>
O
)
o
N
H
oo
|_\
oy
E
b
£
&
\\33
IR
ot
hE
ol
;\\:
e
B
~zy
+3
Z?é\
IR

A Study of Data Embedded Method on
MPEG/Audio.and Implementation of Data
Embedded Decoder onthe ADSP-2181 DSP
Processor

p 35 40 R

R B R/
LR ERE: feE K

vooE X K 4 4

i
‘h_‘\
\

i+ MPEG/Audio F T lrz g -

ADSP-2181 #c >3 5L a2

\‘%\

R IRF R ERESE

= Iy 4 TR ER Student : Ruang-Huang Huang
i R BRI R Advisor : Prof. Ching-Cheng Teng
e dp F 5P

X &4 Co-Advisor : Prof. Bing-Fei Wu

Bl = 2 i+ 7
TWE A1 2 X
AL o#m o=
A Thesis

Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electrical and Control Engineering
July 2004

Hsinchu, Taiwan, Republic of China

£ o8 ®/ {4 2

i
;0
\r

FLoREE IR SRR S e
T LS.

Rl A E &gl 28 i s

A~ & s R4 MPEG/AUDIO AZ e 2 & 1 o R4~ MP3 chp eh

L5 0 4 4 MP3 c? s O RSN il 2 P S AT RIS e

MP3 # 4 » B b H Bi7 “IERE R L) F X PARTREESE A
FHR$Er BT LTRH GBELRAE THE HBEFLET 6 R

T AR g TG PIMP3 F Rz B RG £ R SRR HF # kD

F AP e BL 1 A fe bit reservoir ¢ * A Rl oo TG 2 R
ADSP-2181 #ci= M BLAST B+ F I > A & R TG T L 17 0 T R e

Bl 5 ke o Bom e g & 3?ﬂ“’i*§'i”ﬁ;’£%$ﬁﬂl\/lpsﬂﬂ;%* ADSP-2181 + i * 7

20.7Kbytes 4% ;¢ 25 .48 fr 23.6Kbytes chF #lze a4l - ¥ @ & 18MIPS ;T‘},;? L
]:—Eﬂfg‘—,“‘itz‘ﬁsifg » K ik gt By ¢ BB00eriE B o5y 4 o b F,’”\;fi N T Rt T

MPEG-2/Audio AAC # ¥ MEPG-4/Audio AAC 42 » ¥ % & &3 & * & MP3 i &

TR

A Study of Data Embedded Method on
MPEG/Audio and Implementation of Data
Embedded Decoder on the ADSP-2181 DSP

Processor
Student : Ruang-Huang Huang Advisor : Prof. Ching-Cheng Teng

Co-Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering
National Chiao Tung University

Abstract

In this thesis the method and implementation of embedding data into MPEG/Audio
will be discussed. The purpose of embedding data into MP3 is to add applications and
functions of MP3, as well as to-facilitate the: music company to provide additional
service to customers, for example;.adding pictures of singers, background information
or lyrics into MP3 for synchronous display. Data embedded encoder and decoder will be
introduced in this thesis. The data embedded encoder, implemented on PC, is to embed
data into three less important music regions in MP3, causing less influence to the
quality of music. These three music regions are: sign bites which exceed 10 KHz in
big-value region, sign bites in countl region, and unused bites in bit reservoir region.
Data embedded decoder, ported on ADSP-2181 DSP processor, is to catch data for
analyzing and executing synchronous display of lyrics and pictures. The MP3 data
decoder in ADSP-2181 uses 20.7Kbytes of program memories and 23.6Kbytes of data
memories, and will accomplish real-time playing in 18MIPS, occupying about 55%
processing power of the DSP. This approach can be applied in MPEG.-2/Audio ACC or
MPEG-4/Audio ACC as well, not only in MP3 algorithm.

-g\
[\
‘—\-

—'FT' i}ééﬁ»fﬁ"‘}%‘fif}iﬁ’ffi ’a%éf}{:};’:ma‘ﬁéﬁ- » JEs i A b EAE: S IV : Zf =)
FHR o rfRAR AR 4 o XL REREFOFET TR AEORE ok

%‘%E’f"?}{% OJ:T)LE!\P ;{I-L‘jﬂk.’b j\?{:ﬁ'\?)

BRI RREHANL o - bt Fa@ R g GBS
Ph L4k 0 BRI (e ELE B A R - Aey 4 cniBde o p AR ey
B S Efcmme 8 AN ATy B FlEEprs pEF BAF S 25 2 0AH
SRS RAFL VORISR R c M AAFE N foAFr I nE P EE BB
HArEE o B K kPSR P ARG EEE BT E B F oA E R
RE L FABRFREX DR R E L B K& ot - AeTEE TR LR

FoRFHv Pzl e BERPHH v AL AR ENTFELIP AP o
BER B RHA N ABEA N 2 P L B3 R (TR A
17 4% FHE- 440 RF pERNE T

P O N N S NNV N’ o
7#2{ [N IFQF—F;‘}\A; fj.@{ﬁ'\? ;t;\:m%:r;g °

BB R RS A RE AT FAAEF S HEE I L M A A
FEART L P ARy 4 o F A R A o

Award

¥ TARIGTE, ¥- %

Ehul

@S e T mp3 § % 284

w O

ol

hEEE aE

01012000

[El- EHE E i AEE
a4 Guik L 0l b WK

B o oo B K e B M 4 ;-_
By Bu el %

A&
%ﬂ@%%%%%m@&;

Mo RwAg Y
s ’ (@ “

RIS
Hu;ﬂ:?ﬁ‘

T ;'—.-%' L |
RN (R B

Contents

FE B s |
PN TS YO [OOSR 1]
- - PO PRSP i
F VYN 5 L v
(O VI I = I 1S TR Vi
LIST OF TABLESottt et s e e e s et e e e s sttt e e s s b ae e s s ebb e e e ssabasessabaneessabaneaas X
LIST OF FIGURES ...ttt et ettt e s st e e s b e e e st e e e s sab e e e s st be s e sabaaeessrbeeeas Xl
CHAPTER 1 INTRODUCTIONoi ittt ettt ettt e sttt s e s ettt e s s sabaa e s s bte e e sasaesessanes 1
1.1 RESEARCH BACKGRAOUND ... i i e s souvreiiee e e e s sibbtrie s s e s s seabbbasesesssesabtbessssssssssbbesssasssssnsns 1
1.2 RESEARCH IMOTIVATION Lottt ise casiethe i a¥aetereseessessssssessesssssssssssssesssasssssessssssssssssresseessssisnns 1
1.3 INNOVATION L iestivveresieesss asastaessasesesboressaiileessssssssssssesssssssssssssesssassssesssesssosssssesssessssssssresees 2

I 20 N |V | = B 1o 0 o 1= 2

IO 02 Y | = B 0 T Tt Yo T 2

1.4 CHARACTERISTIC 11ttiieiiiiiittittiee e e et iebbbteee s e et saitbb e ee s e e s s asbb b e te s e e e e s sab bbb e e e e e s s saabbbbeeeseesseabbbaees 2
15 CONTENT ORGANIZATION L1uviiiiiiiiiitittieeie e s seibtbtes s e e s s e sbbbatesasssssabbassessesssasbbbbasssesssassbsbaens 4
CHAPTER 2 DATA EMBEDDED ALGORITHM IN THE MPEG/AUDIO.......cc.cccovvviveererne 5
2.1 INTRODUCTION TO IMPEG AUDIO......utuiiiiiiiiieiieiiee ettt ettt s e st ae e s e s s s e sasabaee s 5
2.1.1 Introduction of the MP3 Encoder Algorithmcccooevviieveninnieiee e 7

2.1.2 Introduction of the MP3 Decoder Algorithmcccceveviiievvsiseceece e 8

2.2 INTRODUCTION OF DATA EMBEDDED METHODS ...cviiiiiiitiiiieie s ieibtieees e s s ssissseeesesssessssseees 9
2.2.1 The Principle of Watermarking Algorithm............cccccoiiiiiiiinineeee e 9

2.2.2 Main Characteristics for Watermarking Algorithm...........cccooeiiiiiiiniiines 10

2.2.3 Applications of Watermarking AlQOrithm..........cccocooeiiiiiiniiiieees 11

Vi

2.2.4 Classification on Watermarking TEChNIQUEScocvivrviiiieii e 12

2.3 DATA EMBEDDED CODEC ALGORITHM FOR MPEG/AUDIOcociiiriinnneiesree s 12
2.3.1 The Properties of Data Embedded COdEC..........ccceveriieiiiieii e 13
2.3.2 The Structure of Data Embedded COUEC...........coviireiierieeieriee e 16
2.3.3 The Methods of Data Embedded COUECcocvrieiiiiiiiiiccce e 18

2.3.3.1 Embedded Data into the COUNtL REGIONc.cvvviiiireiiiiiiisiei s 18
2.3.3.2 Embedded Data into the Big-Value REJION..........coviiiiiiiiiieieict e 20
2.3.3.3 Embedded Data int0 Bit RESEIVOIN.........coviviiiiiiiiiiiiecte e 24
CHAPTER 3 ENVIRONMENT OF HARDWARE AND SOFTWAREcccooiiiiiiiiiiiien 27

3.1 HARDWARE ENVIRONMENTciutiiiiitinit ittt 27
3.1.1 ADSP-2181 EZ-KIT Lite BOAIcceiiiiieiieieieie et 27
3.1.2 ADSP-2181 MiCIOPIOCESSOI 1. . vcevereerereeseatereesearessesessesseseasessesessessesessessesessessesessenes 28

3.2 SOFTWARE ENVIRONMENT 1 oueufr e 5afbarceeeesreneesesre e nn s nn s nnenes 31

CHAPTER 4 IMPLEMENTATION:OF DATA EMBEDDED CODEC........c.ccccvviiiiiiiiiiinn 35

4.1 DATA EMBEDDED ENCODERcimftatieenrisriiieie i s 35
4.1.1 Package Embedded Data..........couiieieiiiiie e e 35
412 Embed Data into the MP3 File.........ccoiiiiiii s 38

4.2 DATA EMBEDDED DECODERc.vitiitiiiiitisieseee sttt st 40
421 Extract Data from the MP3 File........ccooiiiiiiiecne s 41
4.2.2 Porting MP3 Decoder with Data Embedded Decoder on the ADSP-2181 41
4.2.3 Data Stream ANAIYZELocoveicieie e e 43
424 LYFCANAIYZEL oot b ettt e b e b e 46

4.3 EXPERIMENTAL PROCESScciutiutiitisrisie sttt sne st sne st sn et ane st ne s ane s 48
.31 ENCOUING .ttt bbbttt 48
T B T ToTo T |1 3o P 49

4.4 EXPERIMENTAL RESULTS......viiiiiiiiiiiii s 54

vii

441 The Embedded Bits Counts of the Different Methods............ccovveviivieccic e 54

4.4.2 The Encoding Speed of the Different Methods..........ccccoiveviiviieie v 56

4.4.3 The Music Quality of the Different Methods...........ccccovvviviriiviiecieienece e 58

4.4.4 The File Size of the Different Methods.........cccooveiiiiiiiiciici e 60

445 Comparison with other Methods ..o 61
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS........ccooiiiiitieine e 63
5.1 107N o I U]] 1 J SR 63
5.2 FUTURE WORKS ...ttt e sttt ettt steeste e sneesnaesteetaenteenteenaesseenteesaeenanenenaneas 64
REFERENCES ..ottt sttt s b et bt et s bt et s bt te st et te st et e be st et ete e 65
APPENDIX A MP3 ENCODER/DECODER ALGORITHMccooiiiiiiiineecee e, 67
Al THE STRUCTURE OF MP3 ENCODER ALGORITHMviiiieeiiiieiieesiriesreesinessneesenessneesenes 67
A1l Analysis Polyphase Filer-Bank . ..o 68
A.1l2 MDCT andAlias REAUCTION ...l ot e 71
A.1.3 PsychoaCoUSHIC MOUB .. ietiureeereereeriestese st e et e et e et nne e 73
A.L4 Nonuniform QUANTIZALION it e ie e e i et s reene e 76
ALS5 HUFMAN ENCOUING...c.eiiiiiii i 77
ALB Bitstream FOrmMattingccocooiiiiieie e e 78

A2 THE STRUCTURE OF MP3 DECODER ALGORITHM.....ccitiiiiieieeieiiesieesieesteesieesiessressneseeens 78
A.2.1 Decoding of BitSIrEAMcccveieeie e 79
A.2.2 INVErse QUANTIZATIONccveiieiiictiecre ettt ebe bbb ebe e beebesaae s 81
A.2.3 Frequency t0 Time MapPiNg.....cccccioiiiieieiisese e ee ettt e e sr e s sne e 81

APPENDIX B INTRODUCTION TO THE TESTING STANDARD OF THE MUSIC

(18 7N I L I 2] T PSRRI 84
B.1 INTRODUCTION ... utttttiieeee s ittt et e e e s s ettt b e et s e e s sesabbbtteaessssabbebeeasesssasbbebasasesssassbbbesssessssssnses 84
B.2 DESCRIPTION OF PEAQci ittt sttt et te et esnte s snteesnve e snteesnbeesnneesnee s 84

viii

List of Tables

TABLE 1 CLASSIFICATION OF WATERMARKING ACCORDING TO SEVERAL VIEWPOINTS [10]

.. 12
TABLE 2 CLASSIFICATION OF THE WATERMARKING TECHNIQUE IN THIS THESIS............... 14
TABLE 3 THE PARAMETERS OF THE HEADER IN THE PACKAGE FILE ... 36
TABLE 4 THE SPEC. OF THE MP3 DECODER WITH DATA EMBEDDED DECODER ON THE

