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LETTER TO THE EDITOR 

The kinetic energy density functional for fast-varying 
densities 

Y C Lee: and D S Chuu 
Department of Electrophysics. National Chiao Tung University. Hsinchu. Taiwan. 
Republic of China 

Received 13 January 1988. in  final form 17 March 1988 

Abstract. The expression of the von Weizsacker term consisting of the kinetic energy density 
of  an inhomogeneous fermion gas is derived from a variational standpoint when the density 
varies rapidly. It may provide insight or serve as a starting point for a Kohn-Sham-type self- 
consistent calculation in density functional theory. 

When a system of fermions is under an external potential, the spatial distribution n(r)  
of particles will be non-uniform. The particle density gradient is particularly important 
near surfaces, or close to  the force centre in the case of an impurity. In the theory of 
density functional pioneered by Kohn. Hohenberg, Sham (Hohenberg and Kohn 1964, 
Kohn and Sham 1965) and others (Lundqvist and March 1983). an important quantity 
is the kinetic energy density t,(n(r)) as a functional of n(r)  under the condition of non- 
interacting fermions, aside from the additional exchange-correlation energy functional 
E,,(n) which is usually calculated in the local density approximation (LDA) .  In situations 
where the density gradient is large. t , (n (r ) )  may actually account for a major part of the 
total energydensity. In turn, thislarget,(n(r)) would playasignificant roleindetermining 
the distribution function n(r) itself in the context of the Kohn-Hohenberg variational 
principle (Hohenberg and Kohn 1964). Unlike E,,(n). it is obvious that this t,(n) cannot 
be accurately obtained by the LDA under these situations. One then usually resorts to a 
perturbation expansion in powers of the density gradient (Hohenberg and Kohn 1964). 
The so-called von Weizsacker correction (von Weizsacker 1935) was indeed given in this 
form (Kirzhnits 1957): 

t , ( tz(r))  = (h?/m)[&)(3rr?n(r))?” + h IVn/’ /n?]  (1) 

in which the coefficient h was first obtained by Kirzhnits (1957) for cases of mildly 
varying densities or small density gradients. The original Thomas-Fermi approximation 
(Thomas 1927, Fermi 1927) assumes that particle wavefunctions may be replaced locally 
by plane waves. The von Weizsacker correction introduces an explicit account of the 
deviation from plane waves. This correction, whose original derivation was not satis- 
factory, has preoccupied many scientists (Lieb 1981, 1982, Bamzai and Deb 1981). It is 
not a priori clear whether such an expansion would even exist for cases of large density 

f Permanent address: Physics Department, SUNY at Buffalo, Amherst, NY 14260. USA. 
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gradients. It appears as the first term in a gradient expansion for a ‘reasonably slowly 
varying’ density, with or without the 4 factor, depending on the type of density variation 
(Hodges 1973). If one could express the density in the form 

n(r) = no + n l  cos(qz) (2) 
- 

with lnll 4 no and q B kF(r ) ,  the average local Fermi wavevector, one can show that the 
total kinetic energy functional T,(n) is given by 

T,(n> = d r  n(r)4(n(r))  ( 3 4  

(36) 

I 
l s (n(r ) )  = (ti2,”) [ &(3nzn(r))z’3 + B I ~ n 1 * / n ~ ]  

where the coefficient is A rather than h. Alonso and Girifalco (1978) derive this $-factor 
correction in a LDA without resorting to a gradient expansion. However, the major 
source of error in their kinetic energy formula arises from regions of rapidly varying 
electron density and inaccurate knowledge of the correlation factor involved. Many 
other works (Tal and Bader 1978, Wang and Parr 1977, Deb and Ghosh 1983, Krivine 
and Treiner 1979, Herring 1986) have been devoted to the derivation of the correct 
expression of the von Weizsacker term; however, no clearly conclusive result can be 
obtained. One may doubt that for a general n(r)  that varies rapidly, the correction term 
R IVn(’/n’ may not necessarily yield the correct results. 

In this Letter we shall derive an expression for f , (n(r ) )  for large density gradients 
from a variational point of view. The reason that we employ the variational approach is 
that for the cases of large density gradients the perturbational technique is unsuitable. 
We shall show that for a general n(r) that varies rapidly, equation (36) is of a much more 
general validity. 

