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使用物化性質為基礎的最佳化方法來預測

DNA 鍵結蛋白質 

研究生：林意哲               指導教授：何信瑩 博士 
                                       黃慧玲 博士 

國立交通大學生物科技學系暨研究所碩士班 

摘 要 

辨認去氧核醣核酸(DNA)鍵結蛋白質不僅是一種在基因組註解領域中的一個重要

挑戰，在研究基因調控中也扮演了非常重要的作用，包括從去氧核醣核酸的複製到基因

表達的調控。近年來，許多研究預測去氧核醣核酸的鍵結蛋白質是使用物化性質當為特

性，但使用物化性質的全面性研究仍有待發展。本研究使用最佳化方式挑選文獻中的眾

多物化性質來預測蛋白質序列是否為去氧核醣核酸鍵結蛋白質。 

    我們提出一個繼承式雙目標基因演算法為基礎的物化性質挑選方法，利用支持向量

機與物化性質結合得到了一組物化性質來預測是否為去氧核醣核酸鍵結蛋白質。一般而

言，生物學家需要領域知識來選擇有效的物化性質進行蛋白質的分析和預測。本研究方

法可以用來了解去氧核醣核酸鍵結蛋白質和非去氧核醣核酸鍵結蛋白質之間的不同

點，是一種容易被用於預測與了解各種鍵結蛋白質的功能和特色的有效方法。 

在本實驗中使用文獻提供的多個資料集來做分析比較，包括 DNA 鍵結蛋白質與

DNA 鍵結功能域的預測，預測方法分別使用了 22和 28個由 AAindex資料庫挑選的物

化性質來預測，得到和文獻方法相近的預測正確率。從物化性質的分析中，我們將物化

性質用 Fuzzy C-means演算法再加以分群歸類，了解鍵結蛋白質與鍵結功能域的特徵差

異。這個挑選物化性質為特徵的最佳化方法可當做核心方法，進一步用於設計其它預測

去氧核醣核酸結合蛋白質的問題。 



 

ii 

 

Predicting DNA-binding proteins using a 
physicochemical-property-based optimization method 

 
Student：：：：I-Che Lin               Advisors：：：：Dr. Shinn-Ying Ho 

     Dr. Hui-Ling Huang 

Institute of Biological Science and Technology 

National Chiao Tung University 

ABSTRACT 

Identification of DNA-binding proteins is not only a kind of key challenge in the field of 

genome annotation but also plays a very important role in investigating gene regulation, from 

DNA replication to gene expression control. In recent years, many studies of predicting 

DNA-binding proteins have used physicochemical properties as features, but the 

comprehensive study of using physicochemical properties can be further investigated. In this 

thesis, we use an optimization approach to selecting informative physicochemical properties 

from a database AAindex to predict DNA-binding proteins. 

We proposed a prediction method SVM-PCP of using support vector machine (SVM) 

and informative physicochemical properties as the features to predict DNA-binding domains 

and proteins. SVM-PCP uses an inheritable bi-objective genetic algorithm to identify a small 

set of informative physicochemical properties while maximizing the prediction accuracy. 

Generally, biologists need domain knowledge to identify the physicochemical properties for 

analyzing and predicting DNA-binding domains and proteins. In this thesis, the computational 

method can be used to analyze the similarity and difference between the DNA-binding and 

non-DNA binding domains/proteins, which is an effective method to further understand the 

functions of DNA-binding domains and proteins. 

Several data sets were used in the experiments to evaluate the proposed method, 

including two data sets of DNA-binding domains and proteins. SVM-PCP identified 22 and 

28 physicochemical properties from a database AAindex for predicting DNA-binding 

domains and proteins, respectively. The performance of SVM-PCP is comparable to that of 

using PSSM, compared with an existing method. The physicochemical properties are 

clustered by using a fuzzy C-means algorithm for further understanding the functions and 

characteristics of DNA-binding domains and proteins. From the analysis of informative 

physicochemical properties, some knowledge of DNA-binding and non DNA-binding 

proteins can be further investigated. The proposed physicochemical-property-based 

optimization method can be used conveniently as the core for designing predictors for various 

DNA-binding problems. 
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Chapter 1 Introduction 

1.1 Background and motivations 
 

DNA-binding proteins (DNA-BPs) play an important role in the regulation of gene 

expression of both eukaryotic and prokaryotic proteomes. It is mainly controlled by way of 

transcription factors binding to DNA for promoting or repressing gene expression levels. 

These transcription factors are mainly DNA-binding proteins coded by 2–3% of the genome 

in prokaryotes and 6–7% in eukaryotes proteins can bind to DNA. While, these proteins play 

vital roles in biological processes, such as DNA packaging, replication, repairs, recombination, 

transcription regulation and other critical activity steps in cellular development (Frishman and 

Mewes, 1997; Luscombe et al., 2000; Luscombe and Thornton, 2002; Stawiski et al., 2003 

Lejeune et al., 2005).  

 

In the post-genomic era, the genome annotation is an important issue we want to know. 

While, identification of DNA-BPs is not only a kind of the key to challenges in the field of 

genome annotation but also play a very important role in gene-regulation. 

 

1.2 Aim of the study 
 

Unfortunately, the mechanism of protein-DNA binding remains unclear. Thus we want to 

know the relativity between physicochemical properties and DNA-BPs or non DNA-BPs.    

