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以全域及區域特徵基礎之煙霧偵測 

 

 

學生：彭聖傑    指導教授：林進燈 博士 

 

國立交通大學生醫工程研究所 

 

摘要 

 

本篇論文提出了使用區域特徵分析及全域特徵驗證的煙霧偵測方法，調查中

指出近年來基於影像式的煙霧偵測技術在智慧型監控系統中受到廣泛的重視與

研究。然而，在一個廣大的開放空間處理煙霧偵測事件如何不被其他常見的干擾

物例如行人和車輛所影響，建立一個無誤報的煙霧偵測系統仍是一項具有挑戰性

的問題。因此能夠在不同的環境下仍然能找出可區別煙霧以及非煙霧的特徵是一

件重要的任務。本篇論文分析影片中每個候選區塊的區域特徵：邊緣模糊化、能

量的逐步變化與色彩結構的逐步變化，其中每個區域特徵都對煙霧有足夠的偵測

能力以及低誤報。此外，本論文所提出的三種類型的區域特徵都各具互補性，因

此，藉由 Boosting 學習演算法加上串聯式架構的方式結合區域特徵以降低更多的

誤報。為了更進一步的克服誤報的情況，提出了全域特徵的統計方式來驗證候選

區域的邊緣地帶及整個感興趣移動區域內的資訊。實驗結果指出本篇論文所提出

的系統對於不同的環境地點在煙霧偵測上有良好的偵測率以及很低的誤報率以

及快速的反應時間。整個系統在執行上具有高效率可對影像做即時處理，並已將

此煙霧偵測技術移植到嵌入式系統中。 
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ABSTRACT 

 

This study presents a novel smoke detection approach using local feature analysis 

and global feature verification. Studies have investigated visual-based smoke detection 

techniques in surveillance systems for years. However, given an image in open or large 

spaces with typical smoke and disturbances of commonly moving objects such as 

pedestrians or vehicles, detecting smoke without false alarm is still a challenging 

problem. It is important to find features to distinguish smoke from various 

environments. This study analyzes characteristics of candidate blocks in video 

sequences to exploit local features: edge blurring, gradual energy change and gradual 

color configuration change. Each local feature is strong enough to detect smoke with 

few false alarms. Moreover, proposed features are complementary to each other. Hence, 

local features are combined to lower the false alarm rates by boosting cascade 

architecture. To further overcome some false situation, global feature verification is 

proposed to gather statistics of information on contour and in the whole area of each 

candidate region. Experimental results show that the proposed system can well detect 
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smoke with low false alarm rate within a short reaction time in various environments. 

The whole system can run in real time and has been implemented on embedded system. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

In last few years, there were average 5622.8 fire accidents per year according to the 

report from the National Fire Administration. The number of dead and injured people 

was nearly 700 and the property loss was about 2 billion NT dollars each year. If the fire 

accident could be found much earlier, it is more likely to reduce the loss of life and 

property. 

The process of fire development mostly divided into four periods: Ignition, Fire 

Growth Period, Fully Developed Period and Decay Period as shown in Fig.1-1. 

 

Fig. 1-1 Processing diagram of fire development 

 

In general occurrences of fire, a great quantity of thick smoke instead of fire is 

produced in the initial stage. After flashover, fire spreads quickly and burns all spaces 

continuously. Therefore, the beginning of fire can be observed soon before it causes 

any real damage. 
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Conventional point-based sensors typically detect the presence of smoke 

particles by ionization or photometry. These detectors rely on the smoke propagation 

to a fixed point and therefore cannot operate in large or open spaces, such as hangers, 

tunnels, storage facilities, and offshore platforms. Moreover, conventional sensors 

inherently suffer from the transport delay of the smoke from the fire to the sensor [10]. 

Many researchers have recently investigated video smoke detection (VSD) that may 

address problems in point-based sensors. However, development of video smoke 

detection is still in an early stage due to the difficulty in modeling and characterizing 

smoke by primitive visual features such as intensity, motion, and edge. In last study, 

our system achieves the goal of high detection rate and short reaction time with lower 

false alarm rate. In last study, researchers proposed block based computation to 

improve the performance, using wavelet energy ratio to analyze the gradual energy 

change and the color configuration change. However, combining each local feature 

still not overcome some critical problems such like huge tourist coaches, light 

reflection with a big area, etc. As same as the goal of last study, researchers attempt to 

improve the false alarm rate while keeping a high detection rate and short reaction 

time. This study, researchers applied the concept of boosting and cascade architecture 

to combine the local features. This occurrence, optimizing the features combination 

automatically and lower the computation time. In addition, adding the global features 

to make the system more stability. 



 

 3 

1.2 Related Work 

 

 

Fig. 1-2 Four categories of video smoke detection 

 

Features used for smoke detection can be divided into four categories: motion, 

appearance, color, and energy (texture) as shown in Fig. 1-2. The first category includes 

Motion-Based approaches [1, 3-4, 21]. Vicente et al. [1] discriminate distant smoke 

from other phenomena by extracting the transitory and complex motion. Kopilovic et al. 

[3] observed irregularities in motion due to non-rigidity of smoke. Yuan et al. [4] 

proposed a fast orientation model that produces a more effective way to extract 

motion characteristics.  

The second category includes Appearance-Based approaches [2, 5-11]. Toreyin 

et al. [2] indicated that smoke from an uncontrolled fire expands in time and results in 

regions with convex boundaries. Chen et al. [5] found that airflows change the shape 

of smoke in various ways at any time, and introduced a disorder measure, the ratio of 

circumference to area for the extracted smoke region, to analyze shape complexity. 

Moreover, incremental smoke pixels are calculated to obtain the growth-rate to 

characterize the diffusion process of smoke. Yang et al. [6] analyzed the changing 
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unevenness of density distribution and the changing irregularities of the contour of 

smoke. Fujiwara et al. [9] extracted smoke regions from an image using fractal 

encoding concept. 

Color-Based approaches [2, 5, 11-14, 21, 22] comprise the third category. Smoke 

pixels gradually change the color configuration. Smoke typically displays grayish 

colors during the burning process [5]. A particle filter coped with multi-model 

probability density function (pdf) was implemented for 3D color representation [12]. 

Independent of fuel type, smoke naturally decreases chrominance channels U and V 

of YUV color space in the candidate region [2]. Kim et al. [24] used the temporal 

information of its color and shape extracted from the regions of interest (ROI) to 

decide whether the ROI is smoke or not. 

The fourth category includes Energy-Based approaches [2, 13-23]. Lai et al. 

Wavelet coefficients contain high frequency information of the original image [17]. 

Since smoke obstructs the texture and edges in the background of an image [2], a 

decrease in wavelet energy is an important clue for smoke detection. Piccinini et al. 

[16] further improve the concept by on-line modeling the ratio between the current 

input frame energy and the background energy. 

None of features is perfect. Each feature has false alarms in certain cases such as 

a vivid person with grayfish clothes, presences of huge tourist coaches, trees with 

vivid leafs and shadow, and background with poor textures. Current researches 

combined various features to lower the false alarm rate [11, 21, 22]. In this paper, 

spatial and temporal analyses based on block processing are proposed to enhance 

smoke features. Energy-based and color-based features are analyzed in spatial, 

temporal, and spatial-temporal domains. Proposed system further combined the local 

features with the global features. Local features are combined by boosting cascade 

architecture. Global feature verification consists of area ratio, contour analysis and 
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region analysis. The proposed system ran more than six hours in various conditions to 

verify fire safety reliability in the real world. Experimental results show that the 

proposed system can detect smoke with low false alarm rate within a short reaction 

time. 

 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 describes the 

proposed system architecture and grid-processing including background modeling, and 

candidate selection. Chapter 3 presents local feature analysis. Chapter 4 presents 

classification and global feature verification. Chapter 5 describes the experimental 

results and discussions. Finally, draws conclusions and future work will be presented in 

chapter 6.  
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Chapter 2 

System Architecture and 

Grid-Processing 

 

2.1 System Architecture 

Figure 2-1 shows the system architecture of the proposed video smoke detection 

(VSD) technique, including three processing units: the grid- processing unit, the local 

feature classification unit and the global feature verification unit. The rest of this 

chapter focuses on the details of the grid processing unit. 

