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Abstract

With the increasing digital videos in education, entertainment and other multimedia
applications, there is an urgent demand for tools that allow an efficient way for users
to acquire desired video data. Content-based searching, browsing and retrieval is more
natural, friendly and semantically meaningful to users. With the technique of video
compression getting mature, lots of videos-are being stored in compressed form and
accordingly more and more researches-focus'on the feature extractions in compressed
videos especially in MPEG format. This thesis aims to investigate high-level semantic
video features in compressed domain for efficient video retrieval and video browsing.

We propose an approach for video abstraction to generate semantically meaningful
video clips and associated metadata. Based on the concept of long-term consistency of
spatial-temporal relationship between objects in consecutive P-frames, the algorithm
of multi-object tracking is designed to locate the objects and to generate the trajectory
of each object without size constraint. Utilizing the object trajectory coupled with
domain knowledge, the event inference module detects and identifies the events in the
application of tennis sports. Consequently, the event information and metadata of

associated video clips are extracted and the abstraction of video streams is



accomplished.

A novel mechanism is proposed to automatically parse sports videos in compressed
domain and then to construct a concise table of video content employing the
superimposed closed captions and the semantic classes of video shots. The efficient
approach of closed caption localization is proposed to first detect caption frames in
meaningful shots. Then caption frames instead of every frame are selected as targets
for detecting closed captions based on long-term consistency without size constraint.
Besides, in order to support discriminate captions of interest automatically, a novel
tool — font size detector is proposed to recognize the font size of closed captions using
compressed data in MPEG videos.

For effective video retrieval, we propose a high-level motion activity descriptor,
object-based transformed 2D-histogram (T2D-Histogram), which exploits both spatial
and temporal features to characterize video sequences in a semantics-based manner.
The Discrete Cosine Transform (DCT)-is—-applied to convert the object-based
2D-histogram sequences from the ‘time.domain.to the frequency domain. Using this
transform, the original high-dimensional time domain features used to represent
successive frames are significantly reduced to a set of low-dimensional features in
frequency domain. The energy concentration property of DCT allows us to use only a
few DCT coefficients to effectively capture the variations of moving objects. Having
the efficient scheme for video representation, one can perform video retrieval in an
accurate and efficient way.

Furthermore, we propose a high-level compact motion-pattern descriptor, temporal
motion intensity of moving blobs (MIMB) moments, which exploits both spatial
invariants and temporal features to characterize video sequences. The energy
concentration property of DCT allows us to use only a few DCT coefficients to

precisely capture the variations of moving blobs. Compared to the motion activity

iv



descriptors, RLD and SAH, of MPEG-7, the proposed descriptor yield 40% and 21 %
average performance gains over RLD and SAH, respectively.

Comprehensive experiments have been conducted to assess the performance of the
proposed methods. The empirical results show that these methods outperform

state-of-the-art methods with respective various datasets of different characteristics.
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Chapter 1. Introduction

Due to the tremendous growth in the number of digital videos, the development of
video retrieval algorithms that can perform efficient and effective retrieval task is
indispensable. In this proposal, as shown in the top of Fig. 1-1, we propose an
object-based video content parsing and event understanding technique in MPEG
compressed videos to support semantic content indexing and abstraction. Its aim is to
reliably analyze the semantic video contents. Because moving objects and the
corresponding trajectories are the important visual cues for content parsing, methods
of object detection and object tracking are proposed using motion features. Therefore,
a strategy of object-based event inference is introduced according to the
spatio-temporal relationships between objects. Since high-level semantic events are
domain dependent, the semantic.events, ar¢ detected and inferred from the long-term
consistent spatio-temporal relationships between moving objects utilizing specific
domain knowledge. Consequently,~video-“content descriptions for MPEG-7 are
generated automatically to support éfficient content-based retrieval. Here, we use
tennis sports videos as a demonstration of the system. Experimental results show the
high accuracy of event detections and justify the effectiveness of the proposed
mechanism.

Moreover, since object-based features are semantically more meaningful than other
visual features, we propose a high-level motion activity descriptor — 2D histogram, as
shown in the middle of Fig.1-1, that exploits both spatial and temporal features of
moving objects characterize video sequences in a semantic manner. The Discrete
Cosine Transform (DCT) is applied to convert the high-level features from the time
domain to the frequency domain. Using this transform, the original high-dimensional

time domain features used to represent successive frames are significantly reduced to



the low-dimensional features in frequency domain. The energy concentration property
of DCT allows us to use only a few DCT coefficients to precisely represent the
variations of moving objects. Having the proposed mechanism and the efficient

scheme of video representation, one can perform video retrieval in an accurate and

efficient way.
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Fig. 1-1. Overview of the proposed approaches

In addition to employing visual features to characterize video shots, textual
information in closed captions is also important for users to understand overall video
content in a short time. Therefore, as shown in the bottom of Fig. 1-1, a novel
approach of automatic closed caption detection and font size differentiation among
localized text regions in MPEG videos. The tracking-based noise filtering is exploited
to remove the noise of potential captions. When the general closed captions are
localized, the designed tool — font size differentiation is used as a filter to assist in the
discrimination of the specific and significant text captions, like scoreboards in sports
videos.

To provide users a compact form of video content, video structuring is a crucial



step in video content analysis and is the process of extracting temporal structural
information of video sequences. It involves detecting temporal boundaries, identifying
meaningful segments of a video and then building a compact representation of video
content. Therefore, we propose a novel approach to automatically parse MPEG
sequences and then to construct a table of video content based on the textual
information on superimposed closed captions and the semantic classes of video shots.
First, video sequences are efficiently segmented into shots using the approach of
GOP-based video segmentation. Each video shot is then characterized to be a novel
feature — object-based motion activity, which takes into account the spatio-temporal
motion activity among moving objects obtained from motion information of the
compressed data. The shots are then classified into semantic classes when the specific
domain-knowledge is employed. Finally, a clusteting-based algorithm is exploited to
distinguish the target captions —superimposed closed captions from the high-textured
background regions in the shots of linterest—.Having the proposed video structuring
approach, the system can allow users te.browse video sequences at different levels of
detail in an efficient way.

The rest of the thesis is organized as follows. Chapter 2 shows the algorithm of video
event detection in compressed domains. Effective algorithm of closed caption
detection and filtering is illustrated in Chapter 3. Semantic video structuring for
volleyball games is introduced in Chapter 4. Two high-level compact video
descriptors and their corresponding matching measurements are described in Chapter

5 and Chapter 6, respectively. Finally, Chapter 7 concludes this thesis.



Chapter 2. Automatic Content Parsing and Semantic Event

Identification for Sports Video Abstraction and Description

2.1 Introduction

The tremendous growth in the amount of digital videos is driving the need for more
effective methods to access and acquire desired video data. Advances in automatic
content analysis and feature extraction improve capabilities for effectively searching
and filtering videos along perceptual features and semantics. Content-based indexing
provides users natural and friendly query, searching, browsing and retrieving. In order
to provide users more efficient and effective access methods, it is necessary to support
high-level and semantic features for video content representation and indexing. The
need of representation and indexing.for high-level.and semantic features motivates the
emerging standard MPEG-7, formally called-multimedia content description interface
[1]. However, the methods that produce.the desired features are non-normative part of
MPEG-7 and are left open for research and future innovation.

In many practical queries of MPEG-7 database, high-level and semantic features
can support users to acquire desired data more efficiently and effectively. Features of
high-level semantics can be extracted and inferred from the closed caption streams [2],
the edge information [3], the wvariation of camera motions and also from
spatial-temporal relationship of object locations in uncompressed [4-7] or compressed
domain [8-10]. In order to save computation cost and storage space, recently more
researches extract features or segment video data directly in compressed video
domain [11-13] instead of uncompressed raw data. To support semantic indexing of
video content, domain specific knowledge is useful for content identification or

annotation and is often applied accordingly. Some researches focus on classification

4



of video content by identifying significant camera operations [14-15] by using motion
vectors of MPEG video streams with specific domain knowledge. In general, distinct
camera operations would apply to different kinds of video events. For example, in a
basketball game the slam-dunk may correspond to the zoom-in operation and the fast
break may be with panning camera motion. However, shots of the same event may be
regarded as different kinds of events when these shots are taken by various
photographers. Babaguchi et al. [2] search the predefined keywords of American
football games in closed caption streams to find out the possible time intervals, which
contain the event-shots and subsequently apply the low-level color feature to discover
shots similar to predefined events. However, this method would be confronted with
some limitations. The target events would be lost due to the reason that the announcer
or the commentator may not explain the whole'game clearly enough. In addition,
target event detection in sports videos based on simple color features would not work
well while the court of games is4in different-colors.

Although these examples of semantic.content analysis have achieved certain goals
of interest, the features exploited are not general enough. Analyzing video content
based on appearance of moving blobs or objects is more general and clearly
advantageous since it can show the variation of objects in consecutive frames and
even the relationship or event between objects while prior domain knowledge is
applied. In addition, few researches focus on video abstraction based on event
inference directly from compressed videos. Sports videos contain, besides game
competition clips, many clips of commercials, close-up of players or clips that the
competition is not actually ongoing. Hence, it is necessary to remove these
insignificant clips from the large amount of video sequences so that users can browse
or retrieve the desired relevant video data more efficiently.

Therefore, in this chapter, we propose an approach for video abstraction to generate
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semantically meaningful video clips and associated metadata. It exploits the efficient
mechanism of scene change detection and the effective high-level features of
spatial-temporal relationships between objects in MPEG compressed domain. In video
segmentation, the proposed GOP-based scene change detection [16] is utilized to
segment video streams into shots efficiently since video streams are examined GOP
by GOP to detect scene cuts instead of frame by frame and the experimental results
show the effectiveness of the approach. Generally, in sports videos, the clips of sports
competition are the focus of interest. Shots identification mechanism is proposed to
distinguish the interesting shots for further sports event detection. Moreover, objects
should be located for event understanding. Based on the concept of long-term
consistency of spatial-temporal relationship between objects in consecutive P-frames,
the algorithm of multi-object tracking 1s designed‘to locate the objects and to generate
the trajectory of each object without size constraint. Utilizing the object trajectory
coupled with domain knowledge, theteventinference'module detects and identifies the
events in the application of tennis<sperts. Consequently, the event information and
metadata of associated video clips are extracted and the abstraction of video streams
is accomplished. Furthermore, video content descriptions and description schemes
based on the Hierarchical Summary Description Scheme [17] in MPEG-7 are
generated automatically to support high-level video content indexing, retrieval and
browsing.

The rest of the chapter is organized as follows. The overview of the proposed video
abstraction approach is described in section 2.2 and the video segmentation and shots
identification are presented in section 2.3. Section 2.4 presents the method of global
motion estimation and section 2.5 describes the object-tracking algorithm.
Experimental results and discussions are shown in section 2.6. Conclusion and future

work are given in section 2.7.



2.2 Overview of The System Architecture
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Fig. 2-1. Proposed system architecture of video abstraction and description

Fig. 2-1 shows the proposed system architecture for event-based semantic
abstraction of videos. Video streams are first segmented into shots using the proposed
GOP-based video segmentation and segmented shots are further classified using the
color-based scene identification; In.general, sports-shots can be classified as two types
according to the color features. The first-type-tsithe shot consisting of the competition
court or field whose color variation 1s small.throughout the whole shot and the second
type is the shot including the commercials, close-up shots, the crowd, etc. in which
the color variation is relatively significant. Significant video clips that contain
competition court are usually the shots of interest and are thus selected for further
event inference. In order to reduce computation cost, objects are detected using the
motion information in P-frames. However, in sports videos, the camera is not static
because it may pan or tilt to capture the players. To localize the positions of objects
robustly, camera motion must be estimated. Instead of exploiting the motion
estimation model such as affine motion model, the camera motion indicated by the
dominant motion is characterized using the histogram-based method, in which motion
vectors in P-frames are directly extracted and used for camera motion estimation.

Moreover, after objects are tracked, the trajectories of objects in a video shot can be
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obtained and be exploited to infer high-level semantic events of sports videos with the
aid of domain knowledge. Video shots are distinguished into semantically meaningful
clips based on the events inferred in the previous phase. After the thorough procedure,
semantic video clips are obtained and the associated high-level metadata can be used
for automatic generation of video descriptions, video indexing and video abstraction.
For example, three major events in tennis games are: serve and volley, baseline rally
and passing shot. Players always staying near baseline are considered as baseliners
and thus the corresponding event is regarded as baseline-rally. When one of the
players is a serve-and-volleyer, the event would be serve-and-volley or passing shot
according to the final position of the serve-and-volleyer. These events are defined in
terms of not only objects appearing in a time interval but also spatial relationships
between the objects. Therefore, objects must be localized in a time point and further
be tracked in a time interval.

In the experiments, we use tennis:video-streams formatted in MPEG-2 as testing
sequences and its’ temporal tree structure for. domain knowledge is shown in Fig. 2-2.
A match can be played to the best of some sets (the player needs to win two sets out
of three in order to win the match or to win three sets out of five in order to win the
match). A set consists of several games (say six games) and a game is made up of
some points (say four points) [18]. It is worth noting that such a tree can be
constructed for any kind of sports games. The proposed object-based video analysis
scheme can be applied to most kind of sports games and even the well-structured
videos such as news because their video sequences can be structured as a tree and the
video content can be modeled or described using objects. Therefore, given the
structure and the domain knowledge, we are able to adapt the event detection scheme
for specific application domain. The details of each module are explained in the

following sections.
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Fig. 2-2. Structure of typical tennis video program

2.3 Video Segmentation and Shots Selection

2.3.1 GOP-Based Video Segmentation

Video data is segmented into: clips toisefve ds logical units called “shots” or
“scenes”. Fig. 2-3 illustrates-our proposed GOP-based scene change detection
approach [16]. In MPEG-II format [ 19-20],-GOP layer is a random accessed point and
contains GOP header and a series of encoded pictures including I, P and B-frames.
The size of a GOP is about 10 to 20 frames, which is less than the minimum duration
of two consecutive scene changes (about 20 frames) [21].

We first detect possible occurrences of scene change GOP by GOP (inter-GOP)
instead of frame by frame to speed up the computation. The difference between each
consecutive GOP-pair is computed by comparing the I-frames in each consecutive
GOP-pair. If the difference of DC coefficients between these two I-frames is larger
than the threshold, then there may have scene change in between these two GOPs.
Hence, the GOP that contains the scene change frame is located. In the second step —
intra GOP scene change detection, we further compute the ratio of forward to

backward and the ratio of backward to forward motion vectors in B-frames. By



comparing the two ratios with predefined thresholds, the actual frame of scene change
within a GOP can be located. The experimental results in [16] are convincing and

justify that the efficiency and the effectiveness of video segmentation.

Inter-GOP scene change

Step 1. detection -
Calculate the difference in each
consecutive GOP-pair

no

If difference is more than
threshold?

Step 2. Intra-GOP:scene change

detection
Eind out the'actual scene’change
frame within.the GOP.

Fig. 2-3. GOP-based seene,change detection algorithm

2.3.2 Scene ldentification

While the boundary of each shot is detected, the video sequence is segmented into
shots consists of various types of clips, which need further processing to identify the
scenes. In order to detect and infer events, application domain of interest needs to be
specified and knowledge model needs to be incorporated. Taking sports videos as an
example, such as tennis, football and baseball, the clips might be commercials,
close-up shots and competition court shots. However, commercials may not be
interesting to clients and only the ongoing competition shots in sports games are
clients’ concern. Hence, only the clips of interest are meaningful and need to be
processed and analyzed further. Therefore, scene identification is to recognize the
clips of the type desired (say competition court shots).

Focusing on tennis games, we observe that the variation of the intensity of the
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tennis court frame is very small through the whole clip and the value of intensity
variation between consecutive frames is very similar. In contrast, the intensity of the
commercial clips and close-up clips varies significantly in each frame and the
difference of the intensity variance between two neighboring frames is relatively large.
Therefore, the DC-image of each I-frame, which consists of DC coefficients of each
block, is used to compute the intensity variation of I-frames. In addition to the
intensity variance of each I-frame, the variance of each shot is also computed to be the

shot feature. The definition of the frame variance and that of shot variance are shown

in Eq. (2-1) and Eq. (2-2). DC;; means the jth block of the ith frame and N

represents the total number of blocks in a frame. FVar; is the intensity variance of

the frame i in shot s and the variance,of shot s is expressed by SVar,, where M is the
total number of frames in shot s. The |variation of the intensity variance of each
I-frame in a video sequence from frame-0 to frame-1965 is exhibited in Fig. 2-4. In
the video sequence, four clips of tennis court are marked by the dotted ellipses and the
close-up clips are marked by the dotted rectangles. The last clip of this sequence is an
advertisement clip signed by the dotted circle. From Fig. 2-4, we can see that the
intensity variance of the tennis court clips is very small and the intensity values of
them are very similar through the whole clip. Thus, the clips of tennis court can be
indicated and selected by the characteristic of the value of intensity variance being

small in each frame and permanent through the shot.

N N
FVar,; =Y DC},/N—(D.DC, ,/N)* 2-1)

J=1 J=1

M M
SVar, =Y FVar’,/ M — () FVar,/ M)’ (2-2)

i=1 i=1
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Fig. 2-4. Variation of I-frame DC value of a video sequence (frame0-frame1965)

2.4 Camera Motion Compensation

Camera motion estimation is a necessary and important step for object localization.
To compute the camera motion of shots, generally motion vectors of all MBs in
P-frames are used for estimation. However,-most regions in consecutive frames of
competition court clips are very similas.and thuis ' motion information of these regions
cannot actually reflect the information of global motion. Therefore, the adaptive
threshold decision scheme is proposed for camera motion estimation. In addition, the
mechanism of dominant motion computation based on histogram is proposed to
estimate the camera motion efficiently. Section 2.4.1 presents the approach of
adaptive threshold decision and the approach of camera motion estimation is
described in section 2.4.2.

2.4.1 Adaptive Threshold Decision

In order to select the threshold for the global motion estimation adaptively, we need
to detect the outline regions that their intensity is different from the region of
competition court. Hence, the DC coefficient of each block in the first [-frame of each

competition court shot is extracted and used to represent the block intensity. The
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adaptive threshold decision is defined in Eq. (2-3) where T

wloba 1ICANS the threshold

for global motion estimation, N represents the number of macroblocks in an I-frame
and a can be set to a half of the outline region or larger than that because most
regions (say more than half) would have similar motion directions when the camera

pans or tilts.

