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中文摘要 

 

本論文提出一個由生物觀點啟發的多通道質感邊緣偵測演算法用以偵測不

同質感間的邊界。此演算法用高斯濾波器抽取質感的一階特徵，另外使用一組不

同參數的 GABOR 濾波器抽取二階特徵。這些不同的特徵接著被予以整合形成一個

N 維的特徵空間。我們會分別計算每一個像素點(pixel)和他相鄰點在特徵空間

中的差異，在消除調差異小的像素點之後，我們可以得到一個粗的邊界影像。最

後我們使用區域頂點偵測的方式，找出精確邊界的位置。 

此演算法簡單並且直觀，因此可實現於仿細胞神經網路(Cellular Neural 

Networks; CNN)。CNN 擁有一些重要的特性，例如有效率的及時運算能力及方便

於大型積體電路(VLSI)的實現。 

在論文裡，我們大量測試我們的演算法在合成的質感影像上，而這些質感都

是隨機從“Brodatz texture＂中取出來的。由實驗結果我們可以發現均勻質感

的邊界都可成功而精確的找出，而對於不規則或不均勻的質感，演算法仍會找出

一些符合我們人眼感受的特性。 
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Abstract 

In this thesis a multi-channel texture boundary detection technique inspired 

from human vision system is presented. This algorithm extracts 1st-order features by 

a Gaussian filter and 2nd –order features by a set of even-symmetric Gabor filters. 

The hybrid-order features are integrated to construct an N-dimensional feature space. 

The difference between each pixel with its neighbors is measured in feature space, 

and coarse boundaries are obtained after eliminate pixels with small difference. 

After obtaining coarse boundaries, we use local peak detection to get the precise 

boundaries. 

 The proposed algorithm is simple and straight-forward such that it can be 

implemented on Cellular Neural Networks (CNN) which possesses some important 

characteristics such as efficient real-time processing capability and feasible very 

large-scale integration (VLSI) implementation.  

We also extensively tested our algorithm on synthetic textures randomly picked 

from “Brodatz texture”, and from experiments it can be found that boundaries of 

uniform textures are detected successfully and have high spatial-accuracy. For the 

textures that are non-uniform or non-regular, the results also reflect some 

meaningful properties that consistent to human visual sensation. 
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Chapter 1  

Introduction 

1.1 Motivation 

Boundary detection is an important and fundamental topic in image processing, 

and the output of an image segmentation can applied in many applications, such as 

tracking, stereo, pattern recognition... etc. Boundary detection basically is a 

partitioning of an image into related sections or regions, and finding the boundaries. 

This process seems intuitive in human vision, but it is hard to do this job 

automatically in computer vision.  

The human visual system is able to effortlessly integrate local features to form 

our rich perception of patterns, despite the fact that visual information is discretely 

sampled by the retina and cortex. It seems clear, both from biological and 

computational evidence, that some form of data compression occurs at a very early 

stage in image processing. Moreover, there is much physiological evidence suggesting 

that one form of this compression involves finding boundaries and other 

information-high features in images. 

In this thesis we will propose a simple model which mimics the early stage of 

human vision which integrate hybrid-order features unsupervisedly, and it should be 

able to be implemented on circuit of CNN. 

1.2 State of Problems 

Early vision, also known as preattentive vision, includes those mechanisms that 

subserve the first stages of visual processing. These mechanisms can operate in 

parallel across the visual field, and is believed to be used for detecting the most basic 

visual features, such as color, luminance, orientation, motion etc. 

The most fundamental feature we use in human vision is the difference of light 

intensity that reflects into our eyes. In the retina level, our eyes are just like a band 

pass filter, and grab the information where intensity changes abruptly. We sometimes 
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call the position of these changes 1st-order boundaries, and the first order features can 

be generally equal to the mean of a local area. Some boundary detection algorithms 

based on this feature are zero crossing of the Laplacian of the Gaussian and Canny’s 

boundary detector [1]. There is a common problem in computer vision that they do 

not make a distinction between contours of objects which are the actual primitives 

needed in most application. It reveals that there are still some other mechanisms 

during visual perception, and in this thesis we focus on texture segregation. 

For texture analysis, an important finding in the physiology and psychophysics 

of the visual system of monkeys and cats, made in the beginning of the 1960s was that 

the majority of neurons in the primary visual cortex respond to a line or a boundary of 

a certain orientation in a given position of the visual field. In 1981, Hubel and Wiesel 

find two types of orientation-selective neuron, one that was sensitive to the of lines 

and boundaries, called simple cell, and another that was not, called complex cell [2], 

[3]. The receptive field of simple cell can be modeled by Gabor function, and it has 

been widely used to extract information which is called 2nd–order features hiding in 

texture. The mechanism of 2nd–order features is more commonly known as the filter- 

rectify-filter cascade. This consists of early linear filtering subunits, a no linearity 

(e.g., rectification), and a late linear filter. 

There are various texture algorithms with performance evaluated against the 

performance of the human visual system doing the same task. 

There are some observations from psychophysics help us form hypotheses about what 

image properties are important in human texture perception. For example, consider 

the texture pairs in Fig. 1-1(a) and Fig.1-1(b), first described by Julesz [4]. These two 

images both consist of two regions each of which is made up of different texture 

tokens. This fact is obvious in Fig.1-1(a), but in Fig.1-1(b) close scrutiny of the 

texture image is necessary to notice it. With immediate perception of Fig. 1-1(b), does 

not result in the perception of two different textured regions; instead only one 

uniformly textured region is perceived. Julesz says that texture pair in Fig.1-1(a) is 

“effortlessly discriminable” or “preattentively discriminable.”, and the texture pair in 

Fig.1-1(b) is not.  

Here comes the question. If there is an algorithm which can detect the difference 

of the two texture patterns in Fig.1-1(b), the result of this algorithm is correct or not? 

This result may be correct if it is a special purpose algorithm designed to detect such 

scrutably different regions. On the other hand, this result is incorrect if it is to be a 
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computational model of how the human visual system processes texture. The 

algorithm proposed in this thesis belongs to the second case, and this property can 

help us roughly judge whether the results of the proposed algorithm are correct or not. 

 

 
(a) 

 
(b) 

Fig. 1-1 (a) preattentively discriminable pattern; (b)not preattentively discriminable pattern 

1.3 Related Works  

1.3.1 Texture Analysis 

“Definition” of Texture 
 

At first, we should give a definition to texture, but it is unfortunately that there is 

not a precise and identical definition to texture until now. Although there is not a best 

definition to texture, this feature is so obvious that we still can’t neglect it. This 

situation is analogic to the tone in sound. We can easily distinguish the sound between 

violin and piano, but it is also hard to give a physical meaning to tone.  

Many people have proposed some descriptions about texture, and the 

“definition” of texture is formulated depending on the particular application and that 

there is no generally agreed upon definition. We give some perceptually motivated 

examples here. 