We can further on understanding the role of physicochemical properties on DNA-BPs. In 

recent years, many studies of prediction DNA-BPs have used physicochemical properties as 

features, but the physicochemical properties can be further comprehensive. 

 

1.3 Related Works 
 

Many researches mainly focused on prediction and analysis of protein binding sites in 

DNA [1-3] or protein based classification of binding and non-binding proteins [4, 5]. In this 

study, we are interested in protein based classification of binding and non-binding proteins. 

Stawiski et al. found that nucleic acid-binding proteins could be separated using a neural 

network trained that included secondary structure and charged patches, among others [6]. 

Ahmad and Sarai using a simple linear predictor to model a trivial system with few 

descriptors and they identified cutoff values for charge and dipole moment at which binding 

and non-binding proteins could be separated [7]. Kumar et al. proposed a method for 
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predicting DNA-binding proteins using SVM and PSSM profiles [8]. 

We investigate the optimal design of predictors for DNA-DBs from amino acid sequence 

using both informative features and an appropriate classifier. Furthermore, we obtain a set of 

relevant physicochemical properties can advance prediction performance. Physicochemical 

properties extracted from protein sequences were utilized as effective features in recent years. 

ProLoc [9] is a support vector machine (SVM) based classifier with automatic selection from 

a large set of physicochemical composition features to predict protein subnuclear localization. 

The POPI method used physicochemical properties as efficient features to predict peptide 

immunogenicity [10]. The prediction method UbiPred [11] mined informative 

physicochemical properties from protein sequences to identify promising ubiquitylation sites. 

Hsu et al. [12] analyzed the physicochemical properties on prediction of R5, X4 and R5X4 

HIV-1 coreceptor usage. 

 

1.4 Thesis Overview 
This thesis has three-fold: (1) a frequency-based technique by scoring on multiple sets of 

potentially effective physicochemical properties is used to determine a feature set of 

informative physicochemical properties for DNA-DBs problems; (2) propose the predictors 

for DNA-DBs from amino acid sequence using both informative features and SVM classifier; 

(3) develop as an efficient tool so that various SVMs can be used conveniently as the core for 

DNA-DBs problems. 

We found that the selected clusters set on Main dataset are included the selected clusters 

set on Alternate dataset and Realistic dataset. It can show the difference from DNA-binding 

domain and DNA-binding protein. 
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Chapter 2 DNA-binding protein 

DNA-binding proteins are composed of DNA-binding domains and it had a specific or 

high affinity for either single or double stranded DNA. Many sequence-specific DNA-binding 

proteins are arranged as palindromes, for example, one strand is 5’-GAATTC-3’ and the other 

strand is 3’-CTTAAG-5’ (Fig. 1) that can form triple helices or even H-DNA are found within 

regions involved in the regulation of expression in the living cells(Fig. 2). Then the Sequence 

-specific DNA-binding proteins can interact with the major groove of DNA (Fig. 3), because 

it exposes more functional groups that identify a base pair.  

 

5’                             3’ 

3’                             5’ 

 

Fig.1 Palindrome of six bases in double-stranded DNA. 

 
http://www.structuralbioinformatics.at/res_models.html  

Fig. 2 DNA replication to gene expression control. 

 
Fig. 3 DNA-binding protein protruding into the major groove (PDB ID: 1B81). 

GAATTC 

CTTAAG 

DNA-Binding 

protein 

Major groove 
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DNA-binding proteins are involved in regulation of DNA replication, gene expression, 

protection, and repair of DNA. DNA-binding proteins can recognize and bind to specific 

DNA sequences. Usually, DNA-BPs has distinct DNA-binding domains and these domains 

have common structural motif to bind DNA, like the helix-turn-helix, zinc finger, and 

homeodomain. On the other hand, DNA-binding proteins also involve in protein-protein 

interaction domain, including the leucine zipper and helix-loop-helix, their main function are 

the transcriptional activation and dimerization. 

Understanding the properties of regulatory DNA-binding proteins is very importance 

thing in biotechnology. We can use to control the gene expression and so on. DNA-binding 

proteins are also of relevance in molecular medicine, such as cancer and aging. A wide range 

of DNA-binding proteins but there are some common themes in how these proteins interact 

with DNA[13, 14] 

 

2.1 Classification of DNA-BPs 
 

Terms of the regulatory proteins, DNA-BPs can be divided into two parts, one is a 

DNA-binding domain common motif that can recognize the specific DNA sequences, 

including helix-turn-helix, zinc finger, and homeodomain, the other for the protein-protein 

interaction domain involve in leucine zipper and helix-loop-helix.  

 

2.1.1 Helix-Turn-Helix 

Helix-turn-helix DNA-binding motif consist of two alpha-helices and a loop (Fig.4), it 

uses the alpha-helices fits into the major groove and makes bases pairing of the double helix 

DNA , these motifs usually bind as dimers to inverted repeats in the DNA(Fig. 5).  

 

 
Fig. 4 Helix-turn-helix 
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Fig. 5 (A) Helix-turn-helix protein is a dimer, it binding of Helix-Turn-Helix Motif to DNA. (B) The pairs of 

α-helices bind into two neighboring major grooves in the DNA. 

 

This motif is also the key to the interaction of many prokaryotic regulatory proteins and 

some similar motifs occur in eukaryotic regulatory proteins with DNA. The helix-turn-helix 

motif comprises about 20 amino acids in two short alpha-helical segments, each seven to nine 

amino acid residues long, separated by a beta turn (Fig. 6). 