ADSP-218L.....coeeee Rt 43
TABLE 5 THE INFORMATION OF “O1-CAN ...ttt 49
TABLE 6 THE EMBEDDED BITS COUNT OF THE DIFFERENT METHODS...........cccooeiiiiiiiie 55
TABLE 7 THE EMBEDDED BITS COUNT PER FRAME BY THE DIFFERENT METHODS............ 56
TABLE 8 THE SPEC. OF THE TEST PLATFORMocoiiiiiii e 56
TABLE 9 THE ENCODING SPEED QOFTHE DIFFERENT METHODS BY FLOATING POINT

ENCODER ..o 0 B B, "I e e 57
TABLE 10 THE ENCODING SPEED OF THE DIFFERENT METHODS BY FIXED POINT

[\ [010] D] = SUTTRRTRTRTRIIN.- T A 8 ==t R PPN 58
TABLE 11 THE TESTING ENVIRONMENT OF THE MUSIC QUALITY ..o 59
TABLE 12 THE MUSIC QUALITY OF THE DIFFERENT METHODScccccviiiiiiiic 60
TABLE 13 THE FILE SIZE OF THE DIFFERENT METHODS.........ccoiiiiiinseceeee e 61

List of Figures

FIG. 1 THE HIERARCHY OF THE ISO MPEG STANDARD........ccciiiriiereeie s 6
FIG. 2 THE COMPARISON OF THE ISO MPEG AUDIO STANDARD COMPRESSION RATIO......... 7
FIG. 3 MPEG-1/AUDIO LAYER 3 ENCODER BLOCK DIAGRAM [5].....ccceiiiiiiiinieeienee e 8
FIG. 4 MPEG-1/AUDIO LAYER Il DECODER BLOCK DIAGRAM........ccceiiiiniiieneese et 9
FIG. 5 COMBINATION OF THE WATERMARKING PROCESS ON MPEG/AUDIOcccocvevnnae 10
FIG. 6 THE STRUCTURE OF DATA EMBEDDED ENCODER..........ccccoiiiiiiiieeeeeseee e 17
FIG. 7 THE STRUCTURE OF DATA EMBEDDED DECODER..........ccccooiiiiiiieseesee e 18
FIG. 8 THE ABSOLUTE THRESHOLD OF HEARINGccccoiiiiiiiiiii e 19
FIG. 9 THE FREQUENCY LINE MAPPING TO FREQUENCYccccciiiiiiiiiiii e 22
FIG. 10 THE DISTRIBUTION OF MUSIC QUALITY AND BITS IN THE BIG-VALUE REGION23
FIG. 11 THE DISTRIBUTION OF MUSIC QUALITY AND BITS IN THE BIG-VALUE REGION24
FIG. 12 THE BITSTREAM ANDBITIRESERVOIR OFAMP3 ..o 25
FIG. 13 THE RESERVOIR OVER 512 BY TESAND STUFF “17 ... 25
FIG. 14 EZ-KIT LITE’S FUNCTIONAL BLOCKDIAGRAM [15]....cociiiiiiieireeeneece e 28
FIG. 15 ADSP-2181 FUNCTIONAL BEOCK DIAGRAM [L7] .ottt 29
FIG. 16 HARVARD ARCHITECTUREcoiiiiii i 30
FIG. 17 VISUALDSP USER INTERFACEcoooiiiiiiiirt e 32
FIG. 18 THE FORMAT OF THE PACKAGED FILE........ccoiiiiiiieseree e 37
FIG. 19 THE FLOWCHART OF THE PACKAGED FILEccoiiiiieeeeeeee e 38

FIG. 20 THE BLOCK DIAGRAM OF THE MP3 ENCODER WITH DATA EMBEDDED ENCODER 39
FIG. 21 THE DISTRIBUTION OF THE UNNECESSARY BITS OF THE BIT RESERVOIR IN MP3
SONG [L0]:evvvvveeeeeeeeerereees e eeeeeeeeseesese s eesse et eess s eeeeeeseeeeeee 40

FIG. 22 THE BLOCK DIAGRAM OF THE MP3 DECODER WITH DATA EMBEDDED DECODER 41

FIG. 23 THE FLOWCHART OF THE DATA EMBEDDED ANALYZERccooiiiiiiiieineree e 45
FIG. 24 THE FLOWCHART OF THE LYRIC ANALYZER ..ot 47
FIG. 25 THE EXTRACTED LYRICS OF THE MP3 SONG.........cccciiiiiiiiiiiii e 50

Xi

FIG. 26 PHOTOLUIPG ...ttt ettt 51

FIG. 27 PHOTOZ2JPG c.vveooooooeeeeeeeeeeeeeeeeeeeeeeeeee e eeeessessseeese s eeeessssssseee e 51
FIG. 28 PHOTOB.JPGooooooeeoeeeseeeeeeeeeeeeeseseeeeeeesessesee s eeessesseeeeeeseseesse s eesessssssseeesee e 52
FIG. 20 PHOTOAIPGoooooooooeeeeeeeeeeeeeeeeeeeeseeeeeeeeseseeeses s eeeeesesseeesse s sess e sessseseseee e 52
FIG. 30 PHOTOB.JIPG c....oooooeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeseseesss s eeesesseeessessseeese e sessssseeeee s 53
FIG. 31 PHOTOBIPG c....coooooerereeeeseeeeeeeeeeeeeeseeeesesseseesssesee s esssesseeeeseseseesseess e sessssseeeesesesessesees e 53
FIG. 32 MPEG-1/AUDIO LAYER 3 ENCODER BLOCK DIAGRAM [5]....oovvvoveveeeeeeeccreresesseseseeeee 68
FIG. 33 ANALYSIS SUBBAND FILTER AND MDCT ..oovovooveeeeeeceeeseesseeseeeeeeeeessseseeeeeessessseseeeeeeee 68
FIG. 34 COEFFICIENT OF C[NJ AND HN]J (N = 0~511)ooooooooeeeeeeroeeeeseeseeeeeeeeeeseeeeeeeesessssssessseeeeeee 70
FIG. 35 FREQUENCY RESPONSE OF SUBBANDoovvevooeeeeeeeeeesesesssesseeeeeeesesseeeeseeesesssessesseeeeeeees 71

FIG. 36 ILLUSTRATION OF THE FOUR APPLICABLE WINDOW TYPES AND USING

CONDITION ...ttt e et r et h et se e n bt r et et e snearennenne s 72
FIG. 37 ILLUSTRATION OF ALIAS REDUCTION BUTTERFLIES.........ccooiiiieiieceece 73
FIG. 38 THE ABSOLUTE THRESHOLD OF HEARING =..........cooiiiiiieiieeeneeeee e 74
FIG. 39 FREQUENCY MASKING THRESHOLD*AND THRESHOLD IN QUIET [8]cevvvrveveiinns 75
FIG. 40 TEMPORAL MASKING THRESHOLD [8] i v cveitiieiiieieesieee et 76
FIG. 41 MAIN DATA ORGANIZATION OF AFRAMEcocoiiiiitc e 78
FIG. 42 MPEG-1/AUDIO LAYER 11l DECODER BLOCK DIAGRAM.......cccooiiiriiiieincieseens 79
FIG. 43 DECODING OF BITSTREAM BLOCK DIAGRAMcoocciiiiieitieree st 79
FIG. 44 MPEG-1/AUDIO LAYER 11l HEADER FORMATocoitiiriiriinireenes e 80
FIG. 45 FREQUENCY TO TIME MAPPINGcoiiiiiiiiiiii s 82
FIG. 46 BLOCK DIAGRAM OF MEASUREMENT SCHEMEcccciiiiiii 85

Xii

CHAPTER 1

Introduction

1.1 Research Background

In recent ten years, the popularization of Internet and the rapid development of
computer industries make our life more convenient and comfortable. People can
communicate by sending messages to each other via electronic(E-) texts, E-mail,
E-news, digital image, audio, video etc. under the connection of Internet. Meanwhile,
digital music also replaces the traditional music which can be diffused quickly on the
net, causing multi-media industry a great loss. The popularity of MP3 has a great impact
on the music industry indeed. Some network companies which provide P2P service
share the market of the traditional imusic campany using the network connectivity

convenience, such as Kuro; ezpeer,€tc.

1.2 Research Motivation

The technology of MPEG Audio [2] provides low bit rate and low computation
requirement for high quality audio compression. Therefore, it is widely used for storing

nearly all kinds of music.

The invention of digital music has changed the consumption model of the
traditional music market. Selling music on the net becomes a new model, and also a
main trend. Competitors for music content providers increase since they can sell music
on the internet, too. The music content providers must offer additional services to
compete with the competitors and attract more customers. Data embedded technique can

be one of the weapons in the market. Nevertheless, techniques of data embedded which

differs from the Cryptography System [1] are to embed extra information into

multimedia work, such as MP3 (MPEG -1 Audio Layer III).

1.3 Innovation

1.3.1 MP3 Encoder

In this thesis, the data embedded methods are developed to embed data into MP3
file without depending on the absolute threshold of hearing of the psychoacoustic model,
because the psychoacoustic model of the MP3 algorithm is removed in our MP3

encoder.

General watermarking technigues ,or data hiding techniques reference the
psychoacoustic model [14] .in the music compressing technique. But the computation of
the psychoacoustic model is a great quantity-of ratio in the MP3 encoder, and it
accounts about 20% computation:of the:MP3 encoder. Our MP3 encoder not only can
embed data without making influence to the music quality but improves the encoding

speed.

1.3.2 MP3 Decoder

In general, the MP3 decoder playing the MP3 file with lyric must have an
additional lyric file and install a plug-in software to play the lyric. Some users even
don’t know where to find the lyric file. The data embedded method will solve the
problem. The lyric of a MP3 song can be embedded into the MP3 and the MP3 decoder

with data embedded decoder can play the song and show the lyric concurrently.

1.4 Characteristic

In this thesis, we try to find ways to embed digital data into MP3 and combine the
embedded data codec with an MP3 codec. This technique for data embedding can
include a great amount of information, such as lyrics, pictures of the singer or other
information. There are several characteristics:

* Won’t changing the file size, and won’t be noticed by users

Data embedding techniques won’t cause negative influences on quality
of audio work and will not be noticed by users or attackers.

* Using for network streaming broadcast

The data is embedded everywhere not in the beginning of the music file.
If the music receives from the half of the music file on the internet, the music
player also can extract the embedded data. So the music file with embedded
data can be used on the network streaming broadcast.

* Providing additional service by music content provider

The MP3 encoder with data embedded encoder can be used for the music
content providerito embed some information about singer in the MP3 songs.
The content provider ean provide this new service in their music product. In
other way, content provider will have more advantages to fight the pirates.

* Portable MP3 decoder with data embedded decoder

The MP3 decoder with data embedded decoder has been ported on the
ADSP-2181 processor. It can combine with the USB storage device and LCD

display to become a portable device.

The data embedded technique improves the encoder and the decoder respectively.
Its dedication to encoder is the technique that data embeds into the MP3 without
referencing the psychoacoustic model. In decoder the data embedded technique is
ported on DSP platform, ADSP-2181, to realize the data embedded decoding. It could

further be developed as a portable product. To sum up, the purpose of this method is to

increase the applications of MP3 music media.

1.5 Content Organization

This thesis contains six chapters. Chapter 1 is in the premise. Chapter 2 introduces
three methods which are used to embed data into the MP3 file in this thesis. In Chapter
3, the hardware and software environment where the MP3 decoder with data embedded
decoder ported is developed are introduced. Chapter 4 presents the implementation and
performance verification of these methods. This thesis finishes with conclusion and
future works in Chapter 5. Appendix A introduces the MPEG-1 Layer Ill codec
algorithm, which is including the brief principles and functionality. Appendix B

introduces the ODG standard which is used for testing the music quality.

CHAPTER 2
Data Embedded Algorithm in the MPEG/Audio

In this chapter, we will describe the MPEG-1/Audio compression algorithm briefly
and the MPEG-1/Audio format. This serves as the necessary background of
understanding our MPEG-1/Audio data embedded schemes. The data embedded
technique will be introduced in Section 2.2. It includes the principle, the application,
and the classification of the data embedded algorithm. The data embedded algorithm
that used to implement the data embedded codec about the MPEG/Audio in this thesis is
introduced in Section 2.3. Section 2.3 introduces the data embedded encoder which
includes the principles, the application;sthe advantages, and other methods to embed
data into the MPEG/Audio. It introduces the data embedded decoder which extracts the

embedded data.

2.1 Introduction to MPEG Audio

The ISO MPEG standard [3][4] contains four parts for compression standards
shown in Fig. 1. The MPEG-1 is divided into five parts, namely system, video, audio,
compliance testing, and software simulation. The MPEG-1 audio algorithm is an
international standard for digital audio compression and does not make any assumptions
about the nature of the audio source. It is suitable for audio-only applications as well as

combined with video data (MPEG Systems Coding).

ISO MPEG Standard

MPEG-1 MPEG-2 MPEG-7 MPEG-21
I I I I I
System Video Audio Compliance Testing Software Sumulation
]
[1 1
Layer 1 Layer 2 Layer 3

Fig. 1 The hierarchy of the ISO MPEG Standard

Depending on the applications, MPEG audio coding system can also be divided

into three

layers with increasing encoder complexity:
Layer |

Layer | contains. the basic ‘mapping of the audio samples into 32
subbands, fixed segmentation to format the data into blocks, a psychoacoustic
model for the bit allocation, and quantization. It best suits the bit rate above
128Kbps per channel.
Layer Il

Layer Il provides additional coding of bit allocation, scale-factors and
samples. It targets the bit rate around 128 Kbps per channel.
Layer 111

Layer Il introduces increased frequency resolution based on a hybrid
filterbank. It uses non-uniform quantizer and entropy coding (Huffman
Coding). It offers the best audio quality at the bit rate around 64 Kbps per

channel.

