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以 CNN 為基礎的紋理邊界偵測 

技術及其類比電路實現 
 

學生：陳世安    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

 

中文摘要 

 

    近年來，多數的研究已經說明在仿細胞神經網路(Cellular Neural Networks; 

CNN) 型態的架構下，提供一個可用程式化的方式來處理多數複雜的影像處理工

作。CNN 的架構中包含了可做即時處理的平行類比計算單元，其中有一個理想

的特性是這些處理單元是有規則的二維陣列排列，且本身與鄰近的細胞單元為區

域性的元件連接。由於此種特性，使得這種架構很容易在超大型積體電路上實

現。因此在本論文中提出以 CNN 為基礎的紋理邊界偵測之新的影像處理系統與

它的類比電路實現 

本論文所提出的紋理邊界偵測技術，是模仿人類眼球表面層上的結構行為來

偵測影像的紋理邊界。利用多數且平行 CNN 處理器計算技術的創新，取代以往

複雜的數位式影像紋理邊界偵測。對於即時運算方面，它被設計成以 CNN 為基

礎的架構，可以用平行即時處理的類比式電路來實現，大大地增加其執行的效

率。而 CNN 的設計電路採多層次 (Multi-layer) 的方式，以 5×5 為基礎的細胞核

心，將處理影像大小擴展成 32×32 處理陣列。同時為了降低電路複雜度，採用電

流模式 (Current mirror;電流鏡) 的設計架構，且延伸成為可正負雙向電流導通，

更容易來實現每個神經細胞的權重比例 (即電流增益)，也使得在節點上的多數

訊號易於結合。由於 CNN 具有陣列式平行處理和區域性的元件連接特性，因此

很適合實現於混合訊號標準的 CMOS 製程上。  
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Abstract 
    In recent years, many researches have introduced that a programmable method 
which computes many complex image processing tasks is offered based on the 
architecture of Cellular Neural Networks (CNN). The architecture of CNN consists 
of the analog computational units which can do real-time and parallel processing.  
One ideal property of CNN is that the signal values are placed on a regular 
geometric 2-D grid, and the direct interactions between signal values are limited 
within a finite local neighborhood. Based on this property, the architecture is easily 
implemented on VLSI. Therefore, a new image processing of CNN-based texture 
boundary detection and its analog circuit implementation are proposed in this thesis.  
    The proposed texture boundary detection technique in this thesis imitates the 
behavior of the architecture on the surface layer of human eyeballs and then detects 
the texture boundary of images. The technique use the innovation of many and 
parallel computational processing units of CNN to replace the complex digital 
texture boundary detection in the past. For real-time processing, it is designed to be 
implemented on CNN-based real-time and parallel analog circuits to greatly increase 
the executive efficiency. The design of CNN circuits, however, adopts the 
architecture of multi-layer and 5×5 large neighborhood, and extends the size of array 
on this image processing to 32×32. In order to reduce the circuit complexity at the 
same time, the current-mode architecture is adopted and the direction of currents is 
extended to both positive and negative two-direction. Then the weighted ratio (the 
current amplify) of every neural cell is easily implemented, and the combination of 
many signals on nodes is easy. Because the CNN has the properties of array-type 
parallel processing and local connection of devices, it’s suitable for implementation 
on mix-signal and standard CMOS process. 
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Chapter 1  

Introduction 
 

Recently, a novel class of information-processing system called 

cellular neural networks (CNN) has been proposed [1]. It is a large-scale 

nonlinear analog circuit which processes signals in real time. It is made of 

a massive aggregate of regularly spaced circuit clones, called cells, which 

communicate with each other directly only through its nearest neighbors. 

Each cell is made of a linear capacitor, a nonlinear voltage-controlled 

current source, and a few residue linear circuit elements. 

The cellular neural networks (CNN), also known as cellular nonlinear 

network, is an able-to-being implemented alternative to fully connected 

neural networks, has evolved into a paradigm for array computation [2]. 

The cell architecture of CNN allows parallel analog processes using an 

array of locally interconnection cells with fixed or adjustable weights [3], 

called templates. Due to the local interconnection features, most of 

effective implementation and optimization appears to be the analog VLSI 

[4]. Some theoretical results concerning the dynamic range and the 

steady-state behavior of CNN have been presented in [1]. In the following 

chapters, we will use CNN to solve some image processing. We have 

stressed only the steady-state behavior of CNN in [1].  

Texture boundary detection is an important and fundamental topic in 

image processing, and the output of an image segmentation can applied in 

many applications, such as tracking, stereo, pattern recognition... etc. 

Boundary detection basically is a partitioning of an image into related 

sections or regions, and finding the boundaries. This process seems 
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intuitive in human vision, but it is hard to do this job automatically in 

computer vision. The human visual system is able to effortlessly integrate 

local features to form our rich perception of patterns, despite the fact that 

visual information is discretely sampled by the retina and cortex. It seems 

clear, both from biological and computational evidence, that some form 

of data compression occurs at a very early stage in image processing. 

Moreover, there is much physiological evidence suggesting that one form 

of this compression involves finding boundaries and other information- 

high features in images. In this thesis we proposed a simple model which 

mimics the early stage of human vision which integrate hybrid-order 

features unsupervisedly, and it should be able to be implemented on 

circuit of CNN. 

We aim at the property of the proposed algorithm to design a suitable 

application-specific CNN circuit, called CNN-based texture boundary 

detection with fixed or programmable template coefficients. To reduce the 

design complexity, the normal use of complex building blocks such as 

trans-conductance amplifiers and differential voltage signals [5] are 

avoided. Instead, the analog circuit design presented here is based on 

CMOS circuits and inspired by the organizational principles of 

current-mode methodology [6]-[9]. In the current-mode design, currents 

are used to represent the signals, and thus the sum of signals can be done 

easily by simply combining currents at a summing node. Also, weighting 

of currents can be easily done with combinations of current mirrors, and 

thus current gains (or templates) can be easily generated. The efficient 

cell implementation and silicon- compilation provide analog circuits for 

specific applications and reduce silicon area efficiently. 

This thesis is organized as follows. In Chapter 2 we briefly review the 

theory and physical implementation of CNN. In Chapter 3 the Biological- 

Inspired Model for Hybrid-Order Texture Boundary Detection during 
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Early Vision is described in detail. The CNN-based texture boundary 

detection is proposed in Chapter 4. Chapter 5 describes how to implement 

the CNN-based texture boundary detection on the application-driven 

CNN circuit. Experimental results are presented in Chapter 6. Finally, 

conclusions and future works are made in the last chapter. 
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Chapter 2 

Cellular Neural Networks 
 

2.1 Theory 

Cellular Neural/Nonlinear Networks (CNN) technology is both a 

revolutionary and experimentally proven new computing paradigm. CNN 

can be considered an implementable alternative to fully connected neural 

networks and a remarkable improvement in hardware implementation of 

artificial Neural Networks. In fact, their regular structure and particularly 

the local connection feature make this class of neural networks really 

appealing for VLSI implementations. Because of the continuous-time and 

parallel structure, the CNN are widely used in several application fields, 

such as image processing and pattern recognition. 