    

 

 

Fig. 6 Helix-turn-helix (A) DNA-binding domain of Lac repressor (PDB ID 1LCC) (B) entire Lac repressor 

(PDB ID 1LBG) 

 

 

Helix-Turn-Helix motif 

(A) (B) 

(A) (B) 

DNA-binding domain 
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One of the two alpha-helical segments is called the recognition helix in this 

DNA-binding motif, because it generally involve in many of the amino acids that interact with 

the DNA in a specific sequence way. This alpha-helix is stacked on other segments of the 

protein structure so that it protrudes from the protein surface. When bound to DNA, the 

recognition helix is positioned in or nearly in the major groove. The Lac repressor has this 

DNA-binding motif. [13, 14] 

 

2.1.2 Zinc Finger 

Zinc finger about 25-30 amino acid residues form an elongated loop held together at the 

base by a central zinc atom (Fig. 7), the Zn is bound to two cysteines and two histidines (or 

four cysteines), the far end of the a-helix protrudes into the major groove of the DNA. The 

zinc does not itself interact with DNA; so, the coordination of zinc with the amino acid 

residues stabilizes this small structural motif. Several hydrophobic side chains in the core of 

the structure also lend stability. It shows the interaction between DNA and three zinc fingers 

of a single polypeptide from the regulatory protein Zif268 (Fig. 8). To this day, about 

thousand of zinc finger proteins are known, and many of them have multiple fingers. 

 

Fig. 7 Zinc Finger DNA-Binding Protein a central zinc atom is bound to the sulfurs of cysteine (C) and the 

nitrogens of histidine (H). Chains of amino acids of varying lengths (x = chain length) extend from these binding 

regions. The zinc finger forms a component of a much larger protein and binds the protein to DNA. 

 

 
Fig. 8 Zinc Fingers. Zinc fingers (purple) interaction with DNA (PDB ID 1A1L) 

Zinc Finger 
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Each zinc finger unit usually recognizes three bases (lesser four or five) in the DNA. The 

sequence specificity of each zinc finger depends on the amino acid sequence of the 

polypeptide chain between the His and Cys residues that bind the zinc. Amino acids in this 

region make hydrogen bonds with bases in the DNA.[13, 14] 

 

2.1.3 Homeodomain 

This DNA-binding domain has been identified in a lot of proteins that function as 

transcriptional regulators, especially during eukaryotic development. This domain of 60 

amino acids—called the homeodomain, because it was discovered in homeotic genes (genes 

that regulate the development of body patterns)—is highly conserved and has now been 

identified in proteins from a wide variety of organisms (Fig. 9). The DNA-binding segment of 

the domain is related to the helix-turn-helix motif. The DNA sequence that encodes this 

domain is known as the homeobox.[13, 14] 

 

Fig. 9 Homeodomain. This picture is a homeodomain bound to DNA, this is a protein Ultrabithorax (PDB ID 

1B81) 

 

2.1.4 Leucine Zipper 

The leucine zipper is found in many eukaryotic transcription factors, like the Fos, Jun 

and Myc proteins that are involved in control of cell division and carcinogenesis. This motif is 

an amphipathic alpha-helix with a series of hydrophobic amino acid residues concentrated on 

one side (Fig. 10), with the hydrophobic surface forming the area of contact between the two 

polypeptides of a dimer, and leucine zipper motif include α-helix with leucine residues every 

seventh amino acid, forming a straight line along the hydrophobic surface. 

Although researchers initially thought the Leu residues interdigitated (hence the name 
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“zipper”), we now know that they line up side by side as the interacting α-helices coil around 

each other(forming a coiled coil; Fig. 11).Furthermore, the amino acids halfway between the 

leucines are usually hydrophobic. Because there are 3.6 amino acids per turn, these 

hydrophobic residues form a strip down the side of the α-helix (Fig. 12). 

 

 
Fig. 10 Leucine zippers.The Leu (L) residues at every seventh position in the zipper region, and the number of 

Lys(K) and Arg (R) residues in the DNA-binding region. 

 
Fig. 11 Leucine zipper from the GCN4 (PDB ID 1YSA). Only the “zippered” α-helices (purple) derived from 

different subunits of the dimeric protein. The two helices wrap around each other in a gently coiled coil. The 

interacting Leu residues are shown in red line. 
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Fig. 12 Leucine Zipper Protein Binding DNA (A) The leucine zipper consists of two a-helixes that have 

hydrophobic zones and basic ends. (B) The helixes of the leucine zipper binds to each other by their hydrophobic 

regions and to DNA by their basic regions. 

 

Regulatory proteins with leucine zippers often have a separate DNA-binding domain 

with a high concentration of basic (Lys or Arg with positively charged) residues because it can 

interact with the negatively charged phosphates of the DNA backbone. Leucine zippers have 

been found in many eukaryotic and a few prokaryotic proteins.[13, 14] 

 

2.1.5 Basic Helix-Loop-Helix 

These proteins share a conserved region of about 50 amino acid residues important in 

both DNA binding and protein dimerization occurs in some eukaryotic regulatory proteins. 

This region can form two short amphipathic alpha-helices linked by a loop of variable length, 

the helix-loop-helix (distinct from the helix-turn-helix motif associated with DNA binding).  

