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Abstract

In recent years, traffic accident'is one of theical reasons to cause deaths of
drivers. Drivers’ drowsiness has been implicate@ aausal factor in many accidents
because of the marked decling in drivers’ percepiiorisk and recognition of danger,
and diminished vehicle handling.abilities: " Consetlyeif the mental state of drivers
could be real-time monitored, drowsiness detectad warning could effectively
avoid disasters such as vehicle crashes in workimgronments. Some previous
researches used non-physiological method, as egerel with CCD image tracking,
such as the pupil recognition, blink detection @entification of the drivers head
shaking frequency. However, for CCD image trackimggrs couldn’t move for free,
and the images detecting performance were easiytédered by external flash light.
Other studies used physiological parameters toeas® the accuracy of drowsy
detection, like pulse wave analysis with neuralwoek, electrooculography (EOG),
electromyography (EMG), and electroencephalogra@GE measurement. In this
study, we proposed a real-time wireless systendifowsiness detection. A wearable,

wireless and real-time bio-signal acquisition systevas designed for long-term



monitoring. In the other hand, not only EEG bubdOG signals were acquired by
our system to increase the accuracy of drowsinedsction. Furthermore, an
algorithm of drowsiness detection was also proposededuce the computation
complexity, and was implemented in a portable DSklute with bio-feedback as

bio-stimulator or buzzer. In order to estimate liwel of drowsiness, a lane-keeping
driving experiment was designed and the drowsiheasd of drivers was indirectly

assessed by the reaction time under Virtual ReBlitying Simulation Environment.

The advantage of this unsupervised algorithm camove the differences between
individual and environment in different people oeasurementsFor the purpose of

verifying the accuracy and feasibility of our prgpd unsupervised algorithm,
drowsiness status estimated by driving, performamae compared with the results
obtained by our proposed unsupervised algorithne. relsults of comparison showed
that our algorithm can detect driver’s drowsinesdus precisely. In addition, our
system can be successfully applied in practiceréwgnt traffic accidents caused by

drowsy driving.

KEYWORD: drowsiness detection, electroencephaloged@ctrooculography,
portable bio-signal acquisition system, DSP modiildual Reality
Driving Simulation Environment, driving performanessupervised
algorithm
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Chapter 1 Introduction

1.1 Drowsiness Detection

In recent years, traffic accident is one of theical reasons to cause deaths of
drivers. World Health Organization report releasledt the global traffic accidents
killed 1.2 million lives each year and caused il of people were injured [1]. The
report stated that a daily average of 1000 perages 25 years of age because of the
people killed in traffic accidents, of which 90 pent of the victims took place mainly
in Africa and Asia, low-income countries. The repsaid that the 19-year-old and
15-year-old groups to the cause.of death, traffcdents ranked first, far exceeding
the number of AIDS deaths. It showed that the igafafety is the very urgent issues

that need to straighten and improve.

The cause of accidents is‘often_imputed to driver&ntal state. A human in
drowsiness often exhibits relative inattention taovieonments, eye closure, less
mobility, failure to motor control and decision niads [2]. Therefore, those accidents
which caused by falling drowsiness usually not oahdanger themselves but also
involve the public. Many studies have pointed dwatt ta driver’s drowsiness can cause
serious traffic accidents [3]-[6]. In 2002, the Matl Highway Traffic Safety
Administration (NHTSA) reported that about 0.7%doivers have been involved in a
crash that they attribute to drowsy driving, amaugto an estimated 800,000 to 1.88
million drivers in the past five years [7]. The Meial Sleep Foundation (NSF) also
reported that 51% of adult drivers had driven acletwhile feeling drowsy and 17%

had actually fallen asleep [8].

Thus, in the field of safety driving, developmemttethodologies for detection

1



drowsiness / departure from alertness in drivers bcome an important area of
researches. If the mental state of drivers can dmd-time monitored directly,

drowsiness detection and warning can effectivelgichwdisasters such as vehicle
crashes in working environments. Recently, with diegelopment of brain computer
interface, real-time monitoring the mental statéslrovers and detecting drowsiness

have become feasible.

1.2 Previous Research

Drowsiness leads to decline in drivers’ abilitidsperception, recognition, and
vehicle control and hence monitoring:ef drowsingsslerivers is very important to
avoid road accidents [9]. Some researches usedmgsielogical method, as eye
closure with CCD image tracking [10]-[16].’/And otheised physiological parameters
to increase the accuracy of drowsy detection, fikese wave analysis with neural
network [20], the electrooculography. ((EOG) and thlectromyography(EMG)

measurement [17], [18], and tekectroencephalogram (EEG) [19]-[21].

In 2003, Hamada et al. proposed a driver statusitorosystem by using CCD
camera, as shown in Fig. 1-1 [13]. The CCD cameaa imstalled in the car and
focused on the user’s eyes. The driver status moditected drowsiness from the
change in the duration of eye closure during bhgkand inattention from the change
in the gaze direction. Using CCD camera to contelibe urgency system was a very
difficult work here. There were some critical p@inhside, and needed to overcome.
For instance, user couldn't move for free, the iesagletecting performance were
easily be interfered by light, and the largest ppobwas that the system is too big,

complex, and expensive to implement. The algoritfreye tracking also needed to



use edge detecting to train data, and hence td bpil neural network to classify the

drowsy status.

Urgency / Assent §

Route & Warning

Fig. 1-1: The role of driver status monitor [13]

An alternate is to detect the moment from alednis drowsiness by using
physiological parameters. In 2005, Thum-et al. ug€dG as an alternative to
video-based systems in detecting eye activitiesaalby drowsiness [18]. Rapid eye
movements (REM), which oecurred-when one/is awake, slow eye movements
(SEM), which occurred when one-is_drowsy, can bteaded through EOG. The
results showed that the detection rate for eyevides caused by drowsiness was
more than 80 %. However, REM and SEM are difficaltmeasure when users are
driving because users can not close his/her eyesn ey are driving a vehicle on
the road, and then SEM is hard to measure. IniaddiREM and SEM are tending to
the level of sleep stage not the indicator of diness detection, so they can not be

used as the parameters of on-line process.

In 2003, Caffier et al. proposed that the spordaeeye blink is considered to be
a suitable ocular indicator for fatigue diagnosti&l]. To evaluate eye blink
parameters as a drowsiness indicator, they dewlapeontact free method for the
measurement of eye blinks by using an infrared @eclfpped to an eyeglass frame

recorded eyelid movements continuously. The pararmseblink duration and

3



reopening time in particular change reliably wititrieasing drowsiness. The results
demonstrate that the measurement of eye blink paeam provided reliable
information about drowsiness. In 2008, Jammes.ahairder to automatically score
the drowsiness level, they developed a softwareidentifying blinks in EOGs as
their first step [23]. They recorded vertical EO@nsils by surface electrodes placed
above and below the eyes. The analysis of EOG iglbased on expert rules was
the originality of their blink detection algorithemd more than 97.7% of blinks were
detected by their algorithm. The drowsiness schky tselected was Karolinska
Drowsiness Score (KDS) which would score when sighsirowsiness, i.e. long
duration or small amplitude blinks were detectedmaring the results of KDS and
the results of their automatic scoring; and thery tound out the correlation of these
results was high. It demonstrated-that blink doratand amplitude are important

parameters for drowsiness detection.

Brain Computer Interface (BCl) is an intefface bedw human and computers or
machines. It is based on the translation of theipeorain activity generated by a
specific thought of a human to control machinescammunicate with the outside
world directly, to convey the message, and independperations, as well as
self-care purposes. BCl can be divided into thrastintt modes: invasive,
partially-invasive, and non-invasive BQWon-invasive BCI is the main stream of
BCIl research which has advantages of both easyicaiph and absence of
procedural risks, such as infection or cortical nmilesions. There are several
approaches to non-invasively acquire  brain  acéisiti such as
magentoencephalography (MEG), positron emissionotpaphy (PET), functional
magnetic resonance imaging (fMRI), electroencegralchy (EEG) and et al. EEG is

the mainstream of non-invasive BCI, because ofritgeh fine temporal resolution,



ease of use, portability and low set-up cost. Ii@#ar, higher temporal resolution
becomes the great temptation to use EEG technigeea direct communication

channel from the brain to the real world [27]-[42].

In EEG system, it was different from other physgptal parameters, and
moreover it owned intuitive and specific charadtirs, such as alpha, theta or beta
band power followed subject’s own mental stateaddition, the EEG system usually
needed to collect enough EEG data to analyze. Tipergised methods which
previously study often had been used to train mieg data, and usually implement
in off-line EEG analysis. Previous studies whickedisupervised methods developed
several kinds of brain computer interface for drowss detection [19], [20]. When
the subject changed the state from-—alertness twsilness, the alpha rhythm will
increase and beta rhythm will:decrease [21].IN52@0drowsy estimation system was
developed by combining independent-component aisaly§A), power-spectrum
analysis, correlation evaluations;. and linearf&gomn model to estimate a driver’s
cognitive state when he/she drove a car in a \Vinteality (VR)-based dynamic
simulator [19]. Its flowchart of EEG processing v&®wn in Fig. 1-2. In the above
studies, an EEG machine, Scan NuAmps Express sy&empumedics Ltd., VIC,
Australia), was used to measure EEG, as showngn1F8. It is not small, light, and
wearable. Moreover, the above algorithms for droess detection requires mass
computation complexity, thus, they are not easlggomplemented in a portable DSP

device.
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Fig. 1-2: Flowchart of EEG processing in drowsyreation system [19]

Fig. 1-3: Scan NuAmps Express system (Compumedits VIC, Australia)

In the supervised mode, supervised learning metlsodd as artificial neural
network (ANN) could be used to classify differetdtes of vigilance. But stimulus
may introduce some noise. So in [43], the authoppsed a semi-supervised learning
algorithm which can quickly label huge amount ofad&lere another author proposed
another kind of semi-supervised learning methodetbasn probabilistic principle
component analysis (PPCA) to distinguish wake, dsovand sleep in driving
simulation experiment. After training with data afound 20 min (6—8 min for each

state), they could directly use our method as htime classifier to estimate driver’s
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vigilance state [44]. Although this method coul@afty reduce the training time, but
it still must used in off-line analysis. In our gat, we wanted to find a non-training

and unsupervised method, and easily implement tmame detecting system.

1.3 Motivation

To avoid tragedies, a real-time physiological slgn@onitoring system of
drowsiness detection is required to prevent tratticidents. However, users’ mobility
is limited by the inconvenience of traditional Blleavy and large EEG machine).
Besides, recent studies used one kind of bio-siggaEEG or EOG only to detect
drowsiness. Nevertheless, the accuracy .of deteetiomot high enough with one
physiological signal used only: Thus, aninexpesstonvenient, portable, wireless
and multi-parameter of bio-signal used platformhwibng battery life that can be

carried indoors or outdoors are desired.

In this study, not only a real-time wireless bratomputer interface for
drowsiness detection was proposed, but also paegasnef EOG were used. The
spontaneous eye blink can be determined by EOGurerasnt and is considered to
be a suitable ocular indicator of fatigue and akest level [22, 24]. It offers several
advantages, since it represents a normal, simpbergbhble and easily accessible
phenomenon that reflects the influence of centeavous activation without voluntary
manipulation[24]. Recent studies show that the y@imslof eye blinks can provide
some information for physiologists to quantify dsimess. There are many
parameters of eye blinks, such as duration, freqgecdiosing time, opening time,
amplitude and so on. The blink duration and openimg are especially subject to

characteristic modifications with increasing dravess. Besides, frequency



(percentage of eyelid closure) was also used amtheator by previous research to
determine user was drowsy or not [22-26]. To inseeaccuracy of drowsiness
detection, parameters of EOG signal were used irstudy and we would stress the

importance of correlation between drowsiness witiGEsignal.

