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ABSTRACT

Vehicle detection techniques in-visual-based Intelligent Transportation System (ITS)
have been studied for years. However, to detect vehicles in a scene with heavy traffic is still a
challenging problem..In this study, we present a novel automatic vehicle detection system. It
first hypothesize potential locations of vehicles to reduce the computational costs by statistic
of edge intensity and symmetry, then verify the cotrectness of the’hypotheses using AdaBoost
and Probabilistic Decision-Based Neural Network (PDBNN) classifiers, which exploits local
and global features of vehicles respectively. The combination of two classifiers can learn the
complementary relationship amonglocal and global features, and it gains the extremely low
false positive rate while still keeps high detection rate. For proprietary database, a 96.12%
detection rate leads to a false-positive rate of approximately 0.0153%. For the MIT CBCL
database, a 96.3% detection rate leads to a false-positive rate of approximately 0.0013%.

The objective of this study is to extract the characteristic of vehicles in both local- and
global-orientation, and model the implicit invariance of vehicles. This novel approach would
provide a better solution to handle the problems encountered by conventional
background-based detection systems. The experimental results proved the proposed system
achieved a good performance of detecting vehicles without background information. The
implemented system also extracted useful traffic information that can be used for further

processing, like tracking, counting, classification and recognition.
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Chapter 1
Introduction

1.1 Motivation

In recent years, utilizing video processing to help for improving safety or human’s life
has attracted great attention in computer vision. For example, how to improve and control the
traffic condition with advanced techniques is one of the most important missions among the
developed countries. Traditional traffic surveillance systems often use sensors to detect
passing of vehicles and gather simple information or use cameras and manually check the
video when some events happened."Those methods are inefficient in.information extraction
and short of improving. Therefore, visual-based Intelligent Transportation System (ITS) has
attracted great attention/in computer vision recently. For example, video-based automatic
surveillance, behavior analysis for accident prediction, traffic monitoring etc. are presented in
many application systems

For most of these “application systems, foreground object extraction is a very
fundamental and important step before further processing, like tracking, classification and
recognition. In conventional method, background subtraction and temporal difference are
usually used for foreground segmentation. However there are some factors that may affect the
result of foreground segmentation and make foreground detection very challenging.
Background subtraction which relies on built background to extract foreground objects in a
frame is not efficient enough in some circumstances. For example, swaying trees might be
treated as foreground objects, but actually they are not the objects of interesting, moreover,
the background construction relies on the frequent appearance of true information, in other

words, the background is difficult to be built when there is too heavy traffic since the



frequency of foreground is higher than that of background. Though the background
information can be built in advance, it is prone to be tainted by the still vehicles or the heavy
traffic. Temporal difference which relies on the motion and texture of objects fails if the
texture of objects is smooth. Furthermore, it malfunctions when the objects keep still

periodically.

1.2 Objective

The objective of this study is to analyze the characteristic of vehicles in local and global
features. We hope this novel approach would provide a better solution in the field of vehicle
detection to handle the problems encountered by conventional background-based detection
systems. Therefore, we propose to develop a vehicle detection system that has these
characteristics:

1) Can detect vehicles in static images.

2) Can work without background information.

3) Can detect vehicle in.a scene with heavy traffic.

1.3 Organization

This thesis is organized as follows: Chapter II gives an overview of related work about
this research and introduces the research by different modules. Chapter III presents the main
modules of proposed system, and details algorithm used in each module. Chapter IV shows
experimental results and performance comparison. Finally, the conclusions of this study are

stated in Chapter V.



Chapter 2
Related Works

A kind of solution for vehicle detection without background model is the exhaustive
search at all positions in the image. This solution is not satisfactory for real-time applications.
To attack this problem, most of the methods reported in the literature can be decomposed into
two steps as follow.

(1) Hypothesis Generation (H@): this step provides-potential positions of vehicles in a
simple and rapid way resulting in a reduced area to search.

(i1) Hypothesis Verification (HV):residual candidate regions in HG step are verified by
using some complex algorithms to-validate the exact positions of vehicles.

Some researches related with these two steps are/introduced.

2.1 Hypothesis Generation (HG) Methods

Various HG approacheés have been proposed in the literature: The objective of the HG
step is to find candidate vehicle locations in an image quickly so that it can reduce the
computational requirements for further searching. It is generally based on simple, low-level
algorithms which hypothesize potential locations of vehicles. The hypothesized locations
from the HG step form the input to the HV step, where tests are performed to verify the
correctness of the hypotheses. Clearly, the principle of HG is to filter out unqualified
searching windows as many as possible while keeping overall detection rate as high as
possible.

Due to the rear- or frontal-views of vehicles are in general symmetric in horizontal

direction, A. Bensrhair et al. [1], A. Kuehnle [2] and T. Zielke et al. [3] used symmetry, as



one of the main features of artificial objects, to hint the existence of vehicles in their studies.
S.D. Buluswar et al. [4] and D. Guo et al. [5] used color information in RGB and L*a*b space
respectively to segment vehicles from background. Bertozzi et al. [6] proposed a corner-based
method to hypothesize vehicle locations. Matthews et al. [7] used edge detection to find
strong vertical edges. By computing the vertical profile of the edge image (i.e., by
accumulating the pixels in each column) and smoothing using a triangular filter, the local
maximum peaks of the vertical profile cues the left and right borders of a vehicle. Goerick et
al. [8] proposed Local Orientation Coding (LOC) to extract edge information. An image
obtained by this method consists_of 'strings of binary code representing the directional
gray-level variation in the<pixel's neighborhood. These codes carrying essentially edge
information are used assthe hypethesis:;The presence of wehicles .in an image causes local
intensity changes. This property can-be used as 'a cue to .marrow down the search area for
vehicle detection. U. Handmann et al. [9] proposed that the intensity changes follow a certain
texture pattern, and entropy was used as a measure for texture detection. For each image pixel,
a small window was chosen.around it;’and the entropy of that window: was considered as the
entropy of the pixel. Only regions with high entropy were considered for further processing.
Besides, optical flow can provide strong information for HG, €. Demonceaux et al. [10] and
A. Giachetti et al. [11] use optical flow to distinguish motion of any objects including
preceding vehicles from the road motion and segment the objects.

Combining multiple cues should also be explored more actively as a viable means to
develop more reliable and robust systems. The main motivation is that the use of a single cue
suitable for all conceivable scenarios seems to be impossible. Combining different cues has
produced promising results (e.g., combining LOC, entropy, and shadow [9], shape, symmetry,
and shadow [12], color and shape [13], and motion with appearance [14]). Effective fusion

mechanisms as well as cues that are fast and easy to compute are important research issues.