• “We may regard texture as what constitutes a macroscopic region. Its structure 

is simply attributed to the repetitive patterns in which elements or primitives are 

arranged according to a placement rule.” [5] 
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• “A region in an image has a constant texture if a set of local statistics or other 

local properties of the picture function are constant, slowly varying, or 

approximately periodic.” [6] 

• “The notion of texture appears to depend upon three ingredients: (i) some 

local‘order’ is repeated over a region which is large in comparison to the order’s 

size,(ii) the order consists in the nonrandom arrangement of elementary parts, 

and (iii)the parts are roughly uniform entities having approximately the same 

dimensions everywhere within the textured region.” [7] 

In this thesis we refer to descriptions which have been proposed, and simplify the 

situation: 

1. Texture is characterized by properties of a local region and in this region 

there should adequate spatial-relationships between elements or primitives. 

In this thesis spatial-relationships simply mean the orientation and 

frequency. 

2. Here we discuss the homogeneous texture which means that there are 

similar features over all single texture patterns. In means that the size and 

orientation invariant problems which may not be discriminable are not 

considered in this thesis. 

 

Filter Design 
 

There have been many algorithms to cope with this topic, and these algorithms 

may generally be grouped into the following major classes: feature space clustering, 

statistical classification, multi-channel filtering approaches: texture gradient operators, 

optimal filtering technique, and toxton-based methods. Among the algorithms 

mentioned above, the multi-channel filtering approach appears to be one of successful 

one in texture segmentation. Here we will discuss some algorithms in this class. 

Supervised methods 

Bovic, Clark and Geisler [8], 錯誤! 找不到參照來源。 give a very detailed 

analysis of the Gabor function using localized spatial filters for texture feature 

extraction. Bovik mentioned three supervised approaches to select filter locations 

using empirical information based on the power spectrum characteristics of the 

individual textures. For strongly oriented textures, the most significant spectral peak 
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along the dominant orientation direction is used as a filter location. Picking the lower 

fundamental frequency identifies periodic textures. Finally, the non-oriented textures 

using the center frequencies of the two largest maxima are recommended. It is clear 

that an automated method is more attractive.  

Dunn and Higgins [10] developed a method to select optimal filter parameters 

based on known samples of the textures. This is a totally supervised approach that 

focused mainly on using the minimum number of filters. Only the specific filter that 

separates two textures optimally is used to partition an image. The optimal filter 

responds strongly to one class and may express a lack of textural information of the 

other class. This other class is not identified to have a particular characteristic but 

lacking a characteristic of the other class. The more global solution to the problem is 

to spread filters throughout the frequency domain field to capture salient information. 

Unsupervised methods 

By providing near uniform coverage of the spatial-frequency domain with Gabor 

filters, the problem of selecting central frequencies is avoided. Jain and Farrokhnia 

[11] implemented real Gabor filters for texture segmentation using frequency 

bandwidth of one octave, center frequency spacing of one octave, angular bandwidth 

of °45 , and angular spacing  of °45 . 

The frequencies used in it for filters are: 

21 , 22 , 24 , …… ( ) 24/cN  Cycles /image width 

 

For textures with distinct spectral peaks which correspond to some global 

regularities, T. N. Tan proposed a useful method [12] to design Gabor dilters 

automatically. The central step in the algorithm is spectral detection. It detects a 

global spectral peak a time, and repeatedly detects conspicuous peaks by erasing 

operation on the spatial frequency plane: the power spectrum of a small neighborhood 

(e.g. 77× ) around the detected peak is set to zero. The iteration of peak detection 

terminates when the ratio of the magnitude of current peak to that of the first (e.g., the 

highest) peak is less than a pre-specified value (e.g., 80%). 

 

Feature Extraction 
 

Filter outputs by default are not appropriate for identifying key texture features. 
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A number of feature extraction methods were proposed to extract useful information 

from the filter outputs. Clausi and Jernigan [13] reviewed some feature extraction 

methods. Some of which include: 

1. Using the Magnitude Response, where the texture identification can be 

performed based on the magnitude of the output of the Gabor functions [8]. 

In the case of a filter that matches the particular texture the magnitude of the 

output is large to allow identification. 

2. Applying the Spatial Smoothing where Gaussian smoothing is known to 

improve the performance of Gabor filters for texture analysis. Bovik et al [8] 

recommended post filtering the channel amplitudes with Gaussian filters 

having the same shape as the corresponding channel filters, but wider spatial 

extents. 

3. Using only the Real Component Jain and Farrohknia [11] used a bank of even 

symmetric Gabor filters to characterize the channels. 

4. Using Pixel Adjacency Information Jain and Farrokhnia suggested in [11] 

using this method as extra features due to the fact that pixels belonging to the 

same texture are close to each other, so they should be clustered together. 

However, this will not perform well if there are some texture regions that are 

not adjacent in the image. 

5. Using a Non Linear Sigmoidal function that saturates the output of the filter 

where each filter image was subjected to a Sigmoidal non linear 

transformation [11] that can be interpreted as a blob detector. It is indicated 

by: 

( ) ( ) t

t

e
ettenht α

α

αϕ 2

2

1
1

−

−

+
−

==  

Where a is an empirical constant, a = 0.25. Their explanation was that most 

textures can be characterized by blobs of different sized and orientations. 

6. Applying Full Wave Rectification: many HVS models consider the 

evolvement of non linear behaviour [14]. Adding the absolute value of real 

and imaginary responses -full wave rectification- is a non linear method that 

is used to process the complex filter outputs [13]. 
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1.3.2 Cellular Neural Networks 

As we have mentioned above, there have been a lot of researches on texture 

based on the Gabor filter, but a drawback of Gabor filtering approaches is that they 

are computationally intensive. 

Recently, a novel class of information-processing system called cellular neural 

networks (CNN) has been proposed [15], [16]. Cellular neural/nonlinear networks 

(CNN’s) show a strong resemblance to biological visual systems. It is therefore not 

surprising that several CNN models have been produced for the unraveling of the 

processing in some parts of the vertebrate visual pathway [18], and the Gabor-like 

filters also have been implemented on CNN [20].  

The advantage of CNN’s is that they can be implemented in analog VLSI 

alongside photosensors which sense the image, and the filter outputs can be computed 

in less time than required by serial digital computer implementations and be read off 

the chip directly, relieving the computational bottleneck of preprocessing with Gabor 

filters. 

1.4 Research Scope 

At present, there is no definitive model for dealing with first- and 2nd-order 

information, and in this thesis a structure is proposed trying to model this process. We 

focus on mimicking the Preattentive stage of visual perception, so there would be not 

any clustering or classification method. In order to overcome insufficiency of only 

considering single order feature, we integrate 1st and 2nd –order features 

simultaneously. The proposed algorithm is totally straight forward and simple, such 

that it can be implemented on CNN. In this thesis we focus on the designing algorithm, 

and the part of implementing the proposed algorithm on CNN would be in another 

thesis [19]. 

