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市區路段短期交通量預測 

學生：謝亞蓁                       指導教授：黃家耀  助理教授 

國立交通大學運輸科技與管理學系碩士班 

摘  要 

近年來短期交通量預測的應用日益受到重視，許多先進交通旅行者資訊系統(ATIS)

及先進交通管理系統(ATMS)的應用都需要估計及預測路網之交通狀況，其目的在於提

供有用之旅行資訊給旅行者及提升整體路網的效率。透過道路上各種不同偵測器所蒐集

到之交通狀況歷史資料，我們可以掌握道路上之即時資訊並用來估計目前的交通狀況及

預測短期內可能發生的交通狀況。目前大部分交通流量預測的文獻都著重在高速公路流

量的預測，事實上市區道路的交通流量預測由於還要考慮機車、紅綠燈的影響，且市區

路網也較高速公路路網複雜許多，因此有必要深入研究。 

本研究建立一個都市地區短期交通量的預測模式，所採用之方法為整合自我迴歸移

動帄均模式(ARIMA)及時空自我迴歸移動帄均模式(STARMA)，其中時空自我迴歸移動

帄均模式為將時間序列之空間分布關係考慮進模式當中之自我迴歸移動帄均模式。我們

除了利用台北市 24 個偵測器所蒐集之交通量資料來做實例測試，也測試了可獲得即時

資訊不同的情況下，時空自我迴歸移動帄均模式預測能力的差異。 

研究結果顯示：兩種模式之模式估計誤差與預測誤差都很低且非常接近，顯示兩者

都適合用來預估市區路段的交通量。然而，整合自我迴歸移動帄均模式每個偵測器最多

要校估 5 個參數，而時空自我迴歸移動帄均模式卻只需要 6 個參數，因此當路網中的偵

測器數量增加時，較簡單之時空自我迴歸移動帄均模式較適合用來預估整體路網之交通

量。另外，交通量並非一個獨立的系統，而是會受到附近地區交通狀況之影響，因此時

空自我迴歸移動帄均模式將時間序列之空間關係考慮進模式中，的確會提升模式之預測

能力。測試可獲得即時資訊不同的情況下模式之預測能力，結果顯示利用即時資訊來預

測較利用歷史資料預測來得準確。 

關鍵字：市區交通量、短期預測、整合自我迴歸移動帄均模式(ARIMA)、時空自我迴歸

移動帄均模式(STARMA) 
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Short-term traffic flow forecasting for urban roads 

Student: Ya-Chen Hsieh Advisor: Dr. Ka-Io Wong 

Department of Transportation Technology and Management 

National Chiao Tung University 

Abstract 

The interests and applications of short-term traffic forecasting have been growing in the 

recent years. Many of the applications in Advance Traveler Information System (ATIS) and 

Advance Traffic Management Systems (ATMS) , which aim at providing useful information 

to travelers and improving the overall efficiency of road network, require an estimation and 

forecasting of the traffic conditions of the network. With a historical database of past traffic 

data from various types of vehicle detectors, real-time traffic information is collected which 

will be used to estimate the current traffic conditions and predict the condition in near future. 

Whereas most of the literature focused on the traffic flow prediction on the freeways, 

modeling traffic flow in urban arterials is more challenging as there are disturbances such as 

motorcycles and traffic signals in urban area. 

In this study, traffic flow forecasting models for urban arterials are proposed. Seasonal 

autoregressive integrated moving average (ARIMA) and space-time autoregressive moving 

average (STARMA) model, which incorporates the spatial correlations of the time series, are 

investigated. A case study using the traffic data from 24 vehicle detectors in Taipei city, 

Taiwan are performed. The forecasting performance of STARMA model are also examined by 

static, 1-step ahead rolling and 2-step ahead rolling strategies when real-time information can 

be obtained. 

The findings of this thesis are as follows. The estimated results reveal that both ARIMA and 

STARMA model are suitable for traffic flows forecasting in urban area. However, in the 

ARIMA model, there are up to five parameters for each detector, whereas there are only 6 

parameters in the STARMA model. With a large number of detector locations in the system to 

be forecasted, the STARMA model shows a relative simple structure as compared to the 

ARIMA model which is univariate in nature. Traffic flows of urban area are not an isolated 

system and will be influenced by the flows from other adjacent locations, consequently, 

STARMA model considering the spatial relationship between each time series can improve 

the forecasting accuracy. Finally, the results of forecasting performance tests prove that using 

real-time information to forecast is better than merely using historical information to forecast. 

Keywords：Urban traffic flow, short-term forecasting, ARIMA, STARMA. 
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Chapter 1  Introduction 

1.1 Background 

 

Providing a convenient and comfortable transportation environment without congesting and 

delay has long been one of the most important transport authorities’ objectives. With more and 

more advanced technologies and information systems applying to transportation field in 

recent years, making transportation systems becoming more intelligent, this problem can be 

solved. The term intelligent transportation systems (ITS) means the application of information 

technologies such as computer hardware and software, sensing, telecommunications and 

control techniques to improve transportation system operations, including improvements in 

efficiency, capacity, safety and environmental impacts. With intelligent equipments being 

installed as a part of transportation infrastructure, traveler information can be collected as well 

as disseminated, traffic signals and variable message signs can be controlled and toll can be 

electronically collected, which provide vital supports in traffic management, pavement 

monitoring and overall system maintenance. 

 

Two of the most important areas of ITS are Advanced Traveler Information Systems (ATIS) 

and Advanced Traffic Management Systems (ATMS). ATIS aims at providing road users and 

travelers accurate and useful travel information such as travel time, delay and real time route 

guidance, which can help road users and travelers make better travel decisions. ATMS 

controls the traffic in the network in real time not only alleviate traffic congestion but also 

improve the use of system’s capacity and thus improve overall network efficiency. All of these 

applications require the forecasting of traffic to the near future. This study aims at finding a 

flow forecasting model which can estimate and predict the traffic flows based on the traffic 

data measurement from the past. 

 

1.2 Problem Definition 

 

There are basically two distinct categories of predictive traffic conditions: strategic and 

short-term. The difference between strategic and short-term traffic information is the length of 

the forecasting horizon. Traditional strategic predictive models usually utilize a large amount 

of data and predict over a period of month or year which is needed for making decisions on 

long-term transportation planning. On the other hand, short-term predictive models often 

forecast traffic conditions within a day or an hour that captures the dynamics of traffic, 

therefore, short-term forecasting models are more suitable for traffic management and 

information systems. 
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On the area of implementation, whereas most of the literature focused on the traffic flow 

prediction on the freeways, modeling traffic flow in urban arterials is more challenging as 

there are disturbances such as motorcycles and traffic signals in urban area. Furthermore, the 

freeway network topology is simple, whereas the networks of urban arterials are more 

complicated, and the two problems are fundamentally different. An accurate model for urban 

area should involve the spatial relationships of traffic flow at different adjacent locations. In 

this study, the traffic flow forecasting for urban arterials is investigated. Seasonal 

autoregressive integrated moving average (ARIMA) and space-time autoregressive moving 

average (STARMA) are considered as our algorithms. Traffic flows data collecting from 

vehicle detectors installed on arterials in the Taipei city, Taiwan, were used to illustrate the 

modeling procedure in our numerical examples. 

 

1.3 Objectives 

 

This study aims at finding a short-term traffic flow forecasting model for urban roads. While 

most of the literature focus on traffic flow forecasting in the freeway, our study intend to 

apply our model to forecast urban traffic flow. 

 

Traffic flows in the urban arterials are more complicated since other disturbances such as 

traffic signals, motorcycles or pedestrians may exist. Furthermore, as the main objective of 

freeway is to connect major cities, the freeway networks are usually simple and 

straightforward. However, urban arterials are built to connect all places in the city, so the 

networks of urban arterials are usually more complicated. Forecasting traffic flow at a 

particular location will not be sufficient, so integrating spatial factors in the forecasting model 

will consider in our following model. 

 

One of the basic advanced traffic management systems (ATMS) is the traffic signal system 

which intends to improve the safety and capacity used of the transportation system. Once we 

have the past information describing the traffic conditions such us traffic flow or occupancies 

within an urban area, we can use it to forecast short-term traffic flow and further connect them 

to the urban traffic control systems. With the real-time and predicted traffic conditions in the 

near future, traffic authorities may be able to set a more suitable traffic signal plan that 

relieves traffic congestion and reduce the travel time and delay of travelers. 

 

Since most of the literatures have demonstrated the superiority of univariate ARIMA model 

over other forecasting approaches in traffic flow prediction. In attempt to compare the 

forecasting abilities of the univariate and multivariate models, the univariate ARIMA and its 
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extended form of space-time ARMA model which integrates the spatial-temporal 

dependencies of each time series are considered to be the forecasting approaches in our study. 

 

The classic seasonal autoregressive integrated moving average (ARIMA), which is widely 

used in literature for forecasting problems, is tested for its validity in urban traffic models. A 

space-time autoregressive moving average (STARMA) model, which is new to the traffic 

forecasting literature, is also presented, and it is considered to be suitable for the urban traffic 

models with its spatial-temporal dimension. With the calibrated models, we would also 

demonstrate a dynamic execution of the models for the ATMS purposes, in which several 

forecasting strategies using real-time database are described. 

 

1.4 Thesis Organization 

 

The study is organized as follow. In this chapter, we have depicted the background of the 

short-term forecasting problem, problem definition and the objectives of this thesis. Chapter 2 

reviews some previous literature concerning short-term traffic forecasting. Univariate 

predicting models are useful to forecast traffic conditions at a particular location. However, 

for the purpose of ATMS which requires a macroscopic view of the traffic pattern, 

multivariate forecasting models that consider observations collecting at more than one 

locations representing information from a wide area of the network are more appropriate. 

Chapter 3 presents the model building procedures of the proposed model as well as the model 

assumptions. Seasonal ARIMA and space-time ARIMA are considered as our algorithms. The 

identification, estimation and diagnostic checking methods of these models are introduced. 

Chapter 4 illustrates the use of those models by forecasting traffic volume on arterials; their 

forecasting performances are also compared and discussed. Then, in attempt to apply the 

forecasting model to ATMS, we will perform different forecasting strategies using real-time 

database to exhibit the forecasting performance of the STARMA model in Chapter 5. Finally, 

the conclusions of this study and the recommendations of future research will be presented in 

Chapter 6. Figure 1.1 shows the flow chart of this thesis. 
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Figure 1.1 Flow chart of this thesis 
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Chapter 2  Literature Review 

2.1 The Forecasting Problem 

 

Bowerman and O'Connell (1993) stated that the term forecast implies prediction of future 

events and conditions, and the act of making such predictions is called forecasting. Forecast 

must rely on information that has occurred in the past, so a forecaster needs to analyze past 

data and predict future condition according the result of the analysis. To begin a forecast, the 

first step is to analyze the data so as to identify a pattern or trend that could be used to 

represent it. Makridakis and Wheelwright (1978) stated that such patterns are generally 

assumed to be two different forms, which are univariate and multivariate methods. Generally 

univariate methods assumed a pattern that is solely determined as a function of time, and 

utilizing the historical data (in the form of time series) of the variable is sufficient to detect the 

basic pattern for forecasting. On the other hand, multivariate methods assumed there exist 

some relationships between two or more variables, and this pattern or trend can be 

extrapolated or extended into the future. A forecasting technique assumes that the pattern or 

trend that has been identified will continue in the future, so a forecasting technique will result 

in a good prediction only if the assumption is valid. If the identified pattern does not remain 

the same in the future, a forecaster should try to anticipate the changing time of the pattern so 

that the model would be adjusted to predict the data accurately. 

 

Short-term traffic forecasting necessitates the collection of historical time series data. Time 

series data are a set of particular variable observations, each one being recorded at a specific 

time, arranging in sequence of time they occur; in other words, they are ordinal observation 

set that observed in accordance of time of a dynamic system. A time series is said to be 

deterministic if future values of the time series can be exactly determined by past values. On 

the other hand, if the future value of a time series is only partly determined by past values, it 

is a stochastic or random series. A stochastic time series model consists of trend, seasonal and 

error terms in the basic model, plus other relevant components, and the mathematical form is, 

tttty    Tt ,...,2,1           (2.1) 

 

where ty  is the observation at time t, t  is a slowly varying trend component, t  is a 

periodic seasonal component and t  is an irregular error or disturbance component. 

 

Such data measuring the traffic stream characteristics such as traffic flow, speed and lane 

occupancy are recorded by various types of vehicle detector and are widely available on 

freeway and arterials for the operation and incident detection purposes. With a historical 
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database of past traffic data, collected real-time traffic information can be used to estimate the 

current traffic conditions and predict the conditions in near future. 

 

2.2 Methodology for Traffic Forecasting 

 

As ITS implementations becoming more and more important throughout the world, attentions 

have been paid on constructing a short-term traffic forecasting algorithms that could forecast 

future traffic conditions accurately. Vlahogianni et al. (2004) provided an extensive review on 

the short-term traffic forecasting problem. It was concluded that although a wide variety of 

studies were devoted to develop algorithms in the fields of short-term traffic forecasting 

during the past decades, there was still not a solid framework for modeling traffic forecasting 

algorithms. The objectives of traffic forecasting in different studies are diverse, such as travel 

time forecasting, traffic flow forecasts and traffic state forecasting problems exist in the 

literature, with various methodologies making use of combinations of traffic data like speed, 

flow, occupancy or vehicle trajectories. The review explored a vast amount of research in the 

perspective of objectives and methods in this field and classified the modeling process into 

three essential stages, i.e. the determination of the scope, the conceptual output specification 

and the process of modeling, which involves several decisive issues such as the choices of 

appropriate methodology, the type of input and output data and the resolution of the data. 

Integrating the abovementioned process can result in a systematic logical flow that can be 

seen as a framework for developing short-term traffic forecasting models. Their logical flow 

also showed that when constructing short-term traffic forecasting algorithms, in addition to 

the basic three stages which are concept, realization and evaluation, the accuracy and 

representational power of a model also serve as important factors in determining the 

implementation effectiveness. 

 

In the following section, we will review some of the univariate and multivariate time series 

models used in the literature to predict traffic flow. 

 

2.2.1 Univariate Models 

 

Determining an appropriate methodology is one of the major issues in all forecasting 

problems. In general, the widely used prediction models can be broadly classified into two 

techniques: parametric and non-parametric. Parametric techniques assume a form of 

probability distribution with a finite number of parameters which usually have physical 

interpretations, and they are most useful when conditions are expected to remain the same. 

