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Abstract

In recent years, many researches have introduced that a programmable method
which computes many complex image processing tasks is offered based on the
architecture of Cellular Neural Networks (CNN).-The architecture of CNN consists
of the analog computational units whic¢h-can do real-time and parallel processing.
One ideal property of CNN 1s that the signal values are placed on a regular
geometric 2-D grid, and the direct interactions between signal values are limited
within a finite local neighborhood. Based on this property, the architecture is easily
implemented on VLSI. Therefore, a new image processing of CNN-based texture
boundary detection and its analog circuit implementation are proposed in this thesis.

The proposed texture boundary detection technique in this thesis imitates the
behavior of the architecture on the surface layer of human eyeballs and then detects
the texture boundary of images. The technique use the innovation of many and
parallel computational processing units of CNN to replace the complex digital
texture boundary detection in the past. For real-time processing, it is designed to be
implemented on CNN-based real-time and parallel analog circuits to greatly increase
the executive efficiency. The design of CNN circuits, however, adopts the
architecture of multi-layer and 5x5 large neighborhood, and extends the size of array
on this image processing to 32x32. In order to reduce the circuit complexity at the
same time, the current-mode architecture is adopted and the direction of currents is
extended to both positive and negative two-direction. Then the weighted ratio (the
current amplify) of every neural cell is easily implemented, and the combination of
many signals on nodes is easy. Because the CNN has the properties of array-type
parallel processing and local connection of devices, it’s suitable for implementation

on mix-signal and standard CMOS process.

il



x ¥

BR[O RS RE  ER B
g’%ﬂ$ﬁﬂ?%ﬁamwﬁ’a%£wm%wﬁfw;§a%om
IR 1R PRI R W Y R

RN i PR BR[OS [0 M R~ ISP B M TP oA
163%?‘% P WATE SRR~ ST PO RS R 2 o
RLITHEEPR o v g AR DR AL SRR B
A% e

G ETE R E <2k BRI r?r;f\E”;?yBﬁ ’;ﬁ—l RGOS P Ry SIY
Fe > U5yl B TSRS 1L S R N AR T RV =
gjﬂz’gﬁ °

T.ﬁi/ %:ﬁ eI S l}s O F5 B S A {1

il



Contents

ChiNESE ADSEIACT ..o [
ENGHSN ADSTFACT ......ooiiiiiiieeee s I
Chinese ACKNOWIEAGEMENTS ........coiiiiiiiiieec s i
CONTENTS ..ottt b et ettt b b sae e 0\
LISt OF TADIES ... e Vi
LISE OF FIQUIES ... vii
Chapter 1 = INEroduCiON..........coviiiiiiiiri e 1
Chapter 2 Cellular Neural NetwWOrks ..........ccccooviiiiiiineece e 4
2.1 TREOTY .ttt ettt ettt ettt ettt et eesabeesbeeseaeessaessseesseessseenseessseessaensnas 4
2.2 Physical IMplementation............cccueerieeiierieeiiienieeieeseeeieesee e seee e e seneesveesenes 6
Chapter 3 Biological-Inspired Model for Hybrid-Order Texture
Boundary Detection during Early Vision...........cccccevvveviveiiennennn, 9
3.1 WhOIE ATCRILECTUTE ......eeeeiafiriii e imessennesse s nsisn e eenreeessseeessseeensseeenssaeensseeessseesnsseens 9
3.2 Hybrid-Order Feature EXtraction ..ol k. idie it e eeeeeeenieeieeeeeeceeeeseeeneeeeeeee 12
3.2.1 First-Order Feature EXtraction ..o oo 12
3.2.2 Second-Order Featur€ EXtraCtion il .ocevve e 13
3.3 Saturation and Local Maximum: Detection i .......ccccveeeriieeciieeciee e 16
3.3.1 SATUTALION ..evevieeiiieeiieeeiiee et s sese s et e e eteeesaaeesbeeesasaeessseeessseeensseeessaessseens 16
3.3.2 Local Maximum DeteCtion ...........ccccueeruiieriieeiiieeciee et eciree e evee e 16
3.4 Down Sampling and Up Sampling ..........cccccecveniiiiiniiniinenieniceeicseeneeeeen 18
Chapter4  CNN-Based Texture Boundary Detection............c.cccccevenn. 19
4.1 CNN-Based Gabor Filtering and Gabor Filter Bank Set ..........ccoceviviininnenn 20
4.2 CNN-Based Rectifier Algorithm...........ccccoeviieiiiniiiiiieieeieeeee e 22
4.3 CNN-Based Gaussian Filter.........ccccooviiiiiiiiiiniiinieciieceeee e 23
4.3.1 Range of MA@ ......ccoueeiiieiiiiiieieece ettt 23
4.3.2 CNN-Based ConvOIUtION ......c..cocuerieriiiienieniieieeiesieeie et 24
4.3.3 Gaussian Filter .......cccoevuiiiiiiiniieiiiieceeeeee e 27
4.4 CNN-Based Distance and Threshold Algorithm..............ccccoveviiiiiniiieniininee, 29
4.4.1 DiStance ProCeSSING ........eevvieriieriienieeiiienieeteeeieeeteesieeeaeesaeeeseenseesseenaeeens 29
4.4.2 Threshold ProCesSing .......cccueeevieriieiiiienieeiiesieeieesee ettt see e e seae e 30
Chapter 5 Design of Application-Driven CNN Circuits..........ccccceveennee. 32
5.1 Architecture of CNN-Based Texture Boundary Detection...........cccccecvveeeevenneee. 32

v



5.2 Basic Processing Element (CNN Cell) .......ccocvieeiiieeiiieeieeceeceeeee e 37

5.3 Template DESIZN .....ocecuiiieiiieeiieeeiie ettt see e sree e e e e e esebeeenseeennnas 38
5.4 Boundary SEIECtION........cccuiiiiiiieciieesiee ettt et eeaaeas 39
Chapter 6  Experimental ReSUItS...........ccooveiiiiieiicceecece e, 41
6.1 CNN-Base Texture Boundary Detection..........cccceceevienienerieneeneeiicnieneeenen 41
6.2 Application-Driven CNN CirCUIt.........ccoeriirieiiinieneiiienieneeeetenie e 44
Chapter 7 Conclusions and Future WOFKS ..........ccccecovevieeveeie e, 49
RETEIENCES ... 51



List of Tables

Table 1 : Gabor filter bank set ( four Gabor filters ). .......cccoeoieriiiiiiniiieiee 20

Table 2 : Functionalities of the switches in the schematic circuit in Fig. 17. .............. 34

vi



List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

1: The dynamic route of state in CNN........ccceeviriiriiiiniinieeeeceee e 5
2: The feature of the qUAtION. ......cccueeriieiiiiiiie e 5
3: Two-dimensional CINN........cciiiiiiiiiiiie et 6
4: The circuit of @ CNN Cell. ...oocuiiiiiiiiie e 7
5: Simplified block diagram for hybrid-order boundary detection....................... 10
6: detailed block diagram for hybrid-order boundary detection algorithm .......... 11
7: an example demonstrating coarse boundary detected by first-order feature (a)
input image; (b) boundaries detected...........ceeviiriiiiiiniiiieee e 13
8: (a) Input, (b) output without Gaussian filter, and (c) output with Gaussian

1 L3 SO S PRSPPI 15
9: (a)input (b)coarse boundary (c)3D version of (b) (d)(c)after peak detection
(d)superposition of (a) and (d) ....cccveereeeeiiiiieiiiee e 17

