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Abstract. The  surface impurity ground  states of anisotropic  semiconductors  are 
studied by two different methods, namely the perturbative  variational  method 
and the principle of minimal sensitivity which were  developed recently. Our 
treatment is based  on ( i )  a  parabolic  one-band  model and ( i i )  an infinite-barrier 
model for electronic states. In spite of the simplicity of the  methods, it is found 
that  the calculated energies for Ge and Si are very close  to the  results obtained 
by the conventional  variational  method.  The validity of the variational trial 
wavefunction  used in previous  calculations is also  discussed. A new variational 
trial function is also  proposed  for  the  case of t h e  anisotropic  crystals. 

1. Introduction 

The  importance of impurity  states in determining  the 
transport  and  electrical  properties of semiconductors 
has  long  been  recognised.  When the d o n o r  atom is 
located on a semiconductor  surface  the  situation is 
somewhat  different  from a donor  atom located in 
semiconductor  bulk.  Levine  (1965)  introduced  this  sur- 
face  shallow  impurity problem. He used a Coulombic 
potential in the  material  and  approximatcd  the work 
function a s  being  infinite o n  the vacuum side.  The 
solutions  were  shown  to  be  the  hydrogenic  wavcfunc- 
tions which must  satisfy the surface  selection  rule I +  
m =odd. where I a n d  171 are  the  orbital and magnetic 
quantum  numbers respectively. Therefore  the  ground 
state of a surface donor becomes  the 2p state.  Later. 
Bell et a1 (1967)  used the  same  potential but  considered 
the  difference  between  the  longitudinal mass  and  trans- 
verse  mass. In their work a set of trial  functions of the 
Kohn-Luttinger  type ( K o h n  and  Luttinger 1955) were 
used to calculate  the  eigen-energies. The  importance of 
image  charges was pointed  out by Petukhov e t  trl(l967) 
and it was found  that  the  electrostatic-im~lge  forces 
effectively increase  the  charge o f  the  impurity  centre 
and alter  the system of levels. Schcchtcr (1967)  pointed 
out  the  parameter /? used in the image charge  potential 
introduced by Pctukhov is too small by :I factor of two. 
Later.  several authors  (Schcchtcr et crl 1968, Tcfft Ct LII 
1969. Tefft  and Armstrong 1971) calculated the surface 
effect on shallow  impurity  states with this  altered [3 and 
obtained unphysicnl results.  Recently,  Jinng  and  Shan 
(1985)  studied  the  donor  surface  impurity  states in 
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GnAs and pointed  out  that  the  potential  energy given 
originally by Pctukhov et ul (1967) is correct. 

The shallow  impurity  problem is a typical problem 
in quantum mechanics which cannot be solved  exactly. 
Inevitably  properly approximated  solutions must be 
used to  obtain  quantitative results. Two basic approxi- 
mation  methods  are usually used to solve  different 
problems in quantum  mechanics, namely the varia- 
tional  method and  the  perturbation  method. In the 
variational  calculation the  construction of the trial 
wavefunction  relies heavily on physical intuition.  The 
errors involved arc usually difficult to estimate  and 
there is no way to investigate how accurate  the trial 
wavefunction is. On the  contrary,  the  conventional 
perturbation  method can  provide B method  for  syste- 
matic  corrections of the  zeroth-order  calculation. 
However. fast convergence of the  perturbation  expan- 
sion depends strongly o n  the  choice of the small  para- 
meter.  Frequently.  the small parameter is not the 
obvious one. In  this  paper we shall exploit two other 
useful approximation  methods which were  developed 
recently to treat  the shallow-impurity problem.  The 
first useful method  that  combines  the  pcrturbative 
method  and  the  variational  method was proposed by 
Lee et N I  (1982). and has  been  applied  to solve the 
problem of bulk impurity  states. Satisfactory  results 
were  obtained.  The  second one is called  principle of 
minimal  sensitivity (denoted a s  1”s). proposed by 
Stevenson  (1981)  and is primarily  applied to  problems 
in high-energy physics. I t  asserts  that if an approxima- 
tion clcpends on parameters of which the  true result is 
known t o  be independent,  then in the  absence of 
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further  information,  the  approximation is optimised by 
choosing  those parameters so as to minimise the 
approximation's  sensitivity to small  variations in their 
values.  Recently  Jiang  and  Shan (1985) applied  the 
perturbative  variational  method  proposed by Lee  and 
co-workers  to solve the  problem of the shallow states of 
donor  impurity  at  the  surface of isotropic  semiconduc- 
tors  and  to  study  the  exciton binding  energy in superlat- 
tice quantum wells (Jiang  1984).  Good results  were 
obtained.  Although  the  perturbative  variational 
method.  proposed by Lee  and  co-workers.  works  very 
well in the case of isotropic  semiconductors, it is still an 
open  question  whether this method is feasible  to treat 
the  anisotropic  case. It is known that  the case of 
impurity  on  the  anisotropic  crystal  surface is more 
complicated  mathematically  and  more  interesting  phy- 
sically because of the wider  possibilities. Therefore, it 
should  be very interesting  to  extend  this  method  to 
calculate donor  impurity  states  on  the  surface of aniso- 
tropic  semiconductors  such  as Si and Ge. In  order  to 
take  into  account  the  anisotropic  effect, two parameter 
trial  functions which are  products of one-dimensional 
hydrogenic  wavefunctions  and  two-dimensional  hydro- 
genic wavefunctions  are  introduced  and  the principle of 
minimal sensitivity is exploited. 