Examples of parametric techniques are linear and non-linear regressions, historical average 

algorithms, exponential smoothing techniques, autoregressive integrated moving average 
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models (ARIMA) and Kalman filtering. On the other hand, non-parametric techniques do not 

assume any specific functional form for the dependent and independent variables, as we only 

have little prior knowledge about the true function form to be estimated. When applying the 

non-parametric modeling technique, in addition to estimating the parameters of the functions, 

the primary object of nonparametric models is to estimate the underlying functional forms. 

The most popular non-parametric techniques include non-parametric regression and neural 

networks, in which the functional forms are not explicit. 

 

When the physical meaning and relationship of the variables are known, parametric modeling 

is commonly used. Among the parametric models, the ARIMA model is a common technique 

used in many areas and has been proved for its advantages over some other forecasting 

methods. For some previous researches focused on predicting traffic flow with ARIMA 

models, Williams et al. (1998) first applied seasonal ARIMA models to urban freeway traffic 

flow prediction problems. They compared several seasonal ARIMA models with Winters 

exponential smoothing techniques for single-interval forecasting. Using the same data set as 

Smith (1995), which employed nearest-neighbor, neural networks and historical average 

models, it is found that the seasonal ARIMA models performs better as compared to the 

results of Smith for a similar problem. 

 

Ghosh et al. (2005) used three different time series models, which are random walk model, 

Holt Winters’ exponential smoothing technique and seasonal ARIMA model to forecast traffic 

flow of one junction in Dublin. Comparing the error estimated from these three models they 

concluded that both exponential smoothing technique and seasonal ARIMA performed much 

better than random walk model. 

 

Other approaches treat time series data as nonparametric models with the spatial interest in 

neural networks. Dougherty (1995) gave a comprehensive overview on the topics of transport 

applications of neural networks. He suggested that the three most common used paradigms 

were backpropagation, learning vector quantisation and adaptive resonance theory, which 

were typical of supervised, reinforcement and self-organising learning. These three paradigms 

could be regarded as a standard tool kit for neural networks applied to transportation problems. 

It is also emphasized that a particular drawback in previous studies is the lack of standard 

procedure to analyze and compare the result of different researches, and therefore future 

research could aim at establishing a more specific approach to issues such as comparison 

between different methodologies with neural networks structures. 

 

Ledoux (1997) considered a cooperation based neural network traffic flow model that could 

be treat as part of a real time adaptive urban traffic control system (UTC). In his model, a 
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single local neural network was used to model a single signalized link at the beginning. Then, 

those local neural networks are connected so as to model the traffic flow over a wide network 

of junctions. While first and second generation of the UTC system utilized the past historical 

data and modified average historical pattern to predict traffic flow, to design a more adaptive 

UTC system, this paper proposed a third generation UTC system, i.e. predicted conditions 

according to current traffic measurements only. Demonstrated by simulation data, the paper 

concluded that neural networks could be used to model the traffic conditions in the near 

future. 

 

Yin et al. (2002) proposed a fuzzy-neural network model (FNM) to predict the traffic flows in 

urban area. Their model composes two modules: a gate network (GN) and an expert network 

(EN). Whereas the GN classified the input data into a set of fuzzy clusters by fuzzy approach, 

the EN functioned as a traditional neural network model (NNM) aiming at finding out the 

relationship between input and output data. Their research found that FNM not only 

outperformed the traditional NNM in its predicting power, but also with a smaller computing 

time requirement. Furthermore, FNM can adaptively adjust the coefficients of the model to 

enhance its predicting power, which is more suitable for predicting real-time traffic 

conditions. 

 

In general, seasonal ARIMA and neural networks are two different kinds of techniques, not 

only because of their parametric/non-parametric natures, but also their inherent data structure 

and dependence to the past data. Seasonal ARIMA model is a time series function of past 

information which can be expressed as, 

),...,,( 121 lltltlt yyyfy             (2.2) 

where lty  is traffic volume data at location l and time t, it only requires the information in 

the past to forecast future conditions of the same detector location. 

 

On the other hand, with the neural networks model, the traffic data at location l and time t can 

be expressed as, 

),...,,( 11111  ttlltlt yyygy            (2.3) 

which is a function of data from other locations (e.g. upstream detectors) at time t-1. This is a 

common data structure assumed in studies like Yin et al. (2002), assuming the traffic volume 

of downstream depends on the volumes on its upstream locations some while ago, capturing 

the spatial effects. The two approaches are displayed in Figure 2.1, showing that seasonal 

ARIMA is a temporal model whereas neural network model is a spatial one. 
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Figure 2.1 Forecasting with time series model in temporal and spatial dimensions 

 

2.2.2 Multivariate Models 

 

Forecasting of traffic volume at a particular location using univariate model is useful for the 

traffic operation at a local level. However, the deficiency of the univariate model is that they 

do not consider other factors or relationship (if available) during forecasting, as compared to 

the multivariate model which considers more than one time series data. For the purpose of 

ATMS which requires a macroscopic view of the traffic pattern, traffic forecasting for a wide 

area of the network is necessary, so a multivariate forecasting model is required.  

 

Most of the previous literature concerning traffic forecasting tends to predict traffic data with 

univariate models since multivariate models are more complicated in the identification of the 

model and estimation of the parameters. Fortunately, with the great improvement in the 

computational science in recent years, we are capable of using computers to deal with even 

more difficult problems within shorter time, so the difficulties of identification and estimation 

of multivariate model could be solved. 

 

Also, there could be some relationship between traffic data at a particular location and traffic 

data from its upstream or downstream (in the cases that traffic congestion occurs) detectors, 

knowing the information from other locations within the network may increase the accuracy 

of the forecasting. Therefore, with the time series data collected at different locations through 

the network and the ease of utilizing multivariate models, the possibility of multivariate 

model being used to predict traffic conditions in near future have increased. 
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Models that aim at depicting the relationship between time series observations at a particular 

location and its neighbor locations are referred to as space-time models. A class of space-time 

models that are characterized by the autoregressive and moving average forms of univariate 

time series lagged in both space and time are referred to as space-time autoregressive moving 

average (STARMA) models. STARMA is a special case and restricted form of vector ARMA, 

and the first complete adaption and modeling process of STARMA was proposed by Pfeifer 

and Deutsch (1980), who suggested a three-stage iterative procedure for space time modeling. 

STARMA was an extension of the three-stage iterative model building procedure developed 

by Box and Jenkins (1976), including identification of the model, estimation of parameters of 

the tentative model and diagnostic checking (the details will be elaborated in Chapter 3 of the 

thesis). At the end of their paper, an assault arrest example for the Boston area was employed 

to demonstrate the modeling procedure. 

 

Pfeifer and Bodily (1990) applied the space-time autoregressive moving average (STARMA) 

model to fit demand-related data from eight hotels from a single hotel chain in a large U.S. 

city. Previous researches using STARMA models were all aiming at illustrating the modeling 

procedure or simply testing the hypotheses about the spatial-temporal structure of the 

observed data, none of them is used for forecasting purpose, therefore, it is the first paper 

utilizing STARMA model to forecast economic data and furthermore, comparing the 

forecasting performance of a single multivariate STARMA model with several univariate 

ARMA models. Though the after-the-fact analysis of the forecasting test did not conclude that 

adding the spatial term in the model or simultaneously estimating the parameters for all of the 

N time series can increase the forecasting accuracy, the analysis suggested that the relative 

simplicity of the STARMA model explained its superior performance in the test. As the 

number of observation sites becoming increases, so does the time series needed to be forecast. 

In this case, the simplicity of the model form will be an advantage in empirical test of 

forecasting performance. 

 

Kamarianakis and Prastacos (2003) and Kamarianakis and Prastacos (2005) used a space-time 

autoregressive integrated moving average (STARIMA) model to represent traffic flow speed 

in urban area. In their model, they assumed that the distances between observed locations are 

sufficiently long so as to ignore the congestion effects; consequently, downstream locations 

only depend on upstream locations but not vice versa. Weighting matrices representing the 

distances between the observation locations were incorporated into the STARIMA model as 

the spatial characteristics of the space-time modeling process. The modeling procedure was 

illustrated by utilizing two months traffic flow data with different traffic-flow characteristics 

from 25 loop detectors in the Athens City, Greece to examine the stability of the estimation of 
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the parameters. In their first paper, in addition to STARIMA, two univariate (historical 

average and ARIMA) and one multivariate VARMA models were also considered. The results 

revealed that though the forecasting performance of ARIMA were slightly better than 

VARMA and STARIMA models, their differences were not significant. The error estimated 

for historical average technique were more than eighty percent, indicating the inadequacy of 

historical average technique being used to forecast traffic data in an urban area. In their 

second paper, only ARIMA and STARMA were considered. They compared the root mean 

square error of STARIMA model with the average standard errors of ARIMA models and 

found that these models were quite close; nevertheless, the total number of parameters used 

for STARIMA model was 7 whereas there were total of 75 parameters in the ARIMA models. 

They concluded that while univariate techniques can accurately estimate flow speed, as the 

number of detectors growing larger, using univariate techniques may have some 

computational problems that it is not capable to forecast traffic data in real world urban 

network. Therefore, multivariate STARMA was recommended. 

 

Lin et al. (2009) also applied STARMA to forecast short-term urban traffic flow, similar to the 

one proposed by Kamarianakis and Prastacos (2005). In their study, downstream traffic 

volume depends only on upstream traffic volume as well as the relative distances. 

Furthermore, they took seasonal difference to exclude seasonal term in their model. Their 

study demonstrated the potential of using STARMA model to improve accuracy of urban 

traffic flow prediction. 

 

There are other techniques incorporating the spatial-temporal dimensions in the traffic 

forecasting. Yang (2006) studied the spatial-temporal dependencies of traffic flow and 

developed a spatial-temporal Kalman filter (STKF) forecasting model to compare with 

ARIMA and neural network (NN). In their study, rather than using a single model, an adaptive 

forecasting model selection strategy is proposed, which could select spatial-temporal Kalman 

filter to forecast with real-time data, but switch to use historical average method if real-time 

data was not available. The results showed that the superiority of spatial-temporal Kalman 

filter to ARIMA and NN models when real-time information was available for the forecast. 

Whereas the historical average method outperformed ARIMA and NN when there is no 

real-time information in the forecast. 

 

In summary, there were a wide variety of univariate as well as multivariate forecasting 

approaches being used to predict short-term traffic flow. Since most of the literatures have 

demonstrated the superiority of univariate ARIMA model over other forecasting approaches in 

traffic flow prediction, we selected the univariate ARIMA model as one of our forecasting 

technique. Furthermore, it is stated in Yang (2006) that traffic flow is not an isolated 
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phenomenon and should be presented in a multivariate form. One would expect the 

multivariate model that simultaneously takes all of the possible factors into account when 

forecasting would give more details of variable relationships and traffic pattern, and have a 

better forecasting performance. In attempt to compare the forecasting abilities of the 

univariate and multivariate models, the univariate ARIMA and its extended form of 

space-time ARMA model, which integrates the spatial-temporal dependencies of each time 

series, are considered to be the forecasting approaches in our study. 
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Chapter 3  Model Building 

In this chapter, we will discuss the methodology and mathematical formulations of our 

algorithms, i.e. univariate ARIMA model and multivariate space-time ARMA model 

(STARMA). ARIMA model is a temporal dimension forecasting model whereas STARMA 

model extends ARIMA to a spatial-temporal dimension model. 

 

3.1 ARIMA Model 

 

Autoregressive integrated moving average (ARIMA) model, also known as Box-Jenkins 

method, is an iterative modeling procedure proposed by Box and Jenkins (1976). Since the 

class ARIMA models consist of simple autoregressive process (AR), simple moving average 

process (MA) or autoregressive integrated moving average process, the first step of the 

modeling procedure is to identify a tentative model from postulate general class of models. 

After determining an appropriate model to be applied, the next step of the procedure is using 

historical data to estimate the parameters of the model. Calculating the residuals of the fitted 

model for checking adequacy of the model is the stage called diagnostic checking. If the fitted 

model is adequate, then it can be used to forecast in the last stage. Otherwise, the process 

iterates and returns the step to the first stage, i.e. determining another tentative model to be 

applied and then go through the modeling process again. Figure 3.1 shows the flow chart of 

the model building procedure. 
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Figure 3.1 Flow chart of the model building procedure 

 

 

3.1.1 Model Assumptions 

 

The ARIMA modeling procedure requires the time series data process the some properties. 

Before applying the ARIMA modeling procedure, we should note that the data has to be 

checked if they satisfy the stationary and invertible assumptions. Here we give a brief 

introduction for those who are not familiar with the stationary and invertibility condition, and 

further details may be found in some well-known books such as Box and Jenkins (1976) and 

Bowerman and O'Connell (1993). 

 

Classical ARIMA models depict stationary time series. A time series is said to be stationary if 

the joint distribution of any set of n observations nyyy ,...,, 21  is the same as the joint 

distribution of knkk yyy  ,...,, 21  for all n and k. In other words, the statistical properties such 

as mean and variance of a stationary time series are practically constant through the time. On 

the other hand, if the mean of a time series is a function of time such as a linear or quadratic 
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function of t, it is said to be a nonstationary time series. If the time series used to forecast is 

nonstationary, it may be converted into a stationary one with transformation techniques. The 

process of transformation is as follow. 

 

Assuming a nonstationary time series
ty , where Tt ,...,2,1 and the first-differenced 

transformed values of the time series 
tz  can be defined as, 

1 ttt yyz  for Tt ,...,2            (3.1) 

where y1, y2, …, yt are the original nonstationary time series values and z1, z2, …, zt are the 

first differences time series values. 

 

Taking first differences may be a good way to transform nonstationary time series in to 

stationary forms; however, sometimes the first differences of the raw data are still 

nonstationary. In these cases, the second differences of the time series 
ty , where Tt ,...,2,1  

are, 

21211 2)-(-)(   tttttttt yyyyyyyz  for Tt ,...,3     (3.2) 

 

Previous experiments have revealed that most of the nonstationary and nonseasonal time 

series can be converted into stationary time series by first difference or second difference. 

And for those who are nonstationary and seasonal, seasonal differenced transformation 

( Lttt yyz  , where L denotes the seasonality) would be more accurate. 

 

In this study we applied augmented Dickey-Fuller (ADF) test to examine whether the time 

series is stationary, Dickey-Fuller test is proposed by Dickey and Fuller (1979) to examine 

whether a time series has a unit root. When a time series has a unit root, the series is not 

stationary, and thus testing whether a time series has a unit root is similar to testing whether a 

time series is stationary. Consider the simple first order autoregressive (AR1) model, 

ttt yy   1               (3.3) 

where   is the coefficient and t  is the white noise series error term. 