The MPEG audio compression is a lossy algorithm and uses the special nature of
the human auditory system (HAS). It removes the perceptually irrelevant parts of the
audio and makes the audio signal distortions inaudible to the human ear, so it can
provide compression ratios ranging form 2.7 to 24, see the Fig. 2. The compression

ratios depend on different predefined fixed bit rates ranging from 32 kbps to 224 kbps.

1:12 Compression ratio

Layer Il

1:8 Compression ratio

1:4 Compression ratio

Source WAVE File
\ \

Fig. 2 The comparison of the ISO MPEG Audio standard compression ratio

2.1.1 Introduction of the MP3 Encoder Algorithm

The description of the encoding process is based on the block diagram in Fig. 3.
The input audio signal which comes from a single channel PCM signal is passed
through a polyphase filter bank. This filter bank divides the input signal into 32
equally-space frequency subbands. After this process, the samples in each subband are

still in the time domain. A Modified Discrete Cosine Transform (MDCT) is then used to

map the samples in each subband to frequency domain. In the meantime, input signal
after FFT transformation passes through a psychoacoustic model that determines the
ratio of the signal energy to the masking threshold for each subband. The distortion
control block uses the signal-to-mask ratios (SMR) from the psychoacoustic model to
decide how to assign the total number of code bits available for the quantization of the
subband signals to minimize the audibility of the quantization noise. The quantized
subband samples are coded with the lossless Huffman coding to decrease the entropy of
samples. Finally, the end block takes the Huffman coded subband samples and side

information into a packed bitstream according to the MPEG/Audio standard.

N) Distortion
Digital Audio control loop
signal (PCM)

Filterbank 32
subbands

FFT 1024 Psychoacoustic
points model

Fig. 3 MPEG-1/Audio Layer 3 encoder block diagram [5]

Huffman
encoding

Non-uniform
quantization rate
control loop

Bitstream

formatting

Coding of
side-information

2.1.2 Introduction of the MP3 Decoder Algorithm

In this section the MPEG-1/Audio Layer Il decoder will be described with its
functionality. The decoding process is based on the block diagram in Fig. 4. The
decoder has three main parts: “Decoding of Bitstream”, “Inverse Quantization”, and

“Frequency to Time mapping”.

The input coded bitstream is passed through the first parts to synchronize and

extract the quantized frequency line and other information of each frame. The inverse

quantization part dequantized the frequency line according to the output of previous part.
Finally, the last part is a set of reverse operations of the MDCT and analysis polyphase

filter bank in the encoder. Its output is the audio signal in PCM format.

Coded Digital Audio
audio signal signal (PCM)

Inverse
Quantization

Decoding of
Bitstream

Frequency to
Time mapping

Fig. 4 MPEG-1/Audio Layer 11l decoder block diagram

2.2 Introduction of Data Embedded methods

There are many watermark techniques [8] in terms of their application areas and
purposes. The technology of data.embedded is a kind of watermarking. It is also related
to the science of steganography. The word steganography is derived from the Greek
words stegano (hidden) and pgrphein.(to write) and therefore means *“covered writing”.
Data embedded of MPEG/Audio is atechnigue for the transmission of additional data

along with audio signals existing-distribution channels.

The principle, the characteristics, the applications, and the classifications are

introduced in the following:

2.2.1 The Principle of Watermarking Algorithm

Mathematically, data embedded can be expressed like EQ 1. If an original audio
signal A and a watermark W are given, the watermarked audio signal A’ is represented

as the following Eq. 1.

A=A+ f(AW) Eqg. 1

Fig. 5 shows the combination of the watermarking process which includes

inserting and extracting watermark.

S W :
watermark |.<
\ 4
MPEG/Audio
Se=== Encoder &
==AJ-| Bitstream 1
CM music signal watermark Comprgssed
P 9 . audio signal
inserter
watermarked
A
MPEG/Audio
S Decoder &
A== Bitstream
PCM music signal watermark
extractor
A
K

e

Watermark : T,

Fig. 5 Combination of the watermarking process on MPEG/Audio

2.2.2 Main Characteristics for Watermarking Algorithm

There are many watermark characteristics, which may be required for an effective
watermark, but the following main characteristics are important ones.
e Invisibility
It is not able for human sense system to find the difference between the

host media and watermark media. This is the essential requirement of all the

10

2.2.3

data hiding system including watermarking system. This is why the
watermark hidden in the audio must be music inaudible.
Robustness

Robustness, also an essential requirement is the ability to resist some of
the signal processing operations, such as filtering, compression and the
identifiable degree of the retrieved watermarks. The embedded algorithm
must make chance to fight against the different kinds of signal processing
operations. In general, the more robust the watermarking techniques have, the
fewer capacities we can embed.
Security

After the watermark embedding, if someone wants to take out the
embedded watermark, he must own some of the secret information related to
the original signal.«In general, to keep secret of the embedding algorithm is
not easy, so the safety of the embedding system relies on the secret key which
represents the location that'watermark embedded. Using the secret key as the
seed of the random*number generator, we can get a serial random number and
cooperate with an algorithm to embed the watermark. Therefore, the secret

key is necessary to extract the watermark from the embedded media.

Applications of Watermarking Algorithm
Compatible Transmission of Data (Watermarks)

Basically watermarking algorithms provide a data transmission channel
that can be used in existing distribution channels. The data hiding (watermark)
transmission is backward compatible in the sense that every existing channel
that is able to carry watermarked music. Hence watermarking can be utilized
in a wide field of applications.

Digital Rights Management (DRM)

11

Digital Rights Management is often considered as the main application
of watermark. Watermark can provide means to fulfill the demands of DRM,
such as proof of ownership, access control for digital media, tracing illegal
copies and so on.

* Broadcasting

A variety of applications for audio watermark are in the field of

broadcasting. These include program type identification, advertising research,

broadcast coverage research and etc.

2.2.4 Classification on Watermarking Techniques

The data embedded technique has different insertion and extraction methods, and

may be classify and analyze these methods from the various points of view like in Table

1.

Table 1 Classification of watermarking according to several viewpoints [9]
Classification Contents
Inserted media category text, image, audio, video
Perceptivity of watermark visible, invisible
Robustness of watermark robust, semi-fragile, fragile
Inserting watermark type noise, image, format
Processing method | Spatial domain LSB, patchwork, random function

Transform domain | Look-up table, spread spectrum
Necessary data for extraction Private, semi-private,
public watermarking

File size Vary or not

2.3 Data Embedded Codec Algorithm for MPEG/Audio

12

In this section, the properties and the data embedded codec algorithm which

includes several methods to embed data into the MPEG/Audio will be introduced.

2.3.1 The Properties of Data Embedded Codec

In this thesis, the MPEG/Audio signal is the inserted media because the technique
of the data embedded bases on the specification of the MPEG/Audio. The embedded
data is private information which is invisible and fragile. And the file type of embedded
data can be any format or just be a series of bitstream. In other words, any data can be
embedded into the MPEG/Audio media no matter what data type it is as long as the size
of the embedded data is not bigger than the upper limit of the embedded data of the

media.

There are three methods.for data embedding, embedded data into countl region,
embedded data into bit reservoir, - and modify the MP3 encoder from floating point to

fixed point.

Recent research has produced a number of algorithms for embedding and retrieval
of watermarks in audio signals [10] [11][12][13]. While most known systems operate in
the uncompressed domain (PCM Watermarking), few are capable of embedding
watermarks into compressed domain (Bitstream Watermarking) such as this thesis. The
classification of the watermarking algorithm proposed in this thesis as mentioned above

in Table 1 can be summarized and shown in Table 2:

13

Table 2 Classification of the watermarking technique in this thesis

Classification Contents

Inserted media category MPEG/Audio

Perceptivity of watermark invisible

Robustness of watermark fragile

Inserting watermark type Any format

Processing method: Frequency domain spread spectrum of high frequency
Necessary data for extraction Public watermarking

File size of inserted media No change

Inserted media category : MPEG/Audio

The data embedded,method designed flow is based on the property of
MPEG/Audio Specification:» The ‘"MPEG-1 Layer-3 (MP3) is used for
embedding data ‘in this thesis. After MP3 encoder doses MDCT
transformation which itransforms signal from time domain to frequency
domain, the frequency lines of the main data are distributed from low
frequency to high frequency in a frame as shown in Fig. 41. Data is embedded
into frequency domain by MP3 encoders, and extracted by MP3 decoders.
Perceptivity of watermark : Invisible

The embedded data as watermarks must be invisible because the inserted
media file is the audio file. The embedded data can not either affect the
quality of the original music or at least the affection can not be heard. The
MP3 decoder with data embedded decoder can be used to extract the
embedded data stream and reconstruct the embedded data stream to the
original file.
Robustness of watermark : fragile

Embedding data into MP3 music is additional service by the content

14

providers. But the purpose of embedding data is not to provide additional
protection for MP3 music, on the contrary, the embedded data becomes fragile
and easily distorted when the music is compressed. More robust the
watermark is, less space for data embedding. Therefore the fragile method is
preferred because more fragile the watermark is, more space for data
embedding.
Inserting watermark type : any format

The data type that is embedded into the audio file can be any file format,
because the embedded data stream has a header which records the
synchronization, the embedded file size, the embedded file length, and the file
data stream. The embedded data stream just is a series signal of “0” and ”1”
whatever any files types are. The extractor in the MP3 decoder can extract the
embedded data and an analyzer'-of embedded data can reconstruct the
embedded files.
Processing method : Frequency domain

The embedded. data is embedded into frequency lines of the frequency
domain after the MDCT transformation which transforms from time domain
to frequency domain.
Necessary data for extraction : public watermark

The embedded data belongs to public watermark. The embedded data
only can be extracted by a special decoder.
File size : no change

After the data embeds into the MP3 file, the MP3 file size that is
embedded data is the same to the MP3 file that is encoded by other MP3
encoder. One file is encoded by MP3 encoder with data embedded encoder,
and the other one is encoded by any other MP3 encoders in the same bitrate

and sampling rate. The size of the two MP3 files is the same, if they compare

15

to each other. They just can be differentiated by the MP3 decoder with
embedded data analyzer. The one which embedded data can extract embedded

information but the other one can’t.

2.3.2 The Structure of Data Embedded Codec

The data embedded codec are divided into two parts: one part is the data embedded
encoder, and the other part is data embedded decoder. The data embedded encoder
usually is used for content provider to provide additional service which embed lyrics,
the basic information of singer, the photos of the singer, and even the information of
customer into the MP3 audio. Almost all information can be embedded into the MP3
file under the upper bond of the size of the embedded data. The data embedded decoder
is used for users and combines with the MP3decoder. It can extract all the information
that is embedded in the MP3 files and display the information on the monitor. The MP3
decoder with data embedded decoder has-also ported on the ADSP-2181 to become a

portable device.

Fig. 6 indicates the structure of data embedded encoder. There are two source data
for encoding: one is the audio raw data, and one is the embedded data. If there are too
many embedded files input into the encoder at the same time, the encoder will confuse
the files. And it causes the decoder could not extract the embedded data. The embedded
data does not just include only one file. It may include two files or more, so a package
program is designed in order to pack all the files to become a file with special format for
encoding. The packaged file and the audio raw data input to the MP3 encoder with data
embedded encoder together, and the encoder will output a MP3 file with embedded data.
The file size after embedding data is the same to the file size which is encoded by other

MP3 encoder. The MP3 file which embeds data can also be played by any general MP3

16

player, and the embedded data won’t affect the quality of the music.

Embedded ————\\ pACKAGE FILE

Data A embedded file
Textor picture K——

WAVE Music MP3 Encoder with MP3 MQSIC
wav file Data Embedded MP3 file

N Encoder F with data embedded

Fig. 6 The structure of data embedded encoder

Fig. 7 indicates the structure of data-embedded decoder. The decoder structure is
the inverse flow of the encoder. The MP3 file-with embedded data as the input data
inputs to the MP3 decoder with 'data embedded decoder. The decoder has two output
ends: one is the music raw data, and the other one is the embedded data stream. The
music raw data is the same music of CD quality which decodes by other general MP3
decoder. The embedded data stream has to input the data stream analyzer to analyze,
and the data stream analyzer reconstructs the original embedded files. And the files

would be shown on the displayer or save as files in the disk.

17

MP3 ML.JSK: I MP3 Decoder with WAVE Music
. MP3 file Data Embedded
with data embedded E— Decoder

U

Data Embedded DATA STREAM —|—F FILES
Stream WRITE TO Text or picture
Text or picture stream FILE N file

wave file

Fig. 7 The structure of data embedded decoder

2.3.3 The Methods of Data Embedded Codec

In this section, there are some methods for data embedding. They are introduced in

the following subsection:

2.3.3.1 Embedded Data into the Countl Region

The countl region saves.the frequency. lines which distribute on the relative high
frequency in a frame. And the energy of the countl region is small than the energy of
big-value region. So the method of embedded data into countl region can affect the

quality of the music small.

General watermarking techniques reference the absolute threshold of hearing of the
psychoacoustic model [14] in the music compressing technique, as shown in Fig. 8. The
signal energy can’t be heard by people under the absolute threshold of hearing, and the
watermark usually hides under the absolute threshold of hearing, too. The signal of the

embedded data can’t be heard by people, so it would not affect the quality of the music.

