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Abstract 

In recent years, traffic accident is one of the critical reasons to cause deaths of 

drivers. Drivers’ drowsiness has been implicated as a causal factor in many accidents 

because of the marked decline in drivers’ perception of risk and recognition of danger, 

and diminished vehicle handling abilities. Consequently, if the mental state of drivers 

could be real-time monitored, drowsiness detection and warning could effectively 

avoid disasters such as vehicle crashes in working environments. Some previous 

researches used non-physiological method, as eye closure with CCD image tracking, 

such as the pupil recognition, blink detection or identification of the drivers head 

shaking frequency. However, for CCD image tracking, users couldn’t move for free, 

and the images detecting performance were easily be interfered by external flash light. 

Other studies used physiological parameters to increase the accuracy of drowsy 

detection, like pulse wave analysis with neural network, electrooculography (EOG), 

electromyography (EMG), and electroencephalogram (EEG) measurement. In this 

study, we proposed a real-time wireless system for drowsiness detection. A wearable, 

wireless and real-time bio-signal acquisition system was designed for long-term 
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monitoring. In the other hand, not only EEG but also EOG signals were acquired by 

our system to increase the accuracy of drowsiness detection. Furthermore, an 

algorithm of drowsiness detection was also proposed to reduce the computation 

complexity, and was implemented in a portable DSP module with bio-feedback as 

bio-stimulator or buzzer. In order to estimate the level of drowsiness, a lane-keeping 

driving experiment was designed and the drowsiness level of drivers was indirectly 

assessed by the reaction time under Virtual Reality Driving Simulation Environment. 

The advantage of this unsupervised algorithm can remove the differences between 

individual and environment in different people or measurements. For the purpose of 

verifying the accuracy and feasibility of our proposed unsupervised algorithm, 

drowsiness status estimated by driving performance was compared with the results 

obtained by our proposed unsupervised algorithm. The results of comparison showed 

that our algorithm can detect driver’s drowsiness status precisely. In addition, our 

system can be successfully applied in practice to prevent traffic accidents caused by 

drowsy driving. 
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摘要摘要摘要摘要    

近年來，交通意外是一個造成駕駛死亡的至關重要原因，其中駕駛者的精神

狀況不佳所造成車禍意外佔了絕大多數比例，所以開車駕駛瞌睡監控問題是我們

嘗試克服之處，試著以人為方式來減少車禍發生。近年來相關的開車監控研究引

進了生理參數來做為開車即時瞌睡狀況的比較依據，如心電圖、眼電波圖、肌電

圖或腦波圖等，較影像辨識來得直接與精確，使用者可以不必受影像定位之問題

影響，本論文即針對生理參數中之腦波以及眼電波參數做進一步的探討。我們設

計了一套無線可攜式的多重生理訊號擷取系統以及包含生理回饋機制如電刺激

器等的數位訊號處理平台，再搭配非監督式分析演算法來做即時的瞌睡判斷。使

用非監督式演算法的優勢在於可移除掉不同人、不同次測量中個別跟環境差異

性。本論文藉由虛擬實境模擬環境所記錄下開車偏移量來當作瞌睡程度的參考，

並與所發展的非監督式分析法的相互比對關係來證明此演算法對瞌睡程度偵測

的功效與可行性，最後實現在數位訊號處理平台上。經由實際測試，可以成功在

駕駛者有睡意時，利用電刺激器或是警示音提醒駕駛保持清醒，確保開車時的安

全。 
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Chapter 1 Introduction 

1.1 Drowsiness Detection 

In recent years, traffic accident is one of the critical reasons to cause deaths of 

drivers. World Health Organization report released that the global traffic accidents 

killed 1.2 million lives each year and caused millions of people were injured [1]. The 

report stated that a daily average of 1000 persons aged 25 years of age because of the 

people killed in traffic accidents, of which 90 percent of the victims took place mainly 

in Africa and Asia, low-income countries. The report said that the 19-year-old and 

15-year-old groups to the cause of death, traffic accidents ranked first, far exceeding 

the number of AIDS deaths. It showed that the traffic safety is the very urgent issues 

that need to straighten and improve. 

The cause of accidents is often imputed to driver’s mental state. A human in 

drowsiness often exhibits relative inattention to environments, eye closure, less 

mobility, failure to motor control and decision making [2]. Therefore, those accidents 

which caused by falling drowsiness usually not only endanger themselves but also 

involve the public. Many studies have pointed out that a driver’s drowsiness can cause 

serious traffic accidents [3]-[6]. In 2002, the National Highway Traffic Safety 

Administration (NHTSA) reported that about 0.7% of drivers have been involved in a 

crash that they attribute to drowsy driving, amounting to an estimated 800,000 to 1.88 

million drivers in the past five years [7]. The National Sleep Foundation (NSF) also 

reported that 51% of adult drivers had driven a vehicle while feeling drowsy and 17% 

had actually fallen asleep [8]. 

Thus, in the field of safety driving, development of methodologies for detection 
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drowsiness / departure from alertness in drivers has become an important area of 

researches. If the mental state of drivers can be real-time monitored directly, 

drowsiness detection and warning can effectively avoid disasters such as vehicle 

crashes in working environments. Recently, with the development of brain computer 

interface, real-time monitoring the mental states of drivers and detecting drowsiness 

have become feasible. 

 

1.2 Previous Research 

Drowsiness leads to decline in drivers’ abilities of perception, recognition, and 

vehicle control and hence monitoring of drowsiness in derivers is very important to 

avoid road accidents [9]. Some researches used non-physiological method, as eye 

closure with CCD image tracking [10]-[16]. And others used physiological parameters 

to increase the accuracy of drowsy detection, like pulse wave analysis with neural 

network [20], the electrooculography (EOG) and the electromyography (EMG) 

measurement [17], [18], and the electroencephalogram (EEG) [19]-[21]. 

In 2003, Hamada et al. proposed a driver status monitor system by using CCD 

camera, as shown in Fig. 1-1 [13]. The CCD camera was installed in the car and 

focused on the user’s eyes. The driver status monitor detected drowsiness from the 

change in the duration of eye closure during blinking and inattention from the change 

in the gaze direction. Using CCD camera to contribute the urgency system was a very 

difficult work here. There were some critical points inside, and needed to overcome. 

For instance, user couldn’t move for free, the images detecting performance were 

easily be interfered by light, and the largest problem was that the system is too big, 

complex, and expensive to implement. The algorithm of eye tracking also needed to 
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use edge detecting to train data, and hence to build up a neural network to classify the 

drowsy status.  

 

Fig. 1-1: The role of driver status monitor [13] 

 An alternate is to detect the moment from alertness to drowsiness by using 

physiological parameters. In 2005, Thum et al. used EOG as an alternative to 

video-based systems in detecting eye activities caused by drowsiness [18]. Rapid eye 

movements (REM), which occurred when one is awake, and slow eye movements 

(SEM), which occurred when one is drowsy, can be detected through EOG. The 

results showed that the detection rate for eye activities caused by drowsiness was 

more than 80 %. However, REM and SEM are difficult to measure when users are 

driving because users can not close his/her eyes when they are driving a vehicle on 

the road, and then SEM is hard to measure. In addition, REM and SEM are tending to 

the level of sleep stage not the indicator of drowsiness detection, so they can not be 

used as the parameters of on-line process. 

 In 2003, Caffier et al. proposed that the spontaneous eye blink is considered to be 

a suitable ocular indicator for fatigue diagnostics [24]. To evaluate eye blink 

parameters as a drowsiness indicator, they developed a contact free method for the 

measurement of eye blinks by using an infrared sensor clipped to an eyeglass frame 

recorded eyelid movements continuously. The parameters blink duration and 
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reopening time in particular change reliably with increasing drowsiness. The results 

demonstrate that the measurement of eye blink parameters provided reliable 

information about drowsiness. In 2008, Jammes et al. in order to automatically score 

the drowsiness level, they developed a software for identifying blinks in EOGs as 

their first step [23]. They recorded vertical EOG signals by surface electrodes placed 

above and below the eyes. The analysis of EOG velocity based on expert rules was 

the originality of their blink detection algorithm and more than 97.7% of blinks were 

detected by their algorithm. The drowsiness scale they selected was Karolinska 

Drowsiness Score (KDS) which would score when signs of drowsiness, i.e. long 

duration or small amplitude blinks were detected. Comparing the results of KDS and 

the results of their automatic scoring, and then they found out the correlation of these 

results was high. It demonstrated that blink duration and amplitude are important 

parameters for drowsiness detection. 

Brain Computer Interface (BCI) is an interface between human and computers or 

machines. It is based on the translation of the specific brain activity generated by a 

specific thought of a human to control machines, to communicate with the outside 

world directly, to convey the message, and independent operations, as well as 

self-care purposes. BCI can be divided into three distinct modes: invasive, 

partially-invasive, and non-invasive BCI. Non-invasive BCI is the main stream of 

BCI research which has advantages of both easy application and absence of 

procedural risks, such as infection or cortical micro-lesions. There are several 

approaches to non-invasively acquire brain activities, such as 

magentoencephalography (MEG), positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG) and et al. EEG is 

the mainstream of non-invasive BCI, because of its much fine temporal resolution, 
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ease of use, portability and low set-up cost. In particular, higher temporal resolution 

becomes the great temptation to use EEG techniques as a direct communication 

channel from the brain to the real world [27]-[42]. 

In EEG system, it was different from other physiological parameters, and 

moreover it owned intuitive and specific characteristics, such as alpha, theta or beta 

band power followed subject’s own mental state. In addition, the EEG system usually 

needed to collect enough EEG data to analyze. The supervised methods which 

previously study often had been used to train a learning data, and usually implement 

in off-line EEG analysis. Previous studies which used supervised methods developed 

several kinds of brain computer interface for drowsiness detection [19], [20]. When 

the subject changed the state from alertness to drowsiness, the alpha rhythm will 

increase and beta rhythm will decrease [21]. In 2005, a drowsy estimation system was 

developed by combining independent component analysis (ICA), power-spectrum 

analysis, correlation evaluations, and linear regression model to estimate a driver’s 

cognitive state when he/she drove a car in a virtual reality (VR)-based dynamic 

simulator [19]. Its flowchart of EEG processing was shown in Fig. 1-2. In the above 

studies, an EEG machine, Scan NuAmps Express system (Compumedics Ltd., VIC, 

Australia), was used to measure EEG, as shown in Fig. 1-3. It is not small, light, and 

wearable. Moreover, the above algorithms for drowsiness detection requires mass 

computation complexity, thus, they are not easy to be implemented in a portable DSP 

device.  
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Fig. 1-2: Flowchart of EEG processing in drowsy estimation system [19] 

 

Fig. 1-3: Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) 

In the supervised mode, supervised learning methods such as artificial neural 

network (ANN) could be used to classify different states of vigilance. But stimulus 

may introduce some noise. So in [43], the author proposed a semi-supervised learning 

algorithm which can quickly label huge amount of data. Here another author proposed 

another kind of semi-supervised learning method based on probabilistic principle 

component analysis (PPCA) to distinguish wake, drowsy and sleep in driving 

simulation experiment. After training with data of around 20 min (6–8 min for each 

state), they could directly use our method as a real time classifier to estimate driver’s 
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vigilance state [44]. Although this method could greatly reduce the training time, but 

it still must used in off-line analysis. In our target, we wanted to find a non-training 

and unsupervised method, and easily implement to an on-line detecting system. 

 

1.3 Motivation 

To avoid tragedies, a real-time physiological signal monitoring system of 

drowsiness detection is required to prevent traffic accidents. However, users’ mobility 

is limited by the inconvenience of traditional BCI (heavy and large EEG machine). 

