge in the field of
genome annotation but also plays a very importaletin investigating gene regulation, from
DNA replicationto gene expression control. In recent years, mduoglies of predicting
DNA-binding proteins have used .physicochemical props as features, but the
comprehensive study of using physicochemical ptagecan be further investigated. In this
thesis, we use an optimization’approach to selgetiformative physicochemical properties
from a database AAindex.to predict-DNA-binding ias.

We proposed a prediction method SVM-PCP of usingpstt vector machine (SVM)
and informative physicochemical properties as #ures to predict DNA-binding domains
and proteins. SVM-PCP ‘uses anginheritable bi-oljeadenetic algorithm to identify a small
set of informative physicochemical properties-whifeaximizing the prediction accuracy.
Generally, biologists need domain knowledge to fifiethe, physicochemical properties for
analyzing and predicting DNA-binding-domains-andteins. In this thesis, the computational
method can be used to analyze the similarity afférdnce between the DNA-binding and
non-DNA binding domains/proteins, which is an efifee method to further understand the
functions of DNA-binding domains and proteins.

Several data sets were used in the experimentsvdatuage the proposed method,
including two data sets of DNA-binding domains grdteins. SVM-PCP identified 22 and
28 physicochemical properties from a database Aéndor predicting DNA-binding
domains and proteins, respectively. The performariceVM-PCP is comparable to that of
using PSSM, compared with an existing method. Thgsigochemical properties are
clustered by using a fuzzy C-means algorithm faothier understanding the functions and
characteristics of DNA-binding domains and proteifsom the analysis of informative
physicochemical properties, some knowledge of DN#ding and non DNA-binding
proteins can be further investigated. The propog#d/sicochemical-property-based
optimization method can be used conveniently asdine for designing predictors for various
DNA-binding problems.
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Chapter 1 Introduction

1.1Background and motivations

DNA-binding proteins (DNA-BPs) play an importantleoin the regulation of gene
expression of both eukaryotic and prokaryotic pyotes. It is mainly controlled by way of
transcription factors binding to DNA for promotiray repressing gene expression levels.
These transcription factors are mainly DNA-bindprgteins coded by 2—3% of the genome
in prokaryotes and 6—7% in eukaryotes proteinskbiad to DNA. While, these proteins play
vital roles in biological processes, such as DNA&Kaging, replication, repairs, recombination,
transcription regulation and other critical actnvgteps in cellular development (Frishman and
Mewes, 1997; Luscombet al, 2000; Luscombe and Thornton, 2002; Staweskal, 2003
Lejeuneet al, 2005).

In the post-genomic era, the.genome annotation isnaortant issue we want to know.
While, identification of DNA-BPs is-not only-a kinaf the 'key.to challenges in the field of
genome annotation but also play a very importaetirogene-regulation.

1.2 Aim of the study

Unfortunately, the mechanism of protein-DNA bindmggnains unclear. Thus we want to
know the relativity between physicochemical projgsrand DNA-BPs or non DNA-BPs.

We can further on understanding the role ‘of phygiemical properties on DNA-BPs. In
recent years, many studies of prediction DNA-BPghased physicochemical properties as
features, but the physicochemical properties cafutteer comprehensive.

1.3 Related Works

Many researches mainly focused on prediction aradyais of protein binding sites in
DNA [1-3] or protein based classification of bindiand non-binding proteins [4, 5]. In this
study, we are interested in protein based classific of binding and non-binding proteins.
Stawiski et al. found that nucleic acid-binding proteins could d@parated using a neural
network trained that included secondary structurd eharged patches, among others [6].
Ahmad and Sarai using a simple linear predictormtodel a trivial system with few
descriptors and they identified cutoff values foage and dipole moment at which binding
and non-binding proteins could be separated [7]m&uet al. proposed a method for
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predicting DNA-binding proteins using SVM and PS$Mfiles [8].

We investigate the optimal design of predictorsDdA-DBs from amino acid sequence
using both informative features and an appropigissifier. Furthermore, we obtain a set of
relevant physicochemical properties can advancdigiren performance. Physicochemical
properties extracted from protein sequences wdlizedt as effective features in recent years.
ProLoc [9] is a support vector machine (SVM) baskdsifier with automatic selection from
a large set of physicochemical composition feattwgwedict protein subnuclear localization.
The POPI method used physicochemical propertiesffagent features to predict peptide
immunogenicity [10]. The prediction method UbiPrefll] mined informative
physicochemical properties from protein sequenaeaddntify promising ubiquitylation sites.
Hsu et al. [12] analyzed the physicochemical prisgeron prediction of R5, X4 and R5X4
HIV-1 coreceptor usage.

1.4Thesis Overview

This thesis has three-fold: (1).a frequency-bagelrtique by scoring on multiple sets of
potentially effective physicochemical properties‘used.to determine a feature set of
informative physicochemical properties. for DNA-DBsblems; (2) propose the predictors
for DNA-DBs from amino,acid sequence using botlomnfative features and SVM classifier;
(3) develop as an efficient tool so that variousvi\tan be-used conveniently as the core for
DNA-DBs problems.

