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Abstract

The interests and applications of short-term traffic forecasting have been growing in the
recent years. Many of the applications in Advance Traveler Information System (ATIS) and
Advance Traffic Management Systems (ATMS) , which aim at providing useful information
to travelers and improving the overall efficiency of road network, require an estimation and
forecasting of the traffic conditions of the network. With a historical database of past traffic
data from various types of vehicle detectors, real-time traffic information is collected which
will be used to estimate the current traffic conditions and predict the condition in near future.
Whereas most of the literature focusedron sthe traffic flow prediction on the freeways,
modeling traffic flow in urban arterials is more challenging as there are disturbances such as
motorcycles and traffic signals in urban-area.

In this study, traffic flow forecasting models for urban arterials are proposed. Seasonal
autoregressive integrated moving average (ARIMA) and space-time autoregressive moving
average (STARMA) model, which incorporates the spatial correlations of the time series, are
investigated. A case study using the ‘traffic. data from 24 vehicle detectors in Taipei city,
Taiwan are performed. The forecasting performance of STARMA model are also examined by
static, 1-step ahead rolling and 2-step ahead rolling strategies when real-time information can
be obtained.

The findings of this thesis are as follows. The estimated results reveal that both ARIMA and
STARMA model are suitable for traffic flows forecasting in urban area. However, in the
ARIMA model, there are up to five parameters for each detector, whereas there are only 6
parameters in the STARMA model. With a large number of detector locations in the system to
be forecasted, the STARMA model shows a relative simple structure as compared to the
ARIMA model which is univariate in nature. Traffic flows of urban area are not an isolated
system and will be influenced by the flows from other adjacent locations, consequently,
STARMA model considering the spatial relationship between each time series can improve
the forecasting accuracy. Finally, the results of forecasting performance tests prove that using
real-time information to forecast is better than merely using historical information to forecast.

Keywords : Urban traffic flow, short-term forecasting, ARIMA, STARMA.
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Chapter 1 Introduction
1.1 Background

Providing a convenient and comfortable transportation environment without congesting and
delay has long been one of the most important transport authorities’ objectives. With more and
more advanced technologies and information systems applying to transportation field in
recent years, making transportation systems becoming more intelligent, this problem can be
solved. The term intelligent transportation systems (ITS) means the application of information
technologies such as computer hardware and software, sensing, telecommunications and
control techniques to improve transportation system operations, including improvements in
efficiency, capacity, safety and environmental impacts. With intelligent equipments being
installed as a part of transportation infrastructure, traveler information can be collected as well
as disseminated, traffic signals and variable message signs can be controlled and toll can be
electronically collected, which provide vital supports in traffic management, pavement
monitoring and overall system maintenance.

Two of the most important areas of ITS are Advanced Traveler Information Systems (ATIS)
and Advanced Traffic Management Systems (ATMS). ATIS aims at providing road users and
travelers accurate and useful travel information: such as travel time, delay and real time route
guidance, which can help road users and travelers make better travel decisions. ATMS
controls the traffic in the network in real time not only alleviate traffic congestion but also
improve the use of system’s capacity and thus improve overall network efficiency. All of these
applications require the forecasting of traffic to the near future. This study aims at finding a
flow forecasting model which can estimate and predict the traffic flows based on the traffic
data measurement from the past.

1.2 Problem Definition

There are basically two distinct categories of predictive traffic conditions: strategic and
short-term. The difference between strategic and short-term traffic information is the length of
the forecasting horizon. Traditional strategic predictive models usually utilize a large amount
of data and predict over a period of month or year which is needed for making decisions on
long-term transportation planning. On the other hand, short-term predictive models often
forecast traffic conditions within a day or an hour that captures the dynamics of traffic,
therefore, short-term forecasting models are more suitable for traffic management and
information systems.



On the area of implementation, whereas most of the literature focused on the traffic flow
prediction on the freeways, modeling traffic flow in urban arterials is more challenging as
there are disturbances such as motorcycles and traffic signals in urban area. Furthermore, the
freeway network topology is simple, whereas the networks of urban arterials are more
complicated, and the two problems are fundamentally different. An accurate model for urban
area should involve the spatial relationships of traffic flow at different adjacent locations. In
this study, the traffic flow forecasting for urban arterials is investigated. Seasonal
autoregressive integrated moving average (ARIMA) and space-time autoregressive moving
average (STARMA) are considered as our algorithms. Traffic flows data collecting from
vehicle detectors installed on arterials in the Taipei city, Taiwan, were used to illustrate the
modeling procedure in our numerical examples.

1.3 Objectives

This study aims at finding a short-term traffic flow forecasting model for urban roads. While
most of the literature focus on traffic flow forecasting in the freeway, our study intend to
apply our model to forecast urban traffic flow.

Traffic flows in the urban arterials are more complicated since other disturbances such as
traffic signals, motorcycles or pedestrians may exist. Furthermore, as the main objective of
freeway is to connect major “cities, the freeway networks are usually simple and
straightforward. However, urban arterials are huilt to connect all places in the city, so the
networks of urban arterials are usually more complicated. Forecasting traffic flow at a
particular location will not be sufficient, so integrating spatial factors in the forecasting model
will consider in our following model.

One of the basic advanced traffic management systems (ATMS) is the traffic signal system
which intends to improve the safety and capacity used of the transportation system. Once we
have the past information describing the traffic conditions such us traffic flow or occupancies
within an urban area, we can use it to forecast short-term traffic flow and further connect them
to the urban traffic control systems. With the real-time and predicted traffic conditions in the
near future, traffic authorities may be able to set a more suitable traffic signal plan that
relieves traffic congestion and reduce the travel time and delay of travelers.

Since most of the literatures have demonstrated the superiority of univariate ARIMA model
over other forecasting approaches in traffic flow prediction. In attempt to compare the
forecasting abilities of the univariate and multivariate models, the univariate ARIMA and its
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extended form of space-time ARMA model which integrates the spatial-temporal
dependencies of each time series are considered to be the forecasting approaches in our study.

The classic seasonal autoregressive integrated moving average (ARIMA), which is widely
used in literature for forecasting problems, is tested for its validity in urban traffic models. A
space-time autoregressive moving average (STARMA) model, which is new to the traffic
forecasting literature, is also presented, and it is considered to be suitable for the urban traffic
models with its spatial-temporal dimension. With the calibrated models, we would also
demonstrate a dynamic execution of the models for the ATMS purposes, in which several
forecasting strategies using real-time database are described.

1.4 Thesis Organization

The study is organized as follow. In this chapter, we have depicted the background of the
short-term forecasting problem, problem definition and the objectives of this thesis. Chapter 2
reviews some previous literature concerning short-term traffic forecasting. Univariate
predicting models are useful to forecast traffic conditions at a particular location. However,
for the purpose of ATMS which requires a macroscopic view of the traffic pattern,
multivariate forecasting models that consider. observations collecting at more than one
locations representing information from a wide area of the network are more appropriate.
Chapter 3 presents the model building procedures of the proposed model as well as the model
assumptions. Seasonal ARIMA and space-time ARIMA are considered as our algorithms. The
identification, estimation and diagnostic' checking methods of these models are introduced.
Chapter 4 illustrates the use of those models by forecasting traffic volume on arterials; their
forecasting performances are also compared and discussed. Then, in attempt to apply the
forecasting model to ATMS, we will perform different forecasting strategies using real-time
database to exhibit the forecasting performance of the STARMA model in Chapter 5. Finally,
the conclusions of this study and the recommendations of future research will be presented in
Chapter 6. Figure 1.1 shows the flow chart of this thesis.
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Chapter 2 Literature Review
2.1 The Forecasting Problem

Bowerman and O'Connell (1993) stated that the term forecast implies prediction of future
events and conditions, and the act of making such predictions is called forecasting. Forecast
must rely on information that has occurred in the past, so a forecaster needs to analyze past
data and predict future condition according the result of the analysis. To begin a forecast, the
first step is to analyze the data so as to identify a pattern or trend that could be used to
represent it. Makridakis and Wheelwright (1978) stated that such patterns are generally
assumed to be two different forms, which are univariate and multivariate methods. Generally
univariate methods assumed a pattern that is solely determined as a function of time, and
utilizing the historical data (in the form of time series) of the variable is sufficient to detect the
basic pattern for forecasting. On the other hand, multivariate methods assumed there exist
some relationships between two or more variables, and this pattern or trend can be
extrapolated or extended into the future.-Aforecasting technique assumes that the pattern or
trend that has been identified will continue inthe future, so a forecasting technique will result
in a good prediction only if the assumption is valid. If the identified pattern does not remain
the same in the future, a forecaster should try to anticipate the changing time of the pattern so
that the model would be adjusted to predict the data accurately.

Short-term traffic forecasting necessitates the collection of historical time series data. Time
series data are a set of particular variable observations, each one being recorded at a specific
time, arranging in sequence of time they occur; in other words, they are ordinal observation
set that observed in accordance of time of a dynamic system. A time series is said to be
deterministic if future values of the time series can be exactly determined by past values. On
the other hand, if the future value of a time series is only partly determined by past values, it
is a stochastic or random series. A stochastic time series model consists of trend, seasonal and
error terms in the basic model, plus other relevant components, and the mathematical form is,
Y=+t t1=12..T (2.1)

where vy, is the observation at time t, z, is a slowly varying trend component, y, is a
periodic seasonal component and ¢, is an irregular error or disturbance component.

Such data measuring the traffic stream characteristics such as traffic flow, speed and lane
occupancy are recorded by various types of vehicle detector and are widely available on
freeway and arterials for the operation and incident detection purposes. With a historical
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database of past traffic data, collected real-time traffic information can be used to estimate the
current traffic conditions and predict the conditions in near future.

2.2 Methodology for Traffic Forecasting

As ITS implementations becoming more and more important throughout the world, attentions
have been paid on constructing a short-term traffic forecasting algorithms that could forecast
future traffic conditions accurately. VIahogianni et al. (2004) provided an extensive review on
the short-term traffic forecasting problem. It was concluded that although a wide variety of
studies were devoted to develop algorithms in the fields of short-term traffic forecasting
during the past decades, there was still not a solid framework for modeling traffic forecasting
algorithms. The objectives of traffic forecasting in different studies are diverse, such as travel
time forecasting, traffic flow forecasts and traffic state forecasting problems exist in the
literature, with various methodologies making use of combinations of traffic data like speed,
flow, occupancy or vehicle trajectories. The review explored a vast amount of research in the
perspective of objectives and methods in this field and classified the modeling process into
three essential stages, i.e. the determination of the scope, the conceptual output specification
and the process of modeling, which .involves several decisive issues such as the choices of
appropriate methodology, the type of input and output data and the resolution of the data.
Integrating the abovementioned process can result in a systematic logical flow that can be
seen as a framework for developing short-term:traffic forecasting models. Their logical flow
also showed that when constructing-short-term traffic forecasting algorithms, in addition to
the basic three stages which are concept, realization and evaluation, the accuracy and
representational power of a model also serve as important factors in determining the
implementation effectiveness.

In the following section, we will review some of the univariate and multivariate time series
models used in the literature to predict traffic flow.

2.2.1 Univariate Models

Determining an appropriate methodology is one of the major issues in all forecasting
problems. In general, the widely used prediction models can be broadly classified into two
techniques: parametric and non-parametric. Parametric techniques assume a form of
probability distribution with a finite number of parameters which usually have physical
interpretations, and they are most useful when conditions are expected to remain the same.
Examples of parametric techniques are linear and non-linear regressions, historical average
algorithms, exponential smoothing techniques, autoregressive integrated moving average
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models (ARIMA) and Kalman filtering. On the other hand, non-parametric techniques do not
assume any specific functional form for the dependent and independent variables, as we only
have little prior knowledge about the true function form to be estimated. When applying the
non-parametric modeling technique, in addition to estimating the parameters of the functions,
the primary object of nonparametric models is to estimate the underlying functional forms.
The most popular non-parametric techniques include non-parametric regression and neural
networks, in which the functional forms are not explicit.

When the physical meaning and relationship of the variables are known, parametric modeling
is commonly used. Among the parametric models, the ARIMA model is a common technique
used in many areas and has been proved for its advantages over some other forecasting
methods. For some previous researches focused on predicting traffic flow with ARIMA
models, Williams et al. (1998) first applied seasonal ARIMA models to urban freeway traffic
flow prediction problems. They compared several seasonal ARIMA models with Winters
exponential smoothing techniques for single-interval forecasting. Using the same data set as
Smith (1995), which employed nearest-neighbor, neural networks and historical average
models, it is found that the seasonal ARITMA models performs better as compared to the
results of Smith for a similar problem.

Ghosh et al. (2005) used three different time Series'models, which are random walk model,
Holt Winters’ exponential smoothing technique and seasonal ARIMA model to forecast traffic
flow of one junction in Dublin. Comparing the error-estimated from these three models they
concluded that both exponential smoothing technique and seasonal ARIMA performed much
better than random walk model.

Other approaches treat time series data as nonparametric models with the spatial interest in
neural networks. Dougherty (1995) gave a comprehensive overview on the topics of transport
applications of neural networks. He suggested that the three most common used paradigms
were backpropagation, learning vector gquantisation and adaptive resonance theory, which
were typical of supervised, reinforcement and self-organising learning. These three paradigms
could be regarded as a standard tool kit for neural networks applied to transportation problems.
It is also emphasized that a particular drawback in previous studies is the lack of standard
procedure to analyze and compare the result of different researches, and therefore future
research could aim at establishing a more specific approach to issues such as comparison
between different methodologies with neural networks structures.

Ledoux (1997) considered a cooperation based neural network traffic flow model that could
be treat as part of a real time adaptive urban traffic control system (UTC). In his model, a
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single local neural network was used to model a single signalized link at the beginning. Then,
those local neural networks are connected so as to model the traffic flow over a wide network
of junctions. While first and second generation of the UTC system utilized the past historical
data and modified average historical pattern to predict traffic flow, to design a more adaptive
UTC system, this paper proposed a third generation UTC system, i.e. predicted conditions
according to current traffic measurements only. Demonstrated by simulation data, the paper
concluded that neural networks could be used to model the traffic conditions in the near
future.