 

A series is said to be white noise if it satisfies the zero mean and constant variance 
2  

conditions. A series is said to have a unit root if the sum of the autoregressive parameters is 

equal to 1. As a result, testing whether the sum of the autoregressive parameters is 1 or not 

can help determine whether a time series has unit root, and hence whether it is stationary or 

not. The null and alternative hypotheses are, 

1:0 H (unit root exist, ty  is nonstationary) 

1:1 H ( ty  is stationary) 
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The t statistics is, 

)ˆ(

1ˆ
1






SE
t


               (3.4) 

where ̂  is the least squares estimate of   from equation (3.3), )ˆ(SE  is the standard 

error of ̂ . If the DF test returns a significant probability value, we should reject the null 

hypothesis that the time series has a unit root, and hence, the time series is stationary. 

 

Said and Dickey (1984) augmented the basic autoregressive unit root test to accommodate 

general ARMA(p, q) models with unknown orders when 
t  is not white noise, and proposed 

a test referring to as the augmented Dickey-Fuller (ADF) test. To discuss augmented 

Dickey-Fuller test, consider the (p+1)
th

 order autoregressive time series, 

tptpttt yyyy    112211 ...         (3.5) 

 

ADF test is different form DF test in that ADF includes the term pty   to allow for ARMA 

error process, and there are three variation types of model, i.e. no-intercept, nonzero mean and 

time trend. 

1. The no-intercept model is parameterized as, 

tptpttttt yyyyyy    ...1111       (3.6) 

2. The model with nonzero mean term 
0  is, 

tptpttt yyyy    ...1110        (3.7) 

3. The model with nonzero mean and a time trend term t can be expressed as, 

tptpttt yyyty    ...1110        (3.8) 

where 1... 11  p  and 11 ...   pkk   

 

The null hypothesis of the DF test is that 0  which represents a unit root exists in 

equations (3.6), (3.7) and (3.8), respectively. These ADF tests statistics have been shown to 

have asymptotically the same distribution as the Dickey-Fuller test statistics, and thus if the 

ADF test returns a significant probability value, we should reject the null hypothesis that the 

time series has a unit root, and hence, the time series is stationary. 

 

Another assumption of ARIMA model is the invertible assumption. Considering a linear 

process that an observation tz  at time t can be expressed as a weighted sum of observations 
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in the past, 

tktkttt zzzz    ...2211          
(3.9) 

 

where   is a constant mean that time series values fluctuate, 
t  is the white noise series 

error term, and 1 , 2 ,
3 ,…,

k  are the coefficients of the white noise series of order k. 

 

When 
tz  is expressed as a function of past observations, a linear process is said to be not 

invertible if the coefficients relating to the past observations do not decline as we move 

further into the past. On the contrary, an invertible linear process suggested that these 

coefficients do decline, which indicate that the recent observations have more influence on the 

value than the distant observations. While we can intuitively expect that future traffic 

conditions affect more by recent traffic conditions than past traffic conditions; therefore, we 

could say that the time series of traffic observations satisfied the invertible condition. 

 

3.1.2 Model Identification 

 

Having tentatively determined the difference order to transform a nonstationary time series to 

a stationary time series, we are then able to examine the behavior of the sample 

autocorrelation function (SAC) and the sample partial autocorrelation function (SPAC) for the 

stationary time series to identify the ARMA models. 

 

Considering stationary time series bz , 1bz ,…, nz , the sample autocorrelation function (SAC) 

at lag k, denote by kr , which measures the linear relationship between time series 

observations separated by k-lag time units, can be expressed as 


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where 
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             (3.11) 

 

The value of kr  will always lie between -1 and 1, when the observations separated by k time 

units tend to move together in a linear fashion with a positive slope, i.e. when both of )z-( tz  

and )z-( ktz   are positives or both of them are negatives, then their product will be positive. 

On the contrary, when the observations separated by k time units tend to move together in a 

linear fashion with a negative slope, i.e. when )z-( tz  is positive, )z-( ktz   is negative or 
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vice versa, then the value of their product will be negative. The more the value of 
kr  closer 

to 1 or -1, the more the observations tend to move together with the linear fashion. 

 

The behavior of SAC is said to be cut off at k when a spike exists at lag k which means that 

the sample autocorrelation at lag k is statistically large. And the behavior of SAC dies down 

when the function, instead of cutting off, decreases in a steady fashion such as a damped 

exponential (with or without oscillation), damped sine-wave fashion, or a fashion combined 

both damped exponential and sine-wave. 

 

Similarly, the sample partial autocorrelation (SPAC) at lag k 
kkr  is 
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where jkkkkjkkj rrrr   ,1,1  for 1,...,2,1  kj . 

 

Just like SAC, the behavior of SPAC is said to be cut off after lag k if no spikes exist at lag 

greater than k. And SPAC dies down whenever the function decreases in a steady fashion such 

as a damped exponential (with or without oscillation), damped sine-wave fashion, or a fashion 

combined both damped exponential and sine-wave. 

 

If the SAC and SPAC of the time series data either cut off or die down fairly quickly, then the 

time series should be considered stationary. On the contrary, if the SAC and SPAC of the time 

series data die down quite quickly or extremely slowly, then the time series should be 

considered nonstationary. Later we will present some guidelines for determining ARIMA 

process based on the behavior of SAC and SPAC. 

 

The ARIMA model composed of three essential elements: AR stands for autoregressive part; I 

stands for differencing, a technique that transfers time series data to a stationary form; and 

MA stands for moving average part. A seasonal ARIMA model is the model which accounts 

for the seasonal variations, such as months or seasons in a year, in which the pattern of the 

time series repeats itself in each cycle by the seasonal effect. The construction of the model is 

described as follows. 
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A time series with autoregressive process of order p can be expressed as follow,  

tptpttt zzzz    ...2211          
(3.13) 

where   is a constant mean that time series values fluctuate, 1 , 2 ,
3 ,…, p  are the 

coefficients of the autoregressive process of order p, and 
t  is the white noise error 

components in the time series. 

 

A moving average model of order q is defined by the equation, 

qtqttttz    ...2211          
(3.14) 

where   is a constant mean that time series values fluctuate, 1 , 2 ,
3 ,…, q  are the 

coefficients of the moving average process of order q, and 
t  is the white noise error 

components in the time series. 

 

Combining the above three elements and making use of the backshift operator kB , which 

shifts the subscript of a time series observation or error term backward in time by k periods, 

we then consider the mixed autoregressive moving average process of order (p, d, q), which 

is, 

tqt

d

p ByBB  )()1()( 
          

(3.15) 

where )...1()( 2
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p

pp BBBB   is the nonseasonal autoregressive operator of order 

p, )...1()( 2

21

q

qq BBBB    is the nonseasonal moving average operator of order 

q and B is the backshift operator. 

 

If the time series has seasonal variation, a simple ARIMA model no longer fits, and a seasonal 

ARIMA is required. A general multiplicative seasonal model of order (p, d, q)(P, D, Q)L which 

is analogous to the mixed autoregressive moving average process of order (p, d, q) can be 

expressed as follow, 

t

L

Qqt

DLdL

Pp BByBBBB  )()()1()1)(()( 
     

(3.16) 

where P , Q , P, D, Q are the seasonal counterparts of p , q , p, d, q respectively and L 

denotes the seasonality. 

 



 

20 
 

The purpose of identifying a seasonal ARIMA model is to determine the values of p, d, q and 

P, D, Q by examining the functions of SAC and SPAC, while the cycle length L is usually 

given explicitly. Table 3.1 presents the guidelines for determining nonseasonal operators and 

Table 3.2 for seasonal operators. 

 

Table 3.1 Guidelines for choosing nonseasonal operators 

Guideline Behavior of SAC and SPAC Nonseasonal Operators 

1 SAC has spikes at lags 

1,2,…,q and cuts off after lag 

q, and SPAC dies down 

Nonseasonal moving average of order q 

)...1()( 1

q

qq BBB    

2 SAC dies down, and SPAC 

has spikes at lags 1,2,…,p and 

cuts off after lag p 

Nonseasonal autoregressive of order p 

)...1()( 1

p

pp BBB    

3 SAC has spikes at lags 

1,2,…,q and cuts off after lag 

q, and SPAC has spikes at lags 

1,2,…,p and cuts off after lag 

p 

)(Bq  or )(Bp  

If SAC cuts off more abruptly than 

SPAC, use )(Bq . If SPAC cuts off 

more abruptly than SAC, use )(Bp . If 

both SAC and SPAC cut off equally 

abruptly, use )(Bq and )(Bp , then 

choose the one that yields the best 

model. 

4 Both SAC and SPAC have no 

spikes at all lags 

No nonseasonal operator 

5 Both SAC and SPAC die 

down 
Both )(Bq  and )(Bp  

Reference：Adapted from Bowerman and O'Connell (1993) 



 

21 
 

Table 3.2 Guidelines for choosing seasonal operators 

Guideline Seasonal Behavior of SAC and 

SPAC 

Seasonal Operators 

6 SAC has spikes at lags L, 2L, …, 

QL and cuts off after lag QL, and 

SPAC dies down 

Seasonal moving average of order Q 

)...1()( ,,1

QL

LQ

L

L

L

Q BBB    

7 SAC dies down, and SPAC has 

spikes at lags L, 2L, …, PL and 

cuts off after lag PL 

Seasonal autoregressive of order P 

)...1()( ,,1

PL

LP

L

L

L

P BBB    

8 SAC has spikes at lags L, 2L, …, 

QL and cuts off after lag QL, and 

SPAC has spikes at lags L, 

2L, …, PL and cuts off after lag 

PL 

)( L

Q B  or )( L

P B  

If SAC cuts off more abruptly at 

seasonal level than SPAC, use 

)( L

Q B . If SPAC cuts off more 

abruptly at seasonal level than SAC, 

use )( L

P B . If both SAC and SPAC 

cut off equally abruptly at seasonal 

level, use )( L

Q B and )( L

P B , then 

choose the one that yields the best 

model. 

9 Both SAC and SPAC have no 

spikes at all seasonal lags 

No seasonal operator 

10 Both SAC and SPAC die down 

fairly quickly at seasonal level 
Both )( L

Q B and )( L

P B  

Reference：Adapted from Bowerman and O'Connell (1993) 

 

Once we the values of p, d, q and P, D, Q, a tentative model have been determined and the 

modeling procedure can led to next stage. In our study, we utilized the SAS statistic software 

(SAS, 2008) to compute the SAC and SPAC so as to identify these values. 

 

3.1.3 Model Estimation 

 

After selecting a tentative model form through the identification process, the next stage is 

using the collected historical data to estimate the parameters of the model. Estimating an 

adequate model that contains the characteristics of the data is necessary without question. As 

Fisher (1956) stated that, it is necessary that efficient use of the data should have been made 
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in the fitting process. Without doing this, inadequacy caused by inappropriate fitting rather 

than inadequate model form may arise. 

 

The most widely used method for estimating parameters is the maximum likelihood (ML) 

method. Box and Jenkins (1976) also pointed out that many examples have revealed that 

when the sample size is moderate and large enough, the log-likelihood function will be 

unimodal and can be approximated by a quadratic function over a sufficiently extensive 

region near the maximum, and under such situations, the log-likelihood function can be 

described by its maximum. Maximum likelihood estimate is a procedure which its estimated 

values of parameters maximizing the log-likelihood function. 

 

As the procedure of maximum likelihood estimation is complicated and difficult to implement, 

most of the statistics software provide an alternative to calculate by the least squares approach. 

It is proved that when the random errors are normally distributed, the maximum likelihood 

estimates can be approximate by least squares point estimates. The least squares approach 

begins with preliminary point estimates of the parameters and then modify them according to 

the mean squared error (MSE). At each iteration, the changes of the parameters are in the 

direction of minimizing the MSE, and this iterative searching technique will continue until the 

parameters corresponding to the minimum mean square error are found. At the end of the 

estimation process, the final least squares point estimates of the parameters are obtained. 

 

3.1.4 Diagnostic Checking 

 

Evaluating the adequacy of the fitted model is the purpose of diagnostic checking. If a fitted 

model is found to be inadequate at this stage, the modeling procedure should return to the 

identification stage and go through the process again, and therefore, ARIMA model is an 

iterative modeling procedure. Two kinds of observations in a model can be determined as 

inadequate. The first one is unable to depict the observed correlation of the process, and there 

exists significant correlation in the residuals over time. The second one may be the model is 

too complex, and here we introduce the concept of parsimony proposed by Box and Jenkins 

(1976) to define this kind of adequate fitted model. A model is said to be adequate if it 

satisfies the principle of parsimony, which means that to fit the model that can describe the 

pattern of historical data with minimum number of parameters. In other words, if any 

estimated parameter in the fitted model is proved to be statistically insignificant, it is not a 

good fitted model. 

 

The first step of the diagnostic checking stage is to analyze the residuals from the fitted model. 

The observed data can be adequately represented if the residuals of the fitted model is white 
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noise, that is, they are approximately normal distribution with mean zero and constant 

variance. By calculating the sample autocorrelation function of the residuals and sample 

partial autocorrelation function of the residuals, we can examine whether the residuals is 

white noise. If the residuals are white noise, the sample autocorrelation functions should be 

zero. Otherwise, they may present a pattern that should be included in the ARIMA model, 

identifying this pattern and integrating into the fitted model will usually get a better fitted 

model. 

 

In this study, we applied the SAS software to model the ARIMA procedures. When testing 

whether the residuals is unrelated or contain additional information that should be included 

into the model, SAS software tests the null hypotheses that the set of autocorrelations is white 

noise using the Ljung-Box statistic calculated by, 


 


m

k

k

m
kn

r
nn

1

2

2 )2(             (3.17) 

where 









 


n

t t

kn

t ktt

kr

1

2

1




 is the sample autocorrelation of residuals separated by a lag of k 

lags, 
t  is the residual series, n is number of observations. 