1.5 Thesis Organization 

This thesis is organized as follows. Chapter 2 introduces knowledge form 

Physiology and Psychophysics about Vision. In Chapter 3 describes our hybrid-order 

texture boundary detection algorithm in detail. Chapter 4 shows the experimental 
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results and discussion. Chapter 5 is the conclusions and future works of this thesis. 
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Chapter 2                          

Knowledge from Physiology and 

Psychophysics about Vision 
Human vision is a powerful and elaborate system which can extract features and 

integrate them effectively. From physiology and psychophysics there are evidences 

that human visual system makes such a difference in its early stages of visual 

information processing [21], [22]. The initial stages of this visual processing are very 

important in this respect as they detect and group various types of salient features, 

such as curvature, line orientation, color, frequency. 
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2.1 V1 Receptive Field on Cortex & Linear System 

 

Fig. 2-1: visual pathway of human brain(adapted from sensation and perception p.38p.39) 

As we can see in the Fig. 2-1, the retina is the first station in the visual sensation, 

where the absorption of the light is taking place in the photoreceptors, which is the 

beginning of the transformation of photo-quantum into electrical signals. These 

signals generated in the receptors travel through bipolar, horizontal, and amacrine 

cells to finally reach the ganglion cells, which then transmit these signals out of the 

back of the eye in the optic nerve. An important property of this network of retinal 

neurons is that signals from many receptors converge on to each ganglion cell. This 

convergence, combined with inhibition, which is mostly transmitted across the retinal 

by the horizontal and amacrine cells, and it can be modeled Fig. 2-2. 
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Fig. 2-2 a schematic diagram of receptive field of bipolar cells 

We can formulate the overall response above by difference of Gaussian (DOG) 

function (see Fig. 2-3). The positive Gaussian which is thinner represents the 

contribution of photo receptors which directly link to bipolar cell. The negative 

Gaussian which is wider represents receptors which indirectly link to bipolar cell. 

DOG function is a typical receptive field of bipolar cell. The mechanism that 

transforms input signals from receptors to output signals of ganglion can be simulated 

by convolution with DOG function, and spectrum of DOG function like a band pass 

filter, it is consistent to some observation of psychophysics. 

u

Spatial domain
Frequency domain

v

Fig. 2-3 DoG function in spatial and frequency domain 

2.1.1 V1 receptive field on cortex 
From ganglion cell to LGN receptive fields are radiate which means it would 

response to boundaries in all directions, but this situation changes in cortex. In 1981, 
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Hubel and Wiesel find two types of orientation-selective neuron in cortex, one that 
was sensitive to the lines and boundaries, called simple cell, and another that was not, 
called complex cell. 

 Simple cells have receptive fields that, like center-surround receptive fields, 

have excitatory and inhibitory areas. However, these areas are arranged side-by-side 

rather than in the center-surround configuration as in ganglion. This side-by side 

arrangement means that a simple cell responds best to a bar of light with a particular 

orientation. The cell responds best when the bar is oriented along the length of the 

receptive field, and responds less and less as the bar is tilted away from this best 

orientation. The cells with different excitatory area will prefer different frequency of 

input. With these two properties, human vision can detect boundaries between 

2nd-order features, and we will utilize them in our structure. For simplicity, we can 

regard receptive field of V1 as a combination of receptive fields of ganglion cell (see 

Fig. 2-4). 
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Fig. 2-4 an schematic diagram about receptive field from ganglion cell to V1 cells 

 
From researches of Anatomy and Physiology we find that V1 cells constitute a 

regular arrangement on cortex. Fig.2-5 is a schematic diagram showing stretch of 

cortex, and we may separate it into grids. Each grid has the same structure, which is 

called functional modules, and thus every point in retina corresponds to some 

functional modules. 

As it can be seen in Fig. 2-4, every functional module contains different V1 cells 

which are selective to various orientation and frequency. It means that every point in 

vision has a complete set of linear filters with different property to analyze it, and 

this mechanism is the foundation of detecting 2nd-order boundary. The receptive 

field of V1can be modeled by a mathematic function which is called Gabor 

function,and We will discuss in detail in chap 3. 
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Fig. 2-5 schematic diagram of cortex functional module 

2.1.2 Linear filter theory 
Linear filter theory about texture perception has been widely used in recent 

decades. It is based on the concepts of cortex functional module and linear system 

theory. There have been various linear models proposed by different laboratories, and 

the way they coming feature are different. In this thesis we adopt the one of them 

which is proposed by Chen, I [23]. In this section we first introduce Linear system 

theory, and the detailed model used in this thesis is describe in Chap. 3. 
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Linear system  
The world of input/output systems can be divided up into linear and non-linear 

systems. Linear systems are nice because the mathematics that describes them is not 

only well-known, but also has a mature elegance. On the other hand, it is a fair 

statement to say that most real-world systems are not linear, and thus hard to 

analyze...but fascinating if for that reason alone. That nature is usually non-linear 

doesn't mean one shouldn't familiarize oneself with the basics of linear system theory. 

Many times a non-linear system has a sufficiently smooth mapping that it can be 

approximated by a linear one over 

restricted ranges of parameter values. The assumption of linearity is an excellent 

starting point--but must be tested. 

The notion of a "linear system" is a generalization of the input/output properties 

of a straight line passing through zero. The matrix equation yxW =⋅  is a linear 

system. This means that if W  is a matrix, 1x  and 2x  are vectors, and a and b are 

scalars: 

( ) 2121 xbWxaWbxaxW ⋅+⋅=+⋅  

2.2 Preattentive Processing & Feature Integration Theory

（FIT, Triesman） 

For many years vision researchers have been investigating how the human visual 

system analyses images. An important initial result was the discovery of a limited set 

of visual properties that are detected very rapidly and accurately by the low-level 

visual system. These properties were initially called preattentive, since their detection 

seemed to precede focused attention. We now know that attention plays a critical role 

in what we see, even at this early stage of vision. The term preattentive continues to 

be used, however, since it conveys an intuitive notion of the speed and ease with 

which these properties are identified. 

In this thesis we focus on preattentive boundary detection, and it means that we 

don’t use clustering or classification algorithm which resemble top-dowm process. 

Feature integration theory of attention (FIT; Treisman & Gelade, 1980) 

proposes that there are two different stages of processing. In the first stage, basic 
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features of objects are analyzed in parallel and coded in specialized feature maps. In 

the second stage, focal attention is serially deployed to particular locations and serves 

to "glue" features in order to combine them into object representations. It was 

suggested that "without focal attention, features cannot be related to each other". 

 

Fig. 2-6 a schematic diagram of FIT 

A large body of evidence supporting FIT was obtained from visual search, 

texture segregation, or illusory conjunction experiments (Treisman, 1988, 1993; 

Treisman & Sato, 1990). FIT’s features were determined in two ways: (1) by 

determining pop-out boundaries between areas made up of different elements, and (2) 

by a visual search procedure (Julesz, 1981; Trisman, 1987). 