Besides, recent studies used one kind of bio-signal as EEG or EOG only to detect 

drowsiness. Nevertheless, the accuracy of detection is not high enough with one 

physiological signal used only. Thus, an inexpensive, convenient, portable, wireless 

and multi-parameter of bio-signal used platform with long battery life that can be 

carried indoors or outdoors are desired.  

In this study, not only a real-time wireless brain computer interface for 

drowsiness detection was proposed, but also parameters of EOG were used. The 

spontaneous eye blink can be determined by EOG measurement and is considered to 

be a suitable ocular indicator of fatigue and alertness level [22, 24]. It offers several 

advantages, since it represents a normal, simply observable and easily accessible 

phenomenon that reflects the influence of central nervous activation without voluntary 

manipulation[24]. Recent studies show that the analysis of eye blinks can provide 

some information for physiologists to quantify drowsiness. There are many 

parameters of eye blinks, such as duration, frequency, closing time, opening time, 

amplitude and so on. The blink duration and opening time are especially subject to 

characteristic modifications with increasing drowsiness. Besides, frequency 
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(percentage of eyelid closure) was also used as the indicator by previous research to 

determine user was drowsy or not [22-26]. To increase accuracy of drowsiness 

detection, parameters of EOG signal were used in our study and we would stress the 

importance of correlation between drowsiness with EOG signal. 

A wearable, wireless and real-time bio-signal acquisition system was designed 

for long-time EEG/EOG monitoring, and a DSP module with bio-feedback as buzzer 

or bio-stimulator was also introduced. An algorithm of drowsiness detection based on 

[45] was proposed to reduce the complexity of computation. Different from previous 

ICA-based algorithm of drowsiness detection, it used the statistics properties of 

alpha/theta rhythm and blink duration in alert state to build up the alert model. 

Consequently, a derivation from the alert model can be used to detect drowsiness. The 

most useful advantage of this algorithm was that the differences between individual 

and environment in different people or measurements could be removed, and every 

analysis was independent. Moreover, with the advantage of low computational 

complexity, it is easy to be implemented in our portable DSP module. 
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1.4 Organization of Thesis 

In Chapter 2, it will describe that what are EEG and EOG signals, virtual reality 

driving simulation environment, and algorithms implemented in this thesis, which 

including EEG/EOG preprocessing and unsupervised approach. In Chapter 3, it will 

introduce how to implement a wireless portable bio-signal acquisition system and 

DSP module in hardware design. In Chapter 4, it will explain the detail of driving 

performance, unsupervised algorithm, and how to accomplish them. In chapter 5, it 

will introduce the driving performance sorting analysis then the method of driving 

performance and unsupervised approach will be verified with 10 real experimental 

subjects’ driving trajectories and corresponding EEG and EOG signals, the procedures 

and results of verification will be described in this chapter. Finally it will have 

conclusions and future works in Chapter 6.  
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Chapter 2 Material and Method 

We developed the BCI system according to the steps of Fig. 2-1. The portable 

bio-signal acquisition system which we designed was used in input device of BCI. 

The EEG and EOG raw data continually transmitted to DSP module, hence, the 

following three steps: signal preprocessing, features extraction, and classifier were 

processed in DSP module. The algorithm we chose was according to unsupervised 

approach (N. R. Pal, 2008 [45]) and automatic EOG analysis (B. Jammes, 2008[23]). 

The user interface can output real-time EEG and EOG signals and the results of 

drowsy detection. If the results were determined as drowsiness by algorithm, DSP 

module would call the buzzer to output a warning voice or generate stimulation by the 

muscular bio-stimulator to wake user up as a bio-feedback application. 

Input 
Device

Signal 
Preprocessing

Features
Extraction

Classifier

Output 
User

Interface

Applications

DSP module

Bio-feedback

Closed 
Loop

 

Fig. 2-1: A typical BCI system architecture 

In off-line analysis, we wanted to verify the relationship between users’s driving 

trajectories and corresponding EEG and EOG signals. Before analyzing, we assumed 
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that driving trajectories were directly proportional with variance of theta, alpha 

spectrum and blink duration. So we designed a driving simulation experiment and 

used our portable bio-signal acquisition system to observe and record driving 

information and actual EEG and EOG raw data at one time. There were 10 subjects’ 

EEG and EOG raw data recorded and every trail was at least 25 minutes. Our analysis 

included two parts: one was to analyze the driving trajectories, and another was to 

analyze the corresponding EEG and EOG signals. The first step of driving trajectories 

processing was to analyze the driving performance. On the other hand, we also 

analyzed EEG and EOG signals. First, we used FFT to get the theta and alpha band 

information, and then used both two information built up an alert model, computing 

covariance matrix and mean vector of theta and alpha spectra. Furthermore, compute 

MDT and MDA continually by using unsupervised method. Second, we calculated the 

derivative of EOG signals. The EOG velocity was acquired, and then a threshold was 

applied to select blinks. Next, the duration of these blinks was computed as the 

reference of drowsiness. After finishing whole data analysis, we used binary 

classification test, sensitivity and specificity, to verify the drowsiness hit rate. Every 

experimental trial was separated and sorted, hence, the corresponding MD* (MDT 

and MDA) and duration of blinks were also sorted. Defining the threshold of both 

information which been processed to decide the drowsiness or alertness, and to 

analyze the drowsy accuracy. 

 

2.1 EEG Signal Acquisition 

Electroencephalography (EEG) is the recording of electrical activity along the 

scalp produced by the firing of neurons within the brain. In clinical contexts, EEG 
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refers to the recording of the brain's spontaneous electrical activity over a short period 

of time, usually 20–40 minutes, as recorded from multiple electrodes placed on the 

scalp [55]. When measuring from the scalps, recorded EEG signal is about 10-100uV 

for a typical adult human. And a common system reference electrode is connected to 

the other input of each different amplifier. These amplifiers amplify the voltage 

between the active electrode and the reference (typically 1,000–100,000 times, or 

60–100 dB of voltage gain). The EEG is typically described in terms of rhythmic 

activity and transients. The rhythmic activity is divided into bands by frequency. The 

common band of EEG is shown as Table 2-1. Following the classification of EEG, 

Theta and Alpha band are related to drowsiness. Thus, when the subjects become 

drowsy, both bands will increase their power.  

Table 2-1: Common band of EEG 

Type Frequency (Hz) Normally 

Delta <4 Slow wave sleep for adults 

Theta 4~7 Drowsiness, idling, or arousal in children and adults 

Alpha 8~12 Relaxed, reflecting, or closing the eyes 

Beta 12~30 Alert or working 

There are high correlation between drowsiness and EEG obtained from the 

location of OZ in the international 10–20 EEG system [56]. Therefore, in this study, 

we only monitored EEG in the location of OZ. Here, three EEG electrodes were used. 

One was input, one was reference, and the other was ground. According to a modified 

International 10–20 EEG system and refer to right ear lobe as depicted in Fig. 2-2. We 

used the following notations: F: Frontal lobe. T: Temporal lobe. C: Central lobe. P: 

Parietal lobe. O: Occipital lobe. "Z" refers to an electrode placed on the mid-line. The 

input data was placed on OZ, ground was fixed on the center of forehead, and 

reference was pasted behind the right ear.  
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Fig. 2-2: International 10-20 system  

Raw EEG data were recorded with 12-bit quantization level at the sampling rate 

of 256 Hz. And a simple moving average filter was used to remove 60 Hz power line 

noise and other high-frequency noise. 

 

2.2 EOG Signal Acquisition 

Electrooculography (EOG.) is a technique for measuring the resting potential of 

the eyeball. Mostly, there are two electrodes placed above and below the eye, and the 

resulting signal is called vertical EOG. If the eye is moved from center position 

toward left or right, then one of the electrodes would see the positive side of the 

eyeball and the other would see the negative side. There would be a potential 

difference between the electrodes. If we assumed the resting potential as a constant, 

then the potential difference become a measure for the eye position called eye 

movement measurements [46]. Eye movement measurements usually used as a 

reference of stages of sleep which included three main stages called: awake, REM and 

NREM. Eye movement is significantly difference during these three stages, so lots of 

research of sleep used this measurement to observe variation. In this study, the 
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vertical EOG was derived using three electrodes: input, reference and ground. One 

electrode was placed above the right eye as the input and the other below the right eye 

as the reference signal. There was also an electrode as ground fixed on the center of 

forehead (the same as the ground signal of EEG). A sampling rate of 256Hz was used; 

because of the principal measurement range of EOG is about 50uV-3500uV, the gain 

was set 2,000 times. Besides, the parameters of EOG which used in our study were 

blink behaviors, so feature of these blink behaviors was listed in Table 2-2. The 

recommended derivation of EOG was shown as Fig 2-3. 

Table 2-2: Feature of blink behaviors 

Behavior Description 

Blink amplitude A typical blink has an amplitude of 400uV 

Blink duration Nearly 200ms – 400ms for one blink  

Blink frequency About 15-20 times per minutes for a relaxed person 

Reference

Input Ground

 

Fig. 2-3: The recommended derivation of EOG 

 

2.3 Virtual Reality Driving Simulation Environment 

In this study, a lane-keeping driving experiment was utilized to investigate 

driving performance under different levels of drowsiness. Here, a virtual reality 

(VR)-based cruising environment was developed to simulate a car driving at 100 

km/hr on a straight four-lane highway at night [19], [57]. During the driving 
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experiments, all scenes move according to the displacement of the car and the 

subject’s maneuvering of the wheels which make the subject feel like driving the car 

on a real road. The VR environment was shown in Fig. 2-4. 

 

Fig. 2-4: The overview of surrounded VR scene. The VR-based highway scenes are 

projected into surround screen with seven projectors. 

In our experiments, the driving speed was fixed at 100 km/hr and the car was 

drifted away from the center of the cruising lane automatically and randomly by the 

system to mimic the effects of a non ideal road surface. The driver was asked to 

maintain the car along the center of the cruising lane. All subjects involved in this 

study had good driving skill and hence when the subject was alert, his/her response 

time to the random drift was short and the deviation of the car from the center of the 

lane was small. However, when the subject became not alert / drowsy, both the 

response time and the car’s deviation were high. Note that, in all our experiments, the 

subject’s car was the only car cruising on the VR-based freeway. Although, both 

response time and the deviation from the central line are related to the subject’s 

driving performance, in this study, we use the response time as a measure of 
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performance of the subjects. The driving task was shown in Fig. 2-5. 

 
Fig. 2-5: The digitized highway scene. The width of highway is equally divided into 

256 units and the width of the car is 32 units. An example of the deviation event, the 

car cruised with a fixed velocity of 100 km/hr on the VR-based highway scene and it 

was randomly drifted either to the left or to the right away from the cruising position 

with a constant velocity. The subjects were instructed to steer the vehicle back to the 

center of the cruising lane as quickly as possible [56]. 

In order to synchronize the records of driving trajectory and raw bio-signal data, 

a C# program was designed to record both of them at the same sampling rate. The 

driving trajectory produced from the VR-based cruising environment environment 

program, and raw bio-signal data obtained by portable bio-signal acquisition system 

were transmitted to C# program via RS232 and Bluetooth respectively. After finishing 
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the experiment, both driving trajectory and raw bio-signal data were saved in a text 

file. Thus, we could investigate the correlation between driving performance and 

results of unsupervised approach. The illustration of synchronization between the 

driving trajectory and bio-signal data was shown in Fig. 2-6. 