 

The helix-loop-helix motifs of two polypeptides interact to form dimers (Fig. 13). In 

these proteins, DNA binding is mediated by an adjacent short amino acid sequence rich in 

basic residues, similar to the separate DNA-binding region in proteins containing leucine 

zippers.[13, 14] 

Fig. 13 Helix-loop-helix. The protein is dimeric 

(A) (B) 
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(purple); The DNA-binding segment (red circle) merges with the first helix of the helix-loop-helix (blue circle). 

The second helix merges with the carboxyl-terminal end of the subunit (green circle) (PDB ID 1HLO).  

 

2.2 Function of DNA-BPs 
DNA-binding proteins include transcription factors which modulate the process of 

transcription, various polymerases, nucleases which cleave DNA molecules and histones 

which are involved in chromosome packaging in the cell nucleus. DNA-binding proteins can 

incorporate such domains as the zinc finger, the helix-turn-helix, and the leucine zipper 

(among many others) that facilitate binding to nucleic acid. For example, Zinc fingers can 

also function as RNA-binding motifs, in certain proteins that bind eukaryotic mRNAs and act 

as translational repressors. Large complexes of proteins are generally required to regulate 

transcriptional activity. The effects of DNA-binding transactivators on Pol II are mediated by 

coactivator protein complexes such as TFIID or mediator. The modular structures of the 

transactivators have distinct activation and DNA-binding domains. Other protein complexes, 

including histone acetyltransferases and ATP-dependent complexes, reversibly remodel 

chromatin structure. 

 

 In eukaryotes, positive regulation is more common than negative regulation, and 

transcription is accompanied by large changes in chromatin structure. Promoters for Pol II 

typically have a TATA box and Inr sequence, as well as multiple binding sites for 

DNA-binding transactivators. The latter sites, sometimes located hundreds or thousands of 

base pairs away from the TATA box, are called upstream activator sequences in yeast and 

enhancers in higher eukaryotes. 

 

 In positive control, an activator is required to turn a gene on, in response to a signal of 

some kind. In negative control, a gene is switched off by a repressor and is only expressed in 

the presence of a signal that removes the repressor from the gene. Positive and negative 

control may be exerted at the level of transcription or at later stages in gene expression. 

Furthermore, although most activators and repressors are proteins, cases are known in which 

regulation is due to regulatory RNA or even small molecules. 

 

 In both positive and negative control, a small signal molecule, the inducer, typically 

binds to the regulatory protein and induces gene expression. In the standard model of positive 

regulation, an inactive activator protein binds the signal molecule and is converted to its 

DNA-binding form, which then turns on the gene (Fig. 14). Similarly, in typical negative 

regulation, the DNA-binding form of a repressor protein is converted to its inactive form by 

binding the signal molecule.[13, 14] 
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Fig. 14 Principle of Positive and Negative Regulation In positive regulation, a signal changes the conformation 

of an inactive regulator, which then becomes active and binds to the regulatory region of a gene. Its presence 

aids the binding of the RNA polymerase and helps switch on the gene. In negative regulation, a repressor 

molecule blocks the promoter of the gene. A signal changes the conformation of the repressor, releasing it from 

the gene and allowing the RNA polymerase to bind. 

 

2.3 DNA-binding domain and physicochemical properties of the relationship 
Looking above, DNA-binding proteins regulate the process of domain for the protein has 

considerable influence, if we can know the DNA-binding protein with the domain of the 

relationship, or domain and the physical and chemical properties of the relationship, so I can 

further understand the door gene regulation in the meaning and use. 

Many studies have discussed the relationship between the physical and chemical 

characteristics and protein in nature, but unfortunately, a lot of physical and chemical 

characteristics is not enough to understand or unclear, so by machine learning approach to 

identify possible and relevant physical and chemical properties, hoping to further understand 

the interaction between DNA-binding proteins and the physicochemical properties, and can 

use this result to other biological phenomena. 
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Chapter 3 Materials and Methods 

3.1Datasets 
 

3.1.1 DNAset 

This dataset also called main dataset from Kumar et al., 2007 [15]. They got 146 

non-redundant DNA-BPs in which no two proteins have the sequence identity of more than 

25%. A non-redundant set of 250 non-binding proteins was obtained from Stawiski et al., 

2003 [6]. They used following criteria: i) no two protein chains have similarity more than 

25% and ii) the approximate size and electrostatics are similar to DNA-BPs. Final dataset 

called DNAset or main dataset or domain dataset, consists of 146 DNA-binding and 250 

non-binding protein chains or domains. 

Because this dataset is chains or domains, in order to discriminate these PDB chains 

from full-length DNA-binding proteins obtained from Swiss-Prot. 

 

3.1.2 DNAaset 

We use an alternate dataset called DNAaset. This dataset consists of 1153 DNA-BPs and 

1153 NBPs extracted from Yu et al., 2006 [16]. The parent dataset have 88 rRNA-BPs, 377 

RNA-BPs, 1153 DNA-BPs and 17779 non-binding proteins.  

We use the dataset from Kumar et al., 2007[15], they randomly picked 1153 non 

DNA-BPs and all 1153 DNA-BPs to constitute the alternate dataset (DNAaset). This is 

non-redundant dataset where no two proteins have more than 25% similarity. 