Tgtobat = (>, MB;— 3 MB) (2-3)
ie[l,N] Jjecourt

Outline Region

T 1 ] T

LTI I ¥

? Court Region

@ LGP E
—E ‘ll r“'_l'ff : b In'.‘ i‘;_‘
Fig. 2-5. (a) original I-frame (b) result-of j;%jj}his court region detection

S,

=

An example of the outline region ¢ :éém)‘i‘l;ii‘é“&emonstrated in Fig. 2-5. The largest
region is the region of tennis court as marked in the bottom of Fig. 2-5 (b) and other
unmarked regions in the top of Fig. 2-5(b) belonging to the outline regions are used
for adaptive threshold decision.
2.4.2 Camera Motion Estimation

To correctly locate the position of players, camera motion should be estimated to
compensate players for the camera motion. In this section, a fast and simplified
camera motion detection approach is proposed. Fig. 2-6 shows the procedure of the
camera motion detection. For the computation efficiency, only the motion vectors of

P-frames are used for camera motion analysis since in general, in a 30 fps video

consecutive P-frames separated by two or three B-frames, are still similar and would
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not vary too much. Therefore, it is sufficient to use the motion information of

P-frames only to detect camera motions.

Motion
Vectors of . . Histogram-Based
P-frame 5| eliable Motion » Dominant Motion
Vectors Selection .
Computation
Compensated
Motion c Moti c Moti
Yectors amera Motion - amera Motion
Compensaton Detection

Fig. 2-6. The approach of camera motion estimation

However, the motion vectors of P-frames or B-frames in MPEG-2 compression
standard are best match and may net actually tepresent correct motions in a frame
because the motion estimation it"MPEG wvideos is for the purpose of data compression.
This problem in the sports video streams‘is more setious since consecutive frames in
competition court clips are very:similar. This will lead to the situation that for a
macroblock in competition court, it is easy to find a good match around its neighbor
in the reference frame. However, this motion estimation does not mean that the
position of the macroblock is correctly located in its reference frame. Therefore, in
order to achieve more robust analysis, it is necessary to select the regions that do not
belong to the area of competition court for global motion estimation, since the motion
vectors of the area of competition court cannot actually reflect the global motion.
Taking the tennis court as an example, in Fig. 2-7, we can observe that motion vectors
in the upper part of the frame are more reliable since these macroblocks are of similar
motion vector magnitude and direction, but in most of the macroblocks within the
area of tennis court, the magnitudes and directions are not consistent and are very

noisy.
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which are more reliable for camera motion estimation, are computed to acquire
dominant motion direction and dominant motion magnitude to further identify
whether camera motion, pan and tilt, happens or not. Using the approach of
histogram-based dominant motion computation, we can avoid matrix multiplications,
which are computationally inefficient when motion vectors are fit to affine motion
models. Furthermore, pan and tilt are two major camera motions in most sports and

can be detected fast and correctly by the proposed motion vector histogram-based
approach. The threshold 7, global that is adaptively decided is used to identify the

existence of camera motion in a frame. The magnitude and direction of camera

motion are obtained by using Eq. (2-4) and Eq. (2-5).
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SDMH ; =#(Bin pyyy 1) +# (Binpyy )+H#(Binpyy ) (2-4)
SDAH ; =#(Binp,yy_y;)+#(Binpyp )+#(Binpy .1 ;) (2-5)

DMH means the dominant magnitude of motion vector histogram, DAH the

dominant direction of motion vector histogram, SDMH,; the summation of three bins

(Binpygr—1:> Binpygr ;and Binpyyy . ;) of magnitude histogram of the i" frame,
SDAH; the summation of three bins ( Binp,p_y;,Binpyy; and Binp,p.y,;) of

direction histogram of the i” frame, and #(Bin ;i) represents the value of the &

bin in the i” frame.

In the ideal situations, macroblocks in an object would have the same motion
magnitude and direction. However, although the entire object moves toward the same
direction, some regions in the object -might: have different but similar motion
magnitudes and direction because objects‘in real world are not rigid in their shape and

size. Consequently, to tolerate “the. error of motion estimations, the values of

Binpyp—y; > Binpyy, and  Binpyy.,;  of  magnitude  histogram

(Binpyg_1; > Binpyy; and Binpyy,,; of direction histogram) are summed to
examine whether the summation SDMH; (SDAH;) is larger than the threshold or

not. If SDMH; and SDAH; are both larger than the threshold T global » CAMera

motion happened, and DMH and DAH are identified as magnitude and direction of
camera motion in frame i. Moreover, motion vectors are compensated with the

magnitude and direction of camera motion for further player detections.

2.5 Events Detection and Description

To infer events of sports games, we need to track the positions of players in

consecutive frames and generate a trajectory for each player. However, the intrinsic

16



problem of motion estimation in MPEG-2 standard mentioned in the previous section
makes players tracking difficult. Moreover, the difficulty is also due to the varied
shape or size of players in consecutive frames. Therefore, in order to solve these
problems, we propose a robust algorithm to track players in consecutive P-frames.
Focusing on tennis videos, we have to recognize the server further by utilizing the
proposed algorithm of server and receiver differentiation. The object-tracking
algorithm is introduced in section 2.5.1 and the server-receiver differentiation
algorithm is shown in section 2.5.2. The description scheme and descriptor in
MPEG-7 for tennis game are presented in section 2.5.3.
2.5.1 Object Tracking Algorithm
2.5.1.1 Object Localization

Object localization algorithm .is to locate potential objects in video shots for
subsequent object tracking. The.overview.-~of the algorithm of potential object
localization is shown in Fig. 2-8. Initially,,we-verify-if there is any camera motion of
each P-frame and compensate motion-vectors with global motion if camera motion
happens. Otherwise, noisy motion vectors are eliminated directly without motion
compensation. Subsequently, motion vectors that have similar magnitude and
direction are clustered together and this group of associated macroblocks of similar
motion vectors is regarded as a potential object. Details are presented in the object
localization algorithm.

Obiject Localization Algorithm

Input: N P-frames of a video clip { P, ... , Py }
Output: N object sets { Obj, n {Obj, n, }s - and {Obj n, }» Where N is total
number of P-frames and Obj;, means the ' object of the ;" P-frame. Each

object size is measured in terms of number of macroblocks.
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1.

Analyze motion vector of inter-coded macroblocks in a P-frame to see if there is
any camera motion.

If there is no camera motion, go to step 3. If camera motion is detected, motion
vectors that are not noisy are compensated with camera motion magnitude and
direction.

Cluster motion vectors that are of similar magnitude and direction into the same

group with region growing approach. MVy | MV | MV

. . MV4 Center MVS
3.1 Set search windows (W) size 3x3 macroblocks

MV MV, | MV, |
3.2 Search all macroblocks (MB) within W, and compute the difference

(diffMag, and diffAng, ) of motion vector magnitude (|M V|) and direction

(£ZMV ) between center MV, and its neighboring eight motion

vectors MV, within W.
diﬁ(Magk = abs( |MVcenter| =5 |MVk| )

diffAng; = abs( LMV . opi— ZMV) )y Where ke [1,8] and MV,

center

is the

motion vector in the center position of W

MYV, € motion vectors within W except MV

center

17 di <T d diffA <T
Forall ke [1,8], flagF, = {0 iffMag, MoihZW isezﬁ‘ 18 < Ly

, where T, is the predefined threshold for motion vector magnitude
andT . is the threshold for motion vector direction

as I, where F

center

is the flag of the

center enter

8
If Y F,>6, mark F,,, of MV,
k=1

center motion vector within W.
Otherwise, set all flags within W to 0.

3.3 Go to step 3.2 until all MBs are processed.
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3.4 Group MBs that are marked as 1 into the same cluster.
3.5 Compute each object center and record its associated macroblocks.
3.6 Generate one object set for each P-frame.

4. Go to step 1 until all P-frames are processed.

y

Camera Motion
Detection

Camera Motion

Parameters
> Threshold ?

Camera Motion

Compensation
Noisy Motion Vector |
Elimination
Motion Vectors
No Clustering

Potential’Objects

Last Frame in the
clip ?

y

Tracking Forward
and Backward

Fig. 2-8. Object localization algorithm

By applying the object localization algorithm, potential objects are located for each
frame and the result is demonstrated in Fig. 2-9. Potential objects are marked by the
bold-line rectangles. We can see that two players are localized except for the frame of
Fig. 2-9(g), in which the top player is not detected. Since the top-player may turn and
twist his body and its shape changes dramatically, therefore its associated
macroblocks cannot find the matched macroblocks. Besides, some noisy objects also
appear in these frames. However, our target is to locate the two players. In order to

automatically recognize the two players and filter out noisy objects, long-term
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consistency of the spatial-temporal relationship of objects in consecutive frames is
employed as the measurement to check if two objects in successive frames are the
same one. Therefore, the forward and backward object-tracking algorithm based on

long-term consistency is proposed and is described in the following section.
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Fig. 2-9. Demonstration of the result of potential object localization, where frame(a)

to frame(h) are numbered as 26, 38, 80, 89, 95, 110, 119 and 125.
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2.5.1.2 Object Tracking Forward and Backward

While potential objects are located, those objects that are not long-term consistent
are regarded as noise and should be removed from the candidates. To compute the
long-term consistency of each object, the motion information of each object in
P-frames is used to track forward and backward. The forward and backward

object-tracking algorithms are demonstrated in Fig. 2-10 and Fig. 2-11 respectively. In

Fig.2-10(a), the first case is that object i Obj, ; of P-frame P, matches an object ;

Obj_,; of P-frame P, , by using the motion vector MV, and object Obj, , ;

continues to search if any object matched in the previous P-frame. However, if there

is no match for Obj,, in P,_, Objy, searches if any object matched in P,_, by
using the motion vector 2MV . which is weighted by the frame distance between
target and reference frames. While ‘there"is"an object Obj, , ;, which matches the

object Obyj,, the frame P, , is set as the target frame and Obj, ,; continues to

find if any object matched in the previous P-frame. The concept of the third case is

similar to the 2™ case except that the weighted motion vector is 3M V.- Furthermore,
if Obj,, cannot find any matched object in the previous three P-frames, the

procedure of object tracking for Obj, ; is terminated.

21



(b)

Fig. 2-10. Three cases of tracking forward (a) object match in previous P-frame (b)

object match in P-frame P,,_, (c) object match in P-frame P, _,

The procedure of tracking backward is shown in Fig. 2-11 and the three cases are
analogous to those of tracking forward. “However, the reference direction of
inter-coded macroblocks is forward reference and thus we can just use the motion
information of objects of next frame to:trace forward to previous frame while we want
to realize backward tracking. Hence, in"Fig. 2-11, the dotted line illustrates

conceptually the backward object tracking from target frame to reference frame. In

Fig. 2-11(a), all objects in frame P,,, are searched to see if any object matches the
object Obj, ;. However, in Fig. 2-11(b), if there is no match in frame P, , the
objects in P,,, are sought to find the matching object by using the weighted motion

vector 2MV, ., ;. The case in Fig. 2-11(c) is similar to the 2™ case and the frame
distance 3 weights the motion vector MV, and the procedure of backward object

tracking is terminated when there is no match for Obj,, in consecutive three

P-frames.
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Fig. 2-11. Three cases of tracking backward (a) object match in next P-frame (b)

object match in 2" P-frame (c) object match in 3™ P-frame

By applying the algorithm of forward and baeckward tracking, we may generate
several trajectories of each object::However,sbased on the long-term consistency of
objects, the longest trajectory is what-we-eeneern and hence other trajectories of the
object are ignored. In addition, the longest. two"trajectories of objects are kept and
these two objects are regarded as the two players.
2.5.2 Events Inference Model

While the object trajectory is acquired, we can infer video events from the object
trajectory by applying some domain knowledge. Thus an event inference model, as
shown in Fig. 2-12, is designed to infer events of tennis game from two trajectories of
top and bottom players. In this chapter, three events of interest are identified: “serve
and volley”, “baseline rallies” and “passing shot” since they are the major occurrences
in tennis competitions. Notice that it is necessary to distinguish between server and
receiver before event inferences. Server should be located for server related events,

“serve and volley” and “passing shot”. Therefore, we propose an algorithm to

differentiate between server and receiver based on the observation that the shape of
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server varies more than receiver in consecutive P-frames from “two players ready”

state to “one player serves” state.

End of One Point

nd of One Point

Two Players
Stay near
Baseline

Players near
Baseline

End of Qne Point

Fig. 2- }.;?.‘T np;&ﬁﬁeng. | !

Server:

Diff = 0.5 Diff = 0.43 Diff=1.6

Receiver:

Diff = 0.5 Diff = 0.25 Diff = 0.2

Fig. 2-13. An example of shape variation of server and receiver
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Algorithm: Server and Receiver Differentiation Algorithm
Input: Top player { 7P, TP,..TP,} and bottom player { BF,BP,,..,BP,} in
consecutive P-frames { P, ... , P, }

Output: {Server, Receiver}

1. Seti=0,Stop=0, TP, =0and BP,,=0

2. Do until Distﬁplyl- = Threshold or DistiB_Iiiz Threshold

i=i+1

Compute the center position of Top Player TP, and Bottom Player BP, respectively

1 & 1 <
CTP,i(xa y) = ; ZMBi,j(xa y)a CBP,i(x’ y) = ; ZMBi,j(xa y)
j=1 j=1

, where \MB;,,MB, ..., MB; ,{€TP. andiiMB; , MB, ,....,MB; , | BP,
m is the number of MBs in -IF,_and » is the number of MBs in BP.
3. If Distl-T_PL,- = H Crp.io1(X, )= Cppi(x57) H </Threshold and
Distl-B_Iil- = H Cpp,i—1(x,¥) = Cpp i (X,)) H < Threshold Then
Compute 7F,_; ® TP, and BF,_; ® BF,
If Norm(Y (TP_; ® TF)) < Norm() (BF,_; ® BP)) Then

BPprob = BPprob +1
Else If Norm() (TF,_; ® TP,))> Norm()_(BP,_; ® BF,)) Then
TPprob = TPprob +1

4. If TP, > BP,.,, Then Server =TP

Else Server = BP
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In the server and receiver differentiation algorithm, we first compute the center of

top and bottom player. The distance of top player (bottom player) between

consecutive P-frames is computed in the third step. If both the distance Distlzplji and

DistiB_Iii are smaller than f macroblocks (say three), it means that players do not

actually move and are still in “two players ready” state. In order to obtain the shape
variations of two players, we utilize the exclusion Boolean operation ® to compute
the shape difference between consecutive P-frames. The center of 7P, and TP,
(BP_, and BP ) are overlapped and macroblocks in 7P, and 7P (BP_ and
BP) are excluded (TP_, ® TP, and BP_, ® BP,). The exclusion results of each
macroblock-pair are summed to be the shape difference between frame i-/ and i.
However, usually one player, either the server or.receiver, is closer to the camera than
the other one and the shape of the player|closer to the camera would be larger in size.
Therefore, to prevent the objectsize from being taken into account, the summation of
the exclusive results should be normalized by the object size which is defined as the
average of the minimum size between the object pair 7P_, and 7P,. The equation of

normalization is defined in Eq. (2-6) and Eq. (2-7). To manifest the size variation of
objects between consecutive P-frames, the shape difference Z:(TPH ®TP) or
Z:(BPH ® BR) is normalized by the minimum value of the size of the object pair

instead of normalizing by the average or maximum size.

Norm(Y.(TP_, ® TP)) = 3"(TP._, ®TR)/ Min( |TF;_,

TP|) (2-6)

2

2

Norm(Y.(BP_, ® BP)) = 3" (BF:_, ®BP)/Min( |BP,_,

BE| ) (2-7)

By applying the proposed server-receiver differentiation algorithm, bottom player

is a potential server if its shape difference is larger than that of top player and hence
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its possibility value BP,,,, is incremented. In contrast, if the shape difference of top

player is larger than that of bottom player, the potential server is the top player and

TP

TP,.,, 1s incremented. Subsequently while the distance Dist;Z); or Distl-B_Iil- is

pro

larger than threshold, two players are recognized as starting moving. The possibility

values (7P,,,, and BP,,,,) of top and bottom player are examined to indicate which
player is the server. Top player is the server if 7P, is larger than BP,,, and

bottom player is the server if BP,,, is larger than TP, .

An example of the result of the server-receiver differentiation algorithm is
demonstrated in Fig. 2-13. The detected object is represented by the bold-line
rectangles. We can see that the normalized difference of the server is larger than the
receiver and it means that the yariation of:.the sizeand shape of the server is more
obvious than the receiver while‘the players-are in'theready state of the state transition
diagram.

The following are the definition of the three events.

1. Baseline Rally

Baseline Rally means that two players stay near baseline of tennis court in
consecutive frames. We can infer baseline rally event from the trajectories of two
players while these two trajectories within a video clip are near the baseline, i.e. the
state transfers from initial state — two players ready state — to one player serves state
and finally falls in “two players near baseline” state.

2. Serve and Volley
The event server and volley — means that the server serves and then approaches
the net to volley, i.e. from “one player serves” state to “server near net” state in

the inference model.
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3. Passing Shot
Passing shot means that a player approaches the service line and then stops. We
can infer this event from a trajectory, which ends its path near the service line, i.e.
the state finally falls in “server near service line” state.

2.5.3 Event Description Scheme

Tennis event description is based on the Hierarchical Summary Description Scheme
of MPEG-7 as shown in Fig. 2-14. While the event of each shot of tennis competition
is inferred, the information of the type of events, the boundary of events and the key
frame of events are generated automatically and the information can be used in the
Highlight Level Description Scheme to support users’ query by high-level semantic
features.

The description scheme of tennis game is demonstrated in the following. The part
in boldface is the highlight level-description seheme that can be generated without any
manual participation. The name of highlight-corresponds to the type of tennis event,
the descriptor of video segment locator.is described by the event boundary and the

position of the key frame in the video sequence is used for the key image locator.