We found that the selected clusters-set on Maiasgatare included the selected clusters
set on Alternate dataset and Realistic dataseantshow the difference from DNA-binding
domain and DNA-binding protein.



Chapter 2 DNA-binding protein

DNA-binding proteins are composed of DNA-bindingwiins and it had a specific or
high affinity for either single or double strandetlA. Many sequence-specific DNA-binding
proteins are arranged as palindromes, for exaropke strand is 5’-GAATTC-3’ and the other
strand is 3'-CTTAAG-5’ (Fig. 1) that can form trgohelices or even H-DNA are found within
regions involved in the regulation of expressioithe living cells(Fig. 2). Then the Sequence
-specific DNA-binding proteins can interact witretmajor groove of DNA (Fig. 3), because
it exposes more functional groups that identifyagaébpair.

51
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Fig.1 Palindrome of six bases in double-strandedDN
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Fig. 3 DNA-binding protein protruding into the magroove (PDB ID: 1B81).
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DNA-binding proteins are involved in regulation DNA replication, gene expression,
protection, and repair of DNA. DNA-binding proteican recognize and bind to specific
DNA sequences. Usually, DNA-BPs has distinct DNAding domains and these domains
have common structural motif to bind DNA, like thelix-turn-helix, zinc finger, and
homeodomain. On the other hand, DNA-binding prateatso involve in protein-protein
interaction domain, including the leucine zipped drelix-loop-helix, their main function are
the transcriptional activation and dimerization.

Understanding the properties of regulatory DNA-loigdproteins is very importance
thing in biotechnology. We can use to control tle@e expression and so on. DNA-binding
proteins are also of relevance in molecular medicguch as cancer and aging. A wide range
of DNA-binding proteins but there are some commuentes in how these proteins interact
with DNA[13, 14]

2.1 Classification of DNA-BPs

Terms of the regulatory proteins,.DNA-BPs can. badeid into two parts, one is a
DNA-binding domain common maotif that can recognife& specific DNA sequences,
including helix-turn-helix, zin¢ finger, and homewodain; the other for the protein-protein
interaction domain involve in leucine zipper antb®op-helix.

2.1.1 Helix-Turn-Helix

Helix-turn-helix DNA-binding. motif consist of twol@ha-helices and a loop (Fig.4), it
uses the alpha-helices fits into thesmajor.groave imakes bases pairing of the double helix
DNA , these motifs usually bind as dimers to'inedrtepeats in the DNA(Fig. 5).

C-terminus

b

X

¥ helicies N-terminuis

Turn

Fig. 4 Helix-turn-helix



Fig. 5 (A) Helix-turn-helix protein is a dimer,binding of Helix-Turn-Helix Motif to DNA. (B) The girs of

a-helices bind into two neighboring major grooveshia DNA.

DNA-binding domain

Helix-Turn-Helix motif

Fig. 6 Helix-turn-helix (A) DNA-binding domain ofdc repressor (PDB ID 1LCC) (B) entire Lac repressor
(PDB ID 1LBG)



One of the two alpha-helical segments is called theognition helix in this
DNA-binding motif, because it generally involvernmany of the amino acids that interact with
the DNA in a specific sequence way. This alphaxhiistacked on other segments of the
protein structure so that it protrudes from thetgiro surface. When bound to DNA, the
recognition helix is positioned in or nearly in th@jor groove. The Lac repressor has this
DNA-binding motif. [13, 14]

2.1.2 Zinc Finger

Zinc finger about 25-30 amino acid residues formekimgated loop held together at the
base by a central zinc atom (Fig. 7), the Zn isndoto two cysteines and two histidines (or
four cysteines), the far end of the a-helix proésidnto the major groove of the DNA. The
zinc does not itself interact with DNA; so, the odioation of zinc with the amino acid
residues stabilizes this small structural motifve&3al hydrophobic side chains in the core of
the structure also lend stability. It shows theliattion between DNA and three zinc fingers
of a single polypeptide from the ‘regulatory proteiii268 (Fig. 8). To this day, about
thousand of zinc finger proteins.are’known, and yr@rthem have multiple fingers.

— =

V

Fig. 7 Zinc Finger DNA-Binding Protein a centrahziatom is bound to the sulfurs of cysteine (C) tad
nitrogens of histidine (H). Chains of amino acidvarying lengths (x = chain length) extend froregh binding

regions. The zinc finger forms a component of allacger protein and binds the protein to DNA.