Yin et al. (2002) proposed a fuzzy-neural network model (FNM) to predict the traffic flows in
urban area. Their model composes two modules: a gate network (GN) and an expert network
(EN). Whereas the GN classified the input data into a set of fuzzy clusters by fuzzy approach,
the EN functioned as a traditional neural network model (NNM) aiming at finding out the
relationship between input and output data. Their research found that FNM not only
outperformed the traditional NNM in its predicting power, but also with a smaller computing
time requirement. Furthermore, FNM can adaptively adjust the coefficients of the model to
enhance its predicting power, which “is-more suitable for predicting real-time traffic
conditions.

In general, seasonal ARIMA and neural networks are two different kinds of techniques, not
only because of their parametric/non-parametric natures, but also their inherent data structure
and dependence to the past data..Seasonal ARIMA model is a time series function of past
information which can be expressed as,

Yie = F(Yias Vi s Vi) (2.2)
where vy, is traffic volume data at location | and time t, it only requires the information in
the past to forecast future conditions of the same detector location.

On the other hand, with the neural networks model, the traffic data at location | and time t can
be expressed as,

Yie = 9Yiar Yicaearo Yaa) (2.3)
which is a function of data from other locations (e.g. upstream detectors) at time t-1. This is a
common data structure assumed in studies like Yin et al. (2002), assuming the traffic volume
of downstream depends on the volumes on its upstream locations some while ago, capturing
the spatial effects. The two approaches are displayed in Figure 2.1, showing that seasonal
ARIMA is a temporal model whereas neural network model is a spatial one.
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Figure 2.1 Forecasting with time series model in temporal and spatial dimensions

2.2.2 Multivariate Models

Forecasting of traffic volume at'a particular location using univariate model is useful for the
traffic operation at a local level. However, the deficiency of the univariate model is that they
do not consider other factors or relationship (if available) during forecasting, as compared to
the multivariate model which considers more than one time series data. For the purpose of
ATMS which requires a macroscopic view of the traffic pattern, traffic forecasting for a wide
area of the network is necessary, so a multivariate forecasting model is required.

Most of the previous literature concerning traffic forecasting tends to predict traffic data with
univariate models since multivariate models are more complicated in the identification of the
model and estimation of the parameters. Fortunately, with the great improvement in the
computational science in recent years, we are capable of using computers to deal with even
more difficult problems within shorter time, so the difficulties of identification and estimation
of multivariate model could be solved.

Also, there could be some relationship between traffic data at a particular location and traffic
data from its upstream or downstream (in the cases that traffic congestion occurs) detectors,
knowing the information from other locations within the network may increase the accuracy
of the forecasting. Therefore, with the time series data collected at different locations through
the network and the ease of utilizing multivariate models, the possibility of multivariate
model being used to predict traffic conditions in near future have increased.
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Models that aim at depicting the relationship between time series observations at a particular
location and its neighbor locations are referred to as space-time models. A class of space-time
models that are characterized by the autoregressive and moving average forms of univariate
time series lagged in both space and time are referred to as space-time autoregressive moving
average (STARMA) models. STARMA is a special case and restricted form of vector ARMA,
and the first complete adaption and modeling process of STARMA was proposed by Pfeifer
and Deutsch (1980), who suggested a three-stage iterative procedure for space time modeling.
STARMA was an extension of the three-stage iterative model building procedure developed
by Box and Jenkins (1976), including identification of the model, estimation of parameters of
the tentative model and diagnostic checking (the details will be elaborated in Chapter 3 of the
thesis). At the end of their paper, an assault arrest example for the Boston area was employed
to demonstrate the modeling procedure.

Pfeifer and Bodily (1990) applied the space-time autoregressive moving average (STARMA)
model to fit demand-related data from eight hotels from a single hotel chain in a large U.S.
city. Previous researches using STARMA models were all aiming at illustrating the modeling
procedure or simply testing the hypotheses about the spatial-temporal structure of the
observed data, none of them is used for forecasting purpose, therefore, it is the first paper
utilizing STARMA model to- forecast economic 'data and furthermore, comparing the
forecasting performance of a single multivariate STARMA model with several univariate
ARMA models. Though the after-the-fact analysis.of the forecasting test did not conclude that
adding the spatial term in the model or simultaneously estimating the parameters for all of the
N time series can increase the forecasting accuracy, the analysis suggested that the relative
simplicity of the STARMA model explained its superior performance in the test. As the
number of observation sites becoming increases, so does the time series needed to be forecast.
In this case, the simplicity of the model form will be an advantage in empirical test of
forecasting performance.

Kamarianakis and Prastacos (2003) and Kamarianakis and Prastacos (2005) used a space-time
autoregressive integrated moving average (STARIMA) model to represent traffic flow speed
in urban area. In their model, they assumed that the distances between observed locations are
sufficiently long so as to ignore the congestion effects; consequently, downstream locations
only depend on upstream locations but not vice versa. Weighting matrices representing the
distances between the observation locations were incorporated into the STARIMA model as
the spatial characteristics of the space-time modeling process. The modeling procedure was
illustrated by utilizing two months traffic flow data with different traffic-flow characteristics
from 25 loop detectors in the Athens City, Greece to examine the stability of the estimation of
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the parameters. In their first paper, in addition to STARIMA, two univariate (historical
average and ARIMA) and one multivariate VARMA models were also considered. The results
revealed that though the forecasting performance of ARIMA were slightly better than
VARMA and STARIMA models, their differences were not significant. The error estimated
for historical average technique were more than eighty percent, indicating the inadequacy of
historical average technique being used to forecast traffic data in an urban area. In their
second paper, only ARIMA and STARMA were considered. They compared the root mean
square error of STARIMA model with the average standard errors of ARIMA models and
found that these models were quite close; nevertheless, the total number of parameters used
for STARIMA model was 7 whereas there were total of 75 parameters in the ARIMA models.
They concluded that while univariate techniques can accurately estimate flow speed, as the
number of detectors growing larger, using univariate techniques may have some
computational problems that it is not capable to forecast traffic data in real world urban
network. Therefore, multivariate STARMA was recommended.

Lin et al. (2009) also applied STARMA to forecast short-term urban traffic flow, similar to the
one proposed by Kamarianakis and Prastacos (2005). In their study, downstream traffic
volume depends only on upstream  traffic volume as well as the relative distances.
Furthermore, they took seasonal difference to _exclude seasonal term in their model. Their
study demonstrated the potential of using STARMA model to improve accuracy of urban
traffic flow prediction.

There are other techniques incorporating the spatial-temporal dimensions in the traffic
forecasting. Yang (2006) studied the spatial-temporal dependencies of traffic flow and
developed a spatial-temporal Kalman filter (STKF) forecasting model to compare with
ARIMA and neural network (NN). In their study, rather than using a single model, an adaptive
forecasting model selection strategy is proposed, which could select spatial-temporal Kalman
filter to forecast with real-time data, but switch to use historical average method if real-time
data was not available. The results showed that the superiority of spatial-temporal Kalman
filter to ARIMA and NN models when real-time information was available for the forecast.
Whereas the historical average method outperformed ARIMA and NN when there is no
real-time information in the forecast.

In summary, there were a wide variety of univariate as well as multivariate forecasting
approaches being used to predict short-term traffic flow. Since most of the literatures have
demonstrated the superiority of univariate ARIMA model over other forecasting approaches in
traffic flow prediction, we selected the univariate ARIMA model as one of our forecasting
technique. Furthermore, it is stated in Yang (2006) that traffic flow is not an isolated
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phenomenon and should be presented in a multivariate form. One would expect the
multivariate model that simultaneously takes all of the possible factors into account when
forecasting would give more details of variable relationships and traffic pattern, and have a
better forecasting performance. In attempt to compare the forecasting abilities of the
univariate and multivariate models, the univariate ARIMA and its extended form of
space-time ARMA model, which integrates the spatial-temporal dependencies of each time
series, are considered to be the forecasting approaches in our study.
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Chapter 3 Model Building

In this chapter, we will discuss the methodology and mathematical formulations of our
algorithms, i.e. univariate ARIMA model and multivariate space-time ARMA model
(STARMA). ARIMA model is a temporal dimension forecasting model whereas STARMA
model extends ARIMA to a spatial-temporal dimension model.

3.1 ARIMA Model

Autoregressive integrated moving average (ARIMA) model, also known as Box-Jenkins
method, is an iterative modeling procedure proposed by Box and Jenkins (1976). Since the
class ARIMA models consist of simple autoregressive process (AR), simple moving average
process (MA) or autoregressive integrated moving average process, the first step of the
modeling procedure is to identify a tentative model from postulate general class of models.
After determining an appropriate model to be applied, the next step of the procedure is using
historical data to estimate the parameters-of the model. Calculating the residuals of the fitted
model for checking adequacy of the model is the stage called diagnostic checking. If the fitted
model is adequate, then it can.be used to forecast in the last stage. Otherwise, the process
iterates and returns the step to the first stage, i.e. determining another tentative model to be
applied and then go through the modeling process again. Figure 3.1 shows the flow chart of
the model building procedure.
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Figure 3.1 Flow chart of the model building procedure

3.1.1 Model Assumptions

The ARIMA modeling procedure requires the time series data process the some properties.
Before applying the ARIMA modeling procedure, we should note that the data has to be
checked if they satisfy the stationary and invertible assumptions. Here we give a brief
introduction for those who are not familiar with the stationary and invertibility condition, and
further details may be found in some well-known books such as Box and Jenkins (1976) and
Bowerman and O'Connell (1993).

Classical ARIMA models depict stationary time series. A time series is said to be stationary if
the joint distribution of any set of n observations y,,Y,,....y, is the same as the joint
distribution of y,.,,V¥,.,.-...Y,. forall nand k. In other words, the statistical properties such
as mean and variance of a stationary time series are practically constant through the time. On
the other hand, if the mean of a time series is a function of time such as a linear or quadratic
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function of t, it is said to be a nonstationary time series. If the time series used to forecast is
nonstationary, it may be converted into a stationary one with transformation techniques. The
process of transformation is as follow.

Assuming a nonstationary time series y, , where t=12,..,T and the first-differenced
transformed values of the time series z, can be defined as,

z,=Y,—-Y, for t=2..T (3.1)
where yi, Yo, ..., Y are the original nonstationary time series values and zi, z,, ..., z; are the
first differences time series values.

Taking first differences may be a good way to transform nonstationary time series in to
stationary forms; however, sometimes the first differences of the raw data are still
nonstationary. In these cases, the second differences of the time series y,, wheret=12,...,T
are,

Zo= (YY) (Ve - Yeo) = Yo = 2¥a + Y, for t=3,..T (3.2)

Previous experiments have revealed that-most of the nonstationary and nonseasonal time
series can be converted into stationary time series by first difference or second difference.
And for those who are nonstationary and-seasonal, seasonal differenced transformation
(z, =Y, — Y, ., Where L denotes the seasonality) would be more accurate.

In this study we applied augmented Dickey-Fuller (ADF) test to examine whether the time
series is stationary, Dickey-Fuller test is proposed by Dickey and Fuller (1979) to examine
whether a time series has a unit root. When a time series has a unit root, the series is not
stationary, and thus testing whether a time series has a unit root is similar to testing whether a
time series is stationary. Consider the simple first order autoregressive (AR1) model,

Yi =Y T & (3.3)
where ¢ is the coefficientand &, is the white noise series error term.

A series is said to be white noise if it satisfies the zero mean and constant variance o’
conditions. A series is said to have a unit root if the sum of the autoregressive parameters is
equal to 1. As a result, testing whether the sum of the autoregressive parameters is 1 or not
can help determine whether a time series has unit root, and hence whether it is stationary or
not. The null and alternative hypotheses are,

H, :a=1(unit root exist, y, is nonstationary)

H, :[e| <1(y, is stationary)
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The t statistics is,
a-1

ta:l = ~
SE(a)
where ¢ is the least squares estimate of o from equation (3.3), SE(&) is the standard

(3.4)

error of « . If the DF test returns a significant probability value, we should reject the null
hypothesis that the time series has a unit root, and hence, the time series is stationary.

Said and Dickey (1984) augmented the basic autoregressive unit root test to accommodate
general ARMA(p, g) models with unknown orders when ¢, is not white noise, and proposed

a test referring to as the augmented Dickey-Fuller (ADF) test. To discuss augmented
Dickey-Fuller test, consider the (p+1)™ order autoregressive time series,

Yi =Y T Y et a Yt & (3.9)

ADF test is different form DF test in that ADF includes the termVy,  to allow for ARMA

error process, and there are three variation types of model, i.e. no-intercept, nonzero mean and
time trend.
1. The no-intercept model is parameterized as,

VY =Y =Yg = Fy +OVY e F OV, + 8 (3.6)
2. The model with nonzero mean.term ¢, Is,

VY=o, + ¥, + O, VY, +..+0, VY | +e, (3.7)
3. The model with nonzero mean and a time trend term t can be expressed as,

VY, =ay + A+, +0, VY, +..+0,Vy_, +¢& (3.8)

where 6=a, +..+a,, -1 and 6, =-a,, —..—a,,

The null hypothesis of the DF test is that 6 =0 which represents a unit root exists in
equations (3.6), (3.7) and (3.8), respectively. These ADF tests statistics have been shown to
have asymptotically the same distribution as the Dickey-Fuller test statistics, and thus if the
ADF test returns a significant probability value, we should reject the null hypothesis that the
time series has a unit root, and hence, the time series is stationary.

Another assumption of ARIMA model is the invertible assumption. Considering a linear
process that an observation z, at time t can be expressed as a weighted sum of observations
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in the past,
2, =0+PZ, ,+hZ, ,+..+ P2 +& (3.9

where & is a constant mean that time series values fluctuate, &, is the white noise series

error term, and ¢,,4,,4,,...,4, are the coefficients of the white noise series of order k.