HierarchicalSummar
Yy

5

0,* HighlightLevel

5

HighlightSegment

VideoSegmentLocator KeylmageLocator

Fig. 2-14. Hierarchical Summary Description Scheme [17]
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<?XML version= “1.0"><!DOCTYPE MPEG-7>
<Program>
<Medialnformation>
<MediaProfile>
<Medialnstance>
<Locator>file://sports/tennis/v1.mpg</Locator>
</Medialnstance>
</MediaProfile>
<Players>Pete Sampras vs. Todd Martin</Players>
<Classification>Sports: Tennis</Classification>
</Medialnformation>
</Program>
<Summarization>
<HierarchicalSummary>
<HighlightLevel name= *“Baseline Rally’>
<HighlightSegment name= “Baseline Rally #1"°>
<VideoSegmentL.ocator>
<MediaTime> 0.430.</MediaTime>
</VideoSegmentLocator>
<KeylmageL ocator>
<MediaTime>0<IMediaTime>
</KeylmageL-ocator>
</HighlightSegment>
<I- - more video clips - - >
</HighlightLevel>
<HighlightLevel name="Serve and Volley”>

</HighlightLevel>
<HighlighLevel name=*Passing Shot’>

</HighlightLevel>
.. <I'—=more HighlightLevel -- >
</HierarchicalSummary>

</Summarization>

2.6 Experimental Results and Discussion

In the experiments, we take MPEG-2 compressed video streams as the testing

sequences. The video streams obtained from Star-Sports TV channel are encoded
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adopting the GOP structure of IBBPBBPBBPBBPBB at 30 frames per second with
the resolution of 720 x 480 pixels. The ground truth of the testing videos is shown in
Table 2-1. Taking tennis sports videos as demonstration, two video sequences are
selected from Australia Open and US Open, respectively. The length of the first video
sequence is 50 minutes and the number of the shots of tennis court view is 300, which
are extracted using the proposed approach of scene identification. The length of the
second video sequence is 28 minutes and it contains 146 shots of tennis court view.
The playing styles of the players in these two sequences are different, in which a
classic serve-and-volleyer is present in the first sequence and two players in the
second one are baseliners. The experimental results of tennis event detection are
detailed in the following.

The event inference model shown in Fig. 2412 is used to infer three events —
“baseline rallies”, “serve and velley” and “passing shot” from the results of objects
tracking algorithm. Fig. 2-15 shows the interface of the tennis event detection system.
The system shows the coordinates of the trajectory of two players and the result of
events inference in the “result” field after choosing the video clip in the “Scene ID”
field. From the fields “TP” and “BP” in the system interface, we can see the
coordinates of two players, top player (TP) and bottom player (BP) in the scene. Here
the value 9 in TP field and the value 14 in BP field are the number of detected top

player and the number of detected bottom player in consecutive P-frames within a

shot, respectively.
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Fig. 2-15. The system interface shows an example of tennis event detection
Examples of the experimental results of trajectories detection are shown from
Fig.2-16 to Fig.2-18 and the last frame of each video clip is also displayed to

represent the scene. In Fig. 2-16, we can see that the trajectories of two players are

an example event of “serve and vo I y i ! t 0 player is the server and the final

Fig. 2-16. An example of baseline rally event

31



PP P,

- _.._-.__ = 1 =T = ot ey

N I

r |
r | I

Fig. 2-18. An example of passing shot event

In the experiment, the numbers of effective tennis court clips in these two videos
are 230 and 94, respectively while other clips are the shots in which the ball service is
not successful or the ball boy runs to pick up the ball. The criterion used for judging
whether tennis court clip belongs to the type of ball boy running is that there is a
trajectory appearing along a curve near the middle location of y-coordinate or a
trajectory across the court in a clip. Examples of detecting the trajectory of a ball boy
are shown in Fig. 2-19 and Fig. 2-20. Fig. 2-19 and Fig. 2-20 respectively show the
starting and ending frames of a ball boy running clip in which the ball boy is marked

by an ellipse. We can observe that the trajectory lies near the center position of each
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frame within the clip and hence this clip is classified as the type of ball boy running.

This type of tennis court clips is recognized as insignificant and is filtered out

thereafter.
Table 2-1. Ground truth of the testing video
Video Number of Number of
Sequences Length Tennis Court | Competition
q Shots Shots
Video 1 50 minutes 300 230
Video 2 28 minutes 146 94

o, RS R SRR e S,
' = =L A

o
i
1

£

Fig. 2-20. End-frame of a ball boy running clip

The performance metrics used in the experiments are precision and recall, which
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are collectively used to measure the effectiveness of a retrieval system. Eq. (2-8)
shows the definition of precision and recall, where “Retrieve(q)” means the retrieved

video sequences corresponding to a query sequence ¢, “Relevant(q)” denotes all the
video sequences in the database that are relevant to a query sequence g and || ||

indicates the cardinality of the set. Recall is defined as the ratio between the number
of retrieved relevant video sequences and the total number of relevant video
sequences in the video database, and precision is defined as the ratio between the

number of retrieved relevant video sequences and the number of total retrieved video

sequences.
Recall = ||Retrieve(q) N Relevant(q)”
et = ||Relevant(q)|| (&%)
Procision = ||Retrieve(q) e Relevant(q)”

||Retrieve(q)||

In the first video, the eventS of :213 ¢clips are correctly detected and identified
among the significant 230 clips of tennis court and 17 clips are falsely detected.
Therefore, the average recall is about 90% and the average precision is about 89%. In
the second video, the events of 85 clips are correctly recognized among 94 clips of
tennis court. The average recall is about 89% and the average precision is about 86%.
Table 2-2 shows the details of the number of correct detection, false detection, miss
detection, the recall and the precision of event inference. The overall performance of
precision and recall in the testing video sequences is 87% and 90%, respectively. The
precision of detecting the event of baseline rally in these two videos is 95% and the
recall is 94%. The inference result of baseline rally is better than the other two events
since we assume that the net is located in the middle position in the event inference

model. In addition, the camera may pan or tilt and moreover the size and shape of
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players would change abruptly while the players approach the net. The factor of
abrupt change of object size and shape would lead to the situation that the blocks
match the wrong position in the reference frame. In this case, the position of the
players may not be correctly located, even though the global motion has been
estimated and compensated before the process of object detection.

Table 2-2. Experimental Results of Tennis Event Inference

Results Actual Correct Miss False .

Number of . . . Precision Recall

Scene Type Clips Detection Detection Detection
Baseline Rally 91 87 4 5 95% 96%
(BR) 65 60 5 3 95% 92%
Serve and Vo||ey 115 106 9 6 95% 92%
(SV) 19 16 3 4 80% 84%
Passing Shot 24 20 4 6 7% 83%
(PS) 10 9 1 2 82% 90%
Average 87% 90%

The precision and recall of passing shot detected though are satisfactory but not so
high as expected. The number of miss-detection, of passing shot in the first video is 4
in which 2 clips are classified as baseline rally event and other 2 clips are regarded as
serve and volley. However, the occurrence frequency of passing shots is relative low
in a tennis game, especially in the games of baseline-rally style such as the second
testing video. Usually, the activity area of passing shot event is confined to the area
around service line. Since the position of the service line is pre-assumed, while the
camera moves too dramatically, it is difficult to keep track of the service line area.
After serving the ball, the server may still stays near the baseline while the ball is
subsequently hit and passed back very fast by the receiver. In this case, the event

would be regarded as baseline rally event.

2.7 Summary

In this chapter, we propose an object-based video content parsing and event
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understanding technique in MPEG compressed videos to support semantic content
indexing and abstraction. GOP-based video segmentation is exploited to efficiently
segment video streams into shots in compressed domain. The shots of tennis court are
recognized and selected by the module of scene identification. The insignificant shots
of tennis court like the fault service, or so called ball boy running, are removed based
on the detected trajectory of the ball boy. The proposed object-tracking algorithm
employing the information of motion vectors is utilized to locate the position of
moving objects in consecutive P-frames and to generate trajectory of the objects with
prominent movement. Furthermore, video events can be inferred from the generated
trajectories based on the inference model with specific domain knowledge.
Experimental results are convincing and verify that the proposed approach can
effectively detect events of tennis games and generate the description of tennis videos
automatically. Therefore, by utilizing the proposed mechanism and applying domain
knowledge, video streams can be automatically parsed and annotated, and thus the
associated metadata of the inferred high-level semantic clips can be used to
automatically structure videos, summarize videos and generate the description scheme
(DS) and descriptor (D) of video content for MPEG-7 standard.

The proposed mechanism also provides several reusable modules. For example, the
module of scene identification can be used to recognize the shots of full or partial
view of athletic field of football, soccer, baseball and volleyball when the
corresponding domain knowledge is employed. While these kinds of shots are
acquired, sports events can be inferred from the spatial-temporal relationship of
objects or some active regions in consecutive frames. For example, in baseball games,
the striker scene, which is normally composed of a catcher in the middle of the scene,
a striker in the left or right and an umpire in the top, can be identified according to the

distribution of these objects. Based on the proposed mechanism, we have successfully
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applied some of the proposed modules to semantic indexing of volleyball games [22],
in which the major events of “service”, “full-court competition” and “close-up” are
recognized. In addition, the multi-object tracking algorithm can also be used in the
localization and tracking of text captions [23] and in surveillance system to detect
suspicious circumstances and the alarm can be triggered according to the detected
events.

In the future, we will develop some global edge detection approach to detect the
boundary of tennis court in MPEG videos for improving the accuracy of event
detections. We will extend the approach of motion-based semantic event detection to
other kinds of sports video to extract semantically meaningful video events.
Concurrently, the description schemes and descriptors generations for effective

content-based query are also the future research.
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Chapter 3. Automatic Closed Caption Detection and
Filtering in MPEG Videos for Video Structuring

3.1 Introduction

With the increasing digital videos in education, entertainment and other multimedia

applications, there is an urgent demand for tools that allow an efficient way for users
to acquire desired video data. Content-based searching, browsing and retrieval is more
natural, friendly and semantically meaningful to users. The need of content-based
multimedia retrieval motivates the research of feature extractions of the information
embedded in text, image, audio and video. With the technique of video compression
getting mature, lots of videos are being stored in compressed form and accordingly
more and more researches focusion the feature.extractions in compressed videos
especially in MPEG format. For instances, cdge features are extracted directly from
MPEG compressed videos to detect scene-change [24] and captions are processed and
inserted into compressed video frames.[25]. Features, like chrominance, shape and
texture are directly extracted from MPEG videos to detect face regions [26-27].
Videos in compressed form are analyzed and parsed for supporting video browsing
[28].
However, textual information is semantically more meaningful and attracts increasing
researches on closed caption detection in video frames [29-37]. The researches [31-34]
detect closed captions in pixel domain. In [36-37], they proposed to detect closed
captions in specific areas. However, it is impractical to localize closed captions in
specific areas of a frame since in different video sources closed captions normally do
not appear in a fixed position.

A number of previous researches extract closed captions from still images and

video frames [33-35][38-39] with a constraint that characters are bounded in size.
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Besides, these approaches usually require the property that text has a good contrast
from the background. However, text region localization with size constraint is not
practical especially for the cases that those captions are small in size but are very
significant and meaningful. For example, in sports videos, the superimposed
scoreboards show the intermediate results between competitors and present the match
as clearly as possible without interference.

There has been very little effort to extract features in compressed domain to detect
closed captions in videos. Zhong et al. [29] and Zhang and Chua [30] detect large
closed captions frame-by-frame in MPEG videos using DCT AC coefficients to obtain
texture information in I-frames without exploiting the temporal information in
consecutive frames. However, it is impractical and inefficient to detect closed
captions in each frame. Due to the:temporal nature. of long-term consistency of closed
captions over continuous video-frames, it would be more robust to detect the closed
caption based on its spatial-tempotal consistency.” Gargi et al. [35] perform text
detection by counting the number ‘of intra-coded blocks in P and B frames based on
the assumption that the background is static. Hence, it is vulnerable to abrupt and
significant camera motion. Besides, this approach is only applied to the P and B
frames and does not handle captions that appear in the I-frames.

In this chapter, in order to detect closed captions efficiently and flexibly, we
propose an approach for compressed videos to detect caption frames in meaningful
shots. Then caption frames instead of every frame are selected as targets for localizing
closed captions without size constraint while considering long-term consistency of
closed captions over continuous caption frames for removing noise. Moreover, we
propose a novel tool — font size detector to identify font size in compressed videos.
Using this tool, after the targeted font size is indicated, we can allow users to

automatically discriminate captions of interest instead of captions in the presumed
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position. It is worth noticing that font size recognition is a critical step in the process
of video OCR since a bottleneck for recognizing characters is due to the variation of
text font and size [40-43]. Therefore, this tool can be used as a pre-filter to quickly
signal the potential caption text and thus reduce the amount of data that needs to be
processed.

The proposed system architecture is shown in Fig. 3-1. All the tasks are
accomplished in compressed domain. GOP-based video segmentation [16] is
exploited to efficiently segment video into shots. The color-based shot identification is
proposed to automatically identify meaningful shots. Caption frames in these shots are
detected by computing the variation of DCT AC energy both in the horizontal and
vertical directions. In addition, we detect closed captions using the weighted
horizontal-vertical DCT AC coefficients. To detect closed captions robustly, each
candidate closed caption is verified further by computing its long-term consistency
that is estimated over the backwardshot.-the forward shot and the shot itself. After
closed captions are obtained, we ‘differentiate the font size of each closed caption
based on horizontal projection profile of DCT AC energy in the vertical direction.
Captions of interest can then be identified by the font size and size variance. Finally,
captions of interest and the meaningful shots can be employed together to construct a
high-level concise table of video content.

The rest of the chapter is organized as follows. Section 3-2 describes the
color-based shot identification. Section 3-3 presents the proposed approach of closed
caption localization. Section 3-4 shows the experimental results and the prototype
system of video content visualization. The conclusion and future works are given in

section 3-5.
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Captions Differentiation i Localization
Consistency

Fig.3-1. Overview of the system architecture

3.2 Shot Identification
3.2.1 Video Segmentation

Video data is segmented into clips to serve as logical units called “shots” or
“scenes”. In MPEG-2 format, GOP layer is a random accessed point and contains
GOP header and a series of encoded pictures including I, P and B-frame. The size of a
GOP is about 10 to 20 frames, which is less than the minimum duration of two
consecutive scene changes (about 20/ frames). Instead of checking frame-by-frame, we
first detect possible occurrences of scene change GOP-by-GOP (inter-GOP). The
difference between each consecutive GOP-pair+is computed by comparing the
corresponding I-frames. If the difference of DC coefficients between these two
I-frames is larger than the threshold, then there might exist scene change in between
these two GOPs. Hence, the GOP that might contain the scene change frames is
located. In the second step — intra GOP scene change detection, we further use the
ratio of forward and backward motion vectors to find out the actual frame of scene
change within a GOP. By this approach, the experimental results are encouraging and
prove that the scene change detection is efficient for video segmentation.

3.2.2 Shot Identification

While the boundary of each shot is detected, the video sequence is segmented into

shots consisting of the advertisement, close-up and court-view. Closed captions can

then be detected in each video shot. However, it is impractical to detect closed
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captions in all video shots. In sports videos, the shots of court-view are our focus
since the matches of the sports are primarily shown in the shots of court-view and the
scoreboards are presented mostly in these kinds of shots. Therefore, scene
identification approach is proposed to identify the shots of court-view.

To recognize the shots of court-view, it is worth noticing that the variation of the
intensity in the court-view frames is very small through a whole clip and the value of
intensity variation between consecutive frames is very similar. In contrast, the
intensity of the advertisement and close-up varies significantly in each frame and the
difference of the variance of intensity between two neighboring frames is relatively
large. Therefore, the intensity variation within a video shot can be exploited to
identify the shots of court view. In order to efficiently obtain the intensity variance of

each frames and that of a video shot, DC-images of [-frames are extracted to compute

the intensity variance. The framejvariance F£yar"° and the shot variance Syar, are

defined by
DC S 2 S 2
FVar!© =% DC},/N—-(D.DC, ;/N)*, (3-1)
j=1 Jj=1
and
M M
SVar, = (FVar5)* IM = (Y Fvar IM)* (3-2)
i=1 i=1

where pc,, denotes the DC coefficient of the jth block in the ith frame, N represents

the total number of blocks in a frame, and M denotes the total number of frames in
shot s.
Based on the fact that the intensity variance of a court-view frame is very small

through a whole clip, shots are regarded as the type of court-view Shotc,,,, by
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Shot cy, = {Shots

FVarfiC <08 frame and SVarg <6y, Vi€ [I,N]} (3-3)

where s,,. and ¢, are the predefined thresholds.

shot
In order to demonstrate the applicability of the proposed shot identification, the
variation of the intensity variance of each I-frame in sports videos including tennis,

football and baseball is exhibited in Fig. 3-2.
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Fig. 3-2. Variation of I-frame DC value (a) tennis; (b) football; (c) baseball

Fig. 3-2(a) shows a tennis video composed of four tennis court shots, three close-up
shots and a commercial shot. Fig. 3-2(b) introduces a football sequence consisting of
close-up shots and football field shots. A baseball sequence is presented in Fig. 3-2(c)
including pitching shots, baseball field shots and close-up shots. From Fig. 3-2, we
can observe that the intensity variance of the type of court-view is very small and the

value is very similar through a whole clip. Thus, the clips of court-view can be
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indicated and selected by the characteristic that the value of intensity variance Fyar>

is small in each individual frame and is consistent over the whole shot. Therefore, the
proposed approach of shot identification can be applied to identify court-view shots of
sports videos, in which the view of a match consists of the intensity-consistent

background of a court or athletic field.