2.2 Hypothesis Verification (HV) Methods

The input to the HV step is the set of hypothesized locations from the HG step. During
HV, tests are performed to verify the correctness of a hypothesis. A. Khammari et al. [15]
classified HV methods into two categories: 1) template-based and 2) appearance-based.

Template-based methods use predefined patterns of the vehicle class and perform a
correlation between an input image and the template. M. Betke et al. [16] proposed a multiple
vehicle detection approach using deformable gray-scale template matching. J. Ferryman et al.
[17] proposed a deformable model formed from manually sampled data using Principal
Component Analysis (PCA). Boththe structure and pose of a vehicle can be recovered by
fitting the PCA model to the image:

Appearance-based‘methods acquire the characteristics of the vehicle class from a set of
training images which capture the variability in vehicle appeéarance. Usually, the variability of
the non-vehicle class 1s also modeled to improve performance. First, each training sample is
represented by a setyof local or global features. Then, the decision beundary between the
vehicle and non-vehicle classes are learned either by training a classifier (e.g., Support Vector
Machine (SVM) [18], Neural Network (NN) [19, 20], etc.) ot by modeling the probability
distribution of the features in each class (e.g., using the Bayes rule assuming Gaussian
distributions [21]). In N. Matthews et al. [7], feature extraction is based on PCA. C. Goerick
et al. [8] used a method called Local Orientation Coding (LOC) to extract edge information.
The histogram of LOC within the area of interest was then fed to a NN for classification. In
[22], wavelet transform was used for feature extraction and Support Vector Machines (SVMs)
was used for classification.

Most research efforts have focused on feature extraction and classification based on
learning and statistical models. Efforts in this direction should continue while capitalizing on

recent advances in the statistical and machine learning areas. Basically, the most important



issue in object detection literature is selecting a good set of features. In most cases, a large
number of features are employed to compensate for the fact that relevant features are
unknown a priori. However, without employing some kind of feature selection strategy, many
of them would be either redundant or even irrelevant which could affect classification
accuracy and efficiency seriously. In general, it is highly desirable to use only those features
that have great separability power while ignoring or paying less attention to the rest. For
instance, to allow a vehicle detector to generalize nicely, it would be nice to exclude features
encoding fine details which might be present in some vehicles only. Finding out what feature
to use for classification/recognition is referred to as feature selection.

R. Wang et al. [23] proposed a vehicle detection system based on local features that are
located within three significant subregions of vehicles. By. combining PCA and Independent
Component Analysis’ (ICA), each ecxamined subregion .is projected onto its associated
eigenspace and independent basis space to generate a PCA weight vector and an ICA
coefficient vector respectively. A likelihood evaluation process is/ then performed based on
the estimated joint probability of the projection weight vectors and the coefficient vectors of
the subregions with pésition information. The use of .subregion position information
minimizes the risk of false acceptances, whereas:the use of PCA to model the low-frequency
components of the eigenspace and ICA to model the high-frequency components of the
residual space improves the tolerance of the detection process toward variations in the
illumination conditions and vehicle pose.

P. Viola and M. J. Jones [24] proposed an original feature selection scheme for object
detection. The approach consists in a cascade of boosted classifiers with increasing
complexity: each layer in the cascade reduces the search zone while rejecting regions that do
not contain interested object. This method uses Haar-like features, also called rectangular

filters (experimented by Papageorgiou et al. [25]), and AdaBoost learning [26], the latter



permits to select a limited number of features in each layer. The use of integral images to
calculate Haar-like features and the cascade approach results in a real-time face-detection
application. This approach has inspired a lot of recent works in vehicle detection.

There are some improvements about the used features, P. Negri et al. [27] combined the
rectangular filters (Haar-like features) and the histograms of oriented gradient (HoG) with
AdaBoost algorithm, The fusion combines the advantages of the other two detectors:
generative classifiers composed of Haar-like features eliminate "easily" negative examples in
the early layers of the cascade, while in the later layers, the discriminative classifiers
composed of HoG features generate.a fine decision boundary removing the negative examples
near the vehicle model, so that the fusion achieved better performances than either feature.

In this study, hypothesis generation-methods based on symmetry and statistic of edge
intensity are used as candidate region filters. Following cascaded Haar feature classifier
refined by AdaBoost algorithm is used as first hypothesis verification method, and plays the
role of vehicle detector. Then, a probabilistic variant of decision-based neural network [19, 20]
is used as second hypothesis verification method and a target verifier;;which reduces a great
deal of false positive. It can be.observed that the nature and decision boundary of former
differ from those of latter: “the formerwis-local=feature -oriented, whereas the latter is
global-feature oriented. We think that these two kinds of classifiers can be complementary

when dealing with the problem.



Chapter 3
Vehicle Detection System

In this chapter, the proposed system structure is defined. The system structure is
composed of five sub-systems: pre-processing, candidate region filtering, vehicle detection,
target validation and post-processing. Section 3.1 demonstrates the diagram of global system,
which shows five sub-systems and their key modules. Section 3.2 illustrates the candidate
region filters and quantitative performance of the sub-system. Section 3.3 describes the origin
of using AdaBoost classifiers and details AdaBoost classifier. Section 3.4 introduces the
concept of combining, two  classifiers, and details Probabilistic \Decision-Based Neural
Network (PDBNN) classifier. Section-3.5 illustrates the two algorithms used for adapting the

size of candidate windows and removing redundant detected windows respectively.

3.1 System Overview

At first, pre-processing module directly uses the raw data of surveillance video as inputs.
This sub-system transforms the raw colorimage.into'a gray level image, for acceleration, the
gray level image is downsized by a simple interpolation algorithm. Sobel edge operation is
applied on raw-size gray level image to preserve detailed edge intensity of the image, then the
edge intensity image is resized by the same interpolation algorithm to generate downsized
edge intensity image as the input of next sub-system: candidate region (CR) filtering. After
filtering out unqualified regions by CR filters, the residual positions of downsized gray level
image that might contain interested objects are examined and located by AdaBoost classifier.
Next, these positions are verified by PDBNN classifier based on probability estimation to

confirm the existence of interested objects. Finally, the post-processing deals with redundant



detected overlapping windows belong to the same object and results in exact locations of the

objects. The diagram of global system is shown in Figure 3-1.
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Fig. 3-1 System diagram



3.2 Candidate Region (CR) Filtering

In this research, Candidate Region (CR) filters are the alias of hypothesis generation (HG)
methods. Based on simple, fast and low-level algorithms, the purpose of CR filtering is to
eliminate regions which are affirmed to be no object present, so the potential locations of
vehicles are hypothesized, as a result, the follow-up hypothesis verification (HV) steps, (i.e.
vehicle detection and target validation in this research) can focus on those regions which are
likely to contain interested objects. This step reduces a great deal of computation, and can
lower the false positive rate simultaneously. As mentioned in section 2.1, the principle of
candidate region filtering is to filter'out unqualified searching windows as many as possible
while keeping overall detection rate as high as possible, so the rule of determining thresholds

tends to be conservative.

