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Abstract--A study of the enhancement of the convection heat transfer of a laminar slot jet impinging on a 
porous block mounted on a heated region was investigated numerically. A numerical method (SIMPLEC) 
was adopted to solve the governing equations, and a one-equation thermal model with Van Driest's wall 
function was considered for solving the energy equation. Three different shape porous blocks (rectangle, 
convex and concave) were studied. The results indicated that the heat transfer is mainly affected by a fluid 
flowing near the heated region. For a lower porous block, the heat transfer is enhanced by the three types 
of porous block. However, for a higher porous block, heat transfer is only enhanced by the concave porous 

block. © 1997 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Due to the importance of porous media in many ther- 
mal devices, the c, haracteristics of the heat transfer 
performance of  porous media have been investigated 
widely and deeply in the last decade. 

Vafai and Kim [1] studied the thermal performance 
for a composite porous medium-fluid system. The 
porosity and the effective thermal conductivity were 
assumed to be con,'~tant. The enhancement of the ther- 
mal performance of the porous medium mainly 
depended on the ratio of the effective thermal con- 
ductivity of  the porous medium to the fluid thermal 
conductivity. When the ratio was sufficiently greater 
than 1, enhancement of the thermal performance is 
obtained : otherwi~e, the heat transfer rate decreased. 
Huang and Vafai [2] studied the heat transfer of  a 
fiat plate mounted with a porous block array. The 
porosity e was regarded as constant, and the chan- 
neling effect in the near-wall region and the thermal 
dispersion were both neglected. The porous block 
array in the external flow field significantly reduced 
the heat transfer rate on the flat plate as shown in the 
results. However, different trends in the internal flow 
field were obtained by Hadim [3]. He investigated two 
configurations : a tully porous channel and a partially 
divided porous ch~mnel. The results indicated that the 
partially divided porous channel configuration was 
an attractive heat transfer augmentation technique, 
although the ratio of the effective thermal conductivity 
of the porous medium to the fluid thermal con- 
ductivity was equal to 1. Huang and Vafai [4] indi- 
cated four effects (penetrating, blowing, suction and 
boundary layer separation) on the flow and thermal 
fields in a channel mounted with porous arrays. 
Hwang and Chao [5] conducted experiments and 
numerical methods to study the thermal performance 

of a porous channel, and the results illustrated that 
thermal enhancement could be obtained by using a 
high thermal conductivity porous medium. Fu et al. 
[6] investigated numerically the thermal performance 
of a porous block mounted on a partially heated wall 
in a laminar-flow channel. The results indicated that 
the thermal performance was enhanced for the par- 
tially blocked situation by using a porous block with 
a higher porosity and bead diameter: however, the 
results were opposite to those for the fully blocked 
situation. 

Based upon previously mentioned literature, the 
conclusion that enhancement of the heat transfer per- 
formance of  a porous medium occurs under certain 
conditions can be drawn. The fact that more fluid is 
forced to flow through a porous medium is important. 
To satisfy the above demand, an impinging jet, which 
can control the flow direction of fluids and enhance 
the heat transfer performance of an object impinged 
by the jet, may, after all, be an appropriate device. As 
for the investigation of the thermal characteristics of 
the impinging jet, there are a number of articles that 
have been published in the past. 

Martin [7] briefly reviewed the early studies of jet 
impingement, including a single round jet, arrays of 
round jets, a single slot jet, and arrays of slot jets. 
Many empirical equations for heat and mass transfer 
coefficients were provided, based on experimental 
data. In addition, many studies of the jet impinge- 
ment, such as those of Gardon and Akfirat [8, 9], 
Miyazaki and Silberman [10], Sparrow and Lee [11], 
and Jambunathan et al. [12], have specialized in the 
effects of parameters such as the Reynolds number, 
the jet-to-plate distance, and the velocity-inlet profile 
on the local and average Nusselt number. The results 
indicated that enhancement of the Nusselt number 
could be obtained by using a shorter jet-to-plate 
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NOMENCLATURE 

b width of slot jet [m] 
Bo coefficient of stagnant conductivity 
Cf specific heat of fluid [kJ kg-  1 ° C  - l ]  

dp porous bead diameter [m] 
Da Darcy number (K/b 2) 
DT empirical constant in thermal 

dispersion conductivity 
F inertia factor 
//j dimensional distance from jet inlet to 

the highest position of the porous 
block [m] 