Typically, in these types of experiments, multiple items are displayed and their 

numbers are varied to manipulate attentional load. In visual search experiments, 

targets are defined by a single feature or conjunctions of features. Participants are 

required to detect a target (or target area) among nontargets. 

Fig. 2-7 illustrate an example that the effect of primitive. In Fig. 2-7 we want to 

find a target which is different to any other elements in (a) and (b) respectively, and it 

can be notice easily that this job is done more easily in (b). The reason in this example 

is that the “green x” in (b) possesses different color to other elements and color is a 

type of “primitive”, so se can feel the “pop-out” effect when we search the target. On 

the other hand, in (a) the “blue O” has the same color to “X” and the same shape to 

“red O”. There is not any unique “primitive” belonging to “blue O”, so we have to use 

our “attention” to search the target. This is a top down process and doesn’t belong to 

the definition of preattentive stage. 
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Fig. 2-7 an example to illustrate the effect of pop-out (a)no pup-out effect; (b) pop-out effect 
exists 

When Treisman did experiments similar to these demonstrations, she found that 

for targets that pop out (like in Fig. 2-7 (b)), the reaction time was fast no matter how 

many distractors were present in the display. This result is plotted as line (a) in Fig. 

2-8. However, for targets that did not pop out (like Fig. 2-7 (a)), increasing the 

number of distractors increased the reaction time. This result is plotted as line (b) in 

Fig. 2-8. 

 

Fig. 2-8 Typical results of a visual search experiment: (a) the result when pop-out occurs; (b) 
the result when there is no pop-out. 

The primitive we used as 2nd-order feature is orientation, and Fig. 2-9 shows the 

pop-out effect by orientation. In Fig. 2-9 (a) the boundaries occur because the 

components have different orientations. In Fig. 2-9 (b) on the other hand, the central 

region indeed consists of elements different from elements in the rest region, but no 

pop-out boundary occurs. This is because the different elements in Fig. 2-9 (b) has 

same orientations components, and there is no other different “primitive” between the 

two elements in Fig.2-9 (b). 
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(a) 

 
(b) 

Fig. 2-9 (a) element with different orientations; (b) elements with the same orientations(adapted 
from sensation and perception p.164) 
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Chapter 3              
Hybrid-Order Texture 
Boundary Detection  

The physiological and psychophysical findings in the preceding section do not 

lead to a convenient computational model for the hypothesized cortical channels. In 

this chapter, a new boundary detection algorithm is proposed. This algorithm 

combines the 1st-order and 2nd-order features to model preattentive stage of human 

visual system. A simple hybrid-order channel model is described in the following. 

Fig. 3-1 shows a simplified flow-chart of the proposed algorithm. We first extract 

1st-order by Gaussian low-pass filter and 2nd-order features by Gabor filters 

respectively. After feature extraction, every pixel of the output is an N+1 dimensional 

vector for (N Gabor filters and 1 Gaussian filter), and then we measure the difference 

of each pixel with its neighbor. Because pixels belong to the same region have similar 

feature, the difference between them should be small. Then we keep the value which 

is bigger than a threshold and make pixels of which value are   smaller than 

threshold to zero. We would get coarse boundaries which have Gaussian-like 

distributions.  

With boundaries which have Gaussian-like distribution, we may go a step further 

to thin these boundaries by local peak detection, and after this stage we will get 

boundaries similar to human visual system. 

The proposed hybrid-boundary detection algorithm will be presented in detail, 

and the simplified block diagram is shown in Figure 3-1, and Fig. 3-2 is a detailed 

version of Fig.3.1. In Section 3.1, we first introduce hybrid-order Feature extraction 

step by step, and we will show how to measure the difference of pixels in feature 

space. In section 3.2, we illustrate the method that we use to thin the coarse 

boundaries which we have detected, and there we consider the saturation effect to 

enhance the results. In section 3.3, we introduce the way we utilized down sampling 

to accelerate the process. 
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Fig. 3-1 Simplified block diagram for hybrid-order boundary detection 
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Fig. 3-2 detailed block diagram for hybrid-order boundary detection algorithm 
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3.1 Hybrid-Order Feature Extraction 

In this section we introduce the way we extract first and second order features. 

1st-order characteristics are processed by a collection of spatiotemporal filters, while 

the 2nd-order features are processed in a separate mechanism consisting of two 

filtering stages separated by a non-linearity. This second mechanism is more 

commonly known as the filter- rectify-filter cascade. 

3.1.1 1st-order Feature Extraction 

As we have seen in 2.1.1.1, the ganglion is accomplished by the so-called 

“center-surround” organization of the receptive field, in which its excitatory and 

inhibitory subfields are organized into circularly symmetric regions. The DoG model 

simply uses the difference of two 2D Gaussians to model the shape of receptive field 

here. 

DoG function can be used in detecting boundaries. Two Gaussian filters with 

different values of σ  are applied in parallel to the image. Then the difference of the 

two smoothed instances is computed. It can be shown that the DoG operator 

approximates the LoG (Laplacian of Gaussian) one which has been widely used in 

boundary detection.  

We can think of the receptive field shape of a retinal ganglion cell as the linear 

spatial weighting function of the cell. That is, we can model the retinal ganglion cell 

as a linear neuron, where the receptive field tells us what the weights are. Using the 

function ),( yxR  to characterize the receptive field shape using the DoG model, we 

compute the output of a model retinal ganglion cell as 

      ∑=
yx

yxIyxRO
,

),(),(  (3-1) 

where ),( yxI is the input image.  

For a whole array of retinal ganglion cells with identical receptive fields, we 

compute the output of each cell in the array as 

 ∑ −−=
yx

yxIyyxxRyxO
,

0000 ),(),(),(  (3-2) 

Here ),( 00 yxO  is the output of the retinal ganglion cell whose receptive field is 

centered at position 00 , yx . 
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The operation of Dog function can be divided into two stages, Gaussian 

convolution and gradient. Gaussian convolution is somehow like extracting the mean 

of local region which is we called 1st-order feature here, and gradient is measure the 

variation of 1st-order feature. 

In order to combine 1st-order feature and 2nd-order feature, we only take 

Gaussian convolution to extract 1st-order feature here, and the gradient process will 

be done after combining 2nd-order feature.  

Fig. 3-3 illustrate the coarse boundary between two patterns with pure 1st-order 

features, and it is detected by only using first order feature. 

 

                (a)                 (b) 

Fig.3-3 an example demonstrating coarse boundary detected by 1st-order feature (a) input 
image; (b) boundaries detected 

In general, there should be more than one types of feature are mixed, and 

considering only first or second order feature is insufficient. Fig. 3-4 demonstrates 

the situation that patterns (D101-D102form brodatz texture) with hybrid-order 

feature but first order-feature is dominant. 