3.3 Closed Caption Localization

MPEG-2 Potential Caption Region
I-frames | DCT AC Coefficients N Detection |

Extraction " (Weighted Horizontal and

Vertical AC Coefficients)

Text Candidate Caption Region
Captions Examinatior_1 Region Merging and Nc_)ise
(Long-Term Consistency -t Removal by Morphological -
Computation by Reference Operation
Forward and Backward Shots)

Fig. 3-3. The approach of closed. caption localization

In this section, we shall elaborate how to'detect caption frames and how to detect
closed captions in caption frames. After shots of interest are identified, the closed
captions, like the scoreboard, are then detected in these significant shots. However, in
general, the scoreboard does not always appear in the frames continuously through a
whole clip. It comes up for some while, disappears and comes up again. Therefore, to
avoid the time-consuming overhead of closed caption examination frame-by-frame,
caption frames should be detected first. The proposed closed caption localization is
shown in Fig. 3-3. In the process of caption detection, DCT AC coefficients of
I-frames in MPEG-2 video are extracted and are used to determine the energy
variation of 8x8 blocks in horizontal and vertical directions, respectively. Potential

caption regions are indicated using the weighted horizontal-vertical AC coefficients
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and then the fragmented regions are merged using the morphological operations. For
more robust localization of closed captions, the spatial-temporal relationship over
consecutive frames is exploited to compute the long-term consistency of each
candidate caption region by referring certain I-frames in forward and backward shots.
Localized closed caption regions may contain the scoreboard, or the logo of a certain
channel or some billboard. However, the scoreboard is what viewers are most
interested in. Therefore, based on the observation that these different types of closed
captions are generally different in font size, we propose an approach to discriminate
font size among localized captions. The details of caption frame detection are
described in section 3.3.1 and the approach of closed caption localization is shown in
section 3.3.2. Section 3.3.3 presents the approach of font size differentiation.

3.3.1 Caption Frame Detection

Caption frame detection is an essential step for.closed caption localization because
captions may disappear in some frames.-and-then appear subsequently. Therefore, to
avoid detecting closed captions frame=by-frame, we first identify the possible frames
in which captions might be present. However, the caption size of closed captions in
the shots of court-view is usually very small. Under this circumstance, the change of
the AC energy of the entire frame with the appearance or disappearance of the small
caption would not result in significant variation. It means that the variance of the AC
energy obtained from an entire frame cannot be used as a measurement of the
possibility of the presence of a small caption.

In order to robustly detect closed captions without size constraint, each I-frame is
divided into an appropriate number of regions (say R). However, the size of a region
should be moderate to reflect the actual variation of appearance or disappearance of
small captions. If the size of a divided region were too small, any slight change of

color or texture would incur quite prominent variation of AC energy. Accordingly, in
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order to detect the appearance of super-imposed closed captions in four corner areas
as well as in the middle of a frame, the number of regions R here can be set to six and

its division method is shown in Fig. 4. Based on the frame division method, the

variance Rvar/; of AC coefficients of each region r in the ith frame of shot s is

computed by
N N
RVar]; =Y 3" AC}, IN=(Q AC,, ;INY, r=1,2, .., R (3-4)
= =1 hiv

where 4c, v denotes the horizontal AC coefficients from 4c,, to uc,, and the

vertical AC coefficients from ac,, to 4c,, in region » and N is the total number of

blocks in region r. The DCT AC coefficients used are shown in Fig. 3-5.

Fig. 3-4. An original frame is divided into R regions (e.g. R = 6)

DC ACO,I ACO,Z ACO,3 AC(),4 ACO,S AC(),6 AC0'7
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AC
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Fig. 3-5. DCT AC coefficients used in text caption detection
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Using the energy variance Rrvar/, of each region, the method proposed to
determine caption frames is illustrated as follows:
For each region r, (3-5)
If Diff(RVar,,,, ,RVar];) = -6, captions may disappear in frame (i+1)
If Diff(RVar,,,, ,RVar,;) = 0, captions may appear in frame (i+1)
where Diff( Rvar],,,,RVar];) = RVarl.,-Rvar],. In the method, rvar, of region-r in
frame i+/ is compared with Rrvay, of region-r of frame i. If the difference between
RVar].,, and RVar, is larger than a threshold ¢ (3000), it means the texture of
region-7 in frame i+/ is more complex than that of region-r in frame i, i.e., closed
captions may be superimposed in frame i+/. Similarly, if the difference between

RVar!

s,i+1

and Rvar/, is smaller than the threshold -9, the texture of region-» in frame
i+1 becomes less complex than that of region-rin frame i, i.e., closed captions in
frame i may disappear in frame #+/.

Examples of caption frame -detec¢tion-are-demonstrated in Fig. 3-6. Fig. 3-6(a)
shows the detection of caption frames - with. small closed captions presented. We can
see that the curve of DCT AC variance Rrvar, of region-1 drops abruptly in the 18"
I-frame and rises in 39™ I-frame since the scoreboard disappears from the 18" I-frame
to the 38" I-frame in the area of region-1 and then appears again in the 39" I-frame.
Similarly, detection of caption frames with a large closed caption presented is
demonstrated in Fig. 3-6(b). The text region covering both region-5 and region-6
appears in the 47™ I-frame and is presented through the 59™ I-frame and disappears in
the 60" I-frame. Although the variance of AC energy in region-5 is larger than that in
region-6 due to the text of the scoreboard presented in the left side, the variance of AC
energy of both regions conforms to Eq. (3-5). Therefore, video frames from the 47" to
the 59™ I-frames are indicated as caption frames and can be selected for closed

caption localization.
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Fig. 3-6. Demonstration of caption frame detection: (a) small closed caption (b) large

closed caption

3.3.2 Closed Caption Localization

While the caption frames are identified, we then locate the potential caption regions
in these frames by utilizing the gradient energy obtained from the horizontal and
vertical DCT AC coefficients. We can observe the fact that closed captions generally
appear in rectangular form and the AC energy in the horizontal direction would be
larger than that in the vertical direction since distance between characters is fairly

small and the distance between two rows of text is relatively large. Therefore, we
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assign higher weight to horizontal coefficients than that to vertical coefficients. The
weighted gradient energy of an 8x8 block £ used as a measurement for evaluating the

possibility of a text block can be defined as follows:

E =|(w,E,) +(WE,) (3-6)
E,= Y |AC,,|, hi=1h2=7

h1<h<h2 |
E, = Y |AC, |, vI=1,v2=7

vI<y<y2
If the energy E of a block is larger than a predefined threshold, this block is
regarded as a potential text block. Otherwise, the block would be considered as a
non-text block and be filtered out without further processing. Besides, in order to save

computation cost, we select only 3 I-frames (first, middle and last) as representative

frames in a shot for closed caption.ic call

B ATEN N Stk

(a) - o o) 25

1@
Fig. 3-7. Illustration of intermediate results of closed caption localization (a)

Original frame (b) Closed caption detection (c) Result after applying morphological

operation (d) Result after long-term consistency verification

The result of closed caption localization is demonstrated in Fig.3-7 with w, set to

0.7 and w, to 0.3. Although the scoreboard and the trademark in Fig. 3-7(b) in the

upper part of the frame are all located and indicated, caption regions are fragmentary
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and some noisy regions remains. Therefore, we adopt a morphological operator in the
size of 1x5 blocks to merge fragmentary text regions and the result is demonstrated in
Fig.3-6(c). Afterward, the merged text regions are further verified by computing the
long-term consistency. For long-term consistency checking, we select another two
I-frames as temporal reference, the last I-frame of the forward shot ( P ) and the first
I-frame of the backward shot (/) as depicted in Fig. 3-8, where 7,, 7, and T,
are the first, middle and the last I-frames of the specific shot. One possible
measurement of the long-term coherence of text blocks in potential regions is to check
if the text blocks of a potential caption region appear more than half of the time in a
shot. That is text blocks appear in more than or equal to three times among the five
representative five I-frames.

Here, we exploit the position, dntensity and texture information of potential text

blocks among these representative I-frames (Lz,7/+7,,,7, and Fy) to measure the

temporal coherence as defined by

2 - —
D> (DCy —DC)Ey —E)
C — k=1 >

\/i(chk -DC) i(EBk -E)*
k=1 k=1

fi<c<i (3-7)

where DC, denotes the value of DC coefficient of B,, pC is the average of DC,
and DC, , E, represents the weighted gradient energy £ of B, as defined in Eq.

(3-6) and E is the average of E, and E, . A block is characterized by its

intensity represented by the DC coefficient and also by its texture obtained from AC
coefficients. We compute the correlation C to measure the similarity between two

blocks B, and B, , which are in the same corresponding position in their respective

k+1°

frame i and frame i+/. If a value C of a block pair is larger than 5., these two blocks

are regarded as the same. To estimate the temporal coherence of potential text blocks,
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we need to compute the pair wise correlation C four times among the 5 representative
I-frames as depicted by the arrow-lines in Fig. 3-8. Therefore, a text block is
long-term consistent in the specific video shot only when more than half of the times
the pair wise I-frames correlation C is larger than s,..

The result of long-term consistency checking of text blocks is demonstrated in Fig.
3-7(d). We can see that the scoreboard and the trademark are all successfully localized
and most of the noise is removed. The proposed closed caption localization can also
be applied to other kinds of videos such as baseball, news and volleyball as
demonstrated in Fig. 3-9. In Fig. 3-8(a), we can observe that the closed caption

primarily composed of Chinese characters is also localized correctly.

- T — Backward
Shot "o B specificShot Shot
e L A5 :h"#
A

Fig. 3-8. Potential caption regi%ff%hr;:fu;‘ﬂ;éfveriﬁed based on the long-term

consistency

(a) (b) (©)

Fig. 3-9. Examples of closed caption localization (a) baseball; (b) news; (c) volleyball



3.3.3 Font Size Differentiation

From Fig. 3-7(d), we can notice that the scoreboard in the left upper corner and the
trademark in the right upper corner are all successfully detected. Since scoreboards
can be used for the content structuring of sports videos, the issue of separating out the
captions in the scoreboard is one of our concerns. Hence, the tool — font size detector
is proposed to automatically discriminate the font size as a support in the
discrimination of scoreboards. To detect the font size, the gradient energy of each text
block is exploited. Since a block consisting of characters will have much larger
gradient energy than that of a block consisting of blank space, the distance between
two character blocks can thus be determined by evaluating the distance between peak
gradient values among blocks in a row or column. It means that the font size can be
evaluated by measuring the distance between blocks with peak gradient value (i.e., the
periodicity of peak values). The gradient energy.in-the vertical direction instead of
horizontal direction is exploited since the-blank space in between two text rows is
generally larger than that between: two. letters.and hence the variation of gradient

energy in the vertical direction would present in more regular pattern.

In addition, to obtain robust periodicity, we compute the DCT coefficients of the

8x8 overlap-block between two neighboring blocks as defined in Eq. (3-8). A

overlap-block B,/ s Shown in Fig. 3-10 comprises lower portion of the top
neighboring 8x8 block B, and upper portion of the bottom neighboring block B5,,
where 7, and 7, are the identity matrix in the dimension of w0 x w0 and wl x wl,
respectively. More robust results would be achieved if more overlap-blocks are
computed and exploited. For example, w0 and w/ can be respectively set to 1 and 7, 2
and 6, 3 and 5, etc. to acquire more overlap-blocks for more accurate estimation of

font size.
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Fig. 3-11. The proposed approach of font size differentiation in compressed domain

Fig. 3-11 shows the proposed approach of font size differentiation, in which the
periodicity and variance are estimated for each block column. However, localized
closed captions like the example in the top of Fig. 3-11 may not be complete in shape
because some pieces with low gradient energy are filtered out. Therefore, to achieve

robust font size differentiation, a region that forms a rectangular in the localized
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caption is determined for font size computation. Font size differentiation is performed
on each block column in the selected region of the closed caption, where a block
column depicted in Fig. 3-11 is defined as a whole column of blocks. While the AC
energy of each block is extracted, the curve of the variation of AC energy for each
block column is checked to locate each local maximum. We can observe that the
region containing the boundary of closed captions would have conspicuous texture
variation in the vertical direction and the value of the gradient energy would be
relatively high. Therefore the local maximum of the curve of vertical AC gradient
energy is regarded as the boundary of closed captions. While all local maximums are
recognized, we must filter out noise and select reliable curve peaks for further
verification. Due to the fact that the first and the last local maximums usually reflect
the boundary of closed captions, hence we select. the first and the last peaks of the
curve and compute the average of the value of these two peaks as the threshold
adaptively for noise filtering. If-the value-of-a-peak 1s smaller than the threshold, the
peak is filtered out. Otherwise, the peak is kept.for font size computation. Therefore,
the periodicity of each block column 7, is computed by averaging the distance

between two peaks of the curve of AC energy. Finally, the average periodicity 7 and

the periodicity variance V of the closed caption are obtained by
r--3r, (3-9)

and
N N 2
V:ZT[Z/N—(ZT[/N] (3-10)
i=1 i=1

where N is the total number of block columns in the selected area of the closed
caption.

The results of font size analysis of the scoreboard and the trademark in Fig.3-12 are

54



demonstrated in Fig. 3-13 and Fig. 3-14. In the example, each column of the
scoreboard and the trademark consists of 9 blocks, in which 5 blocks are original and
4 overlap-blocks are interpolated. For robustness of font size measurement, we should
select some portion of localized closed caption, in which the height of each block
column is consistent. Therefore, we compute 7 for first five block columns because
the first part “Doki” of the localized scoreboard consists of five block columns of
consistent height and several non-text blocks separate the second part of the
scoreboard. Hence, in Fig. 3-13(b), the block columns of the trademark are all
selected for font size computation because the height of each block column is

consistent.

Dokic
Cavenport

(@) i ()
Fig. 3-12. The localizeéi_ l'eloseti-ﬂg‘;ﬁam (él) séoreboard (b) trademark
From Fig. 3-13 and Fig. 3—i21,'.'wél can sec -tﬁ.:clt the average distance 7T of the
scoreboard is about 2.2 which is smaller than 2.9 of the trademark. Besides, the
variance V of the row distance of blank space among block columns of the scoreboard
is 0.05 which is also smaller than 0.8 of the trademark. Hence, we can correctly
discriminate the scoreboard from trademark since the font size of the scoreboard is

smaller than that of the trademark and the font size is of better regularity in the

scoreboard than that in the trademark.
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Fig. 3-13. Variation of AC energy of the scoreboard in Fig. 3-12(a) (7=2.2, V'=0.05)
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Fig. 3-14. Variation of AC energy of the trademark in Fig. 3-12(b) (7=2.9, V'=0.8)

Furthermore, in order to estimate periodicity of font size more efficiently, we
exploit the concept of the projection analysis of a print line [44-45]. Since it can serve

for the detection of blank space between successive letters, we thus compute the

horizontal projection profile P, of each block row P, by summing up the vertical

AC coefficients of the blocks. P, 1is defined as follows:

P, = {Py|Py =WZ_‘:2|ACV,O ,0<y<Hp—1, AC, e Bw} (3-11)

x=0v=1

where H, is the summation of the number of original blocks (H) and the number of
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overlap-blocks (H-1) of a block column in an H x W caption region, and B, , is a
block of coordinate (x, y). By this method, we compute the periodicity 7 of each
localized closed caption once instead of inspection of the periodicity 7 and of the
variance V in each block column. The horizontal projection profile of the scoreboard
and the trademark is demonstrated in Fig. 3-15, where the average periodicity 7 of the
scoreboard and the trademark is about 2 and 3, respectively. Using horizontal
projection profile, font size can be detected more efficiently since one curve of AC

energy variation needs to be computed for a closed caption.

. . . —— Trademark
Horizontal Projection Profile —m Seoreboard
5000
9?’ 4000
O
S 3000 |
<
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S
1000
0
0 ) 8 10
Row Number

Fig. 3-15. Horizontal projection profile of DCT AC energy of the scoreboard and the
trademark in Fig. 3-12(a) and Fig. 3-12(b), respectively

3.4 Experimental Results and Visualization System

3.4.1 Experimental Results

In the experiment, testing dataset consisted of four kinds of videos including tennis,
baseball, volleyball and news. Two tennis videos selected from US Open and
Australia Open, respectively were recorded from the Star-Sport TV channel. A
volleyball video was recorded from ESPN TV channel and a baseball game was
recorded from VL-Sport TV channel. A news video was selected from MPEG-7
testing dataset. The testing sequences were encoded in MPEG-2 format with the GOP
structure IBBPBBPBBPBBPBB at 30 fps. The length of the first tennis video and the
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news video was about 50 minutes, and the length of the second tennis video was about
30 minutes. The length of the volleyball video and the baseball video was about 40
minutes and 60minutes, respectively.