2. Formulation 

The Hamiltonian  for  the  surface-impurity  problem is 
known to be 

where 

The c axis is assumed  to be in the z direction, which is 
normal to  the  surface. Usually the  work  function is 
large compared with the binding energy of the  impurity 
electron  and it is approximated as being infinite on the 
vacuum side.  Therefore  the  wavefunction of the elec- 
tron  must vanish at  the  surface,  i.e. 

It is known that  the  Schrodinger  equation with the 
Hamiltonian  expressed in (1) cannot be  solved  exactly. 
Therefore  one has to  employ  some  approximation 
method. As we mentioned in the  previous  section, we 
shall  apply some novel approximation  methods  other 
than  the  conventional  variation  or  perturbation  method 
to  treat  the  problem. 

To make  the  problem  easier  to  deal  with, we first 
perform  a  coordinate  transformation defined by 

x =x' Y =Y' z = (m,/m,)"z' .  

The Hamiltonian in (1 )  becomes 

- 
U + (9) 5. (3) 

[X'? + L"' + ( rn , / rn , ) z " ] ' ~ '  m ,  
For  convenience, we shall drop  the  prime  for  the 
coordinate  variables  from now on.  Then we introduce a 
parameter l, into H by adding  and  subtracting  a  term 
M r  to  make  the  Hamiltonian H separate  into two 
parts: 

H = H,,(l+) + H '(l.) (4) 

where 

1 +") P'  1 
(l-A'cos'8)" U cos8 

The Hamiltonian in (4) contains  two  parts.  i.e.  the 
unperturbed  term H,, and the  perturbation term H ' .  
The  solutions  for  the  unperturbed  Hamiltonian H,, are 
the well known  hydrogenic  wavefunctions.  For  the H' 
term  one can choose  a  suitable  value l. to  make  the 
perturbation  expansion converge  more  quickly. 

For  illustration, we only consider  the  ground  states 
here.  The excited states can be treated in a similar  way. 
The  ground-state wavefunction  that satisfies the restric- 
tion of (2) can be written as 

and  the  corresponding energy is 

To obtain  the  total energy  for  the  whole  Hamiltonian 
H ,  we shall employ  two  alternative  methods to  deter- 
mine the  parameter L. 

2.1. The perturbative  variational  method 

We follow  the perturbative  variational  method  to find a 
suitable  value of 3, which minimises the effect of H ' .  
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The best choice  for A in the calculation of E,(A) is the 
one  that  causes  the  perturbation  series 

E, = E:”(i) + AEi”(i) + AEizl(%) + . . , 
= EF”(i) + AE,(A) ( 7 )  

to  converge  as fast as  possible so that only the first few 
terms will be used.  Hence 2 is to be determined by the 
condition 

Since the wavefunction in ( 5 )  is isotropic while the 
Hamiltonian given by (1) has highly anisotropic  behav- 
iour  when the  ratio of m, to m, is large.  The results 
obtained by the  above  consideration  cannot be 
expected  to  be  too  good. In order  to  take  into account 
this  anisotropic  effect, we regroup  the  Hamiltonian in 
the following form 

where 
which can be satisfied by requiring 

AE,(A) = 0. (9a) 