10: These demonstrates the same outputs of both convolution and CNN
processing.(a)input; (b)outputs of Gaber filters; (c)outputs of rectifier
PTOCESSIIE. .veuveirinreeureentenueedietireeueeeeeeeeues st tafes e e st eatesueeseeatesaeenbeeneeeutenbeesesaeenne 21
11: The ideal space-invariarce property. (a) The impulse response. (b) The
shifted IMPUISE TESPONSE. .reut. . uisueeuerdiutennee st sie ettt 25
12: The ideal linearity property. (a) The-impulse response. (b) The weighted
impulse response. (c) Two impulse responses before adding. (d) The response

of adding both shifted and weighted impulse sequences. ..........cccceecueerieriienene 25
13: The properties of CNN-based convolution processing. (a) The impulse
response. (b) The shifted impulse response. (¢) The weighted impulse response.
(d) The response of adding both shifted and weighted impulse sequences. ........ 26
14: The impulse responses of the CNN-based Gaussian filter. (a) The real 2-D
Gaussian functions with different o . The 3-D impulse response in (b) and the
2-D impulse response in (c) of the CNN-based Gaussian filter with only

template A. The 3-D impulse response in (d) and the 2-D impulse response in (e)
of the CNN-based Gaussian filter with template Aand B. ..........cccccovinieiinienne. 29

15: The relation of image value changing between before and after threshold
processing on (a) original algorithm and (b) CNN-based algorithm. .................. 31
16: The block diagram of the CNN-based TBD..........ccccceveriiiniineniiinicienicnene 35
17. Schematic circuit of a single CNN cell with fixed templates design. ............ 36
18: Architecture of a generic current-mode CNN cell, where X, y, u®, and z°
indicate the state, output, input, and bias. ..........cccceevieiiiiiiiiniiiee e 37
19: Simulated sigmoid functions (slope=1) with HSPICE. (a) Positive and (b)
negative slopes in different current gains through a current inverter................... 38

vii



Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

20: Template realization in the circuit of CNN-based TBD, where (a) is for

positive output, (b) is for current inverter, (¢) is for the image input unit, and (d)

is for the programmable current amplifier. .........ccceeeviieeiiieeiiee e, 39
21: The impulse response of the CNN-based TBD .........ccccvveviiieciiieniieeieeee, 41
22: (a) Results of the modified Gaussian filters. (b) Results of the CNN-based

GauSSIAN fIIEETS. .. .eiiiiiiie e e 42

23: This demonstrates the results of both modified and CNN-based

TBD.(a)input; (b) and (c) show the results before and after threshold processing
of modified TBD. (d) and (e) show the results before and after threshold
processing of CNN-based TBD. ......cccccooiieiiiiiiiieeeeeeeee e 43
24: This demonstrates the results of both modified and CNN-based

TBD.(a)input 2; (b) and (c) show the results before and after threshold
processing of modified TBD. (d) and (e) show the results before and after
threshold processing of CNN-based TBD. .......cccccccvieriiiiniiiiiiecee e 43
25: This demonstrates the results of both modified and CNN-based

TBD.(a)input 3; (b) and (c) show the results before and after threshold
processing of modified TBD. (d).and (&) show the results before and after

threshold processing of CNN2based TBD......lu..ccoooiiiiiiieiiiiecieeceeeeeee e 44
26: 16x16 CNN array. (a) shows the 3-D impulse response and (b) shows the
CUL-PlANE OF (). 1o e s it et et ettt et et e e 45

27: This demonstrates the results 0f CNN=based TBD.(a)input; (b) and (c) show
the results before and after threshold processing. (d) shows the results of Gabor
filters, and (e) shows results of rectifier processing after (d). (¢) shows the

results of Gaussian fllters.........cooiiiiiiiiiiii e 46
28: This demonstrates the 16x16 results of channel one Gabor filter for CNN
circuits with using the input as shown in Fig. 27 (a). The 3-D result of channel
one after Gabor filter is shown in (a), and the cut-plane of (a) is shown in (b). (¢)
shows the image of (a). (d) shows the result after rectifier processing of (c)......47
29: This demonstrates the 16x16 results of channel five Gaussian filter for CNN
circuits with using the input as shown in Fig. 27 (a). The 3-D result of channel
five after Gaussian filter is shown in (a), and the cut-plane of (a) is shown in (b).
(c) shows the image of (a). (d) shows the central 8x8 image of (¢). .......ceeneee. 47
30: This demonstrates the 16x16 results of Gaussian filter for CNN circuits with
using the input as shown in Fig. 27 (a). The results of five channels after
Gaussian filter is shown in (a), the result after distance processing is shown in
(b), and the result 1S SHOWN 1N (C)..veeerviiiriiieeiiieciee ettt 48

viii



Chapter 1

Introduction

Recently, a novel class of information-processing system called
cellular neural networks (CNN) has been proposed [1]. It is a large-scale
nonlinear analog circuit which processes signals in real time. It is made of
a massive aggregate of regularly spaced circuit clones, called cells, which
communicate with each other directly only through its nearest neighbors.
Each cell is made of a linear capacitor, a nonlinear voltage-controlled
current source, and a few residue, linear circuit elements.

The cellular neural networks(€NN); also known as cellular nonlinear
network, is an able-to-being implemented-alternative to fully connected
neural networks, has evolved inte-a-paradigm for array computation [2].
The cell architecture of CNN.allows parallel analog processes using an
array of locally interconnection cells with fixed or adjustable weights [3],
called templates. Due to the local interconnection features, most of
effective implementation and optimization appears to be the analog VLSI
[4]. Some theoretical results concerning the dynamic range and the
steady-state behavior of CNN have been presented in [1]. In the following
chapters, we will use CNN to solve some image processing. We have
stressed only the steady-state behavior of CNN in [1].

Texture boundary detection is an important and fundamental topic in
image processing, and the output of an image segmentation can applied in
many applications, such as tracking, stereo, pattern recognition... etc.
Boundary detection basically is a partitioning of an image into related

sections or regions, and finding the boundaries. This process seems



intuitive in human vision, but it is hard to do this job automatically in
computer vision. The human visual system is able to effortlessly integrate
local features to form our rich perception of patterns, despite the fact that
visual information is discretely sampled by the retina and cortex. It seems
clear, both from biological and computational evidence, that some form
of data compression occurs at a very early stage in image processing.
Moreover, there is much physiological evidence suggesting that one form
of this compression involves finding boundaries and other information-
high features in images. In this thesis we proposed a simple model which
mimics the early stage of human vision which integrate hybrid-order
features unsupervisedly, and it should be able to be implemented on
circuit of CNN.

We aim at the property of:thé’ptoposed algorithm to design a suitable
application-specific CNN circuif] called- CNN-based texture boundary
detection with fixed or programmable template coefficients. To reduce the
design complexity, the normaluse of complex building blocks such as
trans-conductance amplifiers’ and:- differential voltage signals [5] are
avoided. Instead, the analog circuit design presented here is based on
CMOS circuits and inspired by the organizational principles of
current-mode methodology [6]-[9]. In the current-mode design, currents
are used to represent the signals, and thus the sum of signals can be done
easily by simply combining currents at a summing node. Also, weighting
of currents can be easily done with combinations of current mirrors, and
thus current gains (or templates) can be easily generated. The efficient
cell implementation and silicon- compilation provide analog circuits for
specific applications and reduce silicon area efficiently.