In fact, test patterns in Fig. 3-4(a) are complement which means that 2nd-order 

feature are the same but pixels with high intensity and low intensity are exchange. In 

the left pattern background is white and thus its mean is bigger than the right one of 

which background is black oppositely. Fig.3-4(b) is the boundary we detect with 

2nd-order feature only, and we can observe that the result is meaningless. Fig. 3-4(c) 

shows the result considering 1st-order feature, and it detects boundary successfully. 
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(a) 

              (b)               (c) 

Fig. 3-4 An example demonstrating the effect of 1st-order feature in boundary detection: (a) 
150×300 image (D101-D102); (b)boundary detected by 2nd-order feature; (c)boundary 

detected by 1st-order feature 

3.1.2 2nd-order Feature Extraction 

3.1.2.1 Gabor Function  
As we have mentioned in chap 2, the RF of V1 cells is orientation selective, and 

it can be modeled by function which was proposed by Gabor [24]. Gabor function 

consists of a Gaussian function modulated by a sinusoidal function, and it can be 

described as following: 

 ( )[ ]VyUxjyxgyxh +⋅= π2exp)','(),(  (3-3) 

( ) ( )θθθθ cossin,sincos',' yxyxyx +−+=       
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here, 

( )yxh , : Gabor function 

( )yxg , : Gaussian function 
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( ) ( )θθθθ cos,sincos',' yxwinyxyx +−+= : Rotated spatial-domain rectilinear 

coordinates 

xσ : STD of Gaussian in x axis 

yσ : STD of Gaussian in y axis 

 

The shape of two-dimensional Gaussian function is controlled by aspect 

ratio ( )yx σσ /  and xσ , yσ  which are standard deviation of Gaussian function in 

x-axis and y-axis in spatial domain respectively. In most cases, letting σσσ == yx  

is a reasonable design choice. The complex exponential component works on the 

center frequency ( )F  and orientation ( )φ  of the Gabor filter. In other word, the 

complex exponential component decides the place where frequency response of 

Gabor filer lies. F is given by 

( ) 2/122 VUF += , ( )UV /tan 1−≡φ  and U is spatial frequency in x axis, and V is 

spatial frequency in y axis. 

A Fourier transform of (3-3) is given by 

 [ ]( ) [ ]( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −+−−= 22 ''

2
1exp),( VvUuvuH yx σσ  (3-5) 

( ) ( )[ ] ( )( ) ( ) ( )( )[ ]θθθθ sinsin,sincos',' VvUuVvUuVvUu −+−−−+−=−−  (3-6) 

shows that Gabor filter in frequency domain is an adaptive band-pass filter and has 

the shape of Gaussian. Because of σσσ == yx , the parameter θ  is not needed and 

(3-3) simplifies to  

( ) ( )[ ]VyUxjyxyxh +
⎭
⎬
⎫

⎩
⎨
⎧ +
−= π

σπσ
2exp

2
exp

2
1),( 2

22

2  

In practice the Gabor function can be divided into real (even) part and imaginary 

(odd) part as 

 ( ) ( ) )'2cos(,, Fxyxgyxhc π=  (3-6 )

 ( ) ( ) )'2sin(,, Fxyxgyxhs π=  (3-7) 

 φφ sincos' yxx +=  

It can be seen that (3-6) and (3-7) are very similar, and (3-7) is just a phase shift 

version of (3-6). Both of them can extract local feature of spatial domain, and based 

on psychophysical grounds, Malik and Perona provided some justification fro using 
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even-symmetric filters only. In this thesis we use real-valued, even-symmetric Gabor 

filters. 

Gabor function constructs a complete but nonorthogonal basis set. An example 

has presented in 0, where Fig. 3(a) is a standard Gabor type filter in the time domain, 

and Fig. 3(b) is in frequency domain. Expanding the signal using this basis provides a 

localized frequency description.  
 

(a) (b) 

Fig. 3-5 An example of 2D Gabor type filtering. (a) is a standard 2D Gabor type filter in time 
domain, and (b) is in frequency domain. 

An important property of Gabor filters is that they have optimal joint localization, 

or resolution, in both the spatial and the spatial-frequency domains. By signal 

processing we know that a Fourier transform of Gaussian function is still Gaussian 

function, and by “uncertainty principle” we know that Gaussian function is the only 

function that can reach the optimal constraint of uncertainty principle. Uncertainty 

principle describes the optimal resolution in both the spatial and the spatial-frequency 

domains. (Uncertainty relation for resolution in space, spatial frequency, and 

orientation optimized by two-dimensional 

Visual cortical filters) 

When we observe signal in both spatial and the spatial-frequency domain, 

Heisenberg Uncertainty Principle state that decreasing the deviation in frequency 

(increasing the resolution) must result in an increase in the deviation in time (decrease 

in resolution) and vice versa. 

Gabor has first recognized and introduced a time-frequency version of Heisenberg’s 

inequality: 
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π
σσ

4
1

≥ft  

Where tσ  and fσ are the time and frequency standard deviations respectively. 

Gabor filter is just modulation of Gaussian function.  Gabor has been proved that 

this action only cause movement in frequency domain, and it wouldn’t affect the 

resolution of Gaussian function in spatial and the spatial-frequency domain. It means 

that Gabor function inherit property of Gaussian possessing optimal resolution in both 

domain, and this property is why Gabor filter is suitable for texture segregation. 

3.1.2.2 Full-Wave Rectification 
Like other filter- rectify-filter model, rectifying operation is taken after 

convolution by Gabor filters. It has been generally acknowledged that V1 cells have a 

property like half wave rectification property, and the intervening rectification ensures 

that the fine-grain positive and negative portions of the carrier do not cancel one 

another when smoothed by the later filter. The Rectifying operation also break the 

identically equality between linear filter theory and Fourier transformation.  
Fig. 3-6(b) demonstrates the output after Gabor filtering without rectifying, and 

Fig. 3-6(c) is after rectification. White pixels in the image reflect the pixel that Gabor 

has detected the matching feature, and it is similar that our V1 cells have response. 

Because the restriction of display, there are some pixels with negative response in Fig. 

3-6(b) doesn’t appear. In Fig. 3-6(c) it can notice that there are two regions are 

separated more apparently, and this is because of the rectification turning the negative 

response to positive. 
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(a) 

(b) 

(c) 

Fig. 3-6 an example demonstrates the effect of rectifying (a) input; (b) output without rectifying; 
(c) output with rectifying 
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3.1.2.3 Gaussian post filter and difference measure 

Gaussian post filter 
After being stimulated by bars with specific orientations, the output of V1 cells 

responding to similar orientation will aggregate together. The region with the same 

property will respond stronger than regions which consist of elements with different 

properties, and it is consistent with the “localization” property of texture. We can 

simulate this effect by a Gaussian post filters, it is somewhat like averaging with 

different weighting which is inverse proportion to distance to the center of the post 

filter. In the field of texture segmentation, Gaussian smoothing is an important 

procedure to eliminate features that varying abruptly.  

Fig. 3-7(b) shows the result after rectifying without Gaussian filter, and Fig. 