 

3.1.3 DNAiset 

This dataset is not use for training or testing, the dataset called DNAiset from Kumar et 

al., 2007[15] and they created an independent dataset. This dataset has 92 DNA-binding 

protein chains obtained from PDB and 100 nonbinding proteins picked from Swiss-Prot. 

 

Table 1. The statistic of the training datasets 

Datasets 
Number of DNA-binding protein 

chains 

Number of non 

DNA-binding proteins 

Main 146 250 

Alternate 1153 1153 

Independent 92 100 
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3.2Physicochemical Properties 

Physicochemical property is the most intuitive feature for biochemical reactions and is 

extensively applied in bioinformatics studies. The amino acid indices (AAindex) database 

collects many published indices representing physicochemical properties of amino acids. For 

each physicochemical property, there is a set of 20 numerical values for amino acids. 

Currently, 544 physicochemical properties can be retrieved from the AAindex database of 

version 9.0 [17]. After removing physicochemical properties having the value ‘NA’ in the 

amino acid indices, 531 physicochemical properties are obtained for the following studies.  

In contrast to the residue-based encoding methods of amino acid identity and 

evolutionary information, there are 531 mean values used to represent a sample [9, 10]. If m 

out of 531 informative physicochemical properties are selected and are used in SVM, m mean 

values are used to represent a sample. 

 

3.3 physicochemical properties for predicting DNA-BPs 
 

We propose a novel method using the physicochemical properties for predicting DNA-BPs 

(PPD). The identification of an effective feature set of physicochemical properties is mainly 

derived by using an inheritable bi-objective genetic algorithm (IBCGA) [18]. The IBCGA 

mines informative physicochemical properties and tune parameter settings of Support vector 

machine (SVM) simultaneously while maximizing 5-fold cross validation (5-CV) accuracy. 

The selected m=12, 11 physicochemical properties for Main dataset and Realistic dataset, 

respectively. The designed SVM are used to implement the computational system for 

prediction DNA-BPs. 

 

3.4 Support Vector Machine 

Support vector machine (SVM) is a learning model dealing with binary classification 

problems. SVM constructs a binary classifier by finding a hyperplane to separate two classes 

with a maximal distance between margins of two classes consisting of support vectors. In 

order to make linear separation of samples easier, SVM uses one of various kernel functions 

to transform the samples into a high-dimensional search space. In this work, the 

commonly-used radial basis function is applied to nonlinearly transform the feature space, 

defined as follows: 

0),exp(),( >−−= γγ jiji xxxxK
                                          (1) 
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The kernel parameter γ determines how the samples are transformed into a 

high-dimensional search space. The cost parameter C>0 of SVM adjusts the penalty of total 

error. These two parameters C and γ must be tuned to get the best prediction performance. 

For multi-class classification problems, ‘one-against-one’ strategy is applied to transform 

the multi-class problem into several binary classification problems. Given h classes, there are 

h(h−1)/2 classifiers constructed and each one trains the samples from two classes. A voting 

strategy is applied to give a final prediction for test samples. In this study, h=2 and the used 

SVM is obtained from LIBSVM package version 2.81 [19]. 

 

3.5 Feature Selection By Inheritable Bi-objective Genetic Algorithm 
Selecting a minimal number of informative features while maximizing prediction 

accuracy is a bi-objective 0/1 combinatorial optimization problem. An efficient inheritable 

bi-objective genetic algorithm [18] is utilized to solve this optimization problem. IBCGA 

consists of an intelligent genetic algorithm [20] with an inheritable mechanism. The 

intelligent genetic algorithm uses a divide-and-conquer strategy and an orthogonal array 

crossover to efficiently solve large-scale parameter optimization problems. In this study, the 

intelligent genetic algorithm can efficiently explore and exploit the search space of C(n, r). 

IBCGA can efficiently search the space of C(n, r ± 1) by inheriting a good solution in the 

space of C(n, r) [18]. Therefore, IBCGA can economically obtain a complete set of 

high-quality solutions in a single run where r is specified in an interesting range such as [5, 

50]. 

The proposed chromosome encoding scheme of IBCGA consists of both binary genes for 

feature selection and parametric genes for tuning SVM parameters, where the gene and 

chromosome are commonly-used terms of genetic algorithm (GA), named GA-gene and 

GA-chromosome for discrimination in this paper. The GA-chromosome consists of n=531 

binary GA-genes bi for selecting informative properties and two 4-bit GA-genes for tuning the 

parameters C and γ of SVM. If bi=0, the i th property is excluded from the SVM classifier; 

otherwise, the i th property is included. This encoding method maps the 16 values of γ  and C 

into [2-7, 2-6…, 28 ].  

The feature vector for training the SVM classifier is obtained from decoding a 

GA-chromosome using the following steps. Consider a given DNA-PBs sequence. At first, 

the index vectors for all selected physicochemical properties are constructed from AAindex 

for each amino acid. Feature vector of a peptide consists of the selected features whose values 

are obtained by averaging the values in their corresponding index vectors. Finally, all values 

of the feature vectors are normalized into [-1, 1] for applying SVM. 

Fitness function is the only guide for IBCGA to obtain desirable solutions. The fitness 

function of IBCGA is the 5-CV overall accuracy.  
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IBCGA with the fitness function f(X) can simultaneously obtain a set of solutions, Xr, 

where r=rstart, rstart+1, …, rend in a single run. The algorithm of IBCGA with the given values 

rstart and rend is described as follows: 

Step 1) (Initiation) Randomly generate an initial population of Npop individuals. All the 

      n binary GA-genes have r 1’s and n-r 0’s where r = rstart. 