A wearable, wireless and real-time bio-signal asijon system was designed
for long-time EEG/EOG monitoring, and a DSP moduith bio-feedback as buzzer
or bio-stimulator was also introduced. An algoritbfrdrowsiness detection based on
[45] was proposed to reduce the complexity of cotafpon. Different from previous
ICA-based algorithm of drowsiness detection, itduske statistics properties of
alpha/theta rhythm and blink duration in alert est&d build up the alert model.
Consequently, a derivation from the alert-model lmamsed to detect drowsiness. The
most useful advantage of this algerithm:-was thatdiferences between individual
and environment in different:people or measuremeatsd be removed, and every
analysis was independent. Mareover, with/the adgmtof low computational

complexity, it is easy to be implemented in ourtgble DSP module.



1.4 Organization of Thesis

In Chapter 2, it will describe that what are EEG &0OG signals, virtual reality
driving simulation environment, and algorithms iewplented in this thesis, which
including EEG/EOG preprocessing and unsupervisg@ioagh. In Chapter 3, it will
introduce how to implement a wireless portable $ignal acquisition system and
DSP module in hardware design. In Chapter 4, it @iplain the detail of driving
performance, unsupervised algorithm, and how tomapiish them. In chapter 5, it
will introduce the driving performance sorting aysa$ then the method of driving
performance and unsupervised approach will be iedriivith 10 real experimental
subjects’ driving trajectories and correspondingsEdhd EOG signals, the procedures
and results of verification will’be” described inisttchapter. Finally it will have

conclusions and future works-in,Chapter 6.



Chapter 2 Material and M ethod

We developed the BCI system according to the stégsg. 2-1. The portable
bio-signal acquisition system which we designed wsad in input device of BCI.
The EEG and EOG raw data continually transmittedD®P module, hence, the
following three steps: signal preprocessing, fesgugxtraction, and classifier were
processed in DSP module. The algorithm we choseageasrding to unsupervised
approach (N. R. Pal, 2008 [45]) and automatic E@&ais (B. Jammes, 2003)).
The user interface can output real-time EEG and E@fBals and the results of
drowsy detection. If the results were determineddi@svsiness by algorithm, DSP
module would call the buzzer to output-a-warning®®r generate stimulation by the

muscular bio-stimulator to wake user up-as a.basback application.

DSP module
1
I : 4
1
: lgnel 4 meEice »|  Classifier |
, | Preprocessing Extraction I
| A o e e e e e e A e !
v
Output
Input User
Device Closed Interface
L
1 oop
< Applications
Bio-feedback PP

Fig. 2-1: A typical BCI system architecture

In off-line analysis, we wanted to verify the rébdaiship between users’s driving

trajectories and corresponding EEG and EOG sigBafore analyzing, we assumed
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that driving trajectories were directly proportibnaith variance of theta, alpha
spectrum and blink duration. So we designed a miyisimulation experiment and
used our portable bio-signal acquisition systemotiserve and record driving
information and actual EEG and EOG raw data attone. There were 10 subjects’
EEG and EOG raw data recorded and every trail Whkesaat 25 minutes. Our analysis
included two parts: one was to analyze the drivnagectories, and another was to
analyze the corresponding EEG and EOG signalsfifdtiestep of driving trajectories

processing was to analyze the driving performari@e.the other hand, we also
analyzed EEG and EOG signals. First, we used FFjetdhe theta and alpha band
information, and then used both two informationltoup an alert model, computing
covariance matrix and mean vector, of theta andsajgectra. Furthermore, compute
MDT and MDA continually by dsing-unsupervised meth8econd, we calculated the
derivative of EOG signals. The EOG velocity wasiad, and then a threshold was
applied to select blinks. Next,\the" duration ofseneblinks was computed as the
reference of drowsiness. After “finishing “whole dataalysis, we used binary
classification test, sensitivity and specificity, terify the drowsiness hit rate. Every
experimental trial was separated and sorted, haheecorresponding MD* (MDT

and MDA) and duration of blinks were also sorte@fibing the threshold of both

information which been processed to decide the simmess or alertness, and to

analyze the drowsy accuracy.

2.1 EEG Signal Acquisition

Electroencephalography (EEG) is the recording ettelcal activity along the

scalp produced by the firing of neurons within thrain. In clinical contexts, EEG
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refers to the recording of the brain's spontanetersirical activity over a short period
of time, usually 20-40 minutes, as recorded fronitipla electrodes placed on the
scalp [55].When measuring from the scalps, recorded EEG sigraddout 10-100uV
for a typical adult human. And a common systemregfee electrode is connected to
the other input of each different amplifier. Themeplifiers amplify the voltage
between the active electrode and the referenceacéyp 1,000-100,000 times, or
60—100 dB of voltage gain). The EEG is typicallysci&ed in terms of rhythmic
activity and transients. The rhythmic activity isided into bands by frequency. The
common band of EEG is shown as Table 2-1. Followi® classification of EEG,
Theta and Alpha band are related to drowsinesss,Tiwhen the subjects become

drowsy, both bands will increase their power.

Table2-1=Common band of EEG

Type Frequency (Hz) Normally

Delta <4 Slow. wave sleep for.adults

Theta 4~7 Drowsiness, idling; or arousal in chitdaed adults
Alpha 8~12 Relaxed; reflecting, or closing the eyes

Beta 12~30 Alert or working

There are high correlation between drowsiness aB@ Bbtained from the
location of OZ in the international 10-20 EEG syst6]. Therefore, in this study,
we only monitored EEG in the location of OZ. Hatege EEG electrodes were used.
One was input, one was reference, and the othegwasd. According to a modified
International 10-20 EEG system and refer to rigintl@ebe as depicted in Fig. 2-2. We
used the following notations: F: Frontal lobe. EBmporal lobe. C: Central lobe. P:
Parietal lobe. O: Occipital lobe. "Z" refers to@ectrode placed on the mid-line. The
input data was placed on OZ, ground was fixed an d¢bnter of forehead, and

reference was pasted behind the right ear.
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Fig. 2-2: International 10-20 system

Raw EEG data were recorded with 12-bit quantizalttmel at the sampling rate
of 256 Hz. And a simple moving average filter wagsdito remove 60 Hz power line

noise and other high-frequency noise.

2.2 EOG Signal Acquisition

Electrooculography (EOG.) is a technique for meaguthe resting potential of
the eyeball. Mostly, there are two electrodes plamigove and below the eye, and the
resulting signal is called vertical EOG. If the egemoved from center position
toward left or right, then one of the electrodesuldosee the positive side of the
eyeball and the other would see the negative Sitiere would be a potential
difference between the electrodes. If we assumedésting potential as a constant,
then the potential difference become a measuretier eye position called eye
movement measurements [46]. Eye movement measutenusoally used as a
reference of stages of sleep which included thraim istages called: awake, REM and
NREM. Eye movement is significantly difference dhgrithese three stages, so lots of

research of sleep used this measurement to obsamation. In this study, the
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vertical EOG was derived using three electrodegutinreference and ground. One
electrode was placed above the right eye as the ang the other below the right eye
as the reference signal. There was also an elecasdjround fixed on the center of
forehead (the same as the ground signal of EEGampling rate of 256Hz was used;
because of the principal measurement range of EC#baout 50uV-3500uV, the gain
was set 2,000 times. Besides, the parameters of WRiGh used in our study were
blink behaviors, so feature of these blink behaviatas listed in Table 2-2. The

recommended derivation of EOG was shown as Fig 2-3.

Table 2-2: Feature of blink behaviors

Behavior Description

Blink amplitude A typical blink has an amplitude490uV

Blink duration Nearly 200ms =400ms for one blink

Blink frequency About 15-20 times-per minutes foekaxed person
Input Ground

Reference

Fig. 2-3: The recommended derivation of EOG

2.3 Virtual Reality Driving Simulation Environment

In this study, a lane-keeping driving experimentswa&ilized to investigate
driving performance under different levels of drovess. Here, a virtual reality
(VR)-based cruising environment was developed toukite a car driving at 100

km/hr on a straight four-lane highway at night [19$7]. During the driving
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experiments, all scenes move according to the alisphent of the car and the
subject’s maneuvering of the wheels which makestiigect feel like driving the car

on a real road. The VR environment was shown in Zig.

Fig. 2-4: The overview of surraunded VR scene. VRebased highway scenes are
projected into surround screen with Seven-projsctor

In our experiments, the driving speed was fixed@@ km/hr and the car was
drifted away from the center of the cruising langoanatically and randomly by the
system to mimic the effects of a non ideal roadasé. The driver was asked to
maintain the car along the center of the cruisenge! All subjects involved in this
study had good driving skill and hence when thgestitbvas alert, his/her response
time to the random drift was short and the deviabdthe car from the center of the
lane was small. However, when the subject becantealsot / drowsy, both the
response time and the car’s deviation were highe Nwat, in all our experiments, the
subject’s car was the only car cruising on the \é@2du freeway. Although, both
response time and the deviation from the centrad kre related to the subject’s

driving performance, in this study, we use the oesg time as a measure of
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performance of the subjects. The driving task viesv# in Fig. 2-5.

- Linear deviation (D=c )

Fig. 2-5: The digitized highway scene. The widtthmfhway is equally divided into
256 units and the width of the car is 32 units.ekample of the deviation event, the
car cruised with a fixed velocity of 100 km/hr dretVR-based highway scene and it
was randomly drifted either to the left or to tight away from the cruising position
with a constant velocity. The subjects were inggddo steer the vehicle back to the
center of the cruising lane as quickly as posgtité.

In order to synchronize the records of drivingdcapry and raw bio-signal data,
a C# program was designed to record both of thetheasame sampling rate. The
driving trajectory produced from the VR-based dngsenvironment environment
program, and raw bio-signal data obtained by ptethin-signal acquisition system

were transmitted to C# program via RS232 and Bhtbtoespectively. After finishing
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the experiment, both driving trajectory and raw-8ignal data were saved in a text
file. Thus, we could investigate the correlationween driving performance and
results of unsupervised approach. The illustrabbrsynchronization between the

driving trajectory and bio-signal data was showfig 2-6.

Virtual Reality RS232
Simulation Environment
C# Program TF"(X: xtF)"e
Portable Bio-signal T
Acquisition System BlueTooth
Driving Performance
&
Analysis

Fig. 2-6: lllustration of synchronization betweée triving trajectory and bio-signal
data

2.4 EEG Preprocessing

The EEG preprocessing steps were shown in Fig. fgt, a simple moving
average filter (low-pass filter with a cutoff fregpcy of 32 Hz) was used to remove
60 Hz power line noise and other high-frequencys@&oiln order to simplify the
computation, raw EEG data were down-sampled to Baghmate of 128 Hz. Then a
640-point Hanning window was designed to save brstx EEG information and the
frequency resolution was set as 256-point, as Zg.shown. In our study, Hanning
window was chosen because the frequency resolationspectral leakage are both
good for each application. Finally, the power ia frequency band of alpha rhythm (8

~ 12Hz) and theta rhythm (4 ~ 7Hz) was extracted.
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. 5-sec
EEG
B | MDA e el Do Sare'® 1) Harning Window -
(Overlap 4.88-sec)
Theta Band +
256-point FFT |+
Alpha Band +
Fig. 2-7: Steps of EEG preprocessing
640-point
16-point
——> |256-point FFT
) Time Domain ] IEI'equency Domain

Fig. 2-8: lllustration of 5-second moving windowtkwvé.88-second overlap

2.5 EOG Preprocessing

EOG preprocessing was introduced in this sectioomg@aring to EEG
preprocessing, EOG preprocessing was simpler tdemmgnmt. Behavior of EOG

emphasized in our study was blink, so the steds@® preprocessing were aimed at
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preprocessing for blink detection. First, we had define the initial threshold
parameters. The values of threshold were empiyicallected after analyzing a set of
EOG signals recorded as user was in alert stateréefxperiments. According to
these threshold parameters then we could acquereltsing time, the opening time
of the blinks and other parameters of blink. Sec@nti0O-Hz low pass filter was used
in order to remove frequencies above 10-Hz. Findhg derivative of the filtered
signal called EOG velocity need to be computed.cdmbine EOG velocity and
initial threshold parameters then we could defintheé event of EOG raw data was a
blink or not, and acquired the parameters we ne€bwesl steps of EOG preprocessing

were shown in Fig. 2-9.