 

If the residuals are unrelated, the autocorrelations of the residuals should be small, and hence 

2

m  should be small. The smaller the 2

m  is, the smaller are the autocorrelations of the 

residuals and the more unrelated are the residuals. Consequently, a large 2

m  indicates that 

the model is inadequate. Setting the probability of a Type I error equal to   and apply it to 

Ljung-Box statistic we can reject the adequacy of the model if the p-value is less than  , 

where p-value is the area under the curve of the chi-square distribution having pnk   

degrees of freedom to the right of 2

m , and pn  is the number of parameters that must be 

estimated in the model. The value of   indicates the confidence level of the test statistics. If 

we set   to be 0.05, the p-value less than 0.05 represents that the 2

m of the tentative 

selected model has very little chance to be smaller than 
][

2


m , that is, 

][

22


 mm  , and the 

model is strongly inadequate. On the other hand, if the p-value is greater than 0.05 represents 

that 2

m is less than 
][

2


m , we can say that the tentative model is suitable for the data. 
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The second step of the diagnostic checking stage is to test the statistical significance of the 

estimated parameters, and the testing procedure is as follow. Let   be any particular 

parameter in the model, ̂  be the point estimate of  , and 
̂

s  be the standard of the point 

estimate ̂ . Then the t-value is defined as, 





ˆ

ˆ

s
t                 (3.18) 

 

When the absolute value of t is large, then ̂  is large, which indicates that parameter   is 

not equal to zero and should be included in the ARIMA model. Experiences have found that it 

is reasonable to include the parameter in the model if the absolute t-value of that parameter is 

greater than 2, in other words, if any parameter whose t statistic is smaller than 2, it should be 

removed from the model. 

 

3.1.5 Model Forecasting 

 

If an appropriate model has been identified and its parameters have been fitted without 

violating the significant test, then with the historical traffic data collected in the past, it can be 

used to estimate current traffic conditions as well as forecast traffic conditions in the future. 

 

3.2 STARMA Model 

 

The space-time autoregressive moving average (STARMA) model can be viewed as a special 

case of the general vector ARMA (p, q) model. As Pfeifer and Deutsch (1980) stated that a 

process considering N ×  N autoregressive and moving average parameter matrices to 

represent the autocorrelations and cross-correlations of the N time series is referred to as the 

vector ARMA model. The general vector ARMA models will collapse to a STARMA models 

if the N time series appear to be a single random process operating at different sites and the 

dependencies between the N series is a function of their relative positions which can be 

captured by a weight matrix 
)(lW ; that is, when the diagonal elements in those N × N 

matrices are assumed to be equal and the off-diagonal elements are assumed to be a linear 

combination of the weight matrices 
)(lW . 

 

In addition, STARMA model is an extension of the ARIMA model to incorporate the spatial 

correlations of the time series data, incorporating spatial factors in ARIMA model is 

specifically useful in modeling traffic conditions since traffic measurements collected at a 
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particular location may be influenced by upstream as well as downstream traffic conditions. 

We can expect that if an urban arterial is congested, its neighboring arterials will also be 

congested. Therefore, it is reasonable to speculate that extending ARIMA to STARMA would 

improve the prediction performance of the STARMA model. 

 

Similar to the ARIMA model, the STARMA model is also an iterative modeling procedure, 

the first stage is to identify a tentative STARMA class of model to be employed, and the 

space-time sample autocorrelation and space-time sample partial autocorrelation functions of 

the data are examined. As the STARMA considers the relationships of the time series at the 

detectors locations, we have to assign a weight matrix representing the network structure and 

capturing the spatial characteristics of the data collecting points in advance to incorporate 

those dependencies into the model. The weight matrix used in STARMA will be described in 

the following section. 

 

3.2.1 Weight Matrices in STARMA 

 

Introducing the spatial lag operator can assist the understanding of STARMA. Assume that 

)(tzi
, Ni ,...,2,1  are the N time series observations at N locations in space, let (l)L  be the 

spatial operator of spatial order l, such that, 

)()()0( tztzL ii               (3.19) 





N

j

j

l

iji

l tzwtzL
1

)()( )()(             (3.20) 

where )(l

ijw  are a set of weights used to represent the configuration of the N locations, )(l

ijw  

is set to nonzero if locations i and j are 
thl order neighbors for all i. 

 

Formulating the above equations in vector representation we get, 

)(I)()( )0()0( tztzWtzL N            (3.21) 

)()( )()( tzWtzL ll   for l >0           (3.22) 

where NI  is an N × N identity matrix, 
)(lW  is an N × N square matrix with weight )(l

ijw  

and each row summing to one, 

 



N

j

l

ijw
1

1  for all i             (3.23) 
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The specific setting rule of these weights for different spatial order l can be determined by the 

model builder to indicate the relationship between their locations. For example, the physical 

properties of the system such as the length of the common boundary between contiguous 

countries i and j, or the distance between the centers of countries, can be considered when 

setting weights )(l

ijw . Furthermore, as Pfeifer and Deutsch (1980) stated that, these weights 

must reflect a hierarchical ordering of spatial neighbors, i.e. first order neighbors are those 

nearest to the location of interest; second order neighbors are farther away than first order 

neighbors, but closer than third order neighbors. An example of the first four spatial order 

neighbors of a particular location for both one-dimensional line of locations and 

two-dimensional grid system are shown in Figure 3.2. 

 

First order Second order Third order Fourth order 

 

Figure 3.2 Spatial order in one-dimensional and two-dimensional systems 

(Source：Pfeifer and Deutsch, 1980) 

 

By the definition of the spatial operators, we can define a N × N square matrix 
)(lW  with 

elements )(l

ijw  which is nonzero if the locations of vehicle detectors i and j are thl order 

neighbors for all i. 
)(lW  is referred to as the 

thl order weight matrix which satisfies a 

hierarchical order of spatial relationship, whereas first order neighbors are those nearest to the 

measuring locations, second order neighbors are those farther than first orders but closer than 

third order ones. The zero order neighbor of each location is itself, and therefore 
)0(W  is an 

N × N identity matrix. 

 

As the main purpose of the weight matrix is to incorporate the physical characteristics of the 

traffic flow network into the STARMA model, we should first analyze it. Here we used the 

definition the same as Kamarianakis and Prastacos (2005). As shown in Figure 3.3, typically, 

traffic flow network can be expressed as a tree structure where the directions of the tree 

vectors indicate the directions of the traffic flow and the nodes of the network represent the 
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measuring locations where vehicle detectors located. Note that in the literature the tree 

network (and its sub-network) is suggested to process the many-to-one property, meaning that 

the links from upstream are merging to the downstream but no splitting up. However, this is 

rarely the case in a real transportation network where roads can be parallel or in grid forms; 

therefore, we used less restricted rules in setting our weight matrices. If we consider the 

distance between the locations of vehicle detectors is long enough so that the end of queue do 

not spill back to the upstream. As a result, only downstream locations will be influenced by 

flow at the upstream locations, and the reverse effect is much weaker. Therefore, the first 

spatial order includes its direct upstream, whereas the second spatial order includes its further 

upstream as well as the links in parallel, where merges to the same downstream. 

 

 

Figure 3.3 A typical road network with tree structure (with no cycles) 

(Source：Kamarianakis and Prastacos, 2005) 

 

Considering the characteristics of traffic flow network and assuming that the 
thl order 

neighbors of each location i have equal weights and  



N

j

l

ijw
1

1  for all i, the network 

topology of Figure 3.3 can be expressed as the following weight matrices for first and second 

spatial order shown in equation (3.24) and (3.25). Noted that these rules of weight matrix 

settings are user defined, as long as the row sum is equal to 1 (if not zero). In our study, we 

assumed that the contributions from all upstream are identical, without considering the ratios 

if the traffic volumes are turning from the left or right at the intersections. This is because it is 

difficult to differentiate the turning proportions from the vehicle detectors. However, one may 

assume the weighting factors to be proportional to average flow volume of the upstream. 

Other rules such as setting weights according to different turning movement at intersections or 

the effects due to weather (e.g. rainy day) may also be a possible alternative. 
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3.2.2 STARMA Modeling Procedure 

 

Since we have defined the meaning of spatial operator, we are now able to introduce the 

model classes of STARMA. Similar to the time series )(tzi  in univariate ARIMA model, 

)(tzi  in STARMA model depends on the past observations and prediction errors at the same 

location i, as well as the past observations of its neighboring locations at different spatial 

order. Therefore, )(tzi  can be expressed as a linear combination of past observations and 

prediction errors at location i as well as its neighbor locations, 
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where p is the autoregressive order, q is the moving average order, 
k  is the spatial order of 

the thk autoregressive term, 
km is the spatial order of thk moving average term, 

kl  and 
kl  

are parameters to be estimated, and )(ti  are the random normal errors with 

0)]([ tE i               (3.27) 
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         (3.28) 

 

Any model that can be formulated as equation (3.29) is called a STARMA (
qp mmmqp ,...,,,...,, 2121

, ) 

model, and the matrix representation of the model is, 
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with )(t  normal with mean zero and, 
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        (3.30) 

 

Two of the special cases of the STARMA model classes are STAR model and STMA model. 

If the moving average terms q equal to zero and the model remains autoregressive term in the 

STARMA model, it collapse to a space-time autoregressive (STAR) model, and STAR model 

with order 
p

p  ,...,, 21
is referred to as a STAR(

p
p  ,...,, 21

) model, 
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On the other hand, a model with only moving average terms of order 
qmmmq ,...,, 21
is referred to 

as a STMA (
qmmmq ,...,, 21
) model, 
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Examining the space-time sample autocorrelation functions and space-time sample partial 

autocorrelation functions of the time series will help determine which of the STARMA, STAR, 

and STMA model classes are the time series belong to. 

 

With the definition of the spatial operator, the space-time covariance between thl and 

thk order neighbors at time lag s, )(slk , which is the average covariance between the 

weighted thl order neighbors of any location and the weighted thk order neighbors of the 

same location at s time lags in the future can be defined as, 
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And the vector form of the space-time covariance function is, 
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Once we have the space-time covariance function, we are interested in the space-time 

autocorrelation functions. As Martin and Oeppen (1975) noted that due to several possible 

scalings that may be used, the definition of space-time autocorrelation functions is not as 

simple as the one in the univariate domain. Since we hope that the sample autocorrelations to 

have constant variance at all spatial lags, an appropriate definition for the space-time 

autocorrelation between 
thl and 

thk order neighbors at time lag s is, 
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In particular, )(slk  will not equals to )(skl , but it will be the same as )( skl  , i.e. 

)()( ss kllk   , and the sample estimate of the space-time autocorrelation coefficients can 

be expressed as, 
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Knowing the space-time autocorrelations of the time series is not enough to select a tentative 

model from STARMA model classes, the space-time sample partial autocorrelation functions 
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is also necessary. The space-time sample partial autocorrelations can be derived from the 

general form of STAR model, let the STAR model with order   in space and k in time be, 
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          (3.37) 

 

Multiplying equation (3.37) by the lag term ]')([ )( stzW h   we can obtain, 
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  (3.38) 

 

Since 0)]()'([  tstzE   for all 0s , taking the expected values and dividing both sides 

by N in equation (3.38) we get, 
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which are the space-time auto-covariance in terms of Yule-Walker type equations. If we 

substitute ks ,...,2,1  and ,...,1,0h  in these equations yields a set of linear equations, 

and we can obtain the space-time partial autocorrelations by solving the last coefficient, kl'  

as ,...,1,0l for ,...2,1k , therefore the space-time partial autocorrelations of spatial order 

  could be  approximate as the last coefficient of each successive STAR process fitted. 

 

With the space-time autocorrelations and space-time spatial partial autocorrelations, one may 

examine whether the space-time autocorrelations and partial autocorrelations are tail off, cut 

off, or both tail off to tentative select a STARMA, STAR, or STMA classes of model to be 

fitted in the following procedure. 

 

Then, since efficient estimation of the parameters is necessary, fitting the tentative selected 

model is the second stage of the procedure. And the next stage is the process called diagnostic 

checking which evaluates the adequacy of the fitted model, if the sample space-time 

autocorrelation function of the residuals from the tentative selected model is white noise and 

all of the parameters in the fitted model are proven statistically significant, then the fitted 

model is adequate for describing the data and hence can be applied to forecast future in the 

last stage. Otherwise, the procedure has to return to the first stage, i.e. fine tuning for another 

tentative model to be applied and then go through the modeling process again. 
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3.3 Concluding Remark 

 

In this chapter we have briefly introduced the modeling procedure of the univariate ARIMA 

model and multivariate STARMA model, the most essential and significant difference 

between univariate and multivariate model is the input data of the model. In general, 

univariate models can only fit the model with a particular variable, which means that even 

though there is a historical database collecting information from different locations in the 

system, univariate models remain forecast future conditions by past data at a particular 

location separately without utilizing information collecting from other locations and thus 

neglect the possible influences from different locations. And since unvariate models operate 

individually, the main advantages are that they are easy to employ and different variables can 

be estimated with different parameters thus being tightly parameterized. 

 

On the other hand, the multivariate model considers past information not only from an isolate 

data collecting point but also past information from other nearby locations. The modeling 

procedure of multivariate models such as finding the relationship between different variables 

or parameters estimating are often more complicated than model univariate models several 

times. Since multivariate models can simultaneously consider the influences across locations 

in the system, whenever there are some independencies between the forecasting targets, we 

can expect that the STARMA model can reveal more information as compared to estimating 

several univariate models, one for each detector location. 
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Chapter 4  Case Study 

In this chapter, we will illustrate the modeling procedure of the forecasting techniques 

presented in Chapter 3. In section 4.1 we will give a brief analysis of the traffic data being 

used, the applications of ARIMA and STARMA models to fit those traffic data will be 

depicted in section 4.2 and 4.3 respectively. At the end of this chapter, section 4.4 will show 

the comparison of forecasting performance of these models. 

 

4.1 Data Collection from Vehicle Detectors 

 

Taipei City, the capital city of Taiwan, has an area of 270 km
2
 and there are over 700 vehicle 

detectors collecting traffic data in the area. To illustrate the ARIMA and STARMA procedure 

by modeling traffic flow in the urban area, we select a study area of about 5km by 4 km as 

displayed in Figure 4.1. In order to show the relationship of the traffic at different locations, 

24 vehicle detectors for the west bound traffic are collected, with their locations also shown in 

Figure 4.1, and the exact locations of vehicle detectors under study are shown in Appendix 1. 

Only flow data of same direction would be used in our study. It is noted that while there are 

other vehicle detectors in the study area, they are collecting traffic at different directions. And 

we assumed that there are no dependencies between vehicle detectors of different directions; 

those detectors are excluded in this study. 
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Figure 4.1 Locations of the vehicle detectors 
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To compare the applicability of the models on urban arterial roads, traffic data, including 

traffic volume, speed and lane occupancy, were collected every 5 minutes from these 

detectors. Since the maximum cycle length of traffic signal in Taipei City is 200 seconds, if 

we apply 5-min data as our model input, these data may be strongly affected by traffic signal 

leading a wrong model. Vythoulkas (1993) stated that using intervals shorter than 10 minutes 

declines the quality of information that one could obtain in the prediction systems. Highway 

Capacity Manual (2000) also indicated the 15-min interval as the best interval for traffic flow 

prediction, therefore, those 5-min data are aggregated into 15-min intervals for better 

forecasting accuracy, and hence there are 96 observations in each day in the analysis. 