Grid 

Processing

Image Sequences
Smoke Detection 

Results

Cascade 

Classification

Local Feature 

Calassification

Region 

Analysis

Contour 

Analysis

Global Feature Verification

Connected 

Blocks 

Labeling

Local Feature 

Analysis

Area 

Ratio
AND

Boosting

 

Fig. 2-1 System architecture 

 

2.2 Grid Processing 

Figure 2-2 depicts the flow chart of the grid processing unit. The input is gray 

level image sequences, and the output is candidate grid with moving property. Two 

common methods are used for obtaining the foreground image. One is temporal 

difference and the other is background subtraction. The temporal difference method 
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can be implemented by subtracting frame t-1 from frame t, and the regions with an 

obvious intensity variation are considered as the foreground region. Background 

subtraction is also a similar method, but this work uses a constructed background 

image instead of frame t-1. This work applied the Gaussian Mixture Model (GMM) 

[25] to construct background. This technique models each pixel as a Gaussian mixture 

and uses an on-line EM algorithm to update the model. This technique deals properly 

with lighting changes, repetitive motion from clutter, and long-term scene changes. 

Background 

Subtraction

Gray Level 

Images

Temporal 

Difference

GMM Update

Candidate 

Blocks

AND

Grid 

Processing

 

Fig. 2-2 Grid processing 

 

To temporally analyze smoke, tracking smoke target by foreground segmentation 

is a necessary step for object-based approach. However, smoke regions appear and 

disappear frequently because of the special particle property during ignition and 

combustion as Fig. 2-3 shows. Tracking or analyzing the smoke target using an 

object-based method is inefficient. A block-based technique can solve this problem. 

The block-based system only needs to check the presence of smoke inside the block, 

and therefore can temporally analyze features belong to each block in the screen.  
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Fig. 2-3 Smoke regions appear and disappear continuously 

 

2.2.1 Background Modeling 

 Gaussian Mixture Model (GMM) [25] is a common and robust method in 

background construction, and we choose GMM to build the background image. It will 

be described as follows. 

 Generally speaking, the intensity of each pixel varies in a small interval except 

the region of foreground objects. It is proper to use a Gaussian model to construct the 

background image. But in many surveillance videos, we would observe that there are 

waving leaves, sparking light, etc. In these situations, some background pixels would 

vary in several specific intervals. In other words, using two, three or more Gaussian 
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distributions to model a pixel will obtain a better performance. This study presents the 

flow chart of GMM background construction in Fig. 2-4. 

 

 

Fig. 2-4 GMM background model construction 

 

Firstly, low-pass filter will be employed to reduce the noise. The GMM method 

models intensity of each pixel with K Gaussian distributions. The probability that a 

certain pixel has a value of tX  at time t can be written as Eq. (2.1) 

K

, , ,

1

( ) ( , , )t k t t k t k t

k

P X X 


                 (2.1) 

where K is the number of distributions that we used, ,k t  represents the weight of 

k-th Gaussian in the mixture at time t, ,k t  is the mean of k-th Gaussian in the 

mixture at time t, ,k t  is the covariance matrix of the k-th Gaussian in the mixture 

at time t, and   is a Gaussian probability density function shown in Eq. (2.2). 
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 
1

/2 1/2

1 1
( , , ) exp{ ( ) ( )}

22 | |

T
t t t t t t t t

n
t

X X X


       


    (2.2) 

where n is the dimension of data. In order to simplify the computation, it assumed that 

each channel of data are independent and have the same variance, and then can 

assume the covariance matrix as Eq. (2.3). 

2
, Ik t k                             (2.3) 

Temporal difference is applied to extract the possible background regions, and 

update pixels inside these regions. Then, sorting Gaussian distributions by the value 

of /  , and choose the first B distributions to be the background model, i.e. shown 

as Eq. (2.4). 

,

1

arg min( )
b

k t
b

k

B T


                    (2.4) 

 When a new pixel is inputted (intensity is 1tX  ), it will be checked against the 

K distributions by turns. If the probability value is within 2.5 standard deviations, and 

this pixel is considered as background. Then, we update weight, mean, variance by Eq. 

(2.5), (2.6), (2.7). 

, 1 , , 1(1 ) ( )k t k t k tM                     (2.5) 

1 1(1 )t t tX                        (2.6) 

2 2
1 1 1 11 (1 ) ( ) ( )T

t t t tt t X X                       (2.7) 

where   is a learning rate, , 1k tM   is 1 for the model which matched and 0 for 

remaining models, and Eq. (2.8) shows the second learning rate  . 

1 , ,( | , )t k t k tX                       (2.8) 

Besides, the remaining Gaussians only update the weight. If there is no any 

distribution is matched, we replace the mean, variance and weight of the last 

distribution by 1tX  , a high variance and a low weight value, respectively. 
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 Figure 2-5 shows the constructed background image by GMM. Figure 2-6 shows 

the foreground image obtained by background subtraction. 

   
(a) Video sequence             (b) GMM Background Image 

Fig. 2-5 Background image construction by GMM 

 

         
(a) Current image                 (b) Foreground image 

Fig. 2-6 Foreground image obtained by background subtraction 

 

2.2.2 Candidate Selection 

The image will be divided into non-overlapped blocks, and each block has the 

same size in a same image. To find out the moving block with a gray-level change, the 

foreground image will be obtained by GMM approach, and the sum of foreground 

image for each pixel as shown in Eq. (2.9) 

  1
,

1, , ,

0,

kx y Sk

if foreground x y t T
S

otherwise




     





             (2.9) 
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where Sk is the k
th

 block and x, y is the coordinates of the scene. T1 is the predefined 

threshold. 

 Foreground regions can be found by the GMM approach, but they could also 

include static objects. Consequently, temporal difference of two successive frames will 

be employed. All pixels in the difference image with value “1” are considered as 

moving objects in the scene. To reduce the disturbance of noises, the temporal block 

difference is computing the summation for each block to determine the moving 

property defined by Eq. (2.10). 

    2
,

1, , , , ,

0,

kx y Tk

if f x y t f x y t t T
T

otherwise




      





           (2.10) 

where Tk is the k
th

 block and x,y is the coordinates of the scene, f is the input image and 

T2 is the predefined threshold. 

To reduce computational cost, only values of background subtraction and 

temporal difference larger than the predefined thresholds will be regarded as candidates 

containing moving objects by Eq. (2.11) and Figure 2-7 shows the results of “grid 

processing”. 

1, 1

0,

k k

k

if S AND T
B

otherwise


 


      (2.11)  

  

Fig. 2-7 Results of grid processing 
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Chapter 3 

Local Feature Analysis 

 

This chapter will be divided into three parts according to three different kind of 

local feature analysis. Firstly, based on the smoke will blur the scene, comparing the 

energy of background with foreground is proposed in this paper. Furthermore, 

analyzing one-dimension temporal wavelet energy by different from the other physical 

objects, smoke will change the energy of scene smoothly. Finally, as same as the last 

feature, smoke will change the color configuration much smooth than the other objects. 

All of the local features are based on block based processing. 

 

3.1  2-D Spatial Wavelet Analysis 

Although the Fourier transform has been the mainstay of transform-based image 

processing since the late 1950s, a more recent transformation, called the wavelet 

transform, is now making it even easier to compress, transmit, and analyze many 

images. Unlike the Fourier transform, whose basis functions are sinusoids, wavelet 

transforms are based on small waves, called wavelets, of varying frequency and limited 

duration. This allows them to provide the equivalent of a musical score for an image, 

revealing not only what notes (frequencies) to play but also when to play them. 

Conventional Fourier transforms, on the other hand, provide only the notes or 

frequency information; temporal information is lost in the transform process. 

 Now we want to transform an image (M by N) into wavelet domain. The whole 

2-D spatial wavelet transform can be decomposed by the horizontal wavelet transform 

and the vertical wavelet transform. Fig. 3-1 is the diagram of horizontal wavelet 
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transform. The direction from left to right is the wavelet decomposition, and the 

direction from left to right is the wavelet synthesis. 

 

Fig. 3-1 Horizontal wavelet transformation 

 

 Each row of the image will be regarded as mutual independent image sequences 

and each independent row will process wavelet transform respectively. Briefly, a 

original image will be decomposed into low-band information on the left side and 

high-band information on the right side after horizontal wavelet transform. We used L 

and H stand for low-band and high-band information, respectively. 

 Vertical wavelet transform will process on L and H obtained by horizontal 

transforms and the whole wavelet transform will be done. Fig. 3-2 is the diagram of 

vertical wavelet transform. The direction from left to right is the wavelet decomposition, 

and the direction from right to left is the wavelet synthesis. The data on the left side was 

processed by horizontal wavelet transform but not vertical wavelet transform yet. Each 

column of the image will be regarded as mutual independent image sequences and each 

independent column will process wavelet 
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Fig. 3-2 Vertical wavelet transformation 

 

transform, respectively. Anyhow, the data can further separate into upside and 

underside after vertical wavelet transform. The upside is the vertical low-band 

information and the underside is the vertical high-band information as shown on the 

right side of Fig. 3-2. To operate in coordination with horizontal transform, the whole 

image data can separate into four regions, which are horizontal low-band vertical 

low-band (LL), horizontal low-band vertical high-band (LH), horizontal high-band 

vertical low-band (HL), and horizontal high-band vertical high -band (HH). 
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 It is well-known that wavelet subimages contain the texture and edge information 

of the original image. Edges produce local extreme in wavelet subimages [15]. Wavelet 

subimages LH, HL, and HH contain horizontal, vertical and diagonal high frequency 

information of the original image, respectively. Fig. 3-3 is the original image and its 

single level wavelet subimages. 