 

Fig. 2-6: Illustration of synchronization between the driving trajectory and bio-signal 

data 

 

2.4 EEG Preprocessing 

The EEG preprocessing steps were shown in Fig. 2-7. First, a simple moving 

average filter (low-pass filter with a cutoff frequency of 32 Hz) was used to remove 

60 Hz power line noise and other high-frequency noise. In order to simplify the 

computation, raw EEG data were down-sampled to sampling rate of 128 Hz. Then a 

640-point Hanning window was designed to save 5 seconds EEG information and the 

frequency resolution was set as 256-point, as Fig. 2-8 shown. In our study, Hanning 

window was chosen because the frequency resolution and spectral leakage are both 

good for each application. Finally, the power in the frequency band of alpha rhythm (8 

~ 12Hz) and theta rhythm (4 ~ 7Hz) was extracted. 



 

 18

 

Fig. 2-7: Steps of EEG preprocessing 

 

Fig. 2-8: Illustration of 5-second moving window with 4.88-second overlap 

 

2.5 EOG Preprocessing 

EOG preprocessing was introduced in this section. Comparing to EEG 

preprocessing, EOG preprocessing was simpler to implement. Behavior of EOG 

emphasized in our study was blink, so the steps of EOG preprocessing were aimed at 
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preprocessing for blink detection. First, we had to define the initial threshold 

parameters. The values of threshold were empirically selected after analyzing a set of 

EOG signals recorded as user was in alert state before experiments. According to 

these threshold parameters then we could acquire the closing time, the opening time 

of the blinks and other parameters of blink. Second, a 10-Hz low pass filter was used 

in order to remove frequencies above 10-Hz. Finally, the derivative of the filtered 

signal called EOG velocity need to be computed. To combine EOG velocity and 

initial threshold parameters then we could define if the event of EOG raw data was a 

blink or not, and acquired the parameters we needed. The steps of EOG preprocessing 

were shown in Fig. 2-9. 

 

Fig. 2-9: Steps of EOG preprocessing 

 

2.6 Unsupervised Analysis of EEG and EOG 

It is recognized that the changes in EEG spectra in the theta band (4~7Hz) and 

alpha band (8~12Hz) reflect changes in the cognitive and memory performance [58]. 

Other studies have reported that EEG power spectra at the theta band [59], [60] and/or 

alpha band [61], [62] are associated with drowsiness, and EEG log power and 

subject’s driving performance are largely linearly related. Besides, blink of EOG is 

also recognized as an important parameter for detecting drowsiness[23]. There are lots 

of parameters could be extracted from blinks, for instance: amplitude, duration and so 

on. Blink duration is an significant information as a result of it becomes longer when 
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subjects become drowsy, and the changes of blink amplitude reflect the drowsiness 

level too; the amplitude is small when subjects feel drowsy[24],[25].  

As above researches said, these findings have motivated us to derive the alert 

model of the driver using not only the alpha-band and theta-band EEG power 

spectrum computed using OZ channel output recorded in the first few minutes of 

driving, but also the duration of blinks from subjects to increase the accuracy of 

drowsiness detection. The unsupervised analysis of EEG is introduced first. The 

choice of the OZ channel is explained in the Experimental Results section. We 

emphasize that the few minutes of data used to find the alert model are not necessarily 

collected from the very beginning of driving session because different factors, such as 

walking of driver by a few meters to reach the garage, may influence the EEG signal 

generated at the very beginning. The specific window to be used for generation of the 

alert model is selected by Mardia test [63]. We assume that if the subject/driver is in 

an alert state, then the EEG power spectra relating to theta band (as well as that 

relating to alpha band) would follow a multivariate normal distribution. The 

parameters of the multivariate normal distributions characterize the models. Using the 

alpha-band and theta-band EEG power, we identify two normal-distribution based 

models. Then, we assess the deviation of the current state of the subject from the alert 

model using Mahalanobis distance (MD). We assume that when the subject continues 

to remain alert, his/her EEG power should resemble the sample data used to generate 

the model and hence would match the alert model or template. If the subject becomes 

drowsy, then its power spectra in the alpha band (and also in theta band) will deviate 

from the respective model and hence MD will increase. With a view to reducing the 

effect of spurious noise, MDs are smoothed over a 20-sec moving windows, the 

window is moved by 0.125-sec steps.  
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Next, we focus on the analysis of EOG signal. In our study, lots of blink 

behaviors are extracted by our algorithm in the beginning. To base on section 2.5, 

after EOG velocity and initial threshold parameters are all prepared, we could use the 

closing and opening threshold to define closing time and opening time as parameters. 

Besides, computing the difference between the starting point of closing time with end 

point of opening time then we could acquire the value of blink duration. On the other 

hand, blink amplitude is computed by using maximum value of one blink to subtract 

the value of EOG baseline. After above procedure, amplitude of blinks, duration of 

blinks, closing time of closures and opening time of closures are all acquired. 

However, some of these parameters could not reflect the variation when subjects 

become drowsy, for example: the difference of closing time of closures is little 

between alert and drowsiness[22]. At last, duration is the only parameter we used in 

our study to determine the subjects are drowsy or not. We assumed when subjects are 

remaining alert, duration of blinks would be short. In contrast, when subjects feel 

drowsy, duration of blinks would become longer. 6-second averaged signal of 

duration before every event of driving performance occurred is extracted by our 

algorithm to reduce the effect of spurious noise and to be the index for detecting 

drowsiness. 

We then study the relationship between smoothed Mahalanobis distance, 

duration of blinks and subject’s driving performance by computing the correlation 

between them. Fig. 2-10 shows the overall flow of the EEG and EOG data analysis. In 

this figure, after the models are identified, the preprocessed alpha band and theta band 

power data directly go to the blocks for computation of MDA and MDT respectively. 

Besides, blink duration is computed at the same time. The block for computation of 

“Combination” makes a linear combination of MDT, MDA and duration of blinks. 
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Finally, all of these parameters are used in correlation analysis with the driver’s 

performance. 
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Fig. 2-10: The flowchart of the EEG and EOG analysis method. 
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Chapter 3 Hardware Frameworks 

In this chapter, we focus on this portable system hardware. Following the design 

flowchart, we will introduce the design methods of hardware circuits and firmware 

structures steps by steps.  

 

3.1 System Overview 

In order to online-measure and analyze EEG and EOG signals, the whole 

hardware framework of our system mainly contains two sub-systems: One is portable 

bio-signal acquisition system and the other is DSP module. First, EEG and EOG 

signals were measured by our portable acquisition module continually. After EEG and 

EOG signals were acquired, these tiny signals would be amplified. Noise except the 

frequency band of these bio-signals would be removed by filters in our portable 

acquisition module. Then filtered EEG and EOG signals would be digitized by 

analog-to-digital converter and transmitted to the DSP module via Bluetooth. In this 

study, Linux kernel µClinux was used as the operation system in DSP module to 

handle user’s applications. The major tasks of DSP module were to receive EEG and 

EOG signals via Bluetooth, and to execute the program of online drowsiness level 

detection, which monitored the variation of power of users’ alpha rhythm and theta 

rhythm. Besides, the difference of blink duration was also monitored. The program of 

online drowsiness level detection would collect EEG data under alertness for first 3 

minutes to build EEG alert model, and then calculated drowsiness level by assessing 

the power variation of alpha and theta rhythm every 2 seconds. In addition, the 

duration of every blink was also calculated by our module. If the power or duration 

variation exceeded the threshold of alert model, the DSP module would send warning 
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tone of buzzer or generate an electrical stimulation to wake up user. The whole 

hardware framework is shown as Fig. 3-1. 

Bio-signal
Filter

&
Amplify

ADC

Portable Bio-signal Acquisition System

Unsupervised
Algorithm

Buzzer

Bio-stimulator

Bluetooth

DSP module

Bluetooth

TFT-LCD
Display

 

Fig. 3-1: Illustration of hardware framework of our system 

 

3.2 Portable Bio-signal Acquisition System 

The portable bio-signal acquisition unit combines the power, amplifier, band pass 

filter, ADC, wireless controller, and data encoding into one. It is a light weight, 

wireless monitor for recording physiological signals. It owns 4-channel bio-signal 

measurement, includes EEG x2 and EOG x2. The portable bio-signal acquisition unit 

mainly contains four parts: (1) front-end filter circuit, (2) analog to digital converter, 

and digital controller, (3) power management circuit and (4) wireless transmission. 

The diagram of the portable bio-signal acquisition unit is shown as Fig. 3-2. 
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Fig. 3-2: Diagram of portable bio-signal acquisition unit 

In our study, only one EEG and one EOG channel of this portable system were 

used. They were both amplified by bio-amplifier consisted of high-pass, low-pass 

filters and amplifier. The amplified signals then organized by Micro-processor 

MSP430. When the signal passed through the high-pass filter, all unnecessary 

low-frequency noise would be reduced or eliminated, as they passed through the 

low-pass filter, all unnecessary high-frequency noise would be reduced or eliminated. 

According to AASM recommendations and difference physiological potentials 

characteristics, the specification for EEG and EOG channels was shown in Table 3-1. 

Table 3-1: Specification for various kinds of bio-sensors 

 

 

Sensor 

Input  

Signal 

Range 

Gain 

(Operation 

voltage:3V)  

H.P. 

Corner F. 

(Hz) 

L.P. 

Corner F. 

(Hz) 

Sampling 

rate 

(Hz) 

EEG 20uV-200uV 4500 0.1 45  256 

EOG 50uV-3500uV 2000 0.3 45 256 
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3.2.1 Front-End Filter Circuit 

 The front-end circuit consisted of preamplifier, and band-pass filter. In some 

references, other circuit designs preferred to use unit gain filters and one variable gain 

amplifier. Moreover, they didn’t use a high-pass filter to cut-off the noise in low 

frequency band. To improve them, we designed a 3 stages high pass filter and 2 stages 

low pass filter to get the clear EEG and EOG information without noise. Hence, 

adding the gain into filter tried to minimize the total size. 

A. Preamplifier 

Instrumental amplifier LT1789-1 was used as the first stage of analog amplifier. 

LT1789-1 owns an ultra low input current and a high common-mode rejection ratio 

(CMRR) about 90dB. A high CMRR is important in applications that the signal of 

interest is represented by a small voltage fluctuation superimposed on a (possibly 

large) voltage offset, or when relevant information is contained in the voltage 

difference between two signals. Instrumental amplifier LT1789-1 provided not only 

the function of gain, but also that of one stage high pass filter by adding a capacitor. 

The output voltage of the LT1789-1 is referenced to the voltage on the reference 

terminal. The preamplifier circuit design is shown in Fig. 3-3 and the simulation of 

preamplifier’s gain response (EEG) is in Fig. 3-4. 
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Fig. 3-3: The RG decides the gain of preamplifier, and the high pass filter of 

preamplifier decided by RG and C. 
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Fig. 3-4: Simulation of preamplifier’s gain response (EEG) 

B. Band pass filter 

 In this thesis, operational amplifiers were used to achieve the function of 

band-pass filter; the feature of op AMP is suitable for amplifying low-frequency 

signal. The AD8609 is quad micro-power rail-to-rail input and output amplifiers 

and low dc offset was chosen to be band pass filter. Fig.3-5 shows High-pass filter 

and Low-pass filter circuits. The 3dB cutoff frequency of high pass was decided 

Gain = 1 + (200k/RG) 

f0   = 1 / (2 * RG*C)  
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by passive components R3, R4, C1 and C2. 

 

3 4 1 2

1

2
Hf

R R C Cπ
=  

Fig. 3-5: High-pass filter and Low-pass filter circuits 

 The passive components R7, R8, C3, and C4 decide the 3dB cutoff frequency 

6 7 3 4

1

2
Lf

R R C Cπ
=   .A circuit of band-pass filters and amplifier is designed as 

shown in Fig. 3-5 and gain will be determined by passive components R1, R2, R5 and 

R7. The simulation results of each channel are shown as Fig.3-6 and Fig.3-7.  