As shown in Fig. 1, the state equation of CNN can be represented by  

 ( ) ( ) ( ) ( ), , , ; , , , ; , , ,
, ( , ) , ( , )

i j i j i j k l k l i j k l k l i j
k l Nr i j k l Nr i j

x t x t A y t B u t I
∈ ∈

= − + + +∑ ∑� , (2-1) 

 ( ) ( )( ) ( ) ( )( )1 1 1
2

y t f x t x t x t= = + − − , (2-2) 

where i, j refers to a grid point associated with a cell on the 2-D grid, and 

k, l∈Nr(i,j) is a grid point in the neighborhood within a radius r of the 

cell i, j. A and B are the nonlinear cloning templates [10].The feature of 

the Eq. (2-2) has been plotted at Fig. 2. 

    In many applications, the templates A and B and the threshold I are 

translation invariant. In the case of single variable A and B functions, the 

linear (space-invariant) template is represented by the following additive 

terms [1]. 
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( ) ( ), ; , , ; , ,
( , ) ( , ) ( , ) ( , )

.i j k l ykl i j k l uk l
C k l Nr i j C k l Nr i j

A v t B v t
∈ ∈

+∑ ∑  

    When the template is space invariant each cell is described by a 

simple identical cloning template defined by two (2r + 1) × (2r + 1) real 

matrices A and B, as well as the constant term I. In addition, as a very 

special case, if the input and the initial state values are sufficiently small 

and f is piecewise linear, then the dynamics of the CNN array is linear. 

    Unlike other standard analog processing arrays, or neural networks, 

the one-to-one geometric (topographic) correspondence between the pro- 

cessing elements and the processed signal-array elements ( e.g., pixels) is 

of crucial importance. Moreover, the template has geometrical meanings 

which can be exploited to provide with geometric insights and simpler 

design methods. 

Σ ∫ f

1−
*A

*B
Z

u yxx�

 
Fig. 1: The dynamic route of state in CNN. 

 

( )x t

( )y t

1

1

-1

-1

 
Fig. 2: The feature of the equation. 
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2.2 Physical Implementation 

The basic circuit unit of CNN is called a cell. It contains linear and 

nonlinear circuit elements, which typically are linear capacitors, linear 

resistors, linear and nonlinear controlled sources, and independent 

sources. The structure of CNN is similar to that found in cellular 

automata, and each cell in a CNN is connected only to its neighbor cells. 

Adjacent cells can interact directly with each other. Cells not directly 

connected together may affect each other indirectly because of the 

propagation effects of the continuous-time dynamics of the network. An 

example of two-dimensional CNN is shown in Fig. 3. The ith row and jth 

column cell is indicated as C(i, j). The r-neighborhood Nr, of radius r of a 

cell, C(i, j), in a CNN is defined by 

 { }{ } rjliklkCjiNr ≤−−=  ,max),( ),(
, (2-3) 

where r is a positive integer number. If r = 1, we call a “3 x 3 

neighborhood.” 

 

 
Fig. 3: Two-dimensional CNN. 

 
A typical example of a cell C(i, j) is shown in Fig. 4, where the 

suffixes u, x, and y denote the input, state, and output, respectively. The 

node voltage Vxij of C(i, j) is defined as the state of the cell whose initial 

C(i,j)

Nr(i,j) 
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condition is assumed to have a magnitude less than or equal to 1. The 

node voltage Vuij is defined as the input of C(i, j) and is assumed to be a 

constant with magnitude less than or equal to 1. The node voltage Vyij is 

defined as the output. C is a linear capacitor; Rx, and Ry, are linear 

resistors; I is an independent current source; Ixy(i, j; k, I) and Ixu(i, j; k, r) 

are linear voltage-controlled current sources with the characteristics Ixy(i, 

j; k, l) = A(i, j; k, I) Vykl and Ixu(i, j; k, I) = B(i, j; k, l) Vykl, for all C( k, l) 

∈Nr(i, j); Iyx is a piecewise-linear voltage-controlled current source 

defined by  

 ( )11
2

1
−−+= xijxij

y
yx vv

R
I . (2-4) 

Eij is a time-invariant independent voltage source.  
 

 
Fig. 4: The circuit of a CNN cell. 

 
Applying KCL and KVL, the circuit state equation of a cell is easily 

derived as follows: 

State equation: 

.1;1

,)(),;,()(),;,()(1)(

),(),(),(),(

NjMi

ItvlkjiBtvlkjiAtv
Rdt

tdv
C

jiNlkC
ukl

jiNlkC
yklxij

x

xij

rr

≤≤≤≤

+++−= ∑∑
∈∈  (2-5) 

jiE ,

I C xR ),;,( lkjiI xu ),;,( lkjiI xy

yxI

yR

xijv yijv
uijv

input u state x output y
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Output equation: 

.1;1

|),1)(||1)((|
2
1)(

NjMi

tvtvtv xijxijyij

≤≤≤≤

−−+−=  (2-6) 

Input equation: 

.1;1
,)(

NjMi
Etv ijuij

≤≤≤≤

=
      (2-7) 

Constraint conditions: 

,1|)0(| ≤xijv  .1;1 NjMi ≤≤≤≤                 (2-8) 

,1|)0(| ≤uijv  .1;1 NjMi ≤≤≤≤                  (2-9) 

Parameter assumptions: 

),,;,(),;,( jilkAlkjiA =  .,1;,1 NjiMji ≤≤≤≤         (2-10) 

0,0 >> xRC                               (2-11) 
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Chapter 3 

Biological-Inspired Model for 

Hybrid-Order Texture Boundary 

Detection during Early Vision 
 

The physiological and psychophysical findings in the preceding 

section do not lead to a convenient computational model for the 

hypothesized cortical channels. In this chapter, a new boundary detection 

algorithm is proposed. This algorithm combines the first-order and 

second-order features to model pre-attentive stage of human visual 

system. A simple hybrid-order channel model is described in the 

following. 

3.1 Whole Architecture 

Fig. 5 shows a simplified flow-chart of the proposed algorithm. We 

first extract first-order by Gaussian low-pass filter and second-order 

features by Gabor filters respectively. After feature extraction, every pixel 

of the output is an N+1 dimensional vector for (N Gabor filters and 1 

Gaussian filter), and then we measure the difference of each pixel with its 

neighbor. Because pixels belong to the same region have similar feature, 

the difference between them should be small. Then we keep the value 

which is bigger than a threshold and make pixels of which value are   

smaller than threshold to zero. We would get coarse boundaries which 

have Gaussian-like distributions.  
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With boundaries which have Gaussian-like distribution, we may go a 

step further to thin these boundaries by local peak detection, and after this 

stage we will get boundaries similar to human visual system. 

The proposed hybrid-boundary detection algorithm will be presented 

in detail, and the simplified block diagram is shown in Fig. 5, and Fig. 6 

is a detailed version of Fig. 5.  
 

 
Fig. 5: Simplified block diagram for hybrid-order boundary detection 
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Fig. 6: detailed block diagram for hybrid-order boundary detection algorithm 
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3.2 Hybrid-Order Feature Extraction 

3.2.1 First-Order Feature Extraction 
DoG (difference of Gaussian) function can be used in detecting 

boundaries. Two Gaussian filters with different values of σ  are applied 

in parallel to the image. Then the difference of the two smoothed 

instances is computed. It can be shown that the DoG operator 

approximates the LoG (Laplacian of Gaussian) one which has been 

widely used in boundary detection.  

We can think of the receptive field shape of a retinal ganglion cell as 

the linear spatial weighting function of the cell. That is, we can model the 

retinal ganglion cell as a linear neuron, where the receptive field tells us 

what the weights are. Using the function ),( yxR  to characterize the 

receptive field shape using the DoG model, we compute the output of a 

model retinal ganglion cell as 

 ∑=
yx

yxIyxRO
,

),(),(  (3-1) 

where ),( yxI is the input image. 

The operation of DoG function can be divided into two stages, 

Gaussian convolution and gradient. Gaussian convolution is somehow 

like extracting the mean of local region which is we called first-order 

feature here, and gradient is measure the variation of first-order feature. 

Fig. 7 illustrates the coarse boundary between two patterns with pure 

first-order features, and it is detected by only using first order feature. 

 
 



 13

                (a)                 (b) 
Fig. 7: an example demonstrating coarse boundary detected by first-order 
feature (a) input image; (b) boundaries detected 

 

3.2.2 Second-Order Feature Extraction 

3.2.2.1 Gabor Function  
Gabor function consists of a Gaussian function modulated by a 

sinusoidal function, and it can be described as following: 

 ( )[ ]VyUxjyxgyxh +⋅= π2exp),(),( , (3-2) 

 
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡ +
−⋅⎟

⎠
⎞

⎜
⎝
⎛= 2

22

2 2
/exp

2
1,

σ
λ

πλσ
yxyxg

, (3-3) 

where ( )yxh ,  is the Gabor function, ( )yxg ,  is the Gaussian function, 
( )yx σσλ /=  is the aspect ratio, xσ  is the STD of Gaussian in x axis, yσ  

is the STD of Gaussian in y axis, and yx σλσσ ⋅== . 

An important property of Gabor filters is that they have optimal joint 
localization, or resolution, in both the spatial and the spatial-frequency 

domains. By signal processing we know that a Fourier transform of 

Gaussian function is still Gaussian function, and by “uncertainty 

principle” we know that Gaussian function is the only function that can 

reach the optimal constraint of uncertainty principle. Uncertainty 

principle describes the optimal resolution in both the spatial and the 

spatial-frequency domains.  

Gabor filter is just modulation of Gaussian function. Gabor has been 
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proved that this action only cause movement in frequency domain, and it 

wouldn’t affect the resolution of Gaussian function in spatial and the 

spatial-frequency domain. It means that Gabor function inherit property 

of Gaussian possessing optimal resolution in both domain, and this 

property is why Gabor filter is suitable for texture segregation. 

 

3.2.2.2 Full-Wave Rectifier 
Like other filter-rectifier-filter model, rectifier operation is taken 

after convolution by Gabor filters. It has been generally acknowledged 

that V1 cells have a property like half wave rectifier property, and the 

intervening rectifier ensures that the fine-grain positive and negative 

portions of the carrier do not cancel one another when smoothed by the 

later filter. The rectifier operation also breaks the identical equality 

between linear filter theory and Fourier transformation.  

 

3.2.2.3 Gaussian Post Filter 
After being stimulated by bars with specific orientations, the output 

of V1 cells responding to similar orientation will aggregate together. The 

region with the same property will respond stronger than regions which 

consist of elements with different properties, and it is consistent with the 

“localization” property of texture. We can simulate this effect by a 

Gaussian post filters, it is somewhat like averaging with different 

weighting which is inverse proportion to distance to the center of the post 

filter. In the field of texture segmentation, Gaussian smoothing is an 

important procedure to eliminate features that varying abruptly.  

Fig. 8 (b) shows the result after rectifier without Gaussian filter, and 

Fig. 8 (c) is the result of Fig. 8 (b) after Gaussian filter. In Fig. 8 (c) there 

is a ramp-like feature profile, and the next step is to detect the position 
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where the variation of difference is maximum. 
 

 
(a) 

(b) (c) 
Fig. 8: (a) Input, (b) output without Gaussian filter, and (c) output with Gaussian filter. 
 

3.2.2.4 Difference Measure 
After extracting features of each local region, the features can be 

described by an N-dimensional vector, and each feature vector can be 

regard as a point in N-dimensional space. Similar to [11], the difference is 

represented by the distance in N-dimensional space. 

 

3.2.2.5 Gabor Filter Bank 
Besides orientation selectivity, Gabor filters also have frequency 

selectivity with different parameter. With these two properties, Daugman 

extended the original Gabor filter to a 2D representation [12]. There have 

been many researches about Gabor filter bank. Jain and Farrokhnia [13] 

suggested a bank of Gabor filters, i.e., Gaussian shaped band-pass filters, 

with dyadic coverage of the radial spatial frequency range and multiple 

orientations.  

Because our goal is design an algorithm which can be implemented 
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by CNN, the structure can’t be too complex. In this thesis we use totally 

sixteen Gabor filters to extract 2nd-order feature to do our experiments. 

All these Gabor filters have the same Gaussian shape in frequency and 

scatter uniformly in four orientations and four frequency bands. 

 

3.3 Saturation and Local Maximum Detection 

3.3.1 Saturation 
In this thesis we choose the mean of difference of total pixels as 

threshold, and the situation occur most frequently is that some boundaries 

with relative lower magnitude is eliminated. This is because of a relative 

huge region being considered to measure local feature, and the scale of 

difference between different patterns vary enormously. Obvious 

boundaries and cause relatively great difference and raise the mean of 

difference, and the boundaries which are not so obvious causing relative 

low difference will be eliminate. 

We use natural log transformation to simulate the saturation effect to 

alleviate this problem. It can suppress strong responses which may affect 

the mean (threshold) to much, but still keep the position of maximum 

difference where we assume boundaries lying.  

 

3.3.2 Local Maximum Detection 
The coarse boundaries detected after taking threshold are too thick, 

and local maximum detection is used to thin it, but it’s difficult to be 

implemented on CNN-based algorithm. Local maximum detection is 

assumed that the difference between different patterns should be maximal 

at their boundary, and the boundary will be right there.  

Algorithm of local peak detection: (1) Here we scan row by row and 



 17

column by column to find local maximums in x and y axes. (2) Sort the 

peaks we find in 1) in descending order. (3) Keep points with higher 

order in each line and column, and the output is binary. The values at that 

pixel regarded as boundaries (points with higher order) are 255, and 

others are 0. The number of peak-points we keep in (3) is depending on 

the complexity of input image, and in our testing images we use two. 

Fig. 9 is an example demonstrates the peak detection in the 

algorithm. Fig. 9 (a) is an input image, and Fig. 9 (b) is the detected 

coarse boundary. Fig. 9 (c) is the 3D version of Fig. 9 (b), and in this 

figure the vertical axis is intensity. Fig. 9 (d) is the result of Fig. 9 (c) by 

taking peak detection. Fig. 9 (e) is the superposition of Fig. 9 (a) and Fig. 

9 (c). From Fig. 9 (e) we can observe that the detected boundaries have 

high accuracy which is consistent to our assumption. 
 

 
(a) 

 
(b) 

 
(d) 

 
(c)  

(e) 
Fig. 9: (a)input (b)coarse boundary (c)3D version of (b) (d)(c)after peak 
detection (d)superposition of (a) and (d) 
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3.4 Down Sampling and Up Sampling 

After rectifying second-order features of different orientations have 

been extracted, and the output of each channel has the same size to input 

images (each texture pattern has 640×640 pixels). The amount of features 

is proportional to the number of channels. With the number of channels 

increasing, it cause heavy computational loading in following processing, 

and we improve this problem by down sampling feature space (in our 

experiments we down sample by 3).  

By choosing appropriate down sampling rates we can accelerate the 

following processes without losing too much accuracy. After boundaries 

have been detected, we will up sample before output. It will map detected 

boundaries to the corresponding position in original input. 

This mechanism is similar to human vision, and trade-off of spatial 

accuracy and computational loading is a common problem in human 

vision system and the proposed algorithm. In fact the whole visual 

pathway is like serial processes of information extraction and data 

compression.  

Without attention, human vision generally has low resolution in the 

field of vision, and even with attention we only have high resolution in a 

relatively tiny proportion of the field of vision. Although in this thesis we 

only consider the Pre-attentive situation, we still have acceptable 

spatial-accuracy for boundary detection which can be observed after local 

peak detection. 
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Chapter 4 

CNN-Based Texture Boundary 

Detection 
 

In this chapter, the CNN-based texture boundary detection (TBD) in 

is described. The whole architecture of original algorithm cannot be 

implemented completely, and we have to modify the original algorithm to 

a new algorithm called modified TBD. Modified TBD removes the local 

maximum detection, slightly modifies the threshold processing, and 

remain the other blocks of the original algorithm. Therefore, the results of 

the modified TBD will be thick boundaries instead of the thin boundaries, 

but still clear and exact boundaries. 

The architecture of the modified TBD still contains many blocks, 

which include Gabor filter, rectifier processing, Gaussian filter, distance, 

and threshold processing. In order to reduce the complex computation, 

the modified TBD can be reformulated naturally as well-defined tasks 

called CNN where the signal values are placed on a regular geometric 

2-D grid, and the direct interactions between signal values are limited 

within a finite local neighborhood. Recall Eq. (2-1), and template A and B, 

and threshold I are designed to implement each block in the modified 

TBD with the MatCNN simulator. For another important purpose, analog 

circuit implementation, we run the CNN algorithm to the stable situation 

to correspond to the simulation on Hspice [14]. 

 



 20

4.1 CNN-Based Gabor Filtering and Gabor Filter 

Bank Set 

    In modified TBD algorithm, the Gabor filter plays an important role 

in the second-order feature extraction. In image processing, filter means 

that image does convolution with a mask which may be a high pass, band 

pass, or low pass filter. In CNN, what template B works is the same as the 

convolution in image processing and we can easily implement 

convolution by setting template A = 0, template B = the value of the 

convolution mask and threshold I = 0. On the other hand, any convolution 

processing can be implemented by assigning the same value and the same 

resolution to template B.  

Gabor filter bank set in the thesis contains four Gabor filters and to 

implement one Gabor filter needs one CNN array such that there are four 

CNN arrays in Gabor filter bank set. Table 1 shows that there are four 

Gabor filters with different orientations of the Gabor bank set and lists 

both mask values and CNN parameters. As shown in Fig. 10, the results 

of four Gabor filters which implemented by convolution processing and 

CNN array processing are the same. 
 

Table 1 : Gabor filter bank set ( four Gabor filters ). 

Gabor filter bank set  Gabor filter 1 (0°) Gabor filter 2 (45°) 
0.0924 0.1344 0.1523 0.1344 0.0924 0.1467 -0.1927 0.1523 -0.0499 -0.0303

-0.1927 -0.2804 -0.3178 -0.2804 -0.1927 -0.1927 0.3107 -0.3178 0.1956 -0.0499

0.2419 0.3520 0.3989 0.3520 0.2419 0.1523 -0.3178 0.3989 -0.3178 0.1523

-0.1927 -0.2804 -0.3178 -0.2804 -0.1927 -0.0499 0.1956 -0.3178 0.3107 -0.1927

co
nv

ol
ut

io
n 

m
as

k 

0.0924 0.1344 0.1523 0.1344 0.0924 -0.0303 -0.0499 0.1523 -0.1927 0.1467

B the same as above the same as above 
A 0 0 

C
N

N
 

I 0 0 
Gabor filter bank set  Gabor filter 3 (90°) Gabor filter 4 (135°) 
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0.0924 -0.1927 0.2419 -0.1927 0.0924 -0.0303 -0.0499 0.1523 -0.1927 0.1467

0.1344 -0.2804 0.3520 -0.2804 0.1344 -0.0499 0.19564 -0.3178 0.3107 -0.1927

0.1523 -0.3178 0.3989 -0.3178 0.1523 0.1523 -0.3178 0.3989 -0.3178 0.1523

0.1344 -0.2804 0.3520 -0.2804 0.1344 -0.1927 0.3107 -0.3178 0.1956 -0.0499
co

nv
ol

ut
io

n 

m
as

k 
0.0924 -0.1927 0.2419 -0.1927 0.0924 0.1467 -0.1927 0.1523 -0.0499 -0.0303

B the same as above the same as above 
A 0 0 

C
N

N
 

I 0 0 
 

Fig. 10: These demonstrates the same outputs of both convolution and CNN 
processing.(a)input; (b)outputs of Gabor filters; (c)outputs of rectifier processing. 

 

 
(a) 

 
(b)                                 (c) 
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4.2 CNN-Based Rectifier Algorithm 

Rectifier operation is taken after convolution processing by Gabor 

filters. It has been generally acknowledged that has a property like half- 

wave rectification property, and the rectifier equation we proposed in this 

thesis is the simplest mode, ( , ) | ( , ) |f x y f x y= . 

    The simplest rectifier equation is the same as the absolute-value 

operation which is a very easy equation in Matlab coding. In order to 

implement rectifier processing by using CNN array, we have to design 

CNN parameters, template A, B and threshold I.  

    CNN-based rectifier processing has three steps : 

Step 1 (positive) :  

    By setting the following parameters, we can shift the image down to 

cut off the negative part of image and retain the positive part. 

 A = [0]; B = [1]; I= -1; INPUT = input; output1 = OUTPUT  

And then by setting the following parameters, we can shift the image 

back to the original value without negative part. 

 A = [0]; B = [1]; I= 1; INPUT = output1; output2 = OUTPUT  

Step 2 (negative) : 

    It’s very similar to step 1, but inversing the image has to be done 

first and this is what template B = -1 does.  

 A = [0]; B = [-1]; I= -1; INPUT = input; output3 = OUTPUT  

And then shift the image back with only positive part. The positive 

part is the inversing image of original image with only negative part.  

 A = [0]; B = [1]; I= 1; INPUT = output3; output4 = OUTPUT  

Step3 (addition) : 

    Final step is to add positive and negative part together. 

 output of rectifier processing = output2 + output4  
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    By following the three steps, we can get the output image after 

rectifier processing. As shown in Fig. 10, the results of four rectifier 

processing after Gabor filters which implemented by absolute-value 

processing and CNN array processing are the same. Specially noticed, the 

step 3 can be easily implemented by the simple operation, addition, 

because of CNN array of the current-mode analog circuit.  

 

4.3 CNN-Based Gaussian Filter  

4.3.1 Range of Image 
    Generally speaking, most image processing ignores the range of the 

image value and at last normalize the final image output to the correct 

range. The algorithm described in Chapter 3 is the same, but CNN-based 

algorithm has its own property that is the dynamic range which will affect 

the image processing before normalizing and make the values of some 

pixels to become saturation. The effect will lose some or even more 

important information of image. Therefore, we have to define a range of 

our image processing. All image processing in this thesis is based on 

gray-scale and the gray-scale is 256 levels.  

    The CNN-Based Gaussian filter processing is the most possible to 

make the image out of the range to saturation, so we discuss this problem 

of range here. In this thesis, we can guarantee that if the image value of 

CNN-Based Gaussian filter processing is on the correct range, then the 

image value of other processing will be sure to on the correct range. 

    The output range of CNN is from -1 to 1 as shown in Fig. 2 and 

what we have to choose the range of image value is from zero to 1 

because the range from -1 to zero will be used difficultly and indirectly. 

After choosing the range of image value, we have to ensure that the 
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image range of every processing will on the correct range. In this thesis, 

we are sure that the image value in on the correct range unless the use of 

saturation processing. 

 

4.3.2 CNN-Based Convolution  
    In this section, we will show that large size convolution mask, like 

51 by 51, can be implemented by much smaller size, only 5 by 5 template 

A and B of CNN array. But the procedure is too complex; we will discuss 

an easier method first. 

    The easier method to do CNN-based convolution is like the method 

shown in Section 4.2 and the method is to use only template B and set the 

same value as the mask. But the method has a very big problem that is 

problem of size meaning that the size of template B will be the same as 

the convolution mask. Based on the method, the CNN-based Gaussian- 

like filter will be implemented by using 51 by 51 template B. How large 

the size of template B is and it is impossible to implement on either 

CNN-based algorithm or analog circuit. We cannot choose this method 

and what we use is only 5 by 5 template A and B of CNN array.  

    Before proving the method of using only 5 by 5 template A and B of 

CNN array to implement convolution, to briefly introduce the convo- 

lution is necessary. If the input is the impulse sequence (only one pixel 

has value), the resulting output is called the impulse response of the filter. 

The input and output of a linear space-invariant (LSI) filter may be easily 

related via the impulse response of the filter as follows : Any input 

(image) can be thought of as the sum of an infinite number of shifted and 

weighted impulse sequences, and by space-invariance and by linearity, 

the output is thus  
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 ( , ) ( , ) ( , )
a b

s a t b

g x y w s t f x s y t
=− =−

= ⋅ + +∑ ∑ , (4-3) 

where a = (m-1)/2 , b = (n-1)/2 and size of the filter mask is m by n. 

    Therefore, we have to show the space-invariance and linear property 

of the CNN-based convolution processing. The ideal space-invariance 

property is shown in Fig. 11 and if the waveform shown in Fig. 11 (a) is 

the impulse response of an impulse sequence, the impulse response of the 

shifted impulse sequence will be shown in Fig. 11 (b). The ideal linearity 

property is shown in Fig. 12 and if the waveform shown in Fig. 12 (a) is 

the impulse response of an impulse sequence, the impulse response of the 

weighted impulse sequence will be shown in Fig. 12 (b) and if adding two 

impulse responses is shown in Fig. 12 (c), the ideal output will be shown 

in Fig. 12 (d).  

 
Fig. 11: The ideal space-invariance property. (a) The 
impulse response. (b) The shifted impulse response.    
 

 
Fig. 12: The ideal linearity property. (a) The impulse response. (b) The 
weighted impulse response. (c) Two impulse responses before adding. (d) 
The response of adding both shifted and weighted impulse sequences. 

 

(a)                         (b)

(a)                         (b)

(c)                         (d)



 26

Fig. 13 shows the space-invariance and linear property on CNN- 

based convolution processing. Fig. 13 (a) and (b) show the space- 

invariance property and we are sure that the waveform in (b) equals to the 

shifted waveform in (a). Fig. 13 (b), (c) and (d) show the linearity 

property and we are sure that the waveform in (d) equals to the output 

after adding waveforms in (b) and (c). Especially noted that the 

parameters of CNN array are 5 by 5 template A and 3 by 3 template B, 

and the size of impulse response is large than size of templates. 
 

(a) (b) 

(c) (d) 
Fig. 13: The properties of CNN-based convolution processing. (a) The 
impulse response. (b) The shifted impulse response. (c) The weighted 
impulse response. (d) The response of adding both shifted and 
weighted impulse sequences. 
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4.3.3 Gaussian Filter 
    Everyone knows that the Gaussian function has its own properties 

and the Eq. (3-3) shows the Gaussian function equation. To discuss the 

properties is not necessary here and what we have to discuss is how the 

CNN-based Gaussian filter is similar to the real Gaussian filter. As the 

properties discussed in Section 4.4.2, if the impulse response of the 

CNN-based Gaussian filter is similar to the 2-D real Gaussian functions 

shown in Fig. 14 (a), then the CNN-based Gaussian filter has the same 

function as the convolution processing of real Gaussian filter. Fig. 14 (a) 

shows two Gaussian functions with different parameters, and relation 

between the two Gaussian functions is something like zoom in or zoom 

out on the x-axis. 

    We have tried many methods and many kinds of parameters of CNN, 

and we got some important experience. Fig. 14 (b) and (c) show the 3-D 

and 2-D impulse responses of CNN-based Gaussian filter using only 

template A and the results are very similar to real ones, but using only 

template A has a risk of losing information that is because of the 

properties of template A on analog circuit implementation. Therefore, we 

have to use both template A and B to have a fixed input to avoid losing 

information. Fig. 14 (d) and (e) show the 3-D and 2-D impulse responses 

of CNN-based Gaussian filter using template A (5 by 5 Gaussian function) 

and B and the results are not very good but good enough to be used. 

These errors can not be avoided because the template B of size 5 by 5 has 

finite number of fixed inputs and template A must have a large deno- 

minator which approximately equals to the summation of all numerators 

of template A.  

    Therefore, the design of the CNN-based Gaussian filter in this thesis 

is to design template A and B, as following, 
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12 13 15 13 12    

13 17 18 17 13 0 1 0  

15 18 20 18 15 1 1 1 , I =0.

13 17 18 17 13 0 1 0  

A =
1

Ka
i  

12 13 15 13 12

, B =
1

Kb
i

   
 

If Ka  is bigger than 372 (the summation of all numerators of template 

A), the impulse response of CNN-based Gaussian filter becomes thinner 

than Fig. 14 (d). If Ka  is smaller than 372, the impulse response 

becomes fatter and if Ka  is smaller enough, the impulse response will 

goes to saturation. If Kb  is too big, the impulse response will also goes 

to saturation because the Kb  control the amplitude of the impulse 

response. If saturation happens, the impulse response is not one of 

CNN-based Gaussian filter any more. 
 

 
(a) 

(b) (c) 
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(d) (e) 
Fig. 14: The impulse responses of the CNN-based Gaussian filter. (a) The 
real 2-D Gaussian functions with different σ . The 3-D impulse response in 
(b) and the 2-D impulse response in (c) of the CNN-based Gaussian filter 
with only template A. The 3-D impulse response in (d) and the 2-D impulse 
response in (e) of the CNN-based Gaussian filter with template A and B. 

 

4.4 CNN-Based Distance and Threshold Algorithm 

4.4.1 Distance Processing 
After extracting features of each local region, the feature can be 

described by a N-dimensional vector, and each feature vector can be 

regard as a point in N-dimensional space. In this thesis, we only compute 

the difference between features of each pixel to pixels right behind and 

below to it and then use threshold to cut off useless pixels to remain the 

texture boundary.  

CNN-based difference between features of each pixel can be easily 

implemented by setting the parameters of CNN array as following, 
 

  0 0 0  

 A = 0 , B = 0 1 -1 , I =0, 

  0 0 0  
 

and then the five images of five channels become new five distance value 
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arrays. After this, the design is to do much easier processing, rectifier 

processing instead of complex computations which are square processing 

and square root processing, and sum the five distance value arrays pixel 

by pixel to a new image array. Rectifier processing mentioned in Section 

4.3 has similar function but is not so powerful to enhance the distance.  

 

4.4.2 Threshold Processing 
    CNN-based threshold processing is based on original threshold 

processing, but has a little difference as shown in Fig. 15. The 

CNN-based threshold processing will pull down the value as shown in 

Fig. 15 (b). The original value which is larger than Ith will subtract Ith, 

and the original value which is smaller then Ith will be pulled down to 

zero. 

    The first step of CNN-based threshold processing is set the 

following parameters, and we can shift the image down to cut off what 

we don’t want of image and retain what we want. 

 A = [0]; B = [1]; I= -(1+Ith); INPUT = input; output1 = OUTPUT  

And then by setting the following parameters, we can shift up the 

minimum value of image to zero. 

 A = [0]; B = [1]; I= 1; INPUT = output1; output2 = OUTPUT  

    Finally, the difference between two threshold processing is not a 

large effect because we can enhance the image and the images will be 

very similar to each other. 

The modified TBD is somewhat different from the original TBD. We 

modify the threshold processing and ignore the local maximum detection 

after threshold processing of original algorithm proposed in Chapter 3 

because these functions are difficult to be implemented by the 

current-mode CNN circuit. 
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Fig. 15: The relation of image value changing between before and 
after threshold processing on (a) original algorithm and (b) 
CNN-based algorithm. 

 

Ith Ith 

before threshold processing
af

te
r 

af
te

r 

before threshold processing 

Slope = 1
Slope = 1 

(a)                           (b) 
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Chapter 5 

Design of Application-Driven CNN 

Circuits 
 

We shall implement CNN-based TBD algorithm proposed in Chapter 

4 with analog current-mode circuits and simulate the designed circuit 

with HSPICE. 

5.1 Architecture of CNN-Based Texture Boundary 

Detection 

According to the proposed algorithm and based on the processing 

element in Fig. 18, the system architecture of the analog circuit for the 

CNN-based TBD is constructed here. The circuit system is a conceptual 

block diagram of an analog computer shown in Fig. 16. It consists of the 

16×16 CNN array with templates, the analog absolute value circuit, and 

the summation unit. To reduce design complexity and die size for 

sophisticated process technology in our experiment, a programmable 

current-mode CNN array is designed, and every current-mode CNN array 

shown in Fig. 16 can be replace by the programmable current-mode CNN 

array with different template A, B and threshold I. Of course, the CNN 

size can be increases in real production depending on the tradeoff 

between required real-time rate and cost for various applications. 

The activity of the system is divided into four main function, Gabor 

filter, Gaussian filter, distance, and threshold, as described in Fig. 16. At 
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first, a digital image is transferred by DAC function to currents and fed 

into the network as input values in CNN array. These currents are defined 

positive and assigned to the positive part of the CNN sigmoid function. 

The network then performs the Gabor filters with four orientations (four 

kinds of template A). Here we will obtain the results with both positive 

and negative values in the steady state and the results are fed into the 

analog absolute value circuits. After that, the results become all positive 

values and fed into Gaussian filters with the same templates. The results 

of the Gaussian filters are all positive values and then fed into distance 

units with the same templates. We will feed results of distance units into 

analog absolute value circuits one more, and get positive results. The 

network then performs the summation units implemented by connecting 

results of five absolute value units pixel by pixel to new results of a new 

array (because of current-mode). Finally, the network feeds the results of 

summation units and a threshold value Ith which is the mean of these 

results to threshold units with the same templates.  