Zinc Finger

Fig. 8 Zinc Fingers. Zinc fingers (purple) inteiaotwith DNA (PDB ID 1A1L)
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Each zinc finger unit usually recognizes three bdlsser four or five) in the DNA. The
sequence specificity of each zinc finger dependstlmm amino acid sequence of the
polypeptide chain between the His and Cys resithasbind the zinc. Amino acids in this
region make hydrogen bonds with bases in the DN8A14]

2.1.3 Homeodomain

This DNA-binding domain has been identified in & & proteins that function as
transcriptional regulators, especially during eykéc development. This domain of 60
amino acids—called the homeodomain, because itdisg®vered in homeotic genes (genes
that regulate the development of body patterns)hkighly conserved and has now been
identified in proteins from a wide variety of orgems (Fig. 9). The DNA-binding segment of
the domain is related to the helix-turn-helix mofihe DNA sequence that encodes this
domain is known as the homeobox.[13, 14]

Fig. 9 Homeodomain. This picture is a homeodomaimid to DNA, this is a protein Ultrabithorax (PDB |
1B81)

2.1.4Leucine Zipper

The leucine zipper is found in many eukaryotic s@iption factors, like the Fos, Jun
and Myc proteins that are involved in control off dévision and carcinogenesis. This motif is
an amphipathic alpha-helix with a series of hydaipb amino acid residues concentrated on
one side (Fig. 10), with the hydrophobic surfaceriog the area of contact between the two
polypeptides of a dimer, and leucine zipper matdiudea-helix with leucine residues every
seventh amino acid, forming a straight line aldmg hydrophobic surface.

Although researchers initially thought the Leu desis interdigitated (hence the name
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“zipper”), we now know that they line up side byeias the interacting-helices coil around
each other(forming a coiled coil; Fig. 11).Furthersy the amino acids halfway between the
leucines are usually hydrophobic. Because there 3ae amino acids per turn, these
hydrophobic residues form a strip down the sidéhefi-helix (Fig. 12).

Regulatory

Source protein Amino acid sequence

6 Amino acid
DNA-binding region connector Leucine zipper

C/EBP DENSNEYRVRRERNNIAVRKSRDKAKQRNVETQQEVLELTSDNDRLRERVEQLSRELDTLRG-
Mammal { Jun SQERIKAERKREMENRIAASKCRKRKLERITARLEEKVETLEKAQNSELASTANMLTEQVAQLKQ-

Fos EERRRIRRIRRERNKMAAAKCRNRRRELTDTLQAETDQLEDKKSALQTETANLLKEKEKLEF -
Yeast GCN4 PESSDPAALKRARNTEAARRSRARKLQRMKQLEDKVEELLSKNYHLENEVARLKKLVGER

Consensus RR R R RR

molecule KK K \ K KK
Invariant Asn

Fig. 10 Leucine zippers.The Leu (L) residues atyseventh position in the zipper region, and thmber of

Lys(K) and Arg (R) residues in the DNA-binding.regi

Fig. 11 Leucine zipper from the GCN4 (PDB ID 1YS@nly the “zipperedt-helices (purple) derived from
different subunits of the dimeric protein. The thalices wrap around each other in a gently coiteld The

interacting Leu residues are shown in red line.
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Fig. 12 Leucine Zipper Protein Binding DNA (A) Thaucine zipper consists of two a-helixes that have
hydrophobic zones and basic ends. (B) The helikésedeucine zipper binds to each other by thgdrbphobic

regions and to DNA by their basic regions.

Regulatory proteins with leucine zippers often-haseparate DNA-binding domain
with a high concentration of basic.(Lys.or Arg wibsitively charged) residues because it can
interact with the negatively charged-phosphatéb®@DNA backbone. Leucine zippers have
been found in many eukaryotic and a few prokaryotateins.[13, 14]

2.1.5 Basic Helix-Loop-Helix

These proteins share a conserved region-of-aboain®fo acid residues important in
both DNA binding and protein.dimerization occurssome eukaryotic regulatory proteins.
This region can form two short amphipathic.alphBels linked by a loop of variable length,
the helix-loop-helix (distinct from the ‘helix-tutmelix motif associated with DNA binding).

The helix-loop-helix motifs of two polypeptides émnact to form dimers (Fig. 13). In
these proteins, DNA binding is mediated by an aashort amino acid sequence rich in
basic residues, similar to the separate DNA-bindiagion in proteins containing leucine
Zippers.[13, 14]

Fig. 13 Helix-loop-helix. The protein is dimeric



(purple); The DNA-binding segment (red circle) mesguith the first helix of the helix-loop-helix (i# circle).
The second helix merges with the carboxyl-terméral of the subunit (green circle) (PDB ID 1HLO).

2.2 Function of DNA-BPs

DNA-binding proteins include transcription factowghich modulate the process of
transcription, various polymerases, nucleases whkleave DNA molecules and histones
which are involved in chromosome packaging in tek mucleus. DNA-binding proteins can
incorporate such domains as the zinc finger, thex-h@n-helix, and the leucine zipper
(among many others) that facilitate binding to eiclacid. For example, Zinc fingers can
also function as RNA-binding motifs, in certain f@ios that bind eukaryotic mRNAs and act
as translational repressors. Large complexes deim® are generally required to regulate
transcriptional activity. The effects of DNA-bindjriransactivators on Pol Il are mediated by
coactivator protein complexes such as TFIID or medi The modular structures of the
transactivators have distinct activation and DNAdang domains. Other protein complexes,
including histone acetyltransferases . and-ATP-depeinccomplexes, reversibly remodel
chromatin structure.

