
國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

在 MPEG/Audio 上資料隱藏方法之研究與使用

ADSP-2181 數位訊號處理器實現資料隱藏解碼器

A Study of Data Embedded Method on
MPEG/Audio and Implementation of Data

Embedded Decoder on the ADSP-2181 DSP
Processor

研 究 生： 黃榮煌
指導教授： 鄧清政 教授

共同指導教授： 吳炳飛 教授

中 華 民 國 九 十 三 年 七 月

在 MPEG/Audio 上資料隱藏方法之研究與使用

ADSP-2181 數位訊號處理器實現資料隱藏解碼器

研 究 生 ：黃榮煌 Student : Ruang-Huang Huang

指 導 教 授 ：鄧清政 教授 Advisor : Prof. Ching-Cheng Teng

共同指導教授 ：吳炳飛 教授 Co-Advisor : Prof. Bing-Fei Wu

國 立 交 通 大 學
電機與控制工程學系

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electrical and Control Engineering

July 2004

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 三 年 七 月

 i

在 MPEG/Audio 上資料隱藏方法之研究與使用

ADSP-2181 數位訊號處理器實現資料隱藏解碼器

學生：黃榮煌 指 導 教 授 ： 鄧清政 教授

 共同指導教授： 吳炳飛 教授

國立交通大學電機與控制工程學系碩士班

摘 要

本論文提出把資料嵌入 MPEG/Audio 裡的方法與實作。資料嵌入 MP3 的目的

是為了增加 MP3 的用途與功能性，也可以提供音樂公司對消費者的額外服務，如

在 MP3 中加入歌詞同步顯示、歌手照片或是消費者的基本資訊等等。本論文中的

資料嵌入方法可分為資料嵌入編碼器和解碼器：資料嵌入編碼器是在電腦上實

現，主要是把資料嵌入到 MP3 音框的三個比較不重要的區塊裡，對音樂本身的音

質較無影響。而這三個區塊分別是 big-value 區塊中 10KHz 以上的符號位元、count1

區塊中的符號位元和 bit reservoir 中用不到的位元。資料嵌入解碼器是在

ADSP-2181 數位訊號處理器上實現，主要是做資料的擷取並做分析，並做歌詞和

圖片的同步顯示。此包含資料嵌入解碼器的 MP3 解碼器在 ADSP-2181 上使用了

20.7Kbytes 的程式記憶體和 23.6Kbytes 的資料記憶體，並且在 18MIPS 就可達到即

時播放的速度，約佔此晶片 55%的運算能力。此資料嵌入的方法亦可應用到

MPEG-2/Audio AAC 或是 MEPG-4/Audio AAC 裡，並不只侷限於使用在 MP3 演算

法上。

 ii

A Study of Data Embedded Method on
MPEG/Audio and Implementation of Data

Embedded Decoder on the ADSP-2181 DSP
Processor

Student：Ruang-Huang Huang Advisor ：Prof. Ching-Cheng Teng

 Co-Advisor ：Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

In this thesis the method and implementation of embedding data into MPEG/Audio

will be discussed. The purpose of embedding data into MP3 is to add applications and

functions of MP3, as well as to facilitate the music company to provide additional

service to customers, for example, adding pictures of singers, background information

or lyrics into MP3 for synchronous display. Data embedded encoder and decoder will be

introduced in this thesis. The data embedded encoder, implemented on PC, is to embed

data into three less important music regions in MP3, causing less influence to the

quality of music. These three music regions are: sign bites which exceed 10 KHz in

big-value region, sign bites in count1 region, and unused bites in bit reservoir region.

Data embedded decoder, ported on ADSP-2181 DSP processor, is to catch data for

analyzing and executing synchronous display of lyrics and pictures. The MP3 data

decoder in ADSP-2181 uses 20.7Kbytes of program memories and 23.6Kbytes of data

memories, and will accomplish real-time playing in 18MIPS, occupying about 55%

processing power of the DSP. This approach can be applied in MPEG.-2/Audio ACC or

MPEG-4/Audio ACC as well, not only in MP3 algorithm.

 iii

誌 謝

首先感謝鄭清政教授和吳炳飛教授的指導，從他們身上我學到了做研究的嚴

謹態度，和解決問題的能力。老師也提供很豐富的研究資源，有良好的環境和最

新的設備。也就是有條件才能完成這本論文。

在實驗室中也有很多要感謝的伙伴。一同參加比賽的煜翔同學、俊傑同學、

映伶學妹，雖然沒得獎，但是重點是比賽時一起努力的過程，這是難以忘記的回

憶。志旭學長和煜翔同學在我做研究遇到困難時也時常給我許多建議，告訴我許

多經驗，讓我研究可以順利的完成。研究做累時常和我聊天的重甫學長、馬哥、

坤卿學長，假日常來實驗室找我吃飯的明達學長、紹麒學長，晚上常和我運動的

光輝學長，幫我搬家無數次的琪文同學，國防役要和我一起到凌陽上班的律嘉同

學，還有其它實驗室的伙伴。還要感謝其它我在交大認識幫過我的許多朋友們。

最重要的要感謝我的父母炳和先生、玉蒼女士，有你們辛苦的工作拉拔，我

才有今天，弟妹榮仁、秀穗、還有家族裡的其它家人，陪我從小一路走來，我也

希望你們陪我分享論文完成的喜悅。

最後還要感謝很多在求學過程中陪我走過許多歡笑與不如意的朋友，現在大

家各分東西為自己的前程努力，也希望大家一起加油。

 iv

Award

第七屆「生創新獎」 第一名

得獎作品 向下相容的 mp3 音樂安全機制

得 獎 者
黃榮煌、林煜翔、林映伶、顏志旭

交通大學/電機與控制工程學系

指導老師 吳炳飛

 v

 vi

Contents
摘 要 .. I

ABSTRACT ... II

誌 謝 ... III

AWARD ...IV

CONTENTS ..VI

LIST OF TABLES ... X

LIST OF FIGURES..XI

CHAPTER 1 INTRODUCTION... 1

1.1 RESEARCH BACKGROUND .. 1

1.2 RESEARCH MOTIVATION... 1

1.3 INNOVATION ... 2

1.3.1 MP3 Encoder .. 2

1.3.2 MP3 Decoder .. 2

1.4 CHARACTERISTIC ... 2

1.5 CONTENT ORGANIZATION .. 4

CHAPTER 2 DATA EMBEDDED ALGORITHM IN THE MPEG/AUDIO.............................. 5

2.1 INTRODUCTION TO MPEG AUDIO... 5

2.1.1 Introduction of the MP3 Encoder Algorithm .. 7

2.1.2 Introduction of the MP3 Decoder Algorithm.. 8

2.2 INTRODUCTION OF DATA EMBEDDED METHODS ... 9

2.2.1 The Principle of Watermarking Algorithm.. 9

2.2.2 Main Characteristics for Watermarking Algorithm... 10

2.2.3 Applications of Watermarking Algorithm... 11

 vii

2.2.4 Classification on Watermarking Techniques ... 12

2.3 DATA EMBEDDED CODEC ALGORITHM FOR MPEG/AUDIO .. 12

2.3.1 The Properties of Data Embedded Codec ... 13

2.3.2 The Structure of Data Embedded Codec... 16

2.3.3 The Methods of Data Embedded Codec ... 18

2.3.3.1 Embedded Data into the Count1 Region ..18

2.3.3.2 Embedded Data into the Big-Value Region..20

2.3.3.3 Embedded Data into Bit Reservoir...24

CHAPTER 3 ENVIRONMENT OF HARDWARE AND SOFTWARE 27

3.1 HARDWARE ENVIRONMENT.. 27

3.1.1 ADSP-2181 EZ-KIT Lite Board ... 27

3.1.2 ADSP-2181 Microprocessor... 28

3.2 SOFTWARE ENVIRONMENT ... 31

CHAPTER 4 IMPLEMENTATION OF DATA EMBEDDED CODEC 35

4.1 DATA EMBEDDED ENCODER ... 35

4.1.1 Package Embedded Data... 35

4.1.2 Embed Data into the MP3 File.. 38

4.2 DATA EMBEDDED DECODER ... 40

4.2.1 Extract Data from the MP3 File.. 41

4.2.2 Porting MP3 Decoder with Data Embedded Decoder on the ADSP-2181 41

4.2.3 Data Stream Analyzer ... 43

4.2.4 Lyric Analyzer .. 46

4.3 EXPERIMENTAL PROCESS .. 48

4.3.1 Encoding ... 48

4.3.2 Decoding... 49

4.4 EXPERIMENTAL RESULTS.. 54

 viii

4.4.1 The Embedded Bits Counts of the Different Methods .. 54

4.4.2 The Encoding Speed of the Different Methods... 56

4.4.3 The Music Quality of the Different Methods.. 58

4.4.4 The File Size of the Different Methods... 60

4.4.5 Comparison with other methods ... 61

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS... 63

5.1 CONCLUSIONS .. 63

5.2 FUTURE WORKS ... 64

REFERENCES ... 65

APPENDIX A MP3 ENCODER/DECODER ALGORITHM... 67

A.1 THE STRUCTURE OF MP3 ENCODER ALGORITHM... 67

A.1.1 Analysis Polyphase Filter Bank .. 68

A.1.2 MDCT and Alias Reduction.. 71

A.1.3 Psychoacoustic Model .. 73

A.1.4 Nonuniform Quantization ... 76

A.1.5 Huffman Encoding.. 77

A.1.6 Bitstream Formatting .. 78

A.2 THE STRUCTURE OF MP3 DECODER ALGORITHM... 78

A.2.1 Decoding of Bitstream .. 79

A.2.2 Inverse Quantization ... 81

A.2.3 Frequency to Time Mapping... 81

APPENDIX B INTRODUCTION TO THE TESTING STANDARD OF THE MUSIC

QUALITY : ODG... 84

B.1 INTRODUCTION... 84

B.2 DESCRIPTION OF PEAQ.. 84

 ix

 x

List of Tables
TABLE 1 CLASSIFICATION OF WATERMARKING ACCORDING TO SEVERAL VIEWPOINTS [10]