Without loss of generality, suppose the density changes rapidly in the z direction, 
with its magnitude - dropping from maximum to nearly zero within a short distance Az = 
l /q ,  where g 3 kF(r) ,  the average being over a local region larger than Az. For example, 
in the case of a surface-type discontinuity of a bulk metal, the z direction may be taken 
to be the direction normal to the surface. For the shells of electrons surrounding an 
atomic nucleus, the z direction is just the radial direction which is normal to the shells. 
Of course, densities may also vary along the metallic surface or over each atomic shell, 
but such variations are generally milder and their contributions are already adequately 
treated by the &(Vn/n(’term in equation (1). Hence we shall focus our attention on this 
sharpest density variation in the z direction. How does such a piling-up of fermions 
occur? Variationally we try a class of single-particle wavefunctions of the form 

with a fixed but as yet undetermined (Po@) that is primarily responsible for the fast 
density variation, i.e. Q0(z)  might behave like cos(qr) over the distance Az,  within 
which it is real and has no nodes. Again the use of plane waves in the other two directions 
does not really imply that there is no density change in these directions in the actual case. 
Rather we have relegated their contributions to equation (1) and, consequently, plane 
waves along the x and y axes must be assumed to avoid double counting. When particles 
fill up states with the same @,(z)  but different k,, ky,  Pauli’s principle is satisfied. We 
certainly do not want particles to occupy other @”(z) states with faster spatial variation 
or more wiggle than O0(z) since they would raise the energy unnecessarily. Mixing Oo(z) 
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with states that vary more slowly in z would serve no useful purpose either, since they 
would not help in producing the necessary sharp density variations. In other words, if 
we broaden the class of functions of equation (4) by mixing it with other orthogonal 
functions that have slower spatial variations and use the mixing coefficients as variational 
parameters, these coefficients would turn out to be zero upon minimising the resulting 
energy. The adoption of single-particle wavefunctions rather than correlated many- 
particle functions is also in conformity with the spirit of the Kohn-Sham self-consistent 
single-particle equations (Kohn and Sham 1965). Accordingly the density of r = (x, y ,  z )  
is 

where 

N ( A z )  = 1 
k x . k ,  

is the number of particles within the slab Az. Their total kinetic energy in the z direction 
is then 

where A is the cross-sectional area of the slab. Recalling that Qo(z) is assumed to be 
real, having no nodes, we may express Qo(z) in terms of n(r) by means of equation ( 5 ) .  
Thus 

from which we identify the correction term due to a rapid density variation as? 

AtS(n(r ) )  = (h2/8m) lVn(r)/n(r)12. (8) 

It is noted that while equation (8) reconfirms (3b) ,  no restrictions (Kohn and Vashishta 
1983) on the form of equation (2) with n ,  + no nor on the specific form of Qo(z) have 

f More precisely one might add the small contribution from the slower density variation in the other directions 
to equation (8). which then becomes 

If the density varies rapidly along all three axes, we just have to rename the direction of this large V n ( r )  vector 
as the z axis in that local region and equation (8) will again be valid. 
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been imposed, i.e. our result of equation (8) is of a much more general validity. One 
may thus employ equation (8) together with some approximated (such as LDA) form of 
the exchange-correlation energy functional E,,(n) in the Euler condition that results 
from the Kohn-Hohenberg variational principle to solve for n(r)  directly and possibly 
analytically. Although in most current applications of the density functional theory the 
self-consistent set of Kohn-Sham equations that bypasses the necessity of an explicit 
t ,(n(r)) is solved numerically, one is often faced with such a labyrinth of computational 
details that renders the physical picture rather obscure. The former approach with our 
explicit form of t , (n(r))  may constitute a welcome alternative, or provide at least an 
approximate initial n(r)  to start the self-consistency scheme in the latter approach. 

One of the authors (YCL) would like to thank Professor Y S Gou and Professor H L 
Huang for the hospitality extended him during his summer visit in 1987 to their respective 
institutions in Taiwan. 
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