 

Fig. 3-6: Simulation results in EEG channel of amplifier and band-pass filter 
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Fig. 3-7: Simulation results in EOG channel of amplifier and band-pass filter 

3.2.2 Analog to Digital Converter and Digital Controller 

For the data acquisition system, it needs a controller to organize the working of 

ADC and encode the digital data to Bluetooth module by UART port.The MSP430 is 

particularly well suited for wireless RF or battery powered applications. The MSP430 

incorporates a 16-bit RISC CPU, peripherals, and a flexible clock system that 

interconnect using a von-Neumann common memory address bus (MAB) and 

memory data bus (MDB) shown as Fig. 3-8. The clock system is designed specifically 

for battery-powered applications. Dedicated embedded emulation logic resides on the 

device itself and is accessed via JTAG using no additional system resources.We 

configure with built-in 16-bit Timer_A, a fast 12-bit A/D converter, one universal 

serial synchronous/asynchronous communication interfaces (USART) and 4M Hz 

external oscillator to development our design[51]. 
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Fig. 3-8: MSP430 Architecture [51] 

Timer_A triggers Analog to Digital Converter, and buffers the output data of 

ADC until buffer full. And then all buffer data will be transmitted via USART. The 

operating flow chart in MSP430F1611 was shown in Fig. 3-9. 

 

Fig. 3-9: Operating flow chart in MSP430F1611 

A. Timer Interrupt 

The interrupt function of MSP430F1611 is based on inner timer/counter register, 

called Timer_A, to count a specific time value. The counter value TACCR0 had to be 

set first, as shown in Fig. 3-10. When the timer counted to the TACCR0 value, the 

TACCR0 CCIFG interrupt flag would be set. When the timer counted from TACCR0 

to zero, the TAIFG interrupt flag would be set. In our portable bio-signal acquisition 
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module, 4MHz crystal oscillator was used as system clock of MSP430F1611. Thus, if 

the sampling rate of our acquisition module is set to 256 Hz, TACCR0 has to be set to 

15625. 

15625256
4MTACCR0 ==  

 

Fig. 3-10: Timer_A up mode for interrupt function of MSP430F1611 

B. Analog to Digital Converter 

In this system, by passing the signal through wireless, it needs an analog to 

digital converter to convert the continuous signal to discrete number. To suit with the 

filtered and amplified signal from front-end circuit, built in ADC of MSP430 was 

chosen to be an analog to digital converter.  
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Fig. 3-11: ADC12 Block Diagram [51] 

Fig. 3-11 shows ADC12 Block Diagram. The ADC12 module supports fast, 

12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, 

sample select control, reference generator and a 16 word conversion-and-control 

buffer. The conversion-and-control buffer allows up to 16 independent ADC samples 

to be converted and stored without any CPU intervention [51]. The ADC12 inputs are 

multiplexed with the port P6 (A0-A7) pins, which are digital CMOS gates. An 

analog-to-digital conversion is initiated with a rising edge of the sample input signal 

SHI. The signal SHI will be set by interrupt routine of timer A at 256Hz. The ADC12 

module is configured by three control registers, ADC12CTL0, ADC12CTL1 and 

ADC12MCLTx. Those registers are set to enable core, select conversion clock, set 

conversion mode, sample and input channels define. In our system, we used the 

“ multiple channels, single conversion each” mode. In this mode, a sequence of 
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channels is sampled and converted once. Each conversion requires 6 ADC12CLK 

cycles; include conversion and result restored into ADC12MEMx conversion memory 

registers. Fig. 3-12 shows a diagram for sampling time and conversion time of ADC 

with trigger by timer A. Here, the total sampling and conversion time less then 7812 

clocks. Therefore, the conversion time of ADC is fast enough to fit the requirement of 

the sampling rate of the whole system. The ADC result of each channel will be 12 bits 

long in the form of an unsigned integer whose value is: 
Ax - Vr-

4095*
Vr+ - Vr-

  

 

Fig. 3-12: Diagram of the sampling and conversion with timer A trigger 

When conversion results are written to a selected ADC12MEMx, the 

corresponding flag in the ADC12IFGx register is set. An interrupt request is generated 

if the corresponding ADC12IEx bit and the GIE bit are set. After ADC12IFGx register 

set, the interrupt service routine of ADC started. In the interrupt service routine, we 

buffered ADC12MEMx. Next, a moving average filter was used to remove 60-Hz 

power line interference, and then filtered signal data was encoded before wireless 

transmission [Fig. 3-13]. 

FF 62 Channel 1_low byte Channel 1_high byte Channel 2_low byte Channel 2_high byte 

Fig. 3-13: Data format 
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C. Moving Average 

 Moving average, also called rolling average or running average, is usually used 

to analyze a set of data points by creating a series of averages of different subsets of 

the full data set. Moving average can be applied to any data set, however, it is most 

commonly used with time series data to smooth out short-term fluctuations and 

highlight longer-term trends or cycles. The choice between short- and long- term, and 

the setting of moving average parameters depends on the requirement of application. 

Mathematically, moving average is a type of convolution and is similar to a low-pass 

filter used in signal processing. The moving average filter is optimal for a common 

task: reducing random noise while retaining a sharp step response. This makes it as 

the premier filter for time domain encoded signals. 

 Given a sequence{ } 1

N

i i
a

=
, the output of an n-moving average is a new sequence 
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1

N n
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 defined as the average of subsequences of n terms. The formula of moving 

averaging was shown as followings. 
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Therefore, the sequences ns  of n-moving averages when 3,2=n  can be expressed 

as 

( )2 1 2 2 3 1

1
, ,...,

2 n ns a a a a a a−= + + +  

( )3 1 2 3 2 3 4 2 1

1
, ,...,
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Fig. 3-14 shows the results of noise cancellation by using moving average. A 

function generator was used to generate sin wave, and our portable bio-signal 

acquisition system was used to record this signal. If our portable acquisition module 



 

 35

was close to some electric instruments, the signal recorded from the acquisition 

module would be easily influenced by noise of 60 Hz power line. In the above figure 

of Fig. 3-14, it showed that the original sin wave had been contaminated by 60Hz 

power-line noise. After filtering by using moving average with 5-point moving 

window, we found moving average could effectively remove power-line noise, as 

shown in the below figure of Fig. 3-14.  
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Fig. 3-14: Result of noise cancellation by using moving average 

D. UART Interface 

 In asynchronous mode, USART connected MSP430 to external systems via two 

external pins, URXD and UTXD. In UART mode, USART transmitted and received 

characters at a bit rate asynchronously to another device. Timing for each character 

was based on the selected baud rate of USART. In our study, the transmitter and 

receiver used the same baud rate. For initializing UART, RX and TX had to be enable 

first, and then decided the baud rate of UART and disable SWRST. The required 
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division factor N for determining baud rate was listed as followings: 

BRCLK
N

baud rate
=                                              (3-4) 

Here, BRCLK was 4 MHz, and baud rate was 115200 bit/s. After initializing 

UART, the micro-controller could transmit data filtered by moving average to BLUE 

TOOTH module via UART.  

3.2.3 Power Management 

Power Management circuit in our portable bio-signal acquisition system includes 

two parts: one is power supply circuit, and the other is charging circuit.  

A. Power Supply Circuit 

In our portable bio-signal acquisition system, the operating voltage VCC was at 

3V, and the virtual ground of analog circuit was at 1.5V. In order to provide stable 

1.5V and 3V voltage, a regulator LP3985 was used to regulate battery voltage to 3V. 

LP3985 is a micro-power, 150mA low noise, and ultra low dropout CMOS voltage 

regulator. The maximum output current can support 550mA. Furthermore, the turn-on 

time can reach 200µs. A voltage divider circuit was used to divide 3V voltage into 

1.5V, and a unity amplifier constructed from AD8628 was used to provide a voltage 

buffer. The total power supply circuit was shown in Fig. 3-15. 
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Fig. 3-15: Power supply circuit in portable bio-signal acquisition system 

B. Charging Circuit 

 The charging circuit BQ24010DRC had integrated power FET and current sensor 

for 1-A charging applications. The maximum charging current can arrive at 1A. The 

battery’s power would be detected automatically by charging circuit and switched to 

charging mode when battery’s power was not enough. BQ24010DRC also protected 

battery to avoid over charging or over driving [64]. The charging circuit was shown in 

Fig. 3-16. 
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Fig. 3-16: Charging circuit in our portable bio-signal acquisition system  

3.2.4 Wireless Transmission 

Bluetooth is a wireless protocol utilizing short-range communication technology 

to facilitate data transmission over short distances from fixed and/or mobile devices. 

The intent behind the development of Bluetooth was the creation of a single digital 

wireless protocol, capable of connecting multiple devices and overcoming issues 

arising from synchronization of these devices. In this study, Bluetooth module 

BM0203 was used. BM0203 is an integrated Bluetooth module to ease the design gap 

and uses CSR BuleCore4-External as the major Bluetooth chip. CSR 

BlueCore4-External is a single chip radio and baseband IC for Bluetooth 2.4GHz 

systems including enhanced data rates (EDR) to 3Mbps. It interfaces to 8Mbit of 

external Flash memory. When used with the CSR Bluetooth software stack, it 

provides a fully compliant Bluetooth system to v2.0 of the specification for data and 

voice communications. All hardware and device firmware of BM0203 is fully 
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compliant with the Bluetooth v2.0 + EDR specification. Bluetooth operates at high 

frequency band to transmit wireless data, so it can be perfect worked by using a PCB 

antenna, as shown in Fig. 3-17.  

 

Fig. 3-17: PCB Blue Tooth antenna [64] 

 

3.3 DSP Module 

 The goal of our DSP module is not only to build a back-end analysis platform but 

also to provide a bio-feedback mechanism by buzzer or stimulator. This module has 

greatly powerful calculating ability and supports various peripheral interfaces. After 

measuring and pre-processing EEG and EOG signals by our portable bio-signal 

acquisition system, these signals would be transmitted to this DSP module via 

Bluetooth module. Then, DSP module would process and analyze them. As soon as a 

drowsy state is detected, this module would warn the user by buzzer or stimulator. 

Furthermore, it can also use other peripheral interfaces to implement lots of 

applications [64]. 

3.3.1 DSP Framework 

A powerful digital signal processor Analog Device BF533-STAMP was used in 

this DSP module, and its CPU speed can be up to 600MHz. There are two 16-bit 
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MAC Multiply-And-Accumulate used to execute 1200 lines addition and 

multiplication functions. Besides, DSP contains many independent DMA, Direct 

Memory Access, to effectively reduce the processing time of core. The system block 

diagram was shown in Fig. 3-18. In our study, Bluetooth module and UART both 

worked in the same UART interface. 