This thesis is organized as follows. In Chapter 2 we briefly review the
theory and physical implementation of CNN. In Chapter 3 the Biological-
Inspired Model for Hybrid-Order Texture Boundary Detection during

2



Early Vision is described in detail. The CNN-based texture boundary
detection is proposed in Chapter 4. Chapter 5 describes how to implement
the CNN-based texture boundary detection on the application-driven
CNN circuit. Experimental results are presented in Chapter 6. Finally,

conclusions and future works are made in the last chapter.



Chapter 2

Cellular Neural Networks

2.1 Theory

Cellular Neural/Nonlinear Networks (CNN) technology is both a
revolutionary and experimentally proven new computing paradigm. CNN
can be considered an implementable alternative to fully connected neural
networks and a remarkable improvement in hardware implementation of
artificial Neural Networks. In fact, their regular structure and particularly
the local connection feature makesthis class of neural networks really
appealing for VLSI implementations. Because of the continuous-time and
parallel structure, the CNN are widely used in several application fields,
such as image processing and pattern recognition.

As shown in Fig. 1, the state equation of CNN can be represented by
Xi,j (t) ==X (t)+ Z Ai,j;k,l Yii (t)+ Z Bi,j;k,luk,l (t)+ Ii,j 5 (2‘1)

K,leNr(i, j) K,leNr (i, j)

y(t)=t (x(t)):%(‘x(t)HHx(t)—l), (2-2)

where I, ] refers to a grid point associated with a cell on the 2-D grid, and
k, 1€ Nr(i,j) is a grid point in the neighborhood within a radius r of the
cell 1, j. A and B are the nonlinear cloning templates [10].The feature of
the Eq. (2-2) has been plotted at Fig. 2.

In many applications, the templates A and B and the threshold | are
translation invariant. In the case of single variable A and B functions, the
linear (space-invariant) template is represented by the following additive

terms [1].



z A,j;k,lvykl (t)+ z Bi,j;k,lvuk,l (t)

C(k.DeNr(, j) C(k.DeNr(, j)

When the template is space invariant each cell is described by a
simple identical cloning template defined by two (2r + 1) x (2r + 1) real
matrices A and B, as well as the constant term |. In addition, as a very
special case, if the input and the initial state values are sufficiently small
and f is piecewise linear, then the dynamics of the CNN array is linear.

Unlike other standard analog processing arrays, or neural networks,
the one-to-one geometric (topographic) correspondence between the pro-
cessing elements and the processed signal-array elements ( e.g., pixels) is
of crucial importance. Moreover, the template has geometrical meanings
which can be exploited to provide with geometric insights and simpler
design methods.

:
U-#Ble(X )2 [ 2 f |-y
—1

*A

Fig. 1: The dynamic route of state in CNN.

y(t)

1 —_—

A

Fig. 2: The feature of the equation.



2.2 Physical Implementation

The basic circuit unit of CNN is called a cell. It contains linear and
nonlinear circuit elements, which typically are linear capacitors, linear
resistors, linear and nonlinear controlled sources, and independent
sources. The structure of CNN is similar to that found in cellular
automata, and each cell in a CNN is connected only to its neighbor cells.
Adjacent cells can interact directly with each other. Cells not directly
connected together may affect each other indirectly because of the
propagation effects of the continuous-time dynamics of the network. An
example of two-dimensional CNN is shown in Fig. 3. The ith row and jth
column cell is indicated as C(i, j). The r-neighborhood N, of radius r of a
cell, C(i, j), in a CNN is defined;by

N, (i, ) = CksPfmax k- i

b

- jlfj<r (2-3)

where I is a positive integer number. If r =1, we call a “3 x 3

neighborhood.”

XX

><C(i’j><
Fig. 3: Two-dimensional CNN.

N(i,j

A typical example of a cell C(i, j) 1s shown in Fig. 4, where the
suffixes U, X, and y denote the input, state, and output, respectively. The

node voltage Vyij of C(i, j) is defined as the state of the cell whose initial



condition is assumed to have a magnitude less than or equal to 1. The
node voltage Vij is defined as the input of C(i, j) and is assumed to be a
constant with magnitude less than or equal to 1. The node voltage Vy;j 1s
defined as the output. C is a linear capacitor; Ry, and Ry, are linear
resistors; | is an independent current source; Ixy(i, J; K, ) and I (i, j; k, 1)
are linear voltage-controlled current sources with the characteristics lxy(i,
5k D =Aq, J; K, 1) Vyia and (i, §; k, 1) = B(, J; K, 1) Vyia, for all C(Kk, 1)
€ Nr(i, j); lyx is a piecewise-linear voltage-controlled current source

defined by

= %QVX” + l‘ =V — 1‘) (2'4)

y

yXx

Eij is a time-invariant independent voltage source.

Viij Vi Vi
Ei,j Iyx
@ @ = § N .. @ 3 §
| [ c | R 1 ik 10 ikD[ Ry
L
\ J — = —— _/ \ J
input u state X output y

Fig. 4: The circuit of a CNN cell.

Applying KCL and KVL, the circuit state equation of a cell is easily

derived as follows:

State equation:

dv; () 1 . .
C = :__in'(t)+ A(Ia J,k,I)V (t)+ B(|> J;kal)vu (t) +I’
dt R, ™ C<k,l>eZN:r(i,n " c<k,l>§n1:,<i,j) ‘ (2-3)

1<i<M;I<j<N.




Output equation:

VO = =2 (¥ O +1] = v, O 1] 06

1<i<M;l<j<N.

Input equation:

1V£(.t);ME{ ’s j<N. @7
Constraint conditions:

Vg (0) <1, I<i<M;I<j<N. (2-8)
[V (0) <1, I<i<M;l<j<N. (2-9)
Parameter assumptions:

A, j;k, 1) = Ak, L, j), 1 <, J<ME<i) < N. (2-10)
C>0,R, >0 (2-11)




Chapter 3
Biological-Inspired Model for
Hybrid-Order Texture Boundary

Detection during Early Vision

The physiological and psychophysical findings in the preceding
section do not lead to a convenient computational model for the
hypothesized cortical channels. In this chapter, a new boundary detection
algorithm is proposed. This algorithm combines the first-order and
second-order features to model pre-attentive stage of human visual
system. A simple hybrid-order < channel: model is described in the

following.
3.1 Whole Architecture

Fig. 5 shows a simplified flow-chart of the proposed algorithm. We
first extract first-order by Gaussian low-pass filter and second-order
features by Gabor filters respectively. After feature extraction, every pixel
of the output is an N+1 dimensional vector for (N Gabor filters and 1
Gaussian filter), and then we measure the difference of each pixel with its
neighbor. Because pixels belong to the same region have similar feature,
the difference between them should be small. Then we keep the value
which is bigger than a threshold and make pixels of which value are
smaller than threshold to zero. We would get coarse boundaries which

have Gaussian-like distributions.



With boundaries which have Gaussian-like distribution, we may go a
step further to thin these boundaries by local peak detection, and after this
stage we will get boundaries similar to human visual system.

The proposed hybrid-boundary detection algorithm will be presented
in detail, and the simplified block diagram is shown in Fig. 5, and Fig. 6

is a detailed version of Fig. 5.

