SRS L

FNE LT
HoE i

%= ZACE B IR IR YA
Batch Scheduling in: Differentiation Flowshops

MRt m T
FEHIE  AREIE M4

TERE At F o~ A



%= FALA BRI IR PR
Batch Scheduling in Differentiation Flowshops

MRAE D BmE Student: Huang Ting-Chih
F/EFAR  ARPIE WL Advisor: Bertrand M.T. Lin, Ph.D.
Bl 3038 K2
A A AT
FA 13
A Thesis

Submitted to the Institute of Information Management
College of Management
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Business Administration
in
Information Management
June 2010
Hsinchu, Taiwan, the Republic of China

FERE At F X A



X R4ols » RwG & aF@ » SHRE o

BRI LB REERAMTEANRKEEAI RG> 2T LREL
R )8 (L REAS B T ENTT » ZRHMGAFFS - AARY
LA o M RO FHARE L BRBFUARE R OFFH0E 0 FRH
ZERRIFOEE - BHRAEBRGE T 2ERELE HRAFFROE
B o AE S ATEARBMERREATRETHLARNESE - BR#K
B R EHAR MBI o SRR T RABIMALT =24 o B BAY
SR AT R R 0 e RAACTRBINAT 0GB R T 0 AP AR RE R 7 E 89
EE K BRI REEFEGFTEZ Lo mig s LR LIERRRGEFEI R
oo A AR ARARAN I 5 0 B BB IR R B AL o ZRA R FRE 0 B
sk UK TR 7T A R

FlEf > # R RHARE EALBAFRE E o BB F4 » RARKKE
A 89 0 S T 09 B AR A AR B AR ORI ~ BB AAT A AR o RAAE R B
WARTETHAEANF B BRTRL AP AY - BRSFESE R > —Aeat
R—AITIR » BEARBNGZAA TR T Filok - RHREZ R ARHH
REGROH Y R4 RARBBESOARRRL - BRME BEL R BHFRK
FAEFR T RPN PRARFSHFD - BHEMRAL > FREX
% 0 BRA AR ROALRORXEH T L - RHFTRES > ARK
LRI RS o ARAFF R AFE R E AT o

P BRI G AAN ARG IR B > SRR A GNEA]

BB E AR BT — P BATIE o KA ARME A RARB G IRAT > Bt |

E*‘%

y



Abstract

This thesis considers a three-machine two-stage differentiation flowshop to
minimize the makespan. The flowshop comprises a common machine on stage-
one and two independent dedicated machines on stage-two. All jobs consist
of two operations, the first one is performed on the stage-one machine and
the second is performed on.the stage-two. machine. All jobs share, and com-
pete for, the common stage-one-machine. A\ constant setup time is required
whenever a batch is formed on the stage-one critical machine. Two different
modes of batch composition, compatible.and incompatible, are investigated.
We also assume that the sequences of two. types of jobs are fixed. The ob-
jective function to minimize is the makespan, or the maximum completion
time. We proposed two polynomial-time dynamic programming algorithms
for optimally solving the problems with compatible batching and incompatible
batching, respectively. We then deploy the dynamic programming algorithms
for computing lower bounds of the original problem without the assumption

of given job sequences.

keywords: Delay differentiation; flowshop; batch; makespan; critical machine;

lower bound; dynamic programming.
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Chapter 1

Introduction

Delayed differentiation or postponement is a concept in supply chain management where
the manufacturing process starts by making a generic or family product that is later
differentiated into a specific end-product. This is a widely used method, especially in
industries with high demand uncertainty or the need. of mass customization, and can be
effectively used to address the final demand even. if forecasts cannot be improved. In
particular, the model, delayed differentiation flowshops, is one of the major approaches to
achieving mass customization” (Da Silveira, et al. 2001; Simchi-Levi, et al. 2000). In the
global marketplace nowadays, thetrend of ¢ustomization is a major reason for demand
uncertainty. In order to compete effectively in the marketplace, firms have to keep their
operations flexible to overcome various problems, such as demand uncertainty. Opera-
tional flexibility has received considerable attention because it can give consideration to
demand uncertainty and inventory cost. Since the flexibility of operations is crucial to the
manufacturing firm’s strategy, it is conceivable that the delayed differentiation can bring
respectable revenue to the manufacturing firm if it can be adopted appropriately. Gupta
and Benjaafar (2003) also mentioned that delayed differentiation carries several benefits.
Maintaining stocks of semi-finished goods reduces the order-fulfillment delay relative to
the pure MTO (Make-To-Order) system. Since many different end products have com-
mon parts, holding semi-finished goods inventory benefits from demand pooling, which
is known to lower the amount of inventory needed to achieve a service-level performance

equal to that of a comparable system with no pooling (Eppen 1979). Furthermore, invest-



ment in semi-finished inventories is smaller when compared with the option to maintain a
similar amount of finished-goods inventory. There is also the benefit of learning, realized
from having better demand information before committing generic semi-finished products
to unique end products. Additional benefits from delaying differentiation include a sig-
nificant streamlining of the MTS (Make-To-Stock) segment of the manufacturing process
and simplification of production scheduling, sequencing and raw material purchasing.

In the following, we introduce five real applications where delayed differentiation is

deployed.