When z, is expressed as a function of past observations, a linear process is said to be not
invertible if the coefficients relating to the past observations do not decline as we move
further into the past. On the contrary, an invertible linear process suggested that these
coefficients do decline, which indicate that the recent observations have more influence on the
value than the distant observations. While we can intuitively expect that future traffic
conditions affect more by recent traffic conditions than past traffic conditions; therefore, we
could say that the time series of traffic observations satisfied the invertible condition.

3.1.2 Model Identification

Having tentatively determined the difference order to transform a nonstationary time series to
a stationary time series, we. are then able to examine the behavior of the sample
autocorrelation function (SAC).and the sample partial autocorrelation function (SPAC) for the
stationary time series to identify'the ARMA models.

Considering stationary time series z,,2,.;,---» Z,, the sample autocorrelation function (SAC)
at lag k, denote by r,, which measures the linear relationship between time series
observations separated by k-lag time units, can be expressed as

n—k
(Zt - z)(Zt+k - Z)
r =+"— (3.10)
(Zt - z)z
t=b
2%
where 7=—" (3.11)
(n—b+1)

The value of r, will always lie between -1 and 1, when the observations separated by k time
units tend to move together in a linear fashion with a positive slope, i.e. when both of (z, -2)
and (z,,, -Z) are positives or both of them are negatives, then their product will be positive.
On the contrary, when the observations separated by k time units tend to move together in a

linear fashion with a negative slope, i.e. when (z, -Z) is positive, (z,,, -Z) is negative or

17



vice versa, then the value of their product will be negative. The more the value of r, closer
to 1 or -1, the more the observations tend to move together with the linear fashion.

The behavior of SAC is said to be cut off at k when a spike exists at lag k which means that
the sample autocorrelation at lag k is statistically large. And the behavior of SAC dies down
when the function, instead of cutting off, decreases in a steady fashion such as a damped
exponential (with or without oscillation), damped sine-wave fashion, or a fashion combined
both damped exponential and sine-wave.

Similarly, the sample partial autocorrelation (SPAC) at lagk r,, is
r-1

if k=1
g
e — P i rk—j
M = =N : (3.12)
- if k=23,...
I A
j=1

where r; =r_; — el o ; for j=12:0k-1.

Just like SAC, the behavior of SPAC is said to be cut off after lag k if no spikes exist at lag
greater than k. And SPAC dies down whenever the function decreases in a steady fashion such
as a damped exponential (with or without oscillation), damped sine-wave fashion, or a fashion
combined both damped exponential and sine-wave.

If the SAC and SPAC of the time series data either cut off or die down fairly quickly, then the
time series should be considered stationary. On the contrary, if the SAC and SPAC of the time
series data die down quite quickly or extremely slowly, then the time series should be
considered nonstationary. Later we will present some guidelines for determining ARIMA
process based on the behavior of SAC and SPAC.

The ARIMA model composed of three essential elements: AR stands for autoregressive part; |
stands for differencing, a technique that transfers time series data to a stationary form; and
MA stands for moving average part. A seasonal ARIMA model is the model which accounts
for the seasonal variations, such as months or seasons in a year, in which the pattern of the
time series repeats itself in each cycle by the seasonal effect. The construction of the model is
described as follows.
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A time series with autoregressive process of order p can be expressed as follow,

2, =0+4 2, +,2 , +..+P, 7, +& (3.13)

where & is a constant mean that time series values fluctuate, ¢,,4,,4,,...,4, are the

coefficients of the autoregressive process of order p, and &, is the white noise error
components in the time series.

A moving average model of order g is defined by the equation,

2,=0+¢ —0g -0, ,—..— 0,6, (3.14)

where & is a constant mean that time series values fluctuate, 6,,0,,6;,...,6, are the

coefficients of the moving average process of order ¢, and ¢, is the white noise error
components in the time series.

Combining the above three elements-and making use of the backshift operator B*, which
shifts the subscript of a time series 0bservation or error term backward in time by k periods,
we then consider the mixed autoregressive moving average process of order (p, d, q), which
is,

#,(B)1-B)'y, =5 +6,(B)g, (3.15)
where g, (B) =(1-¢B —¢,B? —...—¢$,B")is the nonseasonal autoregressive operator of order
p, 6,(B)=(1-6,B -0,B° —...—6,B?) is the nonseasonal moving average operator of order

g and B is the backshift operator.

If the time series has seasonal variation, a simple ARIMA model no longer fits, and a seasonal
ARIMA is required. A general multiplicative seasonal model of order (p, d, q)(P, D, Q). which
is analogous to the mixed autoregressive moving average process of order (p, d, q) can be
expressed as follow,

#,(B)¢» (B")(1-B)" (1-B")y, =5 +6,(B)6, (B )¢, (3.16)

where ¢,,6,, P, D, Q are the seasonal counterparts of ¢,,6,, p, d, q respectively and L

denotes the seasonality.
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The purpose of identifying a seasonal ARIMA model is to determine the values of p, d, g and
P, D, Q by examining the functions of SAC and SPAC, while the cycle length L is usually
given explicitly. Table 3.1 presents the guidelines for determining nonseasonal operators and
Table 3.2 for seasonal operators.

Table 3.1 Guidelines for choosing nonseasonal operators

Guideline | Behavior of SAC and SPAC Nonseasonal Operators

1 SAC has spikes at lags | Nonseasonal moving average of order q
1,2,...,q and cuts off after lag

0.(B)=1-6B—-...—6.B°
g, and SPAC dies down q() ( 1 q )

2 SAC dies down, and SPAC | Nonseasonal autoregressive of order p

has spikes at lags 1,2,...,p and
B)=1-4B-...—¢ B
cuts off after lag p %, (B) = (-4, #,B")

3 SAC has spikes at lags
1,2,...,q and cuts off after lag
g, and SPAC has spikes at lags-| If - SAC cuts off more abruptly than
1,2,...,p and cuts off after lag

p

4,(B) or ¢,(B)

SPAC; use 6,(B). If SPAC cuts off

more abruptly than SAC, use ¢,(B). If

beth- SAC and SPAC cut off equally

abruptly, use ¢,(B)and ¢,(B), then

choose the one that yields the best
model.

4 Both SAC and SPAC have no | No nonseasonal operator

spikes at all lags

5 Both SAC and SPAC die

Both & (B) and B
down . (B) $,(B)

Reference : Adapted from Bowerman and O'Connell (1993)
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Table 3.2 Guidelines for choosing seasonal operators

Guideline

Seasonal Behavior of SAC and
SPAC

Seasonal Operators

SAC has spikes at lags L, 2L, ...,
QL and cuts off after lag QL, and
SPAC dies down

Seasonal moving average of order Q

6,(B")=(1-6,B" -..—6, B%)

SAC dies down, and SPAC has
spikes at lags L, 2L, ..., PL and
cuts off after lag PL

Seasonal autoregressive of order P

¢P(BL) = (1_¢1,|_BL _'--_¢P,LBPL)

SAC has spikes at lags L, 2L, ...,
QL and cuts off after lag QL, and
SPAC has spikes at lags L,
2L, ..., PL and cuts off after lag
PL

0,(B") or ¢,(B")

If SAC cuts off more abruptly at
seasonal level than SPAC, use

0, (B") . If SPAC cuts off more

abruptly at seasonal level than SAC,
use ¢, (B"). If both SAC and SPAC
cut off equally abruptly at seasonal

level, use 6,(B") and 4, (B"), then

choose the one that yields the best
model.

Both SAC and SPAC have no
spikes at all seasonal lags

No seasonal operator

10

Both SAC and SPAC die down
fairly quickly at seasonal level

Both 4, (B")andg,(B")

Reference : Adapted from Bowerman and O'Connell (1993)

Once we the values of p, d, g and P, D, Q, a tentative model have been determined and the
modeling procedure can led to next stage. In our study, we utilized the SAS statistic software

(SAS, 2008) to compute the SAC and SPAC so as to identify these values.

3.1.3 Model Estimation

After selecting a tentative model form through the identification process, the next stage is
using the collected historical data to estimate the parameters of the model. Estimating an
adequate model that contains the characteristics of the data is necessary without question. As
Fisher (1956) stated that, it is necessary that efficient use of the data should have been made
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in the fitting process. Without doing this, inadequacy caused by inappropriate fitting rather
than inadequate model form may arise.

The most widely used method for estimating parameters is the maximum likelihood (ML)
method. Box and Jenkins (1976) also pointed out that many examples have revealed that
when the sample size is moderate and large enough, the log-likelihood function will be
unimodal and can be approximated by a quadratic function over a sufficiently extensive
region near the maximum, and under such situations, the log-likelihood function can be
described by its maximum. Maximum likelihood estimate is a procedure which its estimated
values of parameters maximizing the log-likelihood function.

As the procedure of maximum likelihood estimation is complicated and difficult to implement,
most of the statistics software provide an alternative to calculate by the least squares approach.
It is proved that when the random errors are normally distributed, the maximum likelihood
estimates can be approximate by least squares point estimates. The least squares approach
begins with preliminary point estimates of the parameters and then modify them according to
the mean squared error (MSE). At-each-iteration, the changes of the parameters are in the
direction of minimizing the MSE, and this iterative searching technique will continue until the
parameters corresponding to the minimum mean square error are found. At the end of the
estimation process, the final least squares point estimates of the parameters are obtained.

3.1.4 Diagnostic Checking

Evaluating the adequacy of the fitted model is the purpose of diagnostic checking. If a fitted
model is found to be inadequate at this stage, the modeling procedure should return to the
identification stage and go through the process again, and therefore, ARIMA model is an
iterative modeling procedure. Two kinds of observations in a model can be determined as
inadequate. The first one is unable to depict the observed correlation of the process, and there
exists significant correlation in the residuals over time. The second one may be the model is
too complex, and here we introduce the concept of parsimony proposed by Box and Jenkins
(1976) to define this kind of adequate fitted model. A model is said to be adequate if it
satisfies the principle of parsimony, which means that to fit the model that can describe the
pattern of historical data with minimum number of parameters. In other words, if any
estimated parameter in the fitted model is proved to be statistically insignificant, it is not a
good fitted model.

The first step of the diagnostic checking stage is to analyze the residuals from the fitted model.
The observed data can be adequately represented if the residuals of the fitted model is white
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noise, that is, they are approximately normal distribution with mean zero and constant
variance. By calculating the sample autocorrelation function of the residuals and sample
partial autocorrelation function of the residuals, we can examine whether the residuals is
white noise. If the residuals are white noise, the sample autocorrelation functions should be
zero. Otherwise, they may present a pattern that should be included in the ARIMA model,
identifying this pattern and integrating into the fitted model will usually get a better fitted
model.

In this study, we applied the SAS software to model the ARIMA procedures. When testing
whether the residuals is unrelated or contain additional information that should be included
into the model, SAS software tests the null hypotheses that the set of autocorrelations is white
noise using the Ljung-Box statistic calculated by,

m r2
2=n(n+2 X
Zn =N )kzzlln—k

n-k
Zt:l €181k

n

(3.17)

where r, = is the sample autocorrelation of residuals separated by a lag of k

1 &t

lags, &, is the residual series, n is number of observations.

If the residuals are unrelated, the autocorrelations of the residuals should be small, and hence

2 should be small. The smaller. the yZ s, the smaller are the autocorrelations of the

residuals and the more unrelated are the residuals. Consequently, a large y2 indicates that

the model is inadequate. Setting the probability of a Type | error equal to « and apply it to
Ljung-Box statistic we can reject the adequacy of the model if the p-value is less than «,

where p-value is the area under the curve of the chi-square distribution having k —n

degrees of freedom to the right of 4?2, and n, is the number of parameters that must be

estimated in the model. The value of o indicates the confidence level of the test statistics. If

we set a to be 0.05, the p-value less than 0.05 represents that the y?2of the tentative

selected model has very little chance to be smaller than ., thatis, %, > zn.,,, and the

model is strongly inadequate. On the other hand, if the p-value is greater than 0.05 represents

that y.islessthan y. . we can say that the tentative model is suitable for the data.
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The second step of the diagnostic checking stage is to test the statistical significance of the
estimated parameters, and the testing procedure is as follow. Let & be any particular

parameter in the model, & be the point estimate of ¢, and s , De the standard of the point

estimate &. Then the t-value is defined as,

t =

o (3.18)
S

When the absolute value of t is large, then 0 is large, which indicates that parameter & is
not equal to zero and should be included in the ARIMA model. Experiences have found that it
is reasonable to include the parameter in the model if the absolute t-value of that parameter is
greater than 2, in other words, if any parameter whose t statistic is smaller than 2, it should be
removed from the model.

3.1.5 Model Forecasting

If an appropriate model has been identified and its parameters have been fitted without
violating the significant test, then with the historical traffic data collected in the past, it can be
used to estimate current traffic conditions as well as forecast traffic conditions in the future.

3.2 STARMA Model

The space-time autoregressive moving average (STARMA) model can be viewed as a special
case of the general vector ARMA (p, q) model. As Pfeifer and Deutsch (1980) stated that a
process considering N x N autoregressive and moving average parameter matrices to
represent the autocorrelations and cross-correlations of the N time series is referred to as the
vector ARMA model. The general vector ARMA models will collapse to a STARMA models
if the N time series appear to be a single random process operating at different sites and the
dependencies between the N series is a function of their relative positions which can be
captured by a weight matrix W ; that is, when the diagonal elements in those N x N
matrices are assumed to be equal and the off-diagonal elements are assumed to be a linear
combination of the weight matrices W,

In addition, STARMA model is an extension of the ARIMA model to incorporate the spatial
correlations of the time series data, incorporating spatial factors in ARIMA model is
specifically useful in modeling traffic conditions since traffic measurements collected at a
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particular location may be influenced by upstream as well as downstream traffic conditions.
We can expect that if an urban arterial is congested, its neighboring arterials will also be
congested. Therefore, it is reasonable to speculate that extending ARIMA to STARMA would
improve the prediction performance of the STARMA model.