TFT-LCD, an optional element depends on user’s requirement, which is worked 

by using Memory Mapping, shared the same Memory Bus with SDRAM. In order to 

reduce the size of platform, traditional parallel NOR Flash was replaced with SPI 

Flash, and it shared with micro SD Socket, too. Furthermore, the DSP module also 

owned power management and charging circuits. Micro SD Socket provided the 

interface scalability, such as micro SD Card, Sensor, ADC, Wireless Card, etc. There 

is also a buzzer placed on the platform worked via GPIO interface for application. As 

a matter of fact, our DSP module is divided into two parts: the Master board and the 

Slave board. The elements introduced above are all placed in the Master board, for 

instance: SDRAM, micro SD socket, buzzer and so on. There are three circuits of 

stimulator placed on the Slave board; it also worked via GPIO interface from the 

Master board. In our application for drowsiness detection and warning, a buzzer and a 

stimulator are used as a bio-feedback to warn users when they become drowsy. The 

stimulation which generated by the circuit of stimulator will be introduced in the next 

session. 
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Fig. 3-18: The block diagram of DSP system [64] 

3.3.2 The Circuit of Stimulator 

The circuit of stimulator was placed on the Slave board to generate the 

stimulation for warning the user. The Master board and the Slave board 

communicated with each other via GPIO interface. It is a muscular bio-stimulator, 

which is small, portable set, designed for those aiming at look improvement in the 

beginning. Stimulator also provides muscles' stimulation and invigoration so it was 

used as the bio-feedback mechanism to warn user. The schematic circuit of Slave 

board was shown in Fig. 3-19. 
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Fig. 3-19: The schematic circuit of Slave board 

In every circuit of stimulator, there were two sources of pulse for user to select: 

Timer interface or GPIO interface. It was all depend on user’s application. In our 

study, the GPIO interface was chosen. As soon as a drowsy state was detected by the 

DSP module, 150µSec. pulses at about 80 Hz frequency would be generated and send 

to the Slave board via GPIO interface. Q1 acted as a buffer and Q2 inverted the 

polarity of the pulses and drove the Transformer. The amplitude of the output pulses 

was set by R1 and roughly displayed by the brightness of LED D1. D2 protected Q2 

against high voltage peaks generated by T1 inductance during switching. The output 

signals would be generated by J1 and J2, which were directly connected to the 

electrodes. User only need taped the electrodes to the skin at both ends of the chosen 

muscle then the stimulator could be worked. The output voltage is about 60V positive 

and 150V negative but user is no need for fear of electric-shock danger, because the 

output current is so small and would be safe[72]. 
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3.4 Hardware System Specification 

A. Portable bio-signal acquisition system 

 Fig. 3-20 is the front-end analog circuit and digital control circuit of our portable 

bio-signal acquisition system. There are three leads in our portable bio-signal 

acquisition module for each channel, includes EEG or EOG input, reference, and 

virtual ground of the front-end analog circuit. The electrodes connected with the leads 

of virtual ground and EEG reference were placed on user’s forehead and behind right 

ear respectively. On the other hand, the reference of EOG was placed below right eye. 

The specification of portable bio-signal acquisition system was listed in Table 3-2. 

 

 

Fig. 3-20: The front-end analog and digital control circuit 
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Table 3-2: The spec of portable bio-signal acquisition system 

Type Portable Bio-signal Acquisition System 

Channel Number 1~4 

System Output Voltage Range 0~3V 

Gain 2000~5000 

Bandwidth 0.1~100Hz 

ADC Resolution 12bits 

Output Current 29.5mA 

Battery  Lithium 3.7V 450mAh  15~33hr 

Full Scale Input Range 577µV 

Sampling 256Hz 

Input Impedance greater than 10MΩ 

Common Mode Rejection Ratio 77dB 

Power Supply Rejection Ratio 88dB 

Size  25mm x 54mm 

B. DSP Module 

DSP module was divided into two parts: the master board and the slave board. 

The master board was shown in Fig. 3-21(a). CPU, SDRAM, buzzer and etc. were 

placed on the master board. Fig. 3-21(b) is the illustration of the slave board which 

included three circuits of stimulator. The specification of DSP module was listed in 

Table 3-3. 

Table 3-3: The spec of DSP Module 

Type DSP Module 

Chipset ADI BF533 

Speed (CLK) 600MHz (1200MAC) 

SDRAM 16MB (Max 64MB) 

Size 65mm x 45 mm 

Storage Micro SD 

Transmission BLUETOOTH 

Display TFT-LCD 

Keypad 3 

Battery Lithium 3.7V 450mAh  15~33hr 

Application(GPIO) Buzzer, Bio-stimulator 
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(a) 

 

(b) 

Fig. 3-21: (a) Master board of DSP module (b) Slave board of DSP module 

 

 

 

 

 

 

 

 

 

 



 

 46

Chapter 4 Unsupervised Approach 

Based on the unsupervised analysis flowchart in Fig. 2-10, we will further discuss 

the details of every analysis diagrams in the following sessions. In order to find out 

the real driving behavior information, first we calculate the driver’s driving 

performance by using the record in simulation experiment. Moreover, we use the 

unsupervised analysis method to analyze the corresponding EEG and EOG 

information, including the preprocessing, alert model construction, blink duration, and 

computation of the deviation using Mahalanobis distance method.   

 

4.1 Driving Performance 

The VR-based four-lane straight highway scene was applied in the experiment. 

In this scene, the four lanes from left to right are separated by a median stripe and the 

distance from the left side to the right side of the road was equally divided into 256 

points indicating the position of the vehicle as the digital output signal of the VR 

scene at each time instant. The width of each lane and the car is 60 units and 32 units, 

respectively. Fig. 2-5 shows an example of the driving performance represented by the 

vehicle deviation trajectories. VR driving simulation environment will randomly start 

a deviation event to move the car to right or left side in the car driving experiments. 

Subjects needs to sense those sudden movements and trying to make a reversely turn 

to back to the third lane. At one time, the VR environment also outputs the driving 

events inside the data of car trajectories, as deviation event start trigger, response 

onset trigger; and response offset trigger. Fig. 4-1 shows the example of deviation 

event. 
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Fig. 4-1: The example of deviation event and car trajectories 

Two parameters would be acquired from every deviation event called “reaction 

time” and “deviation”. In our study, deviation was not used because it could lead to an 

error. The road of our VR scene was divided into only 256 points and users need to 

keep the car on the third lane. For example, a user kept the car at the point 140 first, 

then a deviation event of right side triggered. If this user fall asleep at that time who 

might not able to make a reversely turn immediately and the car would just deviate to 

the boundary of the fourth lane: point 250. Suppose this user still not makes a reaction 

for the event, the numeric of deviation should become larger. However, owing to the 

limit of our VR scene, the results of deviation would be still at point 250 and can not 

be used. Simultaneously, reaction time was also computed by our system and not 

affected by the limitation of our VR scene: the longer user made no reaction, the 

longer “reaction time” would be, so it was used to validate our approach. The method 

of index is introduced as follow: reaction time of every event was acquired by 

computing the difference of “Response onset” and “Deviation start trigger” first, and 

then two successive reaction time of deviation event was compared at a time for 

observing the variation. Once the latter reaction time was larger than the former, we 

would use this result to compare with MDA, MDT, blink duration and implement in 

correlation analysis with the driver’s performance. We emphasize that this index is 
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used only to validate our approach, and it is not as an input to develop the model for 

the alert state of the subject. 

 

4.2 Construction of the Alertness Model 

In order to investigate the relationship between the measured EEG/EOG signals 

and subject’s cognitive state, and to quantify the level of the subject’s alertness in 

previous studies [65]-[67], we need to quantify the volunteer’s drowsiness level in 

this experiment at first. When subjects fall drowsy, they often exhibit relative 

inattention to environments, eye closure, less mobility, failure to motor control and 

making decision. Hence, the vehicle deviation was defined as the subject’s drowsiness 

index. 

In our approach for every subject in every driving session a new model will be 

constructed. Consequently the inter-session variability between subjects is no more 

important; these are taken into account automatically. To develop the alert model we 

make a few mild but realistic assumptions as follows: 

(1) The subject is usually very alert immediately after he/she starts the driving 

session. 

(2) Subject’s cognitive state can be characterized by the power spectrum of his/her 

EEG. 

(3) When the person is in alert state, it can be modeled reasonably well using a 

multivariate distribution of the power spectrum.  

(4) The alert model expresses well the EEG spectra when the subject remains alert or 

return to alert state from drowsiness. 
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One might argue that the subject may already be in a drowsy state when he/she 

begins driving. If that is really true, then that can be detected by checking the 

consistency between two alert models derived using data in two successive time 

intervals. In other words, we can check whether the two alert-models identified in two 

successive time intervals are statistically same or not. If the subject was already in a 

drowsy state, then he/she will either move to a deep drowsy/sleepy state or will transit 

to an alert state. In both cases, the two models will not be statistically consistent. 

In our study, a multivariate distribution was used to model the distribution of 

power spectrum in the alert state. In particular, at every 0.125 second, we calculate the 

power spectrum vector in p dimension. In our experiment theta band is located in 

16~31(4~7Hz), and alpha band is located in 32~48 (8~12Hz). In this way, a set of 

n=480 data vectors {x1,…,x480} is generated in every minute. We use 3 minutes of 

spectral data to derive the alert model. The alert model is represented and 

characterized by a multivariate normal distribution ),N( 2Σµ , where µ  is the mean 

vector and Σ is the variance-covariance matrix.  

We use the maximum likelihood estimates for µ  and 2Σ . After finding the alert 

model we check whether the EEG spectrum in alpha band (also in theta band) indeed 

follows a multivariate normal using Mardia’s test [68], [69]. If the model passes the 

Mardia’s test, we accept that model as the alert model. Otherwise, we move the data 

window by one minute and again use the next 3 minutes of data to derive and validate 

the model using Mardia’s test. Once a model is built, a significant deviation from the 

model can be taken as a departure from alertness. Note that, we are saying “departure 

from alertness” which is not necessarily drowsiness. For example, the subject could 

be excited over a continued conversation over a mobile phone. In this case, although 

the person is not drowsy, he/she is not alert as far as the driving task is concerned and 
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hence needs to be cautioned. Thus our approach is more useful than typical 

drowsiness detection systems.  A consistent and significant deviation for some time 

can be taken as an indicator of drowsiness.  

For the sake of completeness, we briefly explain the Mardia’s test of 

multi-variate normality. Given a random sample, X={x1,…,xn} in Rp, Mardia [68], [69] 

defined the p-variate skewness and kurtosis as:  
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In (1) and (2) x and S represent the sample mean vector and covariance matrix, 

respectively. In this case of university data, b1,p and b2,p reduces to the usual university 

measures skewness and kurtosis, respectively. If the sample is obtained from a 

multivariate normal distribution, then the limiting distribution of b1,p is a Chi-square 

with ( 1)( 2) / 6p p p+ +  degrees of freedom, while that of 

)2(8/))2((n ,2 ++− ppppb p is N(0,1). Hence we can use these statistics to test 

multi-variety normality. In all our experiments, we have used the routines available 

for Mardia’s test in the R-package [70]. On the other hand, EOG was also processed. 

In contrast to the alert model of EEG, the EOG preprocessing was simpler. The blink 

duration was recorded at the first 3 minutes, and then all of this blink duration was 

averaged to be the baseline of the alert state. During the experiment, the blink 

duration might become longer or shorter than the baseline. We could increase the 

accuracy of blink detection by comparing the blink duration of alert state. 
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4.3 Computation of the Deviation from the Subject 

After the alert model is found, we use it to assess the subject’s cognitive state. 

This was done by finding how the subject’s present state, as represented by the EEG 

power spectra, and was different from the state represented by the alert model. The 

deviation of the present state from the model is computed using Mahalanobis distance 

[71] that can account for the covariance between variables while computing the 

distance. Let the alert model computed using the alpha band be represented by 

( , )ASx  and that by the theta band be represented by( , )TSx . Let x be a vector 

representing the power spectra in the alpha band (or in the theta band) of the EEG of 

the subject at some time instant, then the deviation of the present state from the model 

is:  

T -1MD*( )  ( - ) S ( - )=x x x x x              (4-3) 

In (3) if we use the alpha band model, then * is A, and for the theta band model 

and data, * will be T. Thus the deviation from the alpha band model will be denoted 

by MDA and that for the theta band model will be denoted by MDT. Similar to the 

pre-processing of the indirect alertness level index (driving performance), the 

MDA/MDT is also smoothed by the moving average method using a window with a 

window of 20 seconds. The moving average window is shifted by just one value (i.e., 

2 sec). For a better visual display, we have scaled the MD* values by subtracting the 

average MD* computed over the training data used for finding the alert model. 