Define the initial N . . Compute
threshold parameters | 10Hz Low Pass Filter EOG velocity

Fig. 2-9: Steps of EOG preprocessing

2.6 Unsupervised Analysisof EEG and EOG

It is recognized that the changes in EEG spectthaentheta band (4~7Hz) and
alpha band (8~12Hz) reflect changes in the cognidind memory performance [58].
Other studies have reported that EEG power spattiee theta band [59], [60] and/or
alpha band [61], [62] are associated with drowsinesnd EEG log power and
subject’s driving performance are largely lineadyated. Besides, blink of EOG is
also recognized as an important parameter for tletedrowsiness[23]. There are lots
of parameters could be extracted from blinks, fstance: amplitude, duration and so

on. Blink duration is an significant information agesult of it becomes longer when

19



subjects become drowsy, and the changes of blinkitude reflect the drowsiness

level too; the amplitude is small when subject$ deewsy[24],[25].

As above researches said, these findings have atediwis to derive the alert
model of the driver using not only the alpha-bamdl dheta-band EEG power
spectrum computed using OZ channel output recomdetthe first few minutes of
driving, but also the duration of blinks from sutig to increase the accuracy of
drowsiness detection. The unsupervised analysi&E® is introduced first. The
choice of the OZ channel is explained in the Expental Results section. We
emphasize that the few minutes of data used totfiacalert model are not necessarily
collected from the very beginning of driving sessiecause different factors, such as
walking of driver by a few metersito-reach:the garanay influence the EEG signal
generated at the very beginning. Fhe specific wwto be used for generation of the
alert model is selected by Mardia test’[63]. Weuass that if the subject/driver is in
an alert state, then the EEG“power spectra relaontheta band (as well as that
relating to alpha band) would follow a multivariateormal distribution. The
parameters of the multivariate normal distributicharacterize the models. Using the
alpha-band and theta-band EEG power, we identity twrmal-distribution based
models. Then, we assess the deviation of the dustate of the subject from the alert
model using Mahalanobis distance (MD). We assuraewihen the subject continues
to remain alert, his/her EEG power should reserttidesample data used to generate
the model and hence would match the alert mod&draplate. If the subject becomes
drowsy, then its power spectra in the alpha band @so in theta band) will deviate
from the respective model and hence MD will inceed#/ith a view to reducing the
effect of spurious noise, MDs are smoothed overO@s&t moving windows, the

window is moved by 0.125-sec steps.
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Next, we focus on the analysis of EOG signal. Im etudy, lots of blink
behaviors are extracted by our algorithm in theirfreégg. To base on section 2.5,
after EOG velocity and initial threshold parametars all prepared, we could use the
closing and opening threshold to define closingetend opening time as parameters.
Besides, computing the difference between theistapoint of closing time with end
point of opening time then we could acquire theugadf blink duration. On the other
hand, blink amplitude is computed by using maximwatue of one blink to subtract
the value of EOG baseline. After above procedumgplitude of blinks, duration of
blinks, closing time of closures and opening tinfectobsures are all acquired.
However, some of these parameters could not reflextvariation when subjects
become drowsy, for example: the, difference of clgstime of closures is little
between alert and drowsiness[22].-At last; duraisothe only parameter we used in
our study to determine the subjects are drowsyoar\Wwe assumed when subjects are
remaining alert, duration of blinks would:be shdrt.contrast, when subjects feel
drowsy, duration of blinks wouldbecome longer. e@end averaged signal of
duration before every event of driving performaramzurred is extracted by our
algorithm to reduce the effect of spurious noisd &m be the index for detecting

drowsiness.

We then study the relationship between smoothed aMabbis distance,
duration of blinks and subject’'s driving performanisy computing the correlation
between them. Fig. 2-10 shows the overall flowhef EEG and EOG data analysis. In
this figure, after the models are identified, thegsocessed alpha band and theta band
power data directly go to the blocks for computatid MDA and MDT respectively.
Besides, blink duration is computed at the same.tifine block for computation of

“Combination” makes a linear combination of MDT, MOand duration of blinks.
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Finally, all of these parameters are used in catie analysis with the driver’s

performance.
Driving Driving Trajectories Behavior
Experiment Analysis
rm—mmmmmm——————— LI B e 1
1 I 1
. ! ini ' ! .
Bio- ,| Theta Band - I?rﬁg;ml\'/lnéggltgs ! 1 | Computing i Driving
Signal ~ g Performance
g SIS : Mardia Test : : MDT :
1
i = :
1 { I 1
1 { I 1
1 { I 1
A4 | 1 1
1 9.9 1 1
i | Determining the - ) 1
Preprocessing |- AP L =1 Alpha Model by —>| Computing : »| Combination
Spectra 1 - 1 MDA 1
1 Mardia Test 1 1
1 1
Lomoooooooooo-- - :
1 1
Building the alert:model : 1
1 1
1 - 1
. »] Computing 1
g| (50S Bt ! | Blink Duration 1
1 1 \ 4
1 1

Computing parameters
for alert model

Compare with
the Driving
Performance

Fig. 2-10:The flowchart of the EEG and EOG analysis method.
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Chapter 3 Hardware Frameworks

In this chapter, we focus on this portable systamtWware. Following the design
flowchart, we will introduce the design methodshafrdware circuits and firmware

structures steps by steps.

3.1 System Overview

In order to online-measure and analyze EEG and E®@als, the whole
hardware framework of our system mainly containg sub-systems: One is portable
bio-signal acquisition system and the other is D&®ule. First, EEG and EOG
signals were measured by our portable acquisitioduie continually. After EEG and
EOG signals were acquiredsthese tiny signals' wbeldmplified. Noise except the
frequency band of these bio-signals-would be-remdye filters in our portable
acquisition module. Then filtered:-EEG and"EOG dignaould be digitized by
analog-to-digital converter and transmitted to BfP module via Bluetooth. In this
study, Linux kernel uClinux was used as the opemasystem in DSP module to
handle user’s applications. The major tasks of Dfolule were to receive EEG and
EOG signals via Bluetooth, and to execute the pmogof online drowsiness level
detection, which monitored the variation of powérsers’ alpha rhythm and theta
rhythm Besides, the difference of blink duration was atsmitored. The program of
online drowsiness level detection would collect E&&a under alertness for first 3
minutes to build EEG alert model, and then caledatrowsiness level by assessing
the power variation of alpha and theta rhythm ev2rgeconds. In addition, the
duration of every blink was also calculated by madule. If the power or duration

variation exceeded the threshold of alert model,DISP module would send warning
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tone of buzzer or generate an electrical stimutato wake up user. The whole

hardware framework is shown as Fig. 3-1.

Portable Bio-signal Acquisition System

| Filter ' Bluetooth
Bio-signal —4— & > ADC —_————>
i Amplify |
____________ DSP module
TFT-LCD
Display

Bio-stimulator

Bluetooth , Buzzer
_____ = » | Unsupervised
i Algorithm

Fig. 3-1: lllustration of-hardware,framework of aystem

3.2 Portable Bio-signal Acquisition System

The portable bio-signal acquisition unit combines power, amplifier, band pass
filter, ADC, wireless controller, and data encodimgo one. It is a light weight,
wireless monitor for recording physiological signalt owns 4-channel bio-signal
measurement, includes EEG x2 and EOG x2. The gertab-signal acquisition unit
mainly contains four parts: (1) front-end filteraiit, (2) analog to digital converter,
and digital controller, (3) power management citrand (4) wireless transmission.

The diagram of the portable bio-signal acquisitimit is shown as Fig. 3-2.
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Bio-signals Power
»| Front-end Management
filter circuit circuit
— | Front-end
filter circuit '
ADC and Wireless
Digital controller Transmission
—| Front-end
filter circuit
Front-end
filter circuit

Fig. 3-2: Diagram of portable bio-signal acquisitianit

In our study, only one EEG .and-one EOG channehisf portable system were
used. They were both amplified by bioc-amplifier sisted of high-pass, low-pass
fillers and amplifier. The amplified signals “themganized by Micro-processor
MSP430. When the signal passed through®the high-pidter, all unnecessary
low-frequency noise would be reduced or eliminatasl,they passed through the
low-pass filter, all unnecessary high-frequencysaovould be reduced or eliminated.
According to AASM recommendations and differenceysiblogical potentials

characteristics, the specification for EEG and E€b@&nnels was shown in Table 3-1.

Table 3-1: Specification for various kinds of bersors

[nput Gain H.P. L.P. Sampling
Sensor Signal (Operation Corner F.  Corner F. rate
Range voltage:3V) (H2) (H2) (H2)
EEG 20uV-200uV 4500 0.1 45 256
EOG 50uV-3500uV 2000 0.3 45 256
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3.2.1 Front-End Filter Circuit

The front-end circuit consisted of preamplifier,daband-pass filter. In some
references, other circuit designs preferred towntegain filters and one variable gain
amplifier. Moreover, they didn’'t use a high-pasiefi to cut-off the noise in low
frequency band. To improve them, we designed agesthigh pass filter and 2 stages
low pass filter to get the clear EEG and EOG infation without noise. Hence,

adding the gain into filter tried to minimize tradl size.

A. Preamplifier

Instrumental amplifier LT1789-1 was used as thst fitage of analog amplifier.
LT1789-1 owns an ultra low input current and a hagimmon-mode rejection ratio
(CMRR) about 90dB. A high CMRR is impeortant in apptions that the signal of
interest is represented by a-small-voltage fluagdmasuperimposed on a (possibly
large) voltage offset, or when televant informatien contained in the voltage
difference between two signalsi/Instrumental anguliET1789-1 provided not only
the function of gain, but also that of one stagghtpass filter by adding a capacitor.
The output voltage of the LT1789-1 is referencedhe voltage on the reference
terminal. The preamplifier circuit design is shownFig. 3-3 and the simulation of

preamplifier’s gain response (EEG) is in Fig. 3-4.
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Fig. 3-3: The Rdecides the gain of preamplifier, and the high pittes of
preamplifier decided by &kand C.

X:8.125
Y:7.043

f (Hz)

Fig. 3-4: Simulation of preamplifier’s gain respen(&EG)

B. Band passfilter

In this thesis, operational amplifiers were usedthieve the function of
band-pass filter; the feature of op AMP is suitalole amplifying low-frequency
signal. The AD8609 is quad micro-power rail-to-raput and output amplifiers
and low dc offset was chosen to be band pass fitgr3-5 shows High-pass filter

and Low-pass filter circuits. The 3dB cutoff fregag of high pass was decided
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by passive components R3, R4, C1 and C2.