Similar to the ARIMA model, the STARMA model is also an iterative modeling procedure,
the first stage is to identify a tentative STARMA class of model to be employed, and the
space-time sample autocorrelation and space-time sample partial autocorrelation functions of
the data are examined. As the STARMA considers the relationships of the time series at the
detectors locations, we have to assign a weight matrix representing the network structure and
capturing the spatial characteristics of the data collecting points in advance to incorporate
those dependencies into the model. The weight matrix used in STARMA will be described in
the following section.

3.2.1 Weight Matrices in STARMA

Introducing the spatial lag operator-can-assist-the understanding of STARMA. Assume that
z,(t),i=12,...,N are the N time series observations at N locations in space, let LY be the

spatial operator of spatial order:1, such that,

LO7 (t) = z,(t) (3.19)
Lz, (t) = iwi(j')zj (1) (3.20)

where w{" are a set of weights used to represent the configuration of the N locations, w;"

Ith

IS set to nonzero if locations i and j are | order neighbors for all i.

Formulating the above equations in vector representation we get,
LOz(t) =W Pz(t) = I, z(t) (3.21)
LOz(t) =W D z(t) for1>0 (3.22)
where 1, is an N x N identity matrix, W® is an N x N square matrix with weight w;"

and each row summing to one,

N

I -
zlwfj) =1 foralli (3.23)
J:
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The specific setting rule of these weights for different spatial order | can be determined by the
model builder to indicate the relationship between their locations. For example, the physical
properties of the system such as the length of the common boundary between contiguous
countries i and j, or the distance between the centers of countries, can be considered when

setting weights Wﬁ'). Furthermore, as Pfeifer and Deutsch (1980) stated that, these weights

must reflect a hierarchical ordering of spatial neighbors, i.e. first order neighbors are those
nearest to the location of interest; second order neighbors are farther away than first order
neighbors, but closer than third order neighbors. An example of the first four spatial order
neighbors of a particular location for both one-dimensional line of locations and
two-dimensional grid system are shown in Figure 3.2.

——OAD -~ -O-A-0-- -O-——A---0- -O-———- A-———-C-
N S
& o1 o T ol o
DD A v N A
e D D D 4\
J
D o M2
First order Second order Third order Fourth order

Figure 3.2 Spatial order.in-one-dimensional-and two-dimensional systems
(Source * Pfeifer and Deutsch, 1980)

By the definition of the spatial operators, we can define a N x N square matrix W with

Ith

elements Wi(jl) which is nonzero if the locations of vehicle detectors i and j are 1™ order

neighbors for all i. W is referred to as the |"™order weight matrix which satisfies a
hierarchical order of spatial relationship, whereas first order neighbors are those nearest to the
measuring locations, second order neighbors are those farther than first orders but closer than

third order ones. The zero order neighbor of each location is itself, and therefore W © is an
N x N identity matrix.

As the main purpose of the weight matrix is to incorporate the physical characteristics of the
traffic flow network into the STARMA model, we should first analyze it. Here we used the
definition the same as Kamarianakis and Prastacos (2005). As shown in Figure 3.3, typically,
traffic flow network can be expressed as a tree structure where the directions of the tree
vectors indicate the directions of the traffic flow and the nodes of the network represent the
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measuring locations where vehicle detectors located. Note that in the literature the tree
network (and its sub-network) is suggested to process the many-to-one property, meaning that
the links from upstream are merging to the downstream but no splitting up. However, this is
rarely the case in a real transportation network where roads can be parallel or in grid forms;
therefore, we used less restricted rules in setting our weight matrices. If we consider the
distance between the locations of vehicle detectors is long enough so that the end of queue do
not spill back to the upstream. As a result, only downstream locations will be influenced by
flow at the upstream locations, and the reverse effect is much weaker. Therefore, the first
spatial order includes its direct upstream, whereas the second spatial order includes its further
upstream as well as the links in parallel, where merges to the same downstream.

13

Figure 3.3 A typical road.network with tree structure (with no cycles)
(Source : Kamarianakis and Prastacos, 2005)

Considering the characteristics of traffic flow network and assuming that the 1" order
neighbors of each location i have equal weights and iwi(j') =1 for all i, the network
j=1

topology of Figure 3.3 can be expressed as the following weight matrices for first and second
spatial order shown in equation (3.24) and (3.25). Noted that these rules of weight matrix
settings are user defined, as long as the row sum is equal to 1 (if not zero). In our study, we
assumed that the contributions from all upstream are identical, without considering the ratios
if the traffic volumes are turning from the left or right at the intersections. This is because it is
difficult to differentiate the turning proportions from the vehicle detectors. However, one may
assume the weighting factors to be proportional to average flow volume of the upstream.
Other rules such as setting weights according to different turning movement at intersections or
the effects due to weather (e.g. rainy day) may also be a possible alternative.
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3.2.2 STARMA Modeling Procedure

Since we have defined the meaning of spatial operator, we are now able to introduce the
model classes of STARMA. Similar to the time seriesz, (t) in univariate ARIMA model,
z,(t) in STARMA model depends on the past observations and prediction errors at the same

location i, as well as the past observations of its neighboring locations at different spatial
order. Therefore, z (t) can be expressed as a linear combination of past observations and

prediction errors at location i as well as its neighbor locations,
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z,(t) = Zz¢le("z(t k) - ZZ%U”«? (t—Kk) +& (t) (3.26)

k=1 1=0 k=1 1=0

where p is the autoregressive order, q is the moving average order, A, is the spatial order of
the k'"autoregressive term, m, is the spatial order of k'"moving average term, ¢, and 6,

are parameters to be estimated, and ¢, (t) are the random normal errors with
Ele ()] =0 (3.27)

o’ i=js=0

) (3.28)
0 otherwise

Els, (0)¢, (t +5)] ={

,,,,, )

model, and the matrix representation of the model is,

2(t) = ZZ¢kW(')z(t k) - ZZ@ W Dg(t — k) + &(t) (3.29)

k=1 1=0 k=1 1=0
with &(t) normal with mean zero and,
a’l, s=0

: (3.30)
0 otherwise

E[e(t)(t +5)] :{

Two of the special cases of the STARMA model classes are STAR model and STMA model.
If the moving average terms g equal to zero and the model remains autoregressive term in the
STARMA model, it collapse to a space-time autoregressive (STAR) model, and STAR model

z7(t) = ZZ¢kW("z(t—k)+g(t) (3.31)

k=1 1=0

On the other hand, a model with only moving average terms of order q,, is referred to

ey

------

asa STMA (qy, ..., ) model,

2(t) = &(t) - zq:ieklw O gt — k) (3.32)

k=1 1=0
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Examining the space-time sample autocorrelation functions and space-time sample partial
autocorrelation functions of the time series will help determine which of the STARMA, STAR,
and STMA model classes are the time series belong to.

With the definition of the spatial operator, the space-time covariance between |"and

k" order neighbors at time lag s, 7, (s), which is the average covariance between the

weighted |"order neighbors of any location and the weighted k" order neighbors of the

same location at s time lags in the future can be defined as,

N L Oz )Lz (t+5
7 (8) = E{Z (1) N ( )} (3.33)
i=1
And the vector form of the space-time covariance function is,
WOz WMzt +s
7 (8) = E{Z[W ()] [\I\/lv ( )]} (3.34)
i=1

Once we have the space-time.covariance [function, we are interested in the space-time
autocorrelation functions. As Martin and Oeppen (1975) noted that due to several possible
scalings that may be used, the definition of space-time autocorrelation functions is not as
simple as the one in the univariate domain. Since we hope that the sample autocorrelations to
have constant variance at all spatial lags, an _appropriate definition for the space-time
autocorrelation between 1"and k" order neighbors at time lag s is,

_ 7w (S) 3.35
P = Oy O (3:35)

In particular, p, (s) will not equals to p,(s), but it will be the same as p, (-s), i.e.
2w (8) = p, (—9), and the sample estimate of the space-time autocorrelation coefficients can

be expressed as,

n _ 71 (8)
PO = 07 (O
ig LOZ () LYz (t +5)
= = S (3.36)
DY (02,02 Y Y (17, 0)° T

Knowing the space-time autocorrelations of the time series is not enough to select a tentative
model from STARMA model classes, the space-time sample partial autocorrelation functions
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is also necessary. The space-time sample partial autocorrelations can be derived from the
general form of STAR model, let the STAR model with order A in space and k in time be,
k 4
Z(t) = ZZ%W Ozt - j)+e(t) (3.37)

j=0 I=1

Multiplying equation (3.37) by the lag term [W ™ z(t—s)]' we can obtain,
k 2
2t —syW®™'z(t) =D > ¢, 2t —s)W P WOz(t - j) + z(t — syW "' &(t) (3.38)

=L 1=1

Since E[z(t—s)'e(t)]=0 for all s>0, taking the expected values and dividing both sides
by N in equation (3.38) we get,
kK 4
7ho(3):zz¢j|7h| (s—1J) (3.39)
j=11=0
which are the space-time auto-covariance in terms of Yule-Walker type equations. If we
substitute s=12,...,k and h=01,...,4 in these equations yields a set of linear equations,
and we can obtain the space-time partial autocorrelations by solving the last coefficient, ¢,
as 1=01..,Afor k=1.2,..., therefore the space-time partial autocorrelations of spatial order
A could be approximate as the last coefficient of each successive STAR process fitted.

With the space-time autocorrelations and space-time spatial partial autocorrelations, one may
examine whether the space-time autocorrelations and partial autocorrelations are tail off, cut
off, or both tail off to tentative select a STARMA; STAR, or STMA classes of model to be
fitted in the following procedure.

Then, since efficient estimation of the parameters is necessary, fitting the tentative selected
model is the second stage of the procedure. And the next stage is the process called diagnostic
checking which evaluates the adequacy of the fitted model, if the sample space-time
autocorrelation function of the residuals from the tentative selected model is white noise and
all of the parameters in the fitted model are proven statistically significant, then the fitted
model is adequate for describing the data and hence can be applied to forecast future in the
last stage. Otherwise, the procedure has to return to the first stage, i.e. fine tuning for another
tentative model to be applied and then go through the modeling process again.
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3.3 Concluding Remark

In this chapter we have briefly introduced the modeling procedure of the univariate ARIMA
model and multivariate STARMA model, the most essential and significant difference
between univariate and multivariate model is the input data of the model. In general,
univariate models can only fit the model with a particular variable, which means that even
though there is a historical database collecting information from different locations in the
system, univariate models remain forecast future conditions by past data at a particular
location separately without utilizing information collecting from other locations and thus
neglect the possible influences from different locations. And since unvariate models operate
individually, the main advantages are that they are easy to employ and different variables can
be estimated with different parameters thus being tightly parameterized.

On the other hand, the multivariate model considers past information not only from an isolate
data collecting point but also past information from other nearby locations. The modeling
procedure of multivariate models such as finding the relationship between different variables
or parameters estimating are often more-complicated than model univariate models several
times. Since multivariate models can simultaneously consider the influences across locations
in the system, whenever there .are some independencies between the forecasting targets, we
can expect that the STARMA maodel can reveal more information as compared to estimating
several univariate models, one for each detector location.
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Chapter 4 Case Study

In this chapter, we will illustrate the modeling procedure of the forecasting techniques
presented in Chapter 3. In section 4.1 we will give a brief analysis of the traffic data being
used, the applications of ARIMA and STARMA models to fit those traffic data will be
depicted in section 4.2 and 4.3 respectively. At the end of this chapter, section 4.4 will show
the comparison of forecasting performance of these models.

4.1 Data Collection from Vehicle Detectors

Taipei City, the capital city of Taiwan, has an area of 270 km? and there are over 700 vehicle
detectors collecting traffic data in the area. To illustrate the ARIMA and STARMA procedure
by modeling traffic flow in the urban area, we select a study area of about 5km by 4 km as
displayed in Figure 4.1. In order to show the relationship of the traffic at different locations,
24 vehicle detectors for the west bound traffic are collected, with their locations also shown in
Figure 4.1, and the exact locations of vehicle detectors under study are shown in Appendix 1.
Only flow data of same direction would be used in our study. It is noted that while there are
other vehicle detectors in the study area, they-are collecting traffic at different directions. And
we assumed that there are no dependencies between vehicle detectors of different directions;
those detectors are excluded in this study.
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Figure 4.1 Locations of the vehicle detectors
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To compare the applicability of the models on urban arterial roads, traffic data, including
traffic volume, speed and lane occupancy, were collected every 5 minutes from these
detectors. Since the maximum cycle length of traffic signal in Taipei City is 200 seconds, if
we apply 5-min data as our model input, these data may be strongly affected by traffic signal
leading a wrong model. WWthoulkas (1993) stated that using intervals shorter than 10 minutes
declines the quality of information that one could obtain in the prediction systems. Highway
Capacity Manual (2000) also indicated the 15-min interval as the best interval for traffic flow
prediction, therefore, those 5-min data are aggregated into 15-min intervals for better
forecasting accuracy, and hence there are 96 observations in each day in the analysis.

Data sets of four weeks were recorded from 29" June 2009 to 24™ July 2009. The data of the
first three weeks were used for calibrating the model, and the data of last week were used for
validation purpose. We only consider data from Tuesday to Thursday in the analysis, as these
days are having similar daily traffic pattern. Monday, Friday and weekends are ignored here to
avoid the large deviations compared the mid-week traffic conditions. The data of twelve days,
with a total of 1152 observations, for each-detector were analyzed here. The data of nine days,
i.e. 864 observations were used .to calibrate the model parameters, and the data of last three
days with 288 observations were use to-check the performance of the model.

Last but not least, ARIMA and STARMA models are time series models that require
continuous data without missing.-However, due_to some reasons such as signal failure or
communication problems, sometimes ‘vehicle detectors will be unable to collect traffic data
and hence missing data appears. In these cases, we will use the average of its former and later
observation to interpolate or replacing the zeros so as to get a continuous database.