 

Data sets of four weeks were recorded from 29
th

 June 2009 to 24
th

 July 2009. The data of the 

first three weeks were used for calibrating the model, and the data of last week were used for 

validation purpose. We only consider data from Tuesday to Thursday in the analysis, as these 

days are having similar daily traffic pattern. Monday, Friday and weekends are ignored here to 

avoid the large deviations compared the mid-week traffic conditions. The data of twelve days, 

with a total of 1152 observations, for each detector were analyzed here. The data of nine days, 

i.e. 864 observations were used to calibrate the model parameters, and the data of last three 

days with 288 observations were use to check the performance of the model. 

 

Last but not least, ARIMA and STARMA models are time series models that require 

continuous data without missing. However, due to some reasons such as signal failure or 

communication problems, sometimes vehicle detectors will be unable to collect traffic data 

and hence missing data appears. In these cases, we will use the average of its former and later 

observation to interpolate or replacing the zeros so as to get a continuous database. 

 

4.2 Seasonal ARIMA 

 

In this section we will fit the seasonal ARIMA model for all of the 24 detectors, since the 

modeling procedure of the ARIMA model is analogous; we will only consider the traffic 

volume data from the downstream detector VD No.2 on Minsheng W. Road to illustrate the 

modeling procedure of seasonal ARIMA model but show all the model results of 24 vehicle 

detectors at the end of this section. 

 

To fit the seasonal ARIMA model, Figure 4.2 shows the time series plot of the traffic data of 

VD No.2, the vertical axis represents the volume data within 15 minute interval and the 

horizontal axis is the time index. The time series plots reveal that the data is nonstationary 

with seasonality every 96 observations, i.e. data of one day. 
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Figure 4.2 Time series plot of the traffic flow data of VD No.2 

 

We used the ARIMA procedure in statistical software SAS to calculate the sample 

autocorrelation function (SAC) and sample partial autocorrelation function (SPAC) so as to fit 

the ARIMA models, and the corresponding SAC and SPAC plots are shown in Figure 4.3 and 

Figure 4.4. As the SAC of original time series appear to be nonstationary with seasonality 

every 96 observations, according to the assumption of ARIMA model that the time series to 

be fitted is stationary, we then transformed them by first seasonal differenced i.e. taking 

difference of 96 time lags to get a stationary time series. 
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Figure 4.3 SAC for the traffic flow data of VD No.2 
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Figure 4.4 SPAC for the traffic flow data of VD No.2 

 

While examining the SAC and SPAC plot can give a roughly identification of whether the 

time series is stationary, to be more precisely about the time series to be fitted is stationary, 

augmented Dickey-Fuller (ADF) test is employed. Rather than testing the original time series, 

we tested whether the first seasonal differenced time series is stationary or not. The null 

hypothesis is that the time series has a unit root at lag d, which means that the time series is 

nonstationary, Table 4.1 shows transformed traffic data of VD No.2 and three variations of 
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the test statistics, which investigates whether the model includes a constant mean or a time 

trend when fitting the model are employed, and different lags were also examined. 

 

We can see from Table 4.1 that the first column specifies three types of models, which are 

zero mean, single mean, or trend. The third column (Rho) and the fifth column (Tau) are the 

test statistics for unit root testing. Other columns are their p-values. Since the test results show 

that all of the p-values are small enough to reject the null hypothesis that the series has a unit 

root, which means that the seasonal differenced time series is stationary, we can then proceed 

to the next step to identify which p and q should be selected as a tentative model. 

 

Table 4.1 ADF test for first seasonal differenced traffic data from VD No.2 

Augmented Dickey-Fuller Unit Root Tests 

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F 

Zero Mean 0 -648.993 0.0001 -23.67 <.0001     

  1 -490.312 0.0001 -15.63 <.0001     

  2 -600.500 0.0001 -14.65 <.0001     

Single Mean 0 -649.057 0.0001 -23.66 <.0001 279.84 0.0010 

  1 -490.435 0.0001 -15.62 <.0001 122.06 0.0010 

  2 -600.749 0.0001 -14.64 <.0001 107.18 0.0010 

Trend 0 -649.116 0.0001 -23.64 <.0001 279.50 0.0010 

  1 -490.491 0.0001 -15.61 <.0001 121.90 0.0010 

 

Figure 4.5 and Figure 4.6 present the SAC and SPAC plots of the first seasonal differenced 

values. As they both die down quickly at seasonal level, implies that we should consider both 

autoregressive and moving average process when fitting the ARIMA model. Furthermore, as 

shown in Figure 4.5, the first seasonal differenced plot of ACF of VD No.2 cuts off at lag 2 

and has a spike at lag 96, implies that the second-order autoregressive (AR2) process of 

nonseasonal and seasonal autoregressive order of lag 96 (AR96) must be included in the 

process. Similarly, Figure 4.6 shows that the first seasonal differenced plot of PACF of VD 

No.2 has spikes at lag 1, lag 2 and lag96, therefore, MA1 or MA2 of nonseasonal and MA96 

of seasonal moving average process also seemed to be a possible ARIMA component. 
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Figure 4.5 SAC for the differenced traffic data of VD No.2 
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Figure 4.6 SPAC for the differenced traffic data of VD No.2 

 

Combining the plots of ACF and PACF and following the guidelines in Table 3.2, the model 

of reasonable combinations of parameters for VD No.2 is of the form, 

96962211 -   ttttt zzz            (4.1) 

 

where 1  and 2  are the coefficients of the autoregressive process of order 1 and 2, t  is 
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the random error components in the time series, 
96  is the coefficient of the moving average 

process of order 96. 

 

The results of the coefficient estimations using maximum likelihood estimate with reasonable 

combinations of parameters and their corresponding t-statistics before diagnostic check for the 

seasonal ARIMA model are shown in Table 4.2. While all of the t-statistics for the parameters 

were found to be significance greater than 2, meaning that these parameters should be 

included in the model. Table 4.3 reveals the autocorrelations of the residuals, while all of the 

parameters tentative selected in the model are all significant, since the p-value in the 

autocorrelation check for the residuals were found to be smaller than 0.05, indicated that there 

are still some parameters need to be included in the model. 

 

Table 4.2 Parameters estimated before diagnostic check for VD No.2 (ARIMA) 

Parameter Estimated value Standard Error t Value Approx Pr > |t| 

MA96 0.60929 0.03030 20.11 <.0001 

AR1 0.14836 0.03599 4.12 <.0001 

AR2 0.09899 0.03599 2.75 0.0061 

 

Table 4.3 Autocorrelation check for the residuals for VD No.2 (1
st
 model) 

To Lag Chi-Square DF Pr > ChiSq Autocorrelations 

6 9.21 3 0.0267 0.009 0.013 -0.089 0.008 -0.043 0.043 

12 21.51 9 0.0106 -0.027 0.088 -0.007 0.074 0.013 0.042 

18 38.77 15 0.0007 -0.084 0.018 0.003 0.113 -0.011 0.039 

24 47.72 21 0.0008 0.000 0.039 -0.050 -0.007 -0.053 0.066 

30 56.41 27 0.0008 -0.046 0.044 -0.021 0.065 -0.017 0.043 

36 61.72 33 0.0018 -0.026 -0.017 -0.049 0.035 0.009 0.043 

42 68.21 39 0.0026 -0.017 0.071 -0.016 0.003 -0.046 0.014 

48 73.59 45 0.0045 0.018 0.040 -0.043 0.022 -0.044 0.017 

54 78.31 51 0.0083 0.017 0.005 -0.044 0.031 -0.050 0.002 

60 85.43 57 0.0087 -0.001 -0.060 -0.025 0.029 -0.007 0.058 

66 90.33 63 0.0136 -0.059 0.017 -0.033 -0.004 -0.021 0.023 

72 92.64 69 0.0304 -0.028 0.005 -0.006 -0.003 0.001 0.043 

78 96.73 75 0.0465 -0.014 -0.003 0.006 0.063 0.010 -0.022 

84 103.82 81 0.0446 -0.060 0.029 -0.041 -0.011 -0.040 0.021 

90 111.77 87 0.0380 -0.043 -0.026 -0.002 0.039 -0.069 -0.015 

96 114.42 93 0.0653 -0.023 0.034 -0.000 -0.035 0.011 -0.003 
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Repeating the estimation and diagnostic checking procedure for all of the statistics indicate 

that the tentative selected model is suitable for the data and all of the p-value of 

autocorrelations of the residuals are greater than 0.05. Therefore, the model suitable for 

describing the data of VD No.2 is, 

9797969612211 ---   tt1ttttt zzz         (4.2) 

 

The corresponding parameter estimations and autocorrelation check of residuals are shown in 

Table 4.4 and Table 4.5. Since all of the t-statistics of estimated parameters are greater than 2, 

representing that all of these parameters should be included in the model. Furthermore, since 

almost the p-value in the autocorrelation check for the residuals were found to be greater than 

0.05, indicating that the residuals are white noise at the 95% confidence level, this model 

could be used to forecast traffic conditions for VD No.2. As a result, each observation of VD 

No.2 at time t can be expressed as a linear combination of previous observations at time t-1, 

t-2 and the prediction error made at time t-1, t-96 and t-97, plus a random error. 

 

Table 4.4 Parameters estimated after diagnostic check for VD No.2 (ARIMA) 

Parameter Estimated value Standard Error t Value Approx Pr > |t| 

MA1 -0.9426 0.0254 -37.05 <.0001 

MA96 0.6242 0.0300 20.84 <.0001 

MA97 0.5802 0.0341 17.00 <.0001 

AR1 -0.7576 0.0420 -18.05 <.0001 

AR2 0.2193 0.0361 6.08 <.0001 
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Table 4.5 Autocorrelation check for the residuals for VD No.2 (Final model) 

To Lag Chi-Square DF Pr >ChiSq Autocorrelations 

6 2.71 1 0.0998 -0.007 0.038 -0.020 -0.037 0.012 -0.006 

12 9.15 7 0.2421 0.022 0.043 0.042 0.027 0.059 0.000 

18 16.35 13 0.2306 -0.033 -0.017 0.041 0.072 0.029 0.003 

24 20.35 19 0.3736 0.042 -0.001 -0.011 -0.038 -0.021 0.036 

30 22.22 25 0.6229 -0.018 0.018 0.008 0.037 0.011 0.012 

36 25.48 31 0.7458 0.006 -0.046 -0.015 0.005 0.036 0.018 

42 28.00 37 0.8569 0.007 0.047 0.008 -0.020 -0.015 -0.013 

48 30.30 43 0.9277 0.040 0.014 -0.021 0.002 -0.020 -0.011 

54 33.93 49 0.9500 0.039 -0.021 -0.024 0.011 -0.031 -0.027 

60 42.69 55 0.8868 0.026 -0.089 0.003 0.006 0.004 0.044 

66 45.26 61 0.9343 -0.046 0.005 -0.019 -0.022 -0.006 0.005 

72 46.92 67 0.9704 -0.012 -0.012 0.013 -0.021 0.018 0.027 

78 50.51 73 0.9793 0.003 -0.015 0.021 0.043 0.025 -0.033 

84 54.95 79 0.9820 -0.046 0.017 -0.034 -0.022 -0.033 0.007 

90 61.44 85 0.9747 -0.031 -0.038 0.004 0.028 -0.063 -0.019 

96 65.41 91 0.9803 -0.017 0.017 0.014 -0.051 0.032 -0.014 

 

Repeating the modeling procedure of seasonal ARIMA model to fit the model of remaining 23 

vehicle detectors, we can obtain the best fitted model for all 24 vehicle detectors and their 

corresponding parameters estimated shown in Table 4.6. As previous stated, fitting the model 

separately for data from different vehicle detectors may lead to inconsistent of the number of 

parameters across different models, hence some of the best fitted model can forecast future 

using only two parameters (VD No.6, VD No.12 and VD No.13), but some of the observation 

data need up to six parameters (VD No.4 and VD No.11) to obtain the best fitted model. 
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Table 4.6 ARIMA Parameters estimated for all 24 vehicle detectors 

VD No. Parameter estimated 

AR1 AR2 AR3 MA1 MA2 MA96 MA97 

1 -0.6732  0.2896    -0.8849    0.6737  0.6028  

2 -0.7576  0.2193    -0.9426    0.6242  0.5802  

3 -0.7071  0.2504    -0.8901    0.6692  0.6352  

4 0.2269  0.9375  -0.2208    0.8457  0.6732  -0.6512  

5 -0.7245  0.2339    -0.8916    0.6109  0.5686  

6 0.2990          0.7022    

7 0.2347  0.0731        0.7000    

8 -0.6538  0.3068    -0.9182    0.6318  0.5685  

9   0.1961    -0.3789    0.6878  0.2509  

10   0.2182  0.1238  -0.4229    0.7251  0.3003  

11 1.0351  0.1214  -0.1877  0.9249    0.6255  -0.5946  

12 0.2727          0.7145    

13 0.3013          0.7073    

14   0.1592    -0.2073    0.6629  0.1837  

15 -0.6342  0.3253    -0.9167    0.7280  0.6753  

16 0.3963  0.0703        0.5667    

17 0.1564  0.1018        0.5994    

18 1.3212  -0.3438    0.9347    0.5913  -0.5618  

19 1.1801  -0.2078    0.9061    0.5503  -0.5119  

20 0.2873        -0.1077  0.6098  -0.0514  

21 0.2520  0.1644        0.5342    

22 0.2095        -0.1153  0.5774    

23   0.2989    -0.2369    0.6566  0.2131  

24 0.8273      0.5910    0.7041  -0.4687  

 

To evaluate the performance of the fitted model, since there are various criteria being used in 

the literature and no one has concluded that which of them is better, so we selected the root 

mean squared error (RMSE) and the mean absolute percentage error (MAPE) as criteria in our 

study. The definition of RMSE and MAPE are, 





n

t

tt yy
n 1

2)ˆ-(
1

RMSE            (4.3) 
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where 
ty  is the observation at time t, 

tŷ  is the estimated or predicted value at time t, and n 

is the sample size over the study period. 