3
R1 R2 | R6
REF 15C AN AN REP_l.so—'I ANNA—9
_—T—_C‘4
R3 RS R7 —<oul >
1 EY\/\ AN AN —o
I— L OUTA OUTD —3
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VeCh—=— v+ V- — (!
2— NB  4INC —5
+— INB  INC —
7 outB ourc —3
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1

f, ==——
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Fig. 3-5: High-pass filter and Low-pass filter ciits

The passive components R7, R8:-C3,/and C4 deb@l&dB cutoff frequency
1

flee——
2RR GG

shown in Fig. 3-5 and gain will be:determined bggize components R1, R2, R5 and

A circuit ‘of -band-pass. filters and amplifier @gesigned as

R7. The simulation results of each-channel-are shasvFig.3-6 and Fig.3-7.
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Fig. 3-6: Simulation results in EEG channel of aifigsl and band-pass filter
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Fig. 3-7: Simulation results in EOG channel of aifigsl and band-pass filter

3.2.2 Analogto Digital Converter and Digital Controller

For the data acquisition System; it needs ‘a cdatrtad organize the working of
ADC and encode the digital data to BluetoothimodhyleJART port. The MSP430 is
particularly well suited for wireless RF or battgr@wered applications. The MSP430
incorporates a 16-bit RISC CPU, ‘peripherals, anfleaible clock system that
interconnect using a von-Neumann common memory eaddibus (MAB) and
memory data bus (MDB) shown as Fig. 3-8. The cgtem is designed specifically
for battery-powered applications. Dedicated embeddaaulation logic resides on the
device itself and is accessed via JTAG using natiaddl system resources.We
configure with built-in 16-bit Timer_A, a fast 12tbA/D converter, one universal
serial synchronous/asynchronous communication fades (USART) and 4M Hz

external oscillator to development our design[51].
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Fig. 3-8: MSP430 Architecture [51]

Timer_A triggers Analog {0 Digital.Converter, andfflers the output data of
ADC until buffer full. And then “all buffer data viibe transmitted via USART. The

operating flow chart in MSP430F1611wasshown m Bi9.

|
|

Moving - UART - |

— - Average Interface Bluetooth:
I

I

I

Sampling rate set 256 Hz to Timer-A

Fig. 3-9: Operating flow chart in MSP430F1611

A. Timer Interrupt

The interrupt function of MSP430F1611 is basedrorer timer/counter register,
called Timer_A, to count a specific time value. Tdueinter value TACCRO had to be
set first, as shown in Fig. 3-10. When the timeunrded to the TACCRO value, the
TACCRO CCIFG interrupt flag would be set. When tineer counted from TACCRO
to zero, the TAIFG interrupt flag would be set.duar portable bio-signal acquisition
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module, 4MHz crystal oscillator was used as systkwk of MSP430F1611. Thus, if

the sampling rate of our acquisition module istsgt56 Hz, TACCRO has to be set to

15625.

TACCRO = 4|V%56 = 15625

OFFFFh

TACCRO

Oh

Fig. 3-10: Timer_A up mode for interrupt functiohMSP430F1611

B. Analogto Digital Converter
In this system, by passing,the signal through ws®| it needs an analog to
digital converter to convert the continuous.sigieatliscrete number. To suit with the

fitered and amplified signal from-front-end cirtubuilt in ADC of MSP430 was

chosen to be an analog to digital converter.
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Fig. 3-21: ADC12 Block Diagram [51]

Fig. 3-11 shows ADC12 BlockiDiagram. The ADC12 miedsupports fast,
12-bit analog-to-digital conversions. The modulepiements a 12-bit SAR core,
sample select control, reference generator and avd® conversion-and-control
buffer. The conversion-and-control buffer allowstopl6 independent ADC samples
to be converted and stored without any CPU intdrearj51]. The ADC12 inputs are
multiplexed with the port P6 (AO0-A7) pins, whicheadigital CMOS gates. An
analog-to-digital conversion is initiated with aing edge of the sample input signal
SHI. The signal SHI will be set by interrupt rowiof timer A at 256Hz. The ADC12
module is configured by three control registers, GNRCTLO, ADC12CTL1 and
ADC12MCLTx. Those registers are set to enable ceegect conversion clock, set
conversion mode, sample and input channels defmaur system, we used the

“multiple channels, single conversion each” mobte this mode, a sequence of
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channels is sampled and converted once. Each =ornerequires 6 ADC12CLK
cycles; include conversion and result restored AIC12MEMXx conversion memory
registers. Fig. 3-12 shows a diagram for samplimg tand conversion time of ADC
with trigger by timer A. Here, the total samplingdaconversion time less then 7812
clocks. Therefore, the conversion time of ADC istfanough to fit the requirement of
the sampling rate of the whole system. The ADCltedieach channel will be 12 bits

long in the form of an unsigned integer whose vdaetue4095*—\'joi_ \\//r
r+ - Vr-

ADC B
Sampling time + conversion time

Transmit
via UART

AMHz / 256 = 15625 clock ————— Time

Timer A Timer A
trigger trigger

Fig. 3-12: Diagram of the sampling and conversiath wmer A trigger

When conversion results are written to a selecteDCAR2MEMx, the
corresponding flag in the ADC12IFGx register is #et interrupt request is generated
if the corresponding ADC12IEXx bit and the GIE bi¢ gaet. After ADC12IFGXx register
set, the interrupt service routine of ADC startidthe interrupt service routine, we
buffered ADC12MEMx. Next, a moving average filteasvused to remove 60-Hz
power line interference, and then filtered signatadwas encoded before wireless

transmission [Fig. 3-13].

FF

62 | Channel 1 _low byte Channel 1_high byte Channel 2_low byte | Channel 2_high byte

Fig. 3-13: Data format
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C. Moving Average

Moving average, also called rolling average oming average, is usually used
to analyze a set of data points by creating a s@fie@verages of different subsets of
the full data set. Moving average can be appliedny data set, however, it is most
commonly used with time series data to smooth dwirtgerm fluctuations and
highlight longer-term trends or cycles. The chde#wveen short- and long- term, and
the setting of moving average parameters dependseorequirement of application.
Mathematically, moving average is a type of contioluand is similar to a low-pass
filter used in signal processing. The moving averéljer is optimal for a common
task: reducing random noise while retaining a stst@p response. This makes it as

the premier filter for time domain.encoded signals.

Given a sequen@q}i”zl, thevoutput of‘am-moving average is a new sequence

{a}_N_;”+1 defined as the average, of-subsequencestefms. The formula of moving

averaging was shown as followings.

1 i+n-1

s==>.a 3-1)

n<s
Therefore, the sequences; of n-moving averages whem = 23 can be expressed

as
1
S, =§(81+ &, &+ 4., a,t )

1
ss=§(61+62+83. a+ at g..a,*t gt @ (3-2)

Fig. 3-14 shows the results of noise cancellatiprubing moving average. A
function generator was used to generate sin wamd, aur portable bio-signal

acquisition system was used to record this sighalur portable acquisition module
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was close to some electric instruments, the sigeabrded from the acquisition
module would be easily influenced by noise of 60ggver line. In the above figure
of Fig. 3-14, it showed that the original sin wavad been contaminated by 60Hz
power-line noise. After filtering by using movingreaage with 5-point moving

window, we found moving average could effectivegmove power-line noise, as

shown in the below figure of Fig. 3-14.

. _SampleRatg _ 25 — -
Num_of _window= 60" %O =427 (3-3)

Befor Moving average

Amp

| | |
| | |
| | |
50 [ L [
3000 3020 3040 3060 3080 3100 3120 3140 3160 3180 3200
Sample

After Moving average

Amp

| |
| |
I I
50 I I I
3000 3020 3040 3060 3080 3100 3120 3140 3160 3180 3200
Sample

Fig. 3-14: Result of noise cancellation by usingving average

D. UART Interface

In asynchronous mode, USART connected MSP430 terred systems via two
external pins, URXD and UTXD. In UART mode, USARBrismitted and received
characters at a bit rate asynchronously to anatbeice. Timing for each character
was based on the selected baud rate of USART. instudy, the transmitter and
receiver used the same baud rate. For initialitlART, RX and TX had to be enable

first, and then decided the baud rate of UART amshlile SWRST. The required
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division factor N for determining baud rate wasddsas followings:

_ BRCLK

= 3-4
baud rate (3-4)

Here, BRCLK was 4 MHz, and baud rate was 11520.b#fter initializing
UART, the micro-controller could transmit datadieéd by moving average to BLUE

TOOTH module via UART.

3.2.3 Power M anagement

Power Management circuit in our portable bio-sigaajuisition system includes

two parts: one is power supply circuit, and thesoik charging circuit.
A. Power Supply Circuit

In our portable bio-signaliacquisitionsystem, tiperating voltage VCC was at
3V, and the virtual ground of analog circuit waslgiV. In order to provide stable
1.5V and 3V voltage, a regulator LP3985 was/usecdgolate battery voltage to 3V.
LP3985 is a micro-power, 150mA‘low naise, and uloa dropout CMOS voltage
regulator. The maximum output current can suppd@®A. Furthermore, the turn-on
time can reach 2Q@. A voltage divider circuit was used to divide 8vltage into
1.5V, and a unity amplifier constructed from AD86®&&s used to provide a voltage

buffer. The total power supply circuit was showrfig. 3-15.
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B. Charging Circuit

for 1-A charging applications. The maximum chargagrent can arrive at 1A. The
battery’s power would be detected automaticallychgrging circuit and switched to
charging mode when battery’s power was not enoB24010DRC also protected

battery to avoid over charging or over driving [6&he charging circuit was shown in

The charging circuit BQ24010DRC had integrated @oRET and current sensor

Fig. 3-16.
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Fig. 3-15: Power supply circuit in portable bio+sd acquisition system
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Fig. 3-16: Charging cireuit in-our portable bio{s&y acquisition system

3.2.4 Wirdess Transmisson

Bluetooth is a wireless protocol-utilizing 'shortige communication technology
to facilitate data transmission over short distarftem fixed and/or mobile devices.
The intent behind the development of Bluetooth weescreation of a single digital
wireless protocol, capable of connecting multipkvides and overcoming issues
arising from synchronization of these devices. s tstudy, Bluetooth module
BMO0203 was used. BM0203 is an integrated Bluetoatidule to ease the design gap
and uses CSR BuleCore4-External as the major Bitletochip. CSR
BlueCore4-External is a single chip radio and basdbIC for Bluetooth 2.4GHz
systems including enhanced data rates (EDR) to 3Mlpinterfaces to 8Mbit of
external Flash memory. When used with the CSR Bhtht software stack, it
provides a fully compliant Bluetooth system to v@f&the specification for data and

voice communications. All hardware and device firanev of BM0203 is fully

38



compliant with the Bluetooth v2.0 + EDR specificati Bluetooth operates at high
frequency band to transmit wireless data, so ithmperfect worked by using a PCB

antenna, as shown in Fig. 3-17.

1.5mm 1£mm 4 4mm
Width=0.5mm
Z2.8mm

1.7mm

Ground
Plane

£
=
=]
/r
1.5pF Capacitor
Placed immediately Feedpoint
after Feedpoint

Fig. 3-17: PCB Blue Tooth antenna [64]

3.3 DSP Module

The goal of our DSP module is not cnly to/buildeeck-end analysis platform but
also to provide a bio-feedback mechanism'by buarestimulator. This module has
greatly powerful calculating ability and suppor@&rious peripheral interfaces. After
measuring and pre-processing EEG and EOG signalsubyportable bio-signal
acquisition system, these signals would be transchito this DSP module via
Bluetooth module. Then, DSP module would proceskaralyze them. As soon as a
drowsy state is detected, this module would wamuker by buzzer or stimulator.
Furthermore, it can also use other peripheral fates to implement lots of

applications [64].
3.3.1 DSP Framework

A powerful digital signal processor Analog DevicEEB3-STAMP was used in

this DSP module, and its CPU speed can be up t&1B8@0 There are two 16-bit
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MAC Multiply-And-Accumulate used to execute 1200 linexldition and

multiplication functions. Besides, DSP contains gnandependent DMA, Direct
Memory Access, to effectively reduce the processimg of core. The system block
diagram was shown in Fig. 3-18. In our study, Bdegh module and UART both

worked in the same UART interface.