In eukaryotes, positive regulation-is more comrti@n negative regulation, and
transcription is accompanied by large changes iommhatin structure. Promoters for Pol Il
typically have a TATA box and Inr sequence, as &slmultiple binding sites for
DNA-binding transactivators. The/atter sites, stmes located hundreds or thousands of
base pairs away from the TATA box, are called wastr activator sequences in yeast and
enhancers in higher eukaryotes.

In positive control, an activator is‘required twnt a gene on, in response to a signal of
some kind. In negative control, a gene is switcbidby a repressor and is only expressed in
the presence of a signal that removes the reprdssor the gene. Positive and negative
control may be exerted at the level of transcriptay at later stages in gene expression.
Furthermore, although most activators and repress@ proteins, cases are known in which
regulation is due to regulatory RNA or even smaidlecules.

In both positive and negative control, a smalinaigmolecule, the inducer, typically
binds to the regulatory protein and induces gemqeession. In the standard model of positive
regulation, an inactive activator protein binds #ignal molecule and is converted to its
DNA-binding form, which then turns on the gene (Fig). Similarly, in typical negative
regulation, the DNA-binding form of a repressortpio is converted to its inactive form by
binding the signal molecule.[13, 14]
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Fig. 14 Principle of Positive and Negative 'Regolatin positive regulation, a signal changes thefamomation
of an inactive regulator, which*then becomes actind binds to the segulatory region of a genepiesence
aids the binding of the RNA polymerase and helpgickwon the gene. In negative regulation, a rejress
molecule blocks the promoter of the gene: Assigiainges-the conformation of the repressor, relgasfnom

the gene and allowing the RNA polymerase to/bind.

2.3 DNA-binding domain anphysicochemicgbropertiesf the relationship

Looking above, DNA-binding proteins regulate theqass of domain for the protein has
considerable influence, if we can know the DNA-hingd protein with the domain of the
relationship, or domain and the physical and chahpooperties of the relationship, so | can
further understand the door gene regulation imteaning and use.

Many studies have discussed the relationship betwibe physical and chemical
characteristics and protein in nature, but unfately, a lot of physical and chemical
characteristics is not enough to understand oreamncko by machine learning approach to
identify possible and relevant physical and chehypecaperties, hoping to further understand
the interaction between DNA-binding proteins and giysicochemical properties, and can
use this result to other biological phenomena.
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Chapter 3 Materialsand M ethods
3.1Datasets

3.1.1 DNAset

This dataset also called main dataset from Kuetaal, 2007 [15]. They got 146
non-redundant DNA-BPs in which no two proteins h&we sequence identity of more than
25%. A non-redundant set of 250 non-binding pratenas obtained from Stawiskt al,
2003 [6]. They used following criteria: i) no twagbein chains have similarity more than
25% and ii) the approximate size and electrostadressimilar to DNA-BPs. Final dataset
called DNAset or main dataset or domain datasetsists of 146 DNA-binding and 250
non-binding protein chains or domains.

Because this dataset is chains or domains, in ¢oddiscriminate these PDB chains
from full-length DNA-binding proteins.obtained.froBwiss-Prot.

3.1.2 DNAaset

We use an alternate dataset called DNAaset. Théseaconsists of 1153 DNA-BPs and
1153 NBPs extracted from et al,~2006 [16]--The parent dataset have 88 rRNA-B73,
RNA-BPs, 1153 DNA-BPs and 17779 non-binding pratein

We use the dataset from Kumet-al;2007[15], they randomly picked 1153 non
DNA-BPs and all 1153 'DNA-BPs toconstitutethe ralgde dataset (DNAaset). This is
non-redundant dataset where no'two proteins‘have than 25% similarity.

3.1.3 DNAiset
This dataset is not use for training or testing,dataset called DNAiset from Kumeatr
al., 2007[15] and they created an independent dafélsist dataset has 92 DNA-binding

protein chains obtained from PDB and 100 nonbingiregeins picked from Swiss-Prot.

Table 1. The statistic of the training datasets

Number of DNA-binding protein Number of non
Datasets _ o )
chains DNA-binding proteins
Main 146 250
Alternate 1153 1153

Independent 92 100
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3.2Physicochemical Properties

Physicochemical property is the most intuitive @eatfor biochemical reactions and is
extensively applied in bioinformatics studies. Tdmaino acid indices (AAindex) database
collects many published indices representing plogsiemical properties of amino acids. For
each physicochemical property, there is a set ofn@fherical values for amino acids.
Currently, 544 physicochemical properties can leeseed from the AAindex database of
version 9.0 [17]. After removing physicochemicabperties having the value ‘NA in the
amino acid indices, 531 physicochemical propedresobtained for the following studies.

In contrast to the residue-based encoding methddsanoino acid identity and
evolutionary information, there are 531 mean valssd to represent a sample [9, 10[nlf
out of 531 informative physicochemical properties selected and are used in SMklimean
values are used to represent a sample.

3.3 physicochemical properties forpredicting DNR=B

We propose a novel method using-the physicochemrogerties for predicting DNA-BPs
(PPD). The identification.of ‘an effective featuet sf physicochemical properties is mainly
derived by using an inheritable bi-objective ‘genetigorithm (IBCGA) [18]. The IBCGA
mines informative physicochemical properties antetparameter settings of Support vector
machine (SVM) simultaneously while maximizing 5eiaross validation (5-CV) accuracy.