2.2. The principle of minimal sensitivity (PM) 

The main idea of the principle of minimal  sensitivity 
can be stated briefly as  follows. In (4), the  Hamiltonian 
H can be divided  into two parts Hu(A) and H ‘ ( A ) .  where 
&(A) is a  function of the  parameter A and can  be  solved 
exactly. In spite of the  appearance of the  parameter L, 
the exact  result is known  to be  independent of the 
choice of the value of i. However, in most  cases  only 
the  approximate  result is accessible. For  instance, if we 
treat  the  term H ’  as  a small perturbation,  then only a 
finite number of correction  terms can  be evaluated. 
Under this circumstance, in order  to  obtain  the 
approximation which most  closely mimic the  exact 
result’s independence of A ,  the  parameter  should be 
chosen so as  to minimise the  approximation’s  sensitivity 
to small variations in its value.  This  condition  can be 
satisfied by requiring 

dA 
” 

(31 - O  

where A is a physical quantity  under  consideration. 
Thus in our case the value of A can be determined by 
the  condition 

where E, is the  total  energy given by (7). In  actual 
calculations.  only  the  first-order term  (at most  up to  the 
second-order  term)  has  to be  included in (9a) and (9b) 
due  to  the fast  convergence of the  perturbation  expan- 
sion series.  For  the  problem of shallow  impurities  on 
the  anisotropic  semiconductor  surface, if we take (5) 
as our  unperturbed  ground-state  wavefunction.  Then 
the  first-order  energy  correction  to  the  ground  state 
because of the  perturbation H ’  can  be  calculated as 

AEi’] (A)  = ( y l t ’ ) ( r ;  )%) lH’(A)lv!ll(r; A)) 

1 

X [sin“A - A d(1 - A 2 ) ]  + 
2a 

The  parameter A can  be determined by (9u) or (9b). 

This is equivalent  to dividing the  space  into  a two- 
dimensional  (parallel  to  the  surface)  and  a  one- 
dimensional  (perpendicular  to  the  surface)  sub-space. 
If we take H,,(A,, A?) = Hlll(Al) +HI12(A?) as the  unper- 
turbed  Hamiltonian,  then  the  ground-state  wavefunc- 
tion and  the  energy  for  the  unperturbed system can be 
written  as 
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The  first-order  energy  correction is now 

where a, = m,/m,, a,= ml/m,  and  the total  energy is 
given by 

The best values of A, and L? can be  determined by (9). 
The  above  two-parameter  approach may implicitly 

contain  a  drawback of very  small  overlapping of the 
wavefunctions for  the x-y plane  and  the z direction.  In 
other  words,  the  wavefunction of (12a) may over 
emphasise  the  anisotropic  behaviour of the 
Hamiltonian.  To solve  this  difficulty, one can turn  to 
the  variational  approach  for  help. 

To be more specific,  let qg and E, be the wavefunc- 
tion and  the  energy of the ground  state of the 
Hamiltonian in (4). Then  one  can  obtain 

E, = E!’)(A) + E&A) (16a)  

If we approximate yg by some  variational  trial  function 
and  substitute it into  (16),  then  the E,(A) will be 

improved significantly provided  that  the  variational 
trial  function w~,,,,,~~ is constructed  very  close to  the exact 
wavefunction. The best  value of A can  again  be deter- 
mined  from (9). Furthermore,  the  left-hand side of 
(16a) will be independent of A when  the  exact wave- 
function is used.  Therefore,  the  variation of 

with respect  to A can  be used to justify the validity of 
the  variational  trial  function  qualitatively. To test  the 
above  statements, we first perform  a  conventional 
variation  calculation  for  the  Hamiltonian defined in (1) 
by using an  anisotropic  trial  wavefunction of the 
Kohn-Luttinger  type 

~ ~ , ~ , < ~ ~ ( r )  = N z exp{ - -~[(u, /u l )a2z’  + b’(x’ + y’)]”’/r,,} (18) 

where N is the  normalisation  factor  and r,, = h2/mce?. 
Then using this  variational  wavefunction  as  the 

approximated  ground-state wavefunction for H in (17), 
we can  calculate  the  first-order  energy  correction  to  the 
ground  state  because of the  perturbation  Hamiltonian 
H’@)  as 

where 

D(u;  A) = A + {b’+ [(m,/m,)u’- b’]u’}’’?/a, 

U = cos 8 .  

The  total  energy now is 

Eg,,Llr(A) = E!’)(A) + AE,(A) = -A’ 

The best  value of A can be  determined by setting 

AE,(A) = 0 (200) 
or by setting 

Then  the  ground-state  energy can  be obtained by sub- 
stituting  the  value of A in (20). 