4.2 Seasonal ARIMA

In this section we will fit the seasonal ARIMA model for all of the 24 detectors, since the
modeling procedure of the ARIMA model is analogous; we will only consider the traffic
volume data from the downstream detector VD No.2 on Minsheng W. Road to illustrate the
modeling procedure of seasonal ARIMA model but show all the model results of 24 vehicle
detectors at the end of this section.

To fit the seasonal ARIMA model, Figure 4.2 shows the time series plot of the traffic data of
VD No.2, the vertical axis represents the volume data within 15 minute interval and the
horizontal axis is the time index. The time series plots reveal that the data is nonstationary
with seasonality every 96 observations, i.e. data of one day.
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Time Series Plot of Original Data from Detector VMXH820
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Figure 4.2 Time series plot of the traffic flow data of VD No.2

We used the ARIMA procedure  in_statistical software SAS to calculate the sample
autocorrelation function (SAC).and sample partial autocorrelation function (SPAC) so as to fit
the ARIMA models, and the carresponding SAC and SPAC plots are shown in Figure 4.3 and
Figure 4.4. As the SAC of original time series appear to be nonstationary with seasonality
every 96 observations, according to the assumption of ARIMA model that the time series to
be fitted is stationary, we then transformed them by first seasonal differenced i.e. taking
difference of 96 time lags to get a stationary time series.
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Autocorrelation Function for Original Data from VMXH820

(with 5% significance limits for the autocorrelations)
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Figure 4.3 SAC for the traffic flow data of VD No.2

Partial Autocorrelation Function for Original Data from VMXHS820

(with 5% significance limits for the partial autocorrelations)
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Figure 4.4 SPAC for the traffic flow data of VD No.2

While examining the SAC and SPAC plot can give a roughly identification of whether the
time series is stationary, to be more precisely about the time series to be fitted is stationary,
augmented Dickey-Fuller (ADF) test is employed. Rather than testing the original time series,
we tested whether the first seasonal differenced time series is stationary or not. The null
hypothesis is that the time series has a unit root at lag d, which means that the time series is
nonstationary, Table 4.1 shows transformed traffic data of VD No.2 and three variations of
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the test statistics, which investigates whether the model includes a constant mean or a time
trend when fitting the model are employed, and different lags were also examined.

We can see from Table 4.1 that the first column specifies three types of models, which are
zero mean, single mean, or trend. The third column (Rho) and the fifth column (Tau) are the
test statistics for unit root testing. Other columns are their p-values. Since the test results show
that all of the p-values are small enough to reject the null hypothesis that the series has a unit
root, which means that the seasonal differenced time series is stationary, we can then proceed
to the next step to identify which p and g should be selected as a tentative model.

Table 4.1 ADF test for first seasonal differenced traffic data from VD No.2

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr <Rho Tau Pr<Tau F Pr>F
Zero Mean 0 -648.993 0.0001 | -23.67 <.0001
1 -490.312 0.0001 | -15.63 <.0001
2 -600.500 0.0001 | -14.65 <.0001
Single Mean 0 -649.057 0.0001 4 - -23.66 <.0001 | 279.84 | 0.0010
1 -490.435 0.0001 | -15.62 <.0001 | 122.06 | 0.0010
2 -600.749 0.0001 | -14.64 <.0001 | 107.18 | 0.0010
Trend 0 -649.116 0.0001 | -23.64 <.0001 | 279.50 | 0.0010
1 -490.491 0.0001 | ~-15.61 <.0001 | 121.90| 0.0010

Figure 4.5 and Figure 4.6 present the SAC and SPAC plots of the first seasonal differenced
values. As they both die down quickly at seasonal level, implies that we should consider both
autoregressive and moving average process when fitting the ARIMA model. Furthermore, as
shown in Figure 4.5, the first seasonal differenced plot of ACF of VD No.2 cuts off at lag 2
and has a spike at lag 96, implies that the second-order autoregressive (AR2) process of
nonseasonal and seasonal autoregressive order of lag 96 (AR96) must be included in the
process. Similarly, Figure 4.6 shows that the first seasonal differenced plot of PACF of VD
No.2 has spikes at lag 1, lag 2 and lag96, therefore, MA1 or MA2 of nonseasonal and MA96
of seasonal moving average process also seemed to be a possible ARIMA component.
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Autocorrelation Function for Differenced Data from VMXHS820
(with 5% significance limits for the autocorrelations)
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Figure 4.5 SAC for the differenced traffic data of VD No.2

Partial Autocorrelation Function for Differenced Data from VMXH820
(with 5% significance limits for the partial autocorrelations)
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Figure 4.6 SPAC for the differenced traffic data of VD No.2
Combining the plots of ACF and PACF and following the guidelines in Table 3.2, the model

of reasonable combinations of parameters for VD No.2 is of the form,
2, =92y + Pl & O g (4.1)

where ¢ and ¢, are the coefficients of the autoregressive process of order 1 and 2, ¢, is
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the random error components in the time series, 6,, is the coefficient of the moving average

process of order 96.

The results of the coefficient estimations using maximum likelihood estimate with reasonable
combinations of parameters and their corresponding t-statistics before diagnostic check for the
seasonal ARIMA model are shown in Table 4.2. While all of the t-statistics for the parameters
were found to be significance greater than 2, meaning that these parameters should be
included in the model. Table 4.3 reveals the autocorrelations of the residuals, while all of the
parameters tentative selected in the model are all significant, since the p-value in the
autocorrelation check for the residuals were found to be smaller than 0.05, indicated that there
are still some parameters need to be included in the model.

Table 4.2 Parameters estimated before diagnostic check for VD No.2 (ARIMA)

Parameter Estimated value Standard Error t Value Approx Pr > [t
MA96 0.60929 0.03030 20.11 <.0001
AR1 0.14836 0.03599 4.12 <.0001
AR2 0.09899 0.03599 2.75 0.0061
Table 4.3 Autocorrelation check for the residuals for VD No.2 (1% model)
To Lag | Chi-Square | DF | Pr> ChiSq Autocorrelations

6 9.21 0.0267 | 0.009 | 0.013 | -0.089 | 0.008 | -0.043 | 0.043
12 21.51 0.0106.} -0.027{*.0.088 | -0.007 | 0.074 | 0.013 | 0.042
18 38.77 | 15 0.0007 | -0.084 | 0.018 | 0.003 | 0.113| -0.011 | 0.039
24 47.72 | 21 0.0008 | 0.000 | 0.039 | -0.050 | -0.007 | -0.053 | 0.066
30 56.41 | 27 0.0008 | -0.046 | 0.044 | -0.021 | 0.065 | -0.017 | 0.043
36 61.72 | 33 0.0018 | -0.026 | -0.017 | -0.049 | 0.035| 0.009 | 0.043
42 68.21 | 39 0.0026 | -0.017 | 0.071 | -0.016 | 0.003 | -0.046 | 0.014
48 73.59 | 45 0.0045| 0.018 | 0.040 | -0.043 | 0.022 | -0.044 | 0.017
54 78.31| 51 0.0083 | 0.017 | 0.005| -0.044 | 0.031| -0.050 | 0.002
60 85.43 | 57 0.0087 | -0.001 | -0.060 | -0.025 | 0.029 | -0.007 | 0.058
66 90.33 | 63 0.0136 | -0.059 | 0.017 | -0.033 | -0.004 | -0.021 | 0.023
72 92.64 | 69 0.0304 | -0.028 | 0.005 | -0.006 | -0.003 | 0.001 | 0.043
78 96.73 | 75 0.0465 | -0.014 | -0.003 | 0.006 | 0.063 | 0.010 | -0.022
84 103.82 | 81 0.0446 | -0.060 | 0.029 | -0.041 | -0.011 | -0.040 | 0.021
90 111.77 | 87 0.0380 | -0.043 | -0.026 | -0.002 | 0.039 | -0.069 | -0.015
96 114.42 | 93 0.0653 | -0.023 | 0.034 | -0.000 | -0.035 | 0.011 | -0.003
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Repeating the estimation and diagnostic checking procedure for all of the statistics indicate
that the tentative selected model is suitable for the data and all of the p-value of
autocorrelations of the residuals are greater than 0.05. Therefore, the model suitable for
describing the data of VD No.2 is,

2, =P+ Pl 5+ -08 - OpEi oo - O g (4.2)

The corresponding parameter estimations and autocorrelation check of residuals are shown in
Table 4.4 and Table 4.5. Since all of the t-statistics of estimated parameters are greater than 2,
representing that all of these parameters should be included in the model. Furthermore, since
almost the p-value in the autocorrelation check for the residuals were found to be greater than
0.05, indicating that the residuals are white noise at the 95% confidence level, this model
could be used to forecast traffic conditions for VD No.2. As a result, each observation of VD
No.2 at time t can be expressed as a linear combination of previous observations at time t-1,
t-2 and the prediction error made at time t-1, t-96 and t-97, plus a random error.

Table 4.4 Parameters estimated after diagnostic check for VD No.2 (ARIMA)

Parameter Estimated value Standard Error t Value Approx Pr > [t
MA1 -0.9426 0.0254 -37.05 <.0001
MA96 0.6242 0.0300 20.84 <.0001
MA97 0.5802 0.0341 17.00 <.0001
AR1 -0.7576 0.0420 -18.05 <.0001
AR2 0.2193 0.0361 6.08 <.0001

40




Table 4.5 Autocorrelation check for the residuals for VD No.2 (Final model)

To Lag | Chi-Square | DF | Pr >ChiSq Autocorrelations

6 2.71 0.0998 | -0.007 | 0.038 | -0.020 | -0.037 | 0.012 | -0.006
12 9.15 0.2421| 0.022 | 0.043 | 0.042 | 0.027 | 0.059 | 0.000
18 16.35 | 13 0.2306 | -0.033 | -0.017 | 0.041 | 0.072 | 0.029 | 0.003
24 20.35 | 19 0.3736 | 0.042 | -0.001 | -0.011 | -0.038 | -0.021 | 0.036
30 22,22 | 25 0.6229 | -0.018 | 0.018 | 0.008 | 0.037 | 0.011 | 0.012
36 25.48 | 31 0.7458 | 0.006 | -0.046 | -0.015 | 0.005 | 0.036 | 0.018
42 28.00 | 37 0.8569 | 0.007 | 0.047 | 0.008 | -0.020 | -0.015 | -0.013
48 30.30 | 43 0.9277 | 0.040 | 0.014 | -0.021 | 0.002 | -0.020 | -0.011
54 33.93| 49 0.9500 | 0.039 | -0.021 | -0.024 | 0.011 | -0.031 | -0.027
60 42.69 | 55 0.8868 | 0.026 | -0.089 | 0.003 | 0.006 | 0.004 | 0.044
66 45.26 | 61 0.9343 | -0.046 | 0.005 | -0.019 | -0.022 | -0.006 | 0.005
72 46.92 | 67 0.9704 | -0.012 | -0.012 | 0.013 | -0.021 | 0.018 | 0.027
78 50.51| 73 0.9793| 0.003 | -0.015| 0.021 | 0.043 | 0.025 | -0.033
84 5495 | 79 0.9820 { =0.046.| 0.017 | -0.034 | -0.022 | -0.033 | 0.007
90 61.44 | 85 0.9747 | -0.031 {.-0:038 | 0.004 | 0.028 | -0.063 | -0.019
96 65.41| 91 0.9803 | -0.017 | 0.017 | 0.014 | -0.051 | 0.032 | -0.014

Repeating the modeling procedure of seasonal ARIMA model to fit the model of remaining 23
vehicle detectors, we can obtain_the best fitted model for all 24 vehicle detectors and their
corresponding parameters estimated'shown.in-Table 4.6. As previous stated, fitting the model
separately for data from different vehicle detectors may lead to inconsistent of the number of
parameters across different models, hence some of the best fitted model can forecast future
using only two parameters (VD No.6, VD No.12 and VD No.13), but some of the observation
data need up to six parameters (VD No.4 and VD No.11) to obtain the best fitted model.
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Table 4.6 ARIMA Parameters estimated for all 24 vehicle detectors

VD No. Parameter estimated
AR1 AR2 AR3 MA1 MA2 MA96 MA97
1| -0.6732 | 0.2896 -0.8849 0.6737 | 0.6028
2| -0.7576 | 0.2193 -0.9426 0.6242 | 0.5802
3| -0.7071 | 0.2504 -0.8901 0.6692 | 0.6352
41 0.2269 | 0.9375| -0.2208 0.8457 | 0.6732 | -0.6512
5| -0.7245 | 0.2339 -0.8916 0.6109 | 0.5686
6| 0.2990 0.7022
71 0.2347 | 0.0731 0.7000
8| -0.6538 | 0.3068 -0.9182 0.6318 | 0.5685
9 0.1961 -0.3789 0.6878 | 0.2509
10 0.2182 | 0.1238 | -0.4229 0.7251 | 0.3003
11| 1.0351| 0.1214 | -0.1877 | 0.9249 0.6255 | -0.5946
12| 0.2727 0.7145
13| 0.3013 0.7073
14 0.1592 -0.2073 0.6629 | 0.1837
15| -0.6342 | 0.3253 -0.9167 0.7280 | 0.6753
16 | 0.3963 | 0.0703 0.5667
17| 0.1564 | 0.1018 0.5994
18| 1.3212 | -0.3438 0.9347 0.5913 | -0.5618
19| 1.1801 | -0.2078 0.9061 0.5503 | -0.5119
20| 0.2873 -0.1077 | 0.6098 | -0.0514
21| 0.2520| 0.1644 0.5342
22| 0.2095 -0.1153 | 0.5774
23 0.2989 -0.2369 0.6566 | 0.2131
24| 0.8273 0.5910 0.7041 | -0.4687

To evaluate the performance of the fitted model, since there are various criteria being used in
the literature and no one has concluded that which of them is better, so we selected the root
mean squared error (RMSE) and the mean absolute percentage error (MAPE) as criteria in our
study. The definition of RMSE and MAPE are,

,1 : .
RMSE = HZ(yt _yt)z
t=1

(4.3)
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Y=Yl 100% (4.4)

MAPE =1y
Vi

Nz

where vy, is the observation at time t, y, is the estimated or predicted value at time t, and n
is the sample size over the study period.