Input image

r

Hybrid-Order Feature
Extraction

w

Distance

Local peak detection

w

Hybrid edge

Fig. 5: Simplified block diagram for hybrid-order boundary detection

10



Input

image

)~

Gabor filter | | Gabor filter || Gabor filter | ® ®| Gabor filter
0’ 45° 90’ 135°
Fullwave rectifior
dowr sample
\ 4 \4 \ 4 y \ 4
Feature 1 Feature 2 Feature 3 Feature 4| ®™ ® | Feature n
A A N N\ A
Gaussian Gaussian Gaussian Gaussian am Gaussian
mask mask mask mask mask
y y A A y
Feature Feature Feature Feature am Feature
1 2’ 3 4 n’
distance
y
saturation
N
Threshold
A
Local peak _
. »{ Hybrid edge
detection .

Fig. 6: detailed block diagram for hybrid-order boundary detection algorithm
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3.2 Hybrid-Order Feature Extraction

3.2.1 First-Order Feature Extraction

DoG (difference of Gaussian) function can be used in detecting
boundaries. Two Gaussian filters with different values of o are applied
in parallel to the image. Then the difference of the two smoothed
instances is computed. It can be shown that the DoG operator
approximates the LoG (Laplacian of Gaussian) one which has been
widely used in boundary detection.

We can think of the receptive field shape of a retinal ganglion cell as
the linear spatial weighting function of the cell. That is, we can model the
retinal ganglion cell as a linear neuron, where the receptive field tells us

what the weights are. Usingithe function R(x,y) to characterize the

receptive field shape using the DoG model, we compute the output of a

model retinal ganglion cell as

0= RECWHI(%Y) (3-1)
XY

where (%Y)is the input image.

The operation of DoG function can be divided into two stages,
Gaussian convolution and gradient. Gaussian convolution is somehow
like extracting the mean of local region which is we called first-order
feature here, and gradient is measure the variation of first-order feature.

Fig. 7 illustrates the coarse boundary between two patterns with pure

first-order features, and it is detected by only using first order feature.

12



(a) (b)
Fig. 7: an example demonstrating coarse boundary detected by first-order
feature (a) input image; (b) boundaries detected

3.2.2 Second-Order Feature Extraction

3.2.2.1 Gabor Function

Gabor function consists of a Gaussian function modulated by a

sinusoidal function, and it can be described as following:

h(x,y) = gEay)iexp[27(Ux +Vy)] (3-2)

b

g(xy)= [ — j - eXp{_ %}

where h(x,y) is the Gabor. function; g(x,y) is the Gaussian function,

, (3-3)

Z:(ox/ay) o

is the aspect ratio, %« is the STD of Gaussian in x axis,

is the STD of Gaussian in y axis, and =~ %x = Aoy,

An important property of Gabor filters is that they have optimal joint
localization, or resolution, in both the spatial and the spatial-frequency
domains. By signal processing we know that a Fourier transform of
Gaussian function is still Gaussian function, and by ‘“uncertainty
principle” we know that Gaussian function is the only function that can
reach the optimal constraint of uncertainty principle. Uncertainty
principle describes the optimal resolution in both the spatial and the
spatial-frequency domains.

Gabor filter is just modulation of Gaussian function. Gabor has been

13



proved that this action only cause movement in frequency domain, and it
wouldn’t affect the resolution of Gaussian function in spatial and the
spatial-frequency domain. It means that Gabor function inherit property
of Gaussian possessing optimal resolution in both domain, and this

property is why Gabor filter is suitable for texture segregation.

3.2.2.2 Full-Wave Rectifier

Like other filter-rectifier-filter model, rectifier operation is taken
after convolution by Gabor filters. It has been generally acknowledged
that V1 cells have a property like half wave rectifier property, and the
intervening rectifier ensures that the fine-grain positive and negative
portions of the carrier do not cancel one another when smoothed by the
later filter. The rectifier opetationialso breaks the identical equality

between linear filter theory and Fouriet, transformation.

3.2.2.3 Gaussian Post Filter

After being stimulated by‘bars‘with specific orientations, the output
of V1 cells responding to similar orientation will aggregate together. The
region with the same property will respond stronger than regions which
consist of elements with different properties, and it is consistent with the
“localization” property of texture. We can simulate this effect by a
Gaussian post filters, it i1s somewhat like averaging with different
weighting which is inverse proportion to distance to the center of the post
filter. In the field of texture segmentation, Gaussian smoothing is an
important procedure to eliminate features that varying abruptly.

Fig. 8 (b) shows the result after rectifier without Gaussian filter, and
Fig. 8 (c) 1s the result of Fig. 8 (b) after Gaussian filter. In Fig. 8 (c) there

is a ramp-like feature profile, and the next step is to detect the position
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where the variation of difference is maximum.

a

(b) (c)

Fig. 8: (a) Input, (b) output without Gaussian filter, and (c) output with Gaussian filter.

3.2.2.4 Difference Measujre

After extracting feature§ of each local region, the features can be
described by an N-dimensional vector, and each feature vector can be
regard as a point in N-dimensional space. Similar to [11], the difference is

represented by the distance in N-dimensional space.

3.2.2.5 Gabor Filter Bank

Besides orientation selectivity, Gabor filters also have frequency
selectivity with different parameter. With these two properties, Daugman
extended the original Gabor filter to a 2D representation [12]. There have
been many researches about Gabor filter bank. Jain and Farrokhnia [13]
suggested a bank of Gabor filters, i.e., Gaussian shaped band-pass filters,
with dyadic coverage of the radial spatial frequency range and multiple
orientations.

Because our goal is design an algorithm which can be implemented
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by CNN, the structure can’t be too complex. In this thesis we use totally
sixteen Gabor filters to extract 2nd-order feature to do our experiments.
All these Gabor filters have the same Gaussian shape in frequency and

scatter uniformly in four orientations and four frequency bands.

3.3 Saturation and Local Maximum Detection

3.3.1 Saturation

In this thesis we choose the mean of difference of total pixels as
threshold, and the situation occur most frequently is that some boundaries
with relative lower magnitude is eliminated. This is because of a relative
huge region being considered to measure local feature, and the scale of
difference between different _patterns vary enormously. Obvious
boundaries and cause relatively great difference and raise the mean of
difference, and the boundaries which-are not so obvious causing relative
low difference will be eliminate.

We use natural log transformation to simulate the saturation effect to
alleviate this problem. It can suppress strong responses which may affect
the mean (threshold) to much, but still keep the position of maximum

difference where we assume boundaries lying.

3.3.2 Local Maximum Detection

The coarse boundaries detected after taking threshold are too thick,
and local maximum detection i1s used to thin it, but it’s difficult to be
implemented on CNN-based algorithm. Local maximum detection is
assumed that the difference between different patterns should be maximal
at their boundary, and the boundary will be right there.

Algorithm of local peak detection: (1) Here we scan row by row and
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column by column to find local maximums in x and y axes. (2) Sort the
peaks we find in 1) in descending order. (3) Keep points with higher
order in each line and column, and the output is binary. The values at that
pixel regarded as boundaries (points with higher order) are 255, and
others are 0. The number of peak-points we keep in (3) is depending on
the complexity of input image, and in our testing images we use two.

Fig. 9 is an example demonstrates the peak detection in the
algorithm. Fig. 9 (a) is an input image, and Fig. 9 (b) is the detected
coarse boundary. Fig. 9 (c¢) is the 3D version of Fig. 9 (b), and in this
figure the vertical axis is intensity. Fig. 9 (d) is the result of Fig. 9 (c) by
taking peak detection. Fig. 9 (e) is the superposition of Fig. 9 (a) and Fig.
9 (¢). From Fig. 9 (e) we can observe that the detected boundaries have

high accuracy which is consistent to'our assumption.