1. Chair: The main body of the chair is manufactured on the first production stage.
There are several different head-supports assembled on the second stage. Thus,
each chair proceeds to a different machine for this second stage. Clearly, the second
stage can consist of an assembly of a final part as described above, or of coloring
(by one of several possible eolors);or-ef packing (in one of several types of boxes),

etc. (Cheng et al. 2009)

2. Pottery: The main glazing process of potteries may be performed on the first pro-
duction stage. Several heating processes for distinct figures or dissimilar effects are
applied on the second stage. That is, each pottery proceeds to a corresponding ded-
icated machine for baking process after being glazed. The second stage may consist

of re-glazing, various thermal treatments, or packing. (Cheng et al. 2009)

3. Knitwear: Benetton is a world leader in knitwear. It resides in a large logistics
network where many retailers are involved. The problem Benetton faced is that
it is hard to predict what items, colors, etc. will sell. So Benetton redesigned
their manufacturing process such that all knitwear are initially all white, and then
dyed into different colors only when the season/customer color preference/demand is
known. By postponing the step of dyeing, Benetton is able to successfully delay color
selection until the season’s fashion preferences become more established. (Bruce

1987)

4. Computer: Dell built a global business on selling and configuring personal com-



puters when orders are received, rather than stockpiling finished product on the
basis of demand forecasts. Besides, it is almost impossible to use the MTS (Make-
To-Stock) system, because the configuration of every client want is unpredictable.
Dell postpones final assembly until an order arrives via its online retailing network.
Clearly, it is also an application of differentiation flowshops if we treat the process
of manufacturing the component of computers as a job on the stage-one and the

process of assembling and configuring as a stage-two job. (Magretta 1998)

5. Printer: Delayed differentiation also is embedded in the manufacturing processes
of Hewlett-Packard’s printer. The company’s Deskjet and Deskwriter printers are
made in its Vancouver and Singapore plants and distributed to the U.S., Europe
and Asia. Selling printers in Europe means following each country’s requirements for
printer configurations: different.decals; a country-specific power plug and language-

specific manuals. (Feitzinger and Lee 1997)

In this thesis, we link a two-stage supply chain-with a two-stage flowshop. When we
consider a supply chain in an-abstract way, it can be viewed as a production line within an
organization. A flowshop-type production consistsof machine arranged in series such that
all products need to be processed ‘in the order of the machines are arranged. Kyparisis
and Koulamas (2000) who studied this two-stage flowshop mention that “applications of
the proposed flowshop model are encountered in manufacturing settings, where all jobs
must first go through the same main process, and then they require a finishing operation
special to the job”.

Scheduling refers to managerial decision making that allocates limited resources to
activities so as to optimize, subject to functional constraints or assumptions, a certain set
of performance measures. Scheduling is crucial to operations management of applications
in manufacturing and service industries (Pinedo 2002, Pinedo and Chao 1999). Since the
seminal work of Johnson (Johnson 1954), flowshop scheduling has been receiving consid-
erable research attention (Dudek, et al. 1992; Reisman, et al. 1997). This broad topic
contains many different settings and special cases, reflecting a wide range of applications.

In this thesis, we consider a special three-machine two-stage flowshop called differentia-
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Figure 1.1: Differentiation flowshop model

tion flowshops, where all products (jobs) share a common critical machine on the primary
(first) stage, and then each individual product proceeds to a dedicated machine on the
successive (second) stage. Please refer to Figure 1.1 for the machine configuration. Many
manufacturing environments which-produce - multiple final products are extensions of this
basic model. In this thesis, we study the manufacturing environment shown in Figure
1.1. Under such an environment, the stage-one machine is common for all products. This
means that the model can be used.to achieve mass production of homogeneous products
at the first stage, and the products proceed to the stage-two machines for further differ-
entiation operations. As batch processing is common in mass production, we consider the
production environment where batching is required on the stage-one machine.

The rest of this thesis is organized as follows. In Chapter 2, we will present formal
statements of the problem definition, and the notation that is used throughout the pa-
per. Review on related works follows. As the studied problem is known to be NP-hard,
we will study the scenario that the production sequence of products on each stage-two
machine is known and given. Chapter 3 presents an algorithm for the differentiation flow-
shop problem with compatible batching. We dedicate Chapter 4 to the development of
a dynamic programming algorithm for the differentiation flowshop problem with incom-
patible batching. We give concluding remarks and suggest potential research directions

in Chapter 5.



Chapter 2

Problem Statements and Literature

Review

In this chapter, we first introduce. the notation used in this thesis. A formal definition of
the studied problem follows. A numerical example will be given for illustration. Related

works will also be reviewed.

2.1 Problem Definition and Notation

The notation that will be used throughout this thesis is defined as follows:
Notation:

ny: the number of type-1 jobs;

no: the number of type-2 jobs;

n = nj + ng: the number of all jobs;
Z={hL,1I,...,1,}: the set of type-1 jobs;

J =A{J1, Ja, ..., Jn,}: the set of type-2 jobs;

Mjy: the stage-one common critical machine;

M;: the stage-two dedicated machine for jobs in Z;

Msy: the stage-two dedicated machine for jobs in J;



I; ,,: the operation of job I; € 7 on stage m, m = 1,2;
J;jm: the operation of job J; € J on stage m, m = 1,2;

P1,.,,: the processing time on stage m, m = 1,2, of job I; € Z;

PJ;..: the processing time on stage m, m = 1,2, of job J; € J;

DIy, the i-th smallest processing time on stage m, m = 1,2, in {pr, ., P15 s - -+ DL, 1 }
DI the j-th smallest processing time on stage m, m = 1,2, in I ms P+ 3 Py )
s: batch setup time on machine My;

B;: the I-th batch on machine M,;

Cx . (Z'UJ"): the optimal makespan of job set Z' U J’ for 7/ C Z and J' C J;

S(Z'U J"): a particular schedule of job set Z/ U J' for ' C Z and J' C J;

Crax(S(Z"U J")): the makespan of schedule S(Z' U J');

S*(Z"U J'): optimal schedule of job set Z/U J' for 7/ C Z and J' C J.