With the definition of RMSE and MAPE, Table 4.7 present the model residuals and
forecasting errors of ARIMA models for all 24 detectors estimated by RMSE and MAPE. The
calibrating data are traffic flows from Tuesday to Thursday of the first three weeks, and the
forecasting data are traffic flows on Tuesday of last week, i.e. data on 21% July. As expected,
most of the model residuals appear to be smaller than the forecasting errors since the
parameters were estimated based on calibrating data. Hence, when we used them to forecast,
the forecasting errors would be greater than model residuals, but their differences were not too
much. Lewis (1982) stated that MAPE lower than 10% represents the forecasting is highly
accurate, MAPE between 10% and 20% represents the forecasting is quite well, and MAPE
between 20% and 50% represents the forecasting is reasonable. From Table 4.7 we can find
that most of the model residuals and ‘forecasting errors estimated by MAPE are smaller than
20%. Furthermore, if we use the average volume of each detector as the weight, then the
weighted average of 24 detectors_also revealed that both estimating errors and forecasting
errors were smaller than 20%, so we can conclude that the forecasting abilities of ARIMA
models we fitted are quite well.
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Table 4.7 Estimation and forecasting errors by RMSE and MAPE (ARIMA)

VD No. Estimation errors Forecasting errors
RMSE MAPE RMSE MAPE
1 23.71 10.15% 28.26 11.47%
2 26.96 8.18% 31.82 9.27%
3 47.71 12.38% 52.29 13.13%
4 45.83 11.48% 115.92 45.93%
5 47.23 11.29% 56.45 14.41%
6 20.58 10.05% 18.45 10.36%
7 19.04 9.91% 16.68 10.18%
8 21.51 11.22% 21.84 14.50%
9 19.25 9.64% 17.33 8.51%
10 12.50 24.54% 10.35 22.33%
11 18.79 15.09% 21.69 18.43%
12 18.89 13.71% 17.77 13.47%
13 17.58 15.49% 19.61 16.81%
14 24.93 11.21% 22.32 11.20%
15 2345 11.86% 27.48 13.77%
16 24.14 9.92% 24.74 9.28%
17 46.47 10.07% 48.55 10.81%
18 50.17 8.59% 49.61 10.61%
19 30.66 19.37% 30.37 23.58%
20 38.35 16.53% 35.11 18.35%
21 40.72 15.34% 42.10 18.25%
22 42.84 15.66% 43.95 14.14%
23 32.26 19.59% 36.71 20.40%
24 30.19 20.65% 33.22 28.46%
Weighted
36.86 12.70% 46.83 16.18%
Average

In particular, the forecasting of VD No.4 has a large error, with model RMSE=45.83,
MAPE=11.48% and forecasting RMSE=115.92, MAPE=45.93%; whereas the errors
estimated from most of the other detectors by RMSE and MSE are beneath 50 and 30%,
respectively. Possible reason is that, if we referred to the original time series plot of VD No.4
as shown in Figure 4.7, the traffic flow from VD No.4 from interval 864 to interval 960, i.e.
observations being forecasted, are averagely lower than observations used to calibrate. That’s

why the forecasting error is extremely large compare to other vehicle detectors. And this
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special case also revealed the drawback of ARIMA model that it is weak to forecast time
series with sudden change in the pattern.

Time Series Plot of VMZLI20
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Traffic Volume (veh/15-min)

Figure 4.7 Time series plot of traffic flow data of VD No.4

If we consider VD No.4 as a special case thus not in our consideration, among 23 detectors,
we selected the one with minimum ‘estimating error: with RMSE=26.96 and MAPE=8.18%
(VD No.2) and the one with maximum error with RMSE=12.50 and MAPE=24.54% (VD
No.10) and compared their estimated Volume with the observations on 16™ (estimating) and
21% (forecasting) July shown in Figure 4.8 (a), 4.8 (b), 4.9 (a) and 4.9 (b), which present
typical 24-hr flow variation pattern of VD No.2 and VD No0.10. As each time interval
represents 15 minutes, traffic flows increase rapidly from time interval 28 to 34, indicate that
a large amount of traffic flows appear from 7:00 am to 8:30 am. Since then they fluctuate at a
higher level before 76" interval, which means that traffic flows continue fluctuating at a high
level during daytime, and then start to decrease around 7:00 pm. We can also observe from
Figure 4.8 (a), 4.8 (b), 4.9 (a) and 4.9 (b) that the model fits the observations quite well during
off-peak when the flows are low in values and the observations were not fluctuating. But the
model may not capture the extreme peak variations when it comes to rapid fluctuations in the
peak hour. Furthermore, if we compare the traffic flow of VD No.2 and VD No.10, we can
find that data from VD No.10 fluctuate more than data from VD No.2; as a result, it is not
surprising that the estimated error from VD No.2 is smaller than that from VD No.10.

45



Comparison of predictions with observations on 16th July (VD No. 2)
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(b) Comparison of 7/21 data from VD No.2
Figure 4.8 Comparison of predictions with observations from VD No.2
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Comparison of predictions with observations on 16th July (VD No. 10)
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(a) Comparison of 7/16 data from VD No.10

Comparison of predictions with observations on 21st July (VD No. 10)
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(b) Comparison of 7/21 data from VD No.10
Figure 4.9 Comparison of predictions with observations from VD No.10
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4.3 STARMA Model

The modeling approaches of multivariate space-time autoregressive moving average
(STARMA) will be examined in this section. As previously stated, the univariate ARIMA
models used to forecast each of the time series separately, ignoring the dependencies between
each other. Nevertheless, traffic flow is not isolated from nearby locations and instead, can be
strongly influenced by other traffic flows within the system. Hence the multivariate STARMA
model which integrates weight matrices into the model on account of the spatial dependencies
between time series would be a more adequate model to forecast traffic flow. As the
STARMA considers the relationships of the time series at the detectors locations, we have to
assign a weight matrix representing the network structure and capturing the spatial
characteristics of the data collecting points in advance to incorporate those dependencies into
the model.

4.3.1 Weight Matrices in STARMA

In order to incorporate the physical characteristics of the traffic flow network into STARMA
model, consider the locations of vehicle detectors that were shown in Figure 4.1. We define a
hierarchical system showing the spatial neighboring relationship between the locations of the
24 detectors, with details shown in Table 4.8. The first order neighbors are those nearest to the
location of interest, and the second order neighbors are those closer than third order but
farther than first order ones.

As we have mentioned in section 3.2, we assumed that, in moderate traffic congestion,
upstream traffic conditions are not influenced by the downstream conditions. Some of the
upstream detectors such as VD No.5 (VMYN820) and VD No.16 (VKWNV20) are on the
boundary of the study area and not influenced by any other detectors. Hence, they may have
no neighboring detectors. Furthermore, we only consider the first and second order neighbors
in our study. As the third order implies a 30-45 minutes traveling time (for our case with a 15
minutes time internal), we can expect that the traffic flows from third-order neighbors would
have little influences and are neglectable.

48



Table 4.8 Spatial neighboring relationship of the 24 vehicle detectors

VD No. | Detector ID | 1storder | 2nd order | VD No. | Detector ID | 1st order | 2nd order
1| VMTG520 2 6 13 | VJTJ960 14,15 16
2 | VMXH820 3 6 14 | VKLLH20 15,16 9
3 | VMZL960 4,5 9 15 | VKRM820 16 -
4 | VMZLI20 5 - 16 | VKWNV20 - -
5| VMYN820 - - 17 | VKLGD20 18 11
6 | VMFIG20 7,8 9 18 | VKAHNZ20 - 13,19
7 | VMDL820 8,9 3 19 | VIRHZ20 - 22
8 | VMEKDOO 9 3,14 20 | VIP1Z60 20,21 23
9 | VMDLS800 - 4,15 21 | VIPJA20 21,22 24

10 | VMTFI60 - 1,11 22 | VINKW20 22,23 -
11 | VLKGF40 12 6 23 | VINLD61 23,24 -
12 | VLGGY60 - 6 24 | VINM760 - -

With the above chosen spatial neighboring relationship of the vehicle detectors, we are able to
apply the definition of weight matrix presented in section 3.2. The |™order neighbors of each
location i have equal weights and the row:sum equals-to one. As a result, the above spatial
neighboring relationship can be transferred into weight matrices of 1" order which will be
used in the STARMA model in‘the next section.

4.3.2 Numerical analysis

To fit STARMA model, Figure 4.10 (a)-(d) show some of the time series plots of traffic flow
observations for the 24 vehicle detectors from 30™ June 2009 to 16" July 2009. Only data
from Tuesday to Thursday are used here as it is known that weekdays at the middle of week
have a better consistent pattern as compared to Monday/Friday and weekends. In the figure,
the vertical axis represents the volume data within 15 minute interval and the horizontal axis
is the time index. As seen in the figures, the traffic volume at different detector locations
varies. For example, the traffic volume of VD No.1 is less than 350 (veh/15 min), but the
volume of VD No.4 is almost 900 (veh/15 min). They all reveal that a pattern that is
nonstationary with seasonality at every 96 observations, i.e. a cycle of one day. Therefore,
similar to ARIMA model, we need to take seasonal difference of 96 time lag for all 24 time
series to transfer the original nonstationary series into stationary time series.
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Figure 4.10 Time series plots of the traffic data of selected VDs

The Augmented Dickey-Fuller (ADF) test is then employed to all of the differenced time
series to check whether they are stationary. Since the testing procedure repeats the one
depicted in ARIMA modeling, we will not show all of the testing results of the 24 detectors
respectively. The test results, which are not shown here, indicate that all of the p-values are
small enough to reject the null hypothesis that the series has a unit root, and it is confirmed
that the seasonal differenced time series are stationary. We can then proceed to the next step
to identify which p and g should be selected as a tentative model.

To fit the STARMA model, similar to the modeling procedure of ARIMA, first we should
examine the space-time autocorrelation and space-time partial autocorrelation functions of the
time series to identify the autoregressive and moving average term for fitting the model. Table
4.9 and Table 4.10 display the space-time autocorrelation and space-time partial
autocorrelation function for the differenced series. The space-time autocorrelations appear to
have a spike at temporal lag 2 and 96 of zero spatial lag at nonseasonal and seasonal level,
indicating that the moving average term of order 2 and order 96 should be included in the
STARMA model. The space-time partial autocorrelations indicate that we should include the
autoregressive term of order 96 into the STARMA model. Therefore, the tentative selected
model to fit the data of the 24 vehicle detectors will be,
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Z, =@y + ¢11W( )Zt—l + ¢12W( )Zt—l + Pl + ¢21W( )Zt—2 + ¢22W( )Zt—2

+ @2 5+ ¢(96) Z, g5 — 010811 - Ox& , - 9(96)gt—96 + &

Table 4.9 Space-time autocorrelation functions of the differenced series

Spatial lag (1) 0 1 2
Time lag (s)
1 0.2403 | 0.0714 | 0.0306
2 0.1418 | 0.0796 | 0.0109
3 0.0271 | 0.0095 | 0.0039
4 0.0666 | 0.0559 | 0.0060
5 0.0127 | 0.0095 | 0.0014
6 0.0793 | 0.0458 | 0.0089
7 0.0419 | 0.0489 | 0.0048
95 -0.0765_| -0.0266 | -0.0177
96 -0.4097 1:-0.0975 | -0.0088
97 -0.0924 | -0.0217 | 0.0081

(4.5)

Table 4.10 Space-time partial autocorrelation functions of the differenced series

Spatiallag.(1) 0 1 2
Time lag (s)
1 0.2349 | 0.0068 | 0.0118
2 0.0808 | 0.0434 | -0.0098
3 -0.0244 | -0.0197 | -0.0003
4 0.0522 | 0.0366 | -0.0018
5 -0.0120 | -0.0079 | -0.0043
6 0.0657 | 0.0157 | 0.0036
7 0.0071 | 0.0352 | -0.0055
95 -0.0665 | -0.0060 | -0.0189
96 -0.3900 | 0.0149 | 0.0179
97 0.1001 | 0.0025 | 0.0159
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Next we need to estimate the coefficients of the parameters tentatively selected in the
identification stage. We employed the SAS statistic software to estimate the model for the
coefficients of parameters by maximum likelihood approach. The estimated values and the
corresponding t-statistics are shown in Table 4.11. As presented in the table, the t-statistics of
parameters ¢,, ¢,,, ¢,,and 6, appear to be insignificant, these parameters should be

removed from the model.

Table 4.11 Parameters estimated before diagnostic check (STARMA)

Parameter P P P Pao P P2
Estimated value | 0.2529 | 0.0263 | 0.0128 | 0.0111 | 0.0073 | 0.0194
t value 25.95 3.54 1.84 1.01 0.98 2.8

Parameter P Dos Zh (7 0, | RMSE
Estimated value | 0.0351 | 0.0176 | 0.0042 | 0.0414 | -0.666 | 71.75
t value 4.87 2.26 0.5 5.07 -143

Reformulating the STARMA model step-by-step, we have the final model as,

1 2 2
Z, =PZy + ¢11W( )Zt—l + ¢12W( )Zt—l + ¢22W( )Zt—2 + 0302y 3 + Dro6) 2t o6

(4.6)
=08 5 - 0(96)gt—96 + &

The parameters estimated for equation (4.6) and their corresponding t-statistics are displayed
in Table 4.12. Since all of the t-statistics indicate that the tentative selected model is suitable
for the data, therefore, we can proceed to check the space-time autocorrelations and partial
autocorrelations of the residuals, shown in Table 4.13 and 4.14. Further checking confirms
that except for the lags that are already included in the model, the autocorrelation and the
partial correlations of the residuals of other lags appear to be insignificant, and we can
conclude that the tentative selected STARMA model is suitable for describing the data.