 

With the definition of RMSE and MAPE, Table 4.7 present the model residuals and 

forecasting errors of ARIMA models for all 24 detectors estimated by RMSE and MAPE. The 

calibrating data are traffic flows from Tuesday to Thursday of the first three weeks, and the 

forecasting data are traffic flows on Tuesday of last week, i.e. data on 21
st
 July. As expected, 

most of the model residuals appear to be smaller than the forecasting errors since the 

parameters were estimated based on calibrating data. Hence, when we used them to forecast, 

the forecasting errors would be greater than model residuals, but their differences were not too 

much. Lewis (1982) stated that MAPE lower than 10% represents the forecasting is highly 

accurate, MAPE between 10% and 20% represents the forecasting is quite well, and MAPE 

between 20% and 50% represents the forecasting is reasonable. From Table 4.7 we can find 

that most of the model residuals and forecasting errors estimated by MAPE are smaller than 

20%. Furthermore, if we use the average volume of each detector as the weight, then the 

weighted average of 24 detectors also revealed that both estimating errors and forecasting 

errors were smaller than 20%, so we can conclude that the forecasting abilities of ARIMA 

models we fitted are quite well. 
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Table 4.7 Estimation and forecasting errors by RMSE and MAPE (ARIMA) 

VD No. Estimation errors Forecasting errors 

RMSE MAPE RMSE MAPE 

1 23.71  10.15% 28.26 11.47% 

2 26.96  8.18% 31.82 9.27% 

3 47.71  12.38% 52.29 13.13% 

4 45.83  11.48% 115.92 45.93% 

5 47.23  11.29% 56.45 14.41% 

6 20.58  10.05% 18.45 10.36% 

7 19.04  9.91% 16.68 10.18% 

8 21.51  11.22% 21.84 14.50% 

9 19.25  9.64% 17.33 8.51% 

10 12.50  24.54% 10.35 22.33% 

11 18.79  15.09% 21.69 18.43% 

12 18.89  13.71% 17.77 13.47% 

13 17.58 15.49% 19.61  16.81% 

14 24.93 11.21% 22.32  11.20% 

15 23.45 11.86% 27.48  13.77% 

16 24.14 9.92% 24.74  9.28% 

17 46.47 10.07% 48.55  10.81% 

18 50.17 8.59% 49.61  10.61% 

19 30.66 19.37% 30.37  23.58% 

20 38.35 16.53% 35.11  18.35% 

21 40.72 15.34% 42.10  18.25% 

22 42.84 15.66% 43.95  14.14% 

23 32.26 19.59% 36.71  20.40% 

24 30.19 20.65% 33.22  28.46% 

Weighted 

Average 
36.86  12.70% 46.83  16.18% 

 

In particular, the forecasting of VD No.4 has a large error, with model RMSE=45.83, 

MAPE=11.48% and forecasting RMSE=115.92, MAPE=45.93%; whereas the errors 

estimated from most of the other detectors by RMSE and MSE are beneath 50 and 30%, 

respectively. Possible reason is that, if we referred to the original time series plot of VD No.4 

as shown in Figure 4.7, the traffic flow from VD No.4 from interval 864 to interval 960, i.e. 

observations being forecasted, are averagely lower than observations used to calibrate. That’s 

why the forecasting error is extremely large compare to other vehicle detectors. And this 
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special case also revealed the drawback of ARIMA model that it is weak to forecast time 

series with sudden change in the pattern. 
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Figure 4.7 Time series plot of traffic flow data of VD No.4 

 

If we consider VD No.4 as a special case thus not in our consideration, among 23 detectors, 

we selected the one with minimum estimating error with RMSE=26.96 and MAPE=8.18% 

(VD No.2) and the one with maximum error with RMSE=12.50 and MAPE=24.54% (VD 

No.10) and compared their estimated volume with the observations on 16
th

 (estimating) and 

21
st
 (forecasting) July shown in Figure 4.8 (a), 4.8 (b), 4.9 (a) and 4.9 (b), which present 

typical 24-hr flow variation pattern of VD No.2 and VD No.10. As each time interval 

represents 15 minutes, traffic flows increase rapidly from time interval 28 to 34, indicate that 

a large amount of traffic flows appear from 7:00 am to 8:30 am. Since then they fluctuate at a 

higher level before 76
th

 interval, which means that traffic flows continue fluctuating at a high 

level during daytime, and then start to decrease around 7:00 pm. We can also observe from 

Figure 4.8 (a), 4.8 (b), 4.9 (a) and 4.9 (b) that the model fits the observations quite well during 

off-peak when the flows are low in values and the observations were not fluctuating. But the 

model may not capture the extreme peak variations when it comes to rapid fluctuations in the 

peak hour. Furthermore, if we compare the traffic flow of VD No.2 and VD No.10, we can 

find that data from VD No.10 fluctuate more than data from VD No.2; as a result, it is not 

surprising that the estimated error from VD No.2 is smaller than that from VD No.10. 

 



 

46 
 

 

9080706050403020101

450

400

350

300

250

200

150

100

50

Time Interval

T
ra

ff
ic

 V
o

lu
m

e 
(v

eh
/1

5-
m

in
) Observations

ARIMA

Comparison of predictions with observations on 16th J uly (VD No. 2)

 
(a) Comparison of 7/16 data from VD No.2 
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(b) Comparison of 7/21 data from VD No.2 

Figure 4.8 Comparison of predictions with observations from VD No.2 
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(a) Comparison of 7/16 data from VD No.10 
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(b) Comparison of 7/21 data from VD No.10 

Figure 4.9 Comparison of predictions with observations from VD No.10 
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4.3 STARMA Model 

 

The modeling approaches of multivariate space-time autoregressive moving average 

(STARMA) will be examined in this section. As previously stated, the univariate ARIMA 

models used to forecast each of the time series separately, ignoring the dependencies between 

each other. Nevertheless, traffic flow is not isolated from nearby locations and instead, can be 

strongly influenced by other traffic flows within the system. Hence the multivariate STARMA 

model which integrates weight matrices into the model on account of the spatial dependencies 

between time series would be a more adequate model to forecast traffic flow. As the 

STARMA considers the relationships of the time series at the detectors locations, we have to 

assign a weight matrix representing the network structure and capturing the spatial 

characteristics of the data collecting points in advance to incorporate those dependencies into 

the model. 

 

4.3.1 Weight Matrices in STARMA 

 

In order to incorporate the physical characteristics of the traffic flow network into STARMA 

model, consider the locations of vehicle detectors that were shown in Figure 4.1. We define a 

hierarchical system showing the spatial neighboring relationship between the locations of the 

24 detectors, with details shown in Table 4.8. The first order neighbors are those nearest to the 

location of interest, and the second order neighbors are those closer than third order but 

farther than first order ones. 

 

As we have mentioned in section 3.2, we assumed that, in moderate traffic congestion, 

upstream traffic conditions are not influenced by the downstream conditions. Some of the 

upstream detectors such as VD No.5 (VMYN820) and VD No.16 (VKWNV20) are on the 

boundary of the study area and not influenced by any other detectors. Hence, they may have 

no neighboring detectors. Furthermore, we only consider the first and second order neighbors 

in our study. As the third order implies a 30-45 minutes traveling time (for our case with a 15 

minutes time internal), we can expect that the traffic flows from third-order neighbors would 

have little influences and are neglectable. 
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Table 4.8 Spatial neighboring relationship of the 24 vehicle detectors 

VD No. Detector ID 1st order 2nd order VD No. Detector ID 1st order 2nd order 

1 VMTG520 2 6 13 VJTJ960 14,15 16 

2 VMXH820 3 6 14 VKLLH20 15,16 9 

3 VMZL960 4,5 9 15 VKRM820 16 - 

4 VMZLI20 5 - 16 VKWNV20 - - 

5 VMYN820 - - 17 VKLGD20 18 11 

6 VMFIG20 7,8 9 18 VKAHN20 - 13,19 

7 VMDL820 8,9 3 19 VIRHZ20 - 22 

8 VMEKD00 9 3,14 20 VIPIZ60 20,21 23 

9 VMDL800 - 4,15 21 VIPJA20 21,22 24 

10 VM7FI60 - 1,11 22 VINKW20 22,23 - 

11 VLKGF40 12 6 23 VINLD61 23,24 - 

12 VLGGY60 - 6 24 VINM760 - - 

 

With the above chosen spatial neighboring relationship of the vehicle detectors, we are able to 

apply the definition of weight matrix presented in section 3.2. The 
thl order neighbors of each 

location i have equal weights and the row sum equals to one. As a result, the above spatial 

neighboring relationship can be transferred into weight matrices of 
thl order which will be 

used in the STARMA model in the next section. 

 

4.3.2 Numerical analysis 

 

To fit STARMA model, Figure 4.10 (a)-(d) show some of the time series plots of traffic flow 

observations for the 24 vehicle detectors from 30
th

 June 2009 to 16
th

 July 2009. Only data 

from Tuesday to Thursday are used here as it is known that weekdays at the middle of week 

have a better consistent pattern as compared to Monday/Friday and weekends. In the figure, 

the vertical axis represents the volume data within 15 minute interval and the horizontal axis 

is the time index. As seen in the figures, the traffic volume at different detector locations 

varies. For example, the traffic volume of VD No.1 is less than 350 (veh/15 min), but the 

volume of VD No.4 is almost 900 (veh/15 min). They all reveal that a pattern that is 

nonstationary with seasonality at every 96 observations, i.e. a cycle of one day. Therefore, 

similar to ARIMA model, we need to take seasonal difference of 96 time lag for all 24 time 

series to transfer the original nonstationary series into stationary time series. 
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(a) VD No.1         (b) VD No.2  
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(c) VD No.3         (d) VD No.4  

Figure 4.10 Time series plots of the traffic data of selected VDs 

 

The Augmented Dickey-Fuller (ADF) test is then employed to all of the differenced time 

series to check whether they are stationary. Since the testing procedure repeats the one 

depicted in ARIMA modeling, we will not show all of the testing results of the 24 detectors 

respectively. The test results, which are not shown here, indicate that all of the p-values are 

small enough to reject the null hypothesis that the series has a unit root, and it is confirmed 

that the seasonal differenced time series are stationary. We can then proceed to the next step 

to identify which p and q should be selected as a tentative model. 

 

To fit the STARMA model, similar to the modeling procedure of ARIMA, first we should 

examine the space-time autocorrelation and space-time partial autocorrelation functions of the 

time series to identify the autoregressive and moving average term for fitting the model. Table 

4.9 and Table 4.10 display the space-time autocorrelation and space-time partial 

autocorrelation function for the differenced series. The space-time autocorrelations appear to 

have a spike at temporal lag 2 and 96 of zero spatial lag at nonseasonal and seasonal level, 

indicating that the moving average term of order 2 and order 96 should be included in the 

STARMA model. The space-time partial autocorrelations indicate that we should include the 

autoregressive term of order 96 into the STARMA model. Therefore, the tentative selected 

model to fit the data of the 24 vehicle detectors will be, 
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Table 4.9 Space-time autocorrelation functions of the differenced series 

Spatial lag (l) 0 1 2 

Time lag (s)    

1 0.2403  0.0714  0.0306  

2 0.1418  0.0796  0.0109  

3 0.0271  0.0095  0.0039  

4 0.0666  0.0559  0.0060  

5 0.0127  0.0095  0.0014  

6 0.0793  0.0458  0.0089  

7 0.0419  0.0489  0.0048  

…       

95 -0.0765  -0.0266  -0.0177  

96 -0.4097  -0.0975  -0.0088  

97 -0.0924  -0.0217  0.0081  

 

Table 4.10 Space-time partial autocorrelation functions of the differenced series 

Spatial lag (l) 0 1 2 

Time lag (s)    

1 0.2349  0.0068  0.0118  

2 0.0808  0.0434  -0.0098  

3 -0.0244  -0.0197  -0.0003  

4 0.0522  0.0366  -0.0018  

5 -0.0120  -0.0079  -0.0043  

6 0.0657  0.0157  0.0036  

7 0.0071  0.0352  -0.0055  

…       

95 -0.0665  -0.0060  -0.0189  

96 -0.3900  0.0149  0.0179  

97 0.1001  0.0025  0.0159  
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Next we need to estimate the coefficients of the parameters tentatively selected in the 

identification stage. We employed the SAS statistic software to estimate the model for the 

coefficients of parameters by maximum likelihood approach. The estimated values and the 

corresponding t-statistics are shown in Table 4.11. As presented in the table, the t-statistics of 

parameters 12 , 
20 , 21 and 

10  appear to be insignificant, these parameters should be 

removed from the model. 

 

Table 4.11 Parameters estimated before diagnostic check (STARMA) 

Parameter 10  
11  12  20  

21  22  

Estimated value 0.2529 0.0263 0.0128 0.0111 0.0073 0.0194 

t value 25.95 3.54 1.84 1.01 0.98 2.8 

Parameter 30  
96  

10  
20  

96  RMSE 

Estimated value 0.0351 0.0176 0.0042 0.0414 -0.666 71.75  

t value 4.87 2.26 0.5 5.07 -143  

 

Reformulating the STARMA model step-by-step, we have the final model as, 

ttt
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The parameters estimated for equation (4.6) and their corresponding t-statistics are displayed 

in Table 4.12. Since all of the t-statistics indicate that the tentative selected model is suitable 

for the data, therefore, we can proceed to check the space-time autocorrelations and partial 

autocorrelations of the residuals, shown in Table 4.13 and 4.14. Further checking confirms 

that except for the lags that are already included in the model, the autocorrelation and the 

partial correlations of the residuals of other lags appear to be insignificant, and we can 

conclude that the tentative selected STARMA model is suitable for describing the data. 