.. 12

TABLE 2 CLASSIFICATION OF THE WATERMARKING TECHNIQUE IN THIS THESIS............... 14

TABLE 3 THE PARAMETERS OF THE HEADER IN THE PACKAGE FILE 36

TABLE 4 THE SPEC. OF THE MP3 DECODER WITH DATA EMBEDDED DECODER ON THE

ADSP-2181... 43

TABLE 5 THE INFORMATION OF “01-CAN”... 49

TABLE 6 THE EMBEDDED BITS COUNT OF THE DIFFERENT METHODS 55

TABLE 7 THE EMBEDDED BITS COUNT PER FRAME BY THE DIFFERENT METHODS............ 56

TABLE 8 THE SPEC. OF THE TEST PLATFORM ... 56

TABLE 9 THE ENCODING SPEED OF THE DIFFERENT METHODS BY FLOATING POINT

ENCODER ... 57

TABLE 10 THE ENCODING SPEED OF THE DIFFERENT METHODS BY FIXED POINT

ENCODER ... 58

TABLE 11 THE TESTING ENVIRONMENT OF THE MUSIC QUALITY ... 59

TABLE 12 THE MUSIC QUALITY OF THE DIFFERENT METHODS .. 60

TABLE 13 THE FILE SIZE OF THE DIFFERENT METHODS.. 61

 xi

List of Figures
FIG. 1 THE HIERARCHY OF THE ISO MPEG STANDARD... 6

FIG. 2 THE COMPARISON OF THE ISO MPEG AUDIO STANDARD COMPRESSION RATIO......... 7

FIG. 3 MPEG-1/AUDIO LAYER 3 ENCODER BLOCK DIAGRAM [5].. 8

FIG. 4 MPEG-1/AUDIO LAYER III DECODER BLOCK DIAGRAM.. 9

FIG. 5 COMBINATION OF THE WATERMARKING PROCESS ON MPEG/AUDIO 10

FIG. 6 THE STRUCTURE OF DATA EMBEDDED ENCODER... 17

FIG. 7 THE STRUCTURE OF DATA EMBEDDED DECODER... 18

FIG. 8 THE ABSOLUTE THRESHOLD OF HEARING .. 19

FIG. 9 THE FREQUENCY LINE MAPPING TO FREQUENCY... 22

FIG. 10 THE DISTRIBUTION OF MUSIC QUALITY AND BITS IN THE BIG-VALUE REGION 23

FIG. 11 THE DISTRIBUTION OF MUSIC QUALITY AND BITS IN THE BIG-VALUE REGION 24

FIG. 12 THE BITSTREAM AND BIT RESERVOIR OF MP3 ... 25

FIG. 13 THE RESERVOIR OVER 512 BYTES AND STUFF “1” ... 25

FIG. 14 EZ-KIT LITE’S FUNCTIONAL BLOCK DIAGRAM [15]... 28

FIG. 15 ADSP-2181 FUNCTIONAL BLOCK DIAGRAM [17] ... 29

FIG. 16 HARVARD ARCHITECTURE... 30

FIG. 17 VISUALDSP USER INTERFACE ... 32

FIG. 18 THE FORMAT OF THE PACKAGED FILE.. 37

FIG. 19 THE FLOWCHART OF THE PACKAGED FILE ... 38

FIG. 20 THE BLOCK DIAGRAM OF THE MP3 ENCODER WITH DATA EMBEDDED ENCODER 39

FIG. 21 THE DISTRIBUTION OF THE UNNECESSARY BITS OF THE BIT RESERVOIR IN MP3

SONG [19].. 40

FIG. 22 THE BLOCK DIAGRAM OF THE MP3 DECODER WITH DATA EMBEDDED DECODER 41

FIG. 23 THE FLOWCHART OF THE DATA EMBEDDED ANALYZER ... 45

FIG. 24 THE FLOWCHART OF THE LYRIC ANALYZER... 47

FIG. 25 THE EXTRACTED LYRICS OF THE MP3 SONG... 50

 xii

FIG. 26 PHOTO1.JPG.. 51

FIG. 27 PHOTO2.JPG.. 51

FIG. 28 PHOTO3.JPG.. 52

FIG. 29 PHOTO4.JPG.. 52

FIG. 30 PHOTO5.JPG.. 53

FIG. 31 PHOTO6.JPG.. 53

FIG. 32 MPEG-1/AUDIO LAYER 3 ENCODER BLOCK DIAGRAM [5].. 68

FIG. 33 ANALYSIS SUBBAND FILTER AND MDCT.. 68

FIG. 34 COEFFICIENT OF C[N] AND H[N] (N = 0~511)... 70

FIG. 35 FREQUENCY RESPONSE OF SUBBAND .. 71

FIG. 36 ILLUSTRATION OF THE FOUR APPLICABLE WINDOW TYPES AND USING

CONDITION.. 72

FIG. 37 ILLUSTRATION OF ALIAS REDUCTION BUTTERFLIES ... 73

FIG. 38 THE ABSOLUTE THRESHOLD OF HEARING .. 74

FIG. 39 FREQUENCY MASKING THRESHOLD AND THRESHOLD IN QUIET [8] 75

FIG. 40 TEMPORAL MASKING THRESHOLD [8].. 76

FIG. 41 MAIN DATA ORGANIZATION OF A FRAME .. 78

FIG. 42 MPEG-1/AUDIO LAYER III DECODER BLOCK DIAGRAM.. 79

FIG. 43 DECODING OF BITSTREAM BLOCK DIAGRAM.. 79

FIG. 44 MPEG-1/AUDIO LAYER III HEADER FORMAT ... 80

FIG. 45 FREQUENCY TO TIME MAPPING ... 82

FIG. 46 BLOCK DIAGRAM OF MEASUREMENT SCHEME... 85

 1

CHAPTER 1

 Introduction

1.1 Research Background

In recent ten years, the popularization of Internet and the rapid development of

computer industries make our life more convenient and comfortable. People can

communicate by sending messages to each other via electronic(E-) texts, E-mail,

E-news, digital image, audio, video etc. under the connection of Internet. Meanwhile,

digital music also replaces the traditional music which can be diffused quickly on the

net, causing multi-media industry a great loss. The popularity of MP3 has a great impact

on the music industry indeed. Some network companies which provide P2P service

share the market of the traditional music company using the network connectivity

convenience, such as Kuro, ezpeer, etc.

1.2 Research Motivation

The technology of MPEG Audio [2] provides low bit rate and low computation

requirement for high quality audio compression. Therefore, it is widely used for storing

nearly all kinds of music.

The invention of digital music has changed the consumption model of the

traditional music market. Selling music on the net becomes a new model, and also a

main trend. Competitors for music content providers increase since they can sell music

on the internet, too. The music content providers must offer additional services to

compete with the competitors and attract more customers. Data embedded technique can

be one of the weapons in the market. Nevertheless, techniques of data embedded which

 2

differs from the Cryptography System [1] are to embed extra information into

multimedia work, such as MP3 (MPEG -1 Audio Layer III).

1.3 Innovation

1.3.1 MP3 Encoder

In this thesis, the data embedded methods are developed to embed data into MP3

file without depending on the absolute threshold of hearing of the psychoacoustic model,

because the psychoacoustic model of the MP3 algorithm is removed in our MP3

encoder.

General watermarking techniques or data hiding techniques reference the

psychoacoustic model [14] in the music compressing technique. But the computation of

the psychoacoustic model is a great quantity of ratio in the MP3 encoder, and it

accounts about 20% computation of the MP3 encoder. Our MP3 encoder not only can

embed data without making influence to the music quality but improves the encoding

speed.

1.3.2 MP3 Decoder

In general, the MP3 decoder playing the MP3 file with lyric must have an

additional lyric file and install a plug-in software to play the lyric. Some users even

don’t know where to find the lyric file. The data embedded method will solve the

problem. The lyric of a MP3 song can be embedded into the MP3 and the MP3 decoder

with data embedded decoder can play the song and show the lyric concurrently.

1.4 Characteristic

 3

In this thesis, we try to find ways to embed digital data into MP3 and combine the

embedded data codec with an MP3 codec. This technique for data embedding can

include a great amount of information, such as lyrics, pictures of the singer or other

information. There are several characteristics:

 Won’t changing the file size, and won’t be noticed by users

 Data embedding techniques won’t cause negative influences on quality

of audio work and will not be noticed by users or attackers.

 Using for network streaming broadcast

The data is embedded everywhere not in the beginning of the music file.

If the music receives from the half of the music file on the internet, the music

player also can extract the embedded data. So the music file with embedded

data can be used on the network streaming broadcast.

 Providing additional service by music content provider

The MP3 encoder with data embedded encoder can be used for the music

content provider to embed some information about singer in the MP3 songs.

The content provider can provide this new service in their music product. In

other way, content provider will have more advantages to fight the pirates.

 Portable MP3 decoder with data embedded decoder

The MP3 decoder with data embedded decoder has been ported on the

ADSP-2181 processor. It can combine with the USB storage device and LCD

display to become a portable device.

The data embedded technique improves the encoder and the decoder respectively.

Its dedication to encoder is the technique that data embeds into the MP3 without

referencing the psychoacoustic model. In decoder the data embedded technique is

ported on DSP platform, ADSP-2181, to realize the data embedded decoding. It could

further be developed as a portable product. To sum up, the purpose of this method is to

 4

increase the applications of MP3 music media.

1.5 Content Organization

This thesis contains six chapters. Chapter 1 is in the premise. Chapter 2 introduces

three methods which are used to embed data into the MP3 file in this thesis. In Chapter

3, the hardware and software environment where the MP3 decoder with data embedded

decoder ported is developed are introduced. Chapter 4 presents the implementation and

performance verification of these methods. This thesis finishes with conclusion and

future works in Chapter 5. Appendix A introduces the MPEG-1 Layer III codec

algorithm, which is including the brief principles and functionality. Appendix B

introduces the ODG standard which is used for testing the music quality.

 5

CHAPTER 2

Data Embedded Algorithm in the MPEG/Audio

In this chapter, we will describe the MPEG-1/Audio compression algorithm briefly

and the MPEG-1/Audio format. This serves as the necessary background of

understanding our MPEG-1/Audio data embedded schemes. The data embedded

technique will be introduced in Section 2.2. It includes the principle, the application,

and the classification of the data embedded algorithm. The data embedded algorithm

that used to implement the data embedded codec about the MPEG/Audio in this thesis is

introduced in Section 2.3. Section 2.3 introduces the data embedded encoder which

includes the principles, the application, the advantages, and other methods to embed

data into the MPEG/Audio. It introduces the data embedded decoder which extracts the

embedded data.

2.1 Introduction to MPEG Audio

The ISO MPEG standard [3][4] contains four parts for compression standards

shown in Fig. 1. The MPEG-1 is divided into five parts, namely system, video, audio,

compliance testing, and software simulation. The MPEG-1 audio algorithm is an

international standard for digital audio compression and does not make any assumptions

about the nature of the audio source. It is suitable for audio-only applications as well as

combined with video data (MPEG Systems Coding).

 6

ISO MPEG Standard

MPEG-2 MPEG-7MPEG-1 MPEG-21

Audio Compliance TestingVideo Software SumulationSystem

Layer 2 Layer 3Layer 1

Fig. 1 The hierarchy of the ISO MPEG Standard

Depending on the applications, MPEG audio coding system can also be divided

into three layers with increasing encoder complexity:

 Layer I

Layer I contains the basic mapping of the audio samples into 32

subbands, fixed segmentation to format the data into blocks, a psychoacoustic

model for the bit allocation, and quantization. It best suits the bit rate above

128Kbps per channel.

 Layer II

Layer II provides additional coding of bit allocation, scale-factors and

samples. It targets the bit rate around 128 Kbps per channel.

 Layer III

Layer III introduces increased frequency resolution based on a hybrid

filterbank. It uses non-uniform quantizer and entropy coding (Huffman

Coding). It offers the best audio quality at the bit rate around 64 Kbps per

channel.

 7

The MPEG audio compression is a lossy algorithm and uses the special nature of

the human auditory system (HAS). It removes the perceptually irrelevant parts of the

audio and makes the audio signal distortions inaudible to the human ear, so it can

provide compression ratios ranging form 2.7 to 24, see the Fig. 2. The compression

ratios depend on different predefined fixed bit rates ranging from 32 kbps to 224 kbps.

1

2

3

4

Layer I

Layer II

Layer III

1:4 Compression ratio

Source WAVE File

1:8 Compression ratio

1:12 Compression ratio

Fig. 2 The comparison of the ISO MPEG Audio standard compression ratio

2.1.1 Introduction of the MP3 Encoder Algorithm

The description of the encoding process is based on the block diagram in Fig. 3.

The input audio signal which comes from a single channel PCM signal is passed

through a polyphase filter bank. This filter bank divides the input signal into 32

equally-space frequency subbands. After this process, the samples in each subband are

still in the time domain. A Modified Discrete Cosine Transform (MDCT) is then used to

 8

map the samples in each subband to frequency domain. In the meantime, input signal

after FFT transformation passes through a psychoacoustic model that determines the

ratio of the signal energy to the masking threshold for each subband. The distortion

control block uses the signal-to-mask ratios (SMR) from the psychoacoustic model to

decide how to assign the total number of code bits available for the quantization of the

subband signals to minimize the audibility of the quantization noise. The quantized

subband samples are coded with the lossless Huffman coding to decrease the entropy of

samples. Finally, the end block takes the Huffman coded subband samples and side

information into a packed bitstream according to the MPEG/Audio standard.

Filterbank 32
subbands MDCT

Distortion
control loop

Non-uniform
quantization rate

control loop

Huffman
encoding

FFT 1024
points

Psychoacoustic
model

Coding of
side-information

Bitstream
formatting

Digital Audio
signal (PCM)

Window
switching

Coded
audio signal

mnr

Fig. 3 MPEG-1/Audio Layer 3 encoder block diagram [5]

2.1.2 Introduction of the MP3 Decoder Algorithm

In this section the MPEG-1/Audio Layer III decoder will be described with its

functionality. The decoding process is based on the block diagram in Fig. 4. The

decoder has three main parts: “Decoding of Bitstream”, “Inverse Quantization”, and

“Frequency to Time mapping”.

The input coded bitstream is passed through the first parts to synchronize and

extract the quantized frequency line and other information of each frame. The inverse

 9

quantization part dequantized the frequency line according to the output of previous part.

Finally, the last part is a set of reverse operations of the MDCT and analysis polyphase

filter bank in the encoder. Its output is the audio signal in PCM format.

Decoding of
Bitstream

Inverse
Quantization

Frequency to
Time mapping

Digital Audio
signal (PCM)

Coded
audio signal

Fig. 4 MPEG-1/Audio Layer III decoder block diagram

2.2 Introduction of Data Embedded methods

There are many watermark techniques [8] in terms of their application areas and

purposes. The technology of data embedded is a kind of watermarking. It is also related

to the science of steganography. The word steganography is derived from the Greek

words stegano (hidden) and pgrphein (to write) and therefore means “covered writing”.

Data embedded of MPEG/Audio is a technique for the transmission of additional data

along with audio signals existing distribution channels.

The principle, the characteristics, the applications, and the classifications are

introduced in the following:

2.2.1 The Principle of Watermarking Algorithm

Mathematically, data embedded can be expressed like EQ 1. If an original audio

signal A and a watermark W are given, the watermarked audio signal A′ is represented

as the following Eq. 1.

()WAfAA ,+=′ Eq. 1

 10

Fig. 5 shows the combination of the watermarking process which includes

inserting and extracting watermark.

MPEG/Audio
Encoder &
Bitstream
watermark

inserter

 A＇

W

PCM music signal

PCM music signal
A Compressed

audio signal
watermarked

MPEG/Audio
Decoder &
Bitstream
watermark
extractor

A

Watermark

K
Wwatermark

K

Fig. 5 Combination of the watermarking process on MPEG/Audio

2.2.2 Main Characteristics for Watermarking Algorithm

There are many watermark characteristics, which may be required for an effective

watermark, but the following main characteristics are important ones.

 Invisibility

It is not able for human sense system to find the difference between the

host media and watermark media. This is the essential requirement of all the

 11

data hiding system including watermarking system. This is why the

watermark hidden in the audio must be music inaudible.

 Robustness

Robustness, also an essential requirement is the ability to resist some of

the signal processing operations, such as filtering, compression and the

identifiable degree of the retrieved watermarks. The embedded algorithm

must make chance to fight against the different kinds of signal processing

operations. In general, the more robust the watermarking techniques have, the

fewer capacities we can embed.

 Security

After the watermark embedding, if someone wants to take out the

embedded watermark, he must own some of the secret information related to

the original signal. In general, to keep secret of the embedding algorithm is

not easy, so the safety of the embedding system relies on the secret key which

represents the location that watermark embedded. Using the secret key as the

seed of the random number generator, we can get a serial random number and

cooperate with an algorithm to embed the watermark. Therefore, the secret

key is necessary to extract the watermark from the embedded media.

2.2.3 Applications of Watermarking Algorithm
 Compatible Transmission of Data (Watermarks)

Basically watermarking algorithms provide a data transmission channel

that can be used in existing distribution channels. The data hiding (watermark)

transmission is backward compatible in the sense that every existing channel

that is able to carry watermarked music. Hence watermarking can be utilized

in a wide field of applications.

 Digital Rights Management (DRM)

 12

Digital Rights Management is often considered as the main application

of watermark. Watermark can provide means to fulfill the demands of DRM,

such as proof of ownership, access control for digital media, tracing illegal

copies and so on.

 Broadcasting

A variety of applications for audio watermark are in the field of

broadcasting. These include program type identification, advertising research,

broadcast coverage research and etc.

2.2.4 Classification on Watermarking Techniques

The data embedded technique has different insertion and extraction methods, and

may be classify and analyze these methods from the various points of view like in Table

1.

Table 1 Classification of watermarking according to several viewpoints [9]

Classification Contents

Inserted media category text, image, audio, video

Perceptivity of watermark visible, invisible

Robustness of watermark robust, semi-fragile, fragile

Inserting watermark type noise, image, format

Spatial domain LSB, patchwork, random function Processing method

 Transform domain Look-up table, spread spectrum

Necessary data for extraction Private, semi-private,

public watermarking

File size Vary or not

2.3 Data Embedded Codec Algorithm for MPEG/Audio

 13

In this section, the properties and the data embedded codec algorithm which

includes several methods to embed data into the MPEG/Audio will be introduced.

2.3.1 The Properties of Data Embedded Codec

In this thesis, the MPEG/Audio signal is the inserted media because the technique

of the data embedded bases on the specification of the MPEG/Audio. The embedded

data is private information which is invisible and fragile. And the file type of embedded

data can be any format or just be a series of bitstream. In other words, any data can be

embedded into the MPEG/Audio media no matter what data type it is as long as the size

of the embedded data is not bigger than the upper limit of the embedded data of the

media.

There are three methods for data embedding, embedded data into count1 region,

embedded data into bit reservoir, and modify the MP3 encoder from floating point to

fixed point.

Recent research has produced a number of algorithms for embedding and retrieval

of watermarks in audio signals [10] [11][12][13]. While most known systems operate in

the uncompressed domain (PCM Watermarking), few are capable of embedding

watermarks into compressed domain (Bitstream Watermarking) such as this thesis. The

classification of the watermarking algorithm proposed in this thesis as mentioned above

in Table 1 can be summarized and shown in Table 2:

 14

Table 2 Classification of the watermarking technique in this thesis

Classification Contents

Inserted media category MPEG/Audio

Perceptivity of watermark invisible

Robustness of watermark fragile

Inserting watermark type Any format

Processing method: Frequency domain spread spectrum of high frequency

Necessary data for extraction Public watermarking

File size of inserted media No change

 Inserted media category : MPEG/Audio

The data embedded method designed flow is based on the property of

MPEG/Audio Specification. The MPEG-1 Layer-3 (MP3) is used for

embedding data in this thesis. After MP3 encoder doses MDCT

transformation which transforms signal from time domain to frequency

domain, the frequency lines of the main data are distributed from low

frequency to high frequency in a frame as shown in Fig. 41. Data is embedded

into frequency domain by MP3 encoders, and extracted by MP3 decoders.

 Perceptivity of watermark : Invisible

The embedded data as watermarks must be invisible because the inserted

media file is the audio file. The embedded data can not either affect the

quality of the original music or at least the affection can not be heard. The

MP3 decoder with data embedded decoder can be used to extract the

embedded data stream and reconstruct the embedded data stream to the

original file.

 Robustness of watermark : fragile

Embedding data into MP3 music is additional service by the content

 15

providers. But the purpose of embedding data is not to provide additional

protection for MP3 music, on the contrary, the embedded data becomes fragile

and easily distorted when the music is compressed. More robust the

watermark is, less space for data embedding. Therefore the fragile method is

preferred because more fragile the watermark is, more space for data

embedding.

 Inserting watermark type : any format

The data type that is embedded into the audio file can be any file format,

because the embedded data stream has a header which records the

synchronization, the embedded file size, the embedded file length, and the file

data stream. The embedded data stream just is a series signal of “0” and ”1”

whatever any files types are. The extractor in the MP3 decoder can extract the

embedded data and an analyzer of embedded data can reconstruct the

embedded files.

 Processing method : Frequency domain

The embedded data is embedded into frequency lines of the frequency

domain after the MDCT transformation which transforms from time domain

to frequency domain.

 Necessary data for extraction : public watermark

The embedded data belongs to public watermark. The embedded data

only can be extracted by a special decoder.

 File size : no change

After the data embeds into the MP3 file, the MP3 file size that is

embedded data is the same to the MP3 file that is encoded by other MP3

encoder. One file is encoded by MP3 encoder with data embedded encoder,

and the other one is encoded by any other MP3 encoders in the same bitrate

and sampling rate. The size of the two MP3 files is the same, if they compare

 16

to each other. They just can be differentiated by the MP3 decoder with

embedded data analyzer. The one which embedded data can extract embedded

information but the other one can’t.

2.3.2 The Structure of Data Embedded Codec

The data embedded codec are divided into two parts: one part is the data embedded

encoder, and the other part is data embedded decoder. The data embedded encoder

usually is used for content provider to provide additional service which embed lyrics,

the basic information of singer, the photos of the singer, and even the information of

customer into the MP3 audio. Almost all information can be embedded into the MP3

file under the upper bond of the size of the embedded data. The data embedded decoder

is used for users and combines with the MP3decoder. It can extract all the information

that is embedded in the MP3 files and display the information on the monitor. The MP3

decoder with data embedded decoder has also ported on the ADSP-2181 to become a

portable device.

Fig. 6 indicates the structure of data embedded encoder. There are two source data

for encoding: one is the audio raw data, and one is the embedded data. If there are too

many embedded files input into the encoder at the same time, the encoder will confuse

the files. And it causes the decoder could not extract the embedded data. The embedded

data does not just include only one file. It may include two files or more, so a package

program is designed in order to pack all the files to become a file with special format for

encoding. The packaged file and the audio raw data input to the MP3 encoder with data

embedded encoder together, and the encoder will output a MP3 file with embedded data.

The file size after embedding data is the same to the file size which is encoded by other

MP3 encoder. The MP3 file which embeds data can also be played by any general MP3

 17

player, and the embedded data won’t affect the quality of the music.

Embedded
Data

Text or picture

Embedded
Data

Text or picture

WAVE Music
wav file

WAVE Music
wav file

PACKAGE FILE
A embedded file

MP3 Encoder with
Data Embedded

Encoder

MP3 MUSIC
MP3 file

with data embedded

MP3 MUSIC
MP3 file

with data embedded

Fig. 6 The structure of data embedded encoder

Fig. 7 indicates the structure of data embedded decoder. The decoder structure is

the inverse flow of the encoder. The MP3 file with embedded data as the input data

inputs to the MP3 decoder with data embedded decoder. The decoder has two output

ends: one is the music raw data, and the other one is the embedded data stream. The

music raw data is the same music of CD quality which decodes by other general MP3

decoder. The embedded data stream has to input the data stream analyzer to analyze,

and the data stream analyzer reconstructs the original embedded files. And the files

would be shown on the displayer or save as files in the disk.

 18

MP3 MUSIC
MP3 file

with data embedded

MP3 MUSIC
MP3 file

with data embedded

MP3 Decoder with
Data Embedded

Decoder
WAVE Music

wave file

WAVE Music
wave file

Data Embedded
Stream

Text or picture stream

Data Embedded
Stream

Text or picture stream

DATA STREAM
WRITE TO

FILE

FILES
Text or picture

file

FILES
Text or picture

file

Fig. 7 The structure of data embedded decoder

2.3.3 The Methods of Data Embedded Codec

In this section, there are some methods for data embedding. They are introduced in

the following subsection:

2.3.3.1 Embedded Data into the Count1 Region

The count1 region saves the frequency lines which distribute on the relative high

frequency in a frame. And the energy of the count1 region is small than the energy of

big-value region. So the method of embedded data into count1 region can affect the

quality of the music small.

General watermarking techniques reference the absolute threshold of hearing of the

psychoacoustic model [14] in the music compressing technique, as shown in Fig. 8. The

signal energy can’t be heard by people under the absolute threshold of hearing, and the

watermark usually hides under the absolute threshold of hearing, too. The signal of the

embedded data can’t be heard by people, so it would not affect the quality of the music.

 19

Fig. 8 The Absolute Threshold of Hearing

The computation of the psychoacoustic model is a great quantity of ratio in the

MP3 encoder, and it accounts about 20% computation of the MP3 encoder. The quality

of the MP3 music after the MP3 encoder encodes without psychoacoustic model and the

bit rate sets 128kbps. The general bitrate of MP3 is almost 128kbps now, but a few

songs even uses 128kbps for more high quality music. There are few songs encoded by

96kbps or less, because the quality is a little ugly. In order to speed up the encoding

time of the MP3 encoder, the psychoacoustic model of the MP3 encoder would be

removed for embedded system.

The MP3 encoding speed is speed up after the psychoacoustic model of the MP3

encoder is removed. On the other side, it is not good for data embedded techniques. The

data embedded techniques would easily destroy the quality of the music without the

reference of the psychoacoustic model. So should embed information in a situation

without psychoacoustic model, must look for other places that can embed information in

the music. The main condition of the place would not affect the original quality of the

music or the affect to the quality should be the lowest.

 20

In this thesis, the method of data embedded bases on a principle that the sensitive

degree of different frequency bands for ears of people is different. The sound of low

frequency for common people’s ears, no matter how the loud voice of the sound is or

where the source of the sound is more relatively sensitivity to distinguish coming out.

But people’s ears are relatively insensitive to high frequency sound. The property is

used during MP3 encoding. The property is that people’s ears can’t distinguish the

phase of the high frequency.

The MP3 media data embedded technique is designed to utilize the different degree

of sensitiveness of human ears to different sound band. Normally human ears, despite

the volume or source of the sounds, are more sensitive to those with the phase of lower

frequency but are less sensitive to those with the phase of higher frequency. Using this

characteristic we develop modified MP3 coding technique, embedding the data in high

frequency sound band when compressing MP3 data files to decrease the negative

influence of the quality of the sounds. Then a MP3 media data decoder is being

developed. The embedded data will be shown on the screen at the same time during

decoding.

2.3.3.2 Embedded Data into the Big-Value Region

The method of embedding data into the bit value region is the extended method of

Section 2.3.3.1, which embeds data into the count1 region. This method uses the sign

bits of the big-value region for embedding data, and it is the same as Section 2.3.3.1,

which the sign bits of the count1 region, is used for embedding data.

The property that people is less sensitive to the phase of the high frequency is used

in the last section. According to this property, the embedded data is used to replace the

 21

sign bits which represent the phase of the high frequency in the count1 region. For the

same reason, the sign bits that represent the phase of the relative high frequency can be

used for embedding data. People are sensitive to the sound of low frequency, so the

embedded data can not replace all the sign bits in the big-value region. It will cause lots

of distortion. The relation between changing the sign bit in the big-value region and the

quality of the music is pretty close especially the quality of the low frequency music.

For this reason, the lower limit of the frequency must be searched to make sure that the

embedded data won’t result in distortion.

There are 6,930 frames in a song which plays three minutes and four granules in a

frame. Therefore, there are 27,720 granules in a song. Changing the sign bits of the

count1 region doesn't influence the music quality obviously because the count1 region

represents the part of the relatively high frequency signal in every granule. The average

starting boundary of the count1 region is the 310th frequency line in the granule through

the frequency lines statistic. And it maps to the real frequency is 11.84 KHz, as shown

in Fig. 9. That is to say, without considering where the starting point of the count1

region is, the 310th frequency line lies in the big-value region. When the data embeds in

the sign bits of the frequency lines after the 310th one is replaced, the influence upon the

music quality is small.

 22

5750Frequency line 310

scalefactor

Part2_length

Frequency lines (576) Huffman Code

Region 0 Region 1 Region 2 1 or 0 00000000

Big_value Count 1 Zero_region

Part3_length

Part2_3_length

Frequency 0KHz 22 KHz11.84 KHz
Fig. 9 The frequency line mapping to frequency

The data space for embedding data into the big-value region is bigger than

embedding data into the count1 region. But the energy of the signals in the big-value

region is bigger than those in the count1 region. On the other hand, data embedded into

the big-value region has greater influence upon the music quality than the data

embedded into the count1 region. If the quality of the music is highly considered, the

latter one is preferred.

Fig. 10 and Fig. 11 are shown two distribution of music quality and bit numbers in

big-value region. The meanings of the two figures are the different variations of music

quality and bit numbers which embeds data from different frequency in the big-value

region. In Fig. 10, if user embeds data from 0K Hz, he can get a quantity of space about

620Kbytes for embedding data. But the music quality will be too worse to hear, the

ODG [20] is about -3.2. If user dose not need a big space for embedding data and needs

a better music quality, he can embed data from higher frequency, for example, 10K Hz.

The selected frequency for embedding data is a trade off between the music quality and

 23

the bit numbers. Or user can embed data into the other two regions that provides in this

thesis. Embedded data into the big-value region affects the music quality easily, so the

big-value region is the last region that we suggest for embedding data in the three

methods.

Fig. 10 The distribution of music quality and bits in the big-value region

(Sample name: 01-can)

 24

Fig. 11 The distribution of music quality and bits in the big-value region

(Sample name: speech)

2.3.3.3 Embedded Data into Bit Reservoir

In the MP3 encoder algorithm, an enhancement method called “bit reservoir” is

used to fit encoder’s time-varying demand on code bits. The encoder can donate bits to

a reservoir when it needs less than the average number of bits to code a frame. Next,

when the encoder needs more than the average number of bits to code a frame, it can

borrow bits from the reservoir mechanism, as shown in Fig. 12.

 25

檔頭和附
屬資料

Header &
Side

information

Header &
Side

information

Header &
Side

information

The bit
reservoir of
Frame_1 is 0

The bit
reservoir of

Frame_2

The bit
reservoir of

Frame_3

Frame1
main_data_begin=0

Frame2
main_data_begin

Frame3
main_data_begin

Fig. 12 The bitstream and bit reservoir of MP3

In bit reservoir, there is a 9-bit flag to record the beginning point of the reservoir. If

the space of the reservoir is larger than 512 bytes, the excess space will have to be filled

in “1” and cannot be further utilized. Therefore these bits are all wasted, as shown in Fig.

13. It is often the case at the quiet sound part in the beginning and the end of the music,

which mostly the entire frame is filled in “1”. So these bits could be used for data

embedding.

檔頭和附
屬資料

Header &
Side

information

Header &
Side

information

Header &
Side

information

The bit
reservoir of
Frame_1 is 0

The bit
reservoir of

Frame_2

The bit
reservoir of

Frame_3

Frame1
main_data_begin=0

Frame2
main_data_begin

Frame3
main_data_begin

Over 512 bits
stuff “1＂

Fig. 13 The reservoir over 512 bytes and stuff “1”

Embedding data into unutilized bit reservoir space has a huge advantage： It will

 26

not influence the quality of the music at all. Because in MP3 decoding process, when

encountering redundant bit reservoir, the decoder will just read “1” from the bitstream

but not decode it. Therefore using these space filled in “1” to embed data will not

influence the quality of the music.

 27

CHAPTER 3

Environment of Hardware and Software

In this chapter, the hardware and software environment are described briefly. The

data embedded algorithm is ported on the ADSP hardware, and the data embedded

algorithm is developed by the VisualDSP which is the software environment. The

hardware is concerned with the development of programs while the software influences

the development speed and performance.

3.1 Hardware Environment

3.1.1 ADSP-2181 EZ-KIT Lite Board

The hardware used in this thesis is AnalogDevice ADSP-2181 EZ-Kit Lite board.

The EZ-KIT Lite consists of a small ADSP-2181 based development/demonstration

board with full 16-bit stereo audio I/O capabilities. The board’s features which shown in

Fig. 14 include:

 ADSP-2181 16-bit 33 MIPS DSP

 AD1847 Stereo SoundPort

 RS-232 Interface

 Socketed EPROM

 User Pushbuttons

 Power Supply Regulation

 Expansion Connectors

 User Configurable Jumpers

 28

Fig. 14 EZ-KIT Lite’s functional block diagram [14]

The board can run standalone or can simply connect to the RS-232 port of the PC.

A monitor program running on the DSP in conjunction with a host program running on

the PC interactively download programs as well as interrogate the ADSP-2181. The

board comes with a socketed EPROM so that we can download the MP3 codec with

data hiding algorithm into the EPROM.

3.1.2 ADSP-2181 Microprocessor

The ADSP-2181 is a programmable single-chip microprocessor that uses a

common base architecture optimized for digital signal processing (DSP) and other

high-speed numeric processing applications. Fig. 15 shows the main functional units of

the ADSP-2181 architecture which functions are included in the processor.

 29

Fig. 15 ADSP-2181 functional block diagram [16]

 Computational Units

The ADSP-2181 processor contains three independent, full-function

computational units: an arithmetic/logic unit (ALU), a multiplier/accumulator

(MAC) and a barrel shifter. The computational units process 16-bit data

directly and also provide hardware support for multiprecision computations.

 Data Address Generators & Program Sequencer

Two dedicated address generators and a program sequencer supply

addresses for on-chip or external memory access. The sequencer supports

single-cycle conditional branching and executes program loops with zero

overhead. Dual data address generators allow the processor to generate

simultaneous addresses for dual operand fetches. Together the sequencer and

data address generators keep the computational units continuously working,

maximizing throughput.

 Memory

 30

The ADSP-2181 uses a modified Harvard architecture in which data

memory stores data, and program memory stores both instructions and data,

as shown in Fig. 16. The ADSP-2181 contains on-chip RAM that comprises a

portion of the program memory space and data memory space. The speed of

the on-chip memory allows the processor to fetch two operands (one from

data memory and one from program memory) and in instruction (from

program memory) in a single cycle.

16K 24-bit
Program
Memory

ADSP-2181

16K 16-bit
Data Memory

Fig. 16 Harvard architecture

 Serial Ports

The serial ports (SPORTs) provide a complete serial interface with

hardware companding for data compression and expansion. Both µ -law and

A-low companding are supported. The SPORTs interface easily and directly to

a wide variety of popular serial devices. Each SPORT can generate a

programmable internal clock or accept an external clock. SPROT0 includes a

multichannel option.

 Timer

A programmable timer/counter with 8-bit prescaler provides periodic

interrupt generation.

 DMA Ports

 31

The ADSP-2181’s Internal DMA Port (IDMA) and Byte DMA Port

(BDMA) provide efficient data transfers to and form internal memory. The

IDMA port has a 16-bit multiplexed address and data bus and supports 24-bit

program memory. The IDMA port is completely asynchronous and can be

written to while the ADSP-2181 is operating at full speed. The byte memory

DMA port allows boot loading and storing of program instructions and data.

3.2 Software Environment

The ADSP software offers a PC based debugger environment, called VisualDSP++

[17] which user can develop quickly and debug easily in programming stage. Fig. 17

shows the VisualDSP++ user interface. This software development support enables user

to develop DSP applications.

 32

Fig. 17 VisualDSP user interface

VisualDSP++ provides the following features:

Extensive editing capabilities

Create and modify source files by using multiple language syntax

highlighting, drag-and-drop, bookmarks, and other standard editing operations.

View files generated by the code development tools.

Flexible project management

Specify a project definition that identifies the files, dependencies, and

tools that is used to build projects. Create this project definition once or

modify it to meet changing development needs.

 33

Easy access to code development tools

Analog Devices provides the following code development tools: C/C++

compiler, VIDL compiler, assembler, linker, splitter, and loader. Specify

options for these tools by using dialog boxes instead of complicated command

line scripts. Options that control how the tools process inputs and generate

outputs have a one-to-one correspondence to command line switches. Define

options for a single file or for an entire project. Define these options once or

modify them as necessary.

Flexible project build options

Control builds at the file or project level. VisualDSP++ enables to build

files or projects selectively, update project dependencies, or incrementally

build only the files that have changed since the previous build. View the status

of the project build in progress. If the build reports an error, double-click on

the file name in the error message to open that source file. Then correct the

error, rebuild the file or project, and start a debug session.

VisualDSP++ Kernel (VDK) Support

Add VDK support to a project to structure and scale application

development. The Kernel tab page of the Project window enables to

manipulate kernel objects such as events, event bits, priorities, semaphores,

and thread types.

Flexible workspace management

Create multiple workspaces and quickly switch between them. Assigning

a different project to each workspace enables to build and debug multiple

projects in a single session.

 34

Easy movement between debug and build activities

Start the debug session and move freely between editing, build, and

debug activities.

 35

CHAPTER 4

Implementation of Data Embedded Codec

In this section, the design of data embedded codec will be introduced. In Section

4.1, the flow of design will be discussed, which includes packaging embedded data and

designing MP3 encoder with embedded data. Section 4.2 will introduce the design flow

of data embedded decoder, which includes the MP3 decoder with data extracting

decoder and the data embedded analyzer.

4.1 Data Embedded Encoder

The data embedded encoder contains two parts: packaging program and the main

data embedding program.

It is very important that embedded data cannot affect the quality of the music. Yet

another requirement is that the embedded data after being extracted by decoder must be

exactly the same as it was encoded by encoder. The bit stream of the embedded data

embeds audio file in series type, and the embedding data format must be pre-defined

otherwise the extracted bit stream would not be recognized by data analyzer. Thus, a

program package the files which will be embedded into the MP3 is needed, and the

package format also needs to be defined.

4.1.1 Package Embedded Data

The embedded data usually has several files, not just one. These files are

embedded in series but not parallel, and cannot overlap with one another. If the files mix

 36

up with one another, the embedded data cannot be extracted by the MP3 decoder.

Therefore the embedded files must first be packaged.

Here is another problem that should be taken into consideration: the start point and

the end point of the files embedded, as well as the data embedded in series type, are not

known by the decoder. Therefore a header is defined for the embedded files and is

packaged in front of the embedded files. The header contains three parameters:

“synchronization bits”, “file length bits”, and “file type bits”, as shown in Table 3. The

first parameter, “synchronization bits” is defined to synchronize the start point of the

embedded file. It is accounted 4 bytes and has a value of 02040608. The second

parameter, “file length bits” is defined to record the size of the embedded file. It is

accounted 2 bytes and its value is the same as the size of the embedded file. The last

parameter, “file type bits” is defined to record the file type embedded into the MP3 file.

The maximum file size it can define is 64K bytes. The “file type bits” is accounted 1

byte. The value 00 represents the txt file, 01 represents the jpg file, and 02 represents

the gif file, etc.. The “file type bits” can define as much as 256 types of files.

Table 3 The parameters of the header in the package file

Parameters Size value maximum

Synchronization bits 4 bytes 02040608

File length bits 2 bytes The size of the file 64K Bytes

File type bits 1 bytes 00:txt 01:jpg 02:gif 256 types

The packaged file contains all the files that will be embedded into the MP3 file.

The embedded files connect one another and every embedded file has an individual

header in front of the file, as shown in Fig. 18. The packaged files can be added on

before the total size exceeds the maximum embedded capacity of the MP3 file.

 37

Synchonization

File type
File length

Synchonization

File type
File length

File data

File data

Synchonization

File type
File length

…
…

Header1

Header3

Header2

Fig. 18 The format of the packaged file

The following Fig. 19 is a flowchart shows how the packaging program is designed.

The parameters of the embedded file are read and saved into a register first. The lyrics

must start at the beginning of the music, so the text file is sorted at the first. Therefore

lyrics have first priority, and pictures shown on the display screen during which the

music is playing come in second. Next, the program identifies the file length and file

type for adding header at the next stage in the flowchart. Then the embedded file is

copied into the packaged file behind the header. If there are other files to be embedded

into the MP3, the program jumps back to the third stage of the flowchart for getting the

new synchronization, file length and file type. The loop will run continuously until there

is no files need embedding further.

 38

start

End

To sort files :
.txt > .jpg > .gif

Read the
parameters of the
embedded files

Find out the file length
and the file type

Add header

Package into the file

Any other
files?

No

Yes

Fig. 19 The flowchart of the packaged file

4.1.2 Embed Data into the MP3 File

From the structure of the data embedded encoder, as shown in Fig. 20, the

packaged file that embedded data has been packaged will be sent to MP3 encoder along

 39

with the raw PCM data to be encoded. There are two ways to embed the package file.

One is embedding the data in count1 region and big-value region while processing the

Huffman encoding. The other is embedding the data in the block of the bitstream

formatting bit reservoir, if there is redundant bites.

Filterbank 32
subbands MDCT

Distortion
control loop

Non-uniform
quantization rate

control loop

Huffman
encoding

FFT 1024
points

Psychoacoustic
model

Coding of
side-information

Bitstream
formatting

Digital Audio
signal (PCM)

Window
switching

Coded
audio signal

Packaged file Packaged file

Count1 region
&

Big value region
Bit reservoir

Fig. 20 The block diagram of the MP3 encoder with data embedded encoder

In count1 region, the coding process is taking four frequency lines at one time to

run the Huffman encoding, then added the sign bit in back of the Huffman code. The

four frequency lines are represented by v, w, x, and y. If the value of the frequency lines

do not equal zero, then it will have to save the sign bit of the frequency lines. The data

embedded method, using the storage space of sign bit to embed data, means to replace

sign bit by the embedded data. Because in every song, after quantization the size of

count1 region differs in every frame, thus the storage space for the embedded data

differs. If the song has less energy in high frequency band, then the space of count1

region after quantization will be larger, that is, more space for embedded data.

Another embedded region is bit reservoir, which has a 9-bit pointer to record how

much bits are redundant in the former frame. Embedding data in the redundant bits in

bit reservoir would not cause any negative influence to the music. If the bit reservoir

 40

exceed 512 bytes, it would be neglected the redundant bits then wasted. Usually in the

beginning of the music, the frame is quite sound without any signals so could be used

for encoding, thus bit reservoir would has redundant space for embedded data. So does

the ending of the music. But in frames with sound, there are not much redundant bits for

embedded data in bit reservoir. Most redundant space for embedded data in bit reservoir

is provided by the non-signal frames in the beginning or the ending of the music, as

shown in Fig. 21.

Fig. 21 The distribution of the unnecessary bits of the bit reservoir in MP3 song

[18]

4.2 Data Embedded Decoder

The data embedded decoder includes four parts: extracting data from the MP3 file,

porting the MP3 decoder with data embedded decoder on the ADSP-2181, the data

 41

stream analyzer, and the lyric analyzer.

4.2.1 Extract Data from the MP3 File

The data is embedded into the “bitstream coding” block at the end of the encoder.

The data stream extractor is located in the “decoding of bitstream” block of the decoder,

as shown in Fig. 22. When inputting MP3 data stream in for decoder bitstream decoding,

there will be two outputs: 576 lines of frequency lines that decoded from Huffman

decoding are prepared for inverse quantization, and extracted data from data stream

extractor.

Decoding of
Bitstream

Inverse
Quantization

Frequency to
Time mapping

Digital Audio
signal (PCM)

Coded
audio signal

Embedded data
stream

Data stream
extractor

Fig. 22 The block diagram of the MP3 decoder with data embedded decoder

The data stream extractor extracts data from the count1 region and big-value

region of the Huffman coding and the bit reservoir. And the data stream is collected and

saved in the buffer. It will be analyzed by the data stream analyzer.

4.2.2 Porting MP3 Decoder with Data Embedded Decoder on the
ADSP-2181

The structure of the MP3 decoder with the data embedded decoder ported on the

 42

ADSP-2181 is the same as the structure on the PC. The MP3 decoder and the data

embedded decoder are implemented in ADSP assembly language directly in order to

have the better executing performance.

The ADSP-2181 is designed for digital signal processing. It has circular buffer

function, which is used for DSP porting. This function is for write-in or when reading

process is performed to the end of the buffer address, the address pointer will

automatically point back to the beginning of the circular buffer, like circuit. The bit

stream is decoded from the PC-based data embedded decoder and put into the data

analyzer to analyze every frame. The data analyzer will analyze the extracted data and

store the result in the buffer. Because ADSP-2181 belongs to the device end of the entire

embedded system, it is controlled by StrongARM CPU which is as a host of the system.

In ADSP-2181, could not perform data reading and analyzing every frame in the host,

which would be a waste of time for the host and device to do hand-shaking constantly.

At the device, the extracted data is written into a shared buffer by the extractor on the

ADSP-2181 and the writing address is recorded. When the host read the data stored in

the shared buffer, it will just have to identify if the data write pointer is changed, and

then the reading process could be performed. As a result, the host won’t have to read the

buffer in every frame and cause an influence to the CPU performance.

The MP3 decoder with data embedded decoder is realized real-time decoder which

the decoding speed is 18 MIPS, 20.7K bytes of program memory, and 23.6K bytes of

data memory, as shown in Table 4. It could further be developed as a portable product.

 43

Table 4 The spec. of the MP3 decoder with data embedded decoder on the ADSP-2181

 Program memory Data memory The peak

computing power

MP3 decoder with data

embedded decoder

20.7K bytes 23.6K bytes 18 MIPS

4.2.3 Data Stream Analyzer

The data stream analyzer is used to analyze the data stream which is extracted by

the data embedded decoder. The data stream is a series of signal of “0” and “1”, it must

be analyzed and reconstructed to the original files by the data stream analyzer.

The flowchart of the data stream analyzer is shown as Fig. 23, which is based in

the state machine structure. The purpose of stream analyzer is for data stream analyzing,

identifying synchronization, file length, file type, and processing every different files

type. The start point of the embedded must be found to perform data stream analyzing,

thus synchronization bits should be identified.

“Synchronization bits” is composed of 4 bytes. So at first 4 bytes should be read to

judge if its synchronization bits. If not, left-shifting one byte and replenish a byte for

judging, until the synchronization bits is found to jump to the next state. On the other

hand, the file length parameter shows the analyzer how many bytes in the file to read.

Last, the file type parameter shows the analyzer what file type is, which would be

beneficial for the analyzer to handle it properly in next state. If the file type is lyric, the

file will be saved to a lyric buffer, preparing to be shown synchronously on the screen

during the song is playing. Other file types will be saved as file, then finishing the file

analyzing. State machine will jump to the first state and proceeds to the synchronization

 44

bits of the next file for analyzing.

 45

start

Read 1 bytes from
buffer

File length

File type

No

Read 4 bytes from
buffer

Sync?

File type

File data :
Lyric buffer

File type

File data:
Put to file

Yes

0

1

2

3

4

= 0 != 0

Fig. 23 The flowchart of the data embedded analyzer

 46

4.2.4 Lyric Analyzer

The lyric analyzer is also designed in the structure of state machine. It’s for

computing show time of the lyrics, which should be synchronous to the playing time of

the song, the same as lyrics showing in KTV. In data stream analyzer, if the data type is

lyrical after analyzing, it will be saved temporarily to lyric buffer for analyzing by lyric

analyzer.

The lyric format is defined as ”[mm:ss] the lyrics of a line”, shown by line as its

unit. “[” represents the beginning of the lyrics in every line, ”mm” records the showing

minutes of the lyrics, ”:” is for partition, and “ss” is to records the showing seconds of

the lyrics. From ”]” to the changing line character ”0D 0A”, they all are the contents of

a line of the lyrics.

At first the state machine will read one byte to identify if it’s the beginning of one

line ”[”. After finding that, it will jump to the next state to store the address of the line.

Then next four states record the showing time of the lyrics. After finish reading the

showing time of the lyrics would be the contents of the lyrics. The result will be saved

to print buffer and then the state machine will jump to the first state for the next line of

the lyric analyzing.

 47

start

Record next stream
pointer

Read 2 bytes from
lyric buffer & save

minute

No

Read 1 byte from lyric
buffer

Get “[＂

Read 1 byte “ :＂from
the lyric buffer
& don＇ t care

Yes

Read 2 bytes from
lyric buffer & save

second

Read 1 byte “]＂from
the lyric buffer

Compute frame count
Save now stream pointer

Read a line of lyric
from lyric buffer &

save to the print
buffer

Fig. 24 The flowchart of the lyric analyzer

 48

4.3 Experimental process

This section presents the overall experimental process from embedding data in the

encoder to extract data in the decoder. The process has been introduced in the former

section.

4.3.1 Encoding

In the encoder process, several samples are chosen for embedding data. And the

files which are embedded into MP3 are embedded into the count1 region and the

big-value region that the embedded region are brought out in the previously chapter. We

select one from the samples to demo in the following.

There are six MP3 samples which are chosen for embedding data in this

experiment. Their MP3 names are “01-can”, “Aero Smith - Miss a Thing”, “Bon Jovi

always”, “Dido thank you”, “Natalie-Torn” and “Speech”. The “01-can” is selected to

demo and the information about “01-can” is shown in Table 5. The “01-can” is

embedded a lyric file and six photo files. The total size of the embedded files is about

100K bytes and the files are embedded into the MP3 file that the size of the sample is

3.3 MB. To be mentioned that the embedded photos can be any resolution as long as the

file size of the photo is not bigger than the maximum embedded size of the MP3 file.

 49

Table 5 The information of “01-can”

File name File size Photo resolution As shown in

Source MP3 file 01-can 3462374 Bytes

Lyric 2255 Bytes Fig. 25

Photo1 10244 Bytes 190*190*24bit Fig. 26

Photo2 20462 Bytes 300*290*24bit Fig. 27

Photo3 18806 Bytes 300*300*24bit Fig. 28

Photo4 16842 Bytes 300*282*24bit Fig. 29

Photo5 15586 Bytes 238*184*24bit Fig. 30

Embedded file

Photo6 12070 Bytes 160*239*24bit Fig. 31

4.3.2 Decoding

The following figures are the information which is extracted by the decoder. And

the information is embedded in the MP3 file in advance. In Fig. 25, the lyric is

displayed with the MP3 decoding concurrently. And Fig. 26~Fig. 31 are shown the

extracting photos which are embedded in the MP3 file.

 50

Fig. 25 The extracted lyrics of the MP3 song

 51

Fig. 26 Photo1.jpg

Fig. 27 photo2.jpg

 52

Fig. 28 Photo3.jpg

Fig. 29 Photo4.jpg

 53

Fig. 30 Photo5.jpg

Fig. 31 Photo6.jpg

 54

4.4 Experimental Results

In this section, there are several experiments for testing different methods. These

experiments are “The embedded bit counts of the different methods”, “The encoding

speed of the different methods”, “The music quality of the different methods”, and “The

file size of the different methods”.

The statistic data and description will be performed in the following:

4.4.1 The Embedded Bits Counts of the Different Methods

The purpose of this experiment is to estimate the embedding size of the three

different regions of the MP3 frame, as shown in Table 6. The count1 region embeds

largest data size, on the other hand, embedding size differs in every music in bit

reservoir and the big-value region, as shown in Table 6.

Generally, the frequency of the music signals distribute under the frequency of 10

KHz mostly. The energy of the frequency signal which is above 10KHz is usually small

and the signal will be coded into coutn1 region by encoder, or the high frequency signal

without energy will be coded into zero region. So the space of the count1 region used

for embedding is larger than other region. The big-value region is the region that the

energy of the music collected. If the embedded data replaces too many sign bits of the

big-value region, the quality of the music will be affected seriously. In order to maintain

quality of the music, we select the sign bits of the frequency signals above 10 KHz for

embedding data. And the unused space in the bit reservoir is provided by a little span in

the beginning and the ending of the music. There are very few unused bits of the bit

reservoir for embedding during the music playing.

 55

Table 6 The embedded bits count of the different methods

Song name Frame

num.

Count1 region

(bits)

Big-value region

(>11.84K Hz)(bits)

Bit reservoir (bits)

01-can 8285 595187 299805 313806

Aero Smith -

Miss a Thing

11374 811605 83007 84605

Bon Jovi -

Always

13578 927084 168541 240744

Dido- Thank

you

8647 622612 192774 190202

Natalie-Torn 7352 514852 406254 406205

Speech 1944 132152 0 6789

Table 7 shows the number of bits per frame obtained by the three different methods.

Count1 region has 70 bits per frame for embedding data in average. The bit numbers of

the other two methods depend on the different types of music. If more bits will be

embedded into big-value region, the data could be embedded from the starting

frequency lower than 11.84 kHz. Then, the loss of quality is the cost to perform

embedding more data.

 56

Table 7 The embedded bits count per frame by the different methods

Song name Count1 region

(bits/frame)

Big-value region

(>11.84K Hz) (bits/frame)

Bit reservoir

(bits/frame)

01-can 71.8 36.2 37.9

Aero Smith - Miss a

Thing

71.4 7.3 7.4

Bon Jovi - Always 68.3 12.41 17.7

Dido-Thank you 72.0 22.3 22

Natalie-Torn 70.1 55.3 55.3

Speech 68.0 0 3.5

4.4.2 The Encoding Speed of the Different Methods

The purpose of this experiment is to test the encoding speed of the MP3 encoder

when the data is embedded into different regions. The specification of the testing

platform is shown in Table 8. In Table 9, the 1X stands for the length of the song.

Table 8 The spec. of the test platform

CPU AMD XP1700

RAM 768MB

The encoding speed of the MP3 encoder reduces, as shown in Table 9, after adding

data embedded encoder into the MP3 encoder. But the main reason is that the MP3

encoder is a floating point encoder, thus the encoding speed is limited by the MP3

encoder.

 57

Table 9 The encoding speed of the different methods by floating point encoder

Song name
Song

time
None Count1 region Big-value region Bit reservoir

01-can 216s 1.95X 1.83X 1.90X 1.85X

Aero Smith -

Miss a Thing
297s 2.18X 2.17X 2.18X 2.17X

Bon Jovi

Always
354s 2.20X 2.20X 2.14X 2.19X

 Dido

Thank you
225s 2.09X 2.09X 2.07X 2.09X

Natalie-Torn 192s 1.79X 1.71X 1.70X 1.75X

Speech 50s 2.42X 2.42X 2.42X 2.42X

If the block of the psychoacoustic model of the MP3 encoder is removed and the

MP3 encoder is implemented in fixed-point arithmetic, then the MP3 encoder will be

sped up more than 25X as shown in Table 10. The influence on speed when adding the

data embedded encoder into the MP3 encoder becomes relatively small, barely none.

 58

Table 10 The encoding speed of the different methods by fixed point encoder

Song name
Song

time
None Count1 region Big-value region Bit reservoir

01-can 216s 30.1X 30.1X 30.1X 30.1X

Aero Smith -

Miss a Thing
297s 29.7X 29.7X 29.7X 29.7X

Bon Jovi

Always
354s 29.5X 29.5X 29.5X 29.5X

 Dido

Thank you
225s 28.1X 28.1X 28.1X 28.1X

Natalie-Torn 192s 32X 32X 32X 32X

Speech 50s 25X 25X 25X 25X

4.4.3 The Music Quality of the Different Methods

The purpose of this experiment is to test the quality of the music after the data

embedded into the MP3 file. The ODG (Objective Difference Grade) is a standard used

in testing quality of the music in the experiment and it has a brief introduction in

Appendix B. The ODG is software for testing the quality of the music, which is used to

compare the original music and the encoded music. The other constantly testing

condition is shown in Table 11.

 59

Table 11 The testing environment of the music quality

Test program ODG

Test standard 0~-4 (good to worse)

The MP3 decoder cooledit

Sampling rate of MP3 44.1KHz

Bit rate of MP3 128kbps

Sound effect stereo

The quality of the MP3 file is influenced after the data is embedded into the MP3

file, as shown in Table 12. The influence is about 2%, and the distortion of the MP3

would not be heard by human ears, which means the quality of the music can be

accepted. In general, the bit reservoir will not be distorted, but the data has distortion in

the table in fact. The distortion is human distortion. The reason is that the music will be

shifted after MP3 encoding and decoding, so the music must be shifted back by manual.

And then the human distortion is made. In general, the three methods which are used to

embed data make a little influence to the quality of the music.

 60

Table 12 The music quality of the different methods

Song name None Count1 region Big-value region Bit reservoir

01-can -1.28 -1.33 -1.33 -1.28

Aero Smith -

Miss a Thing

-0.96 -1.04 -0.97 -0.97

Bon Jovi

Always

-1.10 -1.20 -1.12 -1.11

Dido

Thank you

-1.18 -1.22 -1.20 -1.18

Natalie-Torn -1.35 -1.37 -1.37 -1.35

Speech -1.80 -1.83 -1.81 -1.81

4.4.4 The File Size of the Different Methods

The purpose of this experiment is to observe what change to the size of the MP3

file will have after embedding data into the different regions.

The size of the MP3 file which is embedded data by the three data embedded

methods is the same with the size of the MP3 file without embedding data, as shown in

Table 13. So the embedded data methods that are brought up in this thesis will not

change the file size that the MP3 is encoded by general MP3 encoder.

 61

Table 13 The file size of the different methods

Song name None

(MB)

Count1

region

(MB)

Big-value

region

(MB)

Bit

reservoir

(MB)

Total embedded bits

(KB)

01-can 3.30 3.30 3.30 3.30 147.6

Aero Smith -

Miss a Thing

4.53 4.53 4.53 4.53 119.5

Bon Jovi

Always

5.41 5.41 5.41 5.41 163.1

Dido

Thank you

3.44 3.44 3.44 3.44 122.8

Natalie-Torn 2.92 2.92 2.92 2.92 162.0

Speech 0.79 0.79 0.79 0.79 17.0K

4.4.5 Comparison with other methods

There are many watermark techniques about data embedded methods on the IEEE

journals, but the applications of the watermark techniques are almost different from this

thesis.