The problem is formally.defined-as follows.. The manufacturing model is a three-
machine two-stage differentiation flowshop consisting of a stage-one common critical ma-
chine and two independent dedicated machines in the second stage. The jobs belong
to two different types: type 1. Z.= {I, I,..., 4y} and type 2, T = {Jy, Ja, ..., Jn, }.
There are in total n = n; + ny jobs to process in the differentiation flowshops. Each
job in Z comprises two operations, the first of which is performed on the stage-one com-
mon machine My, and the second is performed on the first dedicated machine M, as in
the classical two-machine flowshop. Similarly, the jobs of J are processed first on the
common critical machine and then on the second dedicated machine M,. Jobs of both
types are processed on the common critical machine in batches. A constant setup time
s is required whenever a batch is formed on the stage-one critical machine. The batch
scheduling model we adopt in this thesis is sum-batch or sequential-batch, under which
the processing length of a batch is the setup time plus the processing lengths of the jobs
contained in the batch. Batch availability is assumed, i.e., the first operation of a job is
finished and the second operation is available for proceeding to the second stage when all

operations in the batch to which the job belongs has been finished. We will investigate



two modes of batch composition on the common machine: compatible and incompatible.
In compatible composition, jobs from different types can reside in the same batch. On
the other hand, incompatible composition requires that any batch must contain jobs of
the same type. The objective function considered is the makespan, i.e., the maximum
completion time of all jobs.

To the best of our knowledge, the production model was not investigated in the liter-
ature. Our study is to investigate the scheduling problem of minimizing the makespan,
i.e., the maximum completion time of all jobs.

As the problem is known to be strongly NP-hard, in this thesis we consider a simplified
situation where the sequences of jobs for each type on the stage-one machine are known
and fixed. Subject to this assumption, the problem reduces to finding how to interleave
two sequences of jobs and how to batching the jobs on stage-one machine. Besides, we
consider only permutation schedule, that is, jobs of the same type have the same processing
sequence on the critical machine and on their dedicated machine. Each machine can
process at most one operation at any time, and no preemption is allowed. The objective
is to batch and schedule the jobs so as to minimize the maximum completion time.

To illustrate the problem definition, a numerical instance is given as follows. There
are four jobs in two types to be scheduled: type 1, Z = {I;, I} and type 2, J = {J1, J2}.

The batch setup time is 1. The processing times are shown below.

Jobs L I J1 Jo
stage-one P, = 2 Pr, = 5 Py, = 4 Py = 3
stage-two  pr,, = 4 Phys = 3 Dho = 6 Dipoy = 2

Given two batch sequences o1 = ((I1, Jo), (J1, I2)) and oy = ((Jo, J1), (11, I2)), we have
two corresponding Gantt charts as shown in Figure 2.1 and Figure 2.2. Batch sequence
o1 has the makespan of 22 and batch sequence o, has the makespan of 23. Note that
batch sequence oy is scheduled under the compatible batching mode, and batch sequence

09 is scheduled under the incompatible mode.
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Figure 2.1: Gantt chart of batch sequence oy
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Figure 2.2: Gantt chart of batch sequence oo

2.2 Literature Review

It can be easily seen that when there is only one type of jobs and there is only one dedicated
machine at stage two, the problem reduces to the classical Johnson’s two-machine flowshop
scheduling problem (Johnson 1954), which can be solved in O(nlogn) time. The model

of delayed differentiation studied in this thesis probably first investigated by Herrmann



and Lee (1992), in which three objectives, makespan, number of tardy jobs and maximum
tardiness, were investigated. In their research, they defined two types of dispatching rule,
look-ahead and look-behind, to approach to scheduling job shops. Look-ahead and look-
behind scheduling includes procedures that look around the shop for more information to
use in making a scheduling decisions. Look-ahead models consider the machines where
the jobs will be headed after this stage. Look-behind models on the other hand consider
the job that will be arriving at this machine soon. They use the terms look-ahead and
look-behind to designate scheduling procedures that do more than consider just the state
of one machine.

Drobouchevitch and Strusevich (2000) studied the two-stage job shop scheduling prob-
lem with a bottleneck machine which can be thought as a general case of our problem.
Given an arbitrary number of stage-two machines in a job shop, they designed a heuristic
algorithm for makespan minimization with a-performance ratio 3/2. Without knowing
the existence of Herrmann and Lee(1992). and Drobouchevitch and Strusevich (2000),
Kyparisis and Koulamas (2000) investigated the same model but with m types of jobs,
and correspondingly m dedicated machines at the second stage in the case of flow shop
and open shop. Their model is-polynomially solvable under a strong assumption, called
block assumption, that jobs of the same type must be processed contiguously on the
stage-one machine. Under the such assumption, they developed a makespan minimizing
algorithm in O(m(nlogn + logm)), where n is the total number of jobs from all types.
Mosheiov and Yovel (2004) improved Kyparisis and Koulamas’s algorithm and reduced
the time complexity to O(nlogn) subject to the common constraint m < n. Cheng and
Kovalyov (1998) incorporated the same model but with the job dependent setup time.
They proposed an O((n; + no)nin3) dynamic programming algorithm, where n; and n;
are the number of jobs of type-1 and type-2, for makespan minimization. Particularly,
the reverse model of delayed differentiation with dedicated machine installed on stage one
was studied by Oguz et al. (1997). They showed that minimizing makespan is ordinar-
ily NP-hard by a reduction from Partition. A strongly NP-hard proof was given by Lin

(1999) for the same problem. Neumytov and Sevastyanov (1993) in Russian studied the



same problem.