TFT-LCD, an optional element depends on user’sirement, which is worked
by using Memory Mapping, shared the same Memory\Bitis SDRAM. In order to
reduce the size of platform, traditional paralleDRI Flash was replaced with SPI
Flash, and it shared with micro SD Socket, tootharmore, the DSP module also
owned power management and charging circuits. MBI Socket provided the
interface scalability, such as micre' SB-Card;,SermsbC, Wireless Card, etc. There
is also a buzzer placed on the platierm workedG#d4O interface for application. As
a matter of fact, our DSP medule is divided int@tparts: the Master board and the
Slave board. The elements introduced above‘arpladed in the Master board, for
instance: SDRAM, micro SD sockéuzzer and so on. There are three circuits of
stimulator placed on the Slave board; it also wdrkea GPIO interface from the
Master board. In our application for drowsinesedibn and warning, a buzzer and a
stimulator are used as a bio-feedback to warn usken they become drowsy. The
stimulation which generated by the circuit of stiatar will be introduced in the next

session.
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VR L1 uarT SDRAM TFT-LCD
Port 16MB 128x160
24bits
2
UART Memory Bus f
v
Bluetooth | Bluctooth |———>| BF-533 |e——s| MicrosD
DSP socket
1 SPI
GPIO 1 _l
USB Power Keypadx3 SPI
— DC/DC Buzzer Flash
Charger Stimulator 4MB

Fig. 3-18: The block'diagram of DSP system [64]

3.3.2 The Circuit of Simulator

The circuit of stimulator, was placed on the Slaweard to generate the
stimulation for warning the“ uséer. The Master boaadd the Slave board
communicated with each other via GPIO interfaces la muscular bio-stimulator,
which is small, portable set, designed for thoseiray at look improvement in the
beginning. Stimulator also provides muscles' statiah and invigoration so it was

used as the bio-feedback mechanism to warn user.s€hematic circuit of Slave

board was shown in Fig. 3-19.
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Fig. 3-19: The schematic circuit.of Slave board

In every circuit of stimulator, there were two-soes of pulse for user to select:
Timer interface or GPIO interface:-lt. was-all*depeon user’s application. In our
study, the GPIO interface was chosen. As soondiswasy state was detected by the
DSP module, 150uSec. pulses at about 80 Hz fregqueouald be generated and send
to the Slave board via GPIO interface. Q1 actech dmiffer and Q2 inverted the
polarity of the pulses and drove the Transformée @mplitude of the output pulses
was set by R1 and roughly displayed by the brigtgred LED D1. D2 protected Q2
against high voltage peaks generated by T1 induetdnring switching. The output
signals would be generated by J1 and J2, which wéextly connected to the
electrodes. User only need taped the electrod#ésetekin at both ends of the chosen
muscle then the stimulator could be worked. Th@uaitoltage is about 60V positive
and 150V negative but user is no need for fearaftec-shock danger, because the

output current is so small and would be safe[72].
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3.4 Hardware System Specification

A. Portable bio-signal acquisition system

Fig. 3-20 is the front-end analog circuit and digitontrol circuit of our portable
bio-signal acquisition system. There are three dead our portable bio-signal
acquisition module for each channel, includes EEGEOG input, reference, and
virtual ground of the front-end analog circuit. Télectrodes connected with the leads
of virtual ground and EEG reference were placedigar’s forehead and behind right
ear respectively. On the other hand, the refereh&OG was placed below right eye.

The specification of portable bio-signal acquisiteystem was listed in Table 3-2.

Fig. 3-20: The front-end analog and digital contiotuit
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Table 3-2: The spec of portable bio-signal acgoisisystem

Type Portable Bio-signal Acquisition System
Channel Number 1~4

System Output Voltage Range 0~3Vv

Gain 2000~5000

Bandwidth 0.1~100Hz

ADC Resolution 12bits

Output Current 29.5mA

Battery Lithium 3.7V 450mAh  15~33hr
Full Scale Input Range 54Y

Sampling 256Hz

Input Impedance greater than 10M
Common Mode Rejection Ratio 77dB

Power Supply Rejection Ratio 88dB

Size 25mm x 54mm

B. DSP Module

DSP module was divided into two parts: .the mastard and the slave board.
The master board was shown\ in Fig:-3-21(a). CPURAID, buzzer and etc. were
placed on the master board. Fig. 3=21(b)is thestitation of the slave board which

included three circuits of stimulator. The speecifion of DSP module was listed in

Table 3-3.

Table 3-3: The spec of DSP Module
Type DSP Module
Chipset ADI BF533
Speed (CLK) 600MHz (1200MAC)
SDRAM 16MB (Max 64MB)
Size 65mm x 45 mm
Storage Micro SD
Transmission BLUETOOTH
Display TFT-LCD
Keypad 3
Battery Lithium 3.7V 450mAh  15~33hr
Application(GPI10) Buzzer, Bio-stimulator
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(b)

Fig. 3-21: (a) Master board of DSP module (b) Slaward of DSP module
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Chapter 4 Unsupervised Approach

Based on the unsupervised analysis flowchart inZit0, we will further discuss
the details of every analysis diagrams in the folhg sessions. In order to find out
the real driving behavior information, first we calate the driver’s driving
performance by using the record in simulation expent. Moreover, we use the
unsupervised analysis method to analyze the camebpg EEG and EOG
information, including the preprocessing, alert mlatbnstruction, blink duration, and

computation of the deviation using Mahalanobisafise method.

4.1 Driving Performance

The VR-based four-lane-straight-highway scene vpgdied in the experiment.
In this scene, the four lanes from left.to rightt‘aeparated by a median stripe and the
distance from the left side to the right side o thad was equally divided into 256
points indicating the position of the vehicle ag thigital output signal of the VR
scene at each time instant. The width of each daethe car is 60 units and 32 units,
respectively. Fig. 2-5 shows an example of theidgyperformance represented by the
vehicle deviation trajectories. VRBriving simulation environment will randomly start
a deviation event to move the car to right or &dke in the car driving experiments.
Subjects needs to sense those sudden movements/iaigoto make a reversely turn
to back to the third lane. At one time, the VR eoniment also outputs the driving
events inside the data of car trajectories, asatiewi event start trigger, response
onset trigger; and response offset trigger. Fig. ghows the example of deviation

event.
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Response Response Response Response
onset offset onset offset

Deviation Deviation
start trigger start trigger
(left turn) {right turn)

N\

Fig. 4-1: The example of deviation event and cgettories

Two parameters would be acquired from every dewmiagvent called “reaction
time” and “deviation”. In our study, deviation waset used because it could lead to an
error. The road of our VR scene was divided intty @56 points and users need to
keep the car on the third lane. For example;.a kesgr the car at the point 140 first,
then a deviation event of right side-triggeredhls-user fall asleep at that time who
might not able to make a reversely turniimmediaglgt the car would just deviate to
the boundary of the fourth lanez point 250. Suppbseuser still not makes a reaction
for the event, the numeric of deviation should lmeedarger. However, owing to the
limit of our VR scene, the results of deviation Wbbe still at point 250 and can not
be used. Simultaneously, reaction time was alsopot&d by our system and not
affected by the limitation of our VR scene: theden user made no reaction, the
longer “reaction time” would be, so it was used/atidate our approach. The method
of index is introduced as follow: reaction time e¥ery event was acquired by
computing the difference of “Response onset” andviBtion start trigger” first, and
then two successive reaction time of deviation eweas compared at a time for
observing the variation. Once the latter reactioretwas larger than the former, we
would use this result to compare with MDA, MDT,}iduration and implement in

correlation analysis with the driver’'s performantde emphasize that this index is
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used only to validate our approach, and it is soam input to develop the model for

the alert state of the subject.

4.2 Construction of theAlertness M odel

In order to investigate the relationship between rtieasured EEG/EOG signals
and subject’s cognitive state, and to quantify el of the subject’s alertness in
previous studies [65]-[67], we need to quantify triunteer’'s drowsiness level in
this experiment at first. When subjects fall drowslyey often exhibit relative
inattention to environments, eye closure, less tgbfailure to motor control and
making decision. Hence, the vehicle deviation wefinéd as the subject’s drowsiness

index.

In our approach for every subject.in_every drivsggsion a new model will be
constructed. Consequently the ‘nter-session‘vditialietween subjects is no more
important; these are taken into account automatickb develop the alert model we

make a few mild but realistic assumptions as fodow

(1) The subject is usually very alert immediateRer he/she starts the driving
session.

(2) Subject’'s cognitive state can be characterizgdhe power spectrum of his/her
EEG.

(3) When the person is in alert state, it can beleterl reasonably well using a
multivariate distribution of the power spectrum.

(4) The alert model expresses well the EEG spedten the subject remains alert or

return to alert state from drowsiness.
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One might argue that the subject may already ke dnowsy state when he/she
begins driving. If that is really true, then thaancbe detected by checking the
consistency between two alert models derived usiag in two successive time
intervals. In other words, we can check whethertweealert-models identified in two
successive time intervals are statistically samaadr If the subject was already in a
drowsy state, then he/she will either move to gpdrewsy/sleepy state or will transit

to an alert state. In both cases, the two moddlsat be statistically consistent.

In our study, a multivariate distribution was ugedmodel the distribution of
power spectrum in the alert state. In particulagvery 0.125 second, we calculate the
power spectrum vector in p dimension. In our expernit theta band is located in
16~31(4~7Hz), and alpha band .s located in 32~482%81z). In this way, a set of
n=480 data vectorsx{,... Xssof2IS generated in every minut®/e use 3 minutes of
spectral data to derive the alert ‘model. The ataddel is represented and
characterized by a multivariate:normal distrioutd{p,=*) , where 4 is the mean

vector and = is the variance-covariance matrix.

We use the maximum likelihood estimates far and>?. After finding the alert
model we check whether the EEG spectrum in alpina ifalso in theta band) indeed
follows a multivariate normal using Mardia’s te68], [69]. If the model passes the
Mardia’s test, we accept that model as the aledehdtherwise, we move the data
window by one minute and again use the next 3 ragaf data to derive and validate
the model using Mardia’s test. Once a model istpaikignificant deviation from the
model can be taken as a departure from alertness. tNat, we are saying “departure
from alertness” which is not necessarily drowsinéss example, the subject could
be excited over a continued conversation over ailmphone. In this case, although

the person is not drowsy, he/she is not alert maddhe driving task is concerned and
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hence needs to be cautioned. Thus our approachor® mseful than typical
drowsiness detection systems. A consistent antfisignt deviation for some time

can be taken as an indicator of drowsiness.

For the sake of completeness, we briefly explaie tHardia’s test of
multi-variate normality. Given a random sample, Xg{.. X} in RP, Mardia [68], [69]

defined the p-variate skewness and kurtosis as:

by, = 2 D (X ~RS™ X, =)} (@-1)
b, =5 3% = RIS (x, =R}’ 4-2)

In (1) and (2) X and Srepresent the,sample mean vector and covariant&ma
respectively. In this case of university datgs &hd b , reduces to the usual university
measures skewness and Kurtosis, respectively.elf saimple is obtained from a

multivariate normal distribution,, then the imitigstribution of b, is a Chi-square

with p(p+1)(p+2)/6 degrees of freedom, while that of
\/ﬁ(bzyp— p(p+2)/8,/p(p+2) is N(0,1). Hence we can use these statistics to tes

multi-variety normality. In all our experiments, vilave used the routines available
for Mardia’s test in the R-package [70]. On theesthand, EOG was also processed.
In contrast to the alert model of EEG, the EOG pregssing was simpler. The blink
duration was recorded at the first 3 minutes, dmah tall of this blink duration was
averaged to be the baseline of the alert statein@uhe experiment, the blink
duration might become longer or shorter than theel@e. We could increase the

accuracy of blink detection by comparing the bléhkation of alert state.
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4.3 Computation of the Deviation from the Subject

After the alert model is found, we use it to asgbsssubject’s cognitive state.
This was done by finding how the subject’'s prestate, as represented by the EEG
power spectra, and was different from the stateessmted by the alert model. The
deviation of the present state from the model mmated using Mahalanobis distance
[71] that can account for the covariance betweenabkes while computing the

distance. Let the alert model computed using thehaalband be represented by
(X,S), and that by the theta band be representetX,®);. Let x be a vector

representing the power spectra in the alpha banuh (ihe theta band) of the EEG of
the subject at some time instant, thenthe deviaifdhe present state from the model

is:

MD*(® = (%X 'S™(x-X) (4-3)

In (3) if we use the alpha band'maedel,"then * isaAd for the theta band model
and data, * will be T. Thus the deviation from tdpha band model will be denoted
by MDA and that for the theta band model will bendied by MDT. Similar to the
pre-processing of the indirect alertness level xnddriving performance), the
MDA/MDT is also smoothed by the moving average rodthising a window with a
window of 20 seconds. The moving average windoshifted by just one value (i.e.,
2 sec). For a better visual display, we have sciiledviD* values by subtracting the

average MD* computed over the training data usediriding the alert model.