The selectedn=12, 11 physicochemical properties. for. Main dataset Realistic dataset,
respectively. The designed”SVM..are used to_impléntba computational system for
prediction DNA-BPs.

3.4 Support Vector Machine

Support vector machine (SVM) is a learning modehlidg with binary classification
problems. SVM constructs a binary classifier byliing a hyperplane to separate two classes
with a maximal distance between margins of two sgasconsisting of support vectors. In
order to make linear separation of samples eaS\k] uses one of various kernel functions
to transform the samples into a high-dimensionadrade space. In this work, the
commonly-used radial basis function is applied ¢mlimearly transform the feature space,
defined as follows:

K(%.,x}) =exp(Hx =),y >0

(1)
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The kernel parameter determines how the samples are transformed into a
high-dimensional search space. The gasameteilC>0 of SVM adjusts the penalty of total
error. These two parametdétsandy must be tuned to get the best prediction performanc

For multi-class classification problems, ‘one-ag&ione’ strategy is applied to transform
the multi-class problem into several binary clasatfon problems. Giveh classes, there are
h(h-1)/2 classifiers constructed and each one trdiassamples from two classes. A voting
strategy is applied to give a final prediction fest samples. In this study=2 and the used
SVM is obtained from LIBSVM package version 2.89][1

3.5 Feature Selection By Inheritable Bi-objectiven@tic Algorithm

Selecting a minimal number of informative featunehile maximizing prediction
accuracy is a bi-objective 0/1 combinatorial opgation problem. An efficient inheritable
bi-objective genetic algorithm [18] is utilized &olve this optimization problem. IBCGA
consists of an intelligent genetic algorithm [20jttwan inheritable mechanism. The
intelligent genetic algorithm uses 7a divide-andguoer strategy and an orthogonal array
crossover to efficiently solve_ large-Scale parametgimization problems. In this study, the
intelligent genetic algorithm can efficiently exptoand explait the search space oh,Gj.
IBCGA can efficiently search the-space .0mC(: 1) by inheriting a good solution in the
space of Qf, r) [18]. Therefore, IBCGA can economically obtain camplete set of
high-quality solutions in'a single run wherés specified(in an interesting range such as [5,
50].

The proposed chromasome encoding scheme of IBC@Aists of both binary genes for
feature selection and parametric genes for tunikgl $parameters, where the gene and
chromosome are commonly-used-terms..of.genetic igigor(GA), named GA-gene and
GA-chromosome for discrimination in‘this paper. TBA-chromosome consists 0E531
binary GA-geneg; for selecting informative properties and two 4®BA-genes for tuning the
parameter<C andy of SVM. If b=0, thei™ property is excluded from the SVM classifier;
otherwise, the" propertyis included. This encoding method maps the 16 sabfg’ andC
into [27, 2°..., 2].

The feature vector for training the SVM classifiesr obtained from decoding a
GA-chromosome using the following steps. Considgiven DNA-PBs sequence. At first,
the index vectors for all selected physicochempralperties are constructed from AAindex
for each amino acid. Feature vector of a peptidesists of the selected features whose values
are obtained by averaging the values in their spwading index vectors. Finally, all values
of the feature vectors are normalized into [-1fot]applying SVM.

Fitness function is the only guide for IBCGA to aiot desirable solutions. The fitness
function of IBCGA is the 5-CV overall accuracy.
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IBCGA with the fitness functiori(X) can simultaneously obtain a set of solutiong, X
wherer=rgtr I'starttl, ..., leng IN @single run. The algorithm of IBCGA with the givealues
I'start@NdrenqiS described as follows:

Step 1) (Initiation) Randomly generate an initial populatiof Npop individuals. All the

n binary GA-genes havel’s andn-r 0’'s wherer = rgr

Step 2) (Evaluation) Evaluate the fitness values of alividuals using(X).

Step 3) (Selection) Use the traditional tournament selectiat selects the winner
from two randomly selected individuals torfoa mating pool.

Step 4) (Crossover) Sele@t-Nyopparents from the mating pool to perform orthogonal
array crossover on the selected pairs ofrfpareherep. is the crossover
probability.

Step 5) (Mutation) Apply the swap mutation operator to tardomly selectefm:Nyop
individuals in the new population whexgis the mutation probability. To
prevent the best fithess value from detetiloga mutation is not applied to the
best individual.

Step 6) (Termination test).lf the stopping condition.fortaiming the solution Xis
satisfied, output the best.individual as Gtherwise, go to Step 2). In this
study, the stopping condition is\to perforthgénerations.

Step 7) (Inheritance) lir <reng randomly change one bit.in the binary GA-genes fo
each individual from 0 to 1; increase the bemn by one, and go to Step 2).
Otherwise,"stop thesalgorithm.

3.6 Clustering properties.by.fuzzy c-means

Figure 15 obtained from [21]. According-to-the nuive indices representing 531
properties of amino acids, we clustered| them"imlocRisters by using a fuzzy c-means
algorithm based on their Euclidean distances betw&e indices [22].