The ground truth of the number of caption I-frames of tennis videos shown in Table
1 was 903 and 414, respectively. In Table 2, there were totally 42183 text blocks in
the representative frames of tennis video 1 and totally 25680 text blocks of tennis
video 2. The number of text blocks in baseball was larger than other videos due to the
large superimposed captions. The results of caption frame detection and closed
caption localization were evaluated by estimating the precision and recall. The
experimental result of caption frame detection was shown in Table 3-1, and the best
performance was achieved in the first tennis video. In tennis video 1, the recall was up
to 100% and the precision was about 97%. There were 26 frames of false detection
due to the factor that the scereboard was-not. presented but some high-texture
billboards appear with significant camera-movement. In this case, we would detect
large variation in the region wheré<billboards were presented. In tennis video 2, the
precision of caption frame detection was up to 98% and the recall was about 93%.
The number of frames of miss detection was 31 because of the low intensity of the
scoreboard in this video sequence. Besides, the color of the scoreboard and that of the
tennis court were quite similar and hence it would be more difficult for caption
detection in the case of low contrast between closed captions and the background. The
worst case in detecting caption frames was presented in the baseball video since the
background of several shot types was highly textured, such as the pitching shots and
the audience shots. Therefore, when the camera moved, high-textured regions would
be considered as the presence of captions. However, recall rate in detecting caption

frames in the baseball video remained more than 80%.
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Table 3-1. Performance of caption frame detection

Frames of | Framesof | Frames of

%;C:)li?odnlrrlgr::; Corre_ct Falsg Mis§ FQA;Z Precision | Recall
Detection Detection Detection
Tennis 1
903 903 26 0 0% 97% 100 %
Tennis 2
414 383 8 31 7% 98% 93%
Volleyball
602 578 57 24 4% 91% 96 %
Baseball
1554 1290 407 264 24% 76% 83%
News
960 873 113 87 9% 88% 91%
Average 90% 93%

The results of closed caption localization were shown in Table 3-2. In tennis video
1 41030 text-blocks were correctly detected, 347 blocks were falsely detected and 395
text blocks were missed. The precision was-about 99% and the recall was about 97%.
In tennis video 2, 24624 text blocks were detected, 732 blocks were falsely detected
and totally 1056 text blocks were missed. Hence, the precision and recall of tennis
video 2 was 97% and 95%, respectively. Some’ text blocks were missed since the
background of the closed caption was transparent and would change with the
background while camera moved. In this case, if the texture of the background was
similar to the closed caption, the letters of captions cannot reflect the large variation
in gradient energy and some text blocks would be missed. The precision rate of the
baseball video in detecting text blocks was 81% due to the highly textured
background. However, the recall rate was up to 92% since the temporal consistency
was exploited to filter noise. Most of the blocks, which appeared for a short duration
and their the spatial position were not consistent, were regarded as noise and were
thus eliminated. The good performance was due to the reason that the weighted
horizontal-vertical AC coefficients were exploited and the long-term consistency of

the closed caption over consecutive frames was considered.
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Table 3-2. Performance of closed caption localization after caption frame detected

Ground Truth | Blocks of Blocks of Blocks of

of Corre_ct Falsg Mis§ '\R/laliz Precision | Recall
Text Blocks Detection Detection Detection
Tennis 1
42183 41030 347 395 1% 99% 97%
Tennis 2
25680 24624 732 1056 4% 97% 95%
Volleyball
28122 27353 4087 2250 8% 87% 92%
Baseball
296405 269792 63270 26676 9% 81% 91%
News
201616 192016 23732 10080 5% 89% 95%
Average 91% 94%

To manifest the feasibility of the approach of font size differentiation, we selected
various closed captions with different fonts presented in the testing videos for
experiments. The results were illustrated in Table 3-3. The first column of the table
introduced the selected closed captions and the. second one was the diagram of the
curve of vertical AC gradient energy. The average font size of the associated closed
caption in terms of the number of:blocks was shown in the third column and the last
column illustrated the font size of the different kinds of detected fonts. In these closed
captions, each covered square represented a macroblock. In the experimental results,
we can see that the font size of each closed caption was correctly discriminated. The
most complicated case was the G“ closed caption since three kinds of fonts appear in
the caption, which were all detected as the fonts of size 1, 4 and 2. In the case of
bold-faced font shown in the 4”and B” closed captions, we can also successfully
detect their font size. Closed captions with capital and lowercase letter present
together would be more difficult for differentiation of font size. For example, in the
H" closed caption, only three capital letters “A”, “S” and “S” were present in two
text rows respectively. We cannot find out the regularity of font size with insufficient

number of letters of the same typeface. In the A" closed caption, although the font
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size of the capitals was not detected, most letters in the caption were lowercase with
font size 2 approximately and hence the detected result was still correct.

Moreover, the case of one row text was tested and an example was shown in the
J" closed caption of Table 3-3. We can observe that the energy in the top and bottom
of the caption was much smaller than the energy in the middle since AC energy was
computed in the processed text regions, in which localized text regions were
expanded one block row up and down by the morphological operation. Additional
block rows were normally the blank non-text regions, and thus the energy in the text
blocks would be significantly larger than non-text blocks. Therefore, text-blocks can
be successfully detected and font size in one row text can be recognized.

By applying the proposed approach of font size differentiation, we can
automatically discriminate the font'size either in a.closed caption or in different ones.
Therefore, this designed tool can be used as the closed caption filter to recognize and
select those of interest, once the-useriindicates-the targeted font size of closed captions.
Moreover, researches [40-43] focusing.on video  OCR indicate that a bottleneck for
recognizing characters was due to the variation of text font and size. In addition, to
make learning data for the filter of character extraction, the size of the filter, which
was defined to include a line element of characters, should be determined. Since the
size of the line element strongly depends on the font size, it was possible to design a
filter that can enhance the line elements dynamically with widely varying font sizes
when the font size in the localized captions were known. Consequently, the tool — font

size differentiation can be exploited to be a pre-processing tool for video OCR.
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Table 3-3. Experimental results of font size differentiation based on horizontal

projection profile using vertical DCT AC coefficients
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3.4.2 The Prototype System of Video.Content Visualization

With the successful localization of thé supér-imposed scoreboard in sports videos,
video content can be visualized in a compact form by constructing the hierarchical
structure. Taking tennis as ah example; the structured contents composed of
scoreboards and the related can be combined with the detected tennis semantic events
[46], such as baseline rally, serve and volley and passing shot. Each competition shots
can be annotated using the type of corresponding event and can be labeled exploiting
the scoreboard. Consequently, the information of the type of events, the boundary of
events, the key frame of events and the result of the event — the scoreboard can be
used in the Highlight Level Description Scheme shown in Fig. 3-16 to support users
to efficiently browse videos by viewing the images of scoreboards and the important
text information of semantic events. The name of highlight corresponded to the type
of tennis event, the descriptor of video segment locator was described by the event
boundary and the position of the key frame in the video sequence was used for the key

image locator. The key image locator for scoreboard indicates the time point in the
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video sequence.

‘ HierarchicalSummary ‘

Je
@ HighlightLevel ‘
s

‘ HighlightSegment ‘
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‘VideoSegmentLocator ‘ KeyFrameLocator ‘

Scoreboard
KeylmageLocator

Fig. 3-16. Hierarchical Summary Description Scheme [17]

The table of video content was composed of the original video sequence in the top
level, the scoreboard of a set, the scoreboard of a game and the key frame of one point.
The user interface of the prototype system was shown in Fig. 3-17 and two areas of
“Playback” and “Visualization” wete present in the left and the right side, respectively.
Initially, the key frame of the -original video sequence and the scoreboards of sets
were exhibited. While users can-click:the-symbel “[1}? as the arrow lines indicated, the
system would show the scoreboards of the corfesponding games. Fig. 3-18 presented
more detailed of the hierarchy. Users can select which game they want to watch
according to the scoreboards of the games and click the symbol il for more detail
and the result was shown in Fig. 3-19. Each point of the game was represented by its
key frame. Users can view the point by clicking the corresponding key frame and the
shot of the point would be displayed in the “Playback Area”. By exploiting the system
of video content visualization, users can efficiently browse video sequences. Since the
length of a sports video was up to one or two hours generally, the system thus
provided a compact and brief overall view of the match for users by exhibiting the
textual information of the scoreboards hierarchically.

We believe that the proposed video structuring method can be used in other

well-structured sports, such as volleyball and baseball when the corresponding
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domain knowledge is applied. In our previous research [22], volleyball videos were

automatically structured when the rule of volleyball game was employed.
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Fig. 3-18. The hierarchical structure of the scoreboards was shown while the user
clicks the symbol [t
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Fig. 3-19. Video shots were presented in the detailed video hierarchy

3.5 Summary

In the chapter, we have proposeda :'noyeli mechanism to detect temporal boundaries,
& | | 1 !

identify meaningful shots and thlef'n.buil(i' -' chmpactta‘ple of video content. GOP-based
video segmentation was used taq."'efﬁg.iq'ﬁ%&?gmep_t;:Videos into shots. To efficiently
detect closed captions, color—base:'d"-;sh'.o;t _ider}it_iﬁk;'ciﬁ-on was proposed to identify shots
of interest, especially for sports videos. Caption frames were detected in the shots of
interest using the compressed data in MPEG videos. Then caption frames instead of
every frame were selected as targets for detecting closed captions based on the
long-term consistency without size constraint. While closed captions were localized,
we differentiate the font size of closed captions based on the horizontal projection
profile of AC gradient energy obtained from both the original blocks and the
interpolated sub-blocks. The proposed tool — font size detector can thus be used as a
prefilter to effectively eliminate uninterested closed captions and avoid most of the
extremely time consuming post-processing of localized captions. Finally, having the

proposed mechanism of high-level video structuring, one can browse videos in an

efficient way through a compact table of content.
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Chapter 4. Motion Activity Based Shot Identification and

Closed Caption Localization for Video Structuring

4.1 Introduction

Tremendous growth in the number of digital videos is driving the need for more
effective methods to access and acquire desired video data. Advances in automatic
content analysis and feature extraction enable the possibility of effective browsing,
searching and filtering of videos. On the other hand, well-developed content-based
indexing techniques equip the users with natural and friendly querying, searching,
browsing and retrieving tools. For supporting video content representation and
indexing, semantic features of higher level must be prepared for achieving more
efficient and effective access. The need of representation and indexing for high-level
and semantic features underlies the| emergence of the MPEG-7, formally called
multimedia content description interface. However, the approaches that produce the
desired features are a non-normative part of MPEG-7 and are left open for research
and future innovation.

Video structuring is a move intending to organize raw video data into a compact,
easy-to-access format. Lu and Tang [47] described a video-structuring scheme, which
classifies and clusters sports video shots based on low-level features, color and
information on global motion. Kwon et al. [48] presented a scene segmentation
scheme based on the adaptive weighing of color and motion features. For integrating
scene units, they applied an improved overlapping link scheme to achieve the goal.
Hanjalic and Lagendijk [49] segmented movies into logical story units based on the
global temporal consistency of the color features. Yeung and Yeo [50] proposed a

time-constrained and MPEG DC based visual similarity clustering method to segment
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a video into logical story units. All the aforementioned research structures videos
using low-level features, such as color and motion, and merges shots to generate
logical story units based on visual similarity, by applying some time-constrained
mechanisms. However, the classification of video shots based on motion activity
information of objects or events that little efforts have involved in would be more
semantically meaningful. Although visual content is a major source of information in
a video, an effective strategy in video structuring is to exploit other valuable
information such as text in superimposed closed captions. Therefore, there is an
increasing research in localizing superimposed closed captions in video programs
either in raw videos [31-37] or in compressed videos [29-30][35]. Li et al. [32]
exploited a neural network trained on texture features to obtain text regions and
proposed a text-region tracker for ttacking of moving text. Shim et al. [33] segmented
text areas using chaincodes in the pixel domain and exploited temporal information to
refine the segmentation of text. Both Li et-al; [32] and Shim et al. examined the
similarity among text regions in terms of their-positions, intensities and shape features.
Chen and Zhang [31] detected text areas using information on vertical edges followed
by information on horizontal edges before applying a Bayesian based shape
suppression technique for refining the results. Ohya et al. [34] segmented characters
by setting a local threshold and merging neighboring regions based on the similarity
of gray levels. Kannangara et al. [36] extracted text from specific areas and proposed
a method based on the vertical projection profile to segment individual letters. Wu et
al. [37] segmented text areas that exploited both multiscale texture segmentation and a
spatial cohesion constraint in the pixel domain. Zhong et al. [29], and Zhang and
Chua [30] localized text in MPEG videos using DCT AC coefficients to obtain texture
information in individual I-frames. Zhang and Chua also identified text regions using

a size filter. Gargi et al. [35] detected text by counting the number of intra-coded
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blocks in P and B frames based on the assumption that the background is static and a
threshold for the size of text segments is also predefined to filter noise.

Previous research made little efforts to localize superimposed closed captions in
compressed videos. Besides, the localization of text regions using size filters may not
work well, especially in cases in which captions are small but very important and
meaningful to viewers. For example, in sports videos, the scoreboard is generally very
small but it is significant as it details the competition as clearly as possible. In
addition, automatic post-processing in the detected potential text regions is a critical
step to speed up following analysis in caption regions, such as video OCR. Previous
research made little efforts on filtering captions once potential text regions are
localized, such as separating the superimposed captions from the highly textured
regions in the background. Therefore, both the‘identification of text with no size

constraints and the filtering of detected caption regions are of concern.

GOP-based Motion Activity Superimposed Clustering-
\ﬁdl\ég’ gt?ezlm Shot > based = Closed-Caption —» based | Tableof
Segmentation Shot Identification Localization Noise Filtering| Video Content
[
Domain Knowedge

Fig. 4-1. System architecture of motion activity based video structuring
In this chapter, in order to support high-level and semantic-based browsing, we
propose a novel approach that structures videos exploiting superimposed closed
captions and semantic classes identified by the motion activity descriptor of
object-based 2D-histogram. Fig. 4-1 shows the architecture of the proposed system.
First, video streams are efficiently segmented into shots using our proposed

GOP-based detection of shot changes. This video segmentation module checks video
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streams GOP-by-GOP rather than frame-by-frame, and then determines the actual
shot change boundaries on the frame level. Video shots are characterized utilizing the
proposed motion activity descriptor [51], which represents the spatial distributions of
moving objects in a compact form. When the specific domain knowledge is applied,
the model of object distributions can be employed to infer the semantic meaning or
event in a shot. Accordingly, based on the criterion, video shots are classified into
semantic classes. The shots of interests are then selected for localizing superimposed
closed captions. Furthermore, the algorithm of clustering-based noise filtering is
designed to effectively remove high-textured regions.

The rest of this chapter is organized as follows. Section 4.2 illustrates the
GOP-based detection of shot change and Section 4.3 describes identification of shots
based on object motion activity. Seetion 4.4 introduces the approach of localization of
superimposed closed captions:= Section 4.5 .presents the experimental results and

Section 4.6 draws conclusions and the-future-work.

4.2 Video Segmentation

Video data are segmented into meaningful clips to serve as logical units called
“shots” or “scenes”. In MPEG-2 format, the GOP layer can be randomly accessed and
contains a GOP header and a series of encoded pictures, including I, P and B-frames.
A GOP is approximately 10 to 20 frames, normally with duration shorter than two
consecutive shot changes (around 20 frames).

Possible occurrences of shot change are examined GOP-by-GOP (inter-GOP). The
difference between each consecutive GOP-pair is computed by comparing the
I-frames in each consecutive GOP-pair. If the difference between the DC coefficients
of these two I-frames exceeds a threshold, then there may have shot change between

these two GOPs. Hence, the GOP that contains the shot change frames is identified. In
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the second step, detecting intra GOP shot change, the ratio of forward and backward
motion vectors are further used to locate the exact frame of the shot change within a
GOP. The experimental results obtained using real extensive videos are encouraging

and prove that shot changes are efficiently detected for video segmentation.

4.3 Shot Identification

This section introduces the method of shot identification based on object motion
activity. Section 4.3.1 describes the method of detecting significant moving objects
and section 4.3.2 shows the motion activity descriptor. Section 4.3.3 presents shot
identification based on the descriptor.

4.3.1 Moving Object Detection

For computational efficiency, motion ,nformation in P-frames is used for the
detection of moving objects. In.general;consecutive P-frames separated by two or
three B-frames are still similar ‘and would not vary too much. Therefore, it is
reasonable to only use P-frames as targets for-moyving objects detection. On the other
hand, since the motion vectors estimated in MPEG-2 videos may not be 100% correct,
one has to remove noisy motion vector before the motion vectors are clustered. For
those motion vectors that are small in magnitude, we consider they are noises and
should be removed. For computational efficiency, the average of motion vectors in
those inter-coded macroblocks is computed and selected as the threshold for noise
removal. After noisy motion vectors are filtered out, motion vectors of similar
magnitude and direction are clustered into a group (an object) by applying a region

growing process.
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(B

Fig. 4-2. Moving objects detection; (a) anchor person; (b) football; (c) walking person;
(d) tennis; (e) volleyball game; (f) traffic monitoring

In our previous works [46] [51], we have successfully detected moving objects in
several kinds of videos such as ten_nis‘,'ﬁafﬁé"ﬂlanitoring, news and football. Moving

objects in the environment of sfé;tic cafﬂ'—qira. e.iré«,allr'r.lost detected with both precision
and recall higher than 95%. In ’che V1d¢os wnﬂovmé camera, camera motion such as
pan and tilt is estimated by determlnlng the domlnant motions before detecting
moving objects. Under this 01rcumstance él"él'lough the precision is lower than 90%,
the recall remains higher than 90%. Examples of moving region detection are
demonstrated in Fig. 4-2. Video shots shown in Figs.4-2(a) — 4-2(c) and Fig.4-2(f) are
extracted from the MPEG-7 testing dataset — the Spanish News and the traffic
monitoring. The tennis shot shown in Fig. 4-2(d) is recorded from the Star-Sports
TV-channel. Fig. 4-2(e) shows the shot of volleyball game recorded from the ESPN
TV-channel. In the volleyball videos, although several players may be clustered as
one moving object such as the example in Fig 4-2(e), the spatial distribution of
moving objects can still be characterized when the attributes of object size and object

position are employed. The details of the characterization of moving objects using

these object attributes in the proposed object-based motion activity descriptor will be
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described in the following section. Based on the results shown in Fig. 4-2, it is
obvious that most moving objects are successfully detected. Although the detection
algorithm detected some noises, usually one can eliminate this kind of noise via
tracking moving objects in the forward and backward frames when more precise
requirements are needed.

4.3.2 Motion Activity Descriptor — 2D Histogram

In this section, we shall elaborate how to describe object-based motion activity for
a video shot considering the attributes of object size and object position. In order to
describe the spatial relationships between moving objects in a compact manner while
keeping the distinct and recognizable features among video shots, a video shot is
characterized using the statistics derived from the object-based 2D-histogram. A
2D-histogram for each P-frame consists of aX=histegram and a Y-histogram, in which
the horizontal axis of the X-histogram (Y-histogram)-is the quantized into £ bins. The
workflow of 2D-histogram computation is shown in Fig. 4-3. Initially, size of the
object is estimated before it is assigned to a bin. If the object is larger than the

predefined unit size (frame-size/ ), it is weighted and accumulated according to Eq.