The watermark techniques are used for embedding important information into the

media because they can resist any attack such as lossy compressing. However, the size

of the embedded media is very small. The purposes of the watermark techniques are

differ from the proposed methods. The applications of the proposed methods are to

embed large unimportant information into media in this thesis. The watermark

 62

techniques are based on different application from ours, so they can’t compare to each

other.

SecureKit, Inc. published a shareware called “Steganography 1.61.23” [19]. It can

embed unlimited data into the tail of a file and encrypt the embedded data to prevent

other user accessing the data, but the size of the file which is used for embedding data

will be added. This is a series defect, so the method used in this software is not

appropriate.

 63

CHAPTER 5

Conclusions and Future Works

5.1 Conclusions

This thesis introduces three high capacities reversible data embedded methods. As

data embedded methods generate extra storage space, the embedding area on MP3 file is

not very important. The data embedded methods are designed under the MPEG/Audio

standard. Data embedded decoder is ported on the ADSP-2181. The ADSP-2181 is a

programmable microprocessor and offers a software development environment tool:

VisualDSP++, which we can develop and debug the algorithm quickly and easily in the

programming stage.

These three methods bringing up for embedding data into the MP3 files are count1

region, bit reservoir, and big-value region, which is an expansion of the count1 region

method. Then, the suggested sequences of the three embedding methods are the bit

reservoir, count1 region and big-value region. It depends on the degree that different

methods make the different influences of the music quality. The main principle of

selecting regions for embedding is not affecting quality of the music. The size used for

embedding differs in every song. According to the experimenting results, the size used

for embedding data is about 100K bytes in a song of which the length is 3 minutes.

In ADSP-2181 porting, the MP3 decoder with data embedded decoder is coded by

assembly language achieves to increase processing speed and save memory size. Finally,

the MP3 decoder with data embedded decoder realizes real-time decoding with a speed

of 18 MIPS which uses 20.7K bytes of program memory and 23.6K bytes of data

 64

memory. The data embedded decoder displays the embedded lyric of the song and

extract other embedded data while the MP3 player is playing.

5.2 Future Works

The data embedded codec is based on the MPEG/Audio standard and usually

works with an audio codec. These methods can also be used on other advanced

MPEG/Audio standard, such as MPEG-2/Audio AAC or MPEG-4/Audio AAC standard.

It will become AAC codec with data embedded codec.

The MP3 with embedded data is not protected by any DRM mechanism. The data

embedded methods can be combined with a secure codec, such as SMP3 designed by

CSSP laboratory. It will increase the degree of safety. MP3 codec, combined with data

embedded codec and SMP3 codec can make the audio codec safer and provide more

service to users.

 65

References
[1] G. Voyatzis and I. Pitas, “The use of watermarks in the protection of digital

multimedia products”, Proceedings of the IEEE, Vol.87, NO.7, pp.1192-1207, July

1999

[2] ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3 coding of

moving pictures and associated audio for digital storage media at up to about

1.5Mb/s, Part 3: Audio

[3] http://www.cmj.com/mp3/mp3basic.php#what

[4] http://www.chiariglione.org/mpeg/standards.htm

[5] K. Brandenburg and H. Popp, “An introduction to MPEG Layer-3”, Fraunhofer

Institutfur Integrierte Schaltungen(IIS), EBU TECHNICAL REVIEW, Jun. 200

[6] J. Princen and A. Bradley, “Analysis/synthesis filterbank design based on time

domain aliasing cancellation”, IEEE Trans. on Acoust. Speech, and Signal

Processing. Vol. ASSP-34, pp.1153-1161, 1986.

[7] E. Ambikairajah, A. G. Davis and W. T. K. Wong, “Auditory masking and MPEG-1

audio compression”, Electronics and communication engineering journal, Aug.

1997.

[8] http://www.iis.fhg.de/amm/techinf/water/index.html

[9] S.–J. Lee and S.–H. Jung, “A survey of watermarking techniques applied to

multimedia”, Proceedings 2001 IEEE International Symposium on Industrial

Electronics (ISIE2001), Vol. 1, pp. 272-277, 2001.

[10] R. Lancini, F. Mapelli and S. Tubaro, “Embedding indexing information in audio

signal using watermarking technique”, Proceedings of VIPromCom, 16-19 June

2002.

[11] M. Ikeda, K. Takeda and F. Itakura, “Audio data hiding by using of band-limited

random sequences”, Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing, Vlo.4, pp.2315~2318, 1999.

 66

[12] L. Boney, A. H. Tewfik and K. N. Hamdy, “Digital watermark for audio signals”,

IEEE Proceedings of Multimedia, pp. 473-480, 1996.

[13] J. F. Tilki and A. A. Beex, “Encoding a hidden auxiliary channel onto a digital

audio signal using psychoacoustic masking”, Southeastcon ’97. Engineering new

Century., Proceeding. IEEE, pp.331~333, 1997.

[14] E. Zwicker and H. Fastl, “Psychoacoustics facts and models”, Berlin, Germany:

Springer-Verlag, 1990.

[15] Analog Devices, Inc., “ADSP-2100 Family EZ-KIT Lite Reference Manual”, First

Edition.

[16] Analog Devices, Inc., “ADSP-2100 Family User’s Manual”, Third Edition, Sep.

1995.

[17] Analog Devices, Inc., “VisualDSP++ 3.0 Getting Started Guide for ADSP-21xx

DSPs”, Revision 2.0, July 2002

[18] Leann Rimes “Can’t fight the moon light”, The Best of Leann Rimes, spring, 2004.

[19] http://www.soft32.com/download_11169.html

[20] T. Thiede et al, "PEAQ - The ITU standard for objective measurement of perceived

audio quality", J. Audio Eng. Soc., vol. 48, pp. 3-29, Jan.-Feb. 2000.

[21] B. C. J. Moore, “An introduction to the psychology of hearing”, Academic Press,

London, 1997.

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams “Learning internal

representations by error propagation”, In Parallel Distributed Processing, vol. 1,

pp. 318-362. Cambridge, MA, MIT Press. 1986.

 67

APPENDIX A
MP3 Encoder/Decoder Algorithm

Because the main purpose of our data embedded method is to embed a large of

qualify information into MP3 file directly, so we describe the basic principles and

algorithms of encoder and decoder in the MPEG-1/Audio Layer 3 (MP3) coding

standard. The most important reason why MPEG-1/Audio Layer 3 can compress digital

audio signals effectively without perceptual loss is to use the “quantization”

and ”entropy coding” techniques. Quantization removes the auditory irrelevant parts of

the audio signal without losing the sound quality by exploiting the perceptual properties

of the human auditory system. Removal of such irrelevant parts results in inaudible

distortion. Entropy coding is a lossless coding method that encodes the quantized data

to minimize the entropy of the quantized value of the audio signal thereby achieving the

goal of compression without any quality loss. The two techniques are also wildly

adopted in other audio compression standard, like AAC.

Section A.1 will introduce the MPEG-1/Audio Layer 3 encoding standard and its

algorithm. Section A.2 will explain the decoding process of MP3.

A.1 The Structure of MP3 Encoder Algorithm

In this section, the MPEG-1/Audio Layer III encoder will be described with its

functionality. The description of the encoding process is based on the block diagram in

Fig. 32. In the following subsections, we will describe the operation and the

functionality in detail for each block in the block diagram.

 68

Filterbank 32
subbands MDCT

Distortion
control loop

Non-uniform
quantization rate

control loop

Huffman
encoding

FFT 1024
points

Psychoacoustic
model

Coding of
side-information

Bitstream
formatting

Digital Audio
signal (PCM)

Window
switching

Coded
audio signal

Fig. 32 MPEG-1/Audio Layer 3 encoder block diagram [5]

A.1.1 Analysis Polyphase Filter Bank

The subband filter band includes both analysis subband filter and Modified

Discrete Cosine Transform (MDCT) [6] representation such as Fig. 33.

Fig. 33 Analysis subband filter and MDCT

The first step in the encoding process is the filtering of the audio signal through a

filter bank. The analysis polyphase filter bank divides the PCM audio signal into 32

equal-width frequency subbands and decimates the subband samples by a factor 32 with

 69

good time resolution and reasonable frequency resolution.

In one frame, a sequence of 1152 PCM audio samples are filtered so each subband

contains 36 subband samples. The following equation derives the filter band outputs:

∑∑
==

+×+×=
7

0

63

0
])64[]64[(]][[][

jk
jkxjkCkiMiSt , Eq. 2

Where:

i is the subband index and ranges from 0 to 31

St[i] is the filter output sample for subband i at time t, where t is an

integer multiple of 32 audio sample intervals

C[n] is one of 512 coefficients of the analysis window defined in the

standard

x[n] is an audio input sample read from a 512 sample buffer

]
64

)16()12(cos[]][[π×−×+×
=

kikiM is the analysis matrix coefficients

The coefficients of C[n] in EQ 1 are symmetric to origin, as shown in Fig. 34 (a).

Eq. 2 manipulate into a intelligible filter convolution Eq. 3 for more convenient to

analysis.

∑
=

×−=
511

0

][][][
n

nHintxiSt , Eq. 3

Where:

][τx is an audio sample at time τ

 70

]
64

)16()12(cos[][][π×−×+×
×=

ninhnHi

with h[n]=-C[n], if the integer part of (n/64) is odd,

C[n], otherwise, for n=0 to 511

 (a) C[n] (b) h[n]

Fig. 34 coefficient of C[n] and h[n] (n = 0~511)

The modulation of the prototype low-pass filter (h[n]) with a cosine term (M[i][k])

result in filter shifting. Clearly, Hi[n] are the filter banks that shift the low-pass response

to the appropriate frequency band, so these are called “polyphase” filter bank. The

frequency response of 32 subband, as shown in Fig. 35.

 71

Fig. 35 frequency response of subband

A.1.2 MDCT and Alias Reduction

After the subband filter, the 32 subbands are mapped into MDCT. Performing this

transformation will enhance the frequency resolution per subband. MDCT

transformation can be divided into three parts: MDCT windows, MDCT, alias reduction,

as shown in Fig. 33.

 72

Fig. 36 Illustration of the four applicable window types and using condition

The MDCT windows should be differentiated into normal window, start window,

short window, stop window, as Fig. 36 Illustration of the four applicable window types

and using condition shown. The transformation of normal window can get better

resolution of frequency spectrum. But the transformation of short window can get better

resolution of time response. The switching mechanism which means the start window

and the stop window helps to prevent the appearance of pre-echo phenomenon. Eq. 4

shows the formula for MDCT transformation.

))12)(
2

12(
2

(cos
1

0
+++= ∑

−

=

ink
n

ZXi
n

k
k

π , for i = 0 ~ (1
2
−

n) Eq. 4

Before passing the frequency lines a reduction of the aliasing introduced in the

 73

analysis polyphase filter bank is removed. The aliasing is removed at this early stage in

order to reduce the amount of information for transmission. The reduction is obtained

by means of a series of butterfly computations, see Fig. 37. The ics and ica constants

are tabulated in standard [2]. The butterfly operations with appropriate weighting cancel

the alias caused by the overlap of two adjacent overlapped subbands.

(0) (1) (2) (7).

18

18

8 Butterflies

X558

X575

X557

X540

(0) (1) (2) (7).

18

18

X18

X35

X17

X0

. . .
. . .

. . . .
. . .