HJ dimensionless distance from jet inlet to 
the highest position of the porous 
block (Hj/b) 

Hp dimensional height of porous block 
[m] 

HP dimensionless height of porous block 
(Hp/b) 

H~ dimensional height of central region of 
porous block [m] 

HP¢ dimensionless height of central region 
of porous block (H~/b) 

Hpr dimensional height of right-hand side 
of porous block [m] 

HPr dimensionless height of right-hand 
side of porous block (Hpr/b) 

Hz dimensional distance from jet inlet to 
solid wall [m] 

H Z  dimensionless distance from jet inlet to 
solid wall (Hz/b) 

ka stagnant conductivity [W m - '  °C - 1] 
ko effective thermal conductivity of 

porous block [W m -1 °C -1] 
kr thermal conductivity of fluid 

[ W m - '  °C-q  
k~ thermal conductivity of solid phase in 

porous block [W m ' °C-1] 
kt thermal dispersion conductivity 

[W m -I °C -I] 

K permeability [m 2] 
l Van Driesrs wall function 
Lp dimensional length of the porous block 
LP dimensionless length of the porous 

block (Lp/b) 
rn dimensionless flow rate 
Nu mean Nusselt number in the X- 

direction 
p dimensional pressure [N m -2] 
P dimensionless pressure (p/pv2o) 
Prr Prandtl number of fluid in external 

flow field (vfpfCf/kf) 

Prp Prandtl number of fluid in porous 
media (vfprCf/ko) 

rl, r2 coefficients in equation (1) 

Re 

Rep 

As 

T 
U 

U 

V 

Vo 
V 

X, y 

x , Y  

Reynolds number (vob/vr) 
bead diameter based Reynolds number 
([r~pldp/vf) 
shortest distance from the calculated 
point to the boundaries of the porous 
block [m] 
temperature [°C] 
dimensional velocity in x-direction 
[m s- ' ]  
dimensionless velocity in x-direction 
(U/Vo) 
dimensional velocity in y-direction 
[m s- l] 
jet inlet velocity [m s-1] 
dimensionless velocity in Y-direction 
(V/Vo) 
dimensional Cartesian coordinates [m] 
dimensionless Cartesian coordinates 
(x/b, y/b). 

Greek symbols 
dimensionless stream function 

e porosity [m 3 m -3] 
eo effective porosity [m 3 m -3] 

computational variable 
7 shape factor 
A ratio of thermal conductivity of solid 

phase to fluid phase in porous block 
/~ viscosity [kg m-  1 S-- 1] 
p fluid density [kg m -3] 
v kinematic viscosity 
a) empirical constant in Van Driesrs wall 

function 
0 dimensionless temperature 

[ ( T -  To)/(T,,,- To)]. 

Superscripts 
n the nth iteration index 
- -  mean value 
--, velocity vector. 

Subscripts 
c central line of porous block 
CV control volume 
e effective value 
f external flow field 
o inlet condition 
p porous media 
r right side of porous block 
w solid wall 
wop without-porous-block case. 

Other 
I I magnitude of velocity vector. 
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distance, a higher Reynolds number, and a parabolic 
velocity profile of the inlet jet. Polat et al. [13] gave 
a comprehensive summary, including a laminar and 
turbulent jet imlginging on a flat surface, of the 
numerical models  In their study, both the numerical 
models and the results were discussed in detail. In the 
above literature, lhe dimensions of  the impingement 
plate were much larger than the width of the jet inlet. 
Hence, the impingement plate should be treated as an 
infinite plate. However, in many industrial appli- 
cations, e.g. electronic cooling, this assumption is not 
always appropriate. 