(4-1). Bin ;. ; refers to the j ” bin of the X-histogram in frame i. Acc i ;o Means

the accumulated value in the ;" bin of object a in frame i for the X-histogram, and

Obj represents the number of objects in frame i. Fig. 4-4 provides an example of the
2D-histogram. In the example, the frame includes two objects of size of three units
and four units. The size of each object is assigned to a histogram bin according to the
position of its centroid on the horizontal axis to obtain the X-histogram. The football
player of size three is assigned to the Bin 1 and the basketball player of size four is
assigned to Bin 3 in the X-histogram. Similarly, in the Y-histogram, the Bin 2 is
increased by three and the Binl is increased by four.
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Bin [ ; = D Ace L (4-1)
a=1

1
1, if object size < Fﬁ’ame size

Ja

where 4..* -
b size of object a

2 .
- * B, otherwise
frame size

Moving|Object
Information

Object Size >
Predefined Unj

No
‘ ) Weight
ast Object ? Computation
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Number
Moving Object
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2D-Histogram - -
Histogram Bin

Accumulation

Fig. 4-3. Workflow of motion activity descriptor

X-Histogram

—

Bin0 Binl Bin2 Bin3

%]

Y-Histogram
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Bin0 Binl Bin2 Bin3

Bin0 Binl Bin2 Bin3

Fig. 4-4. An example of 2D-histogram computation

Using the proposed 2D-histogram, the spatial distribution of moving objects in
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P-frames is characterized in a concise form. The X-Y histogram pair shows the spatial
relationships among the moving objects since each moving object is assigned to a
histogram bin according to the X-Y coordinate of its centroid. Objects belong to the
same coordinate interval are grouped into the same bins. Hence, the distance between
object groups can be specified as the distance between the associated bins.
4.3.3 Shot Identification Algorithm

Automatically identifying video shots or events is a domain-specific problem,
because it requires higher-level content analysis. For sports videos, interesting shots
are specific to a particular model of visual features, such as the spatial distribution of
moving objects. Therefore, employing domain knowledge in sports videos to
recognize specific video shots is indispensable. In this chapter, we select the
volleyball game as the case study.In general, a‘volleyball game mainly consists of
three shot types - the “service” = “full-court view’> and close-up”. Fig. 4-5 presents the
typical frames of these three shot types.-The-setvice shots have the characteristic that
one or few objects appear in the left-or right sides of the frame and more objects
appear in the other side of the frame. In full-court view shots, the number of objects
on the left is similar to the number of objects on the right and the difference between
the numbers of objects is smaller than that in the service shots. In the close-up shots, a
large object is near the middle of the frame. Accordingly, these main types of shots in
volleyball videos can be distinguished according to the distribution of moving objects.
Although description using both X-histogram and Y-histogram would be more
detailed and complete than using one of them, it is reasonable to use the X-histogram
only to distinguish these main shot types because most players in the volleyball games
move along the horizontal axis. The algorithm of shot identification is based on
K-means clustering and here K is set to four according to the number of shot types in

the volleyball games (two for the type of “Service”, one for “Full-court view” and one
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for “Close-up”). The algorithm is detailed as follows. After shots clustering, four

clusters are obtained with their centroids, z,, u,, #;, and g, .. ,and the shot type

of them can be determined by comparing the variances of feature subspaces Var',

Var*, Var’ and Var™® . If Var' or Var’ is larger than others, the shot type is

considered as “Service” because the server may serve in the right or left side of the

court. If Var® is the largest among the four variances, the shot type is regarded as

“Close-up”. Otherwise, the shot type is identified as “Full-court view”.

Mo |]|][I|]" mn [ guununL:TﬂﬂﬂF[Hl

123 456 7 8 9101112131415 123 4567 8 9101112131415 123 45 6 7 8 91011 1213 14

(a) ®) ©)
Fig. 4-5. Histograms of shots; (a) Service; (b) Full-court view; (c) Close-up

Shot Identification Algorithm

Input: Segmented shots { Shot,, Shot, , ... ,Shot_}

Output: Shot types: { ST,,S7,, ..., ST, }, where the type of shot i ST, € {S, F, C} (S:
Service, F: Full-court view, C: Close-up)

1. X-coordinate is divided into S bins.

2. For each shot, compute the representative motion activity descriptor.

1 ‘Shot]-‘

Xhist, = ——— > H,,where H,=|b,b,,b...b,|, jells]
[Shot | 5

3. Choose the initial cluster centroids, r,, f,,..., My
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3.1 Divide each X-histogram X#ist into K subspaces in which each subspace is of
m = B/K dimensions.

Xhist? = [b ], where p e[l,K]

(p-1)ym+1>

b

(p-1)ym+2>

b

(p—lym+3°°> bpm

3.2 For each subspace, compute the variance Var/ within its m elements

pm 5 p(m/K) ?
Var! = Z(bw) /m - wa m
o=(p-1)m+1 o=(p-1)m+1

3.3 Choose the initial cluster centroids z,, f,,..., p; by

_ P
Hp = AT xuisr, TMAX Var;,
and choose a particular cluster centroid ., by

. iddl . . . . B
Hiaaie = L i - MinVar" ™, where index middle is determined by |— 4 —|

1<j<s

4. Classify each feature vector Xhist;yof shot; tothe cluster p with the smallest

distance

means the

C, <—{ Xhist ‘ arg,_ iy min| Xhist; —,up‘ } , Wwhere

distance between two feature vectors by summing up the absolute difference

of two histogram bins.

1 (A .
5. Update cluster centroids 4, = ‘C—Z)(hzstf
Yl

n=1

6. If any cluster centroid changes its value, go to step4.

7. For each cluster, determine its shot type ST

If arg, max Var” €{1, 3}, then V Shot, € { u,, pt,}, ST, €S

<p<K+1

Else if arg,  max Var” = 2,then V Shot, € u,, ST, €C

<p<K+1

Otherwise, V Shot, € tt, 4. ST, € F

l
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4.4 Closed Caption Localization

In this section, we shall elaborate how to localize superimposed closed captions in
I-frames with directly exploiting the compressed data. The proposed approach is
shown in Fig. 4-6. First, the horizontal gradient energy is computed to filter out noise
using DCT AC coefficients. The next step is to remove noisy regions by applying the
morphological operation. When the candidate caption regions are detected, the
clustering-based algorithm is then employed to filter out high-textured non-caption
regions. Section 4.4.1 details the detection of the closed captions and section 4.4.2

shows the algorithm of SOM-based filtering.

Superimposed

I-Frames Horizontal Candidate Caption Closed-Captions
e

—— »{ Gradient Energy > Moorpgrc::i)(g):]cal Filtering
Filtering P (SOM-based)

\ 4

Fig. 4-6. Closed.captionflocalization in video frames
4.4.1 Localization of Superimposed Closed Captions
After shots of interest are identified, the~approach of closed caption detection is
proposed to localize the superimposed' closed captions in these shots, such as the
scoreboard and the channel trademark. To efficiently localize captions in compressed
videos, several DCT AC coefficients shown in Fig.4-7 are used to compute the

horizontal and vertical gradient energy. The horizontal gradient energy defined by

Eq.(4-2) is computed using the AC coefficients from AC;, to AC,,. Due to the

fact that some blank space appears between consecutive letters in closed captions, the
variation of the gradient energy in the horizontal direction would be more frequent
and larger than that in the vertical direction. Hence, it is reasonable to filter out
non-caption regions using the horizontal gradient energy. For each 8 x 8 block, the

horizontal gradient energy E, is exploited to determine the block type. If the E, of

a block exceeds a predefined threshold, then the block is regarded as a potential
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caption block. Otherwise, if the E, of a block is below the threshold, then the block

1s removed.

DC ACU,I ACU,Z AC(J.S ACU,4 AC(J.S ACU,é ACU,7

AC,

Acz,o

AC;,

AC, |

ACs,

AC,

AC;,

Fig. 4-7. DCT AC coefficients used in localizing superimposed closed captions
E, = jl\Aco,j\ (42)
=
However, various shots may have different lighting conditions, which are reflected
in the contrast in frames. Besides,:the contrast impacts the determination of the

threshold and the detection of the closed captions might fail for this reason. Therefore,

the threshold is determined adaptively according to:contrast that is evaluated using
horizontal gradient energy. The threshold 7. is ¢omputed by Eq. (4-3), where v is an

adjustable factor; SVar, represents the average of horizontal gradient energy of shot
s, F Varsflic represents the horizontal gradient energy of frame i in shot s, AC, is
the horizontal DCT ac coefficient from AC;, to AC,,, M denotes the number of
P-frames in a shot and N means the number of blocks in a frame. Due to the fact that a
higher F Vars‘:‘ic implies a higher contrast in frame 7, noisy regions can be more

easily removed from a frame of higher gradient energy. Therefore, a lower weight is
assigned to the frame with a higher contrast and a higher weight is assigned to one
with a lower contrast. Accordingly, using this method, most of the non-caption

regions can be removed. Fig. 4-8(b) demonstrates the results filtered using E, .
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3.2, when FVarsfll»C < Shar,

4-3
2.4, when FVargC > SVar (4-3)

T =yxSVar,, 7={

M
SVar, = L Z FVar/©
- MI ’

N 7 N 7
FVar[* =Y > AC; . IN-(D.> | AC, |/ N)’
J=1 h=1 j=1 h=1

Y mmmme

Fig. 4-8. Demonstration of the localization of superimposed closed captions (a)
original I-frame; (b) result after filtering by using horizontal gradient energy; (c)
result after morphological operation; (d) result after filtering using SOM-based
algorithm; (e) result after dilation
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After most of the non-caption regions are eliminated, several small separate regions
remain and are either very close or faraway from each other. Some regions are
supposed to be connected, such as the scoreboard and the channel trademark. Hence,
neighboring regions must be merged and isolated ones should be removed. Therefore,
a morphological operator of 1x3 blocks is used to merge regions separated by a
distance of under three blocks. Fig. 4-8(c) shows the result of applying a
morphological operation. Several small and isolated regions are filtered out and the
caption regions are merged. However, some background regions with large horizontal
gradient energy remain present after morphological operation. Hence, an algorithm
based on the concept of SOM (Self-Organization Map) is proposed to differentiate the
foreground captions from the background highly textured regions.

4.4.2 Clustering-Based Noise Filtering

The Self-Organizing Map-based.algorithm-[52] has been applied to segment and
recognize textures, and is well suitedito the-task,of classifying textures. A SOM-based
noise-filtering algorithm is proposed te further differentiate the foreground captions
from the background highly textured regions. The details of the algorithm are
described as follows.

SOM-Based Noise Filtering Algorithm

Input: Candidate regions after morphological operation ¥ = {R,,R,, ... ,R,}

Output: Closed caption regions
1. Initially, the cluster number is set to zero (j=0).
2. For each candidate region R,, the average horizontal-vertical gradient energy E,,

weighted by w, and w,, is computed. Here, w, is setto 0.6 and w, is set to

0.4. n is the number of regions in V.

n 7 7
E, :%Z[th‘ACO,HMWVZ‘ACw

Jj=1 u=1 v=1

j (4-4)
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3. Foreachregion R, eV
Ifi=1,j=/+1 assign R, tocluster C;

Else if there is a cluster C such that D, =7 and D, is minimal among {D, },

where ke[1,j] and D, is defined in Eq. (5)

assign R, to C

s lal

D =—=
AP

- Ej\ (4-5)

i

Else

J=j+1; create anew cluster C; andassign R, to C;

4. SetT=T-0
Select the cluster C, (say Cy,) with the largest mean gradient energy £, ,
computed by Eq. (6)
1 &
E i = HZE (4-6)

5. If Dy of C,, exceedsT,thenresetV= C,,.

Go to step 3.
Else

Go to step 6.

6. The cluster C,,, is the set of closed captions.

In the algorithm, more weight is assigned to the horizontal DCT AC coefficients
than the vertical ones because closed captions generally appear in rectangular form
and the AC energy in the horizontal direction would then exceeds that in the vertical
direction because the letters of each word are fairly close to each other whereas the

distance between two rows of text is relatively large. Furthermore, the SOM-based
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candidate region clustering is iterated until the gradient energy E,,, of the cluster

Cy 18 smaller than the threshold 7. Based on the experiments, 7'is set to 70; d is set

to 11 empirically, and the number of iterations is two or three. Using this method, the
set of closed captions can be automatically determined. This method is based on the
fact that closed captions are in the foreground and are superimposed after filming.
Consequently, the closed captions are clearer and their gradient energy exceeds that of
the background. After SOM-based noise filtering, each closed caption region is
dilated by one block row. The result is shown in Fig. 4-8(e) and we can see that

regions belonging to the same closed caption are merged.

4.5 Experimental Results and Analysis

Two video sequences are recorded from the VL Sports and ESPN TV channels
respectively and encoded in the MPEG-2 format in which the GOP structure is
IBBPBBPBBPBBPBB and the framé rate-is-30.fps. Since testing videos, Video I and
Video II demonstrated in Fig.4-9, are recorded from different games, the background
color, background texture, object color and lighting effect in these videos are thus
different. The length of the Video I is about one hour and 163 shots of services,
competition of the full-court views and close-up are obtained and the length of the
Video II is around one and half hour and it consists of 199 shots. To measure the
performance of the proposed scheme, precision and recall for the approach of shot
identification and the algorithm for detecting closed captions are evaluated. Table 4-1
and Table 4-2 show the experimental results of the shot identification in Video I and
Video II, respectively. The precision of identification of all three kinds of shots in
Video I and II are both higher than 92%. The values of recall in close-up shots of both
videos are up to 98%. The recall values of full-court view shots is just 87% in Video I

and 89 in Video II since the camera zooms in to capture shots in which players spike
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near the net. In such a case, the shot would include a large portion of the net and a
large object would be detected; the shot is thus regarded as a close-up shot.
Additionally, when a team is defending, several players may run to save the ball. In
this situation, the number of objects on the left might not be similar to the number of
objects on the right and thus the shot is classified as a service shot. Although the recall
value of the full court shot does not exceed 90%, the overall accuracy of shot

identification is still very favorable.

(b) — —

Fig. 4-9. Demonstrat-i'c;ih 0f‘fesf1nlgv1deos (a) Video I (b) Video II

Table 4-3 presents the results of .‘cTOSE(lvn-cféiI.“ﬂ)ltion localization. In Video I, 107
potential captions are detected in which 98 localized regions are the real closed
captions including the scoreboard and the trademark. In Video II, there are 125 closed
captions containing the scoreboard and the trademark and 128 potential captions are
detected in which 118 localized regions are the real closed captions. The recall value
reaches 100% and the precision is around 92% in Video I and the recall value is about
94% and the precision is about 92% in Video II. The number of false detection in
Video I is nine and that the number of false detection in Video II is ten because the
background may include an advertising page whose gradient energy is similar to that

of the scoreboard and the channel trademark. In such a case, this high-textured region

is falsely detected as the closed caption. Fig. 4-10 presents an example. In Fig.
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4-10(d), the billboard is not filtered out since its gradient energy is stronger than the

superimposed scoreboard and the trademark.

Table 4-1. Result of shot identification (Video I: 163 shots)

Number of | Number of | Number of
Ground Number of . ..
Truth Detection Correct False Miss Precision Recall
Detection Detection Detection
Closed-up
62 57 5 1 92% 98%
58
Service
53 52 49 3 4 94% 92%
Full Court
59 49 45 4 7 92% 87%

Table 4-2. Result of shot identification (Video II: 199 shots)

Ground Number of Number of | Number of | Number of
Truth Detection Correct False Miss Precision Recall
(video 2) Detection Detection Detection
Closed-up
7 73 70 3 1 96% 98%
Service
65 60 5 4 92% 94%
64
Full Court
64 61 57 4 7 94% 89%

Table 4-3. Result of closed caption localization

Number Number of
Ground -
Truth of Correct Precision Recall
Detection Detection
Video 1
98 107 98 91.59% 100%
Video 2
128 118 92.18% 94.4%
125

Fig. 4-11 shows the initial graphical user interface of the video browsing system.
The table of video content is provided, in which the scoreboard at each game point is
in the “Closed Caption” field and the representative frames of the three types of shot
are shown in the “Service Shot”, “Full-Court Shot” and “Close-Up Shot” fields,
respectively. Semantic high-level video structuring provides users an overall view of

the competition as textual information in the scoreboard, and allows users to select the
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point to watch, browsing through the video sequences in the different levels of detail.
Additionally, when users want to see smashes, defense or offense, they can select full
court view shots. Fig. 4-12 depicts all full-court view shots when users click the
option “show all shots” in the “F shot” field. Moreover, when users want to see their
favorite players, they can watch close-up view shots. Fig. 4-13 shows all “one-point”
close-up shots obtained by selecting the “show other shots” option in the close-up

shot field.

-+

" 1

Fig. 4-10. Closed caption localization; (a) original I-frame; (b) result after filtering by
horizontal gradient energy; (c) result after morphological operation; (d) result after
filtering by SOM-based algorithm; (e) result after dilation
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In this chapter, we proposé“.";a‘ - no'Vel .mech.a.;ﬁ;m to automatically structuring
volleyball videos in the MPEG comprééséd'ao;nain and construct the table of video
content employing both the localized scoreboard and the semantic classes of shots.
GOP-based video segmentation is used to efficiently segment videos into shots. The
spatial distribution of moving objects is characterized using the object-based motion
activity descriptor. Experimental results indicate that the proposed descriptor
effectively identified several shot types in volleyball videos. Additionally,
experimental results in localizing superimposed closed captions also show that the
target captions are successfully localized and differentiated from the high-textured
background regions. These target captions and the shots in semantic classes are well

organized in a compact form. Therefore, users are allowed to browse videos

nonlinearly in an efficient manner through the table of video content following either
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the scoreboards or the semantic classes of shots. Although only volleyball games are
used in the experiments, the proposed mechanism provides several reusable modules
like the descriptor of motion activity and the method of closed caption detection.
Once the spatial distribution model of moving objects is obtained from employing
specific domain knowledge, shots of interest such as the full or partial view of athletic
field with particular player distribution can be automatically identified using the
proposed object-based motion activity descriptor.

In the future, with the successful identification of shots in volleyball games in this
chapter and the effective classification of video shots of MPEG-7 testing dataset in
our previous research, we would like to apply the proposed system architecture for the
motion activity shot identification/classification to other videos, including movies,
documentaries and other sports..In addition, we will investigate video OCR to
recognize the localized closed captions and thereby to support the automatic
generation of meta-data, like the names-of.teams in sports videos, the names of

leading characters in movies, or important people in other kinds of videos.
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Chapter 5. Robust Video Sequence Retrieval Using A Novel
Object-Based T2D-Histogram Descriptor

5.1 Introduction

The tremendous growth in the number of digital videos has become the main
driving force for developing automatic video retrieval techniques. Among different
types of tools that can push the advancement of retrieval techniques, an efficient
automatic content analyzer that can help execute correct browsing, searching and
filtering of videos is a must. In order to achieve this goal, one has to make use of
high-level semantic features to represent video contents. The need of representing
high-level semantic features has motivated the emergence of MPEG-7, formally
called the multimedia content deséription interface [53]. However, the methods that
produce the specific features and the correspending similarity measures represent the
non-normative part of MPEG-7-and are still.open forresearch and future innovation.
Usually, the high-level semantic features of video sequences can be inferred from
low-level features. The low-level features can be color distribution, texture
composition, motion intensity and motion distribution. Among different types of
features that can be extracted from a video, motion is considered as a very significant
one due to its temporal nature. In the literature, Divakaran et al. [54] used a
region-based histogram to compute the spatial distribution of moving regions. The
run-length descriptor in MPEG-7 [55] is used to reflect whether moving regions
occurred in a frame. Aghbari et al. [56] proposed a motion-location based method to
extract motion features from divided sub-fields. Peker et al. [57] calculated the
average motion vectors of a P-frame and those of a video sequence to be the overall
motion features. In addition to the above mentioned local motion features, Wang et al.