We shall see later that the deviation from the alpbnd model (i.e., MDA) or
the theta band model (i.e., MDT) can be used tedaledeparture from the alert

cognitive state.
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4.4 Computation of the Blink Duration from the Subject

In this section, computation of the duration ohks is introduced. Vertical EOG
was used in our study to acquire the parameteEQgs. In Fig.4-2, there is an idea
blink and the differentiation of this blink call&DG velocity. We analyzed this EOG
velocity and characterized the behaviour of veltt€@G[23]. To base on the blink
model, closing time starts at the time “cs” andshes at “ce”, and the opening time

starts at the time “0s” and stop at “oe”.

EOG raw data

Blink ‘gmplitude

| duration | E

Blink start Blink end

'EOG derivative

150
100 B

Threshold: close 50

0.

Threshold: open
PN goF

closing
time
cs ce o0s o€

opening
time

-100F

-150

Fig. 4-2: Blink features
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The values of closing and opening threshold welectsl empirically because
each driver’s characteristics of EOG were differditus, EOG signals during many
conditions(closed eyes, open eyes,etc) should crded before our experiment to

ensure the accuracy. The computation consistdlofafimg basic steps[23],[26]:

Step 1) Define the initial threshold parameters.

Step 2) Filter out the frequencies above 10 Hz.

Step 3) Compute the derivative(difference) of tiiered signal called EOG

velocity.

Step 4) Use closing and opening threshold to ifietinks. If the value of
EOG velocity above closing threshold and which afofved by a

value below opening-threshold areidentified askgi

Step 5) \Verify the satisfaction’of some constraifds example: duration must
below the value of maximum~duration, amplitude néeabove the

minimum amplitude and so on.

After these five steps, parameters of EOG couldabguired. In our study,
closing time, opening time, duration and amplituafeblinks were all computed.
However, correalation between driving performanod alosing time was low. No
matter user was drowsy or not, the value of closing always kept at a constant.
Amplitude of blinks would become small when uselt ffrowsy. In contrst with
amplitude, opening time and duration would becoargdr as user turn from alert
state into drowsy state. To simplify our study,nkliduration which had highest
correlation with driving performance was the onlgrameter selected to detect

drowsiness.
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This raises a natural question, can a combinecduséDA, MDC and duration
do a better job than individual ones. To explorehsa possibility we use a linear
combination MDA, MDT and duration to compute a canelodl measure of deviation

as:
Combination =ix MDT +j x MDA +k x Duration

where & I,j,k =1 and i++k= 1. (4-4)
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Chapter 5 Resultsand Discussion

In this chapter, it is separated into two partsluding the performance of
portable bio-signal acquisition system and the tiatahip between driving
performance and unsupervised analysis. In the $iegfment, sine wave and alpha
wave are used to test the performance correlatiorthe next segment, we will
discuss the unsupervised result by using correlatibh driving performance, sorting
analysis, and linear combination to find out thepartional relationship. Finally, we
use the binary classification method to summariee threshold from alertness to

drowsiness, furthermore set the optimal threshatiol the program of DSP module.

5.1 Performance of Portable Bio-signal Acquisition System

and Bio-stimulator of DSP M.odule

In this section, the reliability of the proposedrtpble bio-signal acquisition
system was examined. First, several sine waves diffierent frequencies generated
by function generator were used as input signaledbwhether the acquisition system
can stably and validly acquire testing signals. tNar arbitrary wave as EEG signal
was generated by function generator, and the @igirbitrary wave and the arbitrary
wave recorded by our system were compared to testh&r the characteristic of EEG
signal was kept to ensure the reliability of ougusition system. In addition, the
effect of bio-stimulator was also examined in testion. When user became drowsy,
bio-stimulation was generated without warning to kemauser alert and the
corresponding EEG raw data was recorded simultahgoand then these EEG data

were analyzed to make sure if our bio-stimulatokteffect on user.
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A. Test for Sine Wave Signal

In this performance test, we tried to test the a@lation between the sine-waves
which were recorded actually by portable bio-sigaahuisition system and the
sin-waves which were generated by MATLAB functidine EEG signals which were
recorded about 23 sec. The result between two tondgiwas shown in Fig. 5-1. And

the correlation of total information could up t®065.

Recorded by Portable Bio-signal Acquisition System
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Fig. 5-1: The result between two conditions

B. Test for Arbitrary Wave Signal

An arbitrary wave as EEG signal was generated layguRinction generator.
This arbitrary wave was scaled down 1000 timesrst, fthen filtered and amplified
by our system. After ADC processing, the procesdagital signal would be
transmitted to PC by Bluetooth and recorded bypvagram. To compare the original
arbitrary wave and the signal recorded by our systee could find out that recorded
signal was smoother than the original and the daog®i was slightly smaller, but the
characteristics of EEG were all kept by our syst€ume to a conclusion, using
moving average to remove noise of 60Hz might cdlieaecorded signal smoother.

Besides, sampling rate of 256 points per seconddveduce data volume and lead to
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the decreased amplitude. The result of arbitraryentast was shown in Fig. 5-2.

Arbitrary Wave Generated by Function Generator
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Fig. 5-2=The result of arbitrary wave test

C. Test for Bio-stimulator of DSP-module

Bio-stimulation is one of bio-feedback mechanismoof DSP module. The
utility of our bio-stimulator is to make mental ®aof user return alert and to avoid
traffic accidents. To make sure the stimulus positf bio-stimulator can indeed take
effect on user, traditional Chinese medical sciem@s referenced in our study.
Fengchi is in the posterior aspect of the neckpwethe occipital bone and the
depression of this point is like a well, when stiating on this point can alleviate the
tight muscle and refresh user. So, Fengchi was aseithe stimulus position and it

was shown in Fig. 5-3 [73].
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Fengchi

A

Fig. 5-3: The position of Fengchi

An experiment was designed that when user wasndyithe car of our virtual

driving simulation environment, a pair of bio-stilation electrodes were attached on

Fengchi of neck. As soon as user became drowsyhwdedined in our study was

reaction time of driving performance:over. 1 secoadd then our bio-stimulator

would switch on and generate bio-stimulation’ tataleser. The corresponding EEG

raw data was recorded and analyzed to observefteeedce between before, during

and after bio-stimulation, and the result was showiig. 5-4 and Fig. 5-5.
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Fig. 5-4: Result of EEG raw data and corresponffieguency spectrum
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Fig. 5-5: Results of EEG raw data: (a) before himglation, (b) during
bio-stimulation and (c) after bio-stimulation:.

According to Fig. 5-4 and Fig:-5-5, EEG data imgfrency domain showed that
the main frequency of EEG wasdistributed amon@@8zL (alpha-band) when user
was in drowsy state (before second-59). As hiotdation was generated (second 59
through second 74) that the proportion of alphadbasas decreased and the main
components of frequency domain were composed bireqeency of bio-stimulation.
After stimulation was finished, frequency of alpbard was significant reduced, and
it means that user was become alert from drowdg.stn the other hand, observing
EEG data in time domain that EEG data was mixett sttmulation signals during
bio-stimulation generated and it proved that oordiimulator took effect on the user.
Besides, as user was taking experiment, oral questg was also implemented to
ensure the mental state of user. Moreover, thdtreSoral questioning showed that
when user was stimulated from drowsy state, thecefbf bio-stimulator was
significant and user became alert indeed. In canmhy bio-stimulator can wake user

up and keep user in alert state effectively.
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5.2 Driving Performance and Unsupervised Analysis

In this section, we will show the results of algion in five parts. 1) Discussing
the relationship between driving behavior inforraatiand unsupervised analysis in
each event of deviation. 2) Separating the behatiats hence find out the
corresponding EEG and EOG data, then sorting baoformation check the
connection between MDA, MDT, blink duration and treaction time of driving
performance. 3) Using linear combination of PPV amuhsitivity to find out the
optimized threshold of “Combination”’« MDT + j x MDA + k x Duration) and
check the maximum value of f-measure between ttiese information. 4) Applying
this optimized threshold to 10 trials of experimeéatensure the usability of our
algorithm. 5) In our study, the importance of-blahkration is emphasized. So we use
only two parameters of EEG. (MDT;, MDA) doing the saprocess to find out the
optimized threshold and check the ‘maximum valuéroeasure between only MDT
and MDA. Then we will accord;the._results.'of thes® tconditions (within and
without parameter of blink duration) to compare ahscuss. Finally, the result of

comparison will be shown in the last part of thestgon.

5.2.1 Resultsof Unsupervised Analysis

Following the steps of preprocessing and the unsigel analysis in above
chapters, we used OZ channel which has the highestage correlation in 10-20
system [56] to record EEG signal. On the other havel used vertical EOG which

has the largest amplitude of different kinds EOGasueements to make the
parameters acquired more precisely. Then, we amtstt (X,S); and (X,S), in

the alert model thaiX and S are mean vector and covariance matrix. Moreover,

according to the results of FFT counted the MDT &MDA out. Besides, blink
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duration was also extracted from the results of E@city to be one of the

parameter of drowsy detection.

There were four examples to show the results afti@atime, MDT, MDA and

blink duration, as Fig. 5-6 through Fig. 5-9.
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Fig. 5-6: Example 1 of driving performance and yp&swised analysis
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Fig. 5-9: Example 4 of-driving performance and peswised analysis

From above four cases'of unsupervised analysissautd directly find out the
relationship between unsupervised-analyses ‘andadrperformance. When the latter
value of reaction time was larger than the forntemeant that user was become
drowsy. Comparing to the variation of MDT, MDA aibtink duration, these three
parameters were all become larger as the valueeattion time was rising.
According to those experimental results, we cowddeserate that EEG and EOG
signals would be influenced by behavior informatihen subjects become

drowsiness.
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5.2.2 Relationship between Driving Perfor mance and Unsupervised
Analysis

In reference (N. R. Pal, 2008 [45]) said, they stigated the relationship
between the driver’s performance and the concurckahges in the EEG spectrum,
and go on, they had sorted the EEG power spectupira band by smoothed driving
performance. The similar sorting was also dongtwer in the theta band. The result
which they discovered was that theta and alphatspeavere directly proportional to
the deviation length of driving performance. Beside reference (P. P. Caffier, 2003
[23]) said, level of drowsiness had divided to fetages (Q1 - Q4) where Q1 meant
most drowsy comparing to Q4 meant most alert. Tlweynputed across all
measurements of the 60 participants and sortetlihle duration according to level
of drowsiness. The results showed that blink daratvas proportional to the level of
drowsiness. The more drowsiness of the particif@hj the more large value of blink

duration was.

Since the driving performance’is antindirect indg#xthe alertness level, we
propose the sorted analysis method that sortsrtoothed log power spectra MD*
and blink duration according to the driving perfamae index to assess the brain
dynamics and blink variation corresponding to thansition from alertness to
drowsiness in driving. This process is used to odwvéhe features change as the

increase of driving performance index.