While the three-machine two-stage differentiation flowshops model has been inves-
tigated in some research papers, to the best of our knowledge, no previous work has
ever addressed the batch considerations. Batch scheduling has received considerable re-
search attention in the past two decades. There is a large body of research works on this
subject. Cheng et al. (1999) and Potts and Kovalyov (2000) are two excellent reviews
provide a broad coverage and a comprehensive classification scheme. In the literature,
batch scheduling adopting the max-batch model with batch-item availability options has
been addressed in the single-machine setting (Aneja and Singh 1990; Baker 1988; Gerodi-
mos et al. 2000; Lin 2002; Vickson et al. 1993) and two-machine flowshop settings (Cheng
et al. 2000; Cheng and Wang 1999; Lin and Cheng 2002).

10



Chapter 3

Batching with Compatible Items

3.1 F(1,2)|comp, s-batch|C,,.,. with regards to fixed
sequences

In this section, we study the.batch scheduling problem with compatible batches to mini-
mize the makespan subject to the condition that the processing sequences of either types
of jobs are known and fixed." For the studied problem, the term “comp” is present in the
second field to specify that a batch.is allowed-to eontain different types of jobs. Given
a batch scheduling system and the set of jobs to be processed, the scheduling problem
is to decide the composition of each batch, i.e., the assignment of jobs to batches, the
sequence of the batches to be processed, and the sequence of the jobs in each batch. The
assumption of fixed sequences refers to assumption that the job sequences of Z and J are
given and fixed. Since we have the assumption of fixed sequences, the decision remains
here is how to interleave two given job sequences and also group the jobs into batches on
the stage-one machine. It is easy to show that there exists at least one optimal solution
which is a permutaton schedule. Therefore, we consider only permutaion schedule in this
thesis, i.e., the processing sequences on both critical and dedicated machines of two types
of jobs are the same.

The first issue concerns optimally interleaving two sub-sequences without batching.

Herrmann and Lee(1992) proposed a polynomial time algorithm for resolving this issue.

11



Their approach first associates every job with a due data and transforms the problem into
another scheduling problem that seeks to find a schedule with the minimum maximum
lateness, L. Denote the job sequence of Z as o7, o7 = (I3, I, ..., I,,), and job sequence
of Jasogz, 07 = (J1,J2, ..., Jn,). The following algorithm can yield a schedule with the

minimum L .y:

Algorithm HL

Input: o7 and o7

Output: A sequence of jobs of ZU J with the minimum L, ,y.

Step 1. For each job I of Z, define A, as the set of jobs (not including ;) that follow
I}, in oz. Then, dy = py,, + ZAh PLys-

Step 2. For each job J; of J, define 4, as the set of jobs (not including J) that follow
Jy in og. Then, dy =py, , +3 4, Pijs-

Step 3. Schedule the jobs on machine M in non-increasing order of the dj, starting at

time zero, and start all second stage operations as soon as possible.

Step 1 and Step 2 of Algorithm HL respectively require O(n;) time and O(ns) time
to compute the due-dates. Step 3 takes O(n; + n2) = O(n) time to interleave two job
sequences, since jobs in each sequence are already sorted in non-increasing order of the
dy, and forming the one job sequence which will be scheduled on machine M is only to
combine the two sequences without changing the relative ordering in each sequence.

While the interleaving issue is resolved, we proceed to the batching issue. On a single
machine, problem 1|s-batch| L.y is to sequence as well as batch the jobs so as to minimize

the maximum lateness.

Lemma 3.1. (Webster and Baker, 1995) There is an optimal schedule for the 1|s-batch|Lyax

problem in which the jobs are sequenced by the EDD rule. U

Based upon Lemma 3.1, Webster and Baker (1995) developed a backward dynamic

12



programming algorithm for the 1|s-batch|L. problem. Assume that the jobs are in-
dexed in non-decreasing order of their due dates. Let B(i) denote the optimal L.y of the
single machine problem for jobs J;, Jii1, ..., J,. The dynamic program defines a recursive
formula to derive B(i) from B(j),1 < i < j < n, by inserting a batch of jobs {J;, ..., J;_1}

in front of the schedule associated with B(j). The algorithm is given as follows:

Algorithm WB
Initialization:
Set B(n+ 1) = —o0.

Recursion:

B(Z) = i+1r§%’i§nn+l { <31 + pr) + maX{—di, B(])}}

r=i

The optimal L. is giver.by B(1). The detail grouping decision can be obtained by
backtracking. As for the running thme, we note that there are O(n) states, each of which
requires O(n) time to enumerate different job indices j. The overall computation effort
for calculating B(1) is thus O(n?).

Based upon their algorithm, we can solve the F(1,2)|comp, fixed_seq, s-batch|Cpax
problem optimally in polynomial time. We first treat the operations of jobs of Z U J on
machine M, as jobs and associate them with due dates as defined in Algorithm HL.
Then, Step 3 of Algorithm HL produces an EDD job sequence on machine My. Then,
we apply Algorithm WB to optimally group the jobs in the sequence. The following

theorem thus follows.

Theorem 3.1. Problem F(1,2)|comp, fixred_seq, s-batch|Cpax can be solved optimally in

O(n?) time.

Proof. As explained above, solving F'(1,2)|comp, fixed_seq, s-batch|Cax consists of in-

voking two algorithms, Algorithm HL and Algorithm WB. The Algorithm HL

13



takes O(n) time to interleave two job sequences. And, Algorithm WB requires O(n?)
to batch the jobs on machine M. Therefore, the overall complexity is O(n?) and the

proof is complete. O

3.2 F(1,2)|comp, s-batch|C),.«

In this section, we will return to the F(1,2)|comp, s-batch|Cp.x problem without the
assumption of two fixed sequences. Without the assumption of fixed sequences here,
the general problem of differentiation flowshop to minimize makespan, F'(1,2)||Ciax, Was
proven to be strongly NP-hard by a reduction from 3-partition by Herrmann and Lee
(1992). From the existing result, it is obvious that F'(1,2)|comp, s-batch|Cp.x is strongly
NP-hard even without any batching concern.