 

 

 

  

Fig. 3-3 Original image and its single level wavelet subimages 

 

 Because smoke blurs the texture and edges in the background of an image, 

high-frequency information becomes much more invisible when smoke covers part of 

the scene. Therefore, details will be an important indicator of smoke due to the decrease 

in value of high-frequency information. Energy of details is calculated for each 

candidate block: 
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       
2 2 2

,

, , , ,
k

k t
x y B

E B I LH x y HL x y HH x y


   
          (3.1) 

where Bk is the k
th

 block of the scene, It is the input image at time t and the wavelet 

transform coefficients are shown in Fig. 3-4. 

 

 

Fig. 3-4 Two-dimension wavelet transform and its coefficients 

 

Instead of using energy of the input directly, we prefer computing the energy ratio 

of the current frame to the background model due to the cancelation of negative effect 

on different conditions and the capability of impartial measurement in the decrease: 

 
 
 

,
,

,

k t

k

k t

E B I
B t

E B BG
 

     

(3.2) 

where BGt is the mean value of the distribution with a highest weight in the GMM 

background model. The value of the energy ratio α is our first feature in spatial domain, 

which supports the fact that the texture or edges of the scene observed by the camera are 

no longer visible as they used to be in the current input frame. It is also possible to 

determine the location of smoke using the wavelet subimages as shown in Fig. 3-5. 
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(a) Original frame without smoke 

  

(b) Frame with smoke 

Fig. 3-5 Blurring in the edges is visible by single level wavelet subimages 

 

3.2  1-D Temporal Energy Analysis 

A wave is an oscillating function of time or space and is periodic. In contrast, 

wavelets are localized waves. They have their energy concentrated in time or space and 

are suited to analysis of transient signals. Differential signal is easy to extract the 

suddenly change of signals and the computation cost is lower to anther analysis 

methods. In figure 3-6 shows the original signal and the differential signal. It is an 

applicable way to calculate the quantity of changing value. 
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Fig. 3-6 Block diagram of 1-D differential operation 

 

Ordinary moving objects such as pedestrians or vehicles have solid characteristic 

so we can’t see details behind through the bodies. If there is an ordinary moving object 

going through the candidate block then there will be a sudden energy change because of 

the transition from the background to the foreground object. On the contrary, initial 

smoke has semi-transparent nature and becomes less visible as time goes by.  

A gradual change of energy is guaranteed to this process and any abrupt variation 

will be regarded as a noise caused by common disturbance. One-dimension temporal 

differential analysis of energy ratio α provides a proper evaluation of this phenomenon. 

We obtain variation information by the 1-D differential shown in Fig.3-6. Therefore, 

the disturbance can be measured by computing the summation of variations for a 

predefined time interval. Obviously, ordinary solid moving objects produce a great 

quantity of variations in Fig. 3-7(b). Smoke has smooth variation in value of energy 

ratio and produces few variations shown in Fig. 3-7(e). The likelihood of the candidate 

block to be a smoke region is in inverse proportion to the parameter β  

 
 

,

t

n t N
E k

D n

B t
N



  


 

(3.3) 

where D[n] is the differential signal information of energy ratio α and t is current frame 

and N is the number of calculate frame. 
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(a) (d) 

(b) (e) 

(c) (f) 
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Fig. 3-7 Comparison of changes on the wavelet energy ratio at the passage of an 

ordinary moving object and smoke objects. (a) Sample frame from the test sequence 

and temporal candidate block with an ordinary moving object. (b) Profile of the wavelet 

energy ratio in the selected block. (c) Differential signal of the wavelet energy ratio in 

the same block with possible observation of sudden change properties. (d) Sample 

frame from the test sequence and temporal candidate block with smoke objects. (e) 

Profile of the wavelet energy ratio in the selected block. (f) Differential signal of the 

wavelet energy ratio in the same block, with possible observation of gradual change 

properties. 

 

3.3 1-D Temporal HSV Analysis 

Smoke is hard to be defined by a specific color appearance precisely. However, it 

is possible to characterize smoke by considering its effect on the color appearance of 

the region on which it covers. Besides the gradual change of energy, smoke has the 

same property of color configuration. 

Color analysis is performed in order to identify those pixels in the image that 

respect chromatic properties of smoke. The HSV color space and photometric invariant 

features are considered in the analysis. Photometric invariant features are functions 

describing the color configuration of each image coordinate discounting local colors 

variations. HSV stands for hue, saturation, and value, and is also often called HSB （B 

for brightness）. HSV color space describes in figure 3-8. A third model, common in 

computer vision applications. HSV is the most common cylindrical-coordinate 

representations of points in an RGB color model, which rearrange the geometry of 

RGB in an attempt to be more perceptually relevant than the cartesian representation 

and the full spectrum of colors can be created by edit these three values： 

Hue is another word for color. Red, blue, and yellow are the primary hues, and 

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Cylindrical_coordinate_system
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/Color_vision
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
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when combined in equal amounts they create the secondary hues orange, green and 

violet. However, moving around the cone changes the Hue color along the rainbow. 

Saturation is the intensity of a color (or hue). Mix colors or add black to a color, 

saturation and intensity drops. Add white, color becomes lighter, but not necessarily 

more intense. The colors are more pure when the S (saturation) values increasingly. 

Value is the lightness of a color. Like saturation, adding black or white to a color 

affects value. Tints are colors with added white, and shades are colors with added black. 

 

Fig. 3-8 HSV color space 

 

 It is often more natural to think about a color in terms of hue and saturation than 

in terms of additive or subtractive color components. They were developed in the 1970s 

for computer graphics applications, and are used for color pickers, and for image 

analysis and computer vision. Hue and saturation in the HSV color space and the 

normalized-RGB color space are two photometric invariant features in common use.  

This work uses the HSV color space for its fast computation since it can be 

obtained by each channel. From the empirical analysis, smoke smooth changes each 

component in HSV color space of the covered point but smoke doesn’t severely change 

the configuration of the HSV color system. However, the configuration is likely to 

change in case of a material change. This constrain can be represented by  

http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Color_tool
http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Computer_vision
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                   (3.4)

 

This investigation draws the HSV color histogram of a specific block in three 

different situations of a video sequence in order to characterize the presence or absence 

of smoke. The color histogram distribution in Fig. 3-9 (c) is similar to the one in Fig. 

3-9 (a). However, the presence of pedestrian produces totally different color histogram 

distributions between Fig. 3-9 (b) and Fig. 3-9 (a). 

 

 

 
(a)  

 

(b) 

 

 

 
(b)  
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(c)  

Fig. 3-9 HSV color histogram of a specific block (a) original image (b) covered by 

ordinary moving objects (c) covered by smoke 

 

Variations of the three channels in the HSV color system are obtained by the 1-D 

differential again in Fig. 3-10. Ordinary solid moving objects produce a great quantity 

of variations in the right column of Fig. 3-10 (b). Smoke has smooth variation in HSV 

color space and produces few impulses shown in the right column of Fig. 3-10 (d). 
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
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(3.5) 

Where DH[n], DS[n], and DV[n] stand for differential signal of H, S and V channels 

respectively. The likelihood of the candidate block to be a smoke region is in inverse 

proportion to the parameter β. 
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(a)          (c) 

 

        

 (b)  (d) 

  

Fig. 3-10 Comparison of changes on color components of HSV color spaces at the 

passage of an ordinary moving object and smoke objects. (a) Sample frame from the 
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test sequence and temporal candidate block with an ordinary moving object. (b) Left 

column profile of the H, S and V color components in the selected block and right 

column profile of the differential signal of H, S and V components in the same block 

with possible observation of variance properties. (c) Sample frame from the test 

sequence and temporal candidate block with smoke objects. (d) Left column profile of 

the H, S and V color components in the selected block and right column profile of the 

differential signal of H, S and V components in the same block with possible 

observation of invariance properties 
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Chapter 4 

Classification and Verification 

 

This chapter will be divided into two parts. First part will introduce the classifier 

of this system. Five features proposed in the previous chapter are partially 

complementary with different physical meanings. The 2-D spatial wavelet feature α in 

chapter 3.1, distinguish high-texture objects from smoke. The 1-D temporal energy 

feature βE in chapter 3.2, distinguishes objects suddenly change the texture in the 

candidate block. The 1-D temporal chromatic configuration feature βH, βS and βV. in 

chapter 3.3, distinguishes objects suddenly change the color structure in the candidate 

block. In this section, five proposed features are combined as feature vector  

        [ , , , , ]E H S Vx      for each candidate block and classified by cascade 

classifier. Second part of this chapter will introduce the global feature verification in 

this system. There are three verification processes: area ratio, contour analysis and 

region analysis and they are also proposed to further reduce the false alarm rate.  