The physicochemical properties can be classified 8ix groups according to their
biological meanings [23]. From the viewpoint of rhame learning, two properties are similar
if the distance between their feature vectors ialsnio identify informative physicochemical
properties and obtain effective feature vectordwitong discriminative abilities, we cluster
the 531 vectors of physicochemical properties @foclusters (show as Table 2) using a
fuzzy c-means (FCM) method[22]. A feature vectorofino acids is a set of 20 numerical
values representing a physicochemical propertymuha acids. To apply the FCM method,
all data were normalized in such a way that evérysjgochemical property had an averaged
profile value of zero and a standard deviation etud. The FCM method has an objective
functional of the form [22]:
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J(X;u,v)= zzn:u?dz(v,»x i)
e ’ (2)

where n=531 is the number of data vectors, K isitiraber of clusters to be found, u ij 1[0, 1]
is the membership degree of j th data vector xtheni th cluster, the i th cluster represented
by the cluster prototype v i, sifd) is a weighting exponent called the fuzzifier aifd i , x

j ) is the distance of x j from the cluster profmtyv i . Dembélé and Kastner [24] suggested
the parameters setting s=1.12 and K=20 clusteaptad in this study[25].

Table 2. The 20 clusters and their correspondingipbchemical and biochemical properties in the Ad&ix

database

Cluster Mo, The label of 531 physicochernical and biochemical properties
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i [ He 10 11 445 447 448 445
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A A 1800
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A& Apha and bum propensiies. B Beta propensity. & Composition. H: Hydrophobidiy. P: Physicochemical properties. O: Oeher properties.
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Figure 15 The minimum spanning tree.of the amino acid ind&tesed in the AAindexl release 9.0 [10]. Each
rectangle is an amino acid index. Coloured.nodpsesent the indices classified by Tomii and Kareljisl]
Red (A): alpha and turn propensities,—Yellow - (B)etdpropensity,. Green (C): composition, Blue (H):
hydrophobicity, Cyan (P): physicochemical propesiti€ray (O): otherproperties. White: the indicdded to
the AAindex after the release 3.0 by Tomii and Kasa [11].

3.7 Prediction Method"PRPD
The selectedn physicochemical properties and the associatedymea set of SVM by

using IBCGA are used to 4mplement. the” computatiosgstem and analyze the
physicochemical properties to further understanel EBINA-BPs. Since the IBCGA is a
non-deterministic method, it should make more éftor identify an efficient and robust
feature set of informative physicochemical promsrin five aspects. The procedure is as the
following steps:

Step 1 : We prepare the independent data sets where eaishusetd as the training
dataset of 5-CV.

Step 2 : IBCGA is performedR independent runs for each of independent datalsets
this studyR = 30. There are total 30 setsmphysicochemical properties for
each of independent data sets.

Step 3 : We calculate and record the frequenéi€$ of the selected physicochemical
properties from the solutions®independent runs on train dataset.

Step 4 : We calculate scorg§ (r = 1, ...,R) for each solution as follows:
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5 =(3 FR)/m 3)

i whereF(P;) denotes the frequencies of the physicochemicaegstpP;, mis the number of
the selected feature in dependentrun
Step 5 : Choose the set of selected physicochemical pr@sestith a maximal value of
S.

The system flowchart of the prediction method PR®shown in Fig. 1. PPDs will
automatically determine a set of informative phgsleemical properties and an SVM-model
for prediction binding and non-binding proteins.

In order to provide the analysis of the PPD-basgut@ach on the selected informative
physicochemical properties, we calculate the fraqueof the selected physicochemical
properties from the solutions Bf= 30 independent runs on Main dataset and Reatlataset,
shown in Fig. 2(a) and Fig. 2(b), respectively. Thimrmative physicochemical properties
were used to determine a prediction system fortifyelninding and non-binding proteins.

Run .. IBCGA
Run 2
DNA protein ¢ SVM
sequence Run 1 PPD o
] PPD BCGA *
531 IBCGA SVM
Physicochemical / —
properties SVM
Perform R NS NV —
Independent

static the frequency of the selected physicochemical
properties from the solutions of R independent runs

Calculate score S,(r=1, ..., R) for each solution

Choose the set of selected physicochemical properties
with a maximal value of S,.

Fig. 16 The system flowchart of the prediction noeth
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Chapter 4 Results and Discussion

4.1 Results of different ratios of training andsgvalidation datasets

To compare the main dataset with the realistics#dtaf training/test, we were used the
independent dataset for independent test. We gdraiming/test sets and each set Raxl30
experiment. Results of training sets were showhahle 3. Table 4 is shown the results that
from Kumar et al, 2007 compare with ours (shown as table 5.), haits correlation
coefficient MCG,) for thei™ coreceptor class,= 1, 2, 3, and the best accuracy and averaged
accuracies for all classes:

TRXTN - Fpx FN

MCC, = 4)
bR FN )< (TP FR)< (TN R (TN RN

whereTP;, TN, FP; andFN; are the numbernof true positive, true negativisefpositive and
false negative, respectively. The average reswiefall accuracy and MCC is high.