[58] proposed to use some global motion features to describe video content.

90



In contrast to the motion-based features of individual frames, another group of
researchers proposed to use spatio-temporal features between successive frames
because these types of features are more abundant in the amount of information.
Wang et al. [59] extracted features of color, edge and motion, and measured the
similarity between temporal patterns using the method of dynamic programming. Lin
et al. [60] characterized the temporal content variation in a shot using two descriptors
- dominant color histograms of group of frames and spatial structure histograms of
individual frames. Cheung and Zakhor [61] utilized the HSV color histogram to
represent the key-frames of video clips and designed a video signature clustering
algorithm for detecting similarities between videos. Dimitrova et al. [62] represented
video segments by color super-histograms, which are used to compute color
histograms for individual shots. Other works that'fall into this category can be found
in [63-67].

There are several drawbacks associated-with.the key-frame based matching process.
First, the features selected from ~key-frames usually suffer from the high
dimensionality problem. Second, the features chosen from a key-frame is in fact local
features. For a matching process that is targeting at measuring the similarity among a
great number of video clips, the key-frame based matching method is not really
feasible because the information used to characterize the relationships among
consecutive frames is not taken into account. In order to overcome these drawbacks,
we propose an object-based motion activity descriptor, which can exploit the
spatio-temporal information of a video clip in the matching process. Basically, the
proposed spatio-temporal features can support high-level semantic-based retrieval of
videos in a very efficient manner. We make use of some spatio-temporal relationships
among moving objects and then use them to support the retrieval task. In the retrieval

process, we use the DCT to reduce the dimensionality of the extracted
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high-dimensional feature. Using DCT, we can maintain the local topology of a
high-dimensional feature. In addition, the energy concentration property of DCT
allows us to use only a few DCT coefficients to represent the moving objects and their
variations. Therefore, the transformation can make an accurate and efficient retrieval
process possible.

The rest of the chapter is organized as follows. Section 5.2 presents an overview of
the proposed scheme. Section 5.3 illustrates the methods used to characterize video
segments. Section 5.4 describes the representation and matching of video sequences.
Section 5.5 presents the experimental results. Section 5.6 draws conclusions and

suggests avenues for future work.

5.2 Overview of the Proposed Scheme

MPEG-1/:2
Video Streams

Segmentation

;

Shot Description by
Object-based 2D-histogram

GOP-Based Video

A 4

Apply DCT on
2D-Histogram Sequences

Y

Selection from DCT Coefficients
of T2D-Histogram Sequences

!

Low-Dimension Description of
T2D-Histogram Sequences

Fig. 5-1. An overview of extracting the proposed T2D-Histogram descriptor —
compressed videos are parsed semantically and represented by reduced

low-dimensional DCT coefficients

In this section, we shall provide an overview of the proposed video retrieval system.
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Fig. 5-1 shows the flowchart of the proposed system. MPEG videos are efficiently
segmented into shots using our previously proposed GOP-based video segmentation
algorithm. This video segmentation algorithm checks video streams GOP-by-GOP
rather than frame-by-frame. The actual shot boundaries are then determined at the
frame level. After the process of shot segmentation, the next step is to execute an
algorithm, which can generate an object-based motion activity description. The
motion activity descriptor is able to describe moving objects in compressed videos.
The features used by this motion descriptor are statistically computed by spatial and
temporal distributions along the horizontal and vertical directions, respectively. The
function of the descriptor is basically an encoder, which can encode video contents
into high-level relational features. In order for maintaining high computational
efficiency, we choose P-frames for motion. activity analysis. Under these
circumstances, a video clip can-berepresented by a set of motion activity descriptions
of consecutive frames in the time domain--Hoewever, 1t is impractical to search a large
video database using the time domain-features. Therefore, we propose to apply DCT
on the target frames and make them become lower dimensional in the frequency
domain. Finally, we conduct an indexing process on the transformed DCT coefficients.
As we mentioned before, due to the energy concentration property of DCT, we are

able to represent the original moving objects in a most accurate and efficient way.

5.3 Characterization of Video Segments

In this section, we shall describe how to characterize a video segment so that it can
be used to perform efficient video retrieval. We shall describe how to detect moving
objects in a video segment in Section 5.3.1 and then discuss how to describe motion
activity of a video segment in Section 5.3.2.

5.3.1 Moving Object Detection
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For computational efficiency, motion information in P-frames is used for the
detection of moving objects. In general, consecutive P-frames separated by two or
three B-frames are still similar and would not vary too much. Therefore, it is
reasonable to use P-frames as targets for moving objects detection. On the other hand,
since the motion vectors estimated in MPEG-2 videos may not be 100% correct, one
has to remove the noisy part before they can be used. For those motion vectors that
are small in magnitude, we consider they are noises and should be removed. For the
sake of computation speed, the average of motion vectors in those inter-coded
macroblocks is computed and selected as the threshold for noise removal. After noisy
motion vectors are filtered out, the motion vectors with similar magnitude and
direction are clustered into a group by applying a region growing process with an
morphological operator of 2x2 macroblocks. Thus, moving areas with size smaller
than 4 macroblocks would be recognized.as noises and be removed. Fig. 5-2

illustrates some examples of moving lebject-detection'in MPEG videos.

In our previous works [10][51], we have-successfully detected moving objects in
several kinds of videos such as tennis, traffic monitoring, news and football. Moving
objects can be detected with an over 90% success rate when the camera is stationary.
When the camera moves, camera motion such as pan or tilt should be estimated in
advance before detecting moving objects. In our previous work, the precision is about
83% when the camera moves. However, the recall is still higher than 90%. Examples
of moving object detection using our previous algorithm are demonstrated in Fig. 5-2.
Video shots shown in Figs. 5-2(a) — 5-2(c) are extracted from an MPEG-7 testing
dataset, and the shot of tennis competition in Fig. 5-2(d) is recorded from the
Star-Sports TV-channel. Based on the results shown in Fig. 5-2, it is obvious that all

moving objects are successfully detected.
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(2)

(c)
Fig. 5-2. Demonstration of moving object detection (a) anchor person (b) football (c)

walking person (d) tennis competition.

5.3.2 Describing Motion Actlwty in a Vldeo Segment

In this section, we shall elaborate howuti) .descrlbe iject -based motion activity in a
video segment. After moving objects arefleteeted the spatial distribution of them is
characterized using the statistics derlved from the 2D -histogram. A 2D-histogram for
each P-frame consists of an X-histogram and a Y-histogram. The horizontal axis of the
X-histogram (Y-histogram) is the quantized X-coordinate (Y-coordinate) in a frame.
The X- and Y-coordinates are quantized into £ bins, which should be moderate and be

adaptive to various content types of MPEG videos. Thus, £ should be related to the

frame resolution and the threshold of object size based noise filtering, and is defined

by

B = mln(\/’ﬂ Ri;l“_’"”j (5-1)

where R xR is the resolution of frame size in terms of macroblocks and S is

column

the size of morphological operator in noise filtering. The decision of f will be verified

by the simulated results in Section 5.3. Initially, the object size is estimated before bin
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assignment. If an object is larger than the predefined unit size (frame-size/ 5*), then it

is normalized and accumulated according to the following equation:

Obj

Bin l.f(j = Z Acc i),(j’r , (5-2)
r=1

1
1, if object size < F frame size

where Acc!. =4 . :
b size of object y B

frame size

otherwise

X th

where Bin ', denotes the ;

. . . . X
bin of an X-histogram in frame i, Acc; ;. means

r

the accumulated value of the ;" bin of object r in frame i for an X-histogram, and

Obj is the number of objects in frame i. Fig. 5-3 shows how a 2D-histogram is
computed, with the number of histogram bins set to four. In the example, two objects
with sizes of three units and fourstnits are present in the frame. To obtain the
X-histogram, the size of each ‘object 1s:assigned to a histogram bin based on its
centroid (indicated by the symbol “#”) on the horizontal axis. For example, the
football player of size three is assigned to Bin 1 and the basketball player of size four
is assigned to Bin 3 in the X-histogram. Similarly, in the Y-histogram, Bin 2 is

increased by 3 and that of Binl1 is increased by 4.

X-Histogram

; Bin0 Binl Bin2 Bin3

Y-Histogram

egulg culg Tulg oulg

Bin0 Binl Bin2 Bin3

Bin0 Binl Bin2 Bin3

Fig. 5-3. Demonstration of the computation of 2D-histogram
Using the proposed 2D-histogram, the spatial distributions among moving objects

are approximately described since each moving object is assigned to the histogram bin

96



based on its centroid. Objects that belong to the same coordinate interval are grouped
into the same bin, and thus the distance between object groups can be specified as the

distance between the associated bins.

5.4 Video Sequence Matching

After video segments are characterized by the descriptor of object-based
2D-histogram, temporal relationships among the moving objects have to be described.
In order to characterize the temporal relationships among moving objects, a few DCT
coefficients of the transformed time sequence are used to represent the variations of
original objects among consecutive frames. A brief review of DCT will be elaborated
in Section 5.4.1. Section 5.4.2 will describe how to represent a video sequence. The
similarity metric that can be used to measure,the degree of similarity will be discussed
in Section 5.4.3.

5.4.1 Discrete Cosine Transform

The DCT (Discrete Cosine Transform) is-a‘powerful tool that has been extensively
used in many data compression applications: The DCT of a finite length sequence
often has its coefficients more highly concentrated at low indices than other
transforms do [67]. It has been proven in [68] that the approximation capability of
DCT is much better than that of other approximation methods. Therefore, we shall use
the DCT to characterize the temporal variations among moving objects in a video
sequence.

5.4.2 Representation of Video Sequences

In this section, we shall describe how to characterize the temporal variations among

moving objects exploiting the DCT. The algorithm that can be exploited to generate

video sequence representation is as follows:
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Video Sequence Representation Algorithm

Input: Consecutive P-frames {P1, P2, P3, ..., PN}

Output: Sequences of representative DCT coefficients [ Z, ], where f e€[l,«] and

jell,p]

Procedure:

1. For each P-frame P
Detect moving objects by clustering macroblocks that have similar motion vector
magnitudes and similar motion directions.

2. For each object Obyjir, where i and r denote the rth object in the ith P-frame;
Compute the centroid and the object size in the unit of macroblocks.

3. Set the number of histogram bins to f

4. For each P-frame P;,

Compute the X-histogram -and.the Y-histogram-according to the horizontal and

vertical position of the objects, respectively:
5. For each sequence of histogram bins [Binf ], where 7€[LLN], je[l,4] and

Ze{X,Y}

Compute the transformed sequence [ Z, ;] using the Discrete Cosine Transform

N
. Qt+1) fr
Z, ;= C(f); Bin} ; COS(T] ,where f €[l,N]
6. Set the number of DCT coefficients to a.
7. For f transformed sequences [ Z, ;] of DCT coefficients,

Select the DC coefficient and (a-7) AC coefficients to represent a transformed

sequence.

8. Generate the f reduced low-dimensional sequences [Z, ], where f e[l,«] and

Jell,fp]
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Fig. 5-4 is the graphical representation of the above algorithm. For each P-frame,
the feature of the object-based motion activity is described by a 2D-histogram, in
which the spatial distribution of moving objects in horizontal and vertical direction
are characterized by the bin values of the X-histogram and the Y-histogram,
respectively. Therefore, a video sequence can be represented by a sequence of
2D-histogram with 2Nf dimensions, where N is the number of P-frames in a video
sequence and £ is the number of bins in X-histogram and Y-histogram. In order to
reduce the dimensionality of the feature space, DCT is exploited to transform the

2D-histogram of the original video sequence into the frequency domain. The value of
the ;" bin Bin ;. of X-histogram ( Bin ; ; of Y-histogram) in the ith P-frame is

th

considered to be a signal in time i, and; thus:sthe corresponding ;™ X-histogram bin

in the consecutive N P-frames:is regarded /as a. time signal x ; = [ Bin tX ;=

[an ;] of the Y-histogram), where'# =:4;:2;73, ...,»N. The N-point DCT of a signal

x ; is defined as a sequence X=[X, 1, /=1, 2, 3, ..., N as follows:

= C(f)ZBm,/ cos((ztl)f”j , (5-3)

C(0) = \F and C(f)= \F f=12,,N-1

where N is the number of P-frames and j € [1,5]. Eq. (5-3) indicates that a video
sequence is represented by S sequences of DCT coefficients restricted by the number
of bins in the histogram. It means that temporal variations among original objects in
the successive P-frames are characterized by f sequences of DCT coefficients in
frequency domain.

It is well known that the first few low-frequency AC terms together with the DC

term will suffice for the need. Therefore, for easy computation we only choose these
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terms to represent a video sequence instead of selecting all coefficients. However, to
select an appropriate amount of AC coefficients is always a crucial issue. Since the
selection of coefficients is an ill-posed problem, we shall discuss this problem in the

experiments.

Video Sequence

P-frame

'Bin [

Discrete Cosine Transform

(2i+1)f7rjje[1,ﬂ]

N
Xf)j=C(f)ZBi”t)ff°°s[ 2N fe[LN]

i=1

Features of Video Sequence
elected DCT Coefficient:

Fig. 5-4. Video sequences are characterized by the object-based T2D-Histogram

descriptor and further represented by reduced low-dimensional DCT coefficients

5.4.3 Choice of Similarity Measure
A very important property of Parseval’s theorem is that the Euclidean distance
between DCT transformed signals is able to maintain the local topology. Therefore,

for matching between video sequences we employ the modified Euclidean distance as

the metric. Let [#;*] and [H}] be two finite point sets of X-histogram ([#] and
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[H;] of the Y-histogram). Then the modified Euclidean distance between two video
sequences w and / is defined as

Dist . (W ,H), Dist , (W ,shr(1,H)),
Distx(w,h):Min( ist x ( ), Dist , (W ,shr (1, H)) J

Dist , (W ,shr (2,H)),..., Dist (W ,shr(f —1,H))

Dist , (w.h) = Min (DistY(W,H), Dist , (W, shr (1, H)), ] (5-4)

Dist , (W ,shr(2,H)),..., Dist ,(W ,shr (p —1,H))

f a 5 B a 5
where Dist, W,H)=YYw" -H,}, Dist, w,H)=Y> (W}, ~H" )} and W and

J=1 /=1 J=1 /=1

H are the transformed signals of w and h, respectively. In Eq. (5-4), j denotes the jth
histogram bin, f represents the fth coefficient and a denotes the number of selected
DCT coefficients. shr(n,H) is a bin-rotating function which rotates the f histogram
bins to the right n times in a cyclic way. For example, shr(1,H) shifts the first (5-1)
bins / time to the right and the last bin rotates from the fth bin to the /* bin. Using
the distance metric with function $hr(n,H), two video sequences will be regarded as
similar when they are spatially-and.temporally similar. If the function shr(n,H) were
not employed in the distance function,a.shet-A-with-objects poisoned in the left and a
shot B with objects positioned in the right would be regarded as dissimilar because the
peak bins of Shots A and B are in the left and right, respectively and thereby the
distance between A and B would be very large.

To further address the overall moving trend of objects within a video sequence,
Disty (w,h) and Dist, (w,h) are weighted adaptively based on the average motion
vector magnitudes derived from the x- and y-directions. Under these circumstances,

the total distance Dist,,,, (w,h) between two video sequences w and 4 can be defined

as
Dist,,,,;(w,h) = WTy, - Dist y (w, h) + WT,, - Disty (w, h) (5-5)
N
1 MYV,
Wy =— D~ WT, =1-WT,,
N =MV, g+ MV,

where WT, is the weight of the X-histogram (W7, of Y-histogram), N is the number
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of P-frames, and MV,;; and MV, are the average motion vector magnitudes of the

X-component and Y-component, respectively, of the inter-coded macroblocks in the

i" P-frame. The reason why the analysis on object motion is split into two

independent directions is as follows. It is well known that a camera would normally
pan or tilt to catch moving objects in a scene. This act will in fact result in the
situation that the global motion is mainly horizontal (vertical) when most active
regions move in the horizontal (vertical) direction. Therefore, it is feasible to use the
dominant moving trend to measure the video similarity. For example, we can
discriminate between baseball and football videos using the above mentioned
similarity metric because most players in a baseball game run vertically and the
camera tilts to track them or the baseball, while players in a football game primarily

run horizontally and the camera pans to track significant events.