We shall see later that the deviation from the alpha band model (i.e., MDA) or 

the theta band model (i.e., MDT) can be used to detect departure from the alert 

cognitive state.  
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4.4 Computation of the Blink Duration from the Subject 

In this section, computation of the duration of blinks is introduced. Vertical EOG 

was used in our study to acquire the parameters of EOG. In Fig.4-2, there is an idea 

blink and the differentiation of this blink called EOG velocity. We analyzed this EOG 

velocity and characterized the behaviour of vertical EOG[23]. To base on the blink 

model, closing time starts at the time “cs” and finishes at “ce”, and the opening time 

starts at the time “os” and stop at “oe”. 

 

Fig. 4-2: Blink features 
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The values of closing and opening threshold were selected empirically because 

each driver’s characteristics of EOG were different. Thus, EOG signals during many 

conditions(closed eyes, open eyes,etc) should be recorded before our experiment to 

ensure the accuracy. The computation consists of following basic steps[23],[26]: 

Step 1)  Define the initial threshold parameters. 

Step 2) Filter out the frequencies above 10 Hz. 

Step 3) Compute the derivative(difference) of the filtered signal called EOG 

velocity. 

Step 4) Use closing and opening threshold to identify blinks. If the value of 

EOG velocity above closing threshold and which is followed by a 

value below opening threshold are identified as blinks. 

Step 5) Verify the satisfaction of some constraints, for example: duration must 

below the value of maximum duration, amplitude need to above the 

minimum amplitude and so on. 

After these five steps, parameters of EOG could be acquired. In our study, 

closing time, opening time, duration and amplitude of blinks were all computed. 

However, correalation between driving performance and closing time was low. No 

matter user was drowsy or not, the value of closing time always kept at a constant. 

Amplitude of blinks would become small when user felt drowsy. In contrst with 

amplitude, opening time and duration would become larger as user turn from alert 

state into drowsy state. To simplify our study, blink duration which had highest 

correlation with driving performance was the only parameter selected to detect 

drowsiness.  
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This raises a natural question, can a combined use of MDA, MDC and duration 

do a better job than individual ones. To explore such a possibility we use a linear 

combination MDA, MDT and duration to compute a combined measure of deviation 

as: 

Combination = i × MDT + j × MDA + k × Duration  

where  0≦ i, j, k ≦1  and  i+j+k= 1.                          (4-4) 
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Chapter 5 Results and Discussion 

In this chapter, it is separated into two parts including the performance of 

portable bio-signal acquisition system and the relationship between driving 

performance and unsupervised analysis. In the first segment, sine wave and alpha 

wave are used to test the performance correlation. In the next segment, we will 

discuss the unsupervised result by using correlation with driving performance, sorting 

analysis, and linear combination to find out the proportional relationship. Finally, we 

use the binary classification method to summarize the threshold from alertness to 

drowsiness, furthermore set the optimal threshold into the program of DSP module.  

 

5.1 Performance of Portable Bio-signal Acquisition System 

and Bio-stimulator of DSP Module 

In this section, the reliability of the proposed portable bio-signal acquisition 

system was examined. First, several sine waves with different frequencies generated 

by function generator were used as input signals to test whether the acquisition system 

can stably and validly acquire testing signals. Next, an arbitrary wave as EEG signal 

was generated by function generator, and the original arbitrary wave and the arbitrary 

wave recorded by our system were compared to test whether the characteristic of EEG 

signal was kept to ensure the reliability of our acquisition system. In addition, the 

effect of bio-stimulator was also examined in this section. When user became drowsy, 

bio-stimulation was generated without warning to make user alert and the 

corresponding EEG raw data was recorded simultaneously, and then these EEG data 

were analyzed to make sure if our bio-stimulator took effect on user. 
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A. Test for Sine Wave Signal 

In this performance test, we tried to test the correlation between the sine-waves 

which were recorded actually by portable bio-signal acquisition system and the 

sin-waves which were generated by MATLAB function. The EEG signals which were 

recorded about 23 sec. The result between two conditions was shown in Fig. 5-1. And 

the correlation of total information could up to 0.9765. 

 

Fig. 5-1: The result between two conditions 

B. Test for Arbitrary Wave Signal 

An arbitrary wave as EEG signal was generated by using function generator. 

This arbitrary wave was scaled down 1000 times at first, then filtered and amplified 

by our system. After ADC processing, the processed digital signal would be 

transmitted to PC by Bluetooth and recorded by our program. To compare the original 

arbitrary wave and the signal recorded by our system, we could find out that recorded 

signal was smoother than the original and the amplitude was slightly smaller, but the 

characteristics of EEG were all kept by our system. Come to a conclusion, using 

moving average to remove noise of 60Hz might cause the recorded signal smoother. 

Besides, sampling rate of 256 points per second would reduce data volume and lead to 
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the decreased amplitude. The result of arbitrary wave test was shown in Fig. 5-2. 

 

Fig. 5-2: The result of arbitrary wave test 

C. Test for Bio-stimulator of DSP module 

Bio-stimulation is one of bio-feedback mechanism of our DSP module. The 

utility of our bio-stimulator is to make mental state of user return alert and to avoid 

traffic accidents. To make sure the stimulus position of bio-stimulator can indeed take 

effect on user, traditional Chinese medical science was referenced in our study. 

Fengchi is in the posterior aspect of the neck, below the occipital bone and the 

depression of this point is like a well, when stimulating on this point can alleviate the 

tight muscle and refresh user. So, Fengchi was used as the stimulus position and it 

was shown in Fig. 5-3 [73]. 
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Fengchi

 

Fig. 5-3: The position of Fengchi 

An experiment was designed that when user was driving the car of our virtual 

driving simulation environment, a pair of bio-stimulation electrodes were attached on 

Fengchi of neck. As soon as user became drowsy which defined in our study was 

reaction time of driving performance over 1 second, and then our bio-stimulator 

would switch on and generate bio-stimulation to alert user. The corresponding EEG 

raw data was recorded and analyzed to observe the difference between before, during 

and after bio-stimulation, and the result was shown in Fig. 5-4 and Fig. 5-5. 

 
Fig. 5-4: Result of EEG raw data and corresponding frequency spectrum 

Bio-stimulation start Bio-stimulation end 
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Fig. 5-5: Results of EEG raw data: (a) before bio-stimulation, (b) during 

bio-stimulation and (c) after bio-stimulation. 

According to Fig. 5-4 and Fig. 5-5, EEG data in frequency domain showed that 

the main frequency of EEG was distributed among 8-12Hz (alpha-band) when user 

was in drowsy state (before second 59). As bio-stimulation was generated (second 59 

through second 74) that the proportion of alpha-band was decreased and the main 

components of frequency domain were composed by the frequency of bio-stimulation. 

After stimulation was finished, frequency of alpha-band was significant reduced, and 

it means that user was become alert from drowsy state. On the other hand, observing 

EEG data in time domain that EEG data was mixed with stimulation signals during 

bio-stimulation generated and it proved that our bio-stimulator took effect on the user. 

Besides, as user was taking experiment, oral questioning was also implemented to 

ensure the mental state of user. Moreover, the result of oral questioning showed that 

when user was stimulated from drowsy state, the effect of bio-stimulator was 

significant and user became alert indeed. In conclusion, bio-stimulator can wake user 

up and keep user in alert state effectively. 

(a) 

(b) 

(c) 
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5.2 Driving Performance and Unsupervised Analysis 

In this section, we will show the results of algorithm in five parts. 1) Discussing 

the relationship between driving behavior information and unsupervised analysis in 

each event of deviation. 2) Separating the behavior trials hence find out the 

corresponding EEG and EOG data, then sorting both information check the 

connection between MDA, MDT, blink duration and the reaction time of driving 

performance. 3) Using linear combination of PPV and sensitivity to find out the 

optimized threshold of “Combination”(i × MDT + j × MDA + k × Duration) and 

check the maximum value of f-measure between these three information. 4) Applying 

this optimized threshold to 10 trials of experiment to ensure the usability of our 

algorithm. 5) In our study, the importance of blink duration is emphasized. So we use 

only two parameters of EEG (MDT, MDA) doing the same process to find out the 

optimized threshold and check the maximum value of f-measure between only MDT 

and MDA. Then we will accord the results of these two conditions (within and 

without parameter of blink duration) to compare and discuss. Finally, the result of 

comparison will be shown in the last part of this section. 

5.2.1 Results of Unsupervised Analysis 

Following the steps of preprocessing and the unsupervised analysis in above 

chapters, we used OZ channel which has the highest average correlation in 10-20 

system [56] to record EEG signal. On the other hand, we used vertical EOG which 

has the largest amplitude of different kinds EOG measurements to make the 

parameters acquired more precisely. Then, we constructed ( , )TSx  and ( , )ASx  in 

the alert model that x  and S are mean vector and covariance matrix. Moreover, 

according to the results of FFT counted the MDT and MDA out. Besides, blink 
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duration was also extracted from the results of EOG velocity to be one of the 

parameter of drowsy detection. 

There were four examples to show the results of reaction time, MDT, MDA and 

blink duration, as Fig. 5-6 through Fig. 5-9. 

 

 

Fig. 5-6: Example 1 of driving performance and unsupervised analysis 
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Fig. 5-7: Example 2 of driving performance and unsupervised analysis 

 

Fig. 5-8: Example 3 of driving performance and unsupervised analysis 
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Fig. 5-9: Example 4 of driving performance and unsupervised analysis 

From above four cases of unsupervised analysis, we could directly find out the 

relationship between unsupervised analyses and driving performance. When the latter 

value of reaction time was larger than the former it meant that user was become 

drowsy. Comparing to the variation of MDT, MDA and blink duration, these three 

parameters were all become larger as the value of reaction time was rising.  

According to those experimental results, we could asseverate that EEG and EOG 

signals would be influenced by behavior information when subjects become 

drowsiness.  
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5.2.2 Relationship between Driving Performance and Unsupervised 
Analysis 

In reference (N. R. Pal, 2008 [45]) said, they investigated the relationship 

between the driver’s performance and the concurrent changes in the EEG spectrum, 

and go on, they had sorted the EEG power spectra in alpha band by smoothed driving 

performance. The similar sorting was also done for power in the theta band. The result 

which they discovered was that theta and alpha spectrum were directly proportional to 

the deviation length of driving performance. Besides, in reference (P. P. Caffier, 2003 

[23]) said, level of drowsiness had divided to four stages (Q1 - Q4) where Q1 meant 

most drowsy comparing to Q4 meant most alert. They computed across all 

measurements of the 60 participants and sorted the blink duration according to level 

of drowsiness. The results showed that blink duration was proportional to the level of 

drowsiness. The more drowsiness of the participant (Q1) the more large value of blink 

duration was.  

Since the driving performance is an indirect index of the alertness level, we 

propose the sorted analysis method that sorts the smoothed log power spectra MD* 

and blink duration according to the driving performance index to assess the brain 

dynamics and blink variation corresponding to the transition from alertness to 

drowsiness in driving. This process is used to obverse the features change as the 

increase of driving performance index. 