Step 2) (Evaluation) Evaluate the fitness values of all individuals using f(X). 

Step 3) (Selection) Use the traditional tournament selection that selects the winner 

      from two randomly selected individuals to form a mating pool. 

Step 4) (Crossover) Select pc·Npop parents from the mating pool to perform orthogonal 

      array crossover on the selected pairs of parents where pc is the crossover 

      probability. 

Step 5) (Mutation) Apply the swap mutation operator to the randomly selected pm·Npop 

      individuals in the new population where pm is the mutation probability. To 

      prevent the best fitness value from deteriorating, mutation is not applied to the 

      best individual. 

Step 6) (Termination test) If the stopping condition for obtaining the solution Xr is 

      satisfied, output the best individual as Xr. Otherwise, go to Step 2). In this 

      study, the stopping condition is to perform 40 generations. 

Step 7) (Inheritance) If r < rend, randomly change one bit in the binary GA-genes for 

      each individual from 0 to 1; increase the number r by one, and go to Step 2). 

      Otherwise, stop the algorithm. 

 

3.6 Clustering properties by fuzzy c-means 
Figure 15 obtained from [21]. According to the numerical indices representing 531 

properties of amino acids, we clustered them into 20 clusters by using a fuzzy c-means 

algorithm based on their Euclidean distances between two indices [22]. 

The physicochemical properties can be classified into six groups according to their 

biological meanings [23]. From the viewpoint of machine learning, two properties are similar 

if the distance between their feature vectors is small. To identify informative physicochemical 

properties and obtain effective feature vectors with strong discriminative abilities, we cluster 

the 531 vectors of physicochemical properties into 20 clusters (show as Table 2) using a 

fuzzy c-means (FCM) method[22]. A feature vector of amino acids is a set of 20 numerical 

values representing a physicochemical property of amino acids. To apply the FCM method, 

all data were normalized in such a way that every physicochemical property had an averaged 

profile value of zero and a standard deviation equal to 1. The FCM method has an objective 

functional of the form [22]: 
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                                                   (2) 

where n=531 is the number of data vectors, K is the number of clusters to be found, u ij Î[0, 1] 

is the membership degree of j th data vector x j in the i th cluster, the i th cluster represented 

by the cluster prototype v i , sÎ[1,∞) is a weighting exponent called the fuzzifier and d(v i , x 

j ) is the distance of x j from the cluster prototype v i . Dembélé and Kastner [24] suggested 

the parameters setting s=1.12 and K=20 clusters, adopted in this study[25]. 

 

Table 2. The 20 clusters and their corresponding physicochemical and biochemical properties in the AAindex 

database 
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Figure 15 The minimum spanning tree of the amino acid indices stored in the AAindex1 release 9.0 [10]. Each 

rectangle is an amino acid index. Coloured nodes represent the indices classified by Tomii and Kanehisa [11] 

Red (A): alpha and turn propensities, Yellow (B): betapropensity, Green (C): composition, Blue (H): 

hydrophobicity, Cyan (P): physicochemical properties, Gray (O): other properties. White: the indices added to 

the AAindex after the release 3.0 by Tomii and Kanehisa [11]. 

 
3.7 Prediction Method PPD 

The selected m physicochemical properties and the associated parameter set of SVM by 

using IBCGA are used to implement the computational system and analyze the 

physicochemical properties to further understand the DNA-BPs. Since the IBCGA is a 

non-deterministic method, it should make more effort to identify an efficient and robust 

feature set of informative physicochemical properties in five aspects. The procedure is as the 

following steps: 

 

Step 1 : We prepare the independent data sets where each set is used as the training 

        dataset of 5-CV. 

Step 2 : IBCGA is performed R independent runs for each of independent data sets. In 

        this study, R = 30. There are total 30 sets of m physicochemical properties for 

        each of independent data sets.  

Step 3 : We calculate and record the frequencies F( ) of the selected physicochemical 

        properties from the solutions of R independent runs on train dataset.  

Step 4 : We calculate score Sr (r = 1, …, R) for each solution as follows: 
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i where F(Pi) denotes the frequencies of the physicochemical property Pi, m is the number of 

the selected feature in dependent run r.  

Step 5 : Choose the set of selected physicochemical properties with a maximal value of 

        Sr. 

The system flowchart of the prediction method PPDs is shown in Fig. 1. PPDs will 

automatically determine a set of informative physicochemical properties and an SVM-model 

for prediction binding and non-binding proteins. 

In order to provide the analysis of the PPD-based approach on the selected informative 

physicochemical properties, we calculate the frequency of the selected physicochemical 

properties from the solutions of R = 30 independent runs on Main dataset and Realistic dataset, 

shown in Fig. 2(a) and Fig. 2(b), respectively. The informative physicochemical properties 

were used to determine a prediction system for identify binding and non-binding proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 The system flowchart of the prediction method. 
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Chapter 4 Results and Discussion 

4.1 Results of different ratios of training and cross validation datasets 
To compare the main dataset with the realistic dataset of training/test, we were used the 

independent dataset for independent test. We got the training/test sets and each set had R = 30 

experiment. Results of training sets were shown in Table 3. Table 4 is shown the results that 

from Kumar et al., 2007 compare with ours (shown as table 5.), Matthew’s correlation 

coefficient (MCCi) for the i th coreceptor class, i = 1, 2, 3, and the best accuracy and averaged 

accuracies for all classes: 

 

( ) ( ) ( ) ( )
TP TN FP FNi i i i

TP FN TP FP TN FP TN FNi i i i i i i i

MCCi
× − ×

+ × + × + × +
=                                                (4) 

 

where TPi, TNi, FPi and FNi are the number of true positive, true negative, false positive and 

false negative, respectively. The average result of overall accuracy and MCC is high. 