. . .

. . . . (i)

(i)

csi

csi

cai

cai

-
+

+
+

Fig. 37 Illustration of alias reduction butterflies

A.1.3 Psychoacoustic Model

The psychoacoustic model is a pattern that simulates the human sound perceptional

system. The model is used in the encoder only to decide which parts of the audio signal

are acoustically irrelevant and which parts are not, and removing the inaudible parts. It

takes advantage of the inability of human auditory system to hear quantization noise

 74

under conditions of auditory masking. This masking is a perceptual property of the

human auditory system that occurs when the presence of strong audio signal makes a

temporal or spectral neighborhood of weaker audio signals imperceptible. The results of

the psychoacoustic model are utilized in the MDCT block and in the nonuniform

quantization block.

Auditory masking consists of three masking principles, which being described

below:

 Absolute Threshold of Hearing

The absolute threshold of hearing is characterized by the minimum

amount of energy needed in a pure tone such that it can be detected by a

listener in a quiet environment. If we measure the energy of a number of tone

frequencies, the relation curve can be plotted on a graph like Fig. 38

Fig. 38 The absolute threshold of hearing

 Frequency Masking

Frequency masking, also called simultaneous masking, is a frequency

domain phenomenon where a low-level signal (the maskee) can be made in

 75

audible by a simultaneously occurring stronger signal (the masker) as long as

masker and maskee are close enough to each other in frequency. The masking

threshold depends on the sound pressure level and the frequency of the

masker, such as Fig. 39. Without any masker, a signal is also inaudible if its

sound pressure level is below the absolute threshold.

0.02 0.1 0.5 1 2 5 20

0

10

20

30

40

50

60

70 Masker

Masked Sound

Masking Threshold
Threshold in Quiet

Frequency (kHz)

S
ou

nd
 P

re
ss

ur
e

Le
ve

l (
dB

)

Fig. 39 Frequency masking threshold and threshold in quiet [7]

 Temporal Masking

In addition to simultaneous masking in frequency domain, the temporal

masking, also called nonsimultaneous masking, plays an important role in

human auditory perception in time domain. It man occur when two sounds

appear within a small interval of time. The stronger sound may mask the

weaker one, even if the maskee precedes the masker, such as Fig. 40.

 76

Simultaneous Masking

Time (ms)

160120804000-40 20 180

Post-MaskingPre-Masking

90

50

Sound Pressure
Level (dB)

Fig. 40 Temporal masking threshold [7]

A.1.4 Nonuniform Quantization

The nonuniform quantization block which received the frequency line from the

MDCT block and window switching, masking information from the psychoacoustic

model, performs the important key techniques “quantization” and “Huffman coding”.

Quantization is done via a power-law quantizer. In this way, larger values are

automatically coded with less accuracy, and some noise shaping is already built into the

quantization process. The process to find the optimum gain and scalefactors for a given

block, bitrate and output from the perceptual model is usually done by two nested

iteration loops in an analysis-by-synthesis way:

 Outer iteration loop (noise control loop)

The outer iteration loop controls the quantization noise which is

produced by the quantization of the frequency domain lines within the inner

iteration loop. To shape the quantization noise according to the masking

threshold, scalefactors are applied to each scalefactor band. If the quantization

noise is found to exceed the masking threshold, the scalefactor for this band is

adjusted to reduce the quantization noise. The outer loop is executed until the

actual noise is below the masking threshold for every scalefactor band.

 77

 Inner iteration loop (rate control loop)

The inner iteration loop does the actual quantization of the frequency

domain data and prepares the formatting operation. The Huffman code tables

assign shorter code words to smaller quantized values. If the number of total

bits of resulting from the Huffman coding operation exceeds the number of

bits available to code one frame, this can be corrected by adjusting the global

gain to result in a larger quantization step size, leading to smaller quantized

value until the resulting number of bits demand for Huffman coding is small

enough.

A.1.5 Huffman Encoding

In this block, entropy coding of the quantized frequency lines is performed using

the Huffman coding algorithm based on 32 static Huffman tables. The Huffman coding

provides lossless compression and thereby reduces the amount of data to be transmitted

without the quality loss. Fig. 41 shows the relation of three Huffman coded regions:

“zero region”, “count1 region”, and “big-value region”, and scalefactor.

 78

scalefactor

Part2_length

Frequency lines (576) Huffman Code

Region 0Region 1Region 2 1 or 0 00000000

Big_value Count 1 Zero_region

Part3_length

Part2_3_length

Fig. 41 Main data organization of a frame

A.1.6 Bitstream Formatting

In this block, the encoding process is to produce a MPEG-1/Audio III compliant

bitstream. The Huffman coded frequency lines, the side information and a frame header

are assembled to form the bitstream. The header describes which bit rate and sampling

frequency that is being used for the encoded audio. The side information tells what

block type, Huffman tables; subband gain and subband factors are being selected.

The last block, an enhancement method called “bit reservoir” is used to fit

encoder’s time-varying demand on code bits. The encoder can donate bits to a reservoir

when it needs less than the average number of bits to code a frame. Next, when the

encoder needs more than the average number of bits to code a frame, it can borrow bits

from the reservoir mechanism.

A.2 The Structure of MP3 Decoder Algorithm

 79

In this section the MPEG-1/Audio Layer III decoder will be described with its

functionality. The decoding process is based on the block diagram in Fig. 42. The

decoder has three main parts: “Decoding of Bitstream”, “Inverse Quantization”, and

“Frequency to Time mapping”.

Decoding of
Bitstream

Inverse
Quantization

Frequency to
Time mapping

Digital Audio
signal (PCM)

Coded
audio signal

Fig. 42 MPEG-1/Audio Layer III decoder block diagram

A.2.1 Decoding of Bitstream

This decoding part effects synchronize and extract the quantized frequency lines

and other information of each frame. First, it needs to synchronize where a frame begins

and where the data resides, as shown in Fig. 43. The usage of the block diagram will be

introduced as following.

Synchronization

Huffman Decoding
Magnitude & sign

Coded
audio signal Huffman Info

Decoding

Scalefactor Decoding

Huffman
 code bits

Huffman
 Information

Scalefactor
Information

Sc
al

ef
ac

to
rs

Ancillary
Data

Fig. 43 Decoding of bitstream block diagram

 80

 Synchronization

The purpose of this block is to receive the incoming bitstream, identify

the contents of the bitstream and pass the information onto the succeeding

blocks in the decoder.

The contents of a MPEG-1/Audio bitstream is organized into frames,

each contains information to reconstruct the audio PCM samples. A frame

consists of four parts: header, side information, main data, and ancillary data.

The header part of the frame contains synchronization word and system

information, as shown in Fig. 44. The side information section in the frame

contains the necessary information to decode the main data. The main data

section contains the coded scalefactor value and the Huffman coded data. The

format of this ancillary data is user defined.

Fig. 44 MPEG-1/Audio Layer III header format

 Huffman Decoding

In this block, the decoding of the Huffman code bits is performed. Since

the Huffman coding is a variable-length coding, a single code word in the

middle of the Huffman code bits can’t be identified without starting to decode

from a point in the Huffman code bits known to be the start of a code word.

 81

 Huffman Info Decoding

The Huffman Info Decoding block serves to setup all the parameters

necessary for the Huffman decoding block to perform a correct Huffman

decoding. It performs to collect data in the side information which describes

the characteristics of the Huffman code bits.

 Scalefactor Decoding

The purpose of the scalefactor decoding block is to decode the coded

scalefactors, i.e. the first part of the main data. Input to this block is

scalefactor information and coded scalefactors. The output of the block is the

decoded scalefactors, to be used in the next inverse quantization block.

A.2.2 Inverse Quantization

The purpose of this block is to reestablish a perceptually identical data of the

frequency lines generated by the MDCT block in the encoder. The descaling is based on

the scaled quantized frequency lines reconstructed from the Huffman decoding block

and the scalefactor reconstructed in scalefactor decoding block. The formula of the

frequency lines is shown in Eq. 5.

])[][(_

])[8210_(
4
1

3
4

2
2])[(])[(][iptperflagisfmultiplierscalefac

isbggainglobal

iisabsiissignixr ×+×

−−

××= Eq. 5

Where:

is[i] is the frequency line reconstructed by Huffman decoder

global_gain, sbg[i], scalfac_multiplier, sf[i], perflag, pt[i] are from

scalefactor decoding.

A.2.3 Frequency to Time Mapping

 82

The last decoding part performs to reproduce the audio signal from the dequantized

frequency line. This part contains several sub-blocks as shown in Fig. 45 and will be

introduce in the following.

Alias Reduction Inverse
MDCT

Frequency
Insersion

Digital Audio
signal (PCM)Synthesis

Polyphase
Filter Bank

Fig. 45 Frequency to time mapping

 Alias Reduction

In the MDCT block within the encoder it was described that an alias

reduction was applied. In order to obtain a correct reconstruction of the

analysis polyphase filter bank in the algorithm to come back, the aliasing

artifacts must be added to the decoding process again.

 Inverse MDCT

The frequency lines from the alias reduction block are processing

through IMDCT block. The analytical expression of the IMDCT is shown in

Eq. 6.

))12)(
2

12(
2

cos(
1

2

0
+++=∑

−

=

kni
n

Xx

n

k
ki

π , for i = 0 ~ (n-1) Eq. 6

Where:

kX is the frequency line

N is 12 for show window, and 36 for long window

 Frequency Inversion

In order to compensate the decimation used in the analysis polyphase

filter bank, every odd time sample of every odd subband is multiplied with -1.

 Synthesis Polyphase Filter Bank

 83

Each time 32 samples, from each of the 32 subbands are applied to the

synthesis polyphase filter bank and 32 consecutive audio samples are

calculated.

 84

APPENDIX B
Introduction to the Testing Standard of the Music

Quality : ODG

B.1 Introduction

The ODG (Objective Difference Grade) [20] is the result which is computed by

PEAQ (perceptual evaluation of audio quality). The PEAQ is based on generally

accepted psychoacoustic principles (such as [14] [21]).

In general, PEAQ compares a signal that has been processed in some way with the

corresponding time-aligned original signal. And it extracts perceptually relevant features,

which are used to compute a measure of quality. A number of intermediary model

output variables (MOVs) are available.

A selected set of MOVs is mapped to an ODG. The mapping was established by

minimizing the difference between the distribution of objective measurements and the

corresponding distribution of mean subjective qualities for an available data set.

B.2 Description of PEAQ

The block diagram of PEAQ is shown in Fig. 46. PEAQ includes ear models based

on the fast Fourier transform (FFT). The model output values are based partly on the

masked threshold concept and partly on a comparison of internal representations. In

addition, it also yields output values based on a comparison of linear spectra not

processed by an ear model. The model outputs the partial loudness of nonlinear

distortions, the partial loudness of linear distortions (signal components lost due to an

unbalanced frequency response), a noise to mask ratio, measures of alterations of

 85

temporal envelopes, a measure of harmonics in the error signal, a probability of error

detection and the proportion of signal frames containing audible distortions.

Selected output values are mapped to a single quality indicator by an artificial

neural network with one hidden layer [22].

Fig. 46 Block diagram of measurement scheme

Peripheral Ear Model
(FFT based)

Preprocessing of Excitation Patterns

Error Signal Masker Specific
Loudness
Patterns

Excitation Patterns Modulation
Patterns

Spectrum

Calculate Model Output Values

Calculate Quality Measure (Artificial Neural Network)

Distortion Index
Objective

Difference Grade
(ODG)

Playback Level Input Signals
(Reference and Testing Signal)