18

100

The absolute threshold of hearing
T T T T T T

a0
a0
70
B0 |-----
50 I
Fa]| B 5

30

Sound Pressure Level, SPL (dB)

Frequency (Hz)

Fig. 8 The Absolute Threshold of Hearing

The computation of the psychoacoustic model is a great quantity of ratio in the
MP3 encoder, and it accounts‘about 20% computation of the MP3 encoder. The quality
of the MP3 music after the-AMP3 encoder.encodes without psychoacoustic model and the
bit rate sets 128kbps. The general“bitrate of MP3 is almost 128kbps now, but a few
songs even uses 128kbps for‘more high quality music. There are few songs encoded by
96kbps or less, because the quality is a little ugly. In order to speed up the encoding
time of the MP3 encoder, the psychoacoustic model of the MP3 encoder would be

removed for embedded system.

The MP3 encoding speed is speed up after the psychoacoustic model of the MP3
encoder is removed. On the other side, it is not good for data embedded techniques. The
data embedded techniques would easily destroy the quality of the music without the
reference of the psychoacoustic model. So should embed information in a situation
without psychoacoustic model, must look for other places that can embed information in
the music. The main condition of the place would not affect the original quality of the

music or the affect to the quality should be the lowest.

19

In this thesis, the method of data embedded bases on a principle that the sensitive
degree of different frequency bands for ears of people is different. The sound of low
frequency for common people’s ears, no matter how the loud voice of the sound is or
where the source of the sound is more relatively sensitivity to distinguish coming out.
But people’s ears are relatively insensitive to high frequency sound. The property is
used during MP3 encoding. The property is that people’s ears can’t distinguish the

phase of the high frequency.

The MP3 media data embedded technique is designed to utilize the different degree
of sensitiveness of human ears to different sound band. Normally human ears, despite
the volume or source of the sounds, are more sensitive to those with the phase of lower
frequency but are less sensitive to those with the phase of higher frequency. Using this
characteristic we develop modified MP3 coding technique, embedding the data in high
frequency sound band when._compressing ‘MP3 data files to decrease the negative
influence of the quality of the sounds.-Then:a MP3 media data decoder is being
developed. The embedded data will be shownh on the screen at the same time during

decoding.

2.3.3.2 Embedded Data into the Big-Value Region

The method of embedding data into the bit value region is the extended method of
Section 2.3.3.1, which embeds data into the countl region. This method uses the sign
bits of the big-value region for embedding data, and it is the same as Section 2.3.3.1,

which the sign bits of the countl region, is used for embedding data.

The property that people is less sensitive to the phase of the high frequency is used

in the last section. According to this property, the embedded data is used to replace the

20

sign bits which represent the phase of the high frequency in the countl region. For the
same reason, the sign bits that represent the phase of the relative high frequency can be
used for embedding data. People are sensitive to the sound of low frequency, so the
embedded data can not replace all the sign bits in the big-value region. It will cause lots
of distortion. The relation between changing the sign bit in the big-value region and the
quality of the music is pretty close especially the quality of the low frequency music.
For this reason, the lower limit of the frequency must be searched to make sure that the

embedded data won’t result in distortion.

There are 6,930 frames in a song which plays three minutes and four granules in a
frame. Therefore, there are 27,720 granules in a song. Changing the sign bits of the
countl region doesn't influence the music quality obviously because the countl region
represents the part of the relatively high frequency signal in every granule. The average
starting boundary of the countl region is.the 310th frequency line in the granule through
the frequency lines statistic..And it'maps to thereal frequency is 11.84 KHz, as shown
in Fig. 9. That is to say, without considering where the starting point of the countl
region is, the 310™ frequency line lies in the big-value region. When the data embeds in
the sign bits of the frequency lines after the 310™ one is replaced, the influence upon the

music quality is small.

21

scalefactor Frequency lines (576) Huffman Code

Region 0 | Region 1 | Region 2 lor0 00000000

-« Big value ——»-a— Count | —» - Zecro_region —*

e Part? length —w>-e————— Part3 length —— >

- Part2_3_length ———»
Frequency line 0 3|10 | 575
Frequency OKHz 11.84 KHz 22 KHz

Fig. 9 The frequency line mapping to frequency

The data space for embedding data into the big-value region is bigger than
embedding data into the countl region. .But the energy of the signals in the big-value
region is bigger than those:in the 'countl region. On the other hand, data embedded into
the big-value region has greater influence upon the music quality than the data
embedded into the countl region. If the quality of the music is highly considered, the

latter one is preferred.

Fig. 10 and Fig. 11 are shown two distribution of music quality and bit numbers in
big-value region. The meanings of the two figures are the different variations of music
quality and bit numbers which embeds data from different frequency in the big-value
region. In Fig. 10, if user embeds data from OK Hz, he can get a quantity of space about
620Kbytes for embedding data. But the music quality will be too worse to hear, the
ODG [20] is about -3.2. If user dose not need a big space for embedding data and needs
a better music quality, he can embed data from higher frequency, for example, 10K Hz.

The selected frequency for embedding data is a trade off between the music quality and

22

the bit numbers. Or user can embed data into the other two regions that provides in this
thesis. Embedded data into the big-value region affects the music quality easily, so the

big-value region is the last region that we suggest for embedding data in the three

methods.
oDG KE
-1 T T T T T 1000
] I S SN SUNUPN SOR s AR
—— Embed bits
1| — Testing quality
| — Original quality 500
25
-3
s i i | | | .
O 2 4 B 8 10 12 KHz

Fig. 10 The distribution of music quality and bits in the big-value region

(Sample name: 01-can)

23

oDG KB
150

-100

a0

- 1
o 2 4 B =] 10 12 K Hz

Fig. 11 The distribution of music quality and bits in the big-value region

(Sample name: speech)

2.3.3.3 Embedded Data into Bit Reservoir

In the MP3 encoder algorithm, an enhancement method called “bit reservoir” is
used to fit encoder’s time-varying demand on code bits. The encoder can donate bits to
a reservoir when it needs less than the average number of bits to code a frame. Next,
when the encoder needs more than the average number of bits to code a frame, it can

borrow bits from the reservoir mechanism, as shown in Fig. 12.

24

The bit The bit The bit
reservoir of re?erv01r2 of reservoir of
. rame
Frame_1 1s 0 - Frame_3
]
A \ 4
Header & Header & Header &
Side Side Side
information information information
y
Framel " Frame2 /" Frame3

main_data_begi

n=0

main_data_begin

~main_data_begin

Fig. 12 The bitstream and bit reservoir of MP3

In bit reservoir, there is a 9-bit flag to record the beginning point of the reservoir. If

the space of the reservoir is larger than 512 bytes, the excess space will have to be filled

in “1” and cannot be further utilized. Therefore these bits are all wasted, as shown in Fig.

13. It is often the case at the quiet sound part.in the beginning and the end of the music,

which mostly the entire frame'is filled.in “1” So these bits could be used for data

embedding.
The bit The bit The bit
reservoir of reifrvo1g<3f reservoir of
. rame
Frame_1 is 0 ame_ Frame_3
1
v
Header & Header & Header &
Side Side Side
information information information
N E 3
Framel ~ Frame2 ~ Frame3

main_data_begin=0 |

Over 512 bits

stuff “1”

main_data_begin

" main_data_begin

Fig. 13 The reservoir over 512 bytes and stuff “1”

Embedding data into unutilized bit reservoir space has a huge advantage :

25

It will

not influence the quality of the music at all. Because in MP3 decoding process, when
encountering redundant bit reservoir, the decoder will just read “1” from the bitstream
but not decode it. Therefore using these space filled in “1” to embed data will not

influence the quality of the music.

26

CHAPTER 3

Environment of Hardware and Software

In this chapter, the hardware and software environment are described briefly. The

data embedded algorithm is ported on the ADSP hardware, and the data embedded

algorithm is developed by the VisualDSP which is the software environment. The

hardware is concerned with the development of programs while the software influences

the development speed and performance.

3.1 Hardware Environment

3.1.1 ADSP-2181 EZ-KIT Lite Board

The hardware used in:this thesis is AnalogDevice ADSP-2181 EZ-Kit Lite board.

The EZ-KIT Lite consists of a.small ADSP-2181 based development/demonstration

board with full 16-bit stereo audio 1/O capabilities. The board’s features which shown in

Fig. 14 include:

ADSP-2181 16-bit 33 MIPS DSP
AD1847 Stereo SoundPort
RS-232 Interface

Socketed EPROM

User Pushbuttons

Power Supply Regulation
Expansion Connectors

User Configurable Jumpers

27

InCircuit Serial Port (RS232) Dc

Expansion Emulator Connector Power Supply
Connactors Connector Connector
AN x ¥
‘~ |

A CO0DCoOOn0DO0R0o00R000000
P3 BOOCCOGG0CO00000AIGRO00CE | (BP0 a5) 'E""““
8 on
g v
23 Al | Yeg Stereo

g1 Jz --—— Audio
§§ Signal = Output
83 Processor % Stereo
o4a E:ﬂ ur J1 :|-|— Audio
o0 EZICE AD1847 Input
ag Stereo Ling
% ANALOG Codec - J|_|
o DEVICES .|
8 vz W | bt
aa Socketed EPROM et
O l=—Pin 1) R (Default Shown)
P2 ADSP-2181 e ol @ O

EZ-KIT LITE 6600 F1 Reset Interrupt FL1%,
/ LN
\
EPROM Reset Processor Red
Configuration Button Interrupt FIagEDut
Jumper Button LED

Fig. 14 EZ-KIT Lite’s functional block diagram [14]

The board can run standalone-or cansimply connect to the RS-232 port of the PC.
A monitor program running on the DSP in-conjunction with a host program running on
the PC interactively download programs as well as interrogate the ADSP-2181. The
board comes with a socketed EPROM so that we can download the MP3 codec with

data hiding algorithm into the EPROM.

3.1.2 ADSP-2181 Microprocessor

The ADSP-2181 is a programmable single-chip microprocessor that uses a
common base architecture optimized for digital signal processing (DSP) and other
high-speed numeric processing applications. Fig. 15 shows the main functional units of

the ADSP-2181 architecture which functions are included in the processor.

28

) — 21xx CORE \] Ve ADSP-2181 INTEGRATION
POIWER- 2
DOWN
CONTROL
LOGIC
)| REGiTER | PRocat e
Bon2 o 16 e PROGRAMMABLE
{} oMa 110
DATA i CONTROLLER s
ADDRESS :
GENERATOR | | GENERATOR i E PGS [7
i = L 7 s A =
{} FMA BUS {} 1, PMa BUS [~
[°,
DM BUS N/ 1] | oMaBus |MUxl 7
[i EXTERMAL
m M ADDRESS
L~ BUS
FMD EUS u PMD BUS
— 7 [EXTERHAL
— DATA
e BUS
BUS i
EXCHANGE] oMD <i)
OMD BUS < G <7 Bl n
ii ii @ 1% L
i NS <
™ meur Rees IHPUT REGE IHPUT REGS COMPANDING e | 56
CIRCUMTRY s Ci:D
ALY MaC SHIFTER S, L- i R PORT
TRANSMIT REG TRANSMT REG
U OQUTPUT REGS |, LITEAN RECS RECEIVE REG RECEIVE REG
U U 1 {} SERIAL SERIAL 4
i | rot ot [romer k=2
FBUS
’ 3 .]

Fig. 15 ADSP-2181 functional block diagram [16]

Computational Units

The ADSP=2181 'processor contains three independent, full-function
computational units: an arithmetic/logic unit (ALU), a multiplier/accumulator
(MAC) and a barrel shifter. The computational units process 16-bit data
directly and also provide hardware support for multiprecision computations.
Data Address Generators & Program Sequencer

Two dedicated address generators and a program sequencer supply
addresses for on-chip or external memory access. The sequencer supports
single-cycle conditional branching and executes program loops with zero
overhead. Dual data address generators allow the processor to generate
simultaneous addresses for dual operand fetches. Together the sequencer and
data address generators keep the computational units continuously working,
maximizing throughput.

Memory

29

The ADSP-2181 uses a modified Harvard architecture in which data
memory stores data, and program memory stores both instructions and data,
as shown in Fig. 16. The ADSP-2181 contains on-chip RAM that comprises a
portion of the program memory space and data memory space. The speed of
the on-chip memory allows the processor to fetch two operands (one from
data memory and one from program memory) and in instruction (from

program memory) in a single cycle.

16K 24-bit
Program
Memory

ADSP-2181

16K 16-bit
Data Memory

Fig. 16 Harvard architecture

Serial Ports

The serial ports (SPORTs) provide a complete serial interface with
hardware companding for data compression and expansion. Both x -law and
A-low companding are supported. The SPORTSs interface easily and directly to
a wide variety of popular serial devices. Each SPORT can generate a
programmable internal clock or accept an external clock. SPROTO includes a
multichannel option.
Timer

A programmable timer/counter with 8-bit prescaler provides periodic
interrupt generation.

DMA Ports

30

The ADSP-2181’s Internal DMA Port (IDMA) and Byte DMA Port
(BDMA) provide efficient data transfers to and form internal memory. The
IDMA port has a 16-bit multiplexed address and data bus and supports 24-bit
program memory. The IDMA port is completely asynchronous and can be
written to while the ADSP-2181 is operating at full speed. The byte memory

DMA port allows boot loading and storing of program instructions and data.
3.2 Software Environment
The ADSP software offers a PC based debugger environment, called VisualDSP++
[17] which user can develop quickly and debug easily in programming stage. Fig. 17

shows the VisualDSP++ user interface. This software development support enables user

to develop DSP applications.