( e

() (e)

Fig. 9: (a)input (b)coarse boundary (c¢)3D version of (b) (d)(c)after peak
detection (d)superposition of (a) and (d)
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3.4 Down Sampling and Up Sampling

After rectifying second-order features of different orientations have
been extracted, and the output of each channel has the same size to input
images (each texture pattern has 640x 640 pixels). The amount of features
is proportional to the number of channels. With the number of channels
increasing, it cause heavy computational loading in following processing,
and we improve this problem by down sampling feature space (in our
experiments we down sample by 3).

By choosing appropriate down sampling rates we can accelerate the
following processes without losing too much accuracy. After boundaries
have been detected, we will up sample before output. It will map detected
boundaries to the corresponding;position in original input.

This mechanism is similar, torhuman. vision, and trade-off of spatial
accuracy and computational loading is a- common problem in human
vision system and the ‘propesed-algorithm. In fact the whole visual
pathway is like serial processes.of information extraction and data
compression.

Without attention, human vision generally has low resolution in the
field of vision, and even with attention we only have high resolution in a
relatively tiny proportion of the field of vision. Although in this thesis we
only consider the Pre-attentive situation, we still have acceptable
spatial-accuracy for boundary detection which can be observed after local

peak detection.
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Chapter 4
CNN-Based Texture Boundary

Detection

In this chapter, the CNN-based texture boundary detection (TBD) in
i1s described. The whole architecture of original algorithm cannot be
implemented completely, and we have to modify the original algorithm to
a new algorithm called modified TBD. Modified TBD removes the local
maximum detection, slightly modifies the threshold processing, and
remain the other blocks of the original algorithm. Therefore, the results of
the modified TBD will be thick boundaries.instead of the thin boundaries,
but still clear and exact boundaries.

The architecture of the modified TBD still contains many blocks,
which include Gabor filter, rectifier processing, Gaussian filter, distance,
and threshold processing. In order to reduce the complex computation,
the modified TBD can be reformulated naturally as well-defined tasks
called CNN where the signal values are placed on a regular geometric
2-D grid, and the direct interactions between signal values are limited
within a finite local neighborhood. Recall Eq. (2-1), and template A and B,
and threshold | are designed to implement each block in the modified
TBD with the MatCNN simulator. For another important purpose, analog
circuit implementation, we run the CNN algorithm to the stable situation

to correspond to the simulation on Hspice [14].
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4.1 CNN-Based Gabor Filtering and Gabor Filter
Bank Set

In modified TBD algorithm, the Gabor filter plays an important role
in the second-order feature extraction. In image processing, filter means
that image does convolution with a mask which may be a high pass, band
pass, or low pass filter. In CNN, what template B works is the same as the
convolution in image processing and we can easily implement
convolution by setting template A = 0, template B = the value of the
convolution mask and threshold | = 0. On the other hand, any convolution
processing can be implemented by assigning the same value and the same
resolution to template B.

Gabor filter bank set in«the thesis.contains four Gabor filters and to
implement one Gabor filter needs one CNN array such that there are four
CNN arrays in Gabor filter bank-set. Table 1 shows that there are four
Gabor filters with different otientations of the Gabor bank set and lists
both mask values and CNN parameters. As shown in Fig. 10, the results
of four Gabor filters which implemented by convolution processing and

CNN array processing are the same.

Table 1 : Gabor filter bank set ( four Gabor filters ).

Gabor filter bank set
Gabor filter 1 (07) Gabor filter 2 (45°)

0.0924  0.1344  0.1523  0.1344  0.0924 | 0.1467 -0.1927  0.1523  -0.0499 -0.0303

-0.1927  -0.2804 -0.3178 -0.2804 -0.1927 | -0.1927  0.3107 -0.3178  0.1956  -0.0499
0.2419 03520  0.3989  0.3520  0.2419 | 0.1523 -0.3178  0.3989 -0.3178  0.1523

-0.1927  -0.2804 -0.3178 -0.2804 -0.1927 | -0.0499  0.1956  -0.3178  0.3107  -0.1927

convolution
mask

0.0924  0.1344 0.1523 0.1344  0.0924 | -0.0303 -0.0499  0.1523  -0.1927  0.1467

B the same as above the same as above
% A 0 0
1 0 0
Gabor filter bank set
Gabor filter 3 (90°) | Gabor filter 4 (135°)
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0.0924  -0.1927  0.2419  -0.1927  0.0924 | -0.0303 -0.0499  0.1523  -0.1927  0.1467
0.1344  -0.2804 0.3520 -0.2804  0.1344 | -0.0499 0.19564 -0.3178 0.3107  -0.1927
0.1523  -0.3178  0.3989  -0.3178  0.1523 | 0.1523 -0.3178 0.3989 -0.3178  0.1523

0.1344  -0.2804  0.3520  -0.2804  0.1344 | -0.1927 03107 -0.3178  0.1956  -0.0499

convolution
mask

0.0924  -0.1927  0.2419  -0.1927  0.0924 | 0.1467 -0.1927  0.1523  -0.0499 -0.0303

B the same as above the same as above
% A 0 0
© 0 0

(b) (c)
Fig. 10: These demonstrates the same outputs of both convolution and CNN
processing.(a)input; (b)outputs of Gabor filters; (c)outputs of rectifier processing.
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4.2 CNN-Based Rectifier Algorithm

Rectifier operation is taken after convolution processing by Gabor
filters. It has been generally acknowledged that has a property like half-
wave rectification property, and the rectifier equation we proposed in this
thesis is the simplest mode, f(x,y)=| f(x,y)]|.

The simplest rectifier equation is the same as the absolute-value
operation which is a very easy equation in Matlab coding. In order to
implement rectifier processing by using CNN array, we have to design
CNN parameters, template A, B and threshold I.

CNN-based rectifier processing has three steps :

Step 1 (positive) :

By setting the following parameters, we can shift the image down to
cut off the negative part of.image and rétain the positive part.

| A=[0]; B =[1];4="-1; INPUT = input; output] = OUTPUT |

And then by setting the following parameters, we can shift the image
back to the original value withoutnegative part.

| A=[0]; B=[1]; I= 1; INPUT = outputl; output2 = OUTPUT |

Step 2 (negative) :

It’s very similar to step 1, but inversing the image has to be done
first and this is what template B = -1 does.
| A=[0]; B=[-1]; I=-1; INPUT = input; output3 = OUTPUT |

And then shift the image back with only positive part. The positive
part is the inversing image of original image with only negative part.
| A=[0]; B=[1]; I= 1; INPUT = output3; output4 = OUTPUT |
Step3 (addition) :

Final step is to add positive and negative part together.

\ output of rectifier processing = output? + output4 \
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By following the three steps, we can get the output image after
rectifier processing. As shown in Fig. 10, the results of four rectifier
processing after Gabor filters which implemented by absolute-value
processing and CNN array processing are the same. Specially noticed, the
step 3 can be easily implemented by the simple operation, addition,

because of CNN array of the current-mode analog circuit.