 

4.1  Classification 

The conventional AdaBoost [26] procedure can be easily interpreted as a greedy 

feature selection process. Consider the general problem of boosting, in which a set of 

classification functions are combined using a weight majority vote. The challenge is to 

associate a large weight with each good classification function and a smaller weight 

with poor functions. AdaBoost is an aggressive mechanism for selecting a small set of 

good classification functions which nevertheless have significant variety. This study, 

researchers proposed five features that introduced in previous chapter and the threshold 
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selection for each feature is described in below. 

For distribute the information of each value for block-based smoke database. To 

find a threshold that determines the optimal threshold classification function, causing 

the minimum number of examples are misclassified. Eq. (4.1) is a weak classifier 

 , , ,h x f p   consists of a feature ( )f , a threshold    and a polarity  p  indicating 

the direction of inequality. Here x
 
is a 10x10 pixels image.  

 
 1,   

, , ,
0,  

if pf x p
h x f p

otherwise





 


                  (4.1) 

Figure 4-1 is the flow chart of optimal threshold selection for each feature. 

Selected threshold of each feature is trained by block-based smoke 10x10 patch 

database which consists of 2,336 smoke images and 23,632 non-smoke images. 

 

Fig. 4-1 Optimal threshold selection for each feature 

 The algorithm described in Table 4-1 is used to select key weak classifiers form 

the set of possible weak classifiers. In this study case, five local features are proposed to 

classify smoke blocks and non-smoke blocks. In this study case, all of the weak 

classifiers (five local features) introduced in last chapter. 
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Table 4-1 Boosting algorithm for learning a query online 

 

T hypotheses are constructed each using a single feature. The final hypothesis is a weighted 

linear combination of the T hypotheses where the weights are inversely proportional to the 

training errors. 

• Given example images (x1, y1), . . . , (xn, yn) where yi = 0, 1 for negative and positive 

examples respectively. 

• Initialize weights lm
w i

2

1
,

2

1
,1 

 for yi = 0, 1 respectively, where m and l are the number 

of negatives and positives respectively. 

• For t = 1, . . . , T : 

– Normalize the weights,  
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– Select the best weak classifier with respect to the weighted error 
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– Define ht(x) = h(x, ft, pt, θt) where ft ,pt ,and θt are the minimizers of εt. 

– Update the weights: 
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 Cascade architecture [26][28] is a kind of degenerate decision tree which attempts 

to reject as many negatives as possible at earliest stage possible. A positive result from 

the first classifier triggers the evaluation of a second classifier and a positive result from 

the second classifier triggers the evaluation of a third classifier, and so on. However, a 

negative outcome at any point leads to be reject immediately. Figure 4-2 shows the 

schematic depiction of a cascade classifier. 

 

1 2 3
Further 

Processing

Reject Candidate Blocks

All Candidate 

Blocks

T T T

F F F

 

Fig. 4-2 Schematic depiction of a cascade classifier 

 

 The number of cascade stages and the size of each stage must be sufficient to 

achieve similar detection performance while minimizing computation. Given a trained 

cascade of classifiers, the false positive rate of the cascade 

1

K

i

i

F f



        (4.2)  

where F is the false positive rate of the cascaded classifier, K is the number of 

classifiers, and fi is the false positive rate of the ith classifier on the examples that get 

through to it.  
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The detection rate is 

1

K

i

i

D d



       (4.3) 

where D is the detection rate of the cascaded classifier, K is the number of classifiers, 

and di  is the detection rate of the ith classifier on the examples that get through to it. 

 The cascade design process is driven from a set of detection and performance 

goals. In most cases of classifiers training will achieve high detection rates and low 

false positive rates. Table 4-2 indicated the training algorithm for building a cascaded 

classifier. 

 

Table 4-2 Training algorithm for building a cascaded detector. 

 

  

• User selects values for f, the maximum acceptable false positive rate per layer and d, the 

minimum acceptable detection rate per layer. 

• User slelets target overall false positive, Ftarget. 

• P = set of positive examples 

• N = set of negative examples 

• F0 = 1.0; D0 = 1.0 

• i = 0 

• while Fi > Ftarget 

– i ← i + 1 

– ni = 0; Fi = Fi-1 

– while Fi > f x Fi-1 

* ni ← ni + 1 

* Use P and N to train a classifier with ni features using AdaBoost 

* Evaluate current cascaded classifier on validation set to determine Fi and Di 

* Decrease threshold for the ith classifier until the current cascaded classifier 

has a detection rate of at least d x Di-1 (this also affects Fi) 

– N ← 0 

– If Fi > Ftarget then evaluate the current cascaded detector on the set of non-smoke 

images and put any false detections into the set N 
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A very simple framework is used to produce an effective classifier which is highly 

efficient. Researcher selects the maximum acceptable rate for fi = 0.3 and the minimum 

acceptable rate for di = 0.9. Each layer of cascade is trained by AdaBoost [26] (as 

described in Table 4-1) with the number of features used being increased until the target 

detection and false positive rates are met for this level. The complete arrangement of 

local feature cascade classifier is shows in figure 4-3. 

2D Spatial 

Energy Ratio

1D Temporal 

Energy

1D Temporal 

Hue

1D Temporal 

Saturation

1D Temporal 

Value

Local Feature Cascade Classifier

 

Fig. 4-3 Local feature cascade classifier 

 

4.2  Global Feature Verification 

Global feature verification is the final stage of proposed system. This is an 

important stage of the system because of the global feature verification has perfect 

discrimination ability with tough case such like big moving objects, light reflection 

with a big area and tree with vivid leafs, etc. Because all of these cases would meet the 

local features we proposed. To solve these problems, adding more local feature is 

inefficient. Combine each block in the same region to get whole region of the objects. 

At this time, we can analyze the region based features (global features) in each region. 

Therefore, block-based connected components were employed to combine each block 

in neighbor. In next section will introduce block-based connected components then will 

introduce the global feature verification method in our system: “Area ratio”, “Contour 

analysis” and “Region analysis”. Figure 4-4 illustrates the flow chart of global feature 
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verification. 

  

 

Fig. 4-4 Flow chart of global feature verification 

 

4.2.1 Block-Based Connected Components 

 Connectivity between pixels is a fundamental concept that simplifies the 

definition of numerous digital image concepts, such as regions and boundaries. To 

establish whether these two pixels are connected, it is determined by their neighbors 

and finds their gray levels satisfy a specified criterion or similarity [27]. For instance, in 

binary image with values 0 and 1, two pixels maybe 4-neighbors, but they are said to be 

connected only if they have the same value. 

 Let V be the set of gray-level values used to define adjacency. In a binary image, V 

= {1} if we are referring to adjacency of pixels with value 1. We consider three types of 

adjacency/connectivity [27]: 

 

1. 4-connectivity 

Two pixels p and q with values from V are 4-connectivity if q is in the set N4(p). 
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2. 8-connectivity 

Two pixels p and q with values from V are 8-connectivity if q is in the set N8(p). 

3. m-connectivity 

Two pixel p and q with values from V are m-connectivity if  

(i) q is in N4(p), or 

(ii) q is in ND(p) and the set N4(p) ∩ N4(q) has no pixels whose values are from

 V. 

 

Fig. 4-5 (a) Arrangement of pixels (b) pixels that are 4-connectivity (c) pixels that are 

8-connectivity (d) m-connectivity 

 

 Figure 4-5 (a) shows a binary image which uses to find the connectivity between 

every pixel. Figure 4-5 (b) shows the 4-connectivity, pixel p has 4-connectivity to its 

neighbor which in horizontal or vertical position and contain V= {1}. If pixel p has 

connectivity to neighbor pixel in horizontal, vertical or diagonal position, it will define 

as 8-connectivity. The last figure is m-connectivity is a modification of 8-connectivity 

introduced to eliminate the ambiguities that often arise when 8-connectivity is used. 

The three pixels at the top of Fig. 4-5 (c) show ambiguous of 8-connectivity, as 

indicated by the dashed lines. This ambiguity is removed by using m-connectivity, as 

shown in Fig. 4-5 (d). 