31

File Edit Session ¥iew Project Regier Memory Debug Se Tool: Window Help =18 x|

[peda(sy|irrlos aaatara|sisn|[we]

Ohmm|sEe L bae 5|3 0RGE |

e SRR R RV RTRR (Enk
1 s

BE N _
ADSP-2181 MDCT F:
= 5y paver] Soaao L tooozecy [000051] 1C0592 DADDOF =
= a Source Files GLOBAL sb_sample, start: [00076E] u luktbd43d

SECTION<dn data2; [000770]
VAR‘Circ log?_sample[200] = "log?_sample.dat": ##{sh sanple[3][2][2 [000772]
VAR/circ powi3_sample[63] = "povi3_sample.dat’: [000774] =

[000053] 430004 22600F
[000055] 0DOB0OA SOO00AD

3 Heater Files ViR/circ pow2l6_sample[21] = "pow2le_sample.dat”: [000776] st iigiégbomow
£ Linker Filss ViR/circ pov075_sample(63] = "Dovd3_sample.dat”:

' 2] ADSP-21BLLY [000778] u [000059] 0DODDS 400044

- [000774] [00005B] 22600F 0F0001

EETERN loge; [00077¢] [00005D] ODOAF ODOO0A
EXTERN powdd; [D0077E] uuu [0000SF] 430104 430195 [
EXTERN pow2lf; [000780] [000061] 22620F 0DOBOA

[ooo7sz]

#define ctrconst 201 [000784] 1 [000063] 500040 0DOO2A

[000065] 22680F ODOBOA

SECTION -dm datal; [000786] [000067] 20980F 5000C0
VAR

logzrelt[201]: [000788] u [000063] 21600F ODODAC
var povddrslt[63]; [000784] u [00006B] DAOOOF
var povzlersit[21]: [00078C] u powl?E
var powl?5rslt[63]: =M [00078E] uuu [00006C] 106008 0DOD19
[000730] [0000GE] 22E1FF 180714

SECTION/pm interrupts;

" 3 Pject [000792] wu
- = Jump start 7% Tinp over interrupt vectod [000794] uun

nop; nop; nop. =

o o

ed instruct|m Tti; rbi; rei; rei; #= code wectors hers upon interrupts =
Ioading: *C:“Docan TEL EEL; Eel) mEL #= code wectors here upon = (0000007
Tocd complete Tti; rbi; rbi rbi; #% code wectors hers upon [002376] o
Tl THil Tii: TEi: ~%* pode wectors here upon [002378] w [1 nop
Thiy bis Do phis /% code wectors here upom. 0029747 [000002] nop

[000003] nop

/% code vectors here upon IRQE interrupt %/ [oo297c] . [000004] rti
THii rti: Tti; rhi: 7% met flag to non-zero v [00297E] uun [000005] rti
Tti: Tti: rti. rti #% code vectors hers upon [002980] [000006] rti
Shon gD o st #% code vectors hers upon [002982] [000007] xt
Tti, Tti: rti, rti. /% code vectors hers upon [0023g84] LhE
Tti: rti: rti: rti: /% code vectors here upon 002988] [ODTIHIEY it i
rti; rti: rti; rei +% code vectors hers upon Ais5ee n [000009] rti
L 1 [000004] »ti
SECTIONpm progran; [002984] [00DODE] rti
D %ggg;g% [00000C] rti
: 00000D] rti
4/ call log2_start: [002990] EUUUUUE% rei
v/ call powdd_start: [002992]

s¢ call pow?lf_start: B [000OOF] rti
call powD75_start. [002994] u (0000107 rti

idle; L2336l 000011 rti

L[IUUZBBB] Ll;l LI Llll

> |
AT DI, consote ABIL] Del| [l |

= a%0 wuuu AX1 uuun AR HO FC 0000
AYD AYL uu AF H1 CNTR uuu
HEO M1 M2 C¥CLES
HYO MY1 HF M3
HR2 MR1 MRO uuun M4
SR1 . M5
SI uuuu SE uu SB uu Mo DHMOVLAY 0000
H?

Helted Line 1,Col 1 [|

Fig.,17 VisualDSP user interface
VisualDSP++ provides the foIIowin.g features:

Extensive editing capabilities
Create and modify source files by using multiple language syntax
highlighting, drag-and-drop, bookmarks, and other standard editing operations.

View files generated by the code development tools.

Flexible project management
Specify a project definition that identifies the files, dependencies, and
tools that is used to build projects. Create this project definition once or

modify it to meet changing development needs.

32

Easy access to code development tools
Analog Devices provides the following code development tools: C/C++
compiler, VIDL compiler, assembler, linker, splitter, and loader. Specify
options for these tools by using dialog boxes instead of complicated command
line scripts. Options that control how the tools process inputs and generate
outputs have a one-to-one correspondence to command line switches. Define
options for a single file or for an entire project. Define these options once or

modify them as necessary.

Flexible project build options
Control builds at the file or project level. VisualDSP++ enables to build
files or projects selectively, update project dependencies, or incrementally
build only the files that have changed since the previous build. View the status
of the project build_in progress. If the build reports an error, double-click on
the file name in‘the error-message to-open that source file. Then correct the

error, rebuild the file or project, and start a debug session.

VisualDSP++ Kernel (VDK) Support
Add VDK support to a project to structure and scale application
development. The Kernel tab page of the Project window enables to
manipulate kernel objects such as events, event bits, priorities, semaphores,

and thread types.

Flexible workspace management
Create multiple workspaces and quickly switch between them. Assigning
a different project to each workspace enables to build and debug multiple

projects in a single session.

33

Easy movement between debug and build activities
Start the debug session and move freely between editing, build, and

debug activities.

34

CHAPTER 4

Implementation of Data Embedded Codec

In this section, the design of data embedded codec will be introduced. In Section
4.1, the flow of design will be discussed, which includes packaging embedded data and
designing MP3 encoder with embedded data. Section 4.2 will introduce the design flow
of data embedded decoder, which includes the MP3 decoder with data extracting

decoder and the data embedded analyzer.

4.1 Data Embedded Encoder

The data embedded encoder contains two parts: packaging program and the main

data embedding program.

It is very important that*embedded data.cannot affect the quality of the music. Yet
another requirement is that the embedded data after being extracted by decoder must be
exactly the same as it was encoded by encoder. The bit stream of the embedded data
embeds audio file in series type, and the embedding data format must be pre-defined
otherwise the extracted bit stream would not be recognized by data analyzer. Thus, a
program package the files which will be embedded into the MP3 is needed, and the

package format also needs to be defined.

4.1.1 Package Embedded Data

The embedded data usually has several files, not just one. These files are

embedded in series but not parallel, and cannot overlap with one another. If the files mix

35

up with one another, the embedded data cannot be extracted by the MP3 decoder.

Therefore the embedded files must first be packaged.

Here is another problem that should be taken into consideration: the start point and
the end point of the files embedded, as well as the data embedded in series type, are not
known by the decoder. Therefore a header is defined for the embedded files and is
packaged in front of the embedded files. The header contains three parameters:
“synchronization bits”, “file length bits”, and “file type bits”, as shown in Table 3. The
first parameter, “synchronization bits” is defined to synchronize the start point of the
embedded file. It is accounted 4 bytes and has a value of 02040608. The second
parameter, “file length bits” is defined to record the size of the embedded file. It is
accounted 2 bytes and its value is the same as the size of the embedded file. The last
parameter, “file type bits” is defined to record the file type embedded into the MP3 file.
The maximum file size it can define'is 64K bytes. The “file type bits” is accounted 1
byte. The value 00 represents the txt file,-01 represents the jpg file, and 02 represents
the gif file, etc.. The “file type bits” can define as much as 256 types of files.

Table 3 The parameters of the header in the package file

Parameters Size value maximum
Synchronization bits | 4 bytes 02040608

File length bits 2 bytes The size of the file 64K Bytes
File type bits 1 bytes 00:txt 01:jpg 02:gif | 256 types

The packaged file contains all the files that will be embedded into the MP3 file.
The embedded files connect one another and every embedded file has an individual
header in front of the file, as shown in Fig. 18. The packaged files can be added on

before the total size exceeds the maximum embedded capacity of the MP3 file.

36

Synchonization
Headerl

File length
File type

File data

Synchonization
Header2

File length
File type

File data

Synchonization
Header3

File length
File type

Fig..18 Theformat of the packaged file

The following Fig. 19 is a flowchart shows how the packaging program is designed.
The parameters of the embedded file are read and saved into a register first. The lyrics
must start at the beginning of the music, so the text file is sorted at the first. Therefore
lyrics have first priority, and pictures shown on the display screen during which the
music is playing come in second. Next, the program identifies the file length and file
type for adding header at the next stage in the flowchart. Then the embedded file is
copied into the packaged file behind the header. If there are other files to be embedded
into the MP3, the program jumps back to the third stage of the flowchart for getting the
new synchronization, file length and file type. The loop will run continuously until there

is no files need embedding further.

37

start

A
Read the
parameters of the
embedded files

A

To sort files :
xt > .jpg > .gif

A

Find out the file length |
and the file type

A

Add header

A

Package into the file

Fig. 19 The flowchart of the packaged file

4.1.2 Embed Data into the MP3 File

From the structure of the data embedded encoder, as shown in Fig. 20, the

packaged file that embedded data has been packaged will be sent to MP3 encoder along

38

with the raw PCM data to be encoded. There are two ways to embed the package file.
One is embedding the data in countl region and big-value region while processing the
Huffman encoding. The other is embedding the data in the block of the bitstream

formatting bit reservoir, if there is redundant bites.

Packaged file Packaged file
|
Count1 region
Bit reservoir

o) Distortion
Digital Audio control loop
signal (PCM)

Big value region

Filterbank 32
subbands

FFT 1024 Psychoacoustic
points model

Fig. 20 The block diagram of the MP3 encoder with data embedded encoder

Huffman
Non-uniform encoding
quantlzatlon rate

control loop

Bitstream
formatting

Coding of
side-information

In countl region, the‘coding process-is taking four frequency lines at one time to
run the Huffman encoding, then.added the sign bit in back of the Huffman code. The
four frequency lines are represented by v, w, X, and y. If the value of the frequency lines
do not equal zero, then it will have to save the sign bit of the frequency lines. The data
embedded method, using the storage space of sign bit to embed data, means to replace
sign bit by the embedded data. Because in every song, after quantization the size of
countl region differs in every frame, thus the storage space for the embedded data
differs. If the song has less energy in high frequency band, then the space of countl

region after quantization will be larger, that is, more space for embedded data.

Another embedded region is bit reservoir, which has a 9-bit pointer to record how

much bits are redundant in the former frame. Embedding data in the redundant bits in

bit reservoir would not cause any negative influence to the music. If the bit reservoir

39

exceed 512 bytes, it would be neglected the redundant bits then wasted. Usually in the
beginning of the music, the frame is quite sound without any signals so could be used
for encoding, thus bit reservoir would has redundant space for embedded data. So does
the ending of the music. But in frames with sound, there are not much redundant bits for
embedded data in bit reservoir. Most redundant space for embedded data in bit reservoir
is provided by the non-signal frames in the beginning or the ending of the music, as

shown in Fig. 21.

A 3500 T T T T T T T

=
3000 F [-
2800 -

2000 | -

1000 -

a0 .

]
] 1000 2000 =000 4000 2000 g000 Fooo =000
frame

Fig. 21 The distribution of the unnecessary bits of the bit reservoir in MP3 song

[18]

4.2 Data Embedded Decoder

The data embedded decoder includes four parts: extracting data from the MP3 file,

porting the MP3 decoder with data embedded decoder on the ADSP-2181, the data

40

stream analyzer, and the lyric analyzer.

4.2.1 Extract Data from the MP3 File

The data is embedded into the “bitstream coding” block at the end of the encoder.
The data stream extractor is located in the “decoding of bitstream” block of the decoder,
as shown in Fig. 22. When inputting MP3 data stream in for decoder bitstream decoding,
there will be two outputs: 576 lines of frequency lines that decoded from Huffman

decoding are prepared for inverse guantization, and extracted data from data stream

extractor.
Coded Digital Audio
audio signal signal (PCM)

Inverse
Quantization

Decoding of
Bitstream

Frequency to
Time mapping

Data stream
extractor

Embedded data
P stream

Fig. 22 The block diagram of the MP3 decoder with data embedded decoder
The data stream extractor extracts data from the countl region and big-value

region of the Huffman coding and the bit reservoir. And the data stream is collected and

saved in the buffer. It will be analyzed by the data stream analyzer.

4.2.2 Porting MP3 Decoder with Data Embedded Decoder on the
ADSP-2181

The structure of the MP3 decoder with the data embedded decoder ported on the

41

ADSP-2181 is the same as the structure on the PC. The MP3 decoder and the data
embedded decoder are implemented in ADSP assembly language directly in order to

have the better executing performance.

The ADSP-2181 is designed for digital signal processing. It has circular buffer
function, which is used for DSP porting. This function is for write-in or when reading
process is performed to the end of the buffer address, the address pointer will
automatically point back to the beginning of the circular buffer, like circuit. The bit
stream is decoded from the PC-based data embedded decoder and put into the data
analyzer to analyze every frame. The data analyzer will analyze the extracted data and
store the result in the buffer. Because ADSP-2181 belongs to the device end of the entire
embedded system, it is controlled by StrongARM CPU which is as a host of the system.
In ADSP-2181, could not perform data reading and analyzing every frame in the host,
which would be a waste of time for the host and device to do hand-shaking constantly.
At the device, the extracted data 'is"written into-a shared buffer by the extractor on the
ADSP-2181 and the writing address is recorded. When the host read the data stored in
the shared buffer, it will just have to identify if the data write pointer is changed, and
then the reading process could be performed. As a result, the host won’t have to read the

buffer in every frame and cause an influence to the CPU performance.