5.5 Experimental Results and Discussions

In order to show the effectiveness-of the-proposed method, we simulated the color
video sequence matching algorithm by MPEG-7 test dataset [69], which includes
various programs such as documentaries, news, sports, entertainment, education,
scenery, interview, etc and consists of 1173 shots. In the test dataset, the degree of
strength of the motions in these shots ranged from low, medium to high, and the size
of moving objects were classified as either small, medium or large. The anchorperson
shots and interview shots (API shots) are typical low activity shots with small-range
motions of mouth and head. The close-up tracking shots (CUT shots) are medium or
large activity shots with medium or large-area moving foreground objects. The
walking person shots (WP shots) are typical medium activity shots with medium or
large motion areas. The aims of the experiments were to (1) evaluate the retrieval

performance using different number of DCT coefficients; (2) analyze the degree of
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accuracy when distinct number of histogram bins was used in the retrieval process;
and (3) evaluate the retrieval performance of the proposed object-based motion
activity descriptor. To evaluate the performance of the above three issues, precision
and recall were used as the metrics to measure the performance of the proposed

retrieval system. Recall and precision were defined as follows:

|Retrieve(q) N Relevant(q)"
||Relevant(q)||

||Retrieve(q) N Relevant(q)”

Recall = |
||Retrieve(q)||

, (5-6)

,  Precision =

where “Retrieve(q)” means the retrieved video sequences that corresponded to a query

sequence ¢; “Relevant(q)” denotes all video sequences in the database that were
relevant to a query sequence g and || || indicates the cardinality of the set. Recall

was defined as the ratio of the number of retrieved relevant video sequences to the
total number of relevant video sequences in the video database, and Precision was
defined as the ratio of the number of retrieved relevant video sequences to the total
number of retrieved video sequences. In.the following subsections, we shall elaborate
on how to determine some impoftant thresholds that will be used in the experiments
and report the retrieval performance of the proposed system.
5.5.1 Selecting Appropriate Number of DCT Coefficients

In the experiments, we used four shot classes to test the performance of our
algorithms. Among these test videos, the shots of the Close-Up Tracking (CUT) and
the Walking Person (WP) were with high degree of motion. The shots covered in the
Bicycle Racing (BR) and the Anchor Person (API) were with medium degree of
motion and low degree of motion, respectively. Figs. 5-5(a) — 5-5(d) show the
examples of these four shot types, with key-frames sampled per 40 frames. To
evaluate the effect when different number of DCT coefficients was used in the
retrieval process, the number of DCT coefficients, ¢, including the DC and the first

(a-1) AC coefficients, was varied and tested under the condition that the number of

103



histogram bins, S, was set to 8. fwas set to 8 because in the test dataset the resolution
of frame size in terms of macroblocks was 20x15 in SIF 320x240 format. The
descriptors D, the X-histogram, the Y-histogram, the 2D-histogram and the weighted

2D-histogram were independently used.

Fig.5- 5. Examples of the Close-Up (CUT), Bicycle Racing (BR), Walking Person
(WP) and Anchorperson and Interview (API) shots
Figs. 5-6(a) — 5-6(d) show the retrieval performance using four different types of
shots, CUT, BR, WP and API, respectively. The four curves shown in the figures
corresponded to four descriptors, which had distinct number of DCT coefficients
(a=1, a=2, a=3 and a=5). The horizontal axis denotes recall and the vertical axis

denotes precision. Table 5-1 compared the performance among distinct settings of «.
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“Rank” refers to the order of retrieval performance of recall-precision pairs and the
first two ranks were listed for each descriptor measured by using different setting of «.
The retrieval performance in the recall-precision pair with =2 in the CU and BR
shots was better than that obtained with other settings. Although the setting of a=1
yielded better retrieval than =2 in the WP shot, the performance obtained by setting
a=2 was still in the second best. For the API shots, the setting a=35 was the best in
terms of retrieval and the settings =3 and a=2 were the second best as shown in
Figs. 5-6(a) — 5-6(b) and Figs. 5-6(c) — 5-6(d), respectively.

Table 5-1. Performance using distinct  and four feature descriptors (£ = 8)

Shot Type CIose-_Up Bicycle Racing Walking Anchor Person
Tracking (BR) Person (API)
Descriptor (CUT) (WP)
X- Rank #1 2 2 1 5
Histogram | pank #2 3 3 2 3
v- Rank #1 2 2 1 5
Histogram | ponk #2 1 3 2 3
2D - Rank #1 2 2 1 5
Histogram | pank #2 3 3 2 2
Weighted | Rank #1 2 2 1 5
2D -
Histogram | Rank #2 3 3 2 2

To evaluate the overall performance obtained using different numbers of DCT

coefficients, the retrieval performance £ for different & was determined by

|D] [Clips|

(5-7)

Pj’ NDC =

ANIJC
i1 o1 Rank;;

where “NDC” denotes the “Number of DCT Coefficients”; p is the total number of
different « settings in the experiment and Rankfy[’c is the ranking of the retrieval
performance for the shot of type j with @ = 4y, using descriptor i. When P, ~— was
larger, the performance obtained with « = 4,,- was better. From the curves shown in

Figs. 5-6(a) — 5-6(d), it is clear that P, can be computed and its value was larger
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than other P values. This outcome means when a=2, the retrieval result was the best.

Hence, the experimental results imply that two DCT coefficients are enough for

similarity measurement of video segments. This indicates the DC coefficient and the

lowest-frequency AC coefficient will suffice.
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Fig. 5-6. Average retrieval performance with different descriptors (5= 8, ae [1,5])

(a) X-histogram (b) Y-histogram (c) 2D-histogram (d) Weighted 2D-histogram

5.5.2 Choosing an Appropriate Motion Activity Descriptor

In order to determine an appropriate motion activity descriptor, we changed the value

of f from 4 to 10, each time with an increment of 2. Figs. 5-7(a)-5-7(d) show,

respectively, the performance of the recall-precision pair corresponding to f=4, =6,

f =8, and f =10. Table 5-2 illustrates the performance calculated by using four

different number of histogram bins (£ = 4, 6, 8, and 10). In most cases, the descriptor

adopted weighted 2D-histogram outperformed other types of descriptors. In order to



quantitatively compute the performance, we used a metric, P, 4, » to measure the

retrieval results,

‘ﬂ‘ ‘Clips‘ |

PoE Y

i=1 j=1

(5-8)

D|
nkf?

where |ﬁ| denotes the total number of distinct settings of f£; D| represents the

number of testing descriptors; Rankf;? is the retrieval performance raking of the shot

of type j with the ith f parameter setting and the descriptor D=4, . Based on the
results calculated by Eq. (5-8), we chose the weighted 2D-histogram descriptor as the

motion activity descriptor for all the experiments conducted in this work.
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Table5- 2. The performance obtained of four descriptors with different f (a = 2)

Shot Type Close-Up Bicycle Racing Walking Anchor Person
Tracking (BR) Person (AP
f Setting (cuT) (WP)
ﬂ 4 Rank #1 X X W-2D W-2D
Rank #2 W-2D W-2D X 2D
ﬂ 6 Rank #1 W-2D Y X W-2D
Rank #2 X W-2D W-2D 2D
ﬂ 8 Rank #1 X W-2D W-2D W-2D
Rank #2 W-2D 2D 2D 2D
Rank #1 W-2D W-2D W-2D X
B =10
Rank #2 2D 2D 2D 2-2D
X: X-Histogram Y:Y-Histogram 2D: 2D-Histogram W-2D: Weighted 2D-Histogram

5.5.3 Determining the Best Number of Histogram Bins

In this section, we shall verify the decision of the number of histogram bins f.
Therefore, we evaluated the performance by using different number of histogram bins,
which ranged from 4, 6, 8 to 10. The recall-precision pair corresponding to each f
setting was depicted in Fig. 548, and, the ranking of retrieval performance for each
shot type was illustrated in Table 5-3.

It is obvious that the retrieval performance at = & decided by Eq.(5-1) was better
than other settings and the worst case was when = 4. The experimental results reveal
that the number of histogram bins should be moderate, because fewer histogram bins
correspond to a less precise description of the variation in spatial distribution. In
contrast, when the number of histogram bins was too large, the descriptor would be
extremely responsive to the slight changes. Under this circumstance, the distance
obtained from excessive number of bins between two similar shots is relatively high

such that these two shots would be regarded as dissimilar.
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4 Bins
6 Bins
8 Bins
10 Bins

|
|

Fig. 5-8. Average retrieval performance with parameters:
a=2, D: weighted 2D-histogram, e {4,6,8,10}

Table 5-3. Comparison of performance using different numbers of histogram bins ()

Shot Type Close-Up Bicycle Racing ng:l:;r:]g Anchor Person
Performance (cun B (WP) A
Rank #1 6 8 8 8
Rank #2 10 10 10 10
Rank #3 8 6 6 6
Rank #4 4 4 4 4

5.5.4 Evaluation of Retrieval Performance

After the number of DCT coefficients, the number of histogram bins and the
descriptor type are determined, we shall evaluate the overall retrieving accuracy of the
proposed system. The ground truth and the overall performance corresponding to the
four shot classes are shown in Table 4. In the experiment, each shot in these four
classes was used as a query shot. The top 30 similar shots were returned as a query
result for evaluating retrieval performance. Finally, the respective average recall and
precision for each class were computed. The recall of these four kinds of shots
exceeded 80% in which the recall of BR, CUT and API were higher than 86%. The
worst result was obtained by testing the API shots, with the precision of 78%. On the
other hand, although the precision of the API shots was under 80%, the precision of

the CUT, BR, and WP all exceeded 80%. From Table 5-4, the overall average recall
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and average precision were 86% and 81%, respectively.

For performance comparison, we have performed the same experiments using the
algorithms of motion-based run-length descriptor (RLD) and shot activity histogram
(SAH) provided by MPEG-7 [70]. Fig. 5-9 shows the precision versus recall
performance of RLD, SAH and T2D-Histogram. The T2D-Histogram descriptor had
performance gain over RLD of 45% in API shots, 30% in the CUT shots, 34% in the
WP shots and 35% in the BR shots. Also, the T2D-Histogram had performance gain
over SAH of 11% in the API shots, 7% in the CUT shots, 20% in the WP shots and
21% in the BR shots. In average, the T2D-Histogram descriptor had 35% and 15%
performance gains over the RLD and SAH, respectively. The experimental results
using extensive test videos show that the proposed T2D-Histogram outperforms RLD

and SAH in MPEG-7 in the performance of video'similarity retrieval.

Table 5-4. Retrieval performance using the T2D-Histogram descriptor

Clips Close-Up Bicycle Racing walking | A\ chor Person
Tracking (BR) Person (API)
Performance (CUT) (WP)
Ground-Truth
. 162 47 239 152
Video shots
Recall 88% 87% 80% 86%
Precision 80% 84% 81% 78%
Average Recall Average Precision
86% 81%

Examples of the query results were demonstrated in Figs. 5-10 — 5-14, in which the
top 20 similar shots for CUT, BR, WP and API shots were listed, respectively. In Fig.
10, most retrieved shots included large objects with significant motion belonged to the
CUT shots. However, due to camera motion, some shots were mistakenly detected.
For example, the full-court shots of the football game like (4), (8) and (12) of Fig.

5-10 were retrieved due to the panning effect of the camera. As to the relevant shots, it
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is worth noticing that the major objects in these shots, such as (3), (18) and (19) of Fig.
5-10, had similar size with the object covered in the query although they had different
colors. The reason why these shots could still be detected was due to their similarity
with the objects in the query visually and semantically. When comparing with
color-based methods such as color histogram, these shots with distinct dominant

colors but semantically related cannot be retrieved.
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In Fig. 5-11, the retrieval performance of the BR shot was quite good and most
retrieved video segments were similar to the query due to the particular motion of the
rider(s). In Fig. 5-12, most retrieved video segments had a few medium-size moving
objects. Some video segments were mistakenly detected, such as (10) and (14) of Fig.
5-12. These shots were retrieved due to the reason that the complex background was
detected as several medium-size objects with a moving camera. In Fig. 5-13, most
retrieved video segments included one large object with low motion, and so interview
shots were also retrieved such as the shots (6), (8), (13), (16) and (20) of Fig.5-13. An
example of false detection can be found in (12) of Fig.5-13, wherein some
medium-size objects moved near to each other and so were incorrectly detected as a

single large moving object.

— Query

Fig. 5-10. Demonstration of the query result for a CUT shot
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ﬁ)

Fig. 5-12. Demonstration of the query result for a WP shot
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20

Fig. 5-13. Demonstration of the query result for an API shot

5.6 Summary

A novel framework of high-lelvéi vide Tqupréseﬂ%ation for video sequence matching

has been proposed in this work::-i;he propgﬁsédﬂ frame\}:vork has two special features: 1)
the proposed descriptor of obj ec;t?—:bals"etd-i.i;l“im—ﬁiﬁstogfzaim has exploited both spatial and
temporal features of moving ObJeC'ES and" éh.;c.lracterized video sequences in a
semantics-based manner; 2) the dimensionality of feature space has been reduced
using DCT while characterizing the temporal variations among moving objects.
Experimental results obtained using the extensive test dataset of MPEG-7 have
demonstrated that a few DCT coefficients could suffice for representing a video
sequence and also shown that the proposed T2D-Histogram descriptor was quite

robust. Using this novel motion activity descriptor of object-based T2D-Histogram,

one can perform video retrieval in an accurate and efficient way.
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Chapter 6. Robust Video Similarity Retrieval Using
Temporal MIMB Moments

6.1 Introduction

The tremendous growth in the number of digital videos has become the main
driving force for developing automatic video retrieval techniques. Among different
types of tools that can push the advancement of retrieval techniques, an efficient
automatic content analyzer that can help execute correct browsing, searching and
filtering of videos is a must. In order to achieve this goal, one has to make use of
high-level semantic features to represent video contents. The need of representing
high-level semantic features has motivated the emergence of MPEG-7, formally
called the multimedia content deséription interface [53]. However, the methods that
produce the specific features and the corresponding similarity measures represent the
non-normative part of MPEG-7-and are still.open forresearch and future innovation.

Usually, the high-level semantic features.of video sequences can be inferred from
low-level features. The low-level features can be color distribution, texture
composition, motion intensity and motion distribution. Among different types of
features that can be extracted from a video, motion is considered as a very significant
one due to its temporal nature. In the literature, Divakaran et al. [54] used a
region-based histogram to compute the spatial distribution of moving regions. The
run-length descriptor in MPEG-7 [55] is used to reflect whether moving regions
occurred in a frame. Aghbari et al. [56] proposed a motion-location based method to
extract motion features from divided sub-fields. Peker et al. [57] calculated the
average motion vectors of a P-frame and those of a video sequence to be the overall
motion features. In addition to the above mentioned local motion features, Ngo et al.

[58] and Tang et al. [15] proposed to use some global motion features to describe

115



video content.

In contrast to the motion-based features of individual frames, another group of
researchers proposed to use spatio-temporal features between successive frames
because these types of features are more abundant in the amount of information.
Wang et al. [59] extracted features of color, edge and motion, and measured the
similarity between temporal patterns using the method of dynamic programming. Lin
et al. [60] characterized the temporal content variation in a shot using two descriptors
- dominant color histograms of group of frames and spatial structure histograms of
individual frames. Cheung and Zakhor [61] utilized the HSV color histogram to
represent the key-frames of video clips and designed a video signature clustering
algorithm for detecting similarities between videos. Dimitrova et al. [62] represented
video segments by color super-histograms, ‘which are used to compute color
histograms for individual shots=Other works.that.fall into this category can be found
in [63-66].

There are several drawbacks associated with the key-frame based matching process.
First, the features selected from key-frames usually suffer from the high
dimensionality problem. Second, the features chosen from a key-frame is in fact local
features. For a matching process that is targeting at measuring the similarity among a
great number of video clips, the key-frame based matching method is not really
feasible because the information used to characterize the relationships among
consecutive frames is not taken into account. In order to overcome these drawbacks,
we propose a motion pattern descriptor, which can exploit the spatio-temporal
information of moving blobs in a video shot in the matching process. Basically, the
proposed spatio-temporal features can support high-level semantic-based retrieval of
videos in a very efficient manner. We make use of some spatio-temporal relationships

among moving blobs and then use them to support the retrieval task. In the retrieval
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process, we use the DCT to reduce the dimensionality of the extracted
high-dimensional feature. Using DCT, we can maintain the local topology of a
high-dimensional feature. In addition, the energy concentration property of DCT
allows us to use only a few DCT coefficients to represent the moving blobs and their
variations. Therefore, the transformation can make an accurate and efficient retrieval
process possible.

The rest of the chapter is organized as follows. Section 6.2 illustrates the methods
used to characterize video segments. Section 6.3 presents the experimental results.

Section 6.4 draws conclusions.

6.2 Characterization of Video Segments

6.2.1 Detecting Moving Blobs in, MPEG Videos

For computational efficiency,”motion’information in P-frames is used for the
detection of moving blobs. In géneral, consecutive P-frames separated by two or three
B-frames are still similar and would mot vary-too much. Therefore, it is reasonable to
use P-frames as targets for detecting"moving blobs. On the other hand, since the
motion vectors estimated in MPEG videos is for the purpose of compression and thus
may not be 100% correct, one has to remove the noisy part before they can be used. In
our previous work [71], a cascaded filter that is composed of a Gaussian filter
followed by a median filter is exploited for noise removal. An example of noise
filtering in MVF is demonstrated in Fig.6-1. The experimental results show that the
precision is higher than 70% and the recall is higher than 80% and thus prove that the
proposed spatial filter is effective to remove the noise in motion vector fields. To
detect moving blobs in the filtered MVFs, macroblocks of similar MV magnitude and
direction are clustered together by employing a region-growing method with an

operator of 3x3 macroblocks.
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(a) (b)
Fig. 6-1. Demonstration of MVF noise reduction (a) MVF without filtering; (b) MVF
smoothing with a cascaded filter

6.2.2 MIMB Moments

The motion intensity of moving blobs (MIMB) is a descriptor for describing sketch features

in a frame that contain moving regions with motion intensity. Rather than directly employing
the MIMB obtained in a P-frame, a temporal filter using Gaussian filter with temporal
window size of 5 frames is exploited to smooth MIMBs. To represent the spatial feature of

MIMBs in a compact meaningful form, the moment invariants of MIMBs are computed. The
use of moments for image analyéis and bﬁject‘"‘repre”s‘entation was inspired by Hu[72].

According to Hu’s Uniqueness Théprem? the ‘moment seﬁ {4, } 1s uniquely determined by
MIMB(x,y) and conversely, MIMB(xy) is ‘uhiquely deténnined by { u,, }. The central moment

u,, computed from MIMB is defined by |

N-1M-1

Moy = Z 2 (x - ;)p (y - ;)qMIMB(x, ») (6-1)

—0 x=0

<

where (p,q) = {(0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0)} and CxR is the frame size in
terms of macroblocks. To select a meaningful subset of moment values that contain
sufficient information to uniquely characterize the MIMBs, the seven moment

invariants defined by Hu are employed and defined by

M, =ty + iy, (6‘2)
L T (6-3)
My = (0 =3, )" + Bty = 115 ) (6-4)
My = (s + 1) + