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結 合 局 部 與 全 域 特 徵 之 新 型 車 輛 偵 測 系 統 

學生：李佳芳  指導教授：林進燈 教授 

 

國立交通大學 生醫工程研究所碩士班 

摘 要       

近年來，基於影像式的車輛偵測技術在智慧型運輸系統中受到廣泛

的重視與研究。然而，在交通流量大的場景偵測車輛仍然是一個困難且

具有挑戰性的問題。在本研究中，我們提出了一個創新與可靠的自動化

偵測系統。本系統先以車輛的邊緣強度與對稱性統計方法來假設車輛的

位置以減少運算成本。接下來，以 AdaBoost 與決策型類神經網路

(Probabilistic Decision-Based Neural Network)分類器分別對車輛的局部

與全域特徵來進行確認車輛的位置，我們相信由兩個不同性質的分類器

在特徵擷取有互補的效果，可以同時降低誤報率與達到高偵測率的效

果，由我們蒐集的樣本資料庫測試結果，我們的系統可達到 96.12%的

偵測率，同時只產生 0.0153%的誤報率；另外對公開的 MIT CBCL 資料

庫測試，我們的系統可達到 96.3%的偵測率，同時只有 0.0013%的誤報

率。 

本研究的目標是在局部與全域上抽取出車輛的特徵，由此系統所得

到的結果可以在車輛偵測的技術中，針對以背景為基礎的車輛之偵測系

統所遭遇到的問題提供更好的解決方案。實驗的結果證實我們提出的系
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統可以不依賴背景資訊，偵測出影像中的車輛，我們所實作的系統也能

為後續處理，e.g. 車輛追蹤、計數、分類、識別等應用，提供有用的資

訊。 
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ABSTRACT 

Vehicle detection techniques in visual-based Intelligent Transportation System (ITS) 

have been studied for years. However, to detect vehicles in a scene with heavy traffic is still a 

challenging problem. In this study, we present a novel automatic vehicle detection system. It 

first hypothesize potential locations of vehicles to reduce the computational costs by statistic 

of edge intensity and symmetry, then verify the correctness of the hypotheses using AdaBoost 

and Probabilistic Decision-Based Neural Network (PDBNN) classifiers, which exploits local 

and global features of vehicles respectively. The combination of two classifiers can learn the 

complementary relationship among local and global features, and it gains the extremely low 

false positive rate while still keeps high detection rate. For proprietary database, a 96.12% 

detection rate leads to a false-positive rate of approximately 0.0153%. For the MIT CBCL 

database, a 96.3% detection rate leads to a false-positive rate of approximately 0.0013%. 

The objective of this study is to extract the characteristic of vehicles in both local- and 

global-orientation, and model the implicit invariance of vehicles. This novel approach would 

provide a better solution to handle the problems encountered by conventional 

background-based detection systems. The experimental results proved the proposed system 

achieved a good performance of detecting vehicles without background information. The 

implemented system also extracted useful traffic information that can be used for further 

processing, like tracking, counting, classification and recognition. 
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Chapter 1  
Introduction 

 
1.1 Motivation 

In recent years, utilizing video processing to help for improving safety or human’s life 

has attracted great attention in computer vision. For example, how to improve and control the 

traffic condition with advanced techniques is one of the most important missions among the 

developed countries. Traditional traffic surveillance systems often use sensors to detect 

passing of vehicles and gather simple information or use cameras and manually check the 

video when some events happened. Those methods are inefficient in information extraction 

and short of improving. Therefore, visual-based Intelligent Transportation System (ITS) has 

attracted great attention in computer vision recently. For example, video-based automatic 

surveillance, behavior analysis for accident prediction, traffic monitoring etc. are presented in 

many application system. 

For most of these application systems, foreground object extraction is a very 

fundamental and important step before further processing, like tracking, classification and 

recognition. In conventional method, background subtraction and temporal difference are 

usually used for foreground segmentation. However there are some factors that may affect the 

result of foreground segmentation and make foreground detection very challenging. 

Background subtraction which relies on built background to extract foreground objects in a 

frame is not efficient enough in some circumstances. For example, swaying trees might be 

treated as foreground objects, but actually they are not the objects of interesting, moreover, 

the background construction relies on the frequent appearance of true information, in other 

words, the background is difficult to be built when there is too heavy traffic since the 
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frequency of foreground is higher than that of background. Though the background 

information can be built in advance, it is prone to be tainted by the still vehicles or the heavy 

traffic. Temporal difference which relies on the motion and texture of objects fails if the 

texture of objects is smooth. Furthermore, it malfunctions when the objects keep still 

periodically. 

 

1.2 Objective 

The objective of this study is to analyze the characteristic of vehicles in local and global 

features. We hope this novel approach would provide a better solution in the field of vehicle 

detection to handle the problems encountered by conventional background-based detection 

systems. Therefore, we propose to develop a vehicle detection system that has these 

characteristics: 

1) Can detect vehicles in static images. 

2) Can work without background information. 

3) Can detect vehicle in a scene with heavy traffic. 

 

1.3 Organization 

This thesis is organized as follows: Chapter II gives an overview of related work about 

this research and introduces the research by different modules. Chapter III presents the main 

modules of proposed system, and details algorithm used in each module. Chapter IV shows 

experimental results and performance comparison. Finally, the conclusions of this study are 

stated in Chapter V. 
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Chapter 2  
Related Works 

 
A kind of solution for vehicle detection without background model is the exhaustive 

search at all positions in the image. This solution is not satisfactory for real-time applications. 

To attack this problem, most of the methods reported in the literature can be decomposed into 

two steps as follow. 

(i) Hypothesis Generation (HG): this step provides potential positions of vehicles in a 

simple and rapid way resulting in a reduced area to search.  

(ii) Hypothesis Verification (HV): residual candidate regions in HG step are verified by 

using some complex algorithms to validate the exact positions of vehicles. 

Some researches related with these two steps are introduced. 

 

2.1 Hypothesis Generation (HG) Methods 

Various HG approaches have been proposed in the literature. The objective of the HG 

step is to find candidate vehicle locations in an image quickly so that it can reduce the 

computational requirements for further searching. It is generally based on simple, low-level 

algorithms which hypothesize potential locations of vehicles. The hypothesized locations 

from the HG step form the input to the HV step, where tests are performed to verify the 

correctness of the hypotheses. Clearly, the principle of HG is to filter out unqualified 

searching windows as many as possible while keeping overall detection rate as high as 

possible. 

Due to the rear- or frontal-views of vehicles are in general symmetric in horizontal 

direction, A. Bensrhair et al. [1], A. Kuehnle [2] and T. Zielke et al. [3] used symmetry, as 
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one of the main features of artificial objects, to hint the existence of vehicles in their studies. 

S.D. Buluswar et al. [4] and D. Guo et al. [5] used color information in RGB and L*a*b space 

respectively to segment vehicles from background. Bertozzi et al. [6] proposed a corner-based 

method to hypothesize vehicle locations. Matthews et al. [7] used edge detection to find 

strong vertical edges. By computing the vertical profile of the edge image (i.e., by 

accumulating the pixels in each column) and smoothing using a triangular filter, the local 

maximum peaks of the vertical profile cues the left and right borders of a vehicle. Goerick et 

al. [8] proposed Local Orientation Coding (LOC) to extract edge information. An image 

obtained by this method consists of strings of binary code representing the directional 

gray-level variation in the pixel's neighborhood. These codes carrying essentially edge 

information are used as the hypothesis. The presence of vehicles in an image causes local 

intensity changes. This property can be used as a cue to narrow down the search area for 

vehicle detection. U. Handmann et al. [9] proposed that the intensity changes follow a certain 

texture pattern, and entropy was used as a measure for texture detection. For each image pixel, 

a small window was chosen around it, and the entropy of that window was considered as the 

entropy of the pixel. Only regions with high entropy were considered for further processing. 

Besides, optical flow can provide strong information for HG, C. Demonceaux et al. [10] and 

A. Giachetti et al. [11] use optical flow to distinguish motion of any objects including 

preceding vehicles from the road motion and segment the objects. 

Combining multiple cues should also be explored more actively as a viable means to 

develop more reliable and robust systems. The main motivation is that the use of a single cue 

suitable for all conceivable scenarios seems to be impossible. Combining different cues has 

produced promising results (e.g., combining LOC, entropy, and shadow [9], shape, symmetry, 

and shadow [12], color and shape [13], and motion with appearance [14]). Effective fusion 

mechanisms as well as cues that are fast and easy to compute are important research issues. 
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2.2 Hypothesis Verification (HV) Methods 

The input to the HV step is the set of hypothesized locations from the HG step. During 

HV, tests are performed to verify the correctness of a hypothesis. A. Khammari et al. [15] 

classified HV methods into two categories: 1) template-based and 2) appearance-based. 

Template-based methods use predefined patterns of the vehicle class and perform a 

correlation between an input image and the template. M. Betke et al. [16] proposed a multiple 

vehicle detection approach using deformable gray-scale template matching. J. Ferryman et al. 

[17] proposed a deformable model formed from manually sampled data using Principal 

Component Analysis (PCA). Both the structure and pose of a vehicle can be recovered by 

fitting the PCA model to the image. 

Appearance-based methods acquire the characteristics of the vehicle class from a set of 

training images which capture the variability in vehicle appearance. Usually, the variability of 

the non-vehicle class is also modeled to improve performance. First, each training sample is 

represented by a set of local or global features. Then, the decision boundary between the 

vehicle and non-vehicle classes are learned either by training a classifier (e.g., Support Vector 

Machine (SVM) [18], Neural Network (NN) [19, 20], etc.) or by modeling the probability 

distribution of the features in each class (e.g., using the Bayes rule assuming Gaussian 

distributions [21]). In N. Matthews et al. [7], feature extraction is based on PCA. C. Goerick 

et al. [8] used a method called Local Orientation Coding (LOC) to extract edge information. 

The histogram of LOC within the area of interest was then fed to a NN for classification. In 

[22], wavelet transform was used for feature extraction and Support Vector Machines (SVMs) 

was used for classification. 

Most research efforts have focused on feature extraction and classification based on 

learning and statistical models. Efforts in this direction should continue while capitalizing on 

recent advances in the statistical and machine learning areas. Basically, the most important 
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issue in object detection literature is selecting a good set of features. In most cases, a large 

number of features are employed to compensate for the fact that relevant features are 

unknown a priori. However, without employing some kind of feature selection strategy, many 

of them would be either redundant or even irrelevant which could affect classification 

accuracy and efficiency seriously. In general, it is highly desirable to use only those features 

that have great separability power while ignoring or paying less attention to the rest. For 

instance, to allow a vehicle detector to generalize nicely, it would be nice to exclude features 

encoding fine details which might be present in some vehicles only. Finding out what feature 

to use for classification/recognition is referred to as feature selection. 

R. Wang et al. [23] proposed a vehicle detection system based on local features that are 

located within three significant subregions of vehicles. By combining PCA and Independent 

Component Analysis (ICA), each examined subregion is projected onto its associated 

eigenspace and independent basis space to generate a PCA weight vector and an ICA 

coefficient vector respectively. A likelihood evaluation process is then performed based on 

the estimated joint probability of the projection weight vectors and the coefficient vectors of 

the subregions with position information. The use of subregion position information 

minimizes the risk of false acceptances, whereas the use of PCA to model the low-frequency 

components of the eigenspace and ICA to model the high-frequency components of the 

residual space improves the tolerance of the detection process toward variations in the 

illumination conditions and vehicle pose. 

P. Viola and M. J. Jones [24] proposed an original feature selection scheme for object 

detection. The approach consists in a cascade of boosted classifiers with increasing 

complexity: each layer in the cascade reduces the search zone while rejecting regions that do 

not contain interested object. This method uses Haar-like features, also called rectangular 

filters (experimented by Papageorgiou et al. [25]), and AdaBoost learning [26], the latter 
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permits to select a limited number of features in each layer. The use of integral images to 

calculate Haar-like features and the cascade approach results in a real-time face-detection 

application. This approach has inspired a lot of recent works in vehicle detection. 

There are some improvements about the used features, P. Negri et al. [27] combined the 

rectangular filters (Haar-like features) and the histograms of oriented gradient (HoG) with 

AdaBoost algorithm, The fusion combines the advantages of the other two detectors: 

generative classifiers composed of Haar-like features eliminate "easily" negative examples in 

the early layers of the cascade, while in the later layers, the discriminative classifiers 

composed of HoG features generate a fine decision boundary removing the negative examples 

near the vehicle model, so that the fusion achieved better performances than either feature. 

In this study, hypothesis generation methods based on symmetry and statistic of edge 

intensity are used as candidate region filters. Following cascaded Haar feature classifier 

refined by AdaBoost algorithm is used as first hypothesis verification method, and plays the 

role of vehicle detector. Then, a probabilistic variant of decision-based neural network [19, 20] 

is used as second hypothesis verification method and a target verifier, which reduces a great 

deal of false positive. It can be observed that the nature and decision boundary of former 

differ from those of latter: the former is local-feature oriented, whereas the latter is 

global-feature oriented. We think that these two kinds of classifiers can be complementary 

when dealing with the problem.  
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Chapter 3  
Vehicle Detection System 

 

In this chapter, the proposed system structure is defined. The system structure is 

composed of five sub-systems: pre-processing, candidate region filtering, vehicle detection, 

target validation and post-processing. Section 3.1 demonstrates the diagram of global system, 

which shows five sub-systems and their key modules. Section 3.2 illustrates the candidate 

region filters and quantitative performance of the sub-system. Section 3.3 describes the origin 

of using AdaBoost classifiers and details AdaBoost classifier. Section 3.4 introduces the 

concept of combining two classifiers, and details Probabilistic Decision-Based Neural 

Network (PDBNN) classifier. Section 3.5 illustrates the two algorithms used for adapting the 

size of candidate windows and removing redundant detected windows respectively. 

 

3.1 System Overview 

At first, pre-processing module directly uses the raw data of surveillance video as inputs. 

This sub-system transforms the raw color image into a gray level image, for acceleration, the 

gray level image is downsized by a simple interpolation algorithm. Sobel edge operation is 

applied on raw-size gray level image to preserve detailed edge intensity of the image, then the 

edge intensity image is resized by the same interpolation algorithm to generate downsized 

edge intensity image as the input of next sub-system: candidate region (CR) filtering. After 

filtering out unqualified regions by CR filters, the residual positions of downsized gray level 

image that might contain interested objects are examined and located by AdaBoost classifier. 

Next, these positions are verified by PDBNN classifier based on probability estimation to 

confirm the existence of interested objects. Finally, the post-processing deals with redundant 
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detected overlapping windows belong to the same object and results in exact locations of the 

objects. The diagram of global system is shown in Figure 3-1. 

 

Fig. 3-1 System diagram 



 

10 

3.2 Candidate Region (CR) Filtering 

In this research, Candidate Region (CR) filters are the alias of hypothesis generation (HG) 

methods. Based on simple, fast and low-level algorithms, the purpose of CR filtering is to 

eliminate regions which are affirmed to be no object present, so the potential locations of 

vehicles are hypothesized, as a result, the follow-up hypothesis verification (HV) steps, (i.e. 

vehicle detection and target validation in this research) can focus on those regions which are 

likely to contain interested objects. This step reduces a great deal of computation, and can 

lower the false positive rate simultaneously. As mentioned in section 2.1, the principle of 

candidate region filtering is to filter out unqualified searching windows as many as possible 

while keeping overall detection rate as high as possible, so the rule of determining thresholds 

tends to be conservative. 

 

3.2.1 Statistic Filter 

By a simple statistical method, the rational edge intensity distributions of interested 

objects can be estimated, therefore, candidate regions whose texture is too sparse or too dense 

can be filtered out rapidly. The distribution of the edge intensity statistic and the threshold for 

the scope are shown in Figure 3-2. 

 

 

Fig. 3-2 The scope of edge intensity statistic 
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As shown in Figure 3-2, the edge intensity distribution of positive samples (vehicle) is 

approximate a Gaussian distribution. So the lower and upper thresholds can be obtained by 

mean and standard deviation of this Gaussian distribution with Equation 3-1 and 3-2. 

STDEVMeanThreshold lower  3  (3-1) 

STDEVMeanThresholdupper  3  (3-2) 

where Mean and STDEV are mean and standard deviation of the Gaussian distribution 

respectively. It has the nice property that a known percentage of all possible values of data lie 

within a certain number of standard deviations from the mean. Theoretically, 99.7% of the 

rates will fall within plus or minus 3 standard deviations from the mean.  

 

3.2.2 Symmetry Filter 

Lower parts of vehicles are visually symmetric and textured, see Figure 3-3, so the 

symmetry degree of candidate region can be used to hypothesize whether the candidate region 

should contain a vehicle or not. By accumulating the histogram of intensity (HoI) vertically 

and horizontally, the rough degree of symmetry can be obtained with the formula in Equation 

3-3. 

BA

BA
BADegree




 )(  (3-3) 

where A is the measure of left half HoI, and B is the measure of right half HoI. By a statistical 

method, the threshold of minimum symmetry degree which a vehicle should hold can be 

obtained. As shown in Figure 3-4, any region of interest with symmetry degree below the 

threshold is kicked out. Figure 3-5 sketches the eliminated searching scope (marked with red 

areas) of CR filtering in scenes with (a) light traffic and .(b) heavy traffic.respectively. 

The quantative performance of these two candidate region filters, estimated in cluttered 
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and uncluttered conditions, is shown in Table 3-1. Though the utilized CR filters tend to be 

conservative, the CR filters can narrow down 60% of search area in best-case scenarios. 

 

   

                              

Fig. 3-3 Symmetry of vehicles 

 

 

Fig. 3-4 The statistic scope of symmetry 
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(a)                              (b) 

Fig. 3-5 The eliminated search scope of CR filtering 

 

Tab. 3-1 The performance of CR filters 

Type of Candidate Region 
Filter  

Rejection Rate of  
Uncluttered Negative 
Samples  

Rejection Rate of  
Cluttered Negative 
Samples 

Statistic filter  61.15% 18.55% 
Symmetry filter  65.55% 21.84% 

 

3.3 Vehicle Detection using AdaBoost 

This sub-system is the main process of entire system, as mentioned in 2.2, most research 

efforts have focused on feature extraction and classification by learning and statistical models, 

the most important issue in object detection literature is selecting a suitable set of features 

which can be the representation and soundly express the implicit invariant of interested 

objects. An intuitive method of feature extraction is to focus on the common components of 

interested objects. Any perceptual characteristic such as color, edge, texture, entropy, 

symmetry, ... etc. can be used as a feature solely or cooperatively. Though this method is easy 

to imagine and implement, it has its own limits. One of the limitations is that the manually 

chosen features are inferior in both value and quantity. Besides, the manually chosen features 

tend to apparent, moreover, the physical nature of human’s perception is usually not steady 

enough to stand for the interested objects. So, it can be explained that the efforts of feature 
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extraction have turned to the statistical and machine learning areas. 

The famous AdaBoost algorithm proposed by Y. Freund et al. [26] is one of machine 

learning techniques and has been progressed for pattern recognition rapidly and widely. 

AdaBoost combines weak classifiers into a weighted voting machine, and it shows high 

performance in various fields. P. Viola et al [29] built an efficient moving person detector, 

using AdaBoost to train a chain of progressively more complex region rejection rules based 

on Haar-like wavelets and space-time differences. In P. Viola, M. J. Jones [24], AdaBoost is 

applied to face detection and yields best performance comparable to the previous systems. A. 

Khammari et al. [15] and P. Negri [27] proposed the applications of AdaBoost in vehicle 

detection, both researches demonstrate the results through few proprietary examples, the 

former does not report any quantitative performance, the latter provides quantitative 

performances of proprietary databases. 

Originally, the proposed system imitated the idea of face detection. Windshield, lamps 

and back mirrors of a vehicle can be regarded as forehead, eyes and ears of a human face. Due 

to this perceptual imagination, the proposed system intended to model vehicles out of a 

mixture of Gaussian distributions trained by Probabilistic Decision-Based Neural Network 

(PDBNN), which will be introduced in 3.5.1. The model preserves the characteristics of a 

vehicle, including shape of entire body, windshield and hood. It should be mentioned that the 

significance of vertical edges is overwhelmed by that of horizontal edges, as a result, the built 

model is very sensitive to regions with horizontal texture. This is induced by the property of 

neutralization, It is observed that the features trained by PDBNN tend to ignore the local 

structure, the detail of geometrical patterns. The property of neutralized features can be 

defined as global-orientation. Besides, compare with the geometrical structure of a face 

(PDBNN was applied to face detection and recognition in S.H. Lin et al. [20]), the structure of 

a frontal-view vehicle is more complicated. The main characteristics of vehicles vary on color, 
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shape of whole body, lamps or windshield, such that the features are neutralized in built 

Gaussian models, and the influence on vehicle models is more notable than that on face 

models. To give considerations to the local structure of vehicles, any classifier with 

local-oriented nature is preferred, AdaBoost classifier (will be introduced in 3.4.1~3.4.4) has 

exhibited its robustness in object detection and definitely aiming at local structure, so it is 

chosen to make up the flaw of PDBNN classifier in this study. 

 

3.3.1 Haar Features (Rectangle Features) 

Haar basis functions (Haar features) used by Papageorgiou et al. [28] provide 

information about the grey-level distribution of two or more adjacent regions in an image. 

Figure 3-6 shows a set of simple Haar features. These features consist of two to four 

rectangles. To compute the output of a Haar basis function on a certain region of image, the 

sum of all pixels intensity in the black region is subtracted from the sum of all pixels intensity 

in the white one and normalized by a coefficient in case of a filter whose square measures of 

white and black regions are different. To reduce computation time for the filters, P. Viola et al. 

[24] introduced the integral image which is an intermediate representation for an input image. 

The concept of integral image is illustrated in Figure 3-7(a), the value of the integral image at 

point (x, y) is the sum of all the pixels above and to the left. In Figure 3-7(b), the sum of the 

pixels within rectangle D can be computed with four array references. The value of the 

integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is 

A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be 

computed as 4 + 1 − (2 + 3). Utilizing integral images, sum of a rectangular region can be 

calculated by using only four references in the integral image. As a result, the difference of 

two adjacent rectangular regions can be computed by using only six references in the integral 

image, eight in the case of the three-rectangle filters, and nine for four-rectangle filters. 



 

16 

Every feature j is defined as fj(rj, wj, hj, xj, yj), where rj is the type of Haar feature, wj and 

hj are width and height of the Haar feature, and (xj, yj) is its position in the window. 

),,,,( yxhwrfvaluesubtracted  , is the weighted sum of the pixels in white rectangles subtracted 

from those of dark rectangles. 

 

 

Fig. 3-6 The common used Haar features 

 

   

(a)                             (b) 

Fig. 3-7 Integral image 

 

3.3.2 Weak Classifier 

A weak classifier h consists of a rectangle feature f (defined in 3.3.1), a threshold (θ) and 

a polarity (p) indicating the direction of the inequality in Equation 3-4. 
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

 


otherwise

pfpif
h jjjj

0

1 
 (3-4) 

where fj is the absolute value (valuesubtracted) of the feature j, θj is the threshold, and pj is the 

parity. For each feature j, AdaBoost algorithm (will be introduced in 3.3.3) is used to 

determine an optimal threshold θj for which the classification error on training database (with 

positive and negative samples) is minimized. The brute force threshold selection for weak 

classifiers is illustrated in Figure 3-8. By selecting the threshold, the blue points (positive 

samples) and red points (negative samples) can be separated with a lowest classification error. 

 

 

(a) 

   

(b)                               (c) 

Fig. 3-8 Select thresholds for weak classifiers 
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3.3.3 AdaBoost Algorithm 

The size of feature set originated from the permutation of Haar feature types, scales and 

positions, is many times greater than the number of pixels in the input image. Even through 

each rectangle feature can be computed very efficiently, computing the complete set is 

prohibitively expensive. There are some features from this set do not contain useful 

information. In literature, different methods have been used for the selection of useful features, 

e.g. Principal Component Analysis (PCA) used in [17, 22, 23], Independent Component 

Analysis (ICA) used in [23], and so forth. Among these methods, AdaBoost algorithm has 

shown its capability to improve the performance of various classification and detection 

systems. It finds precise hypotheses by combining several weak classifiers which, in general, 

have moderate precision. This iterative algorithm finds some weak but discriminative 

classifiers and combines them in a strong classifier which is defined in Equation 3-5. 
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 (3-5) 

where h and C are the weak and strong classifiers, respectively, and α is a weight coefficient 

for each h.  

Consider a 2D feature space with positive and negative training samples. Each weak 

classifier splits the training examples with at least 50% accuracy. As shown in Figure 3-9(a) , 

samples misclassified by a previous weak learner are given more emphasis at future rounds. 

The process of selecting a weak classifier is shown in Figure 3-9(b)(c)(d)(e)(f)(g), as shown in 

Figure 3-9(b), the misclassified blue points (positive samples) in left side of the black line and 

red points (negative samples) in right side of the black line are emphasized in the next round 

shown in Figure 3-9(c), similarly, the misclassified blue points in right side of the black line 

and red points in left side of the black line are emphasized in the next round, as shown in 

Figure 3-9(d) and Figure 3-9(e). Finally, the strong classifier is form with a linear 
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combination of weak classifiers shown in Figure 3-9(g), and the boosting algorithm for 

selecting a set of weak classifiers to compose a strong classifier is shown in Table 3-2. 

 

 

(a) 

   

(b)                    (c) 

   

(d)                    (e) 

   

(f)                    (g) 

Fig. 3-9 The process of selecting a weak classifier 
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Tab. 3-2 The boosting algorithm for learning a query online. 

 

 

3.3.4 Strong Classifier 

A strong classifier is a stage composed of at least one weak classifier. The cascade of 

these stages is also constructed by AdaBoost algorithm, described in Table 3-3. In each stage, 

if an object extracted by the searching window is classified as vehicle, it is allowed to enter 

the next stage; otherwise, the object is rejected immediately. In brief, an object labeled as 

vehicle should pass through a series of stages; an object is rejected by particular stage even if 

T hypotheses are constructed each using a single feature. The final hypothesis 
is a weighted linear combination of the T hypotheses where the weights are 
inversely proportional to the training errors. 
‧ Given example images (x1, y1), . . . , (xn, yn) where yi = 0, 1 for negative 

and positive examples respectively. 

‧ Initialize weights lm
w i 2

1
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 for yi = 0, 1 respectively, where m and l 
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it enters the last stage. Figure 3-10 demonstrates the schema of a detection cascade. 

 

Tab. 3-3 The training algorithm for building a cascaded detector. 

 

 

 

Fig. 3-10   A detection cascade. 

 

‧ User selects values for f, the maximum acceptable false positive rate per 
layer and d, the minimum acceptable detection rate per layer. 

‧ User selects target overall false positive rate, Ftarget. 
‧ P = set of positive examples 
‧ N = set of negative examples 
‧ F0 = 1.0; D0 = 1.0 
‧ i = 0 
‧ while Fi > Ftarget 

– i ← i + 1 
– ni = 0; Fi = Fi-1 
– while Fi > f × Fi-1 

* ni ← ni + 1 
* Use P and N to train a classifier with ni features using AdaBoost 
* Evaluate current cascaded classifier on validation set to determine 

Fi and Di. 
* Decrease threshold for the ith classifier until the current cascaded 

classifier has a detection rate of at least d × Di-1 (this also affects 
Fi) 

– N ← 0 
– If Fi > Ftarget then evaluate the current cascaded detector on the set of 

non-face images and put any false detections into the set N 
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3.4 Target Validation using PDBNN 

Neural networks learn the classification rules from the given collection of representative 

examples. This ability to automatically learn from examples makes neural network 

approaches attractive and exciting. Moreover, it is well known that neural networks are very 

robust and adaptive. By estimating the maximum likelihood on the features of images (edge 

intensity is used as the main feature of vehicles in this study), the likelihood density of the 

object class can be obtained. PDBNN is applied to face detection and recognition in S.H. Lin 

[20], which is a probabilistic variant of its predecessor, decision-based neural network 

(DBNN) [19]. DBNN is an efficient classification neural network. It has a modular network 

structure. One subnet is designated to represent one object class. 

As mentioned in 3.3, AdaBoost classifiers are good at recognizing local features while 

PDBNN classifiers are good at global features. Previous research has revealed that the 

decision boundary of an AdaBoost classifier is a hyper plane, which is illustrated in P. Negri 

et al. [27], testing samples are categorized by their position in the feature space with respect to 

this hyper plane, as shown in Fig 3-11(a). Moreover, [20] proved that the decision boundary 

of a PDBNN classifier exhibits the similar appearance as shown in Figure 3-11(b). Testing 

samples are compared to a PDBNN classifier and categorized by their similarity, the idea of 

fusing two classifiers with different characteristics is consequently inspired. 

 

 

(a)                                 (b) 

Fig. 3-11 Decision boundaries of AdaBoost and PDBNN classifiers 
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3.4.1 Conception of PDBNN 

PDBNN assumes that the class likelihood function for the interested object class (i.e. 

vehicle class) can be represented by a mixture of Gaussian distributions. The training scheme 

of these Gaussian distributions includes two phases: 1) locally unsupervised (LU) phase and 2) 

globally supervised (GS) phase. 

The values of the parameters so-called weight vector in the network are initialized in LU 

learning phase. An unsupervised clustering algorithm: k-means, is applied to segment the 

training samples of object class into several clusters and determine initial positions of the 

cluster centroids, then the expectation-maximization (EM) algorithm [30] is used to learn the 

cluster parameters of object class, obtain maximum likelihood estimation (MLE) of the data 

distribution, and determine the parameters of Gaussian distributions, demonstrated in Figure 

3-12(a). In the global supervised (GS) training phase, two sets of patterns (i.e. both positive 

and negative samples) are involved, as shown in Figure 3-12(b), teacher information is 

utilized to fine-tune the decision boundary which is determined by a threshold. When a 

training pattern is misclassified, the reinforced or antireinforced learning technique [19] is 

applied. If the misclassified training pattern is from the positive training (i.e. vehicle) set (the 

training data set in the LU phase), reinforced learning will be applied to adjust the subnet 

parameters and the boundary by updating the weight vector in the direction of the gradient of 

the discriminant function. If the training pattern belongs to the so-called negative training (i.e. 

non-vehicle) set, then the anti-reinforced learning rule will be executed to adjust only the 

boundary in the opposite direction of the gradient of the discriminant function, illustrated in 

Figure 3-12(c)(d). 
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(a)                           (b) 

   

(c)                           (d) 

Fig. 3-12   The diagram of PDBNN learning 

 

3.4.2 Discriminant Functions of PDBNN 

The subnet discriminant functions of PDBNN are designed to model the log-likelihood 

functions. The reinforced and antireinforced learning is applied to all the clusters of the global 

winner and the supposed (i.e., the correct) winner, with a weighting distribution proportional 

to the degree of possible involvement (measured by the likelihood) by each cluster. 

Given a set of identical independent distributed patterns X+ = {x(t), t = 1, 2, … , N}. 

Assume the class likelihood function p(x(t)|ω) for class ω (i.e. vehicle class) is a mixture of 

Gaussian distributions. Define p(x(t)|ω,Θr) to be one of the Gaussian distributions  

p(x(t)|ω,Θr) ≡ N(μr, Σr) 

 
r

rr txpPtxp ),|)(()|()|)((   (3-6) 
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where Θr represents the rth cluster in the subnet. P(Θr|ω) denotes the prior probability of 

cluster r. By definition Σr P(Θr|ω) = 1. 

The discriminant function of one-subnet PDBNN models the log-likelihood function 

]),|)(()|(log[)|)((log)),((  
r

rr txpPtxpwtx   (3-7) 

where 

}),|(,,{ TPw rrr   . (3-8) 

T is the threshold of the subnet. It will be used in the GS learning phase. The overall diagram 

of such discriminant function is depicted in Figure 3-13. 

In most general formulation, the basis function of a cluster should be able to approximate 

the Gaussian distribution with full-rank covariance matrix. A hyper-basis function (Hyper BF) 

is meant for this [31]. However, for those applications which deal with high-dimensional data 

but finite number of training patterns, the training performance and storage space discourage 

such matrix modeling. A natural simplifying assumption is to assume uncorrelated features of 

unequal importance. That is, suppose that p(x|ω,Θr) is a D-dimensional Gaussian distribution 

with uncorrelated features 
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where x(t) = [x1(t), x2(t), ..., xD(t)]T is the input pattern, μr = [wr1, wr2, ..., wrD]T is the mean 

vector, and diagonal matrix ],...,,[ 22
2

2
1 rDrrr diag   is the covariance matrix. 

To approximate the density function in Equation 3-9, the elliptic basis functions (EBF’s) 

is to serve as the basis function for each cluster 
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where 
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
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After passing an exponential activation function, exp{ψ(x(t), ω, Θr)} can be viewed the 

same Gaussian distribution as described in Equation 3-9, where 2/1 rdrd    

 

 

Fig. 3-13 The diagram of a PDBNN classifier 

 

3.4.3 Learning Rules for PDBNN 

As mentioned in 3.4.1, the training scheme for PDBNN contains LU and GS phases. The 

locally unsupervised (LU) phase for the PDBNN can adopt one of the unsupervised learning 

schemes (e.g., VQ, k-means, EM, ...etc.). The network enters the globally supervised (GS) 

phase after the LU training is converged. For the GS learning, the decision-based learning rule 

is adopted. Both training phases need several epochs to converge. The training phases are 

introduced as follows: 
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3.4.3.1. Unsupervised Training for LU Learning 

The values of the parameters in the network are initialized in the LU learning phase. The 

well-known unsupervised clustering algorithm, k-means, and the expectation-maximization 

(EM) algorithm are used to learn the cluster parameters of object class, obtain maximum 

likelihood estimation (MLE) of the data distribution, and initialize the parameters of clusters 

modeled by several Gaussian distributions. 

The k-means method adjusts the center of a cluster based on the distance ||x - μr||
2 of its 

neighboring pattern x. Basically k-means algorithm assumes that the covariance matrix of a 

cluster i is Ii
2 . An iteration of the k-means algorithm in the LU phase contains two steps: 

first, all the input patterns are examined to find out their closest cluster centers. Then, each 

cluster center are moved to the mean of its neighboring patterns. 

The EM algorithm is a special kind of quasi-Newton algorithm with a searching direction 

having a positive projection on the gradient of the log likelihood. In each EM iteration, there 

are two steps: Estimation (E) step and Maximization (M) step. The M step maximizes a 

likelihood function which is further refined in each iteration by the E step. The EM algorithm 

in the LU phase is as follows [32]. Use the data set },...,2,1,)();({ NttxtxX   . The 

goal of the EM learning is to maximize the log likelihood of data set X+ 
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The EM algorithm begins with the observation that the optimization of the likelihood 

function l(w; X+) would be simplified if only a set of additional variables, called “missing” or 

“hidden” variables, were known. In order to include the missing information into the 

optimization formula, here the indicator variables zr(t) are defined to specify which cluster 

generate the pattern 



 

28 






.,0

)(,1
)(

otherwise

rclusterfromistxpatternif
tzr  (3-13) 

The observable data X+ is defined as “the incomplete data” and posit a “complete data” 

set Y that includes the missing variables Z. The probability model p(y|x, ω) is used to link the 

missing variables to the actual data. The logarithm of this density defines the "complete-data 

likelihood" 
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Since zr(t) indicates which cluster the input pattern belongs to, the log operator and the 

second summation can be exchanged. The optimization has been decomposed into several 

subproblems. Notice that since the indicator variable zr(t) is actually unknown, in the E step of 

the jth iteration of the EM algorithm the expectation of the complete-data likelihood is taken. 
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For simplicity sake, the notation of the expectation is changed to the following: 
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w(j) represents the parameter set in the PDBNN at epoch j. After the Expectation step, in the 
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M step of the EM algorithm, Q(w, w(j)) is maximized with respect to weighting parameters. 

There are two operations taken in an iteration of the EM algorithm. At iteration j. 1) 

E-step: computing the conditional posterior probabilities )()( th j
r , r  
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 (3-18) 

2) M-step: maximizing Q(w, w(j)) with respect to w  (Reference to Equation 3-8) 
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Since the threshold will not affect the likelihood value, it is not updated here. When the 

EM iteration converges, it should ideally obtain maximum likelihood estimation (MLE) of the 

data distribution. EM has been reported to deliver excellent performance in several data 

clustering problems [32]. 

 

3.4.3.2. Supervised Training for GS Learning 

In the global supervised (GS) training phase, teacher information is utilized to fine-tune 

decision boundaries. When a training pattern is misclassified, the reinforced or antireinforced 

learning technique [19] is applied. 

Reinforced learning: ),()()1( wxww jj   

Antireinforced learning: ),()()1( wxww jj   (3-20) 

In this training phase, two sets of patterns are involved. If the misclassified training 

pattern is from the positive training (i.e., vehicle) set (the data set X+ in the LU phase), 

reinforced learning will be applied. If the training pattern belongs to the so-called negative 
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training (i.e., non-vehicle) set, then only the anti-reinforced learning rule will be executed - 

since there is no correct class to be reinforced. 

The gradient vectors in Equation 3-20 are computed as follows: 
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where )()( th j
r  is the conditional posterior probability as shown in Equation 3-18, )( j

rdw  and 

)( j
rd  are defined in Equation 3-9 and Equation 3-10, respectively. As to the conditional prior 

probability )|( rP  , since the EM algorithm can automatically satisfy the probabilistic 

constraints 1)|( 
r

rP   and 0)|(  rP , it is applied to update the )|( rP   values 

in the GS phase so that the influence of different clusters are regulated: At the end of each 

epoch j 




 
N

t

j
rr

j thNP
1

)()1( )()/1()|(   (3-23) 

 

3.4.3.3. Threshold Updating 

The threshold value of PDBNN classifier can also be learned by the reinforced and 

antireinforced learning rules. Since the increment of the discriminant function )),(( wtx  and 

the decrement of the threshold T have the same effect on the decision making process, the 

direction of the reinforced and anti-reinforced learning for the threshold is the opposite of the 

one for the discriminant function. For example, given an input x(t), if )(tx  but 
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)),(( wtx  < T, then T should reduce its value. On the other hand, if )(tx  but )),(( wtx  

> T, then T should increase. An adaptive learning rule to train the threshold T is illustrated in 

the following: Define )),(()( wtxTtd   and a penalty function ))(( tdl , ))(( tdl  can be 

either a step function, a linear function, or a fuzzy-decision sigmoidal function. Once the 

network finishes the training, the threshold values can be trained as follows: Given a positive 

learning parameter η, at step j 






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




)())(('

)())(('
)(
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txiftdlT

txiftdlT
T

j

j
j  (3-24) 

Figure 3-12 illustrates the testing procedure of a PDBNN classifier. The input testing 

data is estimated the probability of its belonging to the mixture Gaussian model, and 

discriminated by the threshold which is also learned by PDBNN. 