 This analysis flow is to separate total trials from the driving events. In our 

analysis, we assumed that the driving deviation and drowsiness state were direct 

proportional, so we decided to use the reaction time of driving deviation to be the 

information of driving performance analysis. Every trial would find out the 

corresponding EEG and EOG raw data. Hence, according to the alertness model in 
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first 3 minutes, the frequency domain spectrum under the deviation can be changed 

out by FFT, and continually, the MD* power can be transformed. The blink duration 

was also computed at the same time. Further, the trials are sorted following the length 

of reaction time, and the synchronized MD* power spectra and blink duration also be 

sorted together. In our study, 6-second EOG data before “Response onset” was 

extracted and averaged to increase the accuracy of synchronized duration. The width 

of road was divided into 256 points, and speed of car drifting after deviation onset 

was 64 points/sec; in other words, the car would drift 1/4 width of road and crash into 

the second lane or fourth lane in one second. After trials sorting, according to above 

theory, we can separate the sorting data into 4 segments: state 1(0.2~0.56s), state 2 

(0.56~0.75s), state 3(0.75~0.94s), and state 4(over 0.94s). Then, the mean and 

standard deviation in every segment which we counted shows the relationship 

between driving performance and drowsiness state. The process of sorting analysis is 

shown as Fig. 5-10. 

 

Fig. 5-10: Process of sorting analysis 
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Next, we checked how strongly MDA, MDT and duration were correlated with 

the driving performance. Fig. 5-11(a) showed the correlation between driving 

performance and MDA (across the 10 test subjects/sessions) while Fig. 5-11(b) and 

Fig. 5-11 (c) exhibited the same for MDT and blink duration. It was interesting to find 

out that Fig. 5-11 and the above theory exhibit almost the same behavior. In fact, the 

average MDA, MDT and blink duration increased more steadily with driving 

performance and proved that there was high correlation between these three 

parameters with driving performance. 

 

Fig. 5-11: The relationship between MDA/ MDT/ Duration and reaction time 

 

 

(a) 

(b) 

(c) 
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5.2.3 Threshold Definition and Drowsiness Classification  

In drowsiness classification, the true-false table is used to define sensitivity and 

specificity. Sensitivity and specificity are statistical measures of the performance of a 

binary classification test. The sensitivity measures the proportion of actual positives 

which are correctly identified as such (e.g. the percentage of drowsy people who are 

identified as having the condition); and the specificity measures the proportion of 

negatives which are correctly identified (e.g. the percentage of alert people who are 

identified as not having the condition). The relationship between sensitivity and 

specificity was shown in Fig. 5-12 and the description of binary classification test was 

in Table 5-1.  

 

Fig. 5-12: The relationship between sensitivity and specificity 

 

Table 5-1: The description of binary classification test 

Type Description 

True positive Drowsy people correctly diagnosed as drowsy 

False positive Alert people wrongly identified as drowsy 

True negative Alert people correctly identified as alert 

False negative Drowsy Sick people wrongly identified as alert 
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To define the drowsy state between driving performance with MD*/duration, we 

need to collect the parameters of true positive, false positive, and false negative, hence 

to analyze the sensitivity and positive predictive value. 

A. Positive Predictive Value: 

number of True Positives
PPV

number of True Positives number of False Positives
=

+
         (5-1) 

The positive predictive value, or precision rate, or post-test probability of disease, 

is the proportion of patients with positive test results who are correctly diagnosed. It is 

the most important measure of a diagnostic method as it reflects the probability that a 

positive test reflects the underlying condition being tested for. Its value does however 

depend on the prevalence of the disease, which may vary. 

B. Sensitivity: 

number of True Positives
Sensitivity

number of True Positives number of False Negatives
=

+
     (5-2) 

 A sensitivity of 100% means that the test recognizes all drowsy people as drowsy. 

Thus in a high sensitivity test, a negative result is used to rule out the disease. 

Sensitivity alone does not tell us how well the test predicts other classes (that is, about 

the negative cases). In the binary classification, as illustrated above, this is the 

corresponding specificity test, or equivalently, the sensitivity for the other classes. 

However, sensitivity is not the same as the positive predictive value (ratio of true 

positives to combined true and false positives), which is as much a statement about 

the proportion of actual positives in the population being tested as it is about the test. 

The calculation of sensitivity does not take into account indeterminate test results. 

If a test cannot be repeated, the options are to exclude indeterminate samples from 

analysis (but the number of exclusions should be stated when quoting sensitivity), or, 
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alternatively, indeterminate samples can be treated as false negatives (which gives the 

worst-case value for sensitivity and may therefore underestimate it). 

After explaining the definitions of sensitivity and positive predictive value, then 

we can find out the optimized threshold of “Combination” step by step. First, because 

the results of MD* and blink duration had been normalized, it’s beneficial for us to 

collect all 10 subjects’ MD* and blink duration data to analyze. Second, we have to 

define the threshold of driving performance by taking the entire deviation events into 

account. The threshold of driving performance can be separated into 2 parts: alert and 

drowsiness. Further, we assume that deviation time is smaller than 1 second to be alert, 

and others are drowsiness. So the threshold of driving performance is defined as 1s. 

According to the value of threshold, all events can be separated to two conditions: 

drowsy and alert. Because we need to find out the optimized threshold of 

“Combination”, we use different kind conditions of linear combination and set the 

threshold of “Combination” from 20 through 40 respectively to calculate the 

corresponding PPV and sensitivity. In linear combination, according to these three 

conditions below:  

1. Combination = i × MDT + j × MDA + k × Duration 

2. i + j + k = 1 

3. 0 ≦ i , j , k ≦ 1 

We calculated all kinds of combinations by i, j, k set as 0, 0.1, 0.2…0.8, 0.9, 1. 

For example: 0.3 × MDT + 0.3 × MDA + 0.4 × Duration and so on. Following these 

different combinations then PPV and sensitivity in different threshold of 

“Combination” could be acquired. There are too many kinds of combinations, so we 
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only showed 12 significant conditions in Fig. 5-13 and Fig. 5-14, we will explain 

these conditions later. 
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Fig. 5-13: Positive predictive value vs. threshold of “Combination” where the numeric 

in parentheses was sequentially expressed as (MDT, MDA, Duration) 
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Fig. 5-14: Sensitivity vs. threshold of “Combination” where the numeric in 

parentheses was sequentially expressed as (MDT, MDA, Duration) 

After calculating positive predictive value and sensitivity in different conditions of 

linear combination, we need to choose the optimized threshold of “Combination”. 

According to equation 5-3, the F-measure can be used as a single measure of 

performance of the test. In information retrieval positive predictive value is called 

precision, and sensitivity is called recall. The F-measure is the harmonic mean of 

precision and recall: 
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2
precision recall

F measure
precision recall

×− = ×
+

                                                                                                                                (5-3) 

The percent of F-measure means the ratio of drowsy accuracy actually. Both 

parameters are associated with drowsiness. In different linear combinational 

conditions, we could find out the maximum value of F-measure is in condition “i=0.3, 

j=0.3, k=0.4”. Come to a conclusion, the best linear combination of the 

“Combination” is composed of 0.3×MDT, 0.3×MDA and 0.4× Duration. The 

maximum value of F-measure, 80.91%, happened in the most suitable threshold of 

“Combination”, 31.5. Besides, the corresponding sensitivity is 96.15% and positive 

predictive value is 69.84%. There are too many conditions, so we only select 12 

significant conditions listed in our study. The first 6 conditions are all composed of 

MDT, MDA and duration, and these conditions have higher value of f-measure 

between all of conditions. The next 3 conditions are only composed of two parameters 

and have the highest f-measure in each condition (MDA + duration, MDT + duration 

and MDT + MDA). The last 3 conditions are composed by only one parameter, and 

also have the highest f-measure in each condition. The results of different kind 

conditions of F-measure are shown as Fig. 5-15 and the results of binary classification 

test are listed in Table 5-2. 

The reason of which F-measure was not high enough was described into 2 critical 

points: 

1. We found out the relation between driving performance and MD*/duration, 

hence driving performance and MD*/duration were a sufficient condition but 

not a necessary condition. When MD*/duration value was high, the 

corresponding driving performance wasn’t high too. There were other variables 

appending to user’s EEG and EOG signals. 
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2. When subjects became drowsy, the MD* would increase, but would not happen 

immediately. This phenomenon which based on time domain appeared step by 

step. So we used trials of driving trajectories to analyze drowsiness was not 

sufficient to know the exact information of EEG. 
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Fig. 5-15: F-measure vs. threshold of “Combination” where the numeric in 

parentheses was sequentially expressed as (MDT, MDA, Duration) 
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Table 5-2: The results of binary classification test 

Combination 

( i, j, k ) 

Max F-measure 

(%) 
Corresponding threshold PPV (%) Sensitivity (%) 

(0.3, 0.3, 0.4) 80.91 31.5 69.84 96.15 

(0.2, 0.3, 0.5) 80.87 31.5 71.96 92.31 

(0.1, 0.4, 0.5) 80.67 31 69.48 96.15 

(0.4, 0.2, 0.4) 80.59 31.5 69.36 96.15 

(0.2, 0.2, 0.6) 80.22 31 70.93 92.31 

(0.1, 0.3, 0.6) 80.18 31 70.87 92.31 

(0.0, 0.5, 0.5) 80.55 31 69.31 96.15 

(0.4, 0.0, 0.6) 78.34 30 66.10 96.15 

(0.1, 0.9, 0.0) 69.54 29.5 53.31 100 

(0.0, 0.0, 1.0) 76.88 29 67.99 88.46 

(0.0, 1.0, 0.0) 70.11 29.5 70.11 100 

(1.0, 0.0, 0.0) 68.22 27.5 68.22 100 

Combination = i × MDT + j × MDA + k × Duration 

5.2.4 Test and Verify the Optimized Threshold  

After the maximum result of f-measure is calculated, we have to validate if this 

linear combination and its corresponding threshold could actually work on all of the 

users. So we used the combination of highest value of f-measure (0.3, 0.3, 0.4) and its 

corresponding threshold: 31.5 to compute PPV, sensitivity and max f-measure of each 

subject. These 10 subjects’ results of validation were listed on Table 5-3. To check the 

results of validation, we could find out the max f-measure of subject 5 was only 48.21. 

It may be caused by this subject’s behavior of experiment. To review this subject’s 

events of driving performance, it showed that one of the events determined as drowsy 

state, the corresponding MDT and MDA were higher than alert state. However, the 

corresponding blink duration was not increased when reaction time was become 

larger. We supposed that this subject might closed his eyes for a while as he felt 

drowsy, and result in the blink duration could not be computed correctly by our 

algorithm. Nevertheless, the average of max f-measure of other 9 subjects was 83.9%, 
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it meant that the optimized threshold and corresponding linear combination was 

useful for most users. 

Table 5-3: 10 subjects’ results of validation with MDT=0.3, MDA=0.3, Duration=0.4 

and threshold set as 31.5 

Subjects Max F-measure 

(%) 
PPV (%) Sensitivity (%) 

S1 87.96 78.50 100 

S2 89.17 80.46 100 

S3 95.73 91.82 100 

S4 88.79 79.83 100 

S5 48.21 46.54 50 

S6 82.93 70.83 100 

S7 79.23 65.60 100 

S8 79.40 65.83 100 

S9 71.26 55.36 100 

S10 80.63 67.54 100 

 

5.2.5 Comparison between MDT/MDA Only and with Blink 
Duration 

In our study, one thing must be emphasized is that we not only used EEG signals 

as our parameters to detect drowsiness but also used EOG signals to increase the 

accuracy of our detection. To prove that linear combination with parameter of EOG 

signals was better than EEG signals only; we did the same process as unsupervised 

analysis mentioned before but calculated linear combination with only MDT and 

MTA.  

(1 ) ,0 1MDC a MDA a MDT a= × + − × ≤ ≤       (5-4) 

According to equation 5-4, the threshold of MDC was set from 20 ~ 40 

respectively. In linear combination, we tried to separate into 9 conditions: a = 0.1, 

0.2 … 0.8, 0.9. Following these different conditions then sensitivity, positive predict 

value and corresponding max f-measure could be computed in different threshold 
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with only MDT and MDA. The results of binary classification test with only MDT 

and MDA were listed on Table 5-4. 