 

Table 3. Results of training and cross validation 

 Training Frequency 

Dataset 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
MCC 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
MCC 

Main 88.89 84.93 91.20 0.76 87.12 82.19 90.00 0.72 

Alternate 76.41 82.74 70.08 0.53 75.50 81.96 69.04 0.51 

These results have high accuracy and MCC. 

 

Table 4.This data from Kumar et al., 2007  

Dataset  Accuracy  

(%)  

Sensitivity  

(%)  

Specificity  

(%)  
MCC  

Main  86.62  86.32 86.80 0.72 

Alternate  74.22  73.53 74.92 0.49 

These results are from Kumar et al., 2007, they use the PSSM-SVM to evaluate. 

 
Table 5. Results of the independent test  

Datasets  
Sensitivity  

(%)  

Specificity  

(%)  

Accuracy  

(%)  
MCC  

Main  83.70  78.00  80.73 (155/192)  0.62  

Alternate  67.39  81.00  74.48 (143/192)  0.49  
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These data are independent test, the accuracy about 80% and the highest MCC is 0.62. 

 

4.2 Selected a small set of physicochemical properties 
IBCGA is utilized to mine informative physicochemical properties using the whole 

dataset [23]. The best results of 30 runs shown in Fig. 16 reveal that the best numbers of 

selected features are m = 20 and 28 for Main dataset and Alternate dataset, respectively. The 

parameter settings (C, γ) of the SVM classifier are (25, 2-2), (25, 2-1) 

 
(A) 

 

(B) 

Fig. 17 The highest frequency of (A) main dataset 18th (B) alternate dataset 6th in 30 independent runs. X-axis 

represents the number of immediate feature, Y axis represents the number of each feature, the resulting average 

accuracy. (A) indicates 22feature number, have the highest accuracy, (B) said that when the number in 28 feature 

the highest accuracy. 
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4.3 Analyzing Physicochemical properties 
DNA-binding proteins (DNA-BPs) are functional proteins in a cell. How to difference 

DNA-BPs from other proteins is a very important reach topic in proteomics fields. This study 

investigates the prediction problem of DNA-binding proteins and proposes an efficient 

prediction system SVM-PCP to predict DAN-binding proteins with variable lengths. The 

features sets consisting of 22、28 and physicochemical properties are selected to implement 

the prediction system SVM-PCP on Main dataset、Alternate dataset and Realistic dataset, 

respectively.  

In order to analysis the efficient features sets, we use FCM algorithm[26] to partition the 

531 physicochemical properties into 20 clusters. 

For each selected features is belonging to one cluster. The selected features sets are 

represented the cluster sets. The table 6. is shown the represented the cluster sets using the 

features sets consisting of 22、28 and physicochemical properties.  

 

Table 6. The feature set with m = 22 having the highest appearance frequency of properties in the 30 feature sets 

on main dataset. 

Feature ID Description 

53 Frequency of the 4th residue in turn (Chou-Fasman, 1978b) 

56 Normalized hydrophobicity scales for beta-proteins (Cid et al., 1992) 

64 Size (Dawson, 1972) 

86 Localized electrical effect (Fauchere et al., 1988) 

91 pK-a(RCOOH) (Fauchere et al., 1988) 

188 Normalized frequency of bata-structure (Nagano, 1973) 

202 Ratio of average and computed composition (Nakashima et al., 1990) 

227 Normalized frequency of beta-sheet from CF (Palau et al., 1981) 

228 Normalized frequency of turn from LG (Palau et al., 1981) 

255 Relative frequency in beta-sheet (Prabhakaran, 1990) 

262 Weights for alpha-helix at the window position of -3 (Qian-Sejnowski, 1988) 

274 Weights for beta-sheet at the window position of -4 (Qian-Sejnowski, 1988) 

286 Weights for coil at the window position of -5 (Qian-Sejnowski, 1988) 

363 Principal component IV (Sneath, 1966) 

383 Average interactions per side chain atom (Warme-Morgan, 1978) 

388 Free energy change of epsilon(i) to alpha(Rh) (Wertz-Scheraga, 1978) 

412 Normalized positional residue frequency at helix termini N4 (Aurora-Rose, 1998) 

430 Free energy in alpha-helical conformation (Munoz-Serrano, 1994) 

434 Free energy in beta-strand region (Munoz-Serrano, 1994) 

443 Distribution of amino acid residues in the alpha-helices in thermophilic proteins 

(Kumar et al., 2000) 
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486 Interactivity scale obtained from the contact matrix (Bastolla et al., 2005) 

513 Apparent partition energies calculated from Chothia index (Guy, 1985) 

 

Table 7. The feature set with m = 28 having the highest appearance frequency of properties in the 28 feature sets 

on alternate dataset. 