4.3 CNN-Based Gaussian Filter

4.3.1 Range of Image

Generally speaking, most image processing ignores the range of the
image value and at last normalize the final image output to the correct
range. The algorithm described in Chapter 3 is the same, but CNN-based
algorithm has its own préperty that is the dynamic range which will affect
the image processing before, normalizing and make the values of some
pixels to become saturation.. The effect will lose some or even more
important information of image. Therefore, we have to define a range of
our image processing. All image processing in this thesis is based on
gray-scale and the gray-scale is 256 levels.

The CNN-Based Gaussian filter processing is the most possible to
make the image out of the range to saturation, so we discuss this problem
of range here. In this thesis, we can guarantee that if the image value of
CNN-Based Gaussian filter processing is on the correct range, then the
image value of other processing will be sure to on the correct range.

The output range of CNN is from -1 to 1 as shown in Fig. 2 and
what we have to choose the range of image value is from zero to 1
because the range from -1 to zero will be used difficultly and indirectly.

After choosing the range of image value, we have to ensure that the
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image range of every processing will on the correct range. In this thesis,
we are sure that the image value in on the correct range unless the use of

saturation processing.

4.3.2 CNN-Based Convolution

In this section, we will show that large size convolution mask, like
51 by 51, can be implemented by much smaller size, only 5 by 5 template
A and B of CNN array. But the procedure is too complex; we will discuss
an easier method first.

The easier method to do CNN-based convolution is like the method
shown in Section 4.2 and the method is to use only template B and set the
same value as the mask. But the method has a very big problem that is
problem of size meaning that'the size:of template B will be the same as
the convolution mask. Based on-the method, the CNN-based Gaussian-
like filter will be implemented by using 5L by 51 template B. How large
the size of template B is and‘itis“impossible to implement on either
CNN-based algorithm or analog eircuit. We cannot choose this method
and what we use is only 5 by 5 template A and B of CNN array.

Before proving the method of using only 5 by 5 template A and B of
CNN array to implement convolution, to briefly introduce the convo-
lution is necessary. If the input is the impulse sequence (only one pixel
has value), the resulting output is called the impulse response of the filter.
The input and output of a linear space-invariant (LSI) filter may be easily
related via the impulse response of the filter as follows : Any input
(image) can be thought of as the sum of an infinite number of shifted and
weighted impulse sequences, and by space-invariance and by linearity,

the output is thus
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g y) = S ws.t) f(x+s,y+t). 4-3)

s=—at=—
where a = (m-1)/2 , b = (n-1)/2 and size of the filter mask is m by n.
Therefore, we have to show the space-invariance and linear property
of the CNN-based convolution processing. The ideal space-invariance
property is shown in Fig. 11 and if the waveform shown in Fig. 11 (a) is
the impulse response of an impulse sequence, the impulse response of the
shifted impulse sequence will be shown in Fig. 11 (b). The ideal linearity
property is shown in Fig. 12 and if the waveform shown in Fig. 12 (a) is
the impulse response of an impulse sequence, the impulse response of the
weighted impulse sequence will be shown in Fig. 12 (b) and if adding two

impulse responses is shown in Fig. 12 (¢), the ideal output will be shown

in Fig. 12 (d).

' @ o

Fig. 11: The ideal space-invariance property. (a) The
impulse response. (b) The shifted impulse response.

() ()

Fig. 12: The ideal linearity property. (a) The impulse response. (b) The
weighted impulse response. (¢) Two impulse responses before adding. (d)
The response of adding both shifted and weighted impulse sequences.
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Fig. 13 shows the space-invariance and linear property on CNN-
based convolution processing. Fig. 13 (a) and (b) show the space-
invariance property and we are sure that the waveform in (b) equals to the
shifted waveform in (a). Fig. 13 (b), (¢) and (d) show the linearity
property and we are sure that the waveform in (d) equals to the output
after adding waveforms in (b) and (c). Especially noted that the
parameters of CNN array are 5 by 5 template A and 3 by 3 template B,

and the size of impulse response is large than size of templates.
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Fig. 13: The properties of CNN-based convolution processing. (a) The
impulse response. (b) The shifted impulse response. (c) The weighted
impulse response. (d) The response of adding both shifted and
weighted impulse sequences.
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4.3.3 Gaussian Filter

Everyone knows that the Gaussian function has its own properties
and the Eq. (3-3) shows the Gaussian function equation. To discuss the
properties is not necessary here and what we have to discuss is how the
CNN-based Gaussian filter is similar to the real Gaussian filter. As the
properties discussed in Section 4.4.2, if the impulse response of the
CNN-based Gaussian filter is similar to the 2-D real Gaussian functions
shown in Fig. 14 (a), then the CNN-based Gaussian filter has the same
function as the convolution processing of real Gaussian filter. Fig. 14 (a)
shows two Gaussian functions with different parameters, and relation
between the two Gaussian functions is something like zoom in or zoom
out on the X-axis.

We have tried many methods and:many kinds of parameters of CNN,
and we got some important experience. Fig. 14 (b) and (c) show the 3-D
and 2-D impulse responscs of €NN-based Gaussian filter using only
template A and the results are. very similar to real ones, but using only
template A has a risk of losing ‘information that is because of the
properties of template A on analog circuit implementation. Therefore, we
have to use both template A and B to have a fixed input to avoid losing
information. Fig. 14 (d) and (e) show the 3-D and 2-D impulse responses
of CNN-based Gaussian filter using template A (5 by 5 Gaussian function)
and B and the results are not very good but good enough to be used.
These errors can not be avoided because the template B of size 5 by 5 has
finite number of fixed inputs and template A must have a large deno-
minator which approximately equals to the summation of all numerators
of template A.

Therefore, the design of the CNN-based Gaussian filter in this thesis

is to design template A and B, as following,
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If Ka is bigger than 372 (the summation of all numerators of template

A), the impulse response of CNN-based Gaussian filter becomes thinner

than Fig. 14 (d). If Ka is smaller than 372, the impulse response

becomes fatter and if Ka is smaller enough, the impulse response will

goes to saturation. If Kb is too big, the impulse response will also goes

to saturation because the Kb control the amplitude of the impulse

response. If saturation happens,:ithe impulse response is not one of

CNN-based Gaussian filter any more:
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Fig. 14: The impulse responses of the CNN-based Gaussian filter. (a) The

real 2-D Gaussian functions with different o . The 3-D impulse response in

(b) and the 2-D impulse response in (c) of the CNN-based Gaussian filter

with only template A. The 3-D impulse response in (d) and the 2-D impulse

response in () of the CNN-based Gaussian filter with template A and B.

4.4 CNN-Based Distance.and Threshold Algorithm

4.4.1 Distance Processing

After extracting features of each local region, the feature can be
described by a N-dimensional vector,-and each feature vector can be
regard as a point in N-dimensional space. In this thesis, we only compute
the difference between features of each pixel to pixels right behind and
below to it and then use threshold to cut off useless pixels to remain the
texture boundary.

CNN-based difference between features of each pixel can be easily

implemented by setting the parameters of CNN array as following,

0 0 0
A=0,B= 0 1 -1 , 1 =0,
0 0 0

and then the five images of five channels become new five distance value
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arrays. After this, the design is to do much easier processing, rectifier
processing instead of complex computations which are square processing
and square root processing, and sum the five distance value arrays pixel
by pixel to a new image array. Rectifier processing mentioned in Section

4.3 has similar function but is not so powerful to enhance the distance.

4.4.2 Threshold Processing
CNN-based threshold processing is based on original threshold

processing, but has a little difference as shown in Fig. 15. The
CNN-based threshold processing will pull down the value as shown in
Fig. 15 (b). The original value which is larger than Iy, will subtract Iy,
and the original value which is smaller then Iy, will be pulled down to
zZero.