To realize the whole analog circuit efficiently, we modify the Eq. 

(2-1) to a new current-mode equation as following, 

 ( ) ( ) ( ) ( ), ; , , ; , ,
, ( , ) , ( , )

xij xij i j k l ykl i j k l ukl i j
k l Nr i j k l Nr i j

i t i t A i t B i t I
∈ ∈

= − + + +∑ ∑� , (5-1) 

and design a single current-mode CNN neural cell in Fig. 17 which shows 

the schematic view of the modified single neural element (cell). The input 

current to the cell can be set continuously within the range limited by the 

unit current. This will result in the nonlinear function for iyij (t) shown in 

Fig. 17. The sigmoid function is realized by using two-level shifted 

current mirrors connected in series. The saturation levels of the sigmoid 

with slope set as 1 are determined by the current source IL. This piecewise 

approximation of symmetric current limiting with cascaded current 

mirrors has been used effectively in other implementations [6], but most 
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of implementations are applied for binary image processing only.  

In addition, a single cell includes the neuron cell unit, the template A 

unit, and the template B unit shown in Fig. 17. The neural cell unit for the 

proposed algorithm must contain two input nodes. To obtain negative 

template coefficients in the current-mode design, both the template A and 

B units contain one current inverter in our design and the details will be 

described in following section. The correct cell activities are regulated by 

the switches within the single cell circuit, whose functionalities are listed 

in Table 2. 
 

Table 2 : Functionalities of the switches in the schematic circuit in Fig. 17. 

Logic 

Switch 

High Voltage 

(3.3V) 

Low Voltage 

(0V) 

Vac Normal operation Initial phase 

Vtap Choosing positive template A Choosing negative template A 

Vtbp Choosing positive template B Choosing negative template B 
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Fig. 16: The block diagram of the CNN-based TBD. 
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Fig. 17. Schematic circuit of a single CNN cell with fixed templates design. 
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5.2 Basic Processing Element (CNN Cell) 

To achieve acceptable resolution with standard procedures, a current- 

mode CMOS realization of CNN has been proposed in [6]-[9], which was 

adapted from the implementation in [1]. Based on this design, a generic 

model of one CNN cell with the current-mode architecture is shown in 

Fig. 18, where xc, uc, zc, and yc are the cell state, input, bias and output 

variable in continuous time. Note that this circuit model is identical to the 

model given by Eq. (2-1). The model consists of the dynamic block, the 

nonlinear block, and the weighted block. The dynamic block is composed 

a continuous time integrator loaded with a bias shifted current mirror. The 

nonlinear block can determine the output transfer function using the 

current-mirror rate. A current-mode output characteristic is described in 

[6]. Note that weighted replication is performed at the output current of 

each cell. In other words, each cell generates a different output, with the 

specific weights as A and B indicating the template A and B, for each 

neighbor. 
 

 
Fig. 18: Architecture of a generic current-mode CNN cell, where xc, yc, uc, 
and zc indicate the state, output, input, and bias. 

 

The Simulated output currents of the current-mode sigmoid 

configuration with different limited currents chosen to be 10µA, 8µA, 
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6µA, and 4µA are shown in Fig. 19. The slope of simulated sigmoid 

functions is set to 1. Only positive coefficients are achieved due to the 

positive feedback network. The realization of negative coefficient values 

is obtained by connecting the current through a current inverter.  

 

(a) (b) 

Fig. 19: Simulated sigmoid functions (slope=1) with HSPICE. (a) Positive and 
(b) negative slopes in different current gains through a current inverter. 

 

5.3 Templates Design 

We now introduce the realization of required CNN templates in the 

current-mode design. Through a transistor ratio, a positive template value 

can be obtained as shown in Fig. 20 (a). To generate negative template 

values, a current inverter is cascaded to the transistor ratio as shown in 

Fig. 20 (b). To add image input with template A unit to become template 

B unit, the image input unit as shown in Fig. 20 (c) is needed. The 

position of a current source inspires the direction of output current. With 

these template units, we design a 5x5 large neighborhood CNN array with 

a neuron cell unit [15]-[17], 24 template A units, and 25 template B units 

per cell. In addition, the threshold I can be easily implemented by adding 

a single current source to the input of the neuron cell unit as shown in Fig. 

17 and the implementation of initial state is like the threshold I. The 
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difference is that the initial state turns on just for a whole and can be 

different from other initial states of different cells. 

    Fig. 20 (d) shows a programmable current amplifier [18] with 

changing the Vvalue and Ibias. The architecture of the CNN-based TBD 

contains many CNN arrays with different parameters and to replace fixed 

templates with programmable templates to be a programmable CNN 

array is necessary.  
 

(a) (b) (c) 

 
(d) 

Fig. 20: Template realization in the circuit of CNN-based TBD, where (a) 
is for positive output, (b) is for current inverter, (c) is for the image input 
unit, and (d) is for the programmable current amplifier. 

 

5.4 Boundary Selection 

The boundary conditions [19] are defined by the border cells which 

surround the active grid. Any virtual variable in ixij must be specified via 

Mbin  iuij (t)  
Ai,j;k,l．iykl (t) 

(1:1)
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boundary conditions, of which the most commonly used are for 5×5 

neighborhood. Excepting 16×16 cells, the central 8×8 cells are the real 

array of the image, and the others cells are the boundary cells. The 

boundary conditions in our design are like padding processing, but are the 

extending of the central 8×8 cells. The width of the boundary cells 

depends on the size of the Gaussian filters. The real boundary conditions 

outside the 16×16 cells can be considered as fixed, zero-flux, and 

dynamic boundary conditions, respectively [20]. However, the reasons 

why we choose the zero-flue condition as the boundary condition are due 

to no input in our algorithm and the natural definition ( no cells, no 

inputs). 
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Chapter 6  

Experimental Results 
 

6.1 CNN-Base Texture Boundary Detection 

    The parameters of CNN arrays for CNN-based Gaussian filters is 

described as following,  

and the impulse response of these CNN arrays is shown in Fig. 21 
 

 
Fig. 21: The impulse response of the CNN-based TBD 

 

    The impulse response is not exactly a Gaussian function, such that 

the results of the CNN-based TBD are different from the results of the 

modified TBD as shown in Fig. 22. 
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(a) 

 
(b) 

Fig. 22: (a) Results of the modified Gaussian filters. (b) Results of the CNN-based 
Gaussian filters. 