 

Table 4.12 Parameters estimated after diagnostic check (STARMA) 

Parameter 10  
11  22  30  

20  
96  RMSE 

Estimated value 0.2585 0.0292 0.0191 0.0372 -0.0479 0.6651 37.96  

t value 46.19 4.01 2.84 6.02 -9.77 143.32  
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Table 4.13 Space-time autocorrelations of the residuals 

Spatial lag (l) 0 1 2 

Time lag (s)    

1 -0.0396  -0.0214  0.0244  

2 0.0779  0.0750  0.0088  

3 -0.0644  -0.0420  0.0023  

4 0.0814  0.0601  0.0023  

5 -0.0470  -0.0387  -0.0082  

6 0.1000  0.0425  0.0081  

7 -0.0117  -0.0134  -0.0011  

…    

95 0.0231  0.0179  0.0037  

96 0.0472  0.0453  0.0335  

97 -0.0005  -0.0099  0.0231  

 

Table 4.14 Space-time partial autocorrelations of the residuals 

Spatial lag (l) 0 1 2 

Time lag (s)    

1 -0.0393  -0.0141  0.0246  

2 0.0627  0.0540  -0.0003  

3 -0.0531  -0.0210  0.0021  

4 0.0640  0.0302  -0.0036  

5 -0.0277  -0.0151  -0.0111  

6 0.0807  0.0013  0.0028  

7 0.0095  0.0035  -0.0057  

…    

95 0.0252  0.0207  -0.0028  

96 0.0208  0.0202  0.0208  

97 -0.0001  -0.0066  0.0200  

 

The result revealed that the parameters corresponding to the first-order neighbors appear to be 

more significant than second-order neighbors as expected. However, a surprising result is that 

while the parameter representing previous two interval ( 20 ) is not significant enough to be 

included in the model, the t-statistics of parameter representing previous three interval ( 30 ) is 

found to be greater than 2, implying that some dependencies exist between current traffic flow 

and traffic flow three intervals ago. And finally, with these parameters, each observation at a 

particular site i collecting at period t can be expressed as a combination of previous three and 



 

54 
 

the 96
th

 observations of its own, observations of prior two intervals of its second neighbors as 

well as the prediction error made at two periods ago, prediction error made yesterday at the 

same time of its own and a random error, which can be used to forecast future traffic flow 

later. 

 

Table 4.15 shows the model residuals and forecasting errors of the fitted STARMA model 

estimated by RMSE and MAPE. The results reveal that except for VD No.10 and VD No.24, 

all of the model residuals estimated by MAPE are smaller than 20%, with a good estimation 

for fitting these data. Although the forecasting errors are slightly larger than model residuals, 

most of the errors are still below 20% and furthermore, some of them even below 10%. 

Therefore, we can conclude that the forecasting ability of STARMA model we fitted is quite 

well. Furthermore, the weighted average value, which is averaging the RMSE and MAPE 

values of the 24 VDs weighted by their corresponding average flow values, is also shown in 

the table. The weighted average MAPE is 12.71% for estimation and 15.87% for forecasting. 

The slight increase in the average forecasting errors is mostly contributed by the VD No.4, 

which has a high error in its forecasting. 
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Table 4.15 Estimation and forecasting errors by RMSE and MAPE (STARMA) 

VD No. Estimation errors Forecasting error 

RMSE MAPE RMSE MAPE 

1 25.11  10.50% 27.53  11.26% 

2 27.72  8.42% 31.04  9.14% 

3 50.08  12.25% 46.02  11.97% 

4 49.20  11.92% 125.92  50.93% 

5 49.54  11.46% 51.29  13.31% 

6 20.69  10.08% 18.45  10.35% 

7 19.01  9.89% 16.54  10.25% 

8 21.91  11.21% 21.48  13.96% 

9 19.45  9.54% 17.66  8.71% 

10 12.84  24.85% 10.59  22.93% 

11 19.41  15.31% 20.43  14.52% 

12 18.99  13.82% 17.99  13.80% 

13 17.58  15.48% 19.91  16.82% 

14 25.04  11.24% 21.88  11.06% 

15 23.88  11.63% 27.91  13.98% 

16 24.67  9.98% 23.19  8.83% 

17 47.05  10.09% 46.65  10.46% 

18 51.59  8.61% 48.99  11.21% 

19 31.31  19.40% 29.24  16.19% 

20 38.57  16.41% 34.06  17.06% 

21 41.31  15.16% 40.58  17.45% 

22 43.22  15.53% 41.50  12.96% 

23 32.73  18.92% 36.66  21.84% 

24 30.69  20.57% 33.41  29.14% 

Weighted 

Average 
37.96  12.71% 47.08  15.87% 
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4.4 Forecasting and Comparisons 

 

With the best fitted ARIMA and STARMA models obtained in section 4.2 and 4.3, we are 

now capable to compare the forecasting performance of these models. The volume data of 

Tuesday to Thursday from 30
th

 June to 16
th

 July 2009 are used for examine the fitness of the 

model and data of 21
st
 July are used for the validation purpose. With the above model 

parameters, we forecasted 96 future observations and compared them with real observations. 

Then we calculated the forecasting errors by RMSE and MAPE for all of the 24 vehicle 

detectors as shown in Table 4.16, and if the STARMA model outperforms ARIMA model, it is 

written in boldface. 

 

From Table 4.16 we can find that multivariate STARMA is superior to univariate ARIMA for 

14 of the 24 detectors on both RMSE and MAPE basis. ARIMA performs better than 

STARMA for 7 of the 24 detectors on both RMSE and MAPE basis, whereas 3 out of 24 

detectors the RMSE of STARMA is smaller but MAPE is larger than ARIMA models. If we 

use the average volume of each detector as the weight, then the weighted average of 24 

detectors revealed that both ARIMA and STARMA are suitable for forecasting urban traffic 

flow, we can say that ARIMA models and STARMA model perform equally well. However, 

the number of parameters used in these two models is largely different. To forecast traffic 

flows of 24 vehicle detectors, there are four to five parameters for each detectors in the 

ARIMA model (noted that parameters used for each detector is different), but there are only 6 

parameters in STARMA model. The number of parameters used in the model is quite 

important since when it comes to forecast traffic flows of real world network where the 

number of vehicle detectors within the system is much greater, the simpler STARMA model 

would be more suitable than ARIMA models in forecast traffic flow for the whole network. 

Therefore, the STARMA is recommended. 

 

In overall, the forecasting ability of STARMA model is compariable to the ARIMA models, 

and with the introductin of spatial parameters 11  and 22 . As we have stated that traffic 

flow is not an isolated system and will be influenced by traffic flows from other locations 

nearby, it is reasonable that including the spatial term in the model will enhance the 

forecasting ability of the fitted model. Therefore, when estimating parameters, ARIMA 

models operate separately whereas STARMA can simultaneously consider data from all of the 

24 detectors, so their correlation can be examined from the space-time autocorrelation and 

space-time partial autocorrelation functions. 
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Table 4.16 Comparison of forecasting errors of ARIMA and STARMA models 

VD No. ARIMA STARMA 

RMSE MAPE RMSE MAPE 

1 28.26  11.47% 27.53  11.26% 

2 31.82  9.27% 31.04  9.14% 

3 52.29  13.13% 46.02  11.97% 

4 115.92  45.93% 125.92  50.93% 

5 56.45  14.41% 51.29  13.31% 

6 18.45  10.36% 18.45  10.35% 

7 16.68  10.18% 16.54  10.25% 

8 21.84  14.50% 21.48  13.96% 

9 17.33  8.51% 17.66  8.71% 

10 10.35  22.33% 10.59  22.93% 

11 21.69  18.43% 20.43  14.52% 

12 17.77  13.47% 17.99  13.80% 

13 19.61  16.81% 19.91  16.82% 

14 22.32  11.20% 21.88  11.06% 

15 27.48  13.77% 27.91  13.98% 

16 24.74  9.28% 23.19  8.83% 

17 48.55  10.81% 46.65  10.46% 

18 49.61  10.61% 48.99  11.21% 

19 30.37  23.58% 29.24 16.19% 

20 35.11  18.35% 34.06 17.06% 

21 42.10  18.25% 40.58 17.45% 

22 43.95  14.14% 41.50 12.96% 

23 36.71  20.40% 36.66 21.84% 

24 33.22  28.46% 33.41  29.14% 

Weighted 

Average 
46.83  16.18% 47.08  15.87% 
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Chapter 5  Strategies of Dynamic Forecasting in ATMS 

5.1 Forecasting Procedure and Performance Criteria 

 

The estimation and forecasting techniques described in Chapter 4 assumed the application for 

a static system, i.e., forecasting a future condition (like a day) with historical data without 

using the updated data collected with time. Due to the progressing in the transportation and 

communication technologies in Intelligent Transportation Systems, such as vehicle detectors 

and global position systems, can collect traffic data in the real-time and send information from 

all data collecting points to the control center. The availability of these real-time data enables 

us to update our forecasting of traffic conditions. In this chapter, we will consider different 

forecasting strategies using real-time database to exhibit the forecasting performance of the 

STARMA model. 

 

5.1.1 Look back and Look Ahead Procedures 

 

Look back and look ahead span size are two issues need to be explicated when executing a 

forecasting. Look back span size is similar to our estimation process, and is related to data for 

the parameter estimation. As West and Mccracken (1998) mentioned, there are several 

strategies for selecting the size of database in the parameter estimation. Recursive scheme, 

rolling scheme and fixed scheme are primary used on the forecasting literature, whereas the 

results of these three strategies may act diversely. Recursive scheme estimates parameters 

with all available data at hand every time, so as time goes by, the look back span size, i.e. the 

number of observations used to forecast, will increase. Rolling scheme, on the other hand, 

estimates parameters based on fixed look back span size, say R, so the oldest observation will 

be dropped as new data adds in. The third fixed scheme is different from those two that it 

merely estimates the parameter using data of first R periods and does not update the 

parameters as new data adds in, and it is also the one we called static forecasting. 

 

Another issue is look ahead span size, that is, how far you look forward. The most often used 

maximum likelihood estimation estimates parameters by minimizing the sum squares of 

1-step ahead forecast errors, whereas adaptive forecasting estimates parameters by 

minimizing the sum squares of l-step ahead forecast errors, and 1l  is the prediction period 

ahead of interest. 

 

To illustrate how these three strategies work, consider a time series TY  and T is the time we 

started to forecast, and 1l  is the prediction period ahead of interest. First, assume we are 



 

59 
 

now at time T, and we wish to look ahead l  periods to forecast observation at time lT  . 

Then at time 1T , we wish to forecast observations at time 1 lT  and so on. Totally, the 

number of forecasting values we wish to obtain is M observations. If we label the real 

observation at time lT   as 
lTy 
, and the predicted value at time lT   as )(ˆ lyT , then the 

prediction period and data being used for each scheme are as follow. 

1. Recursive scheme： 

Step 1：Using observations 1y  to Ty  to estimate parameters and predict the observation at 

time lT  , i.e. ),...,,()(ˆ
11 yyyfly TTT  .  

Step 2：Using observations 1y  to 1Ty  to estimate parameters and predict the observation at 

time 
1lTy , i.e. ),...,,()(ˆ

111 yyyfly TTT   . 

… 

Step M：Using observations 1y  to MTy   to estimate parameters and predict observation at 

time 1 MlT , i.e. ),...,,()(ˆ
111 yyyfly MTMTMT   . 

 

2. Rolling scheme：(Shown in Figure 5.1) 

Step 1：Using observations 1y  to Ty  to estimate parameters and predict the observation at 

time lT  , i.e. ),...,,()(ˆ
11 yyyfly TTT  . 

Step 2：Using observations 2y  to 1Ty  to estimate parameters and predict the observation at 

time 1lTy , i.e. ),...,,()(ˆ
211 yyyfly TTT   . 

… 

Step M：Using observations My to 1MTy to estimate parameters and predict observation at 

time 1 MlT , i.e. ),...,,()(ˆ
211 MMTMTMT yyyfly   . 

 

Figure 5.1 Estimation and forecasting data used in rolling scheme 

 

3. Fixed/Static scheme： 

Step 1：Using observations 1y  to Ty  to estimate parameters and predict the observation at 

time lT  , i.e. ),...,,()(ˆ
11 yyyfly TTT  . 

Step 2：Using observations 1y  to Ty  to estimate parameters and predict the observation at 

time 1lTy , i.e. ),...,,()(ˆ
111 yyyfly TTT   . 

 
Ty  observation 1y  

prediction 

 Forecasting data Estimation data 

My  1MTy

 )(ˆ
1 ly MT   

1 MlTy  

)(ˆ lyT  

lTy 
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… 

Step M：Using observations 1y  to Ty  to estimate parameters and predict the observation at 

time 1 MlT , i.e. ),...,,()(ˆ
111 yyyfly TTMT   . 

 

Since the estimation process is a tedious work, it is reasonable to assume that parameter 

estimation will be updated with the database once a day or once a week, which is different 

from adaptive forecasting that updates parameters every time whenever new data adds in. 

Therefore in the following the parameters estimated for the recursive, rolling and static 

schemes will remain the same for a short span. In other words, we assumed the parameters 

used for all three schemes be the same when we forecast observations within a day. The only 

differences between the three schemes are the data used to fit into the model, which could be 

actual observations or immediate predicted data. And since the STARMA model we fitted in 

previous chapter revealed that each observation is related to previous 96 periods of its own 

and neighbor observations, recursive and rolling scheme in our study can be treated as the 

same scheme, thus we will only compare the forecasting performance of rolling and static 

schemes in our following studies. 

 

When using rolling scheme, a new observation will add in at each iteration, hence, when 

1l , we predict (1)ˆ
Ty  based on observations 1y  to Ty , i.e. ),...,,((1)ˆ

11 yyyfy TTT  , 

then (1)ˆ
1Ty  with observations 2y  to 1Ty , i.e. ),...,,((1)ˆ

211 yyyfy TTT   ,…, and finally, 

MTy 
ˆ  with My  to 1MTy , i.e. ),...,,((1)ˆ

2 MMT1MT1MT yyyfy   . This kind of 

forecasting is so-called 1-step ahead forecasting. 

 

When 2l , a 2-step ahead forecasting is conducted. We made prediction 1
ˆ

Ty  based on 

observations 1y  to Ty , i.e. ),...,,((1)ˆ
11 yyyfy TTT  . However, when proceeding to 

predict observation at time 2T , since the observed value at time 1T  is not known yet, 

we based on observations 2y  to Ty  as well as the prediction )1(ˆ
Ty , i.e. 

),...,),1(ˆ((2)ˆ
2yyyfy TTT  ,then ),...,),1(ˆ((2)ˆ

3111 yyyfy TTT   …, and finally, predict 

)2(ˆ
2MTy   with observations My  to 2MTy  and prediction )1(ˆ

2MTy , i.e. 

),...,,(1)ˆ((2)ˆ
222 MMTMTMT yyyfy   . 

 

In general, the data used to predict the same forecasting period is not only determined by 

which scheme you select to estimate parameters, but also related to the look ahead lead time 

you select when forecasting, and thus influencing the forecasting performance of the model. 