Table 4.12 Parameters estimated after diagnostic check (STARMA)

Parameter P P, Doy Pa0 Oy O RMSE
Estimated value | 0.2585 | 0.0292 | 0.0191 | 0.0372 | -0.0479 | 0.6651 | 37.96
t value 46.19 4.01 2.84 6.02 -9.77 | 143.32
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Table 4.13 Space-time autocorrelations of the residuals

Spatial lag (I) 0 1 2
Time lag (s)
1 -0.0396 | -0.0214 | 0.0244
2 0.0779 | 0.0750 | 0.0088
3 -0.0644 | -0.0420 | 0.0023
4 0.0814 | 0.0601 | 0.0023
5 -0.0470 | -0.0387 | -0.0082
6 0.1000 | 0.0425 | 0.0081
7 -0.0117 | -0.0134 | -0.0011
95 0.0231 | 0.0179 | 0.0037
96 0.0472 | 0.0453 | 0.0335
97 -0.0005 | -0.0099 | 0.0231

Table 4.14 Space-time partial autocorrelations of the residuals

Spatial lag (1) 0 1 2
Time-ag (s)
u| -0.0393 | -0.0141 | 0.0246
2 0.0627 | 0.0540 | -0.0003
3 -0.0531 | -0.0210 | 0.0021
4 0.0640 [ 0.0302 | -0.0036
5 -0.0277 | -0.0151 | -0.0111
6 0.0807 | 0.0013 | 0.0028
7 0.0095 | 0.0035 | -0.0057
95 0.0252 | 0.0207 | -0.0028
96 0.0208 | 0.0202 | 0.0208
97 -0.0001 | -0.0066 | 0.0200

The result revealed that the parameters corresponding to the first-order neighbors appear to be
more significant than second-order neighbors as expected. However, a surprising result is that
while the parameter representing previous two interval (¢,,) is not significant enough to be
included in the model, the t-statistics of parameter representing previous three interval (g, ) is
found to be greater than 2, implying that some dependencies exist between current traffic flow
and traffic flow three intervals ago. And finally, with these parameters, each observation at a
particular site i collecting at period t can be expressed as a combination of previous three and
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the 96™ observations of its own, observations of prior two intervals of its second neighbors as
well as the prediction error made at two periods ago, prediction error made yesterday at the
same time of its own and a random error, which can be used to forecast future traffic flow
later.

Table 4.15 shows the model residuals and forecasting errors of the fitted STARMA model
estimated by RMSE and MAPE. The results reveal that except for VD No.10 and VD No.24,
all of the model residuals estimated by MAPE are smaller than 20%, with a good estimation
for fitting these data. Although the forecasting errors are slightly larger than model residuals,
most of the errors are still below 20% and furthermore, some of them even below 10%.
Therefore, we can conclude that the forecasting ability of STARMA model we fitted is quite
well. Furthermore, the weighted average value, which is averaging the RMSE and MAPE
values of the 24 VVDs weighted by their corresponding average flow values, is also shown in
the table. The weighted average MAPE is 12.71% for estimation and 15.87% for forecasting.
The slight increase in the average forecasting errors is mostly contributed by the VD No.4,
which has a high error in its forecasting.
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Table 4.15 Estimation and forecasting errors by RMSE and MAPE (STARMA)

VD No. Estimation errors Forecasting error
RMSE MAPE RMSE MAPE
1 25.11 10.50% 27.53 11.26%
2 27.72 8.42% 31.04 9.14%
3 50.08 12.25% 46.02 11.97%
4 49.20 11.92% 125.92 50.93%
5 49.54 11.46% 51.29 13.31%
6 20.69 10.08% 18.45 10.35%
7 19.01 9.89% 16.54 10.25%
8 21.91 11.21% 21.48 13.96%
9 19.45 9.54% 17.66 8.71%
10 12.84 24.85% 10.59 22.93%
11 19.41 15.31% 20.43 14.52%
12 18.99 13.82% 17.99 13.80%
13 17.58 15.48% 19.91 16.82%
14 25:.04 11.24% 21.88 11.06%
15 23.88 11.63% 27.91 13.98%
16 24.67 9.98% 23.19 8.83%
17 47.05 10.09% 46.65 10.46%
18 51.59 8.61% 48.99 11.21%
19 31.31 19.40% 29.24 16.19%
20 38.57 16.41% 34.06 17.06%
21 41.31 15.16% 40.58 17.45%
22 43.22 15.53% 41.50 12.96%
23 32.73 18.92% 36.66 21.84%
24 30.69 20.57% 33.41 29.14%
Weighted
37.96 12.71% 47.08 15.87%
Average
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4.4 Forecasting and Comparisons

With the best fitted ARIMA and STARMA models obtained in section 4.2 and 4.3, we are
now capable to compare the forecasting performance of these models. The volume data of
Tuesday to Thursday from 30™ June to 16™ July 2009 are used for examine the fitness of the
model and data of 21% July are used for the validation purpose. With the above model
parameters, we forecasted 96 future observations and compared them with real observations.
Then we calculated the forecasting errors by RMSE and MAPE for all of the 24 vehicle
detectors as shown in Table 4.16, and if the STARMA model outperforms ARIMA model, it is
written in boldface.

From Table 4.16 we can find that multivariate STARMA is superior to univariate ARIMA for
14 of the 24 detectors on both RMSE and MAPE basis. ARIMA performs better than
STARMA for 7 of the 24 detectors on both RMSE and MAPE basis, whereas 3 out of 24
detectors the RMSE of STARMA is smaller but MAPE is larger than ARIMA models. If we
use the average volume of each detector as the weight, then the weighted average of 24
detectors revealed that both ARIMA‘and-STARMA are suitable for forecasting urban traffic
flow, we can say that ARIMA models-and STARMA model perform equally well. However,
the number of parameters used in these two-models is. largely different. To forecast traffic
flows of 24 vehicle detectors, there are four to five parameters for each detectors in the
ARIMA model (noted that parameters used for each detector is different), but there are only 6
parameters in STARMA model.-The number of parameters used in the model is quite
important since when it comes to forecast traffic flows of real world network where the
number of vehicle detectors within the system is much greater, the simpler STARMA model
would be more suitable than ARIMA models in forecast traffic flow for the whole network.
Therefore, the STARMA is recommended.

In overall, the forecasting ability of STARMA model is compariable to the ARIMA models,
and with the introductin of spatial parameters ¢, and ¢,,. As we have stated that traffic
flow is not an isolated system and will be influenced by traffic flows from other locations
nearby, it is reasonable that including the spatial term in the model will enhance the
forecasting ability of the fitted model. Therefore, when estimating parameters, ARIMA
models operate separately whereas STARMA can simultaneously consider data from all of the
24 detectors, so their correlation can be examined from the space-time autocorrelation and
space-time partial autocorrelation functions.
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Table 4.16 Comparison of forecasting errors of ARIMA and STARMA models

VD No. ARIMA STARMA
RMSE MAPE RMSE MAPE
1 28.26 11.47% 27.53 11.26%
2 31.82 9.27% 31.04 9.14%
3 52.29 13.13% 46.02 11.97%
4 115.92 45.93% 125.92 50.93%
5 56.45 14.41% 51.29 13.31%
6 18.45 10.36% 18.45 10.35%
7 16.68 10.18% 16.54 10.25%
8 21.84 14.50% 21.48 13.96%
9 17.33 8.51% 17.66 8.71%
10 10.35 22.33% 10.59 22.93%
11 21.69 18.43% 20.43 14.52%
12 17.77 13.47% 17.99 13.80%
13 19.61 16.81% 19.91 16.82%
14 22.32 11.20% 21.88 11.06%
15 27.48 13.77% 27.91 13.98%
16 24.74 9.28% 23.19 8.83%
17 48.55 10.81% 46.65 10.46%
18 4961 10.61% 48.99 11.21%
19 30.37 23.58% 29.24 16.19%
20 35.11 18.35% 34.06 17.06%
21 42.10 18.25% 40.58 17.45%
22 43.95 14.14% 41.50 12.96%
23 36.71 20.40% 36.66 21.84%
24 33.22 28.46% 33.41 29.14%
Weighted
46.83 16.18% 47.08 15.87%
Average
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Chapter 5 Strategies of Dynamic Forecasting in ATMS
5.1 Forecasting Procedure and Performance Criteria

The estimation and forecasting techniques described in Chapter 4 assumed the application for
a static system, i.e., forecasting a future condition (like a day) with historical data without
using the updated data collected with time. Due to the progressing in the transportation and
communication technologies in Intelligent Transportation Systems, such as vehicle detectors
and global position systems, can collect traffic data in the real-time and send information from
all data collecting points to the control center. The availability of these real-time data enables
us to update our forecasting of traffic conditions. In this chapter, we will consider different
forecasting strategies using real-time database to exhibit the forecasting performance of the
STARMA model.

5.1.1 Look back and Look Ahead Procedures

Look back and look ahead span.size are two issues need to be explicated when executing a
forecasting. Look back span size is similar to-our estimation process, and is related to data for
the parameter estimation. As_West and Meccracken (1998) mentioned, there are several
strategies for selecting the size of database in-the parameter estimation. Recursive scheme,
rolling scheme and fixed scheme are primary used on the forecasting literature, whereas the
results of these three strategies may act diversely. Recursive scheme estimates parameters
with all available data at hand every time, so as time goes by, the look back span size, i.e. the
number of observations used to forecast, will increase. Rolling scheme, on the other hand,
estimates parameters based on fixed look back span size, say R, so the oldest observation will
be dropped as new data adds in. The third fixed scheme is different from those two that it
merely estimates the parameter using data of first R periods and does not update the
parameters as new data adds in, and it is also the one we called static forecasting.

Another issue is look ahead span size, that is, how far you look forward. The most often used
maximum likelihood estimation estimates parameters by minimizing the sum squares of
1-step ahead forecast errors, whereas adaptive forecasting estimates parameters by
minimizing the sum squares of I-step ahead forecast errors, and | >1 is the prediction period
ahead of interest.

To illustrate how these three strategies work, consider a time series Y; and T is the time we
started to forecast, and | >1 is the prediction period ahead of interest. First, assume we are
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now at time T, and we wish to look ahead | periods to forecast observation at time T +1.
Then at time T +1, we wish to forecast observations at time T +1+1 and so on. Totally, the
number of forecasting values we wish to obtain is M observations. If we label the real
observation at time T +1 as vy.,,, and the predicted value at time T +1 as ¥, (I), then the
prediction period and data being used for each scheme are as follow.

1. Recursive scheme :

Step 1 : Using observations y, to Yy, to estimate parameters and predict the observation at
time T+1,ie. 9.(1)=f(yr, Yrq00 Vi)

Step 2 : Using observations y, to vy, , toestimate parameters and predict the observation at

time yT+I+l' Ie yT+l(|)= f(yT+lfyT""1y1)'

Step M : Using observations y, to y,., to estimate parameters and predict observation at
time T+I+M-1,ie. Y v (D)= F(Yrims Yromgr Vi) -

2. Rolling scheme : (Shown in Figure 5.1)
Step 1 : Using observations y, to Yy, to estimate parameters and predict the observation at

time T+1,ie. 9.(1)=f(y;, Yy pau¥r)
Step 2 : Using observations y, to 'y, toestimate parameters and predict the observation at

time yr,0, 08 Yra() = F (Ve Yoo ¥2) -

Step M : Using observations Y, to Y;. 4 to-estimate parameters and predict observation at
time T+1+M-1,ie. 9 v (DN=FVrima YrenizrYu) -

Estimation data Forecasting data
Lo I || —
observation Y Yi Yo
yM yT+M -1 yT+I+M—l
prediction yr (1) Yrma(l)

Figure 5.1 Estimation and forecasting data used in rolling scheme

3. Fixed/Static scheme :
Step 1 : Using observations y, to y, to estimate parameters and predict the observation at

time T+1,ie. ¥ (D= f(y;, Y500 Y1)
Step 2 : Using observations y, to y, to estimate parameters and predict the observation at

time Y7o ie. yT+l(|) = f(yT 1 yT—l""!yl)'
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Step M : Using observations y, to y, to estimate parameters and predict the observation at
timeT +1+M —1,ie. Y v () =F(Yr,YraYy)-

Since the estimation process is a tedious work, it is reasonable to assume that parameter
estimation will be updated with the database once a day or once a week, which is different
from adaptive forecasting that updates parameters every time whenever new data adds in.
Therefore in the following the parameters estimated for the recursive, rolling and static
schemes will remain the same for a short span. In other words, we assumed the parameters
used for all three schemes be the same when we forecast observations within a day. The only
differences between the three schemes are the data used to fit into the model, which could be
actual observations or immediate predicted data. And since the STARMA model we fitted in
previous chapter revealed that each observation is related to previous 96 periods of its own
and neighbor observations, recursive and rolling scheme in our study can be treated as the
same scheme, thus we will only compare the forecasting performance of rolling and static
schemes in our following studies.

When using rolling scheme, a new observation will add in at each iteration, hence, when
I =1, we predict ¥,(1) based on observations 'y, to y;, i.e. Y:(1) = f(y;, Y110 Vi),
then §..,(1) with observations 'y, t0 Vy; si€. Vi, @) = f(Yr: Yo Ys) ..., and finally,
Vrow With yy to yr o ohke  Vaua (= f (Yromo1 Yromezrn Yu) - This kind of
forecasting is so-called 1-step ahead forecasting.

When | =2, a 2-step ahead forecasting is conducted. We made prediction y,,, based on
observations y, to y,, i.e. ¥:(1)=f(y;, Y14, Y,) . HOwever, when proceeding to
predict observation at time T + 2, since the observed value at time T +1 is not known yet,

we based on observations y, to y, as well as the prediction §.(1) , i.e.
Jr @ = £(§: @), Yy n¥) then 91,2 = F (9.4, YraainYs) - and finally, predict
Vr.m_o(2) with observations vy, to y;,, and prediction 9., .0 , ie.

9T+M—2 (2) = f(yT+M—2 (1), Yrim—2rYm ) .