This analysis flow is to separate total trialsnirdhe driving events. In our
analysis, we assumed that the driving deviation dravsiness state were direct
proportional, so we decided to use the reactiore toh driving deviation to be the
information of driving performance analysis. Evetgal would find out the

corresponding EEG and EOG raw data. Hence, acapidirthe alertness model in
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first 3 minutes, the frequency domain spectrum uride deviation can be changed
out by FFT, and continually, the MD* power can bensformed. The blink duration
was also computed at the same time. Further, idde aire sorted following the length
of reaction time, and the synchronized MD* powegcpa and blink duration also be
sorted together. In our study, 6-second EOG dafarde'Response onset” was
extracted and averaged to increase the accurasynehronized duration. The width
of road was divided into 256 points, and speedaofdrifting after deviation onset
was 64 points/sec; in other words, the car wouiid 84 width of road and crash into
the second lane or fourth lane in one secafigr trials sorting, according to above
theory, we can separate the sorting data into smeets: state 1(0.2~0.56s), state 2
(0.56~0.75s), state 3(0.75~0.94s),..and, state 4(6v@e4s). Then, the mean and
standard deviation in every.segment/whichCwe calrghows the relationship
between driving performance and drowsiness stdte.pfocess of sorting analysis is

shown as Fig. 5-10.
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Fig. 5-10: Process of sorting analysis
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Next, we checked how strongly MDA, MDT and duratiwere correlated with
the driving performance. Fig. 5-11(a) showed theretation between driving
performance and MDA (across the 10 test subjestsises) while Fig. 5-11(b) and
Fig. 5-11 (c) exhibited the same for MDT and blahkation. It was interesting to find
out thatFig. 5-11 and the above theory exhibit almost @r@es behavior. In fact, the
average MDA, MDT and blink duration increased mateadily with driving
performance and proved that there was high comelabetween these three

parameters with driving performance.
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Fig. 5-11: The relationship between MDA/ MDT/ Duaatt and reaction time
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5.2.3 Threshold Definition and Drowsiness Classification

In drowsiness classification, the true-false tablesed to define sensitivity and
specificity. Sensitivity and specificity are stétial measures of the performance of a
binary classification test. The sensitivity measuittge proportion of actual positives
which are correctly identified as such (e.g. thecpetage of drowsy people who are
identified as having the condition); and the speityf measures the proportion of
negatives which are correctly identified (e.g. pecentage of alert people who are
identified as not having the condition). The redathip between sensitivity and

specificity was shown in Fig. 5-12 and the des@ipbf binary classification test was

in Table 5-1.
Condition

Positive Negative

- True False

Test S Positive Positive
outcome

. False True

I Negative Negative

.

Sensitivity

|

Specificity

— Positive predictive value

— Negative predictive value

Fig. 5-12: The relationship between sensitivity apdcificity

Table 5-1: The description of binary classificattest

Type

Description

True positive
False positive
True negative

False negative

Drowsy people correctly diagnosedrasvsy
Alert people wrongly identified aswlsy
Alert people correctly identifiedadesrt
Drowsy Sick people wrongly identifées alert
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To define the drowsy state between driving perforoeawith MD*/duration, we
need to collect the parameters of true positideefpositive, and false negative, hence

to analyze the sensitivity and positive predictradue.

A. Positive Predictive Value:

PPV = number. gf True Positives _ (5-1)
number of True Positives number of False Posit

The positive predictive value, or precision ratepost-test probability of disease,
is the proportion of patients with positive teduks who are correctly diagnosed. It is
the most important measure of a diagnostic metisat raflects the probability that a
positive test reflects the underlying conditionrgetested for. Its value does however

depend on the prevalence of the disease; whichvianrgy

B. Sensitivity:

L number-of True Positives
Sensitivity= = (5-2)
number of True\Positives*“number of False Negzd

A sensitivity of 100% means that the test recognaledrowsy people as drowsy.
Thus in a high sensitivity test, a negative ressltused to rule out the disease.
Sensitivity alone does not tell us how well the feedicts other classes (that is, about
the negative cases). In the binary classificatias, illustrated above, this is the
corresponding specificity test, or equivalentlye thensitivity for the other classes.
However, sensitivity is not the same as the pasipvedictive value (ratio of true
positives to combined true and false positives)ictvlis as much a statement about

the proportion of actual positives in the populatieing tested as it is about the test.

The calculation of sensitivity does not take intoc@unt indeterminate test results.
If a test cannot be repeated, the options are ¢ttude indeterminate samples from

analysis (but the number of exclusions should Beedtwhen quoting sensitivity), or,
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alternatively, indeterminate samples can be treasefdlse negatives (which gives the

worst-case value for sensitivity and may thereforderestimate it).

After explaining the definitions of sensitivity amqubsitive predictive value, then
we can find out the optimized threshold of “Combio@’ step by step. First, because
the results of MD* and blink duration had been nalized, it's beneficial for us to
collect all 10 subjects’ MD* and blink duration datio analyze. Second, we have to
define the threshold of driving performance by makihe entire deviation events into
account. The threshold of driving performance carséparated into 2 parts: alert and
drowsiness. Further, we assume that deviation isrsenaller than 1 second to be alert,
and others are drowsiness. So the threshold oindriperformance is defined as 1s.
According to the value of thresheld,-all-events t@nseparated to two conditions:
drowsy and alert. Because: we—need: to\find out tpémized threshold of
“Combination”, we use different kind-conditions-iiear combination and set the
threshold of “Combination” from® 20 through 40 resipeely to calculate the
corresponding PPV and sensitivity. In linear comabion, according to these three

conditions below:

1. Combination =i x MDT + j x MDA + k x Duration

2.i+j+k=1

3.0=i,j,k=1

We calculated all kinds of combinations by i, gét as 0, 0.1, 0.2...0.8, 0.9, 1.

For example: 0.3 x MDT + 0.3 x MDA + 0.4 x Duratiand so on. Following these
different combinations then PPV and sensitivity different threshold of

“Combination” could be acquired.here are too many kinds of combinations, so we
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only showed 12 significant conditions in Fig. 5-a48d Fig. 5-14, we will explain

these conditions later.
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Fig. 5-13: Positive predictive value vs. thresholdCombination” where the numeric
in parentheses was sequentially expressed as (MDA, Duration)
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Fig. 5-14: Sensitivity vs. threshold of “Combinatiovhere the numeric in
parentheses was sequentially expressed as (MDT, NIIDAation)

After calculating positive predictive value and sigmity in different conditions of

linear combination, we need to choose the optimitgdshold of “Combination”.

According to equation 5-3, the F-measure can bel @& a single measure of

performance of the test. In information retrievaispive predictive value is called

precision, and sensitivity is called recall. TheanEBasure is the harmonic mean of

precision and recall:
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precisionx recall

5-3
precisiont+ recall (5-3)

F —measure= 2x

The percent of F-measure means the ratio of dromesyracy actually. Both
parameters are associated with drowsiness. In reliffe linear combinational
conditions, we could find out the maximum valud-aieasure is in condition “i=0.3,
j=0.3, k=0.4". Come to a conclusion, the best Imezombination of the
“Combination” is composed of 0.3xMDT, 0.3xMDA and4® Duration. The
maximum value of F-measure, 80.91%, happened inmbst suitable threshold of
“Combination”, 31.5. Besides, the correspondingsgesity is 96.15% and positive
predictive value is 69.84%. There are too many itmm$, so we only select 12
significant conditions listed in our study. Thesfit6 conditions are all composed of
MDT, MDA and duration, and)these conditions havghbr value of f-measure
between all of conditions. The next 3 conditions @nly composed of two parameters
and have the highest f-measure in-each.-conditidbAM duration, MDT + duration
and MDT + MDA). The last 3 conditions.are composgdonly one parameter, and
also have the highest f-measure in each condifidre results of different kind
conditions of F-measure are showrFag 5-15 and the results of binary classification

test are listed in Table 5-2.

The reason of which F-measure was not high enowghde&scribed into 2 critical

points:

1. We found out the relation between driving perforocerand MD*/duration,
hence driving performance and MD*/duration wereufigent condition but
not a necessary condition. When MD*/duration valuas high, the
corresponding driving performance wasn’t high tdoere were other variables

appending to user's EEG and EOG signals.

72



When subjects became drowsy, the MD* would increbaewould not happen
immediately. This phenomenon which based on timeaio appeared step by

step. So we used trials of driving trajectoriesat@lyze drowsiness was not

sufficient to know the exact information of EEG.
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Table 5-2: The results of binary classificatiort tes

Combination Max F-measure ) .
. Corresponding threshold PPV (%)  Sensitivity (%)
(1,5, k) (%)

(0.3,0.3,0.4) 80.91 31.5 69.84 96.15
(0.2,0.3,0.5) 80.87 315 71.96 92.31
(0.1, 0.4, 0.5) 80.67 31 69.48 96.15
(0.4,0.2,0.4) 80.59 315 69.36 96.15
(0.2,0.2,0.6) 80.22 31 70.93 92.31
(0.1, 0.3, 0.6) 80.18 31 70.87 92.31
(0.0, 0.5, 0.5) 80.55 31 69.31 96.15
(0.4, 0.0, 0.6) 78.34 30 66.10 96.15
(0.1, 0.9, 0.0) 69.54 29.5 53.31 100
(0.0, 0.0, 1.0) 76.88 29 67.99 88.46
(0.0, 1.0, 0.0) 70.11 29.5 70.11 100
(1.0, 0.0, 0.0) 68.22 27.5 68.22 100

5.2.4 Test and Verify the Optimized-Threshold

Combination =i x MDT!+4jsx MDA + k x Duration

After the maximum result of f-measure is calculated have to validate if this

linear combination and its corresponding threstoaldld actually work on all of the

users. So we used the combination of highest \aflfieneasure (0.3, 0.3, 0.4) and its

corresponding threshold: 31.5 to compute PPV, #eitgiand max f-measure of each

subject. These 10 subjects’ results of validati@nenlisted on Table 5-3. To check the

results of validation, we could find out the mamé&asure of subject 5 was only 48.21.

It may be caused by this subject's behavior of @rpent. To review this subject’s

events of driving performance, it showed that ohthe events determined as drowsy

state, the corresponding MDT and MDA were highemtlalert state. However, the

corresponding blink duration was not increased whesrction time was become

larger. We supposed that this subject might cldsisdeyes for a while as he felt

drowsy, and result in the blink duration could e computed correctly by our

algorithm. Nevertheless, the average of max f-nreastiother 9 subjects was 83.9%,

74



it meant that the optimized threshold and corredpan linear combination was

useful for most users.

Table 5-3: 10 subjects’ results of validation wiiDT=0.3, MDA=0.3, Duration=0.4
and threshold set as 31.5

Subjects Max F-measure .
PPV (%)  Sensitivity (%)
(%)
S1 87.96 78.50 100
S2 89.17 80.46 100
S3 95.73 91.82 100
S4 88.79 79.83 100
S5 48.21 46.54 50
S6 82.93 70.83 100
S7 79.23 65.60 100
S8 79.40 65.83 100
S9 71126 55.36 100
S10 80.63 67.54 100

5.2.5 Comparison between MDT/MDA Only and with Blink
Duration

In our study, one thing must be'emphasized iswieanot only used EEG signals
as our parameters to detect drowsiness but alsth HE¥ signals to increase the
accuracy of our detection. To prove that linear bmation with parameter of EOG
signals was better than EEG signals only; we dedghme process as unsupervised
analysis mentioned before but calculated linear ination with only MDT and

MTA.
MDC = ax MDA+ (1- gx MDT,0< & 1 (5-4)
According to equation 5-4, the threshold of MDC wset from 20 ~ 40
respectively. In linear combination, we tried tpate into 9 conditions: a = 0.1,

0.2 ... 0.8, 0.9. Following these different condisaimen sensitivity, positive predict

value and corresponding max f-measure could be atedpin different threshold
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with only MDT and MDA. The results of binary clafssation test with only MDT

and MDA were listed on Table 5-4.