Table 3. Results of training and.cross validation

Training Frequency
Accuracy  Sensitivity Specificity Accuracy Sensitivity Specificity
Dataset McC MCC
(%) (%) (%) (%) (%0) (%)
Main 88.89 84.93 91.20 0.76 _87.12 82.19 90.00 0.72
Alternate 76.41 82.74 7008 0.53 75.50 81.96 69.04 0.51

These results have high accuracy and MCEC.

Table 4.This data from Kumait al, 2007

Dataset Accuracy Sensitivity Specificity MCC
(%) (%) (%)

Main 86.62 86.32 86.80 0.72

Alternate 74.22 73.53 74.92 0.49

These results are from Kumairal, 2007, they use the PSSM-SVM to evaluate.

Table 5. Results of the independent test

Sensitivity Specificity Accuracy
Datasets MCC
(%) (%) (%)
Main 83.70 78.00 80.73 (155/192) 0.62
Alternate 67.39 81.00 74.48 (143/192) 0.49
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These data are independent test, the accuracy 8b%uand the highest MCC is 0.62.

4.2 Selected a small set of physicochemical pragsert
IBCGA is utilized to mine informative physicocheraicproperties using the whole

dataset [23]. The best results of 30 runs showhRign 16 reveal that the best numbers of
selected features ane= 20 and 28 for Main dataset and Alternate dataespectively. The
parameter settings (6), of the SVM classifier are 222, (2°, 2%
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Fig. 17 The highest frequency of (A) main datag¥t (B) alternate datasel'én 30 independent runs. X-axis
represents the number of immediate feature, Yr@xeesents the number of each feature, the regutiarage

accuracy. (A) indicates 22feature number, havéniteest accuracy, (B) said that when the numb@8ifeature

the highest accuracy.
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4.3Analyzing Physicochemical properties

DNA-binding proteins (DNA-BPs) are functional prioig in a cell. How to difference
DNA-BPs from other proteins is a very importantate#opic in proteomics fields. This study
investigates the prediction problem of DNA-bindipgoteins and proposes an efficient
prediction system SVM-PCP to predict DAN-bindingofgins with variable lengths. The
features sets consisting of 228 and physicochemical properties are selectethppement
the prediction system SVM-PCP on Main datas@lternate dataset and Realistic dataset,
respectively.

In order to analysis the efficient features sets,use FCM algorithm[26] to partition the
531 physicochemical properties into 20 clusters.

For each selected features is belonging to ondetlushe selected features sets are
represented the cluster sets. The table 6. is shibmepresented the cluster sets using the
features sets consisting of 228 and physicochemical properties.

Table 6. The feature set with= 22 having.the highest-appearance frequency gfgsties in the 30 feature sets

on main dataset.

FeatureID Description

53 Frequency.of the 4th-residue in turn (Chou-Fasrh8igb)

56 Normalized hydrophobicity scales for beta-protéiogl.et al., 1992)

64 Size (Dawson, 1972)

86 Localized electricaleffect (Fauchere et al., 1988)

91 pK-a(RCOOQOH) (Fauchere et al., 1988)

188 Normalized frequency of bata-structure (Nagano3)97

202 Ratio of average ‘and computed-composition (Nakaseital., 1990)

227 Normalized frequency of beta-sheet'from CF (Patal.e1981)

228 Normalized frequency of turn from LG (Palau et 2881)

255 Relative frequency in beta-sheet (Prabhakaran,)1990

262 Weights for alpha-helix at the window position 8f(Qian-Sejnowski, 1988)
274 Weights for beta-sheet at the window position offan-Sejnowski, 1988)
286 Weights for coil at the window position of -5 (Qi&®jnowski, 1988)

363 Principal component IV (Sneath, 1966)

383 Average interactions per side chain atom (Warmegéoy 1978)

388 Free energy change of epsilon(i) to alpha(Rh) (?&/8cheraga, 1978)

412 Normalized positional residue frequency at helti@i N4 (Aurora-Rose, 1998)
430 Free energy in alpha-helical conformation (Munozr&eo, 1994)

434 Free energy in beta-strand region (Munoz-Serrad94 )L

443 Distribution of amino acid residues in the alphdides in thermophilic proteins

(Kumar et al., 2000)
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486 Interactivity scale obtained from the contact matBastolla et al., 2005)
513 Apparent partition energies calculated from Chothéex (Guy, 1985)

Table 7. The feature set with= 28 having the highest appearance frequency gfgsties in the 28 feature sets

on alternate dataset.