The first step of “CNN4based .threshold processing is set the
following parameters, and we can shift the image down to cut off what
we don’t want of image and retain'what we want.

| A=[0]; B=1]; I= -(1+1;n); INPUT = input; outputl = OUTPUT |

And then by setting the following parameters, we can shift up the
minimum value of image to zero.

| A=[0]; B=[1]; I= 1; INPUT = outputl; output2 = OUTPUT |

Finally, the difference between two threshold processing is not a
large effect because we can enhance the image and the images will be
very similar to each other.

The modified TBD is somewhat different from the original TBD. We
modify the threshold processing and ignore the local maximum detection
after threshold processing of original algorithm proposed in Chapter 3
because these functions are difficult to be implemented by the

current-mode CNN circuit.
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ltn Itn
before threshold processing before threshold processing
(a) (b)

Fig. 15: The relation of image value changing between before and
after threshold processing on (a) original algorithm and (b)
CNN-based algorithm.
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Chapter 5
Design of Application-Driven CNN

Circuits

We shall implement CNN-based TBD algorithm proposed in Chapter
4 with analog current-mode circuits and simulate the designed circuit

with HSPICE.

5.1 Architecture of CNN-Based Texture Boundary

Detection

According to the proposed algorithm-and based on the processing
element in Fig. 18, the systemarchitecture of the analog circuit for the
CNN-based TBD is constructed here. The circuit system is a conceptual
block diagram of an analog computer shown in Fig. 16. It consists of the
16x16 CNN array with templates, the analog absolute value circuit, and
the summation unit. To reduce design complexity and die size for
sophisticated process technology in our experiment, a programmable
current-mode CNN array is designed, and every current-mode CNN array
shown in Fig. 16 can be replace by the programmable current-mode CNN
array with different template A, B and threshold I. Of course, the CNN
size can be increases in real production depending on the tradeoff
between required real-time rate and cost for various applications.

The activity of the system is divided into four main function, Gabor

filter, Gaussian filter, distance, and threshold, as described in Fig. 16. At
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first, a digital image is transferred by DAC function to currents and fed
into the network as input values in CNN array. These currents are defined
positive and assigned to the positive part of the CNN sigmoid function.
The network then performs the Gabor filters with four orientations (four
kinds of template A). Here we will obtain the results with both positive
and negative values in the steady state and the results are fed into the
analog absolute value circuits. After that, the results become all positive
values and fed into Gaussian filters with the same templates. The results
of the Gaussian filters are all positive values and then fed into distance
units with the same templates. We will feed results of distance units into
analog absolute value circuits one more, and get positive results. The
network then performs the summation units implemented by connecting
results of five absolute value units pixel by pixel to new results of a new
array (because of current<mode). Finally, the network feeds the results of
summation units and a ‘threshold value I, which i1s the mean of these
results to threshold units with the same templates.

To realize the whole analeg.ecircuit efficiently, we modify the Eq.

(2-1) to a new current-mode equation as following,

i.><ij (t) = _ixij (t)+ Z Ai,j;k,liykl (t)+ Z Bi,j;k,liukl (t)+ Ii,j b (5_1)

KIeNr (i, ) k.IeNr (i, )
and design a single current-mode CNN neural cell in Fig. 17 which shows
the schematic view of the modified single neural element (cell). The input
current to the cell can be set continuously within the range limited by the
unit current. This will result in the nonlinear function for iy;j (t) shown in
Fig. 17. The sigmoid function is realized by using two-level shifted
current mirrors connected in series. The saturation levels of the sigmoid
with slope set as 1 are determined by the current source I;. This piecewise
approximation of symmetric current limiting with cascaded current

mirrors has been used effectively in other implementations [6], but most
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of implementations are applied for binary image processing only.

In addition, a single cell includes the neuron cell unit, the template A
unit, and the template B unit shown in Fig. 17. The neural cell unit for the
proposed algorithm must contain two input nodes. To obtain negative
template coefficients in the current-mode design, both the template A and
B units contain one current inverter in our design and the details will be
described in following section. The correct cell activities are regulated by

the switches within the single cell circuit, whose functionalities are listed

in Table 2.

Table 2 : Functionalities of the switches in the schematic circuit in Fig. 17.

Logic High Voltage Low Voltage
Switch (3.3V) (0V)
Vac Normal operation Initial phase
Vtap Choosing positive template A Choosing negative template A
Vtbp Choosing positive template B Choosing negative template B
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Fig. 16: The block diagram of the CNN-based TBD.
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Fig. 17. Schematic circuit of a single CNN cell with fixed templates design.
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5.2 Basic Processing Element (CNN Cell)

To achieve acceptable resolution with standard procedures, a current-
mode CMOS realization of CNN has been proposed in [6]-[9], which was
adapted from the implementation in [1]. Based on this design, a generic
model of one CNN cell with the current-mode architecture is shown in
Fig. 18, where X, U°, z°, and y° are the cell state, input, bias and output
variable in continuous time. Note that this circuit model is identical to the
model given by Eq. (2-1). The model consists of the dynamic block, the
nonlinear block, and the weighted block. The dynamic block is composed
a continuous time integrator loaded with a bias shifted current mirror. The
nonlinear block can determine the output transfer function using the
current-mirror rate. A current-mode,output characteristic is described in
[6]. Note that weighted replicationvis.performed at the output current of
each cell. In other words, €ach cell generates a different output, with the
specific weights as A and B:indicating the template A and B, for each

neighbor.

Non-inear
limitation

From Neighbors
To Neighbors
o
o

Fig. 18: Architecture of a generic current-mode CNN cell, where x°, y©, uS,
and z° indicate the state, output, input, and bias.

The Simulated output currents of the current-mode sigmoid

configuration with different limited currents chosen to be 10uA, SuA,
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6uA, and 4pA are shown in Fig. 19. The slope of simulated sigmoid
functions is set to 1. Only positive coefficients are achieved due to the
positive feedback network. The realization of negative coefficient values

is obtained by connecting the current through a current inverter.
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Fig. 19: Simulated sigmoid functions (slope=1) with HSPICE. (a) Positive and
(b) negative slopes in different current gains through a current inverter.

5.3 Templates Design

We now introduce the realization of required CNN templates in the
current-mode design. Through a transistor ratio, a positive template value
can be obtained as shown in Fig. 20 (a). To generate negative template
values, a current inverter 1s cascaded to the transistor ratio as shown in
Fig. 20 (b). To add image input with template A unit to become template
B unit, the image input unit as shown in Fig. 20 (c) is needed. The
position of a current source inspires the direction of output current. With
these template units, we design a 5x5 large neighborhood CNN array with
a neuron cell unit [15]-[17], 24 template A units, and 25 template B units
per cell. In addition, the threshold | can be easily implemented by adding
a single current source to the input of the neuron cell unit as shown in Fig.

17 and the implementation of initial state is like the threshold |. The
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difference is that the initial state turns on just for a whole and can be
different from other initial states of different cells.

Fig. 20 (d) shows a programmable current amplifier [18] with
changing the Vvalue and Iy;.s. The architecture of the CNN-based TBD
contains many CNN arrays with different parameters and to replace fixed
templates with programmable templates to be a programmable CNN

array 1s necessary.
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Fig. 20: Template realization in the circuit of CNN-based TBD, where (a)
is for positive output, (b) is for current inverter, (¢) is for the image input
unit, and (d) is for the programmable current amplifier.