 Connected component works by scanning an image, pixel-by-pixel in order to 

identify connected pixel regions [31]. Its works on binary or gray-level images and 

different measures connectivity are possible. Choice of the connectivity is among 4, 8, 
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6, 10, 18, 26 connectivity which are 4 and 8-connectivity for 2-D connected component 

extraction and the others for 3D connected component extraction. The connected 

components labeling operator scans an image by moving a row along until it comes to a 

point p where denotes the pixel to be labeled at any stage in the scanning process for 

which V= {1}. When this constrain is satisfied, it examines the four neighbors of p 

which already been encountered in the scan. Based on this information, the labeling of 

p occurs as follows: 

(i)  If all four neighbors are 0, assign a new label to p, else 

(ii)  If only one neighbors has V={1}, assign its label to p, else 

(iii) If one or more of the neighbors have V = {1}, assign one of the labels to p and 

make a note of the equivalence. For this case, we are labeling p with minimum label 

value. 

 

Fig. 4-6 Connected components labeling 

 

Once all groups have been determined, each pixel in same component will be 

labeled with same label. Figure 4-6 shows the results of connected components labeling. 

According to this concept, gird based connected components labeling was proposed. 

Each candidate block in the same moving object will be labeled with same label. Figure 

4-7 shows a block based connected components labeling. Different colors stand for 

different components respectively.  
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Fig. 4-7 Regard a block as a pixel unit 

 

 The presented system is an ensemble of different modules as depicted in Fig. 4-7. 

The main scope of this paper is the feature extraction and classification with respect to 

candidate block and candidate region of moving objects. 

 

4.2.2 Area Ratio 

When the ratio between the number of smoke blocks and the number of total 

blocks within a specific label is larger than a predefined value, in this study case, 0.25 is 

an experimental value of the ratio, all blocks in this label are painted “red” to represent 

smoke candidate regions and “green” to represent non-smoke regions as Fig. 4-8 shows. 

This verification can eliminate false detected candidate blocks inside ordinary moving 

objects and smoke regions. 
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(a) 

 

(b) 

Fig. 4-8 Result of Connected blocks labeling. (a) The upper left picture is a sample 

frame with smoke objects and the lower left picture shows the smoke blocks are painted 

“yellow” and the non-smoke blocks are represented by “blue” blocks. The right picture 

is the result of connected blocks labeling. All blocks in this label are painted “red” to 

represent smoke candidate regions. (b) The upper left picture is a sample frame with 

ordinary moving objects and the lower left picture shows the smoke blocks are painted 
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“yellow” and the non-smoke blocks are represented by “blue” blocks. The right picture 

is the result of connected blocks labeling. All blocks in this label are painted “green” to 

represent non-smoke regions 

4.2.3 Contour Analysis 

Sometimes the camera is set too close to the ground in video surveillance systems 

and the infrared camera in dark space would cause the color configuration changing 

monochromatically. In this situation, the energy ratio would change smoothly because 

of the objects are too close to the camera and the features relative to color configuration 

would not active entirely. Contour analysis was proposed to overcome this kind of false 

positive. Figure 4-9 (c) shows the contour of candidate regions.  

 

 

(a)        (b)       (c) 

Fig. 4-9 Results of contour extraction. (a) Sample frame from the test sequence (b) 

Candidate region of the moving objects (c) Contour of the candidate region 

 

 To reduce the computation cost on contour extraction. An approximate method to 

extract the contour of the region was employed. Four-neighbors including up, down, 

left and right of the blocks just like four-connectivity analysis. If there is a 

non-candidate block to its four neighbors then it will be determined as a contour blocks 

on this region. Otherwise, it will be regarded as the interior blocks of this region. In 

general, smoke contour has a high-transparent property and blurs edges and textures in 

the background. High-frequency information becomes much more invisible. However, 
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it still reveals the background information. On the contrary, the ordinary solid moving 

objects do not have the transparent property, so the background information will be 

covered by the moving objects. Energy ratio between foreground and background will 

severe change abruptly. Energy ratio between foreground and background is calculated 

for each candidate region： 

1
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B t

blocks number of C










      (4.4) 

where Ci is the ith candidate region’s contour of the scene, α(Bk,t) is the kth candidate 

block’s wavelet ratio of the scene. Ordinary solid moving objects produce a great 

quantity of energy changing. Smoke has a smooth variation in energy ratio value and 

produces a few of changing in the average wavelet energy ratio on contour. The 

likelihood of the candidate region to be a smoke region is the value of ω1 in the 

predefined value range. This value range is trained by 8798 positive (smoke) training 

samples. Fig. 4-10 shows the diffusion of car lights and reflects on the road and makes 

a lot of noise. In such situation, the moving foreground caused by light reflection will 

blurs the texture and edges in the background. Color configuration analysis doesn’t 

work at night. So, many regions will be miscalculation as smoke regions. Contour 

analysis plays a significant role to overcome the miscalculation in such situation. 

 

  

     (a)            (c)  
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     (b)            (d) 

Fig. 4-10 Car lights diffusion and reflects on the road. (a) Smoke detection result may 

determine the region as a smoke candidate region before contour analysis. (b) Shows 

the contour of the moving object and different color means the different region. (c) 

Smoke detection result determines the region as a non-smoke region after contour 

analysis. (d) Contour analysis rejects this non-smoke candidate region and represented 

by “black” blocks. 

 

4.2.4 Region Analysis 

 Global feature only according to the energy ratio between the foreground and the 

background is not strong enough. Sometimes both of the foreground energy and the 

background energy are extremely high and have similar value. Thus, it will cause the 

energy ratio between foreground and background nears to the property to smoke. In 

such case, the energy ratio caused by waving leaves might similar to the energy ratio 

caused by smoke through the scene. Figure 4-11 illustrates the false positive cause by 

waving leaves. 
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Fig. 4-11 False alarms caused by waving leaves 

 

 This approach can deal properly with the false positive causing by complex 

moving foreground, especially in leaves waving in the wind and man squirm. The 

average of foreground energy is calculated for each candidate region： 

2

( , )
i

k t
k R

i

E B I

blocks number of R







     (4.5)

 

where Ri is the ith candidate region’s interior blocks in the scene, E(Bk,t) is the kth 

candidate block’s wavelet energy in the scene. Complex solid moving objects produce a 

great quantity of energy changing. Smoke has a smooth variation in energy value and 

produces a few of changing in the average wavelet energy. The likelihood of the 

candidate region to be a smoke region is the value of ω2 in the predefined value range. 

This value range is trained by 9334 positive (smoke) training samples. Fig. 4-12 shows 

the output after region analysis in each candidate region. 
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Fig. 4-12 Output after region analysis 

 

This approach can properly deal with continuous waving leaves or man squirm. 

Combined the “Area Ratio”, “Contour Analysis” and “Region Analysis” to obtain our 

global feature verification, the desired output is coming out from the verification stage. 

The global feature verification eliminated miscalculations or transient noise and 

enhancement the system stability. 
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Chapter 5 

Experimental Results 

 

In this chapter, several results of smoke detection will be presented. Our algorithm 

was implemented on PC with Intel Core2 Quad 2.4GHz and 2GB RAM. Borland C++ 

Builder is our complier and operated on Windows XP. There are many different kinds 

of compressed format AVI testing inputs and DVD video data acquired by USB video 

capture. Some of testing videos are downloaded from the webpage 

(http://www.openvisor.org [29] and http://signal.ee.bilkent.edu.tr/VisiFire/index.html 

[30] ) and the other testing films are made by other researchers in our lab. Each video 

sequence has a resolution of 320240. 

In section 5.1, we will show the experimental results of the proposed algorithm on 

different scenes. Besides, accuracy rate and comparison between features are 

demonstrated in section 5.2. A brief discussion of our proposed algorithm will be 

presented in section 5.3. 

 

5.1 Experimental Results of Smoke Detection 

The testing videos in this study contain various conditions, including indoor, 

outdoor and sunlight variation each containing smoke events, pedestrians, bicycles, 

motorcycle, tourist coaches, trailers, waving leaves, etc. All of the testing videos are 

list in appendix, including 39 smoke videos and 42 non-smoke videos. All videos 

contain 63000 positive samples (frames with smoke objects) and 113269 negative 

samples (frames with only non-smoke objects). “Red” blocks represent smoke regions 

and “Green” blocks represent non-smoke regions. The columns of left side contain 

http://www.openvisor.org/
http://signal.ee.bilkent.edu.tr/VisiFire/index.html
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original video sequence and the columns of right side contain detection results of the 

proposed algorithm.  

Figure 5-1 illustrates the outdoor environments situation. No wind exhibits in Fig. 

5-1(a), but the wind is blowing hard in Fig. 5-1(b)(c)(d) and smoke strongly floats in 

the air. The features wouldn’t be affected by the external environments and smoke 

regions can be detected correctly. 

 

   

(a) 

   

(b) 

   

(c) 
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(d) 

Fig. 5-1 Outdoor environments 

 

Figure 5-2 illustrates the outdoor environments with pedestrians. Smoke regions 

can be detected correctly even when people walk around. 

 

   

(a) 

   

(b) 
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(c) 

Fig. 5-2 Outdoor environments with people 

 

Figure 5-3 illustrates the outdoor environments with vehicles. Smoke regions can 

be detected correctly even when vehicles go through the scene. There are cars, 

motorcycles and trucks, etc in our testing data. 

   

(a) Cars 

   

(b) Motorcycles 

Fig. 5-3 Outdoor environments with vehicles 
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Figure 5-4 illustrates the indoor environments situation. Smoke regions can be 

detected correctly. Smoke regions can be detected correctly even when people walk 

around. 

  

(a) 

  

(b) 

  

(c) 

Fig. 5-4 Indoor environments 

 

The following discusses the testing results of real traffic situations in tunnels and 

fire accident in tunnels with heavy smoke. Figure 5-5(a)(b)(c) illustrate the tunnel 
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environments with smoke objects. The proposed algorithm can detect smoke precisely 

and issue alarms in time.  

   

(a) 

   

(b) 

   

(c) 

Fig. 5-5 Smoke objects in tunnels 

 

Figure 5-6(a)(b)(c)(d) show different vehicles presence in a tunnel and they don’t 

activate alarm even the luminance changing in suddenly including car lights, shadow 

and sunlight reflection. Figure 5-6(e)(f) show cars in the tunnels at night. Figure 
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5-6(g)(h) show cars in a tunnel in day time. Both situations don’t produce false alarms. 

   

(a) Real traffic situations in a tunnel 

   

(b) Real traffic situations in a tunnel 

   

(c) Real traffic situations in a tunnel 

   

(d) Real traffic situations in a tunnel 
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(e) Real traffic situations in a tunnel 

   

(f) Real traffic situations in a tunnel 

   

(g) Real traffic situations in a tunnel 

   

(h) Real traffic situations in a tunnel 

Fig. 5-6 Tunnel environments 
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Several traffic conditions in these data include traffic jams and huge tourist 

coaches and trucks. The total length of the testing data is four hours and smoke regions 

are detected correctly. 

 

5.2 Accuracy Discussion 

This study proposes a frame-based and video-based criterion to quantitatively 

evaluate video smoke detection system. Data in Table 5-1 show the evaluations of each 

local and global feature testing result. The reaction time is obtained by the ratio 

between frames to detect and frames per second. The false positive rate is calculated as 

follow： 

false detected

non-smoke

False Alarm Rate 100%
N

N
 

   (5.2) 

In local features classification, 2-D spatial wavelet analysis can successfully extract 

candidate blocks with energy drop. However, pedestrians wearing flat clothing or long 

vehicles with flat roofs also produce energy drop. To overcome this drawback, 1-D 

temporal wavelet analysis be proposed to express the gradual change of the energy 

ratio of smoke regions. This approach can adequately simulate the temporal 

characteristic of smoke. In some real cases, background model and foreground objects 

are so flat that there is no apparent high frequency information. It is difficult to 

separate smoke from non-smoke regions. In this situation 1-D temporal color 

configuration analysis due to further describe the smoke’s behavior. The local features 

experimental results are described in Table 5-1.  
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Table 5-1 Local features experimental results based on single frame 

Local Features False alarm rate

 

2-D Energy Ratio Analysis

 
16.23% 

1-D Energy Analysis

 
24.99% 

1-D Hue Analysis

 
40.45% 

1-D Saturation Analysis  28.94% 

1-D Value Analysis  42.48% 

 

In global features verification, Area ratio analysis combines the smoke blocks and 

non-smoke blocks from the results of cascade classifier. An experiential threshold 

would distinguish smoke regions from non-smoke regions approximately. In some 

tough cases such like waving leaves, pedestrians wearing flat clothing in a lightless 

room, etc. It is still difficult to separate smoke from non-smoke regions certainly. 

Contour analysis and region analysis further refuses the false positive rate with low 

true positive rate decrease. The global features experimental results are described in 

Table 5-2. 

 

Table 5-2 Global features experimental results based on single frame 

Global Features False alarm rate

 

Cascade + Area Ratio 0.19% 

Contour Analysis 37.26% 

Region Analysis 38.76% 
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In Table 5-3, the cascade classifier learns the optimal combination relationship 

among the five features and gains the low false alarm rate, which is 0.19％. 

Furthermore, the results of combining the local features with the global features shows 

that, the global feature verification further decreases the false alarm rate from 0.19％ to 

0.024％, while slightly decrease the detection rate. Overall system provides a precise 

detection rate and reaches 97.2% in total testing videos. 

 

Table 5-3 Experimental results with combine the local features and global features 

 False alarm rate

 
Video-based 

detection rate 

Cascade + Area Ratio 0.19% - 

Total 0.024% 97.2% 

 

5.3  Comparison 

The analysis of experiments implementing the proposed process derived in 

previous sections is presented in this section. The testing films are separated in four sets 

named UE-Lab, UE-Tunnel, Cetin and Visor, and are listed in Table 5-4 to Table 5-7 

respectively. Including 32 smoke videos and 14 non-smoke videos over 50000 smoke 

frames and 54000 non-smoke frames. Two kinds of comparative manners are proposed 

in this study case. Video-based comparison can let us know the system’s stability in 

different environments. Frame-based comparison can let us know how the system 

performed in each environment. A series of discussions will be presented. 
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Table 5-4 Properties of the test video in UE-Lab 

Movie List Description 

Farm Fast smoke with a pedestrian 

Side Road Light smoke with pedestrians, bicycles, cars and waving leaves 

Left House Light smoke with pedestrians, waving leaves 

Front House Light smoke with pedestrians, truck, cars and waving leaves 

White Car Light smoke with a pedestrian 

people_near_black Near smoke in a room with a pedestrian 

smoke_near smoke in a room 

raw_highway1 Fast cars on the highway with dark shadow 

raw_highway2 Fast cars on the highway with shadow 

B1001 Pedestrians pass through the automatic door 

Lab001 Pedestrians walk around in the lab 

Lab003 Pedestrians walk around in the lab 

 

 

Table 5-5 Properties of the test video in UE-Tunnel 

Movie List Description 

VTS_07_1 Light smoke in tunnel with pedestrians 

TunnelSmoke Dark smoke in tunnel with pedestrians 

隧道1 Cars in tunnel 

隧道2 Cars in tunnel in day time 

隧道1D Cars in tunnel at night 

隧道1N Cars in tunnel 

隧道2D Cars in tunnel in day time 

隧道2N Cars in tunnel at night 

TunnelTruck A trailer tows away a truck with pedestrians 
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Table 5-6 Properties of the test video in Cetin 

Movie List Description 

sBehindtheFence Far smoke behind the fence 

sBtFence2 Near smoke behind the fence 

sEmptyR1 Spring smoke with sunlight reflections 

sEmptyR2. Spring smoke with sunlight reflections 

ShorterIsyamNight Smoke in a room 

sMoky Light smoke in the yard 

sParkingLot Smoke in a parking lot 

sWasteBasket Fast smoke near to a wastebasket 

sWindow Smoke in the yard with a pedestrians 

CarLights1 Cars with reflective light 

CarLights2 Cars with reflective light 

 

 

Table 5-7 Properties of the test video in Visor 

Movie List Description 

visor_1196179837385_movie11_viper Pedestrians walk through smoke 

visor_1196343040120_movie12_viper Light smoke with pedestrians and cars 

visor_1196343142698_movie13_viper Dark smoke with pedestrians and cars 

visor_1196343179807_movie14_viper Pedestrians walk through smoke 

visor_1197283980290_10_hangar Smoke in a hangar with a pedestrian 

visor_1197283983165_01_ballistic Outdoor explosion 

visor_1197283985149_02_explosion Outdoor explosion 

visor_1197283985415_03_burnout_contest Smoke in a parking lot with pedestrians 

visor_1197283990821_04_fumogeno1 Light smoke with pedestrians and cars 

visor_1197284001212_05_fumogeno2 Dark smoke with pedestrians and cars 

visor_1197284006306_06_fumogeno3 Pedestrians walk through smoke 

visor_1197284015696_07_fu 

mogeno4 
Light smoke with pedestrians and a car 

visor_1197284021149_08_fumogeno5 Light smoke with pedestrians 

visor_1197284028899_09_fumogeno6 Light smoke with a pedestrian and a car 
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In this study, researchers used these four testing sets to compare the system 

proposed in [7][23] with the system proposed by us. First testing set includes many 

kinds of indoor and outdoor environments. There have seven smoke videos and five 

non-smoke videos in this testing set. In this testing set, the system proposed by us 

detects all the smoke events and has a shortest reaction time of the three systems. Three 

systems active alarm in non-smoke videos at least one times. Because of the videos are 

make by infrared camera and in a lightness room. So, the video quality will increase the 

possibility of false alarm. Table 5-8 and Table 5-9 depicted the testing results in 

UE-Lab testing set. Totally, includes 20975 smoke frames and 14923 non-smoke 

frames in this testing set. 