We compared the forecasting performance of rolling scheme with 1-step and 2-step ahead and 

static scheme. The above discussions of observations and predictions comparisons of static 

and step ahead rolling scheme are summarized in Table 5.1 and Table 5.2, where the iteration 

number of prediction is 96 as we used in Chapter 4. 
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Table 5.1 Observations and prediction equations used in the static scheme 

Observation Static scheme 

1Ty  )...,,()1(ˆ
951  TTTT yyyfy  

2Ty  ),...,),1(ˆ()2(ˆ
94 TTTT yyyfy  

3Ty  )...,),1(ˆ),2(ˆ()3(ˆ
93 TTTTT yyyyfy  

…  

95Ty  ),),1(ˆ),...,94(ˆ()95(ˆ
1 TTTTT yyyyfy  

96Ty  )),1(ˆ),...,95(ˆ()96(ˆ
TTTT yyyfy   

 

Table 5.2 Observations and prediction equations used in the step ahead rolling scheme 

Observation 2-step ahead rolling 1-step ahead rolling 

1Ty  )...,,()1(ˆ
951  TTTT yyyfy  )...,,()1(ˆ

951  TTTT yyyfy  

2Ty  ),...,),1(ˆ()2(ˆ
94 TTTT yyyfy  ),...,,()1(ˆ

9411   TTTT yyyfy  

3Ty  ),...,),1(ˆ()2(ˆ
93111   TTTT yyyfy  ),...,,()1(ˆ

93122   TTTT yyyfy  

…   

95Ty  ),...,),1(ˆ()2(ˆ
1939393   TTTT yyyfy  ),...,,()1(ˆ

1939494   TTTT yyyfy  

96Ty  ),...,),1(ˆ()2(ˆ
949494 TTTT yyyfy    ),...,,()1(ˆ

949595 TTTT yyyfy    

 

5.1.2 Performance Criteria 

 

To measure the performance of the fitted model, likewise, we utilized root mean squared error 

(RMSE) and mean absolute percentage error (MAPE) as our criteria. Since the data used in 

static and rolling strategies are different in that some of them are observations while some of 

them are predictions, the definition of MSE and MAPE are slightly different from the one 

presented in section 4.2. With the above definition of 
sTy 
 and )(ˆ syT  represent the real 

observation and predicted value at time sT  , respectively, the RMSE (root mean squared 

error) for static scheme can be defined as follow, 





M

s

TsTstatic syy
M 1

2))(ˆ-(
1

RMSE          (5.1) 

where ),...,),1(ˆ),...,1(ˆ()(ˆ
1yyysyfsy TTTT  , s is the prediction of interest and M is the 

iteration number of prediction. 

 

Whereas the RMSE (root mean squared error) for rolling scheme is, 





M

s

lsTsTrolling lyy
M

l
1

2))(ˆ-(
1

)(RMSE         (5.2) 
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where s is the prediction of interest, l is the look ahead span size in rolling scheme and M is 

the iteration number of prediction. 

 

Likewise, the MAPE (mean absolute percentage error) we applied in our study for static 

scheme is, 


 

 



M

s sT

TsT
static

y

syy

M 1

%100
)(ˆ1

MAPE         (5.3) 

Whereas MAPE for rolling scheme being used is, 


 

 



M

s sT

lsTsT
rolling

y

lyy

M
l

1

%100
)(ˆ1

)(MAPE        (5.4) 

 

5.2 Comparison of Forecasting Performance 

 

In this section, we will exhibit how STARMA model perform in forecasting traffic flow based 

on static and rolling strategies. Using RMSE and MAPE as criteria, Table 5.3 exhibits the 

forecasting errors of the STARMA models for each of the 24 vehicle detectors and their 

average performances for predicting with static scheme, 1-step ahead rolling scheme and 

2-step ahead rolling scheme. Since the predictions of 1-step ahead rolling are derived from 

latest information as well as previous information, i.e. information before one period; 

predictions of 2-step ahead rolling are derived from information two periods ago; static 

strategy, on the contrary, do not update information as time goes by. So intuitively, it is 

anticipated that the forecasting errors estimated by 1-step ahead rolling are the smallest, and 

errors estimated by 2-step ahead rolling are better than static strategy. 

 

For the forecasting errors in Table 5.3 satisfying this expectation, the estimated RMSE and 

MAPE are indicated in boldface. Using the average volume of each detector as the weight, a 

weighted average of RMSE and MAPE is also calculated, which designates the expected 

trend, with RMSE=47.08 and MAPE=15.87% for static strategy, RMSE=46.37 and 

MAPE=15.45% for 2-step ahead rolling and RMSE=44.29 and MAPE=14.80% for 1-step 

ahead rolling. Therefore, it proves that, 1-step ahead outperforms both 2-step ahead and static 

strategies, implying that using real-time information to forecast is better than merely using 

historical information for forecasting. 
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Table 5.3 Comparison of STARMA model by static, 1-step and 2-step ahead forecast 

VD No. 
Static 2-step ahead 1-step ahead 

RMSE MAPE RMSE MAPE RMSE MAPE 

1 27.53  11.26% 27.89  11.37% 31.18  12.41% 

2 31.04  9.14% 30.96  9.14% 32.25  9.66% 

3 46.02  11.97% 46.71  12.03% 54.89  13.27% 

4 125.92  50.93% 120.89  48.59% 96.56  37.14% 

5 51.29  13.31% 51.71  13.35% 57.31  14.06% 

6 18.45  10.35% 18.26  10.37% 17.90  9.95% 

7 16.54  10.25% 16.35  10.08% 16.91  10.03% 

8 21.48  13.96% 21.45  13.81% 22.41  13.37% 

9 17.66  8.71% 17.52  8.60% 16.79  8.78% 

10 10.59  22.93% 10.73  23.16% 10.91  23.57% 

11 20.43  14.52% 20.80  14.72% 23.68  16.78% 

12 17.99  13.80% 18.00  13.81% 18.90  13.72% 

13 19.91  16.82% 20.02  16.65% 21.65  17.86% 

14 21.88  11.06% 22.02  11.16% 24.10  11.88% 

15 27.91  13.98% 28.07  13.99% 28.41  14.13% 

16 23.19  8.83% 22.95  8.73% 21.78  8.50% 

17 46.65  10.46% 46.67  10.50% 47.63  10.50% 

18 48.99  11.21% 48.88  11.03% 46.45  9.54% 

19 29.24  16.19% 29.38  16.05% 29.62  15.00% 

20 34.06  17.06% 34.22  17.04% 36.09  17.60% 

21 40.58  17.45% 41.01  17.26% 43.09  16.80% 

22 41.50  12.96% 41.79  12.77% 45.69  12.65% 

23 36.66  21.84% 36.32  18.93% 38.73  19.20% 

24 33.41  29.14% 33.38  25.01% 33.50  24.37% 

Weighted 

Average 
47.08  15.87% 46.37  15.45% 44.29  14.80% 
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In particular, the error reduction of the detector No.4 is of the largest, with RMSE=125.92 and 

MAPE=50.93% for static strategy. RMSE=120.89 and MAPE=48.59% for 2-step ahead 

strategy and RMSE=96.56 and MAPE=37.14% for 1-step ahead strategy. As we have 

explained that the extraordinarily high forecasting error comes from the inconsistent pattern 

on 21
st
 July, whose traffic flow is averagely lower than other days. Hence, the results of 

detector No.4 demonstrated that the superiority of rolling forecast over static forecast in cases 

of the estimation data set has a different pattern than the forecasting data set. In this study, to 

avoid large deviations of the data, we only used the traffic flows from Tuesday to Thursday to 

fit our model, but if we extend our model to fit not only traffic flow from Tuesday to 

Thursday but also Monday and Friday, or even holidays, it seems reasonable that the evidence 

of rolling forecast being superior to static strategy would be more clear. Further research can 

apply this kind of data to investigate it. 

 

We selected the one with minimum error and the one with maximum and compare their 

predictions with observations on 21
st
 July shown in Figure 5.2 and Figure 5.3. The forecasting 

error of detector No.9 is of the smallest, with static RMSE=17.66 and MAPE=8.71%, 2-step 

ahead RMSE=17.52 and MAPE=8.60% and 1-step ahead RMSE=16.79 and MAPE=8.78%, 

respectively. On the other hand, the predicting performance of detector No.24 is the worst 

among 24 detectors, with static RMSE=33.41 and MAPE=29.14%, 2-step ahead 

RMSE=33.38 and MAPE=25.01% and 1-step ahead RMSE=33.50 and MAPE=24.37%. 

Figure 5.2 and Figure 5.3 reveal that the model fits the observations quite well during 

off-peak when the flows are low in values and the observations were not fluctuating. But 

when traffic flow comes to higher level, the model may not capture the extreme peak 

variations in the peak hour. And since the variation of traffic flow from detector No.24 is 

more severe than from detector No.9, it is not surprising that the forecasting error of detector 

No.24 would be greater than detector No.9. 
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Figure 5.2 Comparison of STARMA by static and rolling forecast (VD No.9) 

 

 

9080706050403020101

400

300

200

100

0

Time Interval

T
ra

ff
ic

 V
o

lu
m

e 
(v

eh
/1

5-
m

in
)

Observations

Static

2-step ahead

1-step ahead

Comparison of s tatic, 1-s tep, 2-s tep ahead forecas t with obse rvations  for VD No.24

 
Figure 5.3 Comparison of STARMA by static and rolling forecast (VD No.24) 
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Chapter 6 Conclusions and Recommendations 

The short-term traffic forecasting is an important issue in ATIS and ATMS, which aim at 

providing useful information to travelers and improving the overall efficiency of road network. 

In this study, urban arterials flow prediction models which forecast the short-term traffic flows 

based on the past traffic data measurement from a set of 24 vehicle detectors in Taipei city, 

Taiwan are modeled by means of seasonal autoregressive integrated moving average (ARIMA) 

and space-time autoregressive moving average (STARMA) model. The forecasting 

performance of STARMA model are examined by static, 1-step ahead rolling and 2-step 

ahead rolling strategies when real-time information can be obtained. The summary of the 

findings of this thesis and recommendations for future research directions are summarized as 

follows. 

 

6.1 Conclusions 

 

Comparing the predicted and forecasting traffic volume of the fitted ARIMA models and 

STARMA model with actual observations, we can find that most of the model residuals 

appear to be smaller than forecasting errors, but their differences were not too much. In 

addition, since most of the model residuals and forecasting errors estimated by MAPE are 

smaller than 20% for both ARIMA models and STARMA model, implying that both ARIMA 

and STARMA models are suitable for predicting traffic flows in an urban area. 

 

Our results also show that, while both seasonal ARIMA models and STARMA model are able 

to forecast volume data at a high degree of accuracy, the number of parameters used in the 

ARIMA and STARMA models are largely different. In the ARIMA model, there are up to five 

parameters for each detector which is estimated standalone, whereas there are only 6 

parameters in the STARMA model. With a large number of detector locations in the system to 

be forecasted, the STARMA model shows a relative simple structure as compared to the 

ARIMA model which is univariate in nature. 

 

Furthermore, this result seems reasonable as traffic flows of urban area are not an isolated 

system and will be influenced by the flows from other adjacent locations, consequently, 

STARMA model considering the spatial relationship between each time series can explain the 

nature of the problem in a better way, and therefore improve the forecasting accuracy. 

 

Finally we performed static and rolling strategies with the 1-step ahead and 2-step ahead span 

size to forecast traffic flow of all 24 vehicle detectors so as to compare the forecast 
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performance of STARMA model when the data being used are based on real-time data or 

predicted values. The results revealed that weighted forecasting performance of all 24 

detectors satisfy the expectation that the performance of 1-step rolling is the best, and the 

2-step ahead rolling outperforms the static strategy. Therefore, it proves that using real-time 

information to forecast is better than merely using historical information to forecast. 

 

6.2 Recommendations for Future Research 

 

In this study, the traffic flow data used to fit the ARIMA models and STARMA model were 

from Tuesday to Thursday in order to avoid large deviations. ARIMA is suitable for 

forecasting time series with small variation. Therefore, if traffic volume data with larger 

variability such as data from Monday to Friday or even data from Monday to Sunday are 

employed, the forecasting ability of the STARMA model would be more impressive. 

 

Also, the setting of the weight matrices is user-defined in the STARMA model. A common 

intuition is to assume that downstream flows only depend on upstream flows for uncongested 

conditions but not vice versa. However, the upstream traffic could be influenced by 

downstream congestion if long queues exist. How to define different settings of the weight 

matrices to incorporate this effect can be further investigated. 

 

Furthermore, due to some limitations of the database, only traffic flow data is used to fit the 

prediction model. One may consider using not only the traffic flow data, but also other traffic 

measurements such as speed and occupancy, as the other branch of multivariate approaches. 
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Appendix 

Appendix 1 Locations of vehicle detectors under study 

VD No. Vehicle detector No. of Lanes Location GisX GisY 

1 VMTG520 2 民生西路 290 號前 300902 2772388 

2 VMXH820 3 民生西路 77 號前 301579 2772475 

3 VMZL960 6 民生東路三段 19 號前 303466 2772532 

4 VMZLI20 6 民生東路三段 65 巷口 303828 2772526 

5 VMYN820 6 民生東路三段 138 號前 304354 2772466 

6 VMFIG20 2 長春路 34 號對面人行道上 302155 2772178 

7 VMDL820 2 長春路 138 號前 302775 2772150 

8 VMEKD00 2 長春路 198 號對面 303209 2772145 

9 VMDL800 2 長春路 251 號前 303641 2772147 

10 VM7FI60 2 南京西路 205 號前 300730 2772052 

11 VLKGF40 2 長安西路 158 號前 301239 2771742 

12 VLGGY60 2 長安西路 88 號對面人行道上 301552 2771688 

13 VJTJ960 2 八德路一段 43 巷口 302797 2770994 

14 VKLLH20 3 八德路二段 249 號前 303709 2771298 

15 VKRM820 3 八德路二段 346 巷口 304122 2771375 

16 VKWNV20 3 八德路三段 32 號對面(社教館) 304851 2771457 

17 VKLGD20 4 忠孝西路一段 70 號前(消防隊) 301085 2771256 

18 VKAHN20 6 忠孝東路一段 12 號對面人行道上 301861 2771100 

19 VIRHZ20 4 仁愛路一段 29 號前 301927 2770381 

20 VIPIZ60 4 仁愛路二段 27 號前 302385 2770358 

21 VIPJA20 4 仁愛路二段 71 號旁 302752 2770339 

22 VINKW20 4 仁愛路三段 47 號前槽化島上 303228 2770326 

23 VINLD61 4 仁愛路三段 123 巷前槽化島上 303828 2770328 

24 VINM760 4 仁愛路四段 27 巷前槽化島上 304169 2770317 
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