3-7(c) is the result that 3-7(b) after Gaussian filter. In 3-7(c) there is a ramp-like 

feature profile, and the next step is to detect the position where the variation of 

difference is maximum. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3-7 (a) input; (b) output before rectification; (c) output after rectification 
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Difference measure 
 

After extracting features of each local region, the features can be described by an 

N-dimensional vector, and each feature vector can be regard as a point in 

N-dimensional space. Similar to [23], the difference is represented by the distance in 

N-dimensional space. 
Fig. 3-8 illustrates the schematic diagram of the feature vector in 3-dimensional 

space. 

*

Fig. 3-8 an schematic diagram of an 3-dimensional feature space 

 

There is an important property in texture that pixels aggregate together usually 

have similar feature, so the position information is also an important feature. Because 

the reason we above, gradient is a common operation used in some algorithms [12]. In 

this thesis, we only compute the difference between features of each pixel to pixels 

right behind and below to it. 
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3.1.2.4 Gabor filter bank 

Besides orientation selectivity, Gabor filters also have frequency selectivity with 

different parameter. With these two properties, Daugman extended the original Gabor 

filter to a two-dimensional (2D) representation [26]. There have been many 

researches about Gabor filter bank. Jain and Farrokhnia [11] suggested a bank of 

Gabor filters, i.e., Gaussian shaped band-pass filters, with dyadic coverage of the 

radial spatial frequency range and multiple orientations.  

Because our goal is design an algorithm which can be implemented by CNN, the 

structure can’t be too complex. In this thesis we use totally sixteen Gabor filters to 

extract 2nd-order feature to do our experiments. All these Gabor filters have the same 

Gaussian shape in frequency and scatter uniformly in four orientations and four 

frequency bands. Fig (a) illustrates frequency response of Gabor filter with different 

orientation in the same frequency band, and Fig (b) illustrates Gabor filters with 

different frequency band in the same orientation. Fig. 3-8(a) demonstrates the 

frequency response of the Gabor filters with orientation in °0 , °45 , °90 , °135  

respectively. Fig. 3-8(b) demonstrates the frequency response of the Gabor filters with 

center frequency in 0.03125, 0.0625, 0.09375, 0.125 cycles/pixel respectively. 
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(a) 

 
(b) 

Fig. 3-9 frequency response of (a) Gabor filters in different orientation (b) Gabor filters in 
different frequency band 



 32

3.2 Saturation & Local maximum Detection 

3.2.1 Saturation 

In our algorithm, there is a problem when the number of test patterns increases. 

When the number of tests patterns in an image is greater than two, there would be 

more than one boundary existing. Because these boundaries usually do not have 

similar intensity, choosing threshold becomes an important problem. 

In this thesis we choose the mean of difference of total pixels as threshold, and 

the situation occur most frequently is that some boundaries with relative lower 

magnitude is eliminated. This is because of a relative huge region being considered to 

measure local feature, and the scale of difference between different patterns vary 

enormously. Obvious boundaries and cause relatively great difference and raise the 

mean of difference, and the boundaries which are not so obvious causing relative low 

difference will be eliminate. 

We use natural log transformation to simulate the saturation effect to alleviate 

this problem. It can suppress strong responses which may affect the mean (threshold) 

to much, but still keep the position of maximum difference where we assume 

boundaries lying.  

Strength of responses reflects the level differences between two local regions, but 

it may be not so linearly consistent to our perceptional feeling. In biology, and the 

response should not linear proportional to stimulations. 

In human vision system the dynamic range of response are limited, and the range 

of response will not linearly proportional to stimulate. Natural log transformation is an 

ordinary and important operation. Natural log transformation stretch the range of 

lower responses where we need to judge whether there are boundaries or not. It is 

good when we take threshold and quantization. In chap. 4.2.3 there will be 

experimental results demonstrating the effect of natural log transformation. 

3.2.2 Local Maximum Detection 

The coarse boundaries detected after taking threshold are too thick, and local 

maximum detection is used to thin it. It is assumed that the difference between 
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different patterns should be maximal at their boundary, and the boundary will be right 

there. The object here is to detect a local maximum of difference we remain at this 

stage.  

Algorithm of local peak detection: 

1) Here we scan row by row and column by column to find local maximums in x 

and y axes. 

2) Sort the peaks we find in 1) in descending order. 

3) Keep points with higher order in each line and column, and the output is binary. 

The values at that pixel regarded as boundaries (points with higher order) are 

255, and others are 0.  

The number of peak-points we keep in 3) is depending on the complexity of 

input image, and in our testing images we use two. 

Fig. 3-10 is an example demonstrates the peak detection in the algorithm. Fig. 

3-10(a) is an input image, and (b) is the detected coarse boundary. Fig. 3-10(c) is the 

3D version of 3-10 (b), and in this figure the vertical axis is intensity. 3-10(d) is the 

result of 3-10 (c) by taking peak detection. 3-10(e) is the superposition of 3-10(a) and 

3-10(c). From 3-10(e) we can observe that the detected boundaries have high accuracy 

which is consistent to our assumption. 
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(a) 

 

 

 
(b) 

 

(c) 

 

(d) 
 

(e) 

Fig. 3-10 (a)input (b)coarse boundary (c)3D version of (b) (d)(c)after peak detection 
(d)superposition of (a) and (d) 
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3.3 Down sampling and up sampling 

After rectifying 2nd –order features of different orientations have been extracted 

(as we have mentioned in 3.1.2.2), and the output of each channel has the same size to 

input images (in our experiments each texture pattern has 640×640 pixels). The 

amount of features is proportional to the number of channels. With the number of 

channels increasing, it cause heavy computational loading in following processing, 

and we improve this problem by down sampling feature space (in our experiments we 

down sample by 3).  

By choosing appropriate down sampling rates we can accelerate the following 

processes without losing too much accuracy. After boundaries have been detected, we 

will up sample before output. It will map detected boundaries to the corresponding 

position in original input. 

This mechanism is similar to human vision, and trade-off of spatial accuracy and 

computational loading is a common problem in human vision system and the 

proposed algorithm. In fact the whole visual pathway is like serial processes of 

information extraction and data compression.  

Without attention, human vision generally has low resolution in the field of 

vision, and even with attention we only have high resolution in a relatively tiny 

proportion of the field of vision. Although in this thesis we only consider the 

Preattentive situation, we still have acceptable spatial-accuracy for boundary detection 

which can be observed after local peak detection. 
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Chapter 4      

Experimental Results and 

Discussion 
In this chapter we will apply our algorithm to images which consist of a number 

of different test pattern. Most of them are synthesized by textures from “Brodatz 

texture database” which is derived from the Brodatz album, and it also has become a 

standard for evaluating texture algorithms. It has a relatively large number of classes 

(112 classes), and a small number of examples for each class. Each texture pattern we 

used here are 640*640 pixel 8-bit gray-scale images respectively. When computing 

the texture features for pixels near the image boundary, we assume that the image is 

extended by its mirror image—often referred to as the even reflection boundary 

condition. In section 4-1, we first introduce parameter selection. In section 4-6, there 

are some important properties are introduced. In section 4-3, we will have a widely 

test on synthesizing different textures by the proposed algorithm. In section 4-4, the 

accuracy of the proposed method is discussed. 
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4.1 Parameters Selection 

There are some parameters need to be selected: 

1. The number of Gabor filters and ( )σ,,VU  of them which decide the shape and 

orientation of Gabor filters in frequency domain.  