3. Results and discussion 

We consider  the  shallow  impurity  problem  for  the 
anisotropic  semiconductors Si and Ge as  a  testing 
example.  The physical properties  for Si and  Ge  are 
listed in table  1. The results of the  first-order  calcula- 
tion of the  donor  impurities  on  the Si and Ge surface 
using the  isotropic  hydrogen wavefunction as the 

Table 1. Values  of  some  physical  quantities  for  Si  and 
Ge; m, represents  the  true  electron  mass. 

Mass  ratio 
Dielectric 

a, = mJm, a, = m,/m, constant 

Si 0.2 1 .o 12 
Ge 0.082 1.58 16 
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Table 2. Results of the first-order calculation with jL 
determined by the perturbative variational criterion and 
principle of minimal sensitivity. 

Equation for Effective Bobr's 
determining ;1 radius a,,/). (A) Energy (meV) 

Si €&A) = 0 1.098 15.69 - 19.41 
dE,ldi, = 0 1.098 15.69 - 19.41 

Ge € , ( A ) = O  1.043 52.67 - 4.201 
dE,ldA = 0 1.043 52.67 - 4.201 

unperturbed wavefunction in both  perturbative  varia- 
tional  method and  the  principle of minimal  sensitivity 
are listed in the  table 2. It  can  be  seen  from  the  table, 
both  methods yield the  same  ground-state  energies  for 
donor  impurities on the  surface of  Si or  Ge semicon- 
ductor.  The results  for the  ground  state  obtained by the 
anisotropic  two-parameter wavefunction  defined in 
(12a),  (13a)  and (136) are listed in the  fourth column of 
table 3.  Our variational  calculation  yields better  results 
than those of Tefft el al (1969).  This is because  they 
used an incorrect  image  charge  potential.  From  the 
table  one can  see the  two-parameter  perturbative  varia- 
tional  method  yields  worse  results  than the  conven- 
tional  variational  method.  This is of course  because of 
the  over-emphasis of the  anisotropic  behaviour of the 
unperturbed  wavefunction.  Although  the  result of the 
two-parameter case does  not  supersede  that of conven- 
tional  calculation,  however it still gives better  results 
than  the  one-parameter calculation  shown in table  2  as 
expected.  Especially,  the result for  Ge makes  a  sub- 
stantial  improvement.  This is because  that  the mass 
ratio m,lm, for Ge  is much  larger  than  that  for  Si. 
Therefore, the  isotropic  hydrogenic  wavefunctions do 
yield larger  discrepancy in the case of Ge  even  though 
the  further  adjustment has  been  made via perturbation 
variational method.  On  the  contrary, since our two- 
parameter trial function  introduces  more  anisotropic 
behaviour in the  transversal  and  the  longitudinal  direc- 
tion of  the  system,  thus it is able  to yield better  results 
than  those  obtained by the  pure  hydrogenic wavefunc- 
tion. 

The  ground-state  energies of the  donor  impurities 
on the Si and Ge surface  obtained by using the 
Kohn-Luttinger-type  trial  wavefunction  as  the  unper- 
turbed  wavefunction  for  both  the  perturbative  varia- 
tional  method and  the PMS method  are shown in table 4. 

Table 3. Results of variational calculation 
functions, given by (13). 