Feature 

ID 

Description 

39 Normalized frequency of beta-sheet (Chou-Fasman, 1978b) 

56 Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992) 

58 Normalized average hydrophobicity scales (Cid et al., 1992) 

86 Number of hydrogen bond donors (Fauchere et al., 1988) 

88 Positive charge (Fauchere et al., 1988) 

95 Helix termination parameter at posision j+1 (Finkelstein et al., 1991) 

100 Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980) 

102 Beta-strand indices for beta-proteins (Geisow-Roberts, 1980) 

139 Average relative probability of beta-sheet (Kanehisa-Tsong, 1980) 

146 Net charge (Klein et al., 1984) 

147 Side chain interaction parameter (Krigbaum-Rubin, 1971) 

167 Conformational preference for all beta-strands (Lifson-Sander, 1979) 

178 Retention coefficient in HPLC, pH7.4 (Meek, 1980) 

214 Short and medium range non-bonded energy per atom (Oobatake-Ooi, 1977) 

229 Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981) 

280 Weights for beta-sheet at the window position of 3 (Qian-Sejnowski, 1988) 

299 Side chain orientational preference (Rackovsky-Scheraga, 1977) 

321 Mean polarity (Radzicka-Wolfenden, 1988) 

356 Side chain hydropathy, corrected for solvation (Roseman, 1988) 

365 Optimal matching hydrophobicity (Sweet-Eisenberg, 1983) 

399 Bulkiness (Zimmerman et al., 1968) 

401 Isoelectric point (Zimmerman et al., 1968) 

422 Normalized positional residue frequency at helix termini C4' (Aurora-Rose, 1998) 

431 Free energy in beta-strand conformation (Munoz-Serrano, 1994) 

449 Hydropathy scale based on self-information values in the two-state model (20% accessibility) 

(Naderi-Manesh et al., 2001) 

451 Hydropathy scale based on self-information values in the two-state model (36% accessibility) 

(Naderi-Manesh et al., 2001) 

512 Apparent partition energies calculated from Chothia index (Guy, 1985) 

528 Optimized relative partition energies - method C (Miyazawa-Jernigan, 1999) 

 



 

23 

 

Table 8. The represented the cluster sets using the features sets consisting of 22、28 and physicochemical 

properties 

Datasets Main Alternate 

FCM Cluster ID 7 3 

FCM Cluster ID 9 7 

FCM Cluster ID 10 9 

FCM Cluster ID 16 10 

FCM Cluster ID 18 14 

FCM Cluster ID  16 

FCM Cluster ID  17 

FCM Cluster ID  18 

Total features 22features 28 features 

The selected clusters set on Main dataset are included the selected clusters set on Alternate dataset. It can show 
the difference from DNA-binding domain and DNA-binding protein. 
 
 

 
 
Fig. 18 MED analysis of Main dataset 18th in 30 independent runs. X-axis represents AAindex the feature (see 

Table 7), Y axis represents the relative impact of value, the higher the more influential representatives from the 

figure we can see Number of hydrogen bond donors (Fauchere et al., 1988) in the entire physical and chemical 

properties most influential. 
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Fig. 19 MED analysis of Alternate dataset 18th in 30 independent runs. X-axis represents AAindex the feature 

(see Table 8), Y axis represents the relative impact of value, the higher the more influential representatives from 

the figure we can see Normalized frequency of beta-sheet (Chou-Fasman, 1978b) in the entire physical and 

chemical properties most influential. 

 
 
4.4B-factor 
    We use the tool, “PyMOL” to draw the DNA-DBPs, transcription factor IIB (PDB ID: 

1D3U). Fig. 19 show the b-factor on Domain sequence (B_Chain:1108-1205). Fig. 20 show 

the b-factor total sequence. We find the b-factor always has larger changes near DNA. This 

result may indicate protein of the near DNA that binding force greater with DNA. 

 
Fig. 20 Transcription factor IIB (TFIIB), (PDB ID:1D3U) the b-factor of domain sequence (B_Chain:1108-1205) 
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Fig. 21 Transcription factor IIB (TFIIB), (PDB ID:1D3U) the b-factor of total sequence 
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Chapter 5 Conclusions 

We have proposed a novel method using physicochemical properties for predicting 

DNA-BPs (PPD). We had three datasets into training and cross validation. The three datasets 

are Main dataset, Alternate dataset and Realistic dataset with different sizes for evaluating the 

proposed methods. The IBCGA mines informative physicochemical properties and tune 

parameter settings of SVM simultaneously while maximizing 5-CV accuracy. We have 

calculated the frequency statistics of the selected physicochemical properties from the 

solutions of the independent runs. Determinate the informative physicochemical properties 

and SVM-model can be predicted the DNA-binding and non-binding proteins. The PPD can 

achieve high prediction test accuracy. The m=22, 28 and for Main dataset and Alternate 

dataset, respectively.  

Furthermore we analyzing physicochemical properties from the 20 cluster that from 531 

AAindex, we found that the selected clusters set on Main dataset are included into the 

selected clusters set on Alternate dataset and Realistic dataset. It can show the difference from 

DNA-binding domain and DNA-binding protein. 

The most important feature work is to analyses the informative physicochemical 

properties on cluster7, cluster9, cluster10, cluster16 and cluster18 we hope that can provide 

biologists to apply. 
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