The MP3 decoder with data embedded decoder is realized real-time decoder which

the decoding speed is 18 MIPS, 20.7K bytes of program memory, and 23.6K bytes of

data memory, as shown in Table 4. It could further be developed as a portable product.

42

Table 4 The spec. of the MP3 decoder with data embedded decoder on the ADSP-2181

Program memory | Data memory | The peak

computing power

MP3 decoder with data 20.7K bytes 23.6K bytes 18 MIPS

embedded decoder

4.2.3 Data Stream Analyzer

The data stream analyzer is used to analyze the data stream which is extracted by
the data embedded decoder. The data stream is a series of signal of “0” and “1”, it must

be analyzed and reconstructed to the original files by the data stream analyzer.

The flowchart of the data stream analyzer. is shown as Fig. 23, which is based in
the state machine structure; The purpose of stream analyzer is for data stream analyzing,
identifying synchronization;_file length, file type, and processing every different files
type. The start point of the embedded must be found to perform data stream analyzing,

thus synchronization bits should be identified.

“Synchronization bits” is composed of 4 bytes. So at first 4 bytes should be read to
judge if its synchronization bits. If not, left-shifting one byte and replenish a byte for
judging, until the synchronization bits is found to jump to the next state. On the other
hand, the file length parameter shows the analyzer how many bytes in the file to read.
Last, the file type parameter shows the analyzer what file type is, which would be
beneficial for the analyzer to handle it properly in next state. If the file type is lyric, the
file will be saved to a lyric buffer, preparing to be shown synchronously on the screen
during the song is playing. Other file types will be saved as file, then finishing the file

analyzing. State machine will jump to the first state and proceeds to the synchronization

43

bits of the next file for analyzing.

44

Read 4 bytes from

buffer

Ly

Read 1 bytes from
buffer

No

2 Yes

File length

File type

v

IS

File type

File data : File data:
Lyric buffer Put to file

! :

Fig. 23 The flowchart of the data embedded analyzer

45

4.2.4 Lyric Analyzer

The lyric analyzer is also designed in the structure of state machine. It’s for
computing show time of the lyrics, which should be synchronous to the playing time of
the song, the same as lyrics showing in KTV. In data stream analyzer, if the data type is
lyrical after analyzing, it will be saved temporarily to lyric buffer for analyzing by lyric

analyzer.

The lyric format is defined as ”[mm:ss] the lyrics of a line”, shown by line as its
unit. “[” represents the beginning of the lyrics in every line, ’mm” records the showing
minutes of the lyrics, :” is for partition, and “ss” is to records the showing seconds of
the lyrics. From] to the changing line character "0D OA”, they all are the contents of

a line of the lyrics.

At first the state machine will'read one byte to identify if it’s the beginning of one
line ”[”. After finding that, it'will jump to.the next state to store the address of the line.
Then next four states record the showing time of the lyrics. After finish reading the
showing time of the lyrics would be the contents of the lyrics. The result will be saved
to print buffer and then the state machine will jump to the first state for the next line of

the lyric analyzing.

46

Read 1 byte from lyric <
buffer

No

Yes

Record next stream
pointer

Read 2 bytes from
lyric buffer & save
minute

Read 1 byte “:” from]
the lyric buffer
& don’ tcare

Réad 2 bytes from
lyric buffer & save
second

Read 1 byte “]” from
the lyric buffer

I

Compute frame count
Save now stream pointer

}

Read a line of lyric
from lyric buffer &
save to the print
buffer

Fig. 24 The flowchart of the lyric analyzer

47

4.3 Experimental process

This section presents the overall experimental process from embedding data in the
encoder to extract data in the decoder. The process has been introduced in the former

section.

4.3.1 Encoding

In the encoder process, several samples are chosen for embedding data. And the
files which are embedded into MP3 are embedded into the countl region and the
big-value region that the embedded region are brought out in the previously chapter. We

select one from the samples to demo in the following.

There are six MP3.samples which ‘are- chosen for embedding data in this
experiment. Their MP3 names are-*01-can”, “Aero Smith - Miss a Thing”, “Bon Jovi
always”, “Dido thank you”, “Natalie-Torn” and “Speech”. The “01-can” is selected to
demo and the information about “01-can” is shown in Table 5. The “Ol-can” is
embedded a lyric file and six photo files. The total size of the embedded files is about
100K bytes and the files are embedded into the MP3 file that the size of the sample is
3.3 MB. To be mentioned that the embedded photos can be any resolution as long as the

file size of the photo is not bigger than the maximum embedded size of the MP3 file.

48

Table 5 The information of “01-can”

File name File size Photo resolution | As shown in

Source MP3 file | 01-can 3462374 Bytes
Lyric 2255 Bytes Fig. 25
Photol 10244 Bytes 190*190*24bit Fig. 26
Photo2 20462 Bytes 300*290*24bit Fig. 27

Embedded file | Photo3 18806 Bytes 300*300*24bit Fig. 28
Photo4 16842 Bytes 300*282*24bit Fig. 29
Photo5 15586 Bytes 238*184*24bit Fig. 30
Photo6 12070 Bytes 160*239*24bit Fig. 31

4.3.2 Decoding

The following figures are the information which is extracted by the decoder. And

the information is embedded in“the MP3 file in advance. In Fig. 25, the lyric is

displayed with the MP3 decoding concurrently. And Fig. 26~Fig. 31 are shown the

extracting photos which are embedded in the MP3 file.

49

Input file Bl-can.mp3’ output file 'Bl-—can.wauv’
Output file written in WAU format

[B: ¥] Can't Fight The Moonlight

B: 81 Under the lover—sky

B:11]1 Gonna he with you

B:14]1 And neo one’'s gonna be around

B:181 If you think that you won’'t fall

B:211 Well just wait uwuntil

B:241 'Til the sun goes down

B:27]1 Underneath the starlight, starlight

B:321 There’'s a magical feeling so »ight

B:37]1 It will steal your heart tonight

A:411 You can try to resist

B:431 Try to hide from my kiss

B:46]1 But you know. hut you know

B:48]1 That vyou, can’'t fight the moonlight

B:511 Deep in the dark,. vou’ll surrender your heart
B:551 Don't you know, don’t you know that you

B:57]1 Can't fight the moonlight..Mo

1: 31 You can't fight it...

1: 6] It's gonna get to your heart

1: 21 There's no escaping love

1:13]1 Once a gentle hreeze

1:15]1 Weaves a spell upon your heart

1:19]1 Ho matter what you think

1:22]1 It won’'t be too long

1:251 'Til you're in my arms

1:28]1 Underneath the starlight, starlight

1:331 We’11 be lost in the rhythm so right

1:38]1 Feel it steal your heart tonight

1:421 You can try to resist

1:44]1 Try to hide from my kiss

1:4%7]1 But you know. but you know

1:4%]1 That you can’t fight the moonlight

1:52]1 Deep in the dark,. vou’ll surrender your heart
1:57]1 But you know. bhut you know that you

2: B] Can't fight the moonlight...No

2: 41 You can't fight it

2: ¥]1 Ho matter vhat vou do

2:121 The night iz gonna get to you

2:15]1 <You’'re gonna know

2:181 That I know>

2:281 Don't try,. you’re never gonna win, oh

2:24] Underneath the starlight,. starlight.

2:2%]1 There’s a magical feeling, so right

2:34]1 It'11 steal your heart tonight

2:381 You can try to resist, try to hide from my kiss
2:43]1 But you know. hut you know that you

2:461 Can't fight the moonlight

2:4%]1 Deep in the dark, you’ll surrender your heart.,
2:531 But you know, but you know that you

2:57]1 Can't fight the moonlight

2:58]1 NHo. you can't Fight it

3: 21 You can try to resist, try to hide from my kiss
3: ¥]1 But you know. bhut you know that you

3:111 can’'t fight the moonlight

3:121 Deep in the dark. vou’'ll surrender your heart.

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Fig. 25 The extracted lyrics of the MP3 song

50

EANNRIVES

)

LEANN RIMES

Fig. 27 photo2.jpg

51

LE&HIL mies

Fig. 28 Photo3.jpg

Can® Fight The Moonlight Life Goes On
How Do | Live | Nesd You ‘'We Con Loaf
Thiryg O My Mind [#985 Bonan Kaoting

Thin Lowe Bud 1 Do Lowe You ‘Wiilten In The
Btams (wilh ERon Jahn| . Suddenly The Right
Kind Of Wrong Commiltment - Pleasa
Remamber - Crary - Blua - Locking Thimaugh

Your Bye: You Light Up My Life One Way
Ticked [Becouse | Con) ™= How Do | Live

Wi Mg Dot Rocic 52 - Can'l Bgit The:
Moonlight (Lotino M|

Fig. 29 Photo4.jpg

52

I HRw T

.
\

“

FEBNR L RIMES

Fig. 30 Photo5.jpg

Fig. 31 Photo6.jpg

53

4.4 Experimental Results

In this section, there are several experiments for testing different methods. These
experiments are “The embedded bit counts of the different methods”, “The encoding
speed of the different methods”, “The music quality of the different methods”, and “The

file size of the different methods”.

The statistic data and description will be performed in the following:

4.4.1 The Embedded Bits Counts of the Different Methods

The purpose of this experiment is to estimate the embedding size of the three
different regions of the MP3:frame, as shown in Table 6. The countl region embeds
largest data size, on the .Other hand, embedding size differs in every music in bit

reservoir and the big-valueregion,-as'shown in Table 6.

Generally, the frequency of the music signals distribute under the frequency of 10
KHz mostly. The energy of the frequency signal which is above 10KHz is usually small
and the signal will be coded into coutnl region by encoder, or the high frequency signal
without energy will be coded into zero region. So the space of the countl region used
for embedding is larger than other region. The big-value region is the region that the
energy of the music collected. If the embedded data replaces too many sign bits of the
big-value region, the quality of the music will be affected seriously. In order to maintain
quality of the music, we select the sign bits of the frequency signals above 10 KHz for
embedding data. And the unused space in the bit reservoir is provided by a little span in
the beginning and the ending of the music. There are very few unused bits of the bit

reservoir for embedding during the music playing.

54

Table 6 The embedded bits count of the different methods

Song name Frame | Countl region | Big-value region Bit reservoir (bits)
num. (bits) (>11.84K Hz)(bits)

0l-can 8285 595187 299805 313806

Aero Smith- | 11374 811605 83007 84605

Miss a Thing

Bon Jovi - 13578 927084 168541 240744

Always

Dido- Thank 8647 622612 192774 190202

you

Natalie-Torn 7352 514852 406254 406205

Speech 1944 132152 0 6789

Table 7 shows the number of bits per frame-obtained by the three different methods.

Countl region has 70 bits per frame for embedding data in average. The bit numbers of

the other two methods depend on' the "different types of music. If more bits will be

embedded into big-value region, the data could be embedded from the starting

frequency lower than 11.84 kHz. Then, the loss of quality is the cost to perform

embedding more data.

55

Table 7 The embedded bits count per frame by the different methods

Song name Countl region | Big-value region Bit reservoir
(bits/frame) (>11.84K Hz) (bits/frame) | (bits/frame)
01-can 71.8 36.2 37.9
Aero Smith - Miss a 71.4 7.3 7.4
Thing
Bon Jovi - Always 68.3 12.41 17.7
Dido-Thank you 72.0 22.3 22
Natalie-Torn 70.1 55.3 55.3
Speech 68.0 0 35

4.4.2 The Encoding Speed of the Different Methods

The purpose of this experiment-is to test the encoding speed of the MP3 encoder

when the data is embedded -inte different.regions. The specification of the testing

platform is shown in Table 8. In Table' 9, the 1X stands for the length of the song.

Table 8 The spec. of the test platform

CPU

AMD XP1700

RAM

768MB

The encoding speed of the MP3 encoder reduces, as shown in Table 9, after adding

data embedded encoder into the MP3 encoder. But the main reason is that the MP3

encoder is a floating point encoder, thus the encoding speed is limited by the MP3

encoder.

56

Table 9 The encoding speed of the different methods by floating point encoder

Song
Song name None Countl region | Big-value region | Bit reservoir
time
01-can 216s 1.95X 1.83X 1.90X 1.85X
Aero Smith -
297s 2.18X 2.17X 2.18X 2.17X
Miss a Thing
Bon Jovi
354s 2.20X 2.20X 2.14X 2.19X
Always
Dido
225s 2.09X 2.09X 2.07X 2.09X
Thank you
Natalie-Torn | 192s 1.79X 1.71X 1.70X 1.75X
Speech 50s 2.42X 2.42X 2.42X 2.42X

If the block of the psychoacoustic model of the MP3 encoder is removed and the
MP3 encoder is implemented-in fixed-point-arithmetic, then the MP3 encoder will be
sped up more than 25X as shown'in Table 10. The influence on speed when adding the

data embedded encoder into the MP3 encoder becomes relatively small, barely none.