Although  our results and  the  conventional  variational 
results are very close, it should  be  noted  that  compared 
with the  variational  method  the  perturbative variatio- 
nal method  and  the PMS method  are much simpler.  The 
ground-state  energies  can be calculated  quite easily 
once  the  value of R is obtained by (2oa) or (206). It is 
interesting  to  see  that  the  ground-state  energies 
obtained by the  method of PMS for  both Si and Ge  are 
even  lower  than the  variational  results. The results 
obtained by the  perturbative  variational  method  are 
slightly higher  than  the  variational  results and thus  no 
improvement is obtained.  This is contrary  to  the  pre- 
vious results (Lee er a1 1982) in which Lee and  co- 
workers  used  the  same  method  to  calculate  the  ground 
state of the bulk Ge  and Si and  obtained improved 
results compared with those  obtained by the variational 
method.  This is because our  starting  Hamiltonian H,,(R) 
represents  a  spherical  symmetric  Hamiltonian which 
might be very suitable  for  the  case of isotropic  semicon- 
ductors  surface  (Jiang  and  Shan 1985) or  for  the aniso- 
tropic  semiconductor bulk (Lee er a1 1982), however in 
the  anisotropic  case such as the  surface  impurity 
problems  for Ge and  Si,  the  actual  Hamiltonian has 
highly anisotropic  behaviour.  Furthermore.  the trial 
wavefunction  used in (18) might not  contain sufficient 
information  for  the  surface  effect. To investigate this 
problem, we have  plotted E ,  given in (17) against /1 in 
figure 1. We know that E ,  will be independent of 3, if 
the  true qg is used to  calculate  the  ground-state  energy. 
Therefore  from  the flatness of the  curves  for Eg(A) ,  we 
can see how good  an  approximation  the  trial  wavefunc- 
tion y,.,i,r will  be compared with the  true pg. From 
figure  1 it is seen  that is found  to be constant  only 
over  a small  range of R for  both Ge and  Si.  These 
results  suggest  that  the trial wavefunction used in pre- 
vious  variational  calculations is not  good  enough  for 
calculating the  impurity  states  for  anisotropic  semicon- 
ductor  surface.  However, it is interesting  to  note  that in 
figure 1 the curve for Si  is flatter  than the curve  for Ge. 
It is therefore  expected  that  the results obtained for Si 
will be better  than  those  for  Ge.  This is indeed  the case 
as  shown in table 4, where  the  deviation of our calcu- 
lated  energies with the  variational  result is 2.9% for 
Ge, but only 0.5%  for  Si.  This is consistent to  the fact 
that  the mass  anisotropy  for Si (m,lm, = 5 )  is much less 
than  that  for  Ge (m,/m, = 19).  From figure 1 we can also 
see  the  reason why the result of the PMS method is 
better  than  that of perturbative variational method. 

with the  two-parameter trial 

Energy (meV) 

Conventional Effective  Bohr  radii 
variational 

j. 1 j '2  Two-parameter  method 1 / A  1 /B  

Si 0.400 0.273 - 19.42 - 23.55 11.45 8.083 
Ge 0.548 0.136 - 6.89 - 8.377 26.63 13.60 
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Figure 1. The  variation  of  in  equation (19) with 
respect to i for  Si  and Ge. 

The values of L for  the PMS method  are  the maximum 
points  that will usually fall on  the flatness  region of the 
curves, while for  the  perturbative  variational  method 
the values of A are  obtained  from (20a) which may not 
fall on the flat ranges as clearly  indicated in figure 1. 

4. Conclusion 

The variational  result  has  been  improved by either 
Lee's  approach  or  Stevenson's  principle.  The validity of 
Kohn-Luttinger-type  trial  functions in the  surface 
impurity  problem is also  examined in figure 1. They  are 
found  to be  satisfied in this case,  although  they  do  not 
approximate  the  exact  solutions in the  surface case as 
well as  they do in the case of bulk state.  The use of 
three-dimensional  hydrogenic  wavefunctions yields 
very poor results  for Ge  as  shown in table 2. However, 
a  substantial  improvement can be  made by introducing 
the  products of one-dimensional  and  two-dimensional 
hydrogenic  wavefunctions  as  our  unperturbed wave- 
functions.  This  reveals  that  the  exact  solutions  for  the 
impurity  states in crystals with large  anisotropy  are no 
longer  three-dimensionally  hydrogen-like  but  some- 
what  one-dimensionally  hydrogen-like in  the longitudi- 
nal direction  and  two-dimensionally  hydrogen-like in 
the  transverse  direction. 

In conclusion, we have  calculated  the  surface 
impurity  ground  states of anisotropic  semiconductors in 
two novel approximated  methods. In  this work,  the 
analysis is based on a  parabolic  one-band  model  and  an 
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Table 4. A  comparison  of  the  ground-state  energies  for 
Si and Ge obtained  by  the  variational  method  and  by 
the  perturbative  variational  method. 

Equation  for Values Energy Variational 
determining i,, of i, (meVI result  (meV) 

Eg,var (A) = 0 1.206 - 23.42 
Si dEg,va,/d?b= 0 0.487 - 23.75 - 23.55 

Ge dEg,,,,ldA = 0 0.461 - 8.684 - 8.377 
Eg,var(a) = 0 1.451 - 8.1 30 

infinite-barrier  model  for  electronic  states.  Thus  our 
treatment  neglected any  possible  effects of the surface- 
state  band  structure  and  assumed  the wavefunction of 
the  electron vanishing at  the  surface.  Different trial 
wavefunctions  have  been  employed.  The Kohn- 
Luttinger-type  trial  function  yielded  the best results  for 
different  calculations. The simplicity of the  perturba- 
tive  variational  method  and  the  principle of minimal 
sensitivity are  exhibited in our  calculations. 
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