Gabor filtering is computation intensive, and increasing the number of Gabor 

filters will increase computation loading dramatically. On the other hand, unnecessary 

and useless feature extracted by wrong-designed Gabor filters may cause wrong 

boundaries. 

 

2. gσ  of the post Gaussian filter, which decides the smoothing level.  

Increasing σ  can eliminate more noise, but the accuracy of the boundary may 

decrease. Because both Gabor filters and Gaussian filters have spatial information, the 

values of gσ  must cooperate with σ  to obtain a better result. 

Designing parameter above is an important but sophisticated problem. Designing 

center frequencies of Gabor filters is most discussed in filter-design approaches. They 

are including the unsupervised methods such as algorithm proposed by Jain and 

supervised methods such as algorithm proposed by Dunn [27]. Algorithm in this 

thesis belongs to unsupervised method which means that all information of input 

pattern is unknown. Nevertheless, the emphasis of this paper is not on optimizing the 

design of Gabor filter, but rather proposing a simple algorithm modeling early vision 

and being able to be implemented on CNN. Parameters in Table 4.1 are empirically 

chosen and they are all the same in the following experiments without indicating 

specifically 

Parameters Value  
Pattern size(Brodatz texture) 640*640 pixels 
Orientation φ  °0 , °45 , °90 , °135  
Center frequency F  1/32, 1/16, 3/32, 1/8 cycles/pixel 
σ  of Gabor filter 16 pixels 
Down sampling rate M 3 

gσ  of post Gaussian filter 25 pixels 
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Mask sizes of Gabor and Gaussian 3σ , 3 gσ  

Table 4.1 parameters of experiments in Chap. 4 

4.2 Experiments of Hybrid-Order Boundary 

Detection 

4.2.1 Experiment 1: effects of multi-band Gabor filters 

In this experiment we will demonstrate the reason why we need multi-band 

Gabor filters. During this experiment we close the channel of 1st-order which means 

that we only consider 2nd-order features when detecting boundaries. From Fig. 4-1-1 

to Fig. 4-4 we will demonstrate 2nd –order feature image in the direction of °0 , °45 , 

°90 , °135  in each single band. The center frequencies of four bonds are 0.03125, 

0.0625, 0.09375, 0.125 cycles/pixel. 

 

 

 

 

Input(Brodatz texture:D17D94D6D18) 
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Band 1( 0.03125=F cycles/pixel) 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 
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Fig. 4-1 feature image of band 1(a) °0  (b) °45  (c) °90  (d) °135  (e) coarse boundaries (d) (e) 
after peak detection 

 
 

Band 2( 0.0625=F cycles/pixel) 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 
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Fig. 4-2 feature image of band 2 (a) °0  (b) °45  (c) °90  (d) °135  (e) coarse boundaries (d) (e) 
after peak detection 

 

Band 3( 0.09375=F cycles/pixel) 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 
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Fig. 4-3 feature image of band 3 (a) °0  (b) °45  (c) °90  (d) °135  (e) coarse boundaries (d) (e) 
after peak detection 

 

Band 4( 0.125=F cycles/pixel) 

 

(a) (b) 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Fig. 4-4 feature image of band 4 (a) °0  (b) °45  (c) °90  (d) °135  (e) coarse boundaries (d) (e) 
after peak detection 

4 Bands simultaneously 

 

 

(c) 
 

(d) 

 

(e) 

Fig. 4-5 (c) coarse boundaries (d) (c) after boundary detection (e) superposition of (d) and input 

From Fig. 4-1 to 4-4 we can find that there are always some boundaries remain 

undetected, and we can’t find all boundaries by a single band in this example. Fig. 4-5 

shows the result of boundary detection by four bands simultaneously, and it can be 

found that all boundaries are detected. 
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4.2.2 Effects of hybrid-order features 
In this experiment we will demonstrate the reason why we should consider 

1st –order and 2nd-order features simultaneously. Fig. 4-6(a), (b), (c), (d) demonstrate 

the coarse boundaries and boundaries after peak detection by 1st –order and 2nd –order 

features respectively. In Fig. 4-6(a), (b) it only detects the boundaries in lower part 

which is obvious different in 1st -order features, and in Fig. 4-6(c), (d) it only detects 

2nd –order boundaries. In these four images it is found that it is insufficient to detect 

all boundaries by a single order feature. In fig. 4-6(e), (f) hybrid-order features are 

considered simultaneous and all boundaries are detected. 

 

 
 

 
Input(Brodatz texture: D20D110D109D76D18) 
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(a) 
 

(b) 

 
(c) 

 

(d) 

 
(e) 

 
(f) 
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(g) 

Fig. 4-6 (a)coarse boundaries detected by 1st-order features (b)(a)after detection (c)coarse 
boundaries detected by 2nd-order features (d)(c)after detection (e)coarse boundaries detected by 

hybrid-order features (f) (f)after detection (g)superposition of (f) and input 

There is still one thing that we can observe in this experiment. As fig. 4-6 shows, 

the boundaries detected by 1st –order features are thinner than those detected by 

2nd –order. The reason of this property is that 2nd –order feature is extracted by Gabor 

filter before Gaussian convolution, and this process would blur the boundaries we 

detected at last. The second order feature processed by Gabor and Gaussian filters can 

be regarded as being blurred twice, so 2nd –order boundaries would be thicker. This 

property will also appear in Chap. 4.3 where we will demonstrate more experimental 

results. 

 

4.2.3 Saturation effects 
Fig. 4-7 is am example illustrate the effect of saturation. Fig. 4-7 (a) is the coarse 

boundary detected after Gaussian filter before thresholding without taking natural log 

transformation, and 4-7 (b) is 4-7 (a) after natural log transformation. Fig. 4-7 (c), (d) 
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are (a), (b) after thresholding respectively. Comparing Fig. 4-7 (a) and (b), we can 

notice that contrasts of strong difference (response) in (a) are compressed and 

contrasts of weak difference are raised after natural log transform. In Fig. 4-7 (b) there 

are strong and weak interdistances between different textures and intratdistances 

reflecting the nonuniform property of the right-up texture (Brodatz texture: D62). 

These strong responses may raise the threshold (mean of responses) and eliminate 

weak ones which we should keep.  

Fig. 4-7 (e) is the 2D version of Fig. 4-7 (c) and from both of them we can find 

that weak boundary between D6 and D109 are eliminated. On the other hand, all 

boundaries are kept in Fig. 4-7 (f).Fig.4-7 (g) and (h) shows the result of Fig.3-9(f) 

after local maximum detection, and the output is approximately consistent to our 

visual perception. 