Feature Description

ID

39 Normalized frequency of beta-sheet (Chou-Fasmargiip

56 Normalized hydrophobicity scales for alpha+betatgirs (Cid et al., 1992)

58 Normalized average hydrophobicity scales (Cid t1&l92)

86 Number of hydrogen bond donors (Fauchere et a88)9

88 Positive charge (Fauchere et al., 1988)

95 Helix termination parameter at posision j+1 (Firskein et al., 1991)

100 Alpha-helix indices for alpha/beta-proteins (GeisBwaberts, 1980)

102 Beta-strand indices for beta-proteins.(Geisow-Rish&©80)

139 Average relative probability of beta-sheet (Kanakisong, 1980)

146 Net charge (Klein‘etal., 1984)

147 Side chain interaction parameter (Krigbaum-Rub#y 1)

167 Conformationalpreference for all beta-strandss@m-Sander;»1979)

178 Retention coefficient in HPLC, pH74 (Meek, 1980)

214 Short and medium range non<bonded energy per dmipgtake-Ooi, 1977)

229 Normalized frequency.of alpha-helix in all-alphasd (Palau et al., 1981)

280 Weights for beta-sheét at'the window position ¢®8n-Sejnowski, 1988)

299 Side chain orientational preference«(Rackovsky-&xdee 1977)

321 Mean polarity (Radzicka-Wolfenden, 1988)

356 Side chain hydropathy, corrected for solvation @oan, 1988)

365 Optimal matching hydrophobicity (Sweet-Eisenber@83)

399 Bulkiness (Zimmerman et al., 1968)

401 Isoelectric point (Zimmerman et al., 1968)

422 Normalized positional residue frequency at helni@i C4' (Aurora-Rose, 1998)

431 Free energy in beta-strand conformation (Munoz&3ery 1994)

449 Hydropathy scale based on self-information valuehé two-state model (20% accessibility)
(Naderi-Manesh et al., 2001)

451 Hydropathy scale based on self-information valuethé two-state model (36% accessibility)
(Naderi-Manesh et al., 2001)

512 Apparent partition energies calculated from Chothéex (Guy, 1985)

528 Optimized relative partition energies - method Qy@zawa-Jernigan, 1999)
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Table 8. The represented the cluster sets usinfpéteres sets consisting of 228 and physicochemical

properties
Datasets Main Alternate
FCM Cluster ID 7 3
FCM Cluster ID 9 7
FCM Cluster ID 10 9
FCM Cluster ID 16 10
FCM Cluster ID 18 14
FCM Cluster ID 16
FCM Cluster ID 17
FCM Cluster ID 18
Total features 22features 28 features

The selected clusters set on Main dataset.arededlthe selected clusters set on Alternate datasetn show
the difference from DNA-binding.domain-and-DNA-bind. protein.

Main dataset m MED
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30
20 -+
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0_
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Feature ID

Fig. 18 MED analysis of Main dataset"li& 30 independent runs. X-axis represents AAinthexfeature (see
Table 7), Y axis represents the relative impactadfie, the higher the more influential represewéstifrom the
figure we can see Number of hydrogen bond donaedffere et al., 1988) in the entire physical arahibal

properties most influential.

23



Alternate dataset m MED
20

15 -

10 +

O W 0 W N O WO~~~ G Wwon g H N A Oy N0
Mo 00 00O O mMmost st WM~ 0NN WO o os o
eature |

Fig. 19 MED analysis of Alternate dataset’18 30 independent runs. X-axis represents AAintiexfeature
(see Table 8), Y axis represents the relative impBealue, the higher the more influential repreaéves from
the figure we can see Normalized frequency of Baiet (Chou-Fasman, 1978b) in the entire physiwhl a

chemical properties most influential.

4.4B-factor
We use the tool, “PyMQL”to"draw the DNA-DBPs; tsaniption factor [IB (PDB ID:

1D3UV). Fig. 19 show the h-factor-on-Domain sequgiceChain:1108-1205). Fig. 20 show
the b-factor total sequence. 'We find-the b-factoragis has larger changes near DNA. This
result may indicate protein of the near DNA thaidong force greater with DNA.

Fig. 20 Transcription factor IIB (TFIIB), (PDB IDE13U) the b-factor of domain sequence (B_Chain:11285)
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Fig. 21 Transcription factor IIB (TFIIB), (PDB IDE13U) the b-factor of total sequence
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Chapter 5 Conclusions

We have proposed a novel method using physicocladmioperties for predicting
DNA-BPs (PPD). We had three datasets into traiammgj cross validation. The three datasets
are Main dataset, Alternate dataset and Realiat@sét with different sizes for evaluating the
proposed methods. The IBCGA mines informative ploahemical properties and tune
parameter settings of SVM simultaneously while mrazing 5-CV accuracy. We have
calculated the frequency statistics of the seleptgsgicochemical properties from the
solutions of the independent runs. Determinatertftemative physicochemical properties
and SVM-model can be predicted the DNA-binding aod-binding proteins. The PPD can
achieve high prediction test accuracy. Time22, 28 and for Main dataset and Alternate
dataset, respectively.

Furthermore we analyzing physicochemical propeft@® the 20 cluster that from 531
AAindex, we found that the selected clustersise¥lam dataset are included into the
selected clusters set on Alternate dataset andsiealataset. It can show the difference from
DNA-binding domain and DNA-=binding protein.

The most important, feature=work is to ‘analyses ifermative physicochemical
properties on cluster7, cluster9, cluster10, cid&teand clusterl8 we hope that can provide
biologists to apply.
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