57

Table 10 The encoding speed of the different methods by fixed point encoder

Song
Song name None Countl region | Big-value region | Bit reservoir
time
01-can 216s 30.1X 30.1X 30.1X 30.1X
Aero Smith -
297s 29.7X 29.7X 29.7X 29.7X
Miss a Thing
Bon Jovi
354s 29.5X 29.5X 29.5X 29.5X
Always
Dido
225s 28.1X 28.1X 28.1X 28.1X
Thank you
Natalie-Torn | 192s 32X 32X 32X 32X
Speech 50s 25X 25X 25X 25X

4.4.3 The Music Quality of the Different Methods

The purpose of this experiment'is'to test the quality of the music after the data

embedded into the MP3 file. The ODG (Objective Difference Grade) is a standard used

in testing quality of the music in the experiment and it has a brief introduction in

Appendix B. The ODG is software for testing the quality of the music, which is used to

compare the original music and the encoded music. The other constantly testing

condition is shown in Table 11.

58

Table 11 The testing environment of the music quality

Test program ODG

Test standard 0~-4 (good to worse)
The MP3 decoder cooledit

Sampling rate of MP3 44.1KHz

Bit rate of MP3 128kbps

Sound effect stereo

The quality of the MP3 file is influenced after the data is embedded into the MP3
file, as shown in Table 12. The influence is about 2%, and the distortion of the MP3
would not be heard by human ears, which means the quality of the music can be
accepted. In general, the bit reservoir will'not be distorted, but the data has distortion in
the table in fact. The distortion is human distortion. The reason is that the music will be
shifted after MP3 encoding and decoding, so thes-music must be shifted back by manual.
And then the human distortion. is‘made. Tn general, the three methods which are used to

embed data make a little influence to the quality of the music.

59

Table 12 The music quality of the different methods

Song name None Countl region | Big-value region | Bit reservoir
01-can -1.28 -1.33 -1.33 -1.28
Aero Smith - -0.96 -1.04 -0.97 -0.97
Miss a Thing

Bon Jovi -1.10 -1.20 -1.12 -1.11
Always

Dido -1.18 -1.22 -1.20 -1.18
Thank you

Natalie-Torn -1.35 -1.37 -1.37 -1.35
Speech -1.80 -1.83 -1.81 -1.81

4.4.4 The File Size of the Different Methods

The purpose of this experiment is t0 observe what change to the size of the MP3

file will have after embedding data into the different regions.

The size of the MP3 file which is embedded data by the three data embedded

methods is the same with the size of the MP3 file without embedding data, as shown in

Table 13. So the embedded data methods that are brought up in this thesis will not

change the file size that the MP3 is encoded by general MP3 encoder.

60

Table 13 The file size of the different methods

Song name None Countl | Big-value | Bit

Total embedded bits

(MB) region region reservoir
(KB)
(MB) (MB) (MB)

0l1-can 3.30 3.30 3.30 3.30 147.6
Aero Smith - | 4.53 4.53 4.53 4.53 119.5
Miss a Thing
Bon Jovi 5.41 541 5.41 541 163.1
Always
Dido 3.44 3.44 3.44 3.44 122.8
Thank you
Natalie-Torn | 2.92 2.92 2.92 2.92 162.0
Speech 0.79 0.79 0.79 0.79 17.0K

4.4.5 Comparison with other methods

There are many watermark techniques about data embedded methods on the IEEE

journals, but the applications of the watermark techniques are almost different from this

thesis.

The watermark techniques are used for embedding important information into the
media because they can resist any attack such as lossy compressing. However, the size
of the embedded media is very small. The purposes of the watermark techniques are
differ from the proposed methods. The applications of the proposed methods are to

embed large unimportant information into media in this thesis. The watermark

61

techniques are based on different application from ours, so they can’t compare to each

other.

SecureKit, Inc. published a shareware called “Steganography 1.61.23” [19]. It can
embed unlimited data into the tail of a file and encrypt the embedded data to prevent
other user accessing the data, but the size of the file which is used for embedding data
will be added. This is a series defect, so the method used in this software is not

appropriate.

62

CHAPTER 5

Conclusions and Future Works

5.1 Conclusions

This thesis introduces three high capacities reversible data embedded methods. As
data embedded methods generate extra storage space, the embedding area on MP3 file is
not very important. The data embedded methods are designed under the MPEG/Audio
standard. Data embedded decoder is ported on the ADSP-2181. The ADSP-2181 is a
programmable microprocessor and offers a software development environment tool:
VisualDSP++, which we can develop and debug the algorithm quickly and easily in the

programming stage.

These three methods bringing-up for.embedding data into the MP3 files are countl
region, bit reservoir, and big=value region, which is an expansion of the countl region
method. Then, the suggested sequences of the three embedding methods are the bit
reservoir, countl region and big-value region. It depends on the degree that different
methods make the different influences of the music quality. The main principle of
selecting regions for embedding is not affecting quality of the music. The size used for
embedding differs in every song. According to the experimenting results, the size used

for embedding data is about 100K bytes in a song of which the length is 3 minutes.

In ADSP-2181 porting, the MP3 decoder with data embedded decoder is coded by
assembly language achieves to increase processing speed and save memory size. Finally,
the MP3 decoder with data embedded decoder realizes real-time decoding with a speed

of 18 MIPS which uses 20.7K bytes of program memory and 23.6K bytes of data

63

memory. The data embedded decoder displays the embedded lyric of the song and

extract other embedded data while the MP3 player is playing.

5.2 Future Works

The data embedded codec is based on the MPEG/Audio standard and usually
works with an audio codec. These methods can also be used on other advanced
MPEG/Audio standard, such as MPEG-2/Audio AAC or MPEG-4/Audio AAC standard.

It will become AAC codec with data embedded codec.

The MP3 with embedded data is not protected by any DRM mechanism. The data
embedded methods can be combined with a secure codec, such as SMP3 designed by
CSSP laboratory. It will increase:the 'degree of safety. MP3 codec, combined with data
embedded codec and SMP3 codec can make the audio codec safer and provide more

service to users.

64

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]
[9]

References

G. Voyatzis and |. Pitas, “The use of watermarks in the protection of digital
multimedia products”, Proceedings of the IEEE, Vol.87, NO.7, pp.1192-1207, July
1999

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3 coding of
moving pictures and associated audio for digital storage media at up to about
1.5Mb/s, Part 3: Audio

http://www.cmj.com/mp3/mp3basic.php#what

http://www.chiariglione.org/mpeqg/standards.htm

K. Brandenburg and H. Popp, “An introduction to MPEG Layer-3”, Fraunhofer
Institutfur Integrierte Schaltungen(11S), EBU TECHNICAL REVIEW, Jun. 200

J. Princen and A. Bradley,:“Analysis/synthesis filterbank design based on time
domain aliasing cancellation”,| IEEE Trans. on Acoust. Speech, and Signal
Processing. Vol. ASSP-34, pp.1153-1161, 1986.

E. Ambikairajah, A. G:Davis.and-W.-T. K-Wong, “Auditory masking and MPEG-1
audio compression”, Electronicsiand communication engineering journal, Aug.
1997.

http://www.iis.fhg.de/amm/techinf/water/index.html

S-J. Lee and S.-H. Jung, “A survey of watermarking techniques applied to
multimedia”, Proceedings 2001 IEEE International Symposium on Industrial

Electronics (ISIE2001), Vol. 1, pp. 272-277, 2001.

[10] R. Lancini, F. Mapelli and S. Tubaro, “Embedding indexing information in audio

signal using watermarking technique”, Proceedings of VIPromCom, 16-19 June

2002.

[11] M. Ikeda, K. Takeda and F. Itakura, “Audio data hiding by using of band-limited

random sequences”, Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing, Vlo.4, pp.2315~2318, 1999.

65

[12] L. Boney, A. H. Tewfik and K. N. Hamdy, “Digital watermark for audio signals”,
IEEE Proceedings of Multimedia, pp. 473-480, 1996.

[13] J. F. Tilki and A. A. Beex, “Encoding a hidden auxiliary channel onto a digital
audio signal using psychoacoustic masking”, Southeastcon *97. Engineering new
Century., Proceeding. IEEE, pp.331~333, 1997.

[14] E. Zwicker and H. Fastl, “Psychoacoustics facts and models”, Berlin, Germany:
Springer-Verlag, 1990.

[15] Analog Devices, Inc., “ADSP-2100 Family EZ-KIT Lite Reference Manual”, First
Edition.

[16] Analog Devices, Inc., “ADSP-2100 Family User’s Manual”, Third Edition, Sep.
1995.

[17] Analog Devices, Inc., “VisualDSP++ 3.0 Getting Started Guide for ADSP-21xx
DSPs”, Revision 2.0, July:-2002

[18] Leann Rimes “Can’t fight the moon.light”, The Best of Leann Rimes, spring, 2004.

[19] http://www.soft32.com/download 11169.html

[20] T. Thiede et al, "PEAQ “The ITU standard for objective measurement of perceived
audio quality", J. Audio Eng. Soc., vol. 48, pp. 3-29, Jan.-Feb. 2000.

[21] B. C. J. Moore, “An introduction to the psychology of hearing”, Academic Press,
London, 1997.

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams “Learning internal
representations by error propagation”, In Parallel Distributed Processing, vol. 1,

pp. 318-362. Cambridge, MA, MIT Press. 1986.

66

APPENDIX A
MP3 Encoder/Decoder Algorithm

Because the main purpose of our data embedded method is to embed a large of
qualify information into MP3 file directly, so we describe the basic principles and
algorithms of encoder and decoder in the MPEG-1/Audio Layer 3 (MP3) coding
standard. The most important reason why MPEG-1/Audio Layer 3 can compress digital
audio signals effectively without perceptual loss is to use the ‘“quantization”
and “entropy coding” techniques. Quantization removes the auditory irrelevant parts of
the audio signal without losing the sound quality by exploiting the perceptual properties
of the human auditory system. Removal of such irrelevant parts results in inaudible
distortion. Entropy coding is a lessless‘caoding method that encodes the quantized data
to minimize the entropy of the quantized value of the audio signal thereby achieving the
goal of compression without any quality loss: The two techniques are also wildly

adopted in other audio compression standard, like AAC.

Section A.1 will introduce the MPEG-1/Audio Layer 3 encoding standard and its

algorithm. Section A.2 will explain the decoding process of MP3.

A.1 The Structure of MP3 Encoder Algorithm

In this section, the MPEG-1/Audio Layer Il encoder will be described with its
functionality. The description of the encoding process is based on the block diagram in
Fig. 32. In the following subsections, we will describe the operation and the

functionality in detail for each block in the block diagram.

67

o) Distortion
Digital Audio control loop
signal (PCM)

Filterbank 32
subbands

FFT 1024 Psychoacoustic
points model

Fig. 32 MPEG-1/Audio Layer 3 encoder block diagram [5]

Huffman
encoding

Non-uniform
quantization rate
control loop

Bitstream

formatting

Coding of
side-information

A.1.1 Analysis Polyphase Filter Bank

The subband filter band includes both analysis subband filter and Modified

Discrete Cosine Transform (MDCT) [6] representation such as Fig. 33.

Subband 0
| MDCT Window » MDCT 3 :;

5 i — >l —
= e
L, E
— Subband | E B
P(::p’ﬂ:""’ E — MDCT Window {——3»| MDCT > £ —
= e = e
= "k =
i g 2
Fad =
L = _?:-
E g
Suhband 32
| MDC'T Window » MDCT ; 3
window select long or short block
normal, start, short, or stop control

Fig. 33 Analysis subband filter and MDCT

The first step in the encoding process is the filtering of the audio signal through a

filter bank. The analysis polyphase filter bank divides the PCM audio signal into 32

equal-width frequency subbands and decimates the subband samples by a factor 32 with

68

good time resolution and reasonable frequency resolution.

In one frame, a sequence of 1152 PCM audio samples are filtered so each subband

contains 36 subband samples. The following equation derives the filter band outputs:

63

St[i] = M [i1[k] % (C[K + 64 j]x X[k + 64]) , Eq. 2

7
k=0 j=0

Where:
I is the subband index and ranges from 0 to 31
St[i] is the filter output sample for subband i at time t, where t is an
integer multiple of 32 audio sample intervals
C[n] is one of 512 coefficients of the analysis window defined in the
standard

x[n] is an audio input-sample read from a 512 sample buffer

cos (2RI (KE16) x

i ﬁ] is the analysis matrix coefficients

MIi][k] =

The coefficients of C[n] in EQ 1 are symmetric to origin, as shown in Fig. 34 (a).
Eqg. 2 manipulate into a intelligible filter convolution Eq. 3 for more convenient to

analysis.

St[i]=§x[t—n]x Hi[n] , Eq. 3

n=0

Where:

X[z] isan audio sample at time ¢

69

[(2><i+1)><(n—16)><7z

Hi[n] = h[n]x cos v

]

with h[n]=-C[n], if the integer part of (n/64) is odd,

C[n], otherwise, for n=0 to 511

0 100 200 300 400 500 0 100 200 300 400 500
n n

(a) C[n] (b) hin]
Fig. 34 ceefficient of C[n] and h[n] (n = 0~511)

The modulation of the prototype low-pass filter (h[n]) with a cosine term (M[i][K])
result in filter shifting. Clearly, Hi[n] are the filter banks that shift the low-pass response
to the appropriate frequency band, so these are called “polyphase” filter bank. The

frequency response of 32 subband, as shown in Fig. 35.

70

Magnitude Response of ALL Subbands

20k

Ak

B0 F

[Hiz)l (dE

B0+

-100 -

-120

1
0 0.5 1 1.5 2 25 3
w (pi)

Fig. 35 frequency response of subband

A.1.2 MDCT and Alias Reduction

After the subband filter, the '32-subbands are mapped into MDCT. Performing this
transformation will enhance .the frequency resolution per subband. MDCT

transformation can be divided into three parts: MDCT windows, MDCT, alias reduction,

as shown in Fig. 33.