In general, the data used to predict the same forecasting period is not only determined by
which scheme you select to estimate parameters, but also related to the look ahead lead time
you select when forecasting, and thus influencing the forecasting performance of the model.
We compared the forecasting performance of rolling scheme with 1-step and 2-step ahead and
static scheme. The above discussions of observations and predictions comparisons of static
and step ahead rolling scheme are summarized in Table 5.1 and Table 5.2, where the iteration
number of prediction is 96 as we used in Chapter 4.
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Table 5.1 Observations and prediction equations used in the static scheme

Observation Static scheme

Y7 Yr @ = (Y7, Yras Yroos)

Y72 Y1 (2) = £(9+ @), Yroos Yr_0a)

Y1i3 yT Q=f (yT 2), 9T @, Y7o yT—93)
Y105 9T (95) = f (9T (94)1---1 9T (1)’ Y7, nyl)
Y106 Y7 (96) = f (¥ (95),.... - (@), ¥7)

Table 5.2 Observations and prediction equations used in the step ahead rolling scheme

Observation 2-step ahead rolling 1-step ahead rolling

Y7 Y1 @ = (Y7, Yra- Yroos) Y1 @ = (Y7, Yra- Yroos)

Y72 Y1 (2) = £ (Yr @), Yroos Yr04) V1@ = F (V.0 Vo Yroaa)
Yri3 yT+1(2) = f (yT+1(1)! Y1 yT—93) 9T+2 Q=f (yT+2’ Vi yT—93)
Y705 Y7103(2) = F(Vri0a @i YrigzetVr 1) | Yri0a@ = F(Yri0as Yrigzso Yra)
Y196 Vr.04(2) = T (Y1304 (D); Yrsoare-sYr) Vs = F(Yri08 Yrioare Yr)

5.1.2 Performance Criteria

To measure the performance of the fitted model, likewise, we utilized root mean squared error
(RMSE) and mean absolute percentage error-(MAPE) as our criteria. Since the data used in
static and rolling strategies are different in that some of them are observations while some of
them are predictions, the definition of MSE and MAPE are slightly different from the one
presented in section 4.2. With the above definition of y,,. and y;(s) represent the real
observation and predicted value at time T +s, respectively, the RMSE (root mean squared
error) for static scheme can be defined as follow,

1 .
RMSEstatic = \/MZ(yns - Yr (S))2 (5.1)
s=1

where ¥.(s)= f(9;(s-2),....9: D, ¥;,...,y,), S is the prediction of interest and M is the
iteration number of prediction.

Whereas the RMSE (root mean squared error) for rolling scheme is,

RMSE g1ing (1) = J%Z(ym “Yrisa (1))° (5.2)
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where s is the prediction of interest, | is the look ahead span size in rolling scheme and M is
the iteration number of prediction.

Likewise, the MAPE (mean absolute percentage error) we applied in our study for static
scheme is,

Yris — 9T (S)
yT+s

M
MAPE _ . = ﬁz x100% (5.3)

static
s=1

Whereas MAPE for rolling scheme being used is,

ale
MAPE 1, (1) = ﬁzh’”s o1 M) 1009 (5.4)
s=1

T+s

5.2 Comparison of Forecasting Performance

In this section, we will exhibit how STARMA model perform in forecasting traffic flow based
on static and rolling strategies. Using RMSE-and-MAPE as criteria, Table 5.3 exhibits the
forecasting errors of the STARMA models for each of the 24 vehicle detectors and their
average performances for predicting with static scheme, 1-step ahead rolling scheme and
2-step ahead rolling scheme. Since the predictions of 1-step ahead rolling are derived from
latest information as well as”previous information, i.e. information before one period;
predictions of 2-step ahead rolling are derived from information two periods ago; static
strategy, on the contrary, do not update information as time goes by. So intuitively, it is
anticipated that the forecasting errors estimated by 1-step ahead rolling are the smallest, and
errors estimated by 2-step ahead rolling are better than static strategy.

For the forecasting errors in Table 5.3 satisfying this expectation, the estimated RMSE and
MAPE are indicated in boldface. Using the average volume of each detector as the weight, a
weighted average of RMSE and MAPE is also calculated, which designates the expected
trend, with RMSE=47.08 and MAPE=15.87% for static strategy, RMSE=46.37 and
MAPE=15.45% for 2-step ahead rolling and RMSE=44.29 and MAPE=14.80% for 1-step
ahead rolling. Therefore, it proves that, 1-step ahead outperforms both 2-step ahead and static
strategies, implying that using real-time information to forecast is better than merely using
historical information for forecasting.
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Table 5.3 Comparison of STARMA model by static, 1-step and 2-step ahead forecast

VD No. Static 2-step ahead 1-step ahead
RMSE MAPE RMSE MAPE RMSE MAPE
1 27.53 11.26% 27.89 11.37% 31.18 12.41%
2 31.04 9.14% 30.96 9.14% 32.25 9.66%
3 46.02 11.97% 46.71 12.03% 54.89 13.27%
4 125.92 | 50.93% 120.89 | 48.59% 96.56 | 37.14%
5 51.29 13.31% 51.71 13.35% 57.31 14.06%
6 18.45 10.35% 18.26 10.37% 17.90 9.95%
7 16.54 | 10.25% 16.35 | 10.08% 16.91 | 10.03%
8 2148 | 13.96% 21.45| 13.81% 2241 | 13.37%
9 17.66 8.71% 17.52 8.60% 16.79 8.78%
10 10.59 22.93% 10.73 23.16% 10.91 23.57%
11 20.43 14.52% 20.80 14.72% 23.68 16.78%
12 17.99 13.80% 18.00 13.81% 18.90 13.72%
13 19.91 16.82% 20.02 16.65% 21.65 17.86%
14 21.88 11.06% 22.02 11.16% 24.10 11.88%
15 27.91 13.98% 28.07 13.99% 28.41 14.13%
16 23.19 8.83% 22.95 8.73% 21.78 8.50%
17 46.65 10.46% 46.67 10.50% 47.63 10.50%
18 48.99 | 11.21% 48.88/| . 11.03% 46.45 9.54%
19 29.24 | 16.19% 29.38| 16.05% 29.62 | 15.00%
20 34.06 17.06% 34.22 17.04% 36.09 17.60%
21 40.58 | 17.45% 41.01 | 17.26% 43.09 | 16.80%
22 4150 | 12.96% 41.79 | 12.77% 45.69 | 12.65%
23 36.66 21.84% 36.32 18.93% 38.73 19.20%
24 3341 | 29.14% 33.38 | 25.01% 3350 | 24.37%
Weighted
47.08 | 15.87% 46.37 | 15.45% 4429 | 14.80%
Average
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In particular, the error reduction of the detector No.4 is of the largest, with RMSE=125.92 and
MAPE=50.93% for static strategy. RMSE=120.89 and MAPE=48.59% for 2-step ahead
strategy and RMSE=96.56 and MAPE=37.14% for 1-step ahead strategy. As we have
explained that the extraordinarily high forecasting error comes from the inconsistent pattern
on 21% July, whose traffic flow is averagely lower than other days. Hence, the results of
detector No.4 demonstrated that the superiority of rolling forecast over static forecast in cases
of the estimation data set has a different pattern than the forecasting data set. In this study, to
avoid large deviations of the data, we only used the traffic flows from Tuesday to Thursday to
fit our model, but if we extend our model to fit not only traffic flow from Tuesday to
Thursday but also Monday and Friday, or even holidays, it seems reasonable that the evidence
of rolling forecast being superior to static strategy would be more clear. Further research can
apply this kind of data to investigate it.

We selected the one with minimum error and the one with maximum and compare their
predictions with observations on 21* July shown in Figure 5.2 and Figure 5.3. The forecasting
error of detector No.9 is of the smallest, with static RMSE=17.66 and MAPE=8.71%, 2-step
ahead RMSE=17.52 and MAPE=8.60% and-1-step ahead RMSE=16.79 and MAPE=8.78%,
respectively. On the other hand, the predicting performance of detector No.24 is the worst
among 24 detectors, with static RMSE=3341 and MAPE=29.14%, 2-step ahead
RMSE=33.38 and MAPE=25.01% and 1-step ahead RMSE=33.50 and MAPE=24.37%.
Figure 5.2 and Figure 5.3 reveal that the model fits' the observations quite well during
off-peak when the flows are low-in.values and the observations were not fluctuating. But
when traffic flow comes to higher” level, the model may not capture the extreme peak
variations in the peak hour. And since the variation of traffic flow from detector No.24 is
more severe than from detector No.9, it is not surprising that the forecasting error of detector
No.24 would be greater than detector No.9.
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Comparison of static, 1-step, 2-step ahead forecast with observations for VD No.9
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Figure 5.2 Comparison of STARMA by static and rolling forecast (VD No.9)

Comparison of static, 1-step, 2-step ahead forecast with observations for VD No.24
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Figure 5.3 Comparison of STARMA by static and rolling forecast (VD No.24)
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Chapter 6 Conclusions and Recommendations

The short-term traffic forecasting is an important issue in ATIS and ATMS, which aim at
providing useful information to travelers and improving the overall efficiency of road network.
In this study, urban arterials flow prediction models which forecast the short-term traffic flows
based on the past traffic data measurement from a set of 24 vehicle detectors in Taipei city,
Taiwan are modeled by means of seasonal autoregressive integrated moving average (ARIMA)
and space-time autoregressive moving average (STARMA) model. The forecasting
performance of STARMA model are examined by static, 1-step ahead rolling and 2-step
ahead rolling strategies when real-time information can be obtained. The summary of the
findings of this thesis and recommendations for future research directions are summarized as
follows.

6.1 Conclusions

Comparing the predicted and forecasting-traffic.'volume of the fitted ARIMA models and
STARMA model with actual observations, we can find that most of the model residuals
appear to be smaller than forecasting errors, but their. differences were not too much. In
addition, since most of the model residuals and forecasting errors estimated by MAPE are
smaller than 20% for both ARIMA models and- STARMA model, implying that both ARIMA
and STARMA models are suitable for predicting traffic flows in an urban area.

Our results also show that, while both seasonal ARIMA models and STARMA model are able
to forecast volume data at a high degree of accuracy, the number of parameters used in the
ARIMA and STARMA models are largely different. In the ARIMA model, there are up to five
parameters for each detector which is estimated standalone, whereas there are only 6
parameters in the STARMA model. With a large number of detector locations in the system to
be forecasted, the STARMA model shows a relative simple structure as compared to the
ARIMA model which is univariate in nature.

Furthermore, this result seems reasonable as traffic flows of urban area are not an isolated
system and will be influenced by the flows from other adjacent locations, consequently,
STARMA model considering the spatial relationship between each time series can explain the
nature of the problem in a better way, and therefore improve the forecasting accuracy.

Finally we performed static and rolling strategies with the 1-step ahead and 2-step ahead span
size to forecast traffic flow of all 24 vehicle detectors so as to compare the forecast
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performance of STARMA model when the data being used are based on real-time data or
predicted values. The results revealed that weighted forecasting performance of all 24
detectors satisfy the expectation that the performance of 1-step rolling is the best, and the
2-step ahead rolling outperforms the static strategy. Therefore, it proves that using real-time
information to forecast is better than merely using historical information to forecast.

6.2 Recommendations for Future Research

In this study, the traffic flow data used to fit the ARIMA models and STARMA model were
from Tuesday to Thursday in order to avoid large deviations. ARIMA is suitable for
forecasting time series with small variation. Therefore, if traffic volume data with larger
variability such as data from Monday to Friday or even data from Monday to Sunday are
employed, the forecasting ability of the STARMA model would be more impressive.

Also, the setting of the weight matrices is user-defined in the STARMA model. A common
intuition is to assume that downstream flows only depend on upstream flows for uncongested
conditions but not vice versa. However, the .upstream traffic could be influenced by
downstream congestion if long queues-exist. How to define different settings of the weight
matrices to incorporate this effect can be further investigated.

Furthermore, due to some limitations of the database, only traffic flow data is used to fit the

prediction model. One may consider using not only the traffic flow data, but also other traffic
measurements such as speed and occupancy, as the other branch of multivariate approaches.
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Appendix

Appendix 1 Locations of vehicle detectors under study

VD No. | Vehicle detector No. of Lanes | Location GisX GisY
1| VMTG520 2 R4 @ B 290 sLw 300902 | 2772388
2 | VMXH820 3 A E R TT LA 301579 | 2772475
3 | VMZL960 6 4 Lz 5195w 303466 | 2772532
4 | VMZLI20 6 AAABZEK6SET 303828 | 2772526
5| VMYN820 6 34 Lz B 138 5w 304354 | 2772466
6 | VMFIG20 2 L5 B3R A TE 302155 | 2772178
7 | VMDLS820 2 £ % B 138 5w 302775 | 2772150
8 | VMEKDOO 2 £ 5§ 198 5.4 303209 | 2772145
9 | VMDLS800 2 £ % B 251 5 303641 | 2772147
10 | VMTFI60 2 3 7 @ B 205 5L 300730 | 2772052
11 | VLKGF40 2 £ % & f 158 5w 301239 | 2771742
12 | VLGGY60 2 £ %0 RR88ELE R A (Tt 301552 | 2771688
13 | VJTJ960 2 Y- R 48 E T 302797 | 2770994
14 | VKLLH20 3 NS 249 B 303709 | 2771298
15 | VKRM820 3 NALEL S 346 B ¢ 304122 | 2771375
16 | VKWNV20 3 M2 B 32 5w (AR e) 304851 | 2771457
17 | VKLGD20 4 L2 F R =70 55 () IR) 301085 | 2771256
18 | VKAHN20 6 LA - B 125 e £ 7 ¢ 301861 | 2771100
19 | VIRHZ20 4 =8 B- B29 5w 301927 | 2770381
20 | VIPIZ60 4 &R B2T 3w 302385 | 2770358
21 | VIPJA20 4 CER-BETLES 302752 | 2770339
22 | VINKW20 4 CERZ B AT F 303228 | 2770326
23 | VINLD61 4 CERZE 123w F 303828 | 2770328
24 | VINM760 4 CERe 27T B § 304169 | 2770317
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