3.2.1 Statistic Filter

By a simple statistical method, the rational edge intensity /distributions of interested
objects can be estimatedytherefore, candidate regions whose texture is too sparse or too dense
can be filtered out rapidly. The distribution of the edge intensity statistic and the threshold for

the scope are shown in Figure 3-2.
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Fig. 3-2 The scope of edge intensity statistic
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As shown in Figure 3-2, the edge intensity distribution of positive samples (vehicle) is
approximate a Gaussian distribution. So the lower and upper thresholds can be obtained by
mean and standard deviation of this Gaussian distribution with Equation 3-1 and 3-2.

Threshold = Mean -3 * STDEV (3-1)

lower

Threshold = Mean + 3 * STDEV (3-2)

upper
where Mean and STDEV are mean and standard deviation of the Gaussian distribution
respectively. It has the nice property that a known percentage of all possible values of data lie
within a certain number of standard deviations from the mean. Theoretically, 99.7% of the

rates will fall within plus of minus 3 standard deviations.from the'mean.

3.2.2 Symmetry Filter

Lower parts of vehicles are visually symmetric and textured,| see Figure 3-3, so the
symmetry degree of candidate regioncan be used to hypothesize whether the candidate region
should contain a vehicle or not. By accumulating the histogram of intensity (Hol) vertically
and horizontally, the rough dégree of symmetry can be obtained with the formula in Equation
3-3.

ANB

Degree(A=B) = AUB

(3-3)

where A is the measure of left half Hol, and B is the measure of right half Hol. By a statistical
method, the threshold of minimum symmetry degree which a vehicle should hold can be
obtained. As shown in Figure 3-4, any region of interest with symmetry degree below the
threshold is kicked out. Figure 3-5 sketches the eliminated searching scope (marked with red
areas) of CR filtering in scenes with (a) light traffic and .(b) heavy traffic.respectively.

The quantative performance of these two candidate region filters, estimated in cluttered

11



and uncluttered conditions, is shown in Table 3-1. Though the utilized CR filters tend to be

conservative, the CR filters can narrow down 60% of search area in best-case scenarios.

:I : Eliminated scope

Fig. 3-4 The statistic scope of symmetry
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(a) (b)

Fig. 3-5 The eliminated search scope of CR filtering

Tab. 3-1 The performance of CR filters

Type of Candidate Region | Rejection Rate of Rejection Rate of

Filter Uncluttered Negative Cluttered Negative
Samples Samples

Statistic filter 61.15% 18.55%

Symmetry filter 65.55% 21.84%

3.3 Vehicle Detection using AdaBoost

This sub-system is the main process of entire system, as mentioned in 2.2, most research
efforts have focused on feature extraction and classification by learning and statistical models,
the most important issue in object detection literature is selecting a suitable set of features
which can be the representation and soundly express the implicit invariant of interested
objects. An intuitive method of feature extraction is to focus on the common components of
interested objects. Any perceptual characteristic such as color, edge, texture, entropy,
symmetry, ... etc. can be used as a feature solely or cooperatively. Though this method is easy
to imagine and implement, it has its own limits. One of the limitations is that the manually
chosen features are inferior in both value and quantity. Besides, the manually chosen features
tend to apparent, moreover, the physical nature of human’s perception is usually not steady

enough to stand for the interested objects. So, it can be explained that the efforts of feature

13



extraction have turned to the statistical and machine learning areas.

The famous AdaBoost algorithm proposed by Y. Freund et al. [26] is one of machine
learning techniques and has been progressed for pattern recognition rapidly and widely.
AdaBoost combines weak classifiers into a weighted voting machine, and it shows high
performance in various fields. P. Viola et al [29] built an efficient moving person detector,
using AdaBoost to train a chain of progressively more complex region rejection rules based
on Haar-like wavelets and space-time differences. In P. Viola, M. J. Jones [24], AdaBoost is
applied to face detection and yields best performance comparable to the previous systems. A.
Khammari et al. [15] and P. Negri-[27] proposed the applications of AdaBoost in vehicle
detection, both researches demonstrate the results through few proprietary examples, the
former does not report any quantitative performance,. the latter provides quantitative
performances of proprietary databases.

Originally, the proposed system imitated the'idea of face detection. Windshield, lamps
and back mirrors of a vehicle can be'regarded as forehead, eyes and ears of a human face. Due
to this perceptual imagination, the proposed system.intended to' medel vehicles out of a
mixture of Gaussian distributions trained by Probabilistic Decision-Based Neural Network
(PDBNN), which will be introduced in 3:5:1.-The model preserves the characteristics of a
vehicle, including shape of entire body, windshield and hood. It should be mentioned that the
significance of vertical edges is overwhelmed by that of horizontal edges, as a result, the built
model is very sensitive to regions with horizontal texture. This is induced by the property of
neutralization, It is observed that the features trained by PDBNN tend to ignore the local
structure, the detail of geometrical patterns. The property of neutralized features can be
defined as global-orientation. Besides, compare with the geometrical structure of a face
(PDBNN was applied to face detection and recognition in S.H. Lin et al. [20]), the structure of

a frontal-view vehicle is more complicated. The main characteristics of vehicles vary on color,
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shape of whole body, lamps or windshield, such that the features are neutralized in built
Gaussian models, and the influence on vehicle models is more notable than that on face
models. To give considerations to the local structure of vehicles, any classifier with
local-oriented nature is preferred, AdaBoost classifier (will be introduced in 3.4.1~3.4.4) has
exhibited its robustness in object detection and definitely aiming at local structure, so it is

chosen to make up the flaw of PDBNN classifier in this study.

3.3.1 Haar Features (Rectangle Features)

Haar basis functions (Haar "features) used by. Papageorgiou et al. [28] provide
information about the grey-level distribution of two or more adjacent regions in an image.
Figure 3-6 shows a set of simple Haar features. These. features consist of two to four
rectangles. To compute the output-of-a-Haar basis-function on‘a certain.region of image, the
sum of all pixels intensity in the black region is subtracted from the sum-of all pixels intensity
in the white one andnormalized by'a coefficient in case of a filter;whose square measures of
white and black regions are different. To reduce computation time for the filters, P. Viola et al.
[24] introduced the integral'image which is an intermediate fepresentation for an input image.
The concept of integral image is illustrated in Figure 3-7(a), the value of the integral image at
point (X, y) is the sum of all the pixels above and to the left. In Figure 3-7(b), the sum of the
pixels within rectangle D can be computed with four array references. The value of the
integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is
A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be
computed as 4 + 1 — (2 + 3). Utilizing integral images, sum of a rectangular region can be
calculated by using only four references in the integral image. As a result, the difference of
two adjacent rectangular regions can be computed by using only six references in the integral

image, eight in the case of the three-rectangle filters, and nine for four-rectangle filters.
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Every feature j is defined as fj(r;j, wj, hj, Xj, y;), where 1; is the type of Haar feature, w; and
h; are width and height of the Haar feature, and (x;j, yj) is its position in the window.

value = f(r,w,h,x,y), is the weighted sum of the pixels in white rectangles subtracted

subtracted

from those of dark rectangles.

10 - =
i

Fig. 3-6 The common used Haar features
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Fig. 3-7 Integral image

3.3.2 Weak Classifier

A weak classifier h consists of a rectangle feature f (defined in 3.3.1), a threshold (0) and

a polarity (p) indicating the direction of the inequality in Equation 3-4.
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1 if p.f.<p0
h_{ pJ J pJ J (3_4)

o otherwise

where fj is the absolute value (valuespiractea) Of the feature j, 6; is the threshold, and p; is the
parity. For each feature j, AdaBoost algorithm (will be introduced in 3.3.3) is used to
determine an optimal threshold 6; for which the classification error on training database (with
positive and negative samples) is minimized. The brute force threshold selection for weak
classifiers is illustrated in Figure 3-8. By selecting the threshold, the blue points (positive

samples) and red points (negative samples) can be separated with a lowest classification error.

— Vehicle
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Fig. 3-8 Select thresholds for weak classifiers
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3.3.3 AdaBoost Algorithm

The size of feature set originated from the permutation of Haar feature types, scales and
positions, is many times greater than the number of pixels in the input image. Even through
each rectangle feature can be computed very efficiently, computing the complete set is
prohibitively expensive. There are some features from this set do not contain useful
information. In literature, different methods have been used for the selection of useful features,
e.g. Principal Component Analysis (PCA) used in [17, 22, 23], Independent Component
Analysis (ICA) used in [23], and so forth. Among these methods, AdaBoost algorithm has
shown its capability to improve the performance of wvarious classification and detection
systems. It finds precise hypotheses by combining several weak classifiers which, in general,
have moderate precision. This giterative. algorithm finds some weak but discriminative

classifiers and combings them in a strong classifier which is.defined in Equation 3-5.

T 1 T
0= 1 gatht(x)zzgm (3-5)

0 otherwise

where h and C are the weak and strong classifiers; respectively; and o is a weight coefficient
for each h.

Consider a 2D feature space /with positive and negative training samples. Each weak
classifier splits the training examples with at least 50% accuracy. As shown in Figure 3-9(a) ,
samples misclassified by a previous weak learner are given more emphasis at future rounds.
The process of selecting a weak classifier is shown in Figure 3-9(b)(c)(d)(e)(f)(g), as shown in
Figure 3-9(b), the misclassified blue points (positive samples) in left side of the black line and
red points (negative samples) in right side of the black line are emphasized in the next round
shown in Figure 3-9(c), similarly, the misclassified blue points in right side of the black line
and red points in left side of the black line are emphasized in the next round, as shown in

Figure 3-9(d) and Figure 3-9(e). Finally, the strong classifier is form with a linear
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combination of weak classifiers shown in Figure 3-9(g), and the boosting algorithm for

selecting a set of weak classifiers to compose a strong classifier is shown in Table 3-2.

@ @ ‘Weights = I.
Weak @ @ Increased \i\._:.\.
Classifier 1 ® ____=- ° .
® e Weak ' @
@ e Classifier 2 —— @
Weak 5
ifier \ .
classifier 3 -| P
\
°'o ©
1

Final classifier is 1 @

linear combination of ."‘.

weak classifiers

e

(d) (e)

L} ke

® (2

Fig. 3-9 The process of selecting a weak classifier
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Tab. 3-2 The boosting algorithm for learning a query online.

T hypotheses are constructed each using a single feature. The final hypothesis
is a weighted linear combination of the T hypotheses where the weights are
inversely proportional to the training errors.
« Given example images (X1, y1), . - . , (Xn, Yn) Where y; = 0, 1 for negative
and positive examples respectively.
1 1

+ Initialize weights "oam’2l for y; = 0, 1 respectively, where m and 1
are the number of negatives and positives respectively.
« Fort=1,...,T:
- Normalize the weights,

Wt,i

S w

j=1 bl

- Select the best weak classifier with respect to the weighted error
& = minf,p,a Zwi|h(xi’ f,p,0)- yi|

Wt,i <~

- Define hy(x) = h(x, f;, p, 6;) where f; ,p; ,and 0, are the minimizers of
Et.
- Update the weights:

_ 1-¢;
Wt+l,i - Wt,iﬂt
where e; = 0 if example x; 1s classified correctly, e; = 1 otherwise,
p=-2
t

and
+ The final strong classifier is:

T 1T
1 ah(X)>2=> a
cw-{  ZANO2

0 otherwise

1
where o, =log—

t

=1—5t

3.3.4 Strong Classifier

A strong classifier is a stage composed of at least one weak classifier. The cascade of

these stages is also constructed by AdaBoost algorithm, described in Table 3-3. In each stage,
if an object extracted by the searching window is classified as vehicle, it is allowed to enter
the next stage; otherwise, the object is rejected immediately. In brief, an object labeled as

vehicle should pass through a series of stages; an object is rejected by particular stage even if
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it enters the last stage. Figure 3-10 demonstrates the schema of a detection cascade.

Tab. 3-3 The training algorithm for building a cascaded detector.

« User selects values for f, the maximum acceptable false positive rate per
layer and d, the minimum acceptable detection rate per layer.

+ User selects target overall false positive rate, Fiarget.

« P =set of positive examples

+ N = set of negative examples

° FOZI.O;DOZI.O

« 1=0

+ while F; > Fiarget
- 1 <1+1
- n=0;Fi=F

-  while F;>f x Fi,
onmo< i+l
*  Use P and N to train a classifier with ni features using AdaBoost
*  Evaluate current cascaded classifier on validation set to determine
Fi and D..
*  Decrease threshold for the ith classifier until the current cascaded
classifier has a detection rate of at least d x Di.; (this also affects
Fi)
- N <0
= If F; > Fiarget then evaluate the current cascaded detector on the set of
non-face images and put any false detections into the set N

All Sub-windows

F F
Qject Sub-wiudoD

Fig. 3-10 A detection cascade.
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3.4 Target Validation using PDBNN

Neural networks learn the classification rules from the given collection of representative
examples. This ability to automatically learn from examples makes neural network
approaches attractive and exciting. Moreover, it is well known that neural networks are very
robust and adaptive. By estimating the maximum likelihood on the features of images (edge
intensity is used as the main feature of vehicles in this study), the likelihood density of the
object class can be obtained. PDBNN is applied to face detection and recognition in S.H. Lin
[20], which is a probabilistic variant of its predecessor, decision-based neural network
(DBNN) [19]. DBNN is an efficient:classification neural-network. It has a modular network
structure. One subnet is designated to represent one object class.

As mentioned in 3.3, AdaBoost classifiers are good at recognizing local features while
PDBNN classifiers are good at global features. Previous research has revealed that the
decision boundary of an AdaBoost classifier is a hyper plane, which is illustrated in P. Negri
et al. [27], testing samples are categorized by their position in the feature,space with respect to
this hyper plane, as shown in Fig 3-11(a). Moreover, [20] proved that the decision boundary
of a PDBNN classifier exhibits the similar appearance as shown:in Figure 3-11(b). Testing
samples are compared to a PDBNN classifier and categorized by their similarity, the idea of

fusing two classifiers with different characteristics is consequently inspired.

T
——
= =
=

(a) (b)

Fig. 3-11 Decision boundaries of AdaBoost and PDBNN classifiers
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3.4.1 Conception of PDBNN

PDBNN assumes that the class likelihood function for the interested object class (i.e.
vehicle class) can be represented by a mixture of Gaussian distributions. The training scheme
of these Gaussian distributions includes two phases: 1) locally unsupervised (LU) phase and 2)
globally supervised (GS) phase.

The values of the parameters so-called weight vector in the network are initialized in LU
learning phase. An unsupervised clustering algorithm: k-means, is applied to segment the
training samples of object class into several clusters and determine initial positions of the
cluster centroids, then the expectationsmaximization (EM) algorithm [30] is used to learn the
cluster parameters of object-¢lass, obtain maximum likelihood estimation (MLE) of the data
distribution, and determine the parameters of Gaussian distributions;.demonstrated in Figure
3-12(a). In the global supervised (GS) training phase, two sets of patterns (i.e. both positive
and negative samples) are involved, as shown in Figure 3-12(b), teacher information is
utilized to fine-tune_the decision boundary which is determined by a threshold. When a
training pattern is misclassified, the reinforced or antireinforced learning technique [19] is
applied. If the misclassified training pattern is from the positive training (i.e. vehicle) set (the
training data set in the LU phase), reinforced.learning will be applied to adjust the subnet
parameters and the boundary by updating the weight vector in the direction of the gradient of
the discriminant function. If the training pattern belongs to the so-called negative training (i.e.
non-vehicle) set, then the anti-reinforced learning rule will be executed to adjust only the
boundary in the opposite direction of the gradient of the discriminant function, illustrated in

Figure 3-12(c)(d).
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3.4.2 Discriminant Functions of PDBNN

The subnet discriminant functions of PDBNN aresdesigned to model the log-likelihood
functions. The reinforced and antire¢inforced learning is applied to all the clusters of the global

winner and the supposed (i.e., the correct) winner, with a weighting distribution proportional
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Fig. 3-12"" The diagram of PDBNN learning

to the degree of possible involvement (measured by the likelihood) by each cluster.

Given a set of identical independent distributed patterns X' = {x(t), t = 1, 2, ... , N}.
Assume the class likelihood function p(x(t)|®) for class ® (i.e. vehicle class) is a mixture of

Gaussian distributions. Define p(x(t)|®,®;) to be one of the Gaussian distributions

p(x(t)|®,0r) = N(pr, Z)

p(x(t)| @) = X P(®, | @) p(x(1) | »,0,)

24

(3-6)




where O, represents the rth cluster in the subnet. P(®,/®w) denotes the prior probability of
cluster r. By definition X, P(®,/w) = 1.

The discriminant function of one-subnet PDBNN models the log-likelihood function

F(X(1), W) = log p(x(t) | @) = log[Y_P(®, | @) p(x(t) | »,0,)] (3-7)
where
w={4,,%,.PO, |0).T}. (3-8)

T is the threshold of the subnet. It will be used in the GS learning phase. The overall diagram
of such discriminant function is depicted in Figure 3-13.

In most general formulation, the basis function of a cluster should be able to approximate
the Gaussian distribution with full-rank covariance matrix. A hyper=basis function (Hyper BF)
is meant for this [31]. However, for-those applications which deal with high-dimensional data
but finite number of training patterns, the training performance and storage space discourage
such matrix modeling. A natural simplifying assumption is to assume uncorrelated features of
unequal importance. That is, suppose that p(x|w,0,).1s.a D-dimensional-Gaussian distribution

with uncorrelated features

p(X(t) | 0,0,) = — V2 ZM> N(,.5,) (3-9)
(27[)0/21—[0 293 O'rd
d

where x(t) = [x;(t), xa2(t), ..., xD(t)]T is the input pattern, (£ = [Wr1, W2, ..., er]T is the mean

vector, and diagonal matrix Y., = diag[c;,,0,,....,0] is the covariance matrix.

To approximate the density function in Equation 3-9, the elliptic basis functions (EBF’s)

is to serve as the basis function for each cluster
1 & 5
W(X(t)7w=®r):_52ﬂrd (Xd (t)_wrd) +‘9r (3'10)
=1

where
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D D
0 =—Eln27z—21n0',d (3-11)

r
d=1

After passing an exponential activation function, exp{ ¢ (x(t), @, ©;)} can be viewed the

same Gaussian distribution as described in Equation 3-9, where 1/f,, = o,

Positive
Negative
>0?/ § >

N

Threshold

p(O,|w) e r_ ‘ e p(9,;|w)

p(x|w,©,) p(x| w,8,)

AT

Vehicleclass

Input pattern x

Fig. 3-13 The diagram of a PDBNN classifier

3.4.3 Learning Rules for PDBNN

As mentioned in 3.4.1, the training scheme for PDBNN contains LU and GS phases. The
locally unsupervised (LU) phase for the PDBNN can adopt one of the unsupervised learning
schemes (e.g., VQ, k-means, EM, ...etc.). The network enters the globally supervised (GS)
phase after the LU training is converged. For the GS learning, the decision-based learning rule
is adopted. Both training phases need several epochs to converge. The training phases are

introduced as follows:
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3.4.3.1. Unsupervised Training for LU Learning

The values of the parameters in the network are initialized in the LU learning phase. The
well-known unsupervised clustering algorithm, k-means, and the expectation-maximization
(EM) algorithm are used to learn the cluster parameters of object class, obtain maximum
likelihood estimation (MLE) of the data distribution, and initialize the parameters of clusters
modeled by several Gaussian distributions.

The k-means method adjusts the center of a cluster based on the distance [|x - £ |* of its

neighboring pattern x. Basically k-means algorithm assumes that the covariance matrix of a

cluster i is 1. An iteration of thé k-means algorithm'in.the LU phase contains two steps:

first, all the input patterns<are examined to find out their closest cluster centers. Then, each
cluster center are moved to the mean of'its neighboring patterns.

The EM algorithm is a special-kind of quasi-Newton algorithm withra searching direction
having a positive projection on the gradient of the log likelthood. In each EM iteration, there
are two steps: Estimation (E) step and Maximization (M) step. /The M step maximizes a
likelihood function which is further refined in each iteration by the E step. The EM algorithm

in the LU phase is as follows [32].. Use the data set X = {x(t);X(t) € w,t =1,2,...,N}. The

goal of the EM learning is to maximize the log likelihood of data set X"
N N
l(w; X ) = > log p(x(t) | @) = Y log[ > P(®, |@)p(x(1) | ©,, )] (3-12)
t=1 t=1 r

The EM algorithm begins with the observation that the optimization of the likelihood
function 1(w; X") would be simplified if only a set of additional variables, called “missing” or
“hidden” variables, were known. In order to include the missing information into the
optimization formula, here the indicator variables z(t) are defined to specify which cluster

generate the pattern
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1, if pattern x(t) is from cluster r
2.(t) = {0 patemn x(® (3-13)

otherwise.

The observable data X is defined as “the incomplete data” and posit a “complete data”
set Y that includes the missing variables Z. The probability model p(y|x, ®) is used to link the
missing variables to the actual data. The logarithm of this density defines the "complete-data

likelthood"

lL(W; X ") =) >z, (t)log[P(®, | @) p(X(t) | O,,w)]
e (3-14)

=Y > 7, ()[logP(O, | w) +log(P(x(t) | O, )]

t=1 r
Since z(t) indicates which cluster the input pattern belongs to, the log operator and the
second summation can be exchanged. The optimization has been decomposed into several
subproblems. Notice that since the indicator variable z(t) is-actually unknown, in the E step of

the jth iteration of thesEM algorithm the expectation of the complete-datailikelihood is taken.
Q(w,w' ") = Efl.(w; X )| X, 0, ] (3-15)

For simplicity sake, theshotation of theexpectation-is changed to the following:

Qw,w)=EPV > 3 7, (H)log P(O, | @) +log( p(X(t)| Oy, @)]]
o (3-16)

= > > hP(®[logP(O, | ) +log(p(X(t) | Oy, ®)]

where p?(x(t)|©,,0) = N(u",Z) and

hlfj)(t)E E(J)[Zr(t)]
=PP(z,(t) =1| x(t), ®)
_PP(z,)=10)p? (x| ®,7,(t) =1)
) PO (X(t) | @)
_ PP, |o)p” x1)| »,0,)

Y PO, |o)p? (x(t)| 0,0,)

(3.17)

w? represents the parameter set in the PDBNN at epoch j. After the Expectation step, in the
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M step of the EM algorithm, Q(w, WG)) 1s maximized with respect to weighting parameters.

There are two operations taken in an iteration of the EM algorithm. At iteration j. 1)
E-step: computing the conditional posterior probabilities h'’(t), Vr

|:)(i)(®r |a))p”)(x(t) | a)’®r)
Zp(i)(@k |a))p”)(x(t) | a)’®r)

h:j)(t)z (3-18)

2) M-step: maximizing Q(w, w?) with respecttow (Reference to Equation 3-8)

PUN(@, |w) = (1/ N)ZN:hf”(t)

t=1

10 = 1/ hO ) h K
t=1 t=1 (3-19)

U = (1 3 )P O ~ i [x@) g T
t=1 t=1
Since the threshold will not affect-the likelihood value; it is not updated here. When the
EM iteration converges, it should ideally obtain maximum likelihood estimation (MLE) of the
data distribution. EM has been reported to-deliver excellent performance in several data

clustering problems [32].

3.4.3.2.  Supervised Training for GS Learning

In the global supervised (GS) training phase, teacher information is utilized to fine-tune
decision boundaries. When a training pattern is misclassified, the reinforced or antireinforced
learning technique [19] is applied.

Reinforced learning: w'*" =w" 4+ »V g(x, w)

Antireinforced learning: w9 = w9 — 7V g(x, w) (3-20)

In this training phase, two sets of patterns are involved. If the misclassified training
pattern is from the positive training (i.e., vehicle) set (the data set X  in the LU phase),

reinforced learning will be applied. If the training pattern belongs to the so-called negative
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training (i.e., non-vehicle) set, then only the anti-reinforced learning rule will be executed -
since there is no correct class to be reinforced.

The gradient vectors in Equation 3-20 are computed as follows:

IP(X(1), W)
ow, |(w=w? (3-21)

=00 B (6 (0 - W)

IP(x(1), W)
aﬂrd W= W(j)
1

—hWM l - —_ w2
=h{(t) 2(ﬂr(dj) (Xg (O =Wig')")

(3-22)

where h'V(t) is the conditional.posterior probability as shown. in Equation 3-18, w) and

B are defined in Equation 3-9:and-Equation 3-10, respectively. As.to the conditional prior
probability P(®, |w), since the EM algorithm can automatically satisfy the probabilistic

constraints Z P(O/Jlw)=1 and P(O, |@) =0, 1tis applied to'update'the P(®, |w) values

in the GS phase so that the influence of different-clustersrare regulated: At the end of each

epoch j

PU(©, |w)=(1/ N)i h() (3-23)

t=l1

3.4.3.3. Threshold Updating

The threshold value of PDBNN classifier can also be learned by the reinforced and

antireinforced learning rules. Since the increment of the discriminant function @(X(t),w) and

the decrement of the threshold T have the same effect on the decision making process, the
direction of the reinforced and anti-reinforced learning for the threshold is the opposite of the

one for the discriminant function. For example, given an input x(t), if X(t)ew but
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d(X(t),w) <T,then T should reduce its value. On the other hand, if x(t) ¢ @ but @(x(t),w)

> T, then T should increase. An adaptive learning rule to train the threshold T is illustrated in
the following: Define d(t) =T —¢(x(t),w) and a penalty function I(d(t)), 1(d(t)) can be
either a step function, a linear function, or a fuzzy-decision sigmoidal function. Once the
network finishes the training, the threshold values can be trained as follows: Given a positive

learning parameter 7, at step j

TU {T(” -pl'@d(t)) if x(t)ew (3-24)

TO 4ql'd@)) if xt)ew
Figure 3-12 illustrates the testing procedure of;a PDBNN classifier. The input testing

data is estimated the probability of its belonging to the mixture Gaussian model, and

discriminated by the threshold which is-also learned by PDBNN.

3.5 Adaptive:Candidate Window and Redundant Detected

Window Removal

The size of candidate regions is perspectively enlarged along the vertical direction, see
Figure 3-14, so the respective size of candidate region can'be represented as a linear equation.
According to the initial window sizes of a distant and a near place, the perspective window

size can be estimated by interpolation defined in Equation 3-25.
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¥

Fig. 3-14 Adaptive candidate window
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yt_y0=Wt_W0 ht_ho
Yi—=Yy W, -w, h-h

(3-25)

In general, each successful vehicle detection result usually leads to the creation of
redundant detected candidate windows. To resolve this problem, the schemes presented in [33]
combined all of the overlapping candidate windows together and still maintained a good
detection performance. However, the non-overlapping window constraint may be too strict for

closely spaced targets since they ineyita enerate overlapping candidate windows. To

Fig. 3-15 Overlapping detected windows
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Chapter 4
Experimental Results

The vehicle detection system is implemented on a PC system and the equipment of the
PC is Intel(R) CPU @ 1.73G and 2GB RAM. The integrated development environment is
Borland C++ Builder 6.0 on Windows XP OS. The inputs are video files (AVI uncompressed
format) or image sequences (BMP or PPM format). These inputs were captured with a DV at
traffic intersection or referred to testing samples which were used by other research.

Section 4.1 illustrates the process of training the two classifiers, including the principles
of building proprietary/vehicle database; and the criterion.of collected samples. Section 4.2
illustrates the approach to test the~built model. Section 4.3 demonstrates the experimental
results of detecting_vehicles in static images. The first testing database is proprietary car
database and the second one is a public testing database - MIT CBCL ear database 1999. The
performance of AdaBoost classifier ‘and the fusion (AdaBoost + PDBNN) is listed and

compared. Section 4.3 demonstrates the experimental results/of detecting vehicles in videos.

4.1 Model Training

The proposed vehicle detection system based on machine learning algorithms comprises
training processes and testing processes. Sample collection and feature extraction are the keys
of object detection and classification. To build the proposed system, first, the common
components of vehicles must be determined (e.g., windshield, lamps, roof, wheels, ... etc.), the
basis of collecting samples is retaining these common parts and keeping out unnecessary parts
to reduce the interference of noise, as a result, the images are tightly cropped. Second, the

manually collected samples are usually not uniform in size, point of view and illumination
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condition, a normalization process is necessary, so that an identical criterion is set before the

samples enter in training or testing step.

4.1.1 Training Dataset

The study considers the specific application of a vehicle counting system at the
intersection, The proposed system presently focuses on frontal views of small vehicles such as
sedans, sport-utility vehicles (SUVs), and minivans, which are the majority of traffic. The
collected images of proprietary database were cut out from proprietary videos captured by a
hand-held camera in daytime or eatly evening. The captured sources contain several scenes,
most of these scenes are captured at the intersection, so stop-and-go traffic becomes a general
case in this study. While collecting-vehicle samples, the pose ‘of captured cars is limited to
frontal-views and the angle tolerance of pan-rotation range is about +£20°. Figure 4-1
demonstrates the diagram of extracting samples from video frames. Roof, windshield, lamps,
back mirrors are the main characteristics'chosen to recognize a vehicle inrproposed system. So,
all manually extracted'vehicle samples should contain these components without occlusion. In
crowded scenes, a vehicle is sometimes, even always occluded by other vehicles, so a
following vehicle will not be a qualified sample till the preceding vehicle moves over. As a
result, the sizes of extracted samples are inconsistent. The average width and height of
collected 2344 vehicle samples are 61 x 53. For normalization, the samples can be resized in

an equivalent ratio. Figure 4-2 demonstrates the collected vehicle and non-vehicle samples.
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(b) Negative samples (non-vehicles)

Fig. 4-2 Proprietary samples
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4.1.2 AdaBoost Training

In this study, the raw input of AdaBoost training process is the gray level information of
2009 vehicle images and 11090 non-vehicle images from the proprietary database. The gray
level information is normalized to a uniform size 21 x 18 without any further processing. The
weak classifiers are the permutations of the type, positions and scale of 9 Haar features, as
shown in Figure 3-6, unlike previous research, the scale of Haar features is increased in a
brute force manner, i.e. the size of Haar features is from 2 x 2 to 21 x 18 progressively, as a
result, the weak classifier learner yielded 289170 weak classifiers. The final classifier is a 3
layer cascade of classifiers which included a total of 940 weak classifiers. The first classifier
in the cascade is constructediusing 35 weak classifiers and rejects about 51% of non-vehicles
while correctly detecting.100% of-vehicles. The next classifier has. 130 weak classifiers and
rejects about 77% of non-vehicles while detecting 100% of faces. The last layer is a
765-feature classifier with a 100% detection rate and rejects about 87% of non-vehicles. The
training process was_terminated due to-non-convergence, i.e. the boosting algorithm was

unable to find anymore-a weak classifier which is capable to obtain anerror rate below 50%.