71

1 1 1 1
0.8 1 0.8] 0.8 1 0.8
0.6 1 0B E 0.6 1 0B
0.4 1 0.4 E 0.4 1 0.4
02 1 02 E 0.2 1 0.2
T m w Cw o m w o m w " n 3w
(&) narmal window (b} start window (c) stop window (d) short window
1~
08
06~
0.4+
0.2
0 | | | | |
20 40 B0 80 100 120

(e) Dynamic window adaptive to the input subband signals

Fig. 36 Illustration of the four applicable window types and using condition

The MDCT windows should be differentiated into normal window, start window,
short window, stop window, as Fig. 36 Illustration of the four applicable window types
and using condition shown. The transformation of normal window can get better
resolution of frequency spectrum. But the transformation of short window can get better
resolution of time response. The switching mechanism which means the start window
and the stop window helps to prevent the appearance of pre-echo phenomenon. Eq. 4

shows the formula for MDCT transformation.

n-1
Xi= sz cos(2£(2k +1+g)(2i +1)),fori=0~ (2—1) Eq. 4
n

k=0
Before passing the frequency lines a reduction of the aliasing introduced in the

72

analysis polyphase filter bank is removed. The aliasing is removed at this early stage in
order to reduce the amount of information for transmission. The reduction is obtained
by means of a series of butterfly computations, see Fig. 37. The cs, and ca, constants
are tabulated in standard [2]. The butterfly operations with appropriate weighting cancel

the alias caused by the overlap of two adjacent overlapped subbands.

Xo

X17

Xis

X35

X540

Xss7

Xss8

Xs75

[¢—— 8 Butterfies ———————»|

Fig. 37 llustration of alias reduction butterflies

A.1.3 Psychoacoustic Model

The psychoacoustic model is a pattern that simulates the human sound perceptional
system. The model is used in the encoder only to decide which parts of the audio signal
are acoustically irrelevant and which parts are not, and removing the inaudible parts. It

takes advantage of the inability of human auditory system to hear quantization noise

73

under conditions of auditory masking. This masking is a perceptual property of the
human auditory system that occurs when the presence of strong audio signal makes a
temporal or spectral neighborhood of weaker audio signals imperceptible. The results of

the psychoacoustic model are utilized in the MDCT block and in the nonuniform

guantization block.

Auditory masking consists of three masking principles, which being described

below:
e Absolute Threshold of Hearing
The absolute threshold of hearing is characterized by the minimum
amount of energy needed in a pure tone such that it can be detected by a
listener in a quiet environment. If we measure the energy of a number of tone

frequencies, the relation curve can be plotted on a graph like Fig. 38

The absolute threshold of hearing

Sound Pressure Level, SPL (dB)

Frequency (H2)
Fig. 38 The absolute threshold of hearing
* Frequency Masking
Frequency masking, also called simultaneous masking, is a frequency

domain phenomenon where a low-level signal (the maskee) can be made in

74

audible by a simultaneously occurring stronger signal (the masker) as long as
masker and maskee are close enough to each other in frequency. The masking
threshold depends on the sound pressure level and the frequency of the
masker, such as Fig. 39. Without any masker, a signal is also inaudible if its

sound pressure level is below the absolute threshold.

70 Masker

60

50 Masking Threshold
‘ Threshold in Quiet
40

30 Masked Sound

20

Sound Pressure Level (dB)

10
0 4

A 4

0.02 0.1 05 1 2 5 20
Frequency (kHz)

Fig. 39 Frequency masking threshold and threshold in quiet [7]
Temporal Masking
In addition to simultaneous masking in frequency domain, the temporal
masking, also called nonsimultaneous masking, plays an important role in
human auditory perception in time domain. It man occur when two sounds
appear within a small interval of time. The stronger sound may mask the

weaker one, even if the maskee precedes the masker, such as Fig. 40.

75

Sound Pressure
4 Level (dB)

90 - Simultaneous Masking

Pre-Masking Post-Masking

50 +

Time (ms)

Fig. 40 Temporal masking threshold [7]

A.1.4 Nonuniform Quantization

The nonuniform quantization block which received the frequency line from the
MDCT block and window switching, masking information from the psychoacoustic
model, performs the important key techniques -‘quantization” and “Huffman coding”.
Quantization is done via a power-law- quantizer. In this way, larger values are
automatically coded with less.accuracy, and some noise shaping is already built into the
guantization process. The process to find the optimum gain and scalefactors for a given
block, bitrate and output from the perceptual model is usually done by two nested
iteration loops in an analysis-by-synthesis way:

* Quter iteration loop (noise control loop)

The outer iteration loop controls the quantization noise which is
produced by the gquantization of the frequency domain lines within the inner
iteration loop. To shape the quantization noise according to the masking
threshold, scalefactors are applied to each scalefactor band. If the quantization
noise is found to exceed the masking threshold, the scalefactor for this band is
adjusted to reduce the quantization noise. The outer loop is executed until the

actual noise is below the masking threshold for every scalefactor band.

76

* Inner iteration loop (rate control loop)

The inner iteration loop does the actual quantization of the frequency
domain data and prepares the formatting operation. The Huffman code tables
assign shorter code words to smaller quantized values. If the number of total
bits of resulting from the Huffman coding operation exceeds the number of
bits available to code one frame, this can be corrected by adjusting the global
gain to result in a larger quantization step size, leading to smaller quantized
value until the resulting number of bits demand for Huffman coding is small

enough.

A.1.5 Huffman Encoding

In this block, entropy cading of the quantized frequency lines is performed using
the Huffman coding algorithm based on 32 static Huffman tables. The Huffman coding
provides lossless compression and-thereby reduces the amount of data to be transmitted
without the quality loss. Fig:-41 shows the relation of three Huffman coded regions:

“zero region”, “countl region”, and “big-value region”, and scalefactor.

77

scalefactor Frequency lines (576) Huffman Code

Region ORegion 1Region 2 lor0 00000000

<+—Big_value——»<«—Count 1-—»=Zero_region»

-«-Part2_length»<«———Part3 length——»

<+«———————Part2 3 lengh——>

Fig. 41 Main data organization of a frame

A.1.6 Bitstream Formatting

In this block, the encoding. process is to produce a MPEG-1/Audio Il compliant
bitstream. The Huffman coded frequency lines, the side information and a frame header
are assembled to form the bitstream. The header describes which bit rate and sampling
frequency that is being used for the encoded audio. The side information tells what

block type, Huffman tables; subband gain and subband factors are being selected.

The last block, an enhancement method called “bit reservoir” is used to fit
encoder’s time-varying demand on code bits. The encoder can donate bits to a reservoir
when it needs less than the average number of bits to code a frame. Next, when the
encoder needs more than the average number of bits to code a frame, it can borrow bits

from the reservoir mechanism.

A.2 The Structure of MP3 Decoder Algorithm

78

In this section the MPEG-1/Audio Layer Il decoder will be described with its
functionality. The decoding process is based on the block diagram in Fig. 42. The

decoder has three main parts: “Decoding of Bitstream”, “Inverse Quantization”, and

“Frequency to Time mapping”.

Coded Digital Audio
audio signal signal (PCM)

Frequency to
Time mapping

Inverse
Quantization

Decoding of
Bitstream

Fig. 42 MPEG-1/Audio Layer Il decoder block diagram

A.2.1 Decoding of Bitstream

This decoding part effects synchronize and extract the quantized frequency lines
and other information of each frame. First, it needs to synchronize where a frame begins

and where the data resides;-as shown in Fig. 43. The usage of the block diagram will be

introduced as following.

Magnitude & sign

Huffman Decoding

Huffman Info
Decoding
Scalefactor DecodingI—

Fig. 43 Decoding of bitstream block diagram

Coded
audio signal

Synchronization

Scalefactors

Ancillary
Data

Synchronization

The purpose of this block is to receive the incoming bitstream, identify

the contents of the bitstream and pass the information onto the succeeding

blocks in the decoder.

The contents of a MPEG-1/Audio bitstream is organized into frames,

each contains information to reconstruct the audio PCM samples. A frame

consists of four parts: header, side information, main data, and ancillary data.

The header part of the frame contains synchronization word and system

information, as shown in Fig. 44. The side information section in the frame

contains the necessary information to decode the main data. The main data

section contains the coded scalefactor value and the Huffman coded data. The

format of this ancillary data is user defined.

bitrate { paddmng|

rer : 1
lay Y mdexi

copyright §

bit 1_&1;::-debi empllasi;

synchronization word 2 T 777
NN
) 1| NN
N N N
N N NNEN NN
D isamplmgs} llmd§r N
' iprequency * extension '
error ! private ! origina
protection’ bit copy

Fig. 44 MPEG-1/Audio Layer I11 header format

Huffman Decoding

AN
N

In this block, the decoding of the Huffman code bits is performed. Since

the Huffman coding is a variable-length coding, a single code word in the

middle of the Huffman code bits can’t be identified without starting to decode

from a point in the Huffman code bits known to be the start of a code word.

80

e Huffman Info Decoding
The Huffman Info Decoding block serves to setup all the parameters
necessary for the Huffman decoding block to perform a correct Huffman
decoding. It performs to collect data in the side information which describes
the characteristics of the Huffman code bits.
e Scalefactor Decoding
The purpose of the scalefactor decoding block is to decode the coded
scalefactors, i.e. the first part of the main data. Input to this block is
scalefactor information and coded scalefactors. The output of the block is the

decoded scalefactors, to be used in the next inverse quantization block.

A.2.2 Inverse Quantization

The purpose of this -block is to reestablish a perceptually identical data of the
frequency lines generated by the MDCT block in the encoder. The descaling is based on
the scaled quantized frequency lines reconstructed from the Huffman decoding block
and the scalefactor reconstructed in scalefactor decoding block. The formula of the

frequency lines is shown in Eq. 5.

1 . .
~(global _ gain—210-8sbg[i
4 4(9 _9 g[i])

Xr[i] = SIgn(IS[I]) X abS(iS[i])g X Zscalefac_multiplierx(sf[i]+ perflagx pt[i]) Eq 5

Where:
is[i] is the frequency line reconstructed by Huffman decoder
global_gain, shg[i], scalfac_multiplier, sf[i], perflag, pt[i] are from

scalefactor decoding.

A.2.3 Frequency to Time Mapping

81

The last decoding part performs to reproduce the audio signal from the dequantized
frequency line. This part contains several sub-blocks as shown in Fig. 45 and will be

introduce in the following.

Digital Audio

Synthesis signal (PCM)
. A Inverse Frequency
Alias Reduction 3 Polyphase
MDCT Insersion .
Filter Bank

Fig. 45 Frequency to time mapping

* Alias Reduction
In the MDCT block within the encoder it was described that an alias
reduction was applied. In order to obtain a correct reconstruction of the
analysis polyphase filter bank in the algorithm to come back, the aliasing
artifacts must be added to the decoding process again.
* Inverse MDCT
The frequency lines from the “alias reduction block are processing
through IMDCT block: The analytical expression of the IMDCT is shown in
Eq. 6.

Ny

2

X, = z X, cos(2£(2i +1+g)(2k +1)), fori=0~(n-1) Eq. 6
s n

=
Where:
X, is the frequency line
N is 12 for show window, and 36 for long window
* Frequency Inversion
In order to compensate the decimation used in the analysis polyphase
filter bank, every odd time sample of every odd subband is multiplied with -1.

* Synthesis Polyphase Filter Bank

82

Each time 32 samples, from each of the 32 subbands are applied to the
synthesis polyphase filter bank and 32 consecutive audio samples are

calculated.

83

APPENDIX B
Introduction to the Testing Standard of the Music
Quality : ODG

B.1 Introduction

The ODG (Objective Difference Grade) [20] is the result which is computed by
PEAQ (perceptual evaluation of audio quality). The PEAQ is based on generally

accepted psychoacoustic principles (such as [14] [21]).

In general, PEAQ compares a signal that has been processed in some way with the
corresponding time-aligned original signal. And it extracts perceptually relevant features,
which are used to compute .a measure of guality. A number of intermediary model

output variables (MOVs) are available.

A selected set of MOVs.is.mapped to an ODG. The mapping was established by
minimizing the difference between the distribution of objective measurements and the

corresponding distribution of mean subjective qualities for an available data set.

B.2 Description of PEAQ

The block diagram of PEAQ is shown in Fig. 46. PEAQ includes ear models based
on the fast Fourier transform (FFT). The model output values are based partly on the
masked threshold concept and partly on a comparison of internal representations. In
addition, it also yields output values based on a comparison of linear spectra not
processed by an ear model. The model outputs the partial loudness of nonlinear
distortions, the partial loudness of linear distortions (signal components lost due to an

unbalanced frequency response), a noise to mask ratio, measures of alterations of

84

temporal envelopes, a measure of harmonics in the error signal, a probability of error

detection and the proportion of signal frames containing audible distortions.

Selected output values are mapped to a single quality indicator by an artificial

neural network with one hidden layer [22].

Input Signals
(Reference and Testing Signal)

< <

Peripheral Ear Model
(FFT based)

Playback Level

Preprocessing of Excitation Patterns

~> <> =Pl <> <> <>

Error Signal Masker Specific Excitation Patterns Modulatiorspectrum
Loudness Patterns
Patterns

e

Calculate Model Output Values

<~ <~~~ ~b<-<b

Calculate Quality Measure (Artificial Neural Network)

” Objéctive

Distortion Index Difference Grade
(ODG)

Fig. 46 Block diagram of measurement scheme

85