Table 5-4: The results of binary classification test with only MDT and MDA 

Types Max F-measure (%) Corresponding threshold PPV (%) Sensitivity (%) 

MDC (a = 0.1) 68.30 28 51.87 100 

MDC (a = 0.2) 68.33 28.5 51.89 100 

MDC (a = 0.3) 68.63 29 52.24 100 

MDC (a = 0.4) 68.88 29.5 52.53 100 

MDC (a = 0.5) 68.84 29.5 52.49 100 

MDC (a = 0.6) 68.85 29.5 52.50 100 

MDC (a = 0.7) 69.01 29.5 52.69 100 

MDC (a = 0.8) 69.29 29.5 53.01 100 

MDC (a = 0.9) 69.54 29.5 53.31 100 

The highest f-measure of MDC was 69.54% from all of combinations, and we 

can find out in Table 5-2 that the highest f-measure by using EEG and EOG signals 

was 80.91% higher than all of the max f-measure of MDC. We calculated the average 

max f-measure of all 9 conditions by using only MDT and MDA. Besides, the average 

max f-measure of 9 conditions by using three parameters was also calculated that 

these 9 conditions were the top nine combinations with higher value of f-measure. 

The result of comparison was shown in Fig. 5-16. It proved that drowsiness detection 

by using MDT, MDA and blink duration was better than only using MDT and MDA. 

According to the results, we can assert that blink duration has high correlation with 

driving performance and it is an important index to confirm user is drowsy or not. 
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Fig. 5-16: The result of comparison between MDT/MDA only and with blink duration 

  

5.2.6 DSP Module Programming  

The flowchart of DSP module was shown in Fig. 5-17. In program development, 

we used multithread to build up a real-time analysis system, moreover to increase 

program’s flexibility and the use of performance. 
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Fig. 5-17: The flowchart of DSP module program 

 

Each thread is independent. In the DSP module’s main loop, we just create the 

threads which we want and join them. The system kernel will automatically schedule 

those threads and decrease the system waiting cost. In thread 1, Real-time detect 

EEG/EOG raw data from Blue Tooth, and go on pass through two moving averages 

that one of them cut-off at 32Hz for EEG signal and another one cut-off at 10Hz for 

EOG signal, further down sample to 128 point in 1 second. Thread 2 handles FFT 

process. The FFT result will be transmit into 3 minute array in alert model. When 

array is full, the theta and alpha’s mean vector and covariance matrix will computed 

in thread 3. Besides, average of user’s blink duration at the first 3 minute is also 

computed to be the baseline in thread 3. Thread 4 mainly handles the MDT, MDA and 

blink duration converter, and then based on above optimal conclusion to calculate the 

“Combination” (0.3, 0.3, 0.4). If the values of “Combination” are higher than 

threshold in 31.5, the thread 5 will be switch on and make some warning voice or 
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generate stimulation in thread 5.  

On the other hand, the program’s user interface could directly tell user how was 

his / her physiological conditions. Further, let users easy handle this system. The user 

interface’s flowchart was shown in Fig. 5-18. Following this flowchart, when the boot 

loader setup, the real-time drowsy detection program will be automatically started by 

DSP module. If user finished dress the portable bio-signal acquisition system over, he 

/ she push the start button to start to detect real-time EEG and EOG raw data. Then 

the screen could print the real-time data. Furthermore, according to the mean vector, 

covariance matrix and baseline of EOG of our alert model, the linear combination of 

MDT, MDA and blink duration was counted continually, and the result value would 

also print on the screen’s bottom side. Following Fig. 5-19 showed, the update time of 

screen we set was changed in every 1 second, so we could show total 1 second 

EEG/EOG raw data and result of “Combination” at the same time on the TFT-LCD. If 

a drowsiness state is detected by our system, a GPIO command from DSP module 

would be triggered to ring the buzzer or generate a bio-stimulation. In the other hand, 

user could push the quit button to end this program. 
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Fig. 5-18: The user interface’s flowchart 
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Fig. 5-19: The block diagram of dataflow 
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Chapter 6 Conclusions and Future Works 

6.1 Conclusions 

In our study, a real-time wireless system for drowsiness detection with bio-signal 

was proposed. A portable wireless bio-signal acquisition system and a DSP module 

with bio-feedback as buzzer or bio-stimulator were developed. Besides, we 

emphasized that not only EEG signal but also EOG signal used in our study to 

enhance the accuracy of drowsiness detection. 

The portable wireless bio-signal acquisition system was designed to acquire EEG 

and EOG signals then transmit them into the DSP module wirelessly to detect 

drowsiness. In addition, our DSP module was equipped with bio-feedback device as 

buzzer or bio-stimulator for warning users that they were in drowsy state and waked 

them up. The modular approach applied in hardware and software design enables this 

system to be configurable for different application scenarios. Moreover, our bio-signal 

acquisition system is wearable, wireless and real-time, therefore, it is suitable for 

long-term bio-signal monitoring in users’ daily life. 

The algorithm based on [45] for drowsiness detection was also proposed in this 

study. It can effectively reduce computation complexity, and is suitable to be 

implemented in the DSP module. Besides, it is good at removing the differences 

between individual and environment in different people or measurements. Some 

previous studies indicated that the level of drowsiness is proportional with the 

increase of alpha and theta rhythms in EEG and blink duration in EOG. Under the 

assumption that reaction time of driving performance is proportional with the level of 

drowsiness, our experimental results showed that the power of alpha and theta 
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rhythms in EEG and blink duration in EOG increased indeed when the level of 

drowsiness increased no matter individually succeeding events or the results of 

average sorting including all of the experimental trials. 

In this study, the levels of drowsiness were defined into two states: alert and 

drowsiness. These two states were used to determine all events of driving 

performance were drowsy on not first, and then the binary classification test was used 

to investigate the sensitivity and positive predictive value of our algorithm with 

different thresholds. Our experimental results with EEG and EOG signals showed that 

“Combination” with factor 0.3×MDT, 0.3×MDA and 0.4×duration when threshold 

was set to 31.5 had the highest value of F-measure (F-measure = 80.91%, sensitivity = 

96.15%, and positive predictive value = 69.84%) higher than the max f-measure value 

with only EEG signal used (F-measure = 69.54%). It proved that EOG is an important 

parameter to determine user is drowsy or not and using bio-signals (EEG and EOG) to 

detect drowsiness is better than EEG signal used only. However, the accuracy of our 

algorithm for drowsiness detection seems not good enough. This can be explained that 

each increase of alpha/theta rhythm and blink duration may not correspond to each 

drowsy event although the long-term increasing trend of power of alpha/theta rhythm 

and blink duration is proportional with the level of drowsiness. 

 

 

 

 

 

 

 

 



 

 83

6.2 Future Works 

In future work, our system could combine with the utility of other physiological 

parameters, such as EKG and EMG, to improve both the sensitivity and positive 

predictive value. Besides, a non-linear algorithm as fuzzy neural network could be 

used to make the prediction more precise and increase the accuracy of drowsiness 

detection. On the other hand, the portable bio-signal acquisition system and DSP 

module could be integrated as one device to minimize the size of whole system and 

reduce the signal distortion result from using wireless transmission. Furthermore, 

there is a novel dry foam bio-signal electrode developed, fabricated and 

experimentally validated in our lab. The dry electrode was shown in Fig. 6-1: 

 
Fig. 6-1: (a) top view, (b) exploded view of the proposed dry foam EEG electrode. 

The foam electrode was covered by the conductive fabric on all surfaces and then 

paste on an Au layer. 

 

The major merits of this dry foam electrode include follows: (1) It is applied with 

zero preparation of scalp, compared to the conventional wet electrodes, (2) the soft 

substrate of dry foam electrode is able to adapt to irregular scalp surface and the hairy 

site, and (3) Its fabrication process is low-cost. Therefore, compared to the standard 

wet electrodes, the proposed dry foam electrode provided a potential for routine and 
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repetitive measurement, and also provided convenience, and comfort for clinical and 

research applications. The performance and signal quality of dry electrodes are 

introduced below: 

A. Impedance Measurements 

In order to test the impedance between the skin and electrode interface, two dry 

electrodes were placed on the forehead (4 cm apart), and then current was applied to 

the electrode pair to measure the impedance [49]. Nineteen tests were performed on 

five different participants. Two different electrodes were used: One is standard wet 

electrode and the other is dry foam electrode. Fig. 6-2(a) showed the impedance 

measurement under different conditions. Here, the black line denotes the impedance 

of dry foam electrode pair without skin preparation and conducting gel. Blue and red 

lines denote the impedances of conventional wet electrodes without and with skin 

preparation respectively. All of the conventional wet electrodes were applied with 

conduction gels. The results showed that the impedance between the skin and dry 

foam electrode without skin preparation and conducting gel is similar to that of the 

conventional wet electrode with skin preparation and conducting gel. Therefore, the 

conduction performance of dry foam electrode outperformed the conventional wet 

electrode [48, 49].  
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(a) 

 

(b) 

Fig. 6-2: Frequency characteristic of the proposed dry foam electrodes on  

(a) forehead and (b) hairy site. 

 

Figure 6-2(b) showed the impedance measurement on the hairy site. It showed 

that, for dry foam electrode, the impedance on the hairy site nearly equals that on the 

hairless skin, but that on hairless skin is even lower. Evidently, the foam of dry foam 

electrode is soft enough to contact the skin properly, and the fabric layer is very stable. 

These properties make the standard skin preparation unnecessary. Certainly, dry 
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electrodes will hardly surpass the properties of the conventional electrodes with 

conduction gel. Fig.6-3 showed the impedance variation for different electrodes under 

long-term EEG measurement. For long-term EEG measurement, the impedance 

variation of the conventional wet electrode with conduction gel is more obvious than 

that of dry foam electrode. The impedance variation of dry foam electrode was 

observed in the range from 4 k to 26 k, and is in the acceptable range for normal EEG 

measurement [48, 54]. Furthermore, compared to the conventional wet electrode 

under long-term EEG measurement (5 hours), dry foam electrode can significantly 

provide better stability of the skin–electrode impedance. This result can be explained 

by that dry foam electrode does not need conduction gel, which is apt to drying. 

 

Fig. 6-3: Impedance variation of dry foam electrode and conventional wet electrode 

under long-term EEG measurement. 

 

B. Comparison of the Signals between Dry/Wet Electrodes 

Fig. 6-4(a) and Fig. 6-4(b) showed the placements and the results of EEG 

measurement by using dry/ wet electrode pairs in the locations of forehead (F10) and 

hairy site (POz) respectively. Fig. 6-4(c) showed the placements and the results of 
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EOG measurement by using different types of electrodes. The correlation between 

signals obtained by dry foam electrode and conventional wet electrode are typically in 

excess of 96.32 %, 92.18 % in the locations of forehead and hairy sites respectively. 

For EOG measurement, the correlation between EOG signals obtained by dry/wet 

electrodes is also very significant (in excess of 97.28 %). Therefore, the performance 

of bio-potential measurement by using dry foam electrode is almost identical to that 

of the conventional wet electrodes. 
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Fig. 6-4: Placements and results of (a) EEG measurement on forehead (F10), (b) 

EEG measurement on hairy site (POz), and (c) EOG measurement by using different 

types of electrodes. 
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In the future, we will integrate the dry foam electrode with our portable 

bio-signal acquisition system to become a more complete and convenient system. 

Using this system could simplify the procedure of bio-signal acquired preparation and 

also maintain the stability and make user feel comfortable. Come to a conclusion, our 

system is feasible for further extension, and within above future works could make 

our system more complete and better. 
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