 

3.5 Adaptive Candidate Window and Redundant Detected 

Window Removal 

The size of candidate regions is perspectively enlarged along the vertical direction, see 

Figure 3-14, so the respective size of candidate region can be represented as a linear equation. 

According to the initial window sizes of a distant and a near place, the perspective window 

size can be estimated by interpolation defined in Equation 3-25. 

 

 

Fig. 3-14 Adaptive candidate window 
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In general, each successful vehicle detection result usually leads to the creation of 

redundant detected candidate windows. To resolve this problem, the schemes presented in [33] 

combined all of the overlapping candidate windows together and still maintained a good 

detection performance. However, the non-overlapping window constraint may be too strict for 

closely spaced targets since they inevitably generate overlapping candidate windows. To 

solve this problem, the current study adopts a simple principle: among overlapping windows 

in a distance adapted to the quarter of window’s diagonal, the candidate window with the 

highest likelihood probability ratio estimated by the PDBNN model is designated as the 

vehicle location, illustrated in Figure 3-15. 

 

 

Fig. 3-15 Overlapping detected windows 
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Chapter 4  
Experimental Results 

 
The vehicle detection system is implemented on a PC system and the equipment of the 

PC is Intel(R) CPU @ 1.73G and 2GB RAM. The integrated development environment is 

Borland C++ Builder 6.0 on Windows XP OS. The inputs are video files (AVI uncompressed 

format) or image sequences (BMP or PPM format). These inputs were captured with a DV at 

traffic intersection or referred to testing samples which were used by other research. 

Section 4.1 illustrates the process of training the two classifiers, including the principles 

of building proprietary vehicle database, and the criterion of collected samples. Section 4.2 

illustrates the approach to test the built model. Section 4.3 demonstrates the experimental 

results of detecting vehicles in static images. The first testing database is proprietary car 

database and the second one is a public testing database - MIT CBCL car database 1999. The 

performance of AdaBoost classifier and the fusion (AdaBoost + PDBNN) is listed and 

compared. Section 4.3 demonstrates the experimental results of detecting vehicles in videos. 

 

4.1 Model Training 

The proposed vehicle detection system based on machine learning algorithms comprises 

training processes and testing processes. Sample collection and feature extraction are the keys 

of object detection and classification. To build the proposed system, first, the common 

components of vehicles must be determined (e.g., windshield, lamps, roof, wheels, ... etc.), the 

basis of collecting samples is retaining these common parts and keeping out unnecessary parts 

to reduce the interference of noise, as a result, the images are tightly cropped. Second, the 

manually collected samples are usually not uniform in size, point of view and illumination 
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condition, a normalization process is necessary, so that an identical criterion is set before the 

samples enter in training or testing step. 

 

4.1.1 Training Dataset 

The study considers the specific application of a vehicle counting system at the 

intersection, The proposed system presently focuses on frontal views of small vehicles such as 

sedans, sport-utility vehicles (SUVs), and minivans, which are the majority of traffic. The 

collected images of proprietary database were cut out from proprietary videos captured by a 

hand-held camera in daytime or early evening. The captured sources contain several scenes, 

most of these scenes are captured at the intersection, so stop-and-go traffic becomes a general 

case in this study. While collecting vehicle samples, the pose of captured cars is limited to 

frontal-views and the angle tolerance of pan-rotation range is about ±20°. Figure 4-1 

demonstrates the diagram of extracting samples from video frames. Roof, windshield, lamps, 

back mirrors are the main characteristics chosen to recognize a vehicle in proposed system. So, 

all manually extracted vehicle samples should contain these components without occlusion. In 

crowded scenes, a vehicle is sometimes, even always occluded by other vehicles, so a 

following vehicle will not be a qualified sample till the preceding vehicle moves over. As a 

result, the sizes of extracted samples are inconsistent. The average width and height of 

collected 2344 vehicle samples are 61 x 53. For normalization, the samples can be resized in 

an equivalent ratio. Figure 4-2 demonstrates the collected vehicle and non-vehicle samples. 

 

 



 

35 

   

   

Fig. 4-1 Diagram of extracting vehicle samples 

 

       

       

       

(a) Positive samples (vehicles) 

       

       

       

(b) Negative samples (non-vehicles) 

Fig. 4-2 Proprietary samples 
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4.1.2 AdaBoost Training 

In this study, the raw input of AdaBoost training process is the gray level information of 

2009 vehicle images and 11090 non-vehicle images from the proprietary database. The gray 

level information is normalized to a uniform size 21 x 18 without any further processing. The 

weak classifiers are the permutations of the type, positions and scale of 9 Haar features, as 

shown in Figure 3-6, unlike previous research, the scale of Haar features is increased in a 

brute force manner, i.e. the size of Haar features is from 2 x 2 to 21 x 18 progressively, as a 

result, the weak classifier learner yielded 289170 weak classifiers. The final classifier is a 3 

layer cascade of classifiers which included a total of 940 weak classifiers. The first classifier 

in the cascade is constructed using 35 weak classifiers and rejects about 51% of non-vehicles 

while correctly detecting 100% of vehicles. The next classifier has 130 weak classifiers and 

rejects about 77% of non-vehicles while detecting 100% of faces. The last layer is a 

765-feature classifier with a 100% detection rate and rejects about 87% of non-vehicles. The 

training process was terminated due to non-convergence, i.e. the boosting algorithm was 

unable to find anymore a weak classifier which is capable to obtain an error rate below 50%. 

 

4.1.3 PDBNN Training 

Due to the color or brightness of vehicles varies, edge intensity is the only feature used 

for PDBNN training, the raw input of PDBNN training process is the edge intensity 

information of 2009 vehicle images and 11090 non-vehicle images (same as those used in 

AdaBoost training) from the proprietary database. The edge intensity information is obtained 

from Sobel operator, and normalized to a uniform size 21 x 18 without any further processing. 