 

 

 

 
Input(Brodatz texture:D109D6D62D34) 
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(a) (b) 

(c) (d) 
p

 
(e) 

 
(f) 
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(g) 

 
(h) 

Fig. 4-7 (a) coarse boundaries without log transform; (b)(a) after log transform; (c)(a)after 
thresholding; (d)(b) after thresholding; (e)2D version of (c); (f) 2D version of (d); (g)(f) after 

peak detection; (h)superposition of input and (h) 

4.3 Collection of Testing Results by Hybrid-Order 

Boundary Detection 

In this section the proposed algorithm is tested by a variety of textures randomly 

chosen from “Brodatz texture database”. For saving the space, we synthesize five 

textures in each image. There would be eight boundaries between two attached 

textures. We will show coarse boundaries, boundaries after peak detection, and 

superposition of boundaries and tested image in order. There are totally 57 testing 

results in the follow, and all parameters we use here are the same as we have 

mentioned in section 4.1.  

In this section we classify the results of our experimental results into three 

categories roughly. In section 4.3.1 we collect the results which all boundaries are 

detected. In section 4.3.2 we collect the results which there are some boundaries 

missing. In section 4.3.3 we collect the results which have the poorest results. 

4.3.1 Results which all Boundaries are Detected 

In this section we focus on uniform texture which consists of uniform gray value 
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or similar texture elements. Natural textures usually have some nonuniform part, but 

textures we use in this section are uniform in most part. In this section, all boundaries 

between different textures are detected and small edges within single texture are also 

detected. These results are consistent to our visual perception. 
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4.3.2 Results which some Boundaries are not Detected 

In this section we demonstrate results that some boundaries aren’t detected. 

Some of textures in this section are not so uniform such that boundaries within single 
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texture are more obvious than boundaries between different textures. In some cases, 

two textures have similar features, and the boundaries can’t be detected as we can’t 

distinguish them at our first sight. 
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4.3.3 Worst Results 

In this section we synthesize all textures which are not in our definition of 

uniform texture, and the results are poorest among all test images. Although it can’t 

detect boundaries as testing images in 4.3.1 and 4.3.2, the results still can reflect some 

meaningful boundaries. In fact there are not obvious boundaries between two different 

textures if we see by our eyes. From the image of coarse boundaries and input we can 

find that this algorithm detected the most obvious edges in these nonuniform textures, 

and this result is still consistent to our perceptional experience. 
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4.4 Discussion of Accuracy 

In this section the accuracy of the proposed method is discussed. The way we 
estimate the error is as fellow: 

1. Only the case that synthesizes two texture patterns in Brodatz texture 
is considered. In the algorithm every boundaries are proposed 
independently. It is also hard to judge accuracy if considering 
multi-boundaries simultaneously when some boundaries are detected 
and some are not.  

2. The distance between the answer and the result detected by the 
algorithm is measured in the condition of boundary being detectable. 
We define the error by dividing measured distance into the number of 
total pixels. 
example: 

 

(a) 

 

(b) 

 

(c) 

Fig. 4-8 an example of error estimation (a) input; (b) answer(middle line); (c) output; 
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3. For simplicity, 70 textures of Brodatz textures (112) which are 

generally consistent to our definition of textures are picked. Each test 
image is synthesized by choosing two textures from the 70 textures 
randomly, and there should be about 2500 combinations. Here we test 
500 combinations, and it is believed that the result can reflect the same 
property as testing all combinations. 

Fig. 4-9 is a histogram of error estimation in our experiment, and the results with 
error less than 5% is account for 85% for test images. The mean of error less than 5% 
is 0.76%, and it reflects the accuracy of the condition that boundaries between 
different textures can be detected. 
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Fig. 4-9 histogram of error estimation 

There is one thing we should notice is that images with big estimation errors are 
reasonable to human perception, and from Fig. 4-10 to Fog.4-13 are some of them. In 
these examples the boundaries between different textures (middle line) exist but are 
weaker than local boundaries caused by non-uniform regions. For simplicity only the 
biggest peaks are kept during error estimation, so the boundaries in the middle are not 
kept in output images. Although in these examples the outputs are consistent to human 
visual perception, errors measured by the way as we mentioned above are big. It is 
hard to define a generally “correct answer” for all test images, and the way we 
measure error is not suited for the test images similar to these examples. For this 
reason, we don’t measure the error for the input images synthesized by the rest 42 
textures in Brodatz textures. 
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(a) (b) 

Fig. 4-10 an example of test image with big estimation errors(D50D32); (a) input; (b) output; 

(a) (b) 

Fig. 4-11 an example of test image with big estimation errors(D105D83); (a) input; (b) output; 

(a) (b) 

Fig. 4-12 an example of test image with big estimation errors(D17D70); (a) input; (b) output; 

(a) (b) 

Fig. 4-13 an example of test image with big estimation errors(D8D16); (a) input; (b) output;
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Chapter 5  

Conclusions and Future Works 
In this thesis, a simple framework for hybrid-order boundary detection is 

proposed. It mimics mechanism of early stage of human vision, and experimental 

results are generally consistent to human visual sensation. After post processing, the 

detected boundaries also have adequate accuracy for other image processing 

applications such as stereo, and pattern recognition. By implementing the proposed 

algorithm on Cellular Neural Networks (CNN), the computational time will greatly 

decrease. The real-time processing capability is critical in some applications such as 

tracking. 

Although the proposed algorithm is widely tested to detect boundaries of 

synthetic textures successfully, there are still some problems demanding to be 

overcome  

1. Just as other algorithms for textures analysis with Gabor filters, there are too 

many parameters need to be determined. Determining parameters will much 

more complex when the synthesized texture patterns increase, and there is still 

not a simple and efficient method to solve this problem until now.  

    Besides parameters of 2nd-order features, the weighting of combining 1st 

and 2nd–order features is also needed to be concerned.  

    In addition, we use mean of difference as threshold in this thesis, and thin 

the coarse boundaries by peak detection. Peak detection has good performance 

in our experiments, but the number of peaks we should keep will be a problem 

when the input image is composed by complex objects. An adaptive threshold 

for local peaks may be more robust. 

    Determining parameters above automatically or even optimized would 

improve the results and may be the next step of this algorithm. 

2. Because we want to keep the structure simple and combine hybrid-order 

features easily without clustering methods, all Gabor filters in this algorithm 

have the same resolution. 
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    Multiresolution-based approaches which can control the trade-off between 

the spectral information and spatial structure have been widely used in the field 

of texture analysis. It is believed that the proposed algorithm can be extended to 

multi-resolution such that it will have better performance. 

3. In this algorithm we only consider the 1st and 2nd-order features, and there 

are still some higher-order features that can be utilized. Color is one of them, 

and the proposed algorithm can be extended to color textures by integrating 

color information. 
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