Table 5-4: The results of binary classificatiort tegh only MDT and MDA

Types Max F-measure (%)Corresponding threshold PPV (%)  Sensitivity (%)
MDC (a=0.1) 68.30 28 51.87 100
MDC (a =0.2) 68.33 28.5 51.89 100
MDC (a =0.3) 68.63 29 52.24 100
MDC (a =0.4) 68.88 29.5 52.53 100
MDC (a =0.5) 68.84 29.5 52.49 100
MDC (a = 0.6) 68.85 29.5 52.50 100
MDC (a=0.7) 69.01 29.5 52.69 100
MDC (a =0.8) 69.29 29.5 53.01 100
MDC (a =0.9) 69.54 29.5 53.31 100

The highest f-measure of MDCwas 69.54% from altombinations, and we

can find out in Table 5-2 that:the-highest f-meeaswy using EEG and EOG signals

was 80.91% higher than all of the max-f-measurIbC. We calculated the average

max f-measure of all 9 conditions'by using-only:M&Td MDA. Besides, the average

max f-measure of 9 conditions by‘using three patarsewas also calculated that

these 9 conditions were the top nine combinatioith Mgher value of f-measure.

The result of comparison was shown in Fig. 5-1@rdived that drowsiness detection

by using MDT, MDA and blink duration was better thanly using MDT and MDA.

According to the results, we can assert that btlnkation has high correlation with

driving performance and it is an important indexaémfirm user is drowsy or not.
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Fig. 5-16: The result of comparison-between MDT/Mbly and with blink duration

5.2.6 DSP Module Programming

The flowchart of DSP module;was _shewn'in Fig. 5dh7program development,
we used multithread to build up a real-time analysystem, moreover to increase

program’s flexibility and the use of performance.
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Warning Output
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Fig. 5-17: The flowchart.of DSP-module program

Each thread is independent. dn“the DSP module’s oaip, we just create the
threads which we want and join‘them. The systemeterill automatically schedule
those threads and decrease the system waiting looghiread 1, Real-time detect
EEG/EOG raw data from Blue Tooth, and go on passutih two moving averages
that one of them cut-off at 32Hz for EEG signal ambther one cut-off at 10Hz for
EOG signal, further down sample to 128 point inetosd. Thread 2 handles FFT
process. The FFT result will be transmit into 3 aténarray in alert model. When
array is full, the theta and alpha’s mean vecta emvariance matrix will computed
in thread 3. Besides, average of user’s blink domaat the first 3 minute is also
computed to be the baseline in thread 3. Threaadislynhandles the MDT, MDA and
blink duration converter, and then based on ab@fienal conclusion to calculate the
“Combination” (0.3, 0.3, 0.4). If the values of “@dination” are higher than

threshold in 31.5, the thread 5 will be switch oml anake some warning voice or

78



generate stimulation in thread 5.

On the other hand, the program’s user interfacédcdectly tell user how was
his / her physiological conditions. Further, leersseasy handle this system. The user
interface’s flowchart was shown in Fig. 5-18. Fualing this flowchart, when the boot
loader setup, the real-time drowsy detection pnogvall be automatically started by
DSP module. If user finished dress the portablesijoal acquisition system over, he
/ she push the start button to start to detecttneel EEG and EOG raw data. Then
the screen could print the real-time data. Furtleeemnaccording to the mean vector,
covariance matrix and baseline of EOG of our atestlel, the linear combination of
MDT, MDA and blink duration was counted continualand the result value would
also print on the screen’s bottom,side--Followingy B-19 showed, the update time of
screen we set was changed:in every 1 second, scould show total 1 second
EEG/EOG raw data and result of “Combination” at $hene time on the TFT-LCD. If
a drowsiness state is detected by our system, ® @GBinmand from DSP module
would be triggered to ring the buzzer or generabesstimulation. In the other hand,

user could push the quit button to end this program
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Fig. 5-18: The'userinterface’s flowchart
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Fig. 5-19: The block diagram of dataflow
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Chapter 6 Conclusionsand Future Works

6.1 Conclusions

In our study, a real-time wireless system for drioess detection with bio-signal
was proposed. A portable wireless bio-signal acdtiomssystem and a DSP module
with bio-feedback as buzzer or bio-stimulator weteveloped. Besides, we
emphasized that not only EEG signal but also EQghadi used in our study to

enhance the accuracy of drowsiness detection.

The portable wireless bio-signal acquisition systeas designed to acquire EEG
and EOG signals then transmitythem—into,the DSP ubeodvirelessly to detect
drowsiness. In addition, our DSP module was'equippih bio-feedback device as
buzzer or bio-stimulator for warning users thatytinere in drowsy state and waked
them up. The modular approach:applied in hardwadesaftware design enables this
system to be configurable for different applicatsmenarios. Moreover, our bio-signal
acquisition system is wearable, wireless and et therefore, it is suitable for

long-term bio-signal monitoring in users’ dailydif

The algorithm based on [45] for drowsiness detecti@s also proposed in this
study. It can effectively reduce computation comie and is suitable to be
implemented in the DSP module. Besides, it is gabdemoving the differences
between individual and environment in different pleoor measurements. Some
previous studies indicated that the level of drowss is proportional with the
increase of alpha and theta rhythms in EEG andk lduration in EOG. Under the
assumption that reaction time of driving performargproportional with the level of

drowsiness, our experimental results showed thatpgbwer of alpha and theta
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rhythms in EEG and blink duration in EOG increasedeed when the level of
drowsiness increased no matter individually suciceeevents or the results of

average sorting including all of the experimentiails$.

In this study, the levels of drowsiness were defin@o two states: alert and
drowsiness. These two states were used to determihesvents of driving
performance were drowsy on not first, and thenbihary classification test was used
to investigate the sensitivity and positive pragietvalue of our algorithm with
different thresholds. Our experimental results VidiiG and EOG signals showed that
“Combination” with factor 0.3xMDT, 0.3xMDA and O.diwration when threshold
was set to 31.5 had the highest value of F-medBuneeasure = 80.91%, sensitivity =
96.15%, and positive predictive value=-69:84%hkigthan the max f-measure value
with only EEG signal used (F=measure = 69.54%)rdved that EOG is an important
parameter to determine useris drowsy or not aimjuso-signals (EEG and EOG) to
detect drowsiness is better than \EEG signal-uséd dowever, the accuracy of our
algorithm for drowsiness detection seems not gomaigh. This can be explained that
each increase of alpha/theta rhythm and blink carathay not correspond to each
drowsy event although the long-term increasingdrehpower of alpha/theta rhythm

and blink duration is proportional with the levéldvowsiness.
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6.2 FutureWorks

In future work, our system could combine with thgity of other physiological
parameters, such as EKG and EMG, to improve boghstemsitivity and positive
predictive value. Besides, a non-linear algorithenfazzy neural network could be
used to make the prediction more precise and iser¢lae accuracy of drowsiness
detection. On the other hand, the portable bioaigtquisition system and DSP
module could be integrated as one device to mir@rtie size of whole system and
reduce the signal distortion result from using Vess transmission. Furthermore,
there is a novel dry foam bio-signal electrode dmyed, fabricated and

experimentally validated in our lab. The dry eled& was shown in Fig. 6-1:

Connected to acquisition
module
Cu adhesion layer (b) T
(a) p j y) | /
41
onductive fabric—>" par
~ AR 8 mm
| I I
LLLL{ ORI ¥fgncr fouen ) A
12 T 13 | | /
=T |—_— V.7 8mm
14 mm

Fig. 6-1: (a) top view, (b) exploded view of th@posed dry foam EEG electrode.
The foam electrode was covered by the conductivedan all surfaces and then
paste on an Au layer.

The major merits of this dry foam electrode incldiokows: (1) It is applied with
zero preparation of scalp, compared to the conweatiwet electrodes, (2) the soft
substrate of dry foam electrode is able to adaptegular scalp surface and the hairy
site, and (3) Its fabrication process is low-cddterefore, compared to the standard

wet electrodes, the proposed dry foam electrodeiged a potential for routine and
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repetitive measurement, and also provided conveajeand comfort for clinical and
research applications. The performance and signalityg of dry electrodes are

introduced below:

A. Impedance M easurements

In order to test the impedance between the skinedgxtrode interface, two dry
electrodes were placed on the forehead (4 cm apaud)then current was applied to
the electrode pair to measure the impedance [4i@ktben tests were performed on
five different participants. Two different electexi were used: One is standard wet
electrode and the other is dry foam electrode. Big(a) showed the impedance
measurement under different conditions. Here, thekbline denotes the impedance
of dry foam electrode pair witheut'skin preparatand conducting gel. Blue and red
lines denote the impedances of, conventional, wettreldes without and with skin
preparation respectively. All-of the“conventionagtvelectrodes were applied with
conduction gels. The results showed. that“the impemidetween the skin and dry
foam electrode without skin preparation and condgcgel is similar to that of the
conventional wet electrode with skin preparatiod aonducting gel. Therefore, the
conduction performance of dry foam electrode odtwared the conventional wet

electrode [48, 49].
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Fig. 6-2: Frequency characteristic of the propasgdfoam electrodes on
(a) forehead and (b) hairy site.

Figure 6-2(b) showed the impedance measurementhemhdiry site. It showed
that, for dry foam electrode, the impedance onhiliey site nearly equals that on the
hairless skin, but that on hairless skin is evevelo Evidently, the foam of dry foam
electrode is soft enough to contact the skin pigpand the fabric layer is very stable.

These properties make the standard skin preparatiorecessary. Certainly, dry
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electrodes will hardly surpass the properties @& tdonventional electrodes with
conduction gel. Fig.6-3 showed the impedance varidor different electrodes under
long-term EEG measurement. For long-term EEG measemnt, the impedance
variation of the conventional wet electrode wittndoction gel is more obvious than
that of dry foam electrode. The impedance variatidndry foam electrode was
observed in the range from 4 k to 26 k, and i©yedcceptable range for normal EEG
measurement [48, 54]. Furthermore, compared tocthreventional wet electrode
under long-term EEG measurement (5 hours), dry fedaotrode can significantly
provide better stability of the skin—electrode irdgece. This result can be explained

by that dry foam electrode does not need conduggbwhich is apt to drying.

30
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Wet electrode with skin preparation
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Fig. 6-3: Impedance variation of dry foam electrade conventional wet electrode
under long-term EEG measurement.

B. Comparison of the Signals between Dry/Wet Electrodes

Fig. 6-4(a) and Fig. 6-4(b) showed the placememid the results of EEG
measurement by using dry/ wet electrode pairsendhations of forehead (F10) and

hairy site (POz) respectively. Fig. 6-4(c) showhkd placements and the results of
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EOG measurement by using different types of eldeiso The correlation between
signals obtained by dry foam electrode and conwaatiwet electrode are typically in
excess of 96.32 %, 92.18 % in the locations ofHHeael and hairy sites respectively.
For EOG measurement, the correlation between E@@als obtained by dry/wet
electrodes is also very significant (in excess @8 %). Therefore, the performance
of bio-potential measurement by using dry foam tetele is almost identical to that

of the conventional wet electrodes.
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EEG measurement on hairy site (POz), and (c) EO&uarement by using different

types of electrodes.
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In the future, we will integrate the dry foam elece with our portable
bio-signal acquisition system to become a more det@pand convenient system.
Using this system could simplify the procedure iof&ignal acquired preparation and
also maintain the stability and make user feel @rstable. Come to a conclusion, our
system is feasible for further extension, and witAbove future works could make
our system more complete and better.
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