The training process finished while the false negative rate and false positive rate reached the 

expected thresholds, which are 98 %. The schema of training AdaBoost classifier and 

PDBNN classifier is shown in Figure 4-3. 
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Fig. 4-3 The flow chart of model training 

 

4.2 Model Testing 

The model testing can be categorized to 1) static images and 2) videos. For the case of 

static images, two databases (proprietary and MIT CBCL 1999) are used for performance 

testing. The vehicle samples of proprietary database are tightly cropped to fit the size of 

vehicles, so the images are normalized to the same dimension and feature space (gray level or 

edge intensity) as the trained models’, and compared with the models without redundant 

candidate regions. In MIT CBCL database, the size of vehicles are not fit to the size of images, 

so there are numerous candidate regions in a single image to be examined by the built 

classifiers, and these candidate regions are normalized to the same dimension and feature 

space before inputted to the classifiers. For the case of videos, every single frame is treated as 

a static image, and the size of video frames is 320 x 240, which is much larger than the size of 

collected samples, so the testing procedure of video is similar to that of MIT CBCL database. 

Figure 4-4 illustrates the sketch of testing the proposed system. 
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Fig. 4-4 The flow chart of model testing 

 

4.3 Results of Detecting Vehicles in Static Images 

4.3.1 Proprietary Car Database 

There are 2344 positive samples (vehicle) and 30694 negative samples (non-vehicle) 

manually cut from proprietary video files. The positive samples comprise frontal-viewed 

images of typical cars, sport-utility vehicles (SUVs), and minivans. 

The examples of positive and negative samples are shown in Figure 4-2. Both positive 

and negative samples are randomly divided into training and testing sets. The criteria of 

performance measurement are defined in Equation 4.1 and 4.2. The comparison of AdaBoost 

classifier, PDBNN classifier, and the fusion is shown in Table 4-1. 

It is shown in the experimental result that the combination of two classifiers can learn the 

complementary relationship among local and global features, and it gains the extremely low 

false alarm rate and still keeps high detection rate. 
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Tab. 4-1 Performance comparison (proprietary car database) 

 AdaBoost 
Classifier 

PDBNN 
Classifier 

AdaBoost Classifier 
+ PDBNN Classifier

Detection Rate 
(Recall) 

98.8% 96.12% 96.12% 

False Positive 
Rate 

1.2804% 0.8111% 0.0153% 

Training time 7200 min 20 min 7200 min 
 

 

setdatatestinginvehiclesofnumberTotal

vehiclesdectectedofNumber
callRateDetection  Re   (4.1) 

setdatatestinginwindowssnonvehicleofnumberTotal

alarmsfalseofNumber
RatePositiveFalse 

  (4.2) 

 

4.3.2 MIT CBCL Car Database 1999 

In the database, each image was extracted from raw data and was scaled to the size 

128x128 and aligned so that the car was in the center of the image; the size of the cars is such 

that the front or rear bumper is approximately 64 pixels across. The data is presented without 

any normalization. Figure 4-5 shows the experimental results. There are few researches that 

provided the experimental result of public frontal-viewed car database. So far, R. Wang et al. 

[23] provided their experimental result of MIT car database, so, we compared the 

experimental result of [23] with that of the proposed system, and the comparison results are 

presented in Table 4-2. The proposed approach outperforms the method in [23] with average 

detection rates of 95% as well as the false positive rate of 0.002%. 
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Fig. 4-5 Experimental results of MIT CBCL car database 

 

Tab. 4-2 Performance comparison (MIT CBCL car database) 

 PCA + ICA 
(Local Features) 
[23] 

AdaBoost 
Classifier 

PDBNN 
Classifier 

AdaBoost Classifier 
+ PDBNN Classifier

Detection Rate 
(Recall) 

95% 97.5% 96.6% 96.3% 

False Positive 
Rate 

0.002% 0.0018% 0.0078% 0.0013% 

 

4.4 Results of Detecting Vehicles in Videos 

In this section, the experimental results of detecting vehicles in videos are demonstrated. 

The experimental results of common used vehicle detection by background subtraction system 

are shown. Here, both the successful and unfortunate cases are demonstrated. Figure 4-6(a)(b) 

exhibits the clean background and the successful case of vehicle detection by background 

subtraction; Fig 4-6(c)(d) exhibits the tainted background and the unsuccessful case of vehicle 
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detection by background subtraction. 

 

   

(a)                         (b) 

   

(c)                         (d) 

Fig. 4-6 Background subtraction 

 

When the traffic is generally heavy in a scene, the background information is prone to 

overwhelmed by the foreground information, causes the unreliability of built background. As 

a result, the foreground subtracted from background is in a mess. 

Figure 4-7(a)(c)(e)(g) illustrate the failed cases of vehicle detection using background 

subtraction in scenes with heavy traffic. Figure 4-7(b)(d)(f)(h) illustrate that the proposed 

system is capable of detecting vehicles in these conditions. 
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(a)                         (b) 

   

(c)                         (d) 

   

(e)                         (f) 

   

(g)                         (h) 

Fig. 4-7 The comparison of background subtraction and the proposed system 
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Chapter 5  
Conclusions and Future Work 

 
It is inefficient to detect the target using brute-force method. Hypothesis generation 

methods provide a better way to solve this problem; using local or global features solely is 

insufficient to extract the implicit invariance of vehicles; AdaBoost algorithm has 

considerable potential as a capable classifier of dense training data and provides robust 

generalization ability. 

By combining the local features and global features of vehicles, the detection rate of 

proposed system is higher than others’, while the false positive rate is significantly suppressed. 

Without relying on background information, the proposed system works well in both light and 

heavy traffic scenes and can be applied to both static images or video frames. 

So far, the proposed vehicle detection system can operate well in variant conditions in 

the real environment. However, to further improve the performance of our system, some 

enhancements or trials can be made in the future. Firstly, vehicles cross through the 

intersection would meet our features and produce false positive in our testing samples due to 

the lack of auxiliary features which lead to the similarity in global geometric structure. 

Secondly, the proposed system is not yet efficient enough to be real-time. Therefore, if these 

problems can be solved, our system will be more applicable. 

This paper demonstrates a robust system for vehicle detection, and it involves the local- 

and global-orientation feature extraction of vehicles and the fusion of classifications. 

Experimental results show the opportunity of tracking and counting systems and advanced 

applications. 
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