4.1.3 PDBNN Training

Due to the color or brightness of vehicles varies, edge intensity is the only feature used
for PDBNN training, the raw input of PDBNN training process is the edge intensity
information of 2009 vehicle images and 11090 non-vehicle images (same as those used in
AdaBoost training) from the proprietary database. The edge intensity information is obtained
from Sobel operator, and normalized to a uniform size 21 x 18 without any further processing.
The training process finished while the false negative rate and false positive rate reached the
expected thresholds, which are 98 %. The schema of training AdaBoost classifier and

PDBNN classifier is shown in Figure 4-3.
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Fig. 4-3 The flow chart of model training

4.2 Model Testing

The model testing can be categorized to 1) static-images and 2) videos. For the case of
static images, two databases (proprietary and MIT CBCL 1999) are used for performance
testing. The vehicle samples of proprietary database are tightly cropped to fit the size of
vehicles, so the images are normalized to the same dimension‘and feature space (gray level or
edge intensity) as the trained: models’, -and. compared with the models without redundant
candidate regions. In MIT CBCL database, the size of vehicles are not fit to the size of images,
so there are numerous candidate regions in a single image to be examined by the built
classifiers, and these candidate regions are normalized to the same dimension and feature
space before inputted to the classifiers. For the case of videos, every single frame is treated as
a static image, and the size of video frames is 320 x 240, which is much larger than the size of
collected samples, so the testing procedure of video is similar to that of MIT CBCL database.

Figure 4-4 illustrates the sketch of testing the proposed system.
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4.3 Results of-Detecting Vehicles in Static Images

4.3.1 Proprietary Car Database

There are 2344 positive samples (vehicle) and 30694 negative samples (non-vehicle)
manually cut from proprietary video files. The positive samples comprise frontal-viewed
images of typical cars, sport-utility vehicles'(SUVSs), and minivans.

The examples of positive and negative samples are shown in Figure 4-2. Both positive
and negative samples are randomly divided into training and testing sets. The criteria of
performance measurement are defined in Equation 4.1 and 4.2. The comparison of AdaBoost
classifier, PDBNN classifier, and the fusion is shown in Table 4-1.

It is shown in the experimental result that the combination of two classifiers can learn the
complementary relationship among local and global features, and it gains the extremely low

false alarm rate and still keeps high detection rate.
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Tab. 4-1 Performance comparison (proprietary car database)

AdaBoost PDBNN AdaBoost Classifier
Classifier Classifier + PDBNN Classifier
Detection Rate 98.8% 96.12% 96.12%
(Recall)
False Positive 1.2804% 0.8111% 0.0153%
Rate
Training time 7200 min 20 min 7200 min

Detection Rate = Re call = Number of dectected vehicles @1

Total number of vehicles in testing data set

Number:' of /false alarms
Total. number of nonvehicles windows in testing data set
4.2)

False — Positive Rate =

4.3.2 MIT CBCL Car Database 1999

In the database, each image was extracted from raw data and was scaled to the size
128x128 and aligned 'so.that the car was'in the center of the image; the size of the cars is such
that the front or rear bumper is-approximately 64 pixels across. The data is presented without
any normalization. Figure 4-5 shows the experimental results. There are few researches that
provided the experimental result of public frontal-viewed car database. So far, R. Wang et al.
[23] provided their experimental result of MIT car database, so, we compared the
experimental result of [23] with that of the proposed system, and the comparison results are
presented in Table 4-2. The proposed approach outperforms the method in [23] with average

detection rates of 95% as well as the false positive rate of 0.002%.
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Fig. 4-5 Experimental results of MIT CBCL car database

Tab. 4-2 Performance comparison (MIT CBCL car database)

Rate

PCA £1ICA AdaBoost PDBNN AdaBoost Classifier
(Local Features), | Classifier Classtfier + PDBNN Classifier
[23]

Detection Rate | 95% 97.5% 96.6% 96.3%

(Recall)

False Positive | 0.002% 0.0018% 0.0078% 0.0013%

4.4 Results of Detecting Vehicles in Videos

In this section, the experimental results of detecting vehicles in videos are demonstrated.

The experimental results of common used vehicle detection by background subtraction system

are shown. Here, both the successful and unfortunate cases are demonstrated. Figure 4-6(a)(b)

exhibits the clean background and the successful case of vehicle detection by background

subtraction; Fig 4-6(c)(d) exhibits the tainted background and the unsuccessful case of vehicle
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detection by background subtraction.

(©) (d)

Fig. 4-6 Background subtraction

When the traffic is generally heavy in asscene, the background information is prone to
overwhelmed by the foreground information, causes the unreliability of built background. As
a result, the foreground subtracted from background is in a mess.

Figure 4-7(a)(c)(e)(g) illustrate the failed cases of vehicle detection using background
subtraction in scenes with heavy traffic. Figure 4-7(b)(d)(f)(h) illustrate that the proposed

system is capable of detecting vehicles in these conditions.
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Fig. 4-7 The comparison of background subtraction and the proposed system

4



Chapter 5
Conclusions and Future Work

It is inefficient to detect the target using brute-force method. Hypothesis generation
methods provide a better way to solve this problem; using local or global features solely is
insufficient to extract the implicit invariance of vehicles; AdaBoost algorithm has
considerable potential as a capable classifier of dense training data and provides robust
generalization ability.

By combining the local features and global features of wehicles, the detection rate of
proposed system is higher than others’swhile the false positive rate is'significantly suppressed.
Without relying on background information, the proposed system works well in both light and
heavy traffic scenes and can be applied to both static images or video frames.

So far, the proposed vehicle detection system can operate well in variant conditions in
the real environment.;However; to further improve: the performance: of our system, some
enhancements or trials ‘can be. made in the future. Firstly, vehicles cross through the
intersection would meet our features and produce false positive in our testing samples due to
the lack of auxiliary features which lead to the similarity in global geometric structure.
Secondly, the proposed system is not yet efficient enough to be real-time. Therefore, if these
problems can be solved, our system will be more applicable.

This paper demonstrates a robust system for vehicle detection, and it involves the local-
and global-orientation feature extraction of vehicles and the fusion of classifications.
Experimental results show the opportunity of tracking and counting systems and advanced

applications.
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