The NP-hardness indicates that it is-very unlikely to design a polynomial time algo-
rithm for producing optimal selutiens. . Branch and bound algorithms are one of the exact
methods which is widely adopted for tackling hard eptimization problems. Effective lower
bounds, used to pruned off non-promising solutions, are crucial to the efficiency of branch
and bound algorithms. In the following, we will develop a lower bound based upon the
result of Theorem 3.1.

For any job set Z U J to be processed, we can derive another job set Z' U J’ by
rearranging the operations of the jobs to create a data set called ideal data set. In
makespan minimization of a two-machine flowshop problem, a job is preferred to be
processed first if its processing time on stage-one is shorter and its processing time on
stage-two is longer. A data set is ideal if and only if the data set contains jobs where a job
with a shorter processing time on stage-one has a longer processing time on stage-two. In
the following, we create such an ideal data set Z" U J' from the given job set Z U J. For

all k =1,2,...,n, job I}, in 7’ is defined by two parameters:
L. pr1 = P11, 1e., the k-th smallest element among py, ;. pr, ;- -, D1, 1-
2. pr 2 = pig, 2, Le., the k-th largest element among pr, ,, Pr, s, - - s Pl -

In a similar way, job J; in J" is defined by p;,, 1 and P2 forall b =1,2,... no.

14



We index the jobs in Z' and J' in non-decreasing order of their processing time on ma-

chine M, and denote the sequence of Z' (respectively, J') as oz (respectively, o7/).

Lemma 3.2. There is an optimal schedule of the instance ' U J' where jobs of T' are

sequenced by oz and jobs of J' are sequenced by 7.

Proof. Without loss of generality, we assume that the processing times of all opera-
tions are distinct. Given a schedule of the instance S(Z' U J’), for each pair of jobs
{(IIQ,IIQH) lk=1,2,...,n1 — 1} in S(Z'U J'), we swap their position if pr, > b, -
Note that if the condition is met, it implies pr, < Pr,,, The similar job-interchange
technique is applied to job set [J'. Since the total idle time on either dedicated machine
will not increase after the job interchange, it is clear that the makespan will not increase
in the derived schedule. Repeating the job-interchange, if necessary, will finally lead to a

schedule in which all jobs of Z'. areisequenced by o7 .and jobs of J' are sequenced by o7/.

We complete the proof. O
Lemma 3.3. An optimal schedule of the job-set T \J.J' can be found in O(n?) time.

Proof. To decide how to group jobsinto batches, it can be easily done with the Algorithm
WB which has the time complexity O(n?). Therefore, an optimal schedule of the job set

7' U J’ can be found in O(n?) time and the lemma follows. O

Lemma 3.4. The optimal makespan of the job set T' U J' will be no greater than the

optimal makespan of the original job set ZU J, i.e., C:. (Z'UJ') < Ck. (ZUJ).

Proof. Consider the schedule S*(Z U J), i.e., the schedule of job set Z U J with optimal
makespan or C. (Z U J). For each pair of the stage-one (respectively, stage-two) op-
erations of jobs {(Iy, [r4+1) |k =1,2,...,n; — 1}, we swap their positions if p7, 1 > pr,, 1
(respectively, pr,, < pr,.,,) and leave their stage-two (respectively, stage-one) opera-
tions unaltered in their original positions. In the similar way, we apply the operation-

interchange technique to the operations of J on both stage-one and stage-two oper-

ations. Clearly, the makespan will not increase after we change the positions of the
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operations under the specific condition. Therefore, the derived schedule contains jobs
of the job set 7 U J' and has a makespan that is no worse than the previous one

(ZU J). The optimal

max

in the same batch composition, i.e., Cha(S(Z' U J')) < CF
makespan of job set Z' U J' has the minimum makespan among all possible schedules of
job set ZZU J" or Cf . (T'U J") < Crax(S(Z' U J')). By transitivity, we can see that

max

Crax(T'UT") < O

(ZU J) and complete the proof. O

In summary, by rearranging the operations in the two given job sets, we will get two
data sets, Z' and J’, which constitute an ideal data set. With the two fixed sequences of
jobs, the scheduling problem is now equivalent to F(1,2)|comp, fixed_seq, s-batch|Cax
which can be solved optimally by the algorithm in the previous section (by Theorem 3.1).
Thus we get the minimum makespan of the derived problem, we also obtain a lower bound

for the original problem.
Theorem 3.2. A lower bound of F(1;2)|comp, s-batch|Cpax can be found in O(n?).

Proof. The process of constructing Z" and J" takes O(n logn) time because of the sorting
operations. Interleaving two sequences takes O(n) time; and Algorithm WB takes O(n?)
time to group jobs. Therefore,<the.overall time-complexity for obtaining a lower bound

of F(1,2)|comp, s-batch|Cyax is O(n?). O

An example is given in the following for illustrating the lower bound calculation for
the problem F'(1,2)|comp, s-batch|Cpax. There are four jobs in two types to be scheduled:
type 1, Z = {I, I} and type 2, J = {Js, Jo}. The batch setup time is 1. The processing

times of jobs are shown below.

Jobs I I J1 Ja
stage-one P, = 2 Pr, = 5 Py, = 3 Py = 4
stage-two Pr, = 3 Pr, = 4 Py, = 2 Piy = 6

An ideal job set 7' U J’ can be derived from the given job set ZU J by the operation

interchange technique. The processing times of jobs in Z' U J’ are shown below.
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Jobs I I Ji %
Stage_one pli,l — 2 plé’l = 5 pJ{,l = 3 p‘]é’l = 4
stage-two rry, = 4 br, = 3 by, = 6 Pr, = 2

Applying Algorithm HL, we can determine the sequence of jobs on machine M. Let

D =0, we can get the due dates of all jobs as shown below.

Jobs Ji I I %
stage-one  py =3  py =2 py, =5 py, =4
stage-two  py =6 pp,=4 pp,=3 pgp,=2

d,. dy =8 dy=7 dyp=3 dy=2

Dy Dy =-8 Dyp=-7 Dp=-3 Dj=-2

The following is the recursive steps of Algorithm WB.

(
1+Zi:1pk+max{8,B 2)}

(2)

B(1) <in 4 L+377  pr+max {8 B(3)}
1+ Y7 pr -+ max {8, B(4)}

(5)

b L Doy s + max {8, B(5)}

1 Y00, pr + max {7, B(3)}
B(2) =min{ 1+ 2222 pr + max {7, B(4)}
| 1+ Ciepn + max {7, B(5)}

1+ 2223 pr + max {3, B(4)}

B(3) = min
1+ S0y +max {3, B(5)}
\

B(4) = min{ 1+ 3%, pe + max {2, B(5)}

B(5) = —o0
B(4) Zmin{ 1+ 4+ max {2, —o0} } =7

145+ max{3,7}
B(3) = min =13
1+ 9+ max {3, —o0}

17



( 3

1+ 2+ max {7, 13}
B(2) =min¢ 14 7+ max{7,7} =15

1+ 114+ max {7, —oco}
\ /

)
1+ 3+ max {8, 15}

1+ 5+ max {8, 13}
B(1) = min =19
1410 + max {8, 7}

\ 1+ 14 + max {8, —oo} )

Therefore, the lower bound of the optimal makespan of job set Z U J is 19, the corre-
sponding schedule is ((J7), (11, 15), (J5)).
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Chapter 4

Batching with Incompatible Items

While differentiation flowshop scheduling with compatible batches subject to given two
job sequences was solved in the previous chapter, we investigate another batching policy
in this chapter. The batching policy we concern here is incompatible batching which
specify that a batch is allowed to contain only a single type of jobs. We will develop a
dynamic programming algorithm-to solve this problem recursively. We adopt the three-

field notation F'(1,2)|incp, fixed_seq, s-batch|Ci,.x to denote the studied problem.

4.1 Preliminaries

To deal with the F'(1,2)]incp, fixed_seq, s-batch|Ci,.x problem, we also adopt the dynamic
programming approach. A recursive program for constructing an optimal solution to
an instance usually requires sufficient information on the optimal solutions in order to
decompose the instance into smaller ones. An optimal solution to the incompatible case
clearly specifies the makespan. However, the exact completion times on the two dedicated
machines remain unknown. Such a difficulty may hinder the development of dynamic
programming algorithms. In the following, we introduce an approach for retaining the
information on the completion times on the two dedicated machines.

Define binary function f(i, 7, a1, 51, a, B2, 11, 01,72, 02, €,€’) = 1 if the last job on
machine M, belongs to type-1, and there exists at least one schedule which satisfies the

following conditions; otherwise, f(e) = 0.
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1. Job I; is the last type-1 job scheduled on machine M.
2. Job J; is the last type-2 job scheduled on machine M.

3. Batch formed from jobs {I,,, la,+1, - - -, I3, } is the last type-1 batch that has no idle

time prior to its dedicated operations on machine Mj.

4. Batch formed from jobs {Ja,, Jag+1,---,Js, } is the last type-2 batch that has no

idle time prior to its dedicated operations on machine M.
5. Batch formed from jobs {1,,, I, 41, ..., Is } is the last type-1 batch on machine M.
6. Batch formed from jobs {.J,,, Jy,+1, ..., Js, } is the last type-2 batch on machine M.

7. There are 1 (respectively, e5) batches before the critical batch of type-1 job (re-

spectively, type-2), or € batches beforesjob I (or, Ji if it is a type-2 job).
8. There are ¢’ batches on‘machine M.

A binary function g¢(i, j, 04, 01, @2, Ba; 71, 01, 12,02, €,€') = 1 is similarly defined for
type-2 batch formed from jobs {.J,,, Jys41, .- =, J5, } Scheduled last on machine M.

If f(i, ], 00, B1, s, B2, 71, 01, Yoy 035€, €') = 1-we can calculate the completion times of
two stage-two machines in the actual corresponding schedule as follows:

Completion time on machine M; is

S X Epy +Zp1k1+ prm,

k=o1

3X5a2+szk1+ Zka2

k=as

on machine Ms. Therefore, the makespan of the corresponding schedule is

max{sx51+2p1kl+ prm,SXé?erZkaHr Zkaz}'

k=aq k=as

Figure 4.1 shows the configuration of state f(i, j, a1, 51, @z, B2, 71, 01, Y2, 02, €, €).
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y \

Figure 4.1: Gantt chart of one state of function f

The goal is to find some f(n1, ng, *, *, %, %, %, %, %, %, %, %) =1 or

g(ny,ma, %, %, %, %, %, % % % % %) = 1 whose schedule has the minimum makespan.

4.2 Recursions and Run Time Analysis

To determine whether entry.-f (i, jya1, F1,Q2y B2y 71, 01572, 02, €,6") = 1 or 0, we consider

the following four cases.

L. ay # 71,61 # 01,71 # 01

This case implies that the critical batch and the last batch on machine M, are the

different batches, and the last batch contains more than one jobs.
f(iaja o, ﬁh Qa, 627 15 517 V2, 527 g, éJ) =1 1ff(Z_17.77 Qan, 617 Q, 627 T, 51_17 V2, 527 &€, 6,)
=1.

2. Q= 71761 = 61771 = 51

This case specifies that the critical batch is also the last batch on machine M, and

contains a single job Iy, .

Case 2.1: The job before Iy, is a type-1 job.

f(iaja al)ﬁlao@aﬁ%717517727527575/) =1 lff(l_]-aja mla”la04276%(11,51—1,72,527577117
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¢’ — 1) =1 and the following inequality

ni a 61—1 01 b
/
§ X Emy + E :plk,l + E :ka,l + E : Pry SsXe+ E :pllc,l + E :ka,l
k=1 k=1 k=my k=1 k=1

holds for some a and b.
a: the number of type-2 jobs before job I,,.
b: the number of type-2 jobs before job I,,.

In this situation, we have to find the critical batch in the schedule resulted from
deleting the last batch, which is the current critical batch. Since the detail informa-
tion on critical batch is crucial to recursion formulation and makespan computation,
it is necessary to find the critical batch before any further computation. The in-
formation like makespan can be calculated only when the critical batch is known.
We give a recurrence function to examine if one batch which is formed from jobs
{Inys Imys1s - - -5 Iny }, {ma, ni}€ Dp,is a candidate to be the critical batch or not.
A batch is a candidate-means that it is critical for the successor jobs, but it can be
an idle or non-idle batch for the precedingjobs. A critical batch must be a candidate
and cannot induce any idle time.. We define the domain Dp as the feasible range of
my and nq, So

Dp={(my,n1) |1 <my <ny,m; <ng <q —1,n <q < —1}. The recurrence

function is given as follows.

Recursion:
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;

Pf(y+17u7v+17t+ZZ:prk,2)a ifu#ch -1
y+1<u<q -1, and Y " pr, +sx (v—1)
§t+ZZ:m PIIc,Q
Pi(z,y,v,t) =1 1, ifu=q —1

and Y7, pr,, 5 % (v - 1)

<t+ ZZ:m P15

0, otherwise

Goal: Find an instance of m; and n; in Dp such that
Pf<m1, ny, 1, s + Zzlzlnl p[k’l) 2 3

A recurrence relation Py is similarly defined for the scenario in which the last job

on machine M, is a type-2 job.

If a candidate of critical batch which-is-formed from jobs {I,,, In,+1, ..., In, } can
be obtained from the recurrence function, then the next step is to determine if this
candidate is a real critical batch ornot.” The inspection process can be done through
a function similar to P;. The inspection function will examine if the candidate is
an idle or non-idle batch. If a candidate is a non-idle batch, then this candidate is

a critical batch.

If such a critical batch exists, we can get it from function P;. Then, we can go to
the next step to examine if function f is 1 or 0 in this case. We denote the feasible

range of a and b as the domain Dy, so D; = {(a,b) [0 <a < j,a <b<j}.

. n a 01—1
L, if s x Emy T Zklzl Pr. 4 + Zk:l Py, + Zklzml P,

f _
HY (a,) = —sx A P+ s, <O

0, otherwise
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]-7 iff(l._17j7m17n17a27/627q17

51 — 1772752781%178/ - 1) =1
f<i7.j7 Oél,61,062,62,’}/1,51,’}/2,(52,8,8/) =
and \/p, Hl(a,b) =1

0, otherwise

Case 2.2: the job before I5, is a type-2 job.

f(iaja 0517/817a27627717517727527878/> =1 1fg<Z_17.77 m17n17a27627Q1751_17qQ7T27‘€M17

g’ — 1) =1 and the following inequality

ni a 61—1 01 b
/
§ X Emy + § :plk,l + § :ka,l T § : Pr SsXe+ § :plk,l + § :ka,l
k=1 k=1 k=m, k=1 k=1

holds for some a and b.
a: the number of type-2 jobs beforejob 7,,.
b: the number of type-2.jobs before job 1.

Domain D, is defined as the feasible range of a and b, so

Dy ={(a,b)|0 <a <bya<b<j}.

. n a 61—1
17 if s x Emy T+ Zklzl P14 + Ek:l Py, + Eklzml P15

f —
H;(a,b) = —sx e + 221:1 Pr., + 22:1 Pa, =0

0, otherwise

17 ifg@_17j7m17n17a27/827QI7

51 - 17Q27T275m175/ - 1) =1
f(iaja 0517/817&27/827717517727527878/> =
and \/p, Hi(a,b) =1

0, otherwise
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3. a1 =7,01 =01, # &

This case specifies that the critical batch is also the last batch on machine M, and

contains more than one job.

f('iaja (11,61,0[2,/62,’)/1,51,72,52,5,5’) =1 1ff(l_]-7]7 mlan17a?a/62771751_177275275751)

= 1 and the inequality

ni a 61—1 61 b
/
8 X Emy + E DPrpy + E Dy T E i, Ssxe+ E Pr., + E Dy
k=1 k=1 k=my k=1 k=1

holds for some a and b.
a: the number of type-2 jobs before job I,,.
b: the number of type-2 jobs before job Iy, .

Domain Dj is defined as the feasible range of a and b, so

D3 ={a,b|0 <a<ja<b<jk

. n a 01—1
I if s X Emy T Zklzl Pry o Zk:l Py, + Zklzml P,

f _
Hi(a,b) = a0 P S s, <0

0, otherwise

1’ iff(i_lajamlanlaa%ﬁ%

71751 - 17727527875/) =1
f('i,j, al,61,az,ﬁz,/}/l,él,’}/z,(sz’g’g/) =
and \/D3 H?]:(aa b) =1

0, otherwise

4. oy # 71,61 # 01, = 6

This case implies that the critical batch and the last batch on machine M, are

different, and the last batch contains only one job.

Case 4.1: the job before I5, is a type-1 job.
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f(iaja a17/817a27627717517727527878/> =1 1ff<Z_17.77 Oél,61,062,62,7”1,(51—1,’}/2,(52787
g’ —1) =1 and the inequality

61—1

§ X Emy +Zp1k1+Zka1+ZpIk2 > s Xe +Zplkl+zp=]kl

k=aq

holds for some a and b.
a: the number of type-2 jobs before job I,,.
b: the number of type-2 jobs before job Iy, .

Domain Dy is defined as the feasible range of a and b, so

Dy={(a,b)|0 <a <ja<b<j}.

a 01—
1, ifs Xea 4+ Zk 1 Pry T+ Ek:l Py, T Eklzocll Pry. 2
f _
H4<CL,Z))— —SXE +Zk 1plk1+ZZ:1ka,1>0

0, otherwise

17 iff<i_17j70517/817a27627

my, 01 — 1,79, 09,6, — 1) =1
f<i7.j7 a17/817a27627717517727527€76/) =
and \/p, H(a,b) =1

0, otherwise

Case 4.2: the job before I5, is a type-2 job.

f(iaja 0517/817a27627717517727527878/> =1 andg<i_17j7 Odl,61,042,62,7711,(51—1,’}/2,52,5,

¢’ —1) =1 and the inequality
51—1

§ X Emy +Zp1k1+Zka1+ZpIk2 > s Xe +Zp1k1+zp=]k1

k=a
holds for some a and b.
a: the number of type-2 jobs before job I,,.
b: the number of type-2 jobs before job Iy, .
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Domain Dj is defined as the feasible range of a and b, so

Ds={a,b|0 <a<h,a<b<h}.

. a 5 B
1, ifsxeq + 5:51:1 Pr, T Ek:l Py + Ekl:all Piy,
f _
H:(a,b) = —sxe+> 21:1 Pr, + Zzzl Py >0

0, otherwise

]-7 lfg(l_ 17j7a17617a27/627
m1,51 — 1,’)/2,527878/ — 1) =1

f<i7.j7 04175170427627’717517’727527575/) =

and \/ H{ (a,b) =1

0, otherwise

(

Next we analyze the time complexity of the recursive program. There are O(n3njn?)
entries in function f and O(ninir®) entries in function g. We first note that case 2
has a dominant time complexity to other cases. In case 2.1, processing function Py re-
quires a time complexity of O(max{nin;nan})and function H{ is O(n?). Case 2.2 has
the same time complexity with case 2.1. Therefore, the time complexity of case 2 is
O(max{max{n?n,n3n},n?}). In summary, the overall time complexity is O(nin3n®(n, +

ny) X (max{max{n? n2},n})). Our discussion is concluded in the following theorem.

Theorem 4.1. The F(1,2)|incp, fived_seq, s-batch|Cpax problem can be solved in
O(ninin®(ny + ny) x (max{max{n?,n3},n})) time, which is polynomial in terms of the

input length. O

Before closing this chapter, it could be noticed that the development of lower bound by
the dynamic programming algorithm addressed in the previous chapter suggests a possi-
ble adoption of the current dynamic programming algorithm to derive a lower bound
for the general problem subject to incompatible batching without the assumption of
fixed job sequences. More precisely, by adopting the same concept of ideal data set

to problem F(1,2)|incp, s-batch|Chax, we can get an ideal data set which is derived
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from the data set of the original problem. When the ideal data set is available, two
fixed job sequences, representing optimal sequencing of the job of each type, readily
follow. Since we have two fixed job sequences, the problem is now equivalent to the
F(1,2)|incp, fixed_seq, s-batch|Ciax problem. Therefore, both an optimal makespan of
the problem with fixed sequences or the derivation of a lower bound of the original prob-
lem can be computed by the above dynamic programming algorithm in polynomial time.

The following corollary directly follows from Theorem 4.1.

Corollary 4.1. A lower bound of F(1,2)|incp, s-batch|Cyax can be computed in

O(ninin®(ny + ny) x (max{max{n2,n2},n})) time. O
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Chapter 5

Concluding Remarks

In this thesis, we investigated a makespan minimization scheduling problem in a three-
machine two-stage flowshop, known as differentiation flowshop which has a critical ma-
chine at stage one and two independent dedicated machines at stage two. The first-stage
machine process the jobs in batches subject to the assumption of continuous process and
batch availability.

For the batch scheduling problem with compatible items, it is known that the problem
is NP-hard in the strong sense even if the batch setup time is 0. While the problem is
computationally intractable, we propesed an algorithm to derive a lower bound of the
problem in O(n?) time. The lower bound can be used for the design of branch and
bound algorithms or the evaluation of heuristic approaches. Moreover, we investigated
one special case that is polynomially solvable. With two given fixed sequences of two
types of jobs, a polynomial time algorithm is devised to produce the optimal solutions.

On the other hand, for the batch problem with incompatible items under the assump-
tion of fixed sequences, we developed an O(ninyn®(n; + ny) x (max{max{n?, n3},n}))
dynamic programming algorithm for solving the problem in a recursive way. Although
the recursive program can solve this problem in polynomial time, its time complexity
may be unaffordable for larger instances. The development of faster algorithms is clearly
required for practical significance.

For further research, it may be interesting to generalize the studied problem to the

setting with a variable number of parallel dedicated machines, i.e., the number m of
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parallel dedicated machines is part of the input. Even though this problem is clearly
NP-hard in the strong sense, it may be interesting to determine the complexity status of
F(1,m) model in such special cases as (1) all jobs have the same processing time on the
critical machine, or (2) sequences of different types of jobs are fixed and given. Developing
lower bounds and dominance properties for designing branch-and-bound algorithms can

be another worthy direction.
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