 
    The results in Fig. 22 (a) are similar to Fig. 22 (b) but not exactly the 

same. Because the differences between (a) and (b) exist, the results of 

distance processing and threshold processing after modified Gaussian 

filters and CNN-based Gaussian filters will be much different as shown in 

Fig. 23. There are more results of different inputs shown in Fig. 24 and 

Fig. 25. 
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Fig. 23: This demonstrates the results of both modified and CNN-based TBD.(a)input; 
(b) and (c) show the results before and after threshold processing of modified TBD. (d) 
and (e) show the results before and after threshold processing of CNN-based TBD. 
 

Fig. 24: This demonstrates the results of both modified and CNN-based TBD.(a)input 
2; (b) and (c) show the results before and after threshold processing of modified TBD. 
(d) and (e) show the results before and after threshold processing of CNN-based 
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(d) 
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(e) 
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TBD. 
 

Fig. 25: This demonstrates the results of both modified and CNN-based TBD.(a)input 
3; (b) and (c) show the results before and after threshold processing of modified TBD. 
(d) and (e) show the results before and after threshold processing of CNN-based 
TBD. 
 

6.2 Application-Driven CNN Circuit 

Based on the analog circuit implementation described in Chapter 5, 

we design a 16×16 CNN array to simulate the CNN-based TBD on 

Hspice. This chapter will show the comparisons between simulation 

results of MatCNN and that of Hspice, but the image size is only 16×16 

which is much smaller than image size using in original algorithm. 

Therefore, new images with texture of 16×16 size is created and then fed 

into CNN-based TBD both on MatCNN and Hspice, and the parameters 

of CNN arrays for CNN-based TBD is designed to be the same as the 

parameters of CNN arrays for CNN circuit. 

Because the size of Gaussian filters changes for 16×16 size, the 
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(b) 

 
(d) 

 
(c) 

 
(e) 
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parameters of the CNN-based Gaussian filters have to redesign, but the 

others parameters do not have to change. The parameters of the Gaussian 

filters for 16×16 size is described as following,  
 

 
and the impulse response of CNN-based TBD is shown in Fig. 26. 

 

(a) (b) 
Fig. 26: 16×16 CNN array. (a) shows the 3-D impulse response and (b) 
shows the cut-plane of (a). 

 
The impulse response is similar to a Gaussian function, and the results of 

the CNN-based TBD are shown in Fig. 27. The input in Fig. 27 (a) is 16×

16, and so are Fig. 27 (d) and (e). Because of the boundary cells, the real 

images after Gaussian filers are 8×8 as shown in Fig. 27 (f). The final 

result shown in Fig. 27 (c) is also 8×8. 

    CNN-based Gaussian filter for CNN circuit has to use the template A. 

Based on the properties of template A, the dark current in CNN circuit has 

a great effect and the CNN circuit has to add an offset current per pixel to 

1 9 15 9 1    

9 15 18 15 9 0 1 0  

15 18 20 18 15 1 1 1 , I =0,

9 15 18 15 9 0 1 0  

A =
1

400
i  

1 9 15 9 1 

, B =
1
20
i

   



 46

decrease the effect. The offset current can be replaced by the threshold I, 

and the optimal value of threshold I in this case is 0.2 µA.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d)          (e) 

 
(f) 

Fig. 27: This demonstrates the results of CNN-based TBD.(a)input; (b) 
and (c) show the results before and after threshold processing. (d) shows 
the results of Gabor filters, and (e) shows results of rectifier processing 
after (d). (e) shows the results of Gaussian filters 

 
    Except the threshold I (0.2µA), the other parameters for CNN 

circuits are the same. The results of channel one Gabor filter for CNN 

circuits are shown in Fig. 28, and are very similar to the results for 

CNN-based TBD as shown in Fig. 27. The results of channel five 

Gaussian filter for CNN circuits are shown in Fig. 29, and are very 

similar to the results for CNN-based TBD as shown in Fig. 27. The whole 

results of Gaussian filters for CNN circuits are shown in Fig. 30, and the 

results are not as good as shown in Fig. 27, but still clear and correct. 
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(a) 

 
(c) 

 
(b) (d) 

Fig. 28: This demonstrates the 16×16 results of channel one Gabor filter for CNN 
circuits with using the input as shown in Fig. 27 (a). The 3-D result of channel 
one after Gabor filter is shown in (a), and the cut-plane of (a) is shown in (b). (c) 
shows the image of (a). (d) shows the result after rectifier processing of (c). 

 
 

 
(a) (c) 

 
(b) 

 
(d) 

Fig. 29: This demonstrates the 16×16 results of channel five Gaussian filter for 
CNN circuits with using the input as shown in Fig. 27 (a). The 3-D result of 
channel five after Gaussian filter is shown in (a), and the cut-plane of (a) is shown 
in (b). (c) shows the image of (a). (d) shows the central 8×8 image of (c). 
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(b) 

 
(a) 

 
(c) 

Fig. 30: This demonstrates the 16×16 results of Gaussian filter for CNN 
circuits with using the input as shown in Fig. 27 (a). The results of five 
channels after Gaussian filter is shown in (a), the result after distance 
processing is shown in (b), and the result is shown in (c).  
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Chapter 7  

Conclusions and Future Works 
 

In this thesis, a biological-inspired model for hybrid-order TBD 

algorithm, which mimics mechanism of early stage of human vision is 

proposed and experimental results are generally consistent to human 

visual sensation. Due to the parallel signal processing of Cellular Neural 

Networks (CNN), the computation time will greatly decrease. Contrary to 

the original biological-inspired model for hybrid-order TBD algorithm 

which has local maximum detection, the modified TBD algorithm can 

completely transfer to CNN-based TBD and be implemented on 

CNN-based analog circuits. Without local maximum detection, the 

boundaries of results for the CNN-based TBD are thick, but clear and 

exact. The CNN-based TBD implements a 51×51 or any size Gaussian 

filter with different template A and has the potential to extend the size of 

filters for any function to any size by using the CNN array with only 

template A and B. The size of the Gabor filters in this thesis is still 5×5 

and to extend the size to a more suitable size will more match the 

frequency of input images. It will be one research of our future works for 

the CNN-based TBD. 

We also designed an effective current-mode CMOS circuit using 

cascaded current mirrors with fixed or programmable templates to 

implement the CNN-based TBD. The programmable CNN circuit can 

implement each function with different templates in the CNN-based TBD. 

The designed circuits are very suitable for CNN-based image processing 

in real-time. Simulation results with HSPICE based on the 0.35µm TSMC 
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2P4M process have demonstrated the superior functionalities of the 

designed circuit. In the future, many complex image processing 

algorithms will be implemented on CNN-based circuits in real-time and 

we can design an effective controller to integrate each block so that the 

usage of CNN circuits can be reduced. 
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