Consequently, the aim of this study is to investigate 
numerically the effects of a laminar jet on the heat 
transfer performance of different shape porous blocks 
mounted on a heated plate. In order to increase the 
fluid flow through the porous medium, the shape of 
the porous block except for the usually used rec- 
tangular shape, concave and convex shapes are taken 
into consideration. The effects of the ratios of the 
height of the porous block and the distance between 
the porous block and the jet to the width of the jet on 
the heat transfer performance are mainly investigated. 
However, other parameters, such as the Reynolds 
number, bead diameter ratio, porosity, and Prandtl 
number, are selected, based on the authors' previous 
study [6]. The results indicated that the thermal per- 
formance is mainly enhanced by more fluid flowing 
through the porous medium and near a heated region. 
For  the concave shaped cases, the mean Nusselt num- 
bers are enhanced. However, for the convex and rec- 
tangular shapes, the mean Nusselt numbers are 
enhanced for the ]Lower porous blocks, but decreased 
for the higher porous ones. Generally, from the heat 
transfer point of view, the higher porous block is 
regarded as a barrier, and the thermal performance 
becomes worse. 

PHYSICAL MODEL 

The physical model is shown symmetrically in Fig. 
1. There is a two-dimensional laminar slot jet 
impinging on a partially heated plate. The width of 
the jet inlet is b. The uniform inlet velocity and the 
temperature of the jet are Vo and To, respectively. Only 
a portion of the impinged plate is heated, the rest of 
the plate being insulated. The length of the heated 
region is Lp, which is equal to 2b, and the temperature 
of the heated region is T,, which is higher than To. A 
porous block is mounted on the heated part of the 
impinged plate. T~ree different types of porous block 
(rectangular, convex and concave) are chosen. The 
definitions of these three blocks [shown in Fig. 2(a)- 
(c)] are based on the comparison of the heights of the 
right-hand side (Hpr) and the central region (Hr~). It 
is defined for rectangular, convex and concave porous 
blocks as H~ = Hpr, H~ ~> Hpr and Hp¢ ~< Hpr, respec- 
tively. The distances from the jet inlet to the highest 
position of the porous block and the impinged plate 
are ~ and Hz, re:~pectively. The whole computation 

o? T porous  bloct 

V o0J 
~ / Hjv | 

~" j e t  inlet ~ ~ I~ z 

' B I Tw C I / / / / / / / /  
/ / insu la ted  

Lp/2 q 

Fig. 1. Physical model. 
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a¢ 
~y-=O,  
tI, =u,v,T 

t 
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(a)RECTANGLE 
(Hpc = Hpr) 

1 Hp~ 1 [- Hpr 

( b ) C O N V E X  

(Hpc > Hpr) 

[ HPC ~ IIHpr 

i (e)CONCAVE 
(Hpc < Hpr) 

Fig. 2. Definitions of porous blocks: (a) rectangular, (b) 
convex, and (c) concave. 

domain is large enough for fully developed dis- 
tributions of the velocity and temperature to be 
formed. Under this configuration, the flow field can 
be decomposed into two conjugate regions: one 
stands for the internal flow field, which is bounded by 
the porous block ; and the other is called the external 
flow field, which excludes the porous media. 

In order to simplify the problem, some assumptions 
are made as follows : 

(1) The porous block is made of spherical beads. It 
is non-deformable and does not chemically react with 
the fluid. 

(2) The flow field is steady-state, two-dimensional, 
single-phase, laminar and incompressible. 
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(3) The fluid properties are constant and the effect 
of gravity is neglected. 

(4) The transverse thermal dispersion is modeled 
by Van Driest's wall function [14] : hence, a one-equa- 
tion model of the energy equation is used. 

(5) The effective viscosity of the porous medium is 
equal to the viscosity of the external fluid. 

(6) The profiles of the inclined surface of the con- 
vex and concave blocks are assumed to be straight 
lines. 

The porosity e, permeability K, and inertia factor F 
are defined as [15] 

e = s~(1 -{-rle-'2As/dp) (1) 

K e3d~ (2) 
150(1 --8) 2 

1.75 
F - (3) N//iff081.5 

where As is the shortest distance from the calculated 
point to the boundary of  the porous block, and r~ and 
r2 are both empirical constants. 

The effective thermal conductivity of a porous med- 
ium (ko) is a combination of the stagnant conductivity 
kd and the thermal dispersion conductivity kt [14], 
which simulates the transverse thermal dispersion. 
The relationship between ko, k a and kt is then 

k, = k d + k t 

and kd is defined as 

kd__l__ lx/~__~+2A lx/i~-~ 
kr A - Bo 

I -BoA(A-I) ,  / 'A'~ 

L (A-~o) \ o/ 

Bo+1 hWo- I)- I 
2 A - B o  J 

A = ~  
kf 

Bo=  1.25 ( ~ - f )  1°/9 

where 

and kt is defined by Van Driest's wall function as 

kt 
= Dr Pr Replr~pll (8) 

where Dr is an empirical constant, and Rep is the bead 
diameter based Reynolds number, defined as 

I~pldp 
Rep -- (9) 

vf 

and I is the Van Driest's wall function defined as 

l = 1--e-~/~,  (10) 

where co is an empirical constant. 
Based on the above assumptions and with the 

consequent characteristics for b, Tw-  To, pv2o and Vo, 
the governing equations, boundary conditions and 
geometry dimensions are normalized as follows : 

(1) Governing equations of the external flow field 
continuity equation 

Ou~ OV~ 
OX + ~ = 0 (l 1) 

X-momentum equation 

OUr OUf OPf 1 //02 Uf 02Uf~ 

(12) 

Y-momentum equation 

U OVf V, OVr 
f T £  + f-~T = - - -  

Oef 1 f02Vf 02Vr~ 

(13) 

energy equation 

aof oof 1 Io2or o2o~\ 
Ur-~-X + Vf o y - Re Prr ~ f f ~  + ----= y2 ] (14) 

(4) 

(2) Governing equations of the internal flow field 
[16] 
continuity equation 

ou~ 0vp 
0x + T f  = 0 (15) 

X-momentum equation 

(5) Up 0J(~ ~ J POY~ 8 ] 

0P~ 1 [02 Up 02 Up~ 
- ox +~e~-gU + 0r2J (6) 

R~Da~U _ ~ 1  8U v / ~  p (16) (7) 

Y-momentum equation 

U ~(Vp~_[_ V~ klVp~ 

OPp &(~2 Vp 0 2 VpX~ 

: -- OX + R e \  OX 2 + 0 - ~ )  

1 bTfipl eK (17) Re ~a ~V~- ~ 

energy equation 
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OOp OOp 0 [ 1 OOp'\ 0 [ 1 OOp) 
Up ~ + lip ~ - i~-XtRe-Prp-ff~ ) + -ff-~t R-~-~r p O Y ] 

(3) Boundary conditions 
on surface AB (synzmetrical line) 

OVf OOr 
v~ = oT~  = o s ~  = o 

0 lip OOp 
and Up = 0--~- = O ~  = 0 

on surface BC (heated region) 

up =ovp  = o o p  = 1 

on surface CD (insulated region) 

OOt 
ur:= o vt = o~-~= o 

on surface ED (X-> ~ )  

OUt OVf tOt 
o-T = o~T = o~-~ = o 

on surface EF (Y-~ ~ )  

OUt OVt 000f 
T f  = o T f  = ~ = o  

on surface FG (wall) 

OOt 
ut:= o v t=  o T ~ = o  

on surface GA (jet inlet) 

Uf = 0 Vf = - 1 0 f =  0. 

There are some interfacial conditions at the inter- 
faces between the porous block and the external flow 
field. These are the matching conditions of  the hori- 
zontal and vertical velocities, normal and shear 
stresses, temperature, heat flux, and pressure. 
However, these conditions will make the problem 
more complex. A simplified method suggested to solve 
these interfacial problems was discussed in the study 
of Hadim [3]. The interfacial conditions at the fluid- 
porous medium interface are automatically satisfied 
[3] due to the Brink:man extension in the momentum 
equation of the porous media. 

NUMERICAL METHOD 

The SIMPLEC algorithm [17] with TDMA solver 
(18) [18] is used to solve the governing equations (11)-(18) 

for the flow and thermal fields. Equations (11)-(18) 
are first discretized into algebraic equations by using 
the control volume method [18] with a power-law 
scheme. The underrelaxation factor is 0.3 for both the 
velocity and the temperature field. The conservation 
residues [17] of the momentum, energy and continuity 
equations, and the relative errors of each variable, are 

(19) used to examine the convergence criteria which are 
defined as follows : 

(Zlresidue o f t  equationl~v)~/2 ~< 10-4 

(20) O = U, V, 0 and mass flow rate (26) 

max [0 "+1 -O"1 
~< 10 -5 • = U, V, PandO. (27) 

max IO"+11 
(21) 

In order to reduce the computation time, a non- 
staggered mesh is used. The finer meshes are placed in 
both the interfacial region of the porous block and 
near the solid wall region. The meshes are then 

(22) expanded outwards from the interfacial boundary and 
the solid wall with a scale ratio of 1.05. Due to the 
limitations of the numerical method, the inclined 
interfacial surfaces of the convex and concave blocks 

(23) are simulated by a series of rectangular steps, called 
the 'blocking off' operation, as proposed by Pan- 
tankar [18]. For  the interfacial control element, if the 
central position of the control element is lower than 
the corresponding inclined surface, the control 

(24) element then belongs to the porous block : otherwise, 
the control element belongs to the external flow field. 
In addition, on the basis of the suggestions of Pan- 
tankar [18], the harmonic mean formulation of ther- 

(25) mophysical properties is used to avoid the effects of an 
abrupt change in these properties across the interfacial 
region of the porous block and the external flow field 
on the computational accuracy. 

The parameters, which include the Reynolds num- 
ber Re, block sizes HPr and HP¢, and effective porosity 
co, adopted in this study are tabulated in Table 1. The 
Darcy number Da listed in Table 1 is based on the 
effective porosity co. Since the porosity e is a variable, 
as shown in equation (1), the Da in each control vol- 
ume is also a variable during the computation. As for 
the results of Martin [7] and Gardon and Akfirat [9], 
the presence of a pressure gradient plays an important 
role in the value of the local heat transfer coefficient, 

Table 1. Main parameters and empirical constants for eo = 0.5 

b dp 
[m] Re LP HJ HPr, HP¢ [m] Da Pr ee rt r2 Dr ~o 

0.01 450 2 3.5 0.125, 0.25, 0.5, 1.0, 1.25 × 10 -3 5.208 x 10 -3 0.7 0.5 0.98 2 0.3 3.5 
1.5, 2.0, 2.5 
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as it could be found that the value of  the local static 
pressure (or local Sherwood number) for the 
impinging flow for the low jet-to-plate distance and 
low Reynolds number in this study are almost con- 
stant for X larger than 2. Polat  et al. [13] also men- 
tioned that the range of  the impingement region is 
about  0.5 times that of  the jet-to-plate distance for a 
single jet and non-interacting multiple jets. Therefore, 
a constant dimensionless ratio of  the length of  the 
porous block to the jet width L P  is selected and fixed 
at 2, as listed in Table 1. For  the Re = 450 cases, the 
whole dimensionless domain X x  Yis 25.5 x 12.0, and 
the fully developed conditions in the outlet sections 
can be satisfied. 

Table 1 also shows the empirical constants used in 
the definitions of  the porosity e [equation (1)] and the 
Van Driest 's wall function l [equation (10)], where r~ 
and r2 are obtained from Vafai [15], and DT and ~o are 
provided by Cheng and Hsu [14]. 

The numerical method and accuracy are validated 
in Fu  et al. [6]. After the results of  the grid tests, 

86 x 182 meshes are typically chosen for a rectangular 
block with Re = 450, H P  = 0.5, H J  = 3.5, ee = 0.5 
and Pr = 0.7. 

RESULTS AND DISCUSSION 

The material of  the spherical bead adopted in this 
study is considered to be copper in order to enhance 
the thermal performance. Re = 450, ee = 0.5, 
Pr = 0.7, and H J  = 3.5 are fixed in the following 
situations. 

In order to illustrate the flow and thermal fields 
more clearly, only the phenomena near the impinge- 
ment region are presented. The dimensionless stream 
function ~k is defined as 

c3¢ c3--X ' c~ (28) U = ~ a n d  V = - 

Shown in Fig. 3 (a ) - ( f )  are the streamlines and iso- 
therms for the rectangular (HPc = HPr) porous block 

S t r e a m l i n e s  

3 i ~ ~ ?  / I ] tl 
2 Pr = 0.25 

1 • 

0 ~ L I 
0 2 4 6 

X 
1~=0.01, 0.05, 0.1, 0.3, 0.5. 0.6 

(a) 

 IL/' ,/,., , 1 ! , 

0 2 4 6 
X 

,!~=0.0, 0.005, 0.01, 0.05 
0.1, 0.3, 0.5, 0.6 

(b) 
~ I I I I 

1 

0 
0 2 4 6 

X 
'!~=-0.1, 0.0, 0.001, 0.005, 0.01, 0.05 

0.1, 0.3, 0.5, 0.6, 0.7 
(c) 

I s o t h e r m s  

3 , , I , ' ! / l 

2 

HPr = 0.25 

1 0 = 0 .  

,1--, ~ t ~ I 
0 0 0 = 1  2 4 6 

X 

( d )  

3 |  i i i i 

2 HPr = 0.5 

1 
, 0 =0.1 

0 --"t..~',q''-~ ] I ~ l  
0 0 = 1  2 4 

X 

(e) 

0 O = l  2 4 6 
X 

(f) 
Fig. 3. Streamlines and isotherms for rectangular porous blocks with Re = 450, HJ = 3.5, eo = 0.5, and 
Pr = 0.7: streamlines (a) HPr = 0.25, (b) HP, = 0.5, and (c) HPr = 2.5, and isotherms (d) HP, = 0.25, (e) 

HPr = 0.5, and (f) HPr = 2.5. 
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Table 2. Ratio of flow rate (mp) of fluid penetrating a porous block to that at the jet inlet (too) 

2267 

HP 0.125 0.25 0.5 1.0 1.5 2.0 2.5 
Shapes rhp/rho 

Rectangular block (HPr = HPc = HP) 0.066 0.109 0.153 0.180 0.188 0.191 0.192 
Convex block (HPc = HP, HPr = 0) 0.050 0.115 0.231 0.354 0.418 0.426 0.432 
Concave block (HP~ = HP, HP~ = 0) 0.075 0.145 0.250 0.382 0.477 0.576 0.666 

cases for HPr = 0.25, 0.5 and 2.5. The smaller the 
HPr, the lower is th,~ height of  the block. As the value 
of  HPr increases, the porous block moves closer to 
the jet  and the fluid flow through the porous block 
increases gradually, as indicated in Table 2. In 
addition, as the height of  the porous block increases, 
a circulation region near the right-hand side of  the 
porous block grows. This flow pattern damages the 
heat transfer performance of  the heated region. 

As the value of  HPr increases, the isotherms are 
distributed evenly :in the porous block. Due to the 
existence of  the circulation region next to the right- 
hand side of  the block when HPr = 2.5, the isotherms 
are distributed around the low right corner, and can- 
not  extend far away. Conduct ion heat transfer is 
dominant  in the porous block. 

As indicated in Table 2, &p is the flow rate of  a fluid 
penetrating the porous block, and rho is the flow rate 
of  a fluid at the jet  inlet. Only a small port ion of  the 
fluid can penetrate the rectangular porous block, as 
shown in Table 2. The higher the HPr, the more fluid 
penetrates the block. However  this phenomenon does 
not  simultaneously guarantee that more fluid can flow 
near the heated regi on, which is advantageous for the 
heat transfer from the heated region. Figure 4(a) -  
(c) shows the distribution of  velocity U along the Y- 
direction near the heated region. The symbol ' + '  in 
Fig. 4 is the location of  the interfacial surface of  the 
porous block. The velocities are small in the heated 
region of  the higher block cases (HPr = 1.5 and 2.5): 
meanwhile, a chanrLeling effect is hardly found for the 
velocity distribution. F r o m  a heat transfer point of  
view, the higher blocks (HP,~ = 1.5 and 2.5) are 
regarded as a barrier in spite of  more fluid penetrating 
the block. Shown in Fig. 5(a) - ( f ) ,  are streamlines 
and isotherms for the convex (HP¢ >>- HPr, HPr = O) 
porous block case,; (HPc = 0.25, 0.5 and 2.5). The 
inclined surface of  the block looks like a simulated 
flow streamline. Since the shape of  the convex block 
is more streamlined than that of  the rectangular block 
mentioned above, the circulation region becomes 
smaller for a larger value of  HPo. As for the dis- 
tribution of  the isotherms, the trends in the isotherms 
are like those for the rectangular blocks shown in 
Fig. 3, except for the situation when HPo = 2.5. The 
isotherms are prolonged farther downstream in the 
HP¢ = 2.5 case, which is advantageous for the heat 
transfer performance. 

The flow rage rhp of  fluid penetrating the convex 
block is listed in T~.ble 2. The same trend appears for 
the rectangular case. For  most of  the cases, the flow 
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0.00 
- 0 . 2 0  
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~ X = O . 0 5  
i i , 

0.01 0.03 0.06 0.08 U 
(~) 

+ : i n t e r f a e i a l  
s u r f a c e  

2.5 ~X5 
=0,.5 

o .oo  0 .20  0 .40  o .go  
g 

(b) 

i 
. ;  . . . . . .  

. , . J , i J 

0.10 0.30 0.50 0.70 0.00 U 
(c) 

Fig. 4. Distributions of velocity U along the Y-direction for 
the rectangular porous block at: (a) X = 0.05, (b) X = 0.5, 

and (c) X = 0.95. 
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Streamlines 
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Fig. 5. St reamlines  and  i so the rms  for convex porous  blocks  wi th  Re = 450, HPr = O, HJ = 3.5, e~ = 0.5, 
and  Pr = 0.7 : s t reaml ines  (a) HPc = 0.25, (b) HPc = 0.5, and  (c) HPc = 2.5, and  i so the rms  (d) HPc = 0.25, 

(e) HPc = 0.5, and  ( f )  HPc = 2.5. 

rate rhp for the convex block is greater than that 
for the rectangular type, except for the HPc = O. 125 
case. 

In Fig. 6(a)-(c), the fluid is hardly able to flow near 
the heated region for HPc = 1.5 and 2.5. The central 
region is thicker than the fight-hand region, which 
causes the fluid velocity to increase near the fight- 
hand region, and the channeling effect is observed 
only in a few cases (HPo = 0.25 and 0.5 at X = 0.05, 
and HPc = 0.5 at X = 0.5). Figure 6(c) illustrates that 
some fluids are induced to penetrate the block from 
the external flow near the fight-hand region for 
HPc = 1.5 and 2.5. 

For  the concave (HP~ <~ HPr, HPc = 0) porous 
blocks, the streamlines and isotherms are presented in 
Fig. 7(a)- ( f )  for HPr = 0.25, 0.5 and 2.5. In Fig. 7, 
due to the shape of the block, the fluids are easily 
induced to flow into the cavity formed by the concave 
block, which causes more fluid to flow away from the 
block through the right-hand surface. As a result, a 

circulation region no longer exists near the block. This 
phenomenon is helpful for the heat transfer per- 
formance of the heated region. Since more fluid flows 
through the concave block, as listed in Table 2, the 
convective heat transfer becomes dominant, which 
results in the isotherms no longer being distributed 
evenly in the block, even in the situation of the larger 
value of HPr. The isotherms extend farther in the 
downstream direction. 

As shown in Fig. 8(a)-(c), the channeling effect is 
remarkable for HPr = 1.5 and 2.5, which is opposite 
to the two blocks mentioned above. However, for 
HPr = 0.125, 0.25 and 2.5, the channeling effect is 
observed near the fight-hand region (X = 0.95) and 
not near the central region (X = 0.05). The phenom- 
ena are also contrary to those for the two blocks 
mentioned above. 

Fig. 9 illustrates the effects of HP on the thermal 
performances of the above three types of  porous 
block. The mean Nusselt numbers for the block and 
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Fig. 6. Distributions of velocity U along the Y-direction for 
the convex porous block at: (a) X = 0.05, (b) X = 0.5 and 

(c) X = 0.95. 

the without-porous-block case are Nup and Nuwop, 
respectively, and are defined as 

Nup = L-PJ0 \ - -  ~ru~'-YZ-~]lr_0 d x  (29) 

cases to be small, and the flow patterns for these 
two cases are not  significantly different. However, the 
contact surface between the porous medium and the 
fluid for the HP = 0.25 case is larger than that for the 
HP = 0.125 case. Consequently, the values of Nup for 
the HP = 0.125 cases are slightly smaller than those 
for the HP = 0.25 cases. Therefore, the maximum 
values of the mean Nusselt number  exist for all three 
blocks, and about  20% enhancement is achieved. 

As the value of HP increases, the block gradually 
becomes a barrier for the fluid flowing near the heated 
region, in spite of the enlargement of the contact sur- 
face between the porous medium and the fluid, which 
results in the mean Nusselt number  being small. As a 
result, the value of the ratio of NUp to Nuwop is even 
smaller than those for the larger HP cases of the 
rectangular and convex porous cases. Since more fluid 
flows through the concave block, the mean Nusselt 
number  for the concave block is larger than those for 
the convex and rectangular blocks. 

The concave porous block is recognized from the 
above discussion as effective for enhancing the heat 
transfer performance. Therefore, only the effects of 
HPc for the concave porous block on the Nup are 
illustrated in Fig. 10 for HPr = 0.25, 0.5, 1.0 and 1.5. 
Each line shows the variation in Nup/Nuwop with 
HPc/HPr varying from 0 to 1. When the value of HPc 
is small, the fluid easily flows near the heated region, 
and the contribution of the contact surface to the heat 
transfer is dominant ,  the value Nup/Nuwop increases 
as HPc increases : after that, the contr ibution of the 
contact surface is gradually reduced. The value of 
Nup/Nuwop then decreases with increasing HPc. 

In Fig. 11, the effects of the distance HZ from the 
inlet of  the jet to the plate on the mean Nusselt number  
for the concave porous blocks are presented. The con- 
ditions for  Nu~,op are the same as in the previous dis- 
cussion. For the dashed line, the distance HZ is fixed 
and the HJ is variable : for the solid line, the distance 
HZ is variable and the distance HJ is fixed and equal 
to 3.5. For  Her ~ 1.0, the block is comparatively 
small, which causes the flow resistance to be small: 
both two situations then have the same mean Nusselt 
number.  After that, as HP r increases, the different 
behavior of both situations becomes apparent.  For  
the case of HZ = 3.5 (dashed line), increasing HPr 
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Fig. 7. Streamlines and isotherms for concave porous blocks with Re = 450, HPc = 0, HJ = 3.5, ee = 0.5, 
and Pr = 0.7 : streamlines (a) HPr = 0.25, (b) HP~ = 0.5, and (c) HPr = 2.5, and isotherms (d) HPr = 0.25, 

(e) HPr = 0.5, and (f)  HPr = 2.5. 

means  tha t  the porous  block is closer to the jet  inlet. 
Therefore,  more  fluid penetra tes  the porous  block and  
enhances  the heat  t ransfer  performance.  Hence, Nup 
increases as the HPr increases. 

CONCLUSIONS 

The thermal  per formance  of  a porous  block moun-  
ted on  a hea ted  region with a l aminar  slot impinging 
jet  is studied numerically.  Three  different types (rec- 
tangular ,  convex and  concave) of  porous  blocks are 
considered. The results can be summarized as follows : 

(1) Fo r  a lower porous  block, the heat  t ransfer  is 
enhanced  by three types of  porous  blocks. However,  
for a higher  porous  block, heat  t ransfer  is only 
enhanced  by the concave porous  block. 

(2) The heat  t ransfer  per formance  of  a hea ted  
region is mainly  affected by the flow rate of  fluid near  
the heated  region. 
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