5.4 Boundary Selection

The boundary conditions [19] are defined by the border cells which

surround the active grid. Any virtual variable in iyj must be specified via
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boundary conditions, of which the most commonly used are for 5x5
neighborhood. Excepting 16x16 cells, the central 8x8 cells are the real
array of the image, and the others cells are the boundary cells. The
boundary conditions in our design are like padding processing, but are the
extending of the central 8x8 cells. The width of the boundary cells
depends on the size of the Gaussian filters. The real boundary conditions
outside the 16x16 cells can be considered as fixed, zero-flux, and
dynamic boundary conditions, respectively [20]. However, the reasons
why we choose the zero-flue condition as the boundary condition are due
to no input in our algorithm and the natural definition ( no cells, no

puts).
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Chapter 6

Experimental Results

6.1 CNN-Base Texture Boundary Detection

The parameters of CNN arrays for CNN-based Gaussian filters is

described as following,
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Fig. 21: The impulse response of the CNN-based TBD

The impulse response is not exactly a Gaussian function, such that
the results of the CNN-based TBD are different from the results of the
modified TBD as shown in Fig. 22.
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Fig. 22: (a) Resul(t?of the modified Gaussian filters. (b) Res(lll)l)ts of the CNN-based
Gaussian filters.

The results in Fig. 22 (a) are similar to Fig. 22 (b) but not exactly the
same. Because the differences between (a) and (b) exist, the results of
distance processing and threshold processing after modified Gaussian
filters and CNN-based Gaussian filters will be much different as shown in

Fig. 23. There are more results of different inputs shown in Fig. 24 and

Fig. 25.
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©) ©)
Fig. 23: This demonstrates the results of both modified and CNN-based TBD.(a)input;
(b) and (c) show the results before and -after threshold processing of modified TBD. (d)
and (e) show the results before and after threshold processing of CNN-based TBD.

(c)
Fig. 24: This demonstrates the results of both modified and CNN-based TBD.(a)input
2; (b) and (c) show the results before and after threshold processing of modified TBD.
(d) and (e) show the results before and after threshold processing of CNN-based
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TBD.

(e)
Fig. 25: This demonstrates the results of both:modified and CNN-based TBD.(a)input
3; (b) and (c) show the results before and after threshold processing of modified TBD.
(d) and (e) show the results before.and after threshold processing of CNN-based
TBD.

6.2 Application-Driven CNN Circuit

Based on the analog circuit implementation described in Chapter 5,
we design a 16x16 CNN array to simulate the CNN-based TBD on
Hspice. This chapter will show the comparisons between simulation
results of MatCNN and that of Hspice, but the image size is only 16x16
which is much smaller than image size using in original algorithm.
Therefore, new images with texture of 16x16 size is created and then fed
into CNN-based TBD both on MatCNN and Hspice, and the parameters
of CNN arrays for CNN-based TBD is designed to be the same as the
parameters of CNN arrays for CNN circuit.

Because the size of Gaussian filters changes for 16x16 size, the
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parameters of the CNN-based Gaussian filters have to redesign, but the
others parameters do not have to change. The parameters of the Gaussian

filters for 16x16 size is described as following,

1 9 15 9 1
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and the impulse response of CNN-based TBD is shown in Fig. 26.
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Fig. 26: 16x16 CNN array. (a) shows the 3-D impulse response and (b)
shows the cut-plane of (a).

The impulse response is similar to a Gaussian function, and the results of

the CNN-based TBD are shown in Fig. 27. The input in Fig. 27 (a) is 16x
16, and so are Fig. 27 (d) and (e). Because of the boundary cells, the real
images after Gaussian filers are 8x8 as shown in Fig. 27 (f). The final
result shown in Fig. 27 (¢) is also 8x8.

CNN-based Gaussian filter for CNN circuit has to use the template A.
Based on the properties of template A, the dark current in CNN circuit has

a great effect and the CNN circuit has to add an offset current per pixel to
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decrease the effect. The offset current can be replaced by the threshold I,
and the optimal value of threshold I in this case is 0.2 JA.

(c) (d) (e) (H)
Fig. 27: This demonstrates the results of CNN-based TBD.(a)input; (b)
and (c) show the results before-and after threshold processing. (d) shows

the results of Gabor filters,-and (e)-shows.results of rectifier processing
after (d). (e) shows the results of Gaussian filters

Except the threshold | (0.2pA), the other parameters for CNN
circuits are the same. The results of channel one Gabor filter for CNN
circuits are shown in Fig. 28, and are very similar to the results for
CNN-based TBD as shown in Fig. 27. The results of channel five
Gaussian filter for CNN circuits are shown in Fig. 29, and are very
similar to the results for CNN-based TBD as shown in Fig. 27. The whole
results of Gaussian filters for CNN circuits are shown in Fig. 30, and the

results are not as good as shown in Fig. 27, but still clear and correct.
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Fig. 28: This demonstrates the 16x16 results of channel one Gabor filter for CNN

circuits with using the input as shown in Fig. 27 (a). The 3-D result of channel
one after Gabor filter is shown in (a), and the cut-plane of (a) is shown in (b). (c)
shows the image of (a). (d) shows the result after rectifier processing of (c).
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Fig. 29: This demonstrates the 16x16 results of channel five Gaussian filter for
CNN circuits with using the input as shown in Fig. 27 (a). The 3-D result of
channel five after Gaussian filter is shown in (a), and the cut-plane of (a) is shown
in (b). (c) shows the image of (a). (d) shows the central 8x8 image of (¢).

a 2 4 B
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(b)

(c)

Fig. 30: This demonstrates the 16x16 results of Gaussian filter for CNN
circuits with using the input as shown. in Fig. 27 (a). The results of five
channels after Gaussian filter is :shown. in“(a), the result after distance
processing is shown in (b), and the result is shown in (c).
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Chapter 7

Conclusions and Future Works

In this thesis, a biological-inspired model for hybrid-order TBD
algorithm, which mimics mechanism of early stage of human vision is
proposed and experimental results are generally consistent to human
visual sensation. Due to the parallel signal processing of Cellular Neural
Networks (CNN), the computation time will greatly decrease. Contrary to
the original biological-inspired model for hybrid-order TBD algorithm
which has local maximum detection, the modified TBD algorithm can
completely transfer to CNN-based: TBD and be implemented on
CNN-based analog circuits. Without local maximum detection, the
boundaries of results for the CNN-based ‘I'BD are thick, but clear and
exact. The CNN-based TBD implements-a 51x51 or any size Gaussian

filter with different template A"and has the potential to extend the size of
filters for any function to any size by using the CNN array with only
template A and B. The size of the Gabor filters in this thesis is still 5x5

and to extend the size to a more suitable size will more match the
frequency of input images. It will be one research of our future works for
the CNN-based TBD.

We also designed an effective current-mode CMOS circuit using
cascaded current mirrors with fixed or programmable templates to
implement the CNN-based TBD. The programmable CNN circuit can
implement each function with different templates in the CNN-based TBD.
The designed circuits are very suitable for CNN-based image processing

in real-time. Simulation results with HSPICE based on the 0.35um TSMC
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2PAM process have demonstrated the superior functionalities of the
designed circuit. In the future, many complex image processing
algorithms will be implemented on CNN-based circuits in real-time and
we can design an effective controller to integrate each block so that the

usage of CNN circuits can be reduced.
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