 

Table 5-8 Video-based comparative results with UE-Lab 

 
# Detected 

smoke videos 

# False alarmed 

videos 

This study 7 1 

C.Y. Lee and C.T. Lin 7 3 

Töreyin, et. al  2 3 

 

Table 5-9 Frame-based comparative results with UE-Lab 

 
False alarm 

rate 

Reaction time 

(sec) 

This study 0.1% 1.21 

C.Y. Lee and C.T. Lin  0.48% 1.57 

Töreyin, et. al  0.93% 1.77 

 

Two smoke videos and seven non-smoke videos are shot in the tunnels. Because 

the method in [7] only utilized the concept of wavelet energy, which calculates the 

smooth degree of the moving objects. However, this testing set contains lots of vehicles 

pass through in tunnel. Fake alarms are activated and result in high false alarm rate. 
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This testing includes 5583 smoke frames and 28781 non-smoke frames. 

 

Table 5-10 Video-based comparative results with UE-Tunnel 

 
# Detected 

smoke videos 

# False alarmed 

videos 

This study 2 2 

C.Y. Lee and C.T. Lin  2 3 

Töreyin, et. al  2 7 

 

Table 5-11 Frame-based comparative results with UE-Tunnel 

 
False alarm 

rate 

Reaction time 

(sec) 

This study 0.1%  1.13  

C.Y. Lee and C.T. Lin  1.5%  1.08  

Töreyin, et. al  7%  1.52  

  

This testing set includes 9 smoke videos and 2 non-smoke videos and we 

downloaded from the webpage (http://signal.ee.bilkent.edu.tr/VisiFire/index.html 

[30] ). The proposed system miss one smoke video in this testing set, so does the system 

proposed by [23]. Both of our systems need to construct background at the system 

beginning. However, most parts of testing videos in this testing set, smoke strongly 

floats in the air in beginning. But, our systems have a better reaction time in this testing 

set.  

 

Table 5-12 Video-based comparative results with Cetin 

 
# Detected 

smoke videos 

# False alarmed 

videos 

This study 8* 0 

C.Y. Lee and C.T. Lin  8* 2 

Töreyin, et. al  9 0 

http://signal.ee.bilkent.edu.tr/VisiFire/index.html
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Table 5-13 Frame-based comparative results with Cetin 

 
False alarm 

rate 

Reaction time 

(sec) 

This study  0% 7.86 

C.Y. Lee and C.T. Lin  3.26% 6.71 

Töreyin, et. al  0% 9.57 

  

The fourth testing set is downloaded from the webpage (http://www.openvisor.org 

[29] ) and includes 14 smoke videos. All of videos in this testing set are shot in open 

space. The proposed algorithm detects smoke precisely and issues alarms in time. The 

other proposed systems miss at least one smoke video in this testing set. 

 

Table 5-14 Video-based comparative results with Visor 

 
# Detected 

smoke videos 

# False alarmed 

videos 

This study 14 0 

C.Y. Lee and C.T. Lin  13 0 

Töreyin, et. al  11 4 

 

Table 5-15 Frame-based comparative results with Visor 

 
False alarm 

rate 

Reaction time 

(sec) 

This study 0%  3.74  

C.Y. Lee and C.T. Lin  0%  1.64  

Töreyin, et. al  2.65%  9.3  

 

The comparative results show that the proposed system can well detect smoke 

with low false alarm rate within a short reaction time in various environments. 

  

http://www.openvisor.org/
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Chapter 6 

Conclusions and Future Work 

 

It is inefficient to track or analyze the target using object-based method. 

Block-based technique provides a better way to solve this problem; 1-D Temporal 

analysis is introduced to express gradual changes of energy and chromatic 

configuration in smoke regions and the features would not be affected by the external 

environment; Boosting cascade algorithm improves the system efficiency and 

optimizes the feature combination. Global features are proposed to overcome the 

shortcoming of local features and enhance the system stability. 

Most of other’s algorithms are only seeking higher detection rate. It does not 

provide enough information on how accurate the system might be. When considering 

accuracy of smoke detection, people care more about how to decrease the false alarm 

rate and detect smoke events quickly, rather than just increase the detection rate. Here 

the false alarm rate of the proposed system is significantly lower than other’s and the 

reaction time is extremely short. This system can also locate the smoke regions 

correctly even when both smoke and non-smoke objects exist in the same frame due to 

block processing while other systems only detect whether there is smoke existing in the 

whole video or the single frame. 

The proposed algorithm can be operated well in variant environment. However, to 

further improve the performance of our system, some enhancements or trials can be 

made in the future. Firstly, it would cause false alarm when GMM background update 

strongly. Especially, system would activate alarm when the object stayed for a long 

time and then it leaved. In such situation, background updating broke the constructed 

background thoroughly. Because the decrease in energy and the similarity in chromatic 
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configuration. To avoid false alarm in background updating, researchers proposed to 

use the background before strong updating and wait until the background constructed 

completely. Secondly, the infrared camera in dark room would cause the color 

configuration changing monochromatically. In this situation, the features relative to 

color configuration would not active entirely. Therefore, if these problems can be 

solved, this algorithm will be more reliable. 

This paper demonstrates a robust and efficient system for smoke detection, and it 

involves the global and local features analysis for each candidate block and the boost 

and cascade architecture. Experimental results show the opportunity of the real-time 

operation of surveillance systems and advanced applications. The false alarm rate of the 

proposed system is lower than that of the state of art. The proposed algorithm has low 

computation load and has been implemented on embedded system. 
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Appendix 

 

39 Smoke testing videos 

Number File Name Descriptions 

1 Farm Fast smoke with a pedestrian 

2 Side Road Light smoke with pedestrians, bicycles, cars and waving leaves 

3 Left House Light smoke with pedestrians, waving leaves 

4 Front House Light smoke with pedestrians, truck, cars and waving leaves 

5 White Car Light smoke with a pedestrian 

6 People_far_black. Far smoke in a room with a pedestrian 

7 People_far_white Far smoke in a room with a pedestrian 

8 people_near_black Near smoke in a room with a pedestrian 

9 people_near_white Near smoke in a room with a pedestrian 

10 smoke001 Fast and light Smoke in a room 

11 smoke002 Fast and light Smoke in a room 

12 smoke_far Smoke in a room 

13 smoke_near Smoke in a room 

14 smoke_side Smoke in a room 

15 VTS_07_1 Light smoke in tunnel with pedestrians 

16 tunnel Dark smoke in tunnel with pedestrians 

17 sBehindtheFence Far smoke behind the fence 

18 sBtFence2 Near smoke behind the fence 

19 sEmptyR1 Spring smoke with sunlight reflections 

20 sEmptyR2. Spring smoke with sunlight reflections 

21 ShorterIsyamNight Smoke in a room 

22 sMoky Light smoke in the yard 

23 sParkingLot Smoke in a parking lot 

24 sWasteBasket Fast smoke near to a wastebasket 

25 sWindow Smoke in the yard with a pedestrians 

26 visor_1196179837385_movie

11_viper 
Pedestrians walk through smoke 

27 visor_1196343040120_movie

12_viper 
Light smoke with pedestrians and cars 

28 visor_1196343142698_movie

13_viper 
Dark smoke with pedestrians and cars 

29 visor_1196343179807_movie Pedestrians walk through smoke 
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14_viper 

30 visor_1197283980290_10_ha

ngar 
Smoke in a hangar with a pedestrian 

31 visor_1197283983165_01_ba

llistic 
Outdoor explosion 

32 visor_1197283985149_02_ex

plosion 
Outdoor explosion 

33 visor_1197283985415_03_bu

rnout_contest 
Smoke in a parking lot with pedestrians 

34 visor_1197283990821_04_fu

mogeno1 
Light smoke with pedestrians and cars 

35 visor_1197284001212_05_fu

mogeno2 
Dark smoke with pedestrians and cars 

36 visor_1197284006306_06_fu

mogeno3 
Pedestrians walk through smoke 

37 visor_1197284015696_07_fu 

mogeno4 
Light smoke with pedestrians and a car 

38 visor_1197284021149_08_fu

mogeno5 
Light smoke with pedestrians 

39 visor_1197284028899_09_fu

mogeno6 
Light smoke with a pedestrian and a car 
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42 Non-smoke testing videos 

Number File Name Descriptions 

1 0316001 Pedestrians walk in the campus 

2 0316002 At side road and a pedestrian walk on the sidewalk 

3 0316003 At side road and a pedestrian walk on the sidewalk 

4 0316004 Pedestrian plays with dogs in the campus 

5 0316005 Pedestrians walk in the campus 

6 0316006 Pedestrians walk in the campus 

7 B1001 Pedestrians pass through the automatic door 

8 Lab001 Pedestrians walk around in the lab 

9 Lab002 Pedestrians walk around in the lab 

10 Lab003 Pedestrians walk around in the lightless lab 

11 Lab003-1 Pedestrians walk around in the lightless lab 

12 Lab004 Pedestrians walk around in the lab 

13 Lab005 Pedestrians walk around in the lab 

14 Lab006 Pedestrians walk around in the lab 

15 LabOut001 Pedestrians walk in the campus 

16 video_out Pedestrians walk in the campus 

17 muti005 Pedestrians walk in the campus 

18 test001 Pedestrians walk in the campus 

19 zHB000 Pedestrians walk in the campus 

20 zHB001 Pedestrians walk in the campus 

21 zHB002 Pedestrians walk in the campus 

22 zHB003 Pedestrians walk in the campus 

23 zHB004 Pedestrians walk in the campus 

24 zHB005 Pedestrians walk in the campus 

25 Produce_4 Cars in tunnel 

26 隧道1 Cars in tunnel 

27 隧道1D Cars in tunnel in day time 

28 隧道1N Cars in tunnel at night 

29 隧道2 Cars in tunnel 

30 隧道2D Cars in tunnel in day time 

31 隧道2N Cars in tunnel at night 

32 Tunneltruck A trailer tows away a truck with pedestrians 

33 LightShadow_0 Fast cars on the highway with shadow 

34 LightShadow_1 Fast cars on the highway with shadow 
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35 raw_highway1 Fast cars on the highway with dark shadow 

36 raw_highway2 Fast cars on the highway with shadow 

37 CarLights1 Cars with reflective light 

38 CarLights2 Cars with reflective light 

39 raw2 Fast cars on the highway with dark shadow 

40 埔里隧道+陽光灑進 Cars in tunnel's entrance with sunlight variations 

41 國姓一號隧道+逆行+施工

車 
Cars in tunnel's entrance with sunlight variations 

42 國姓一號隧道lag Cars in tunnel's exit with sunlight variations 
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Smoke detection results of UE-Lab (7 smoke videos and 5 non-smoke videos) testing set.  

 

  

Video Info. C.Y. Lee and  C.T. Lin  

(SVD V1.0) 

This study  

(SVD V2.0) 

Töreyin, et. al  

 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

Farm 5334 4410 31 0.0% 34 0.0% 13 0.0% 

Side Road 4181 3561 20 0.0% 15 0.0% 82 0.0% 

Left House 6467 3481 87 0.0% 48 0.0% 95 0.0% 

Front House 4591 2764 60  0.0% 40 0.0% 56 0.0% 

White Car 3303 1652 35 0.0% 27 0.0% 20 0.0% 

people_near_black 2608 2571 21 0.0% 14 0.0% - 0.0% 

smoke_near 2581 2536 76 0.0% 76 0.0% - 0.0% 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

# alarms False alarm 

rate 

# alarms  False alarm 

rate 

# alarms False alarm 

rate 

B1001 1469 0 32 2.1% - 0.0% 7 0.5% 

Lab001 1837 0 9 0.4% - 0.0% - 0.0% 

Lab003 2587 0 30 1.2% 12 0.4% 98 3.8% 

raw_highway1 440 0 - 0.0% - 0.0% - 0.0% 

raw_highway2 500 0 - 0.0% - 0.0% 41 8.8% 
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Smoke detection results of UE-Tunnel (2 smoke videos and 7 non-smoke videos) testing 

set. 

 

 

  

Video Info. C.Y. Lee and  C.T. Lin  

(SVD V1.0) 

This study  

(SVD V2.0) 

Töreyin, et. al  

 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

TunnelSmoke 6000 4640 46 0.0% 51 0.0% 72 3.0% 

隧道煙霧 3872 943 19 0.0% 17 0.0% 19 0.0% 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

# alarms False alarm 

rate 

# alarms  False alarm 

rate 

# alarms False alarm 

rate 

TunnelTruck 5565 0 8 0.0% 2 0.0% 38 0.7% 

隧道 1 4597 0 351 7.6% 40 0.9% 800 17.4% 

隧道 2 4870 0 27 0.6% - 0.0% 489 25.3% 

隧道 1D 1777 0 - 0.0% - 0.0% 25 2.2% 

隧道 1N 2817 0 - 0.0% - 0.0% 75 3.4% 

隧道 2D 1936 0 - 0.0% - 0.0% 204 10.7% 

隧道 2N 2930 0 - 0.0% - 0.0% 131 4.6% 
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Smoke detection results of Cetin (9 smoke videos and 2 non-smoke videos) testing set. 

 

  

Video Info. C.Y. Lee and  C.T. Lin  

(SVD V1.0) 

This study  

(SVD V2.0) 

Töreyin, et. al  

 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

sBtFence2 1400 1380 73 0.0% 48 0.0% 83 0.0% 

sEmptyR1 483 302 14 0.0% 123 0.0% 0 0.0% 

sEmptyR2. 342 253 60 0.0% 30 0.0% 17 0.0% 

ShorterIsyamNight 1663 515 382 0.0% 378 0.0% 30 0.0% 

sMoky 900 900 38 0.0% 30 0.0% 72 0.0% 

sParkingLot 1726 1453 X  0.0% 32 0.0% 1130 0.0% 

sWasteBasket 900 870 78 0.0% 62 0.0% 60 0.0% 

sWindow 244 212 122  0.0% - 0.0% 125 0.0% 

sBtFence2 1400 1380 73 0.0% 48 0.0% 83 0.0% 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

# alarms False alarm 

rate 

# alarms  False alarm 

rate 

# alarms False alarm 

rate 

CarLights1 155 0 61 39.4% - 0.0% - 0.0% 

CarLights2 160 0 8 5% - 0.0% - 0.0% 
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Smoke detection results of Visor (14 smoke videos) testing set. 

 

 

Video Information C.Y. Lee and  C.T. Lin  

(SVD V1.0) 

This study  

(SVD V2.0) 

Töreyin, et. al  

 

Movie List Frame 

Number 

Smoke 

Frame 

Number 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

Frame To 

Detect 

False alarm 

rate 

visor_119617983738

5_movie11_viper 

1900 1148 56 0.0% 158 0.0% 64 4.1% 

visor_119634304012

0_movie12_viper 

2342 1467 67 0.0% 128 0.0% - 0.0% 

visor_119634314269

8_movie13_viper 

2021 1285 68 0.0% 69 0.0% - 0.0% 

visor_119634317980

7_movie14_viper 

2148 1526 8 0.0% 74 0.0% - 0.0% 

visor_119728398316

5_01_ballistic.avi 

347 255 20 0.0% 25 0.0% 15 0.0% 

visor_119728398514

9_02_explosion.avi 

210 160 54 0.0% 49 0.0% 13 0.0% 

visor_119728398541

5_03_burnout_conte

st.avi 

2200 862 29 0.0% 63 0.0% 121 0.0% 

visor_119728398029

0_10_hangar 

2952 2309 - 0.0% 32 0.0% 278 10.8% 

visor_119728399082

1_04_fumogeno1 

3004 1974 56 0.0%  37 0.0% 949 3.3% 

visor_119728400121

2_05_fumogeno2 

1834 1361 37 0.0% 97 0.0% 26 0.0% 

visor_119728400630

6_06_fumogeno3 

2344 1392 38 0.0% 318 0.0% 0 0.0% 

visor_119728401569

6_07_fumogeno4 

2023 1239 43 0.0% 101 0.0 33 12.8% 

visor_119728402114

9_08_fumogeno5 

2150 1453 18 0.0% 108 0.0% 0 0.0% 

visor_119728402889

9_09_fumogeno6 

1879 1327 38 0.0% 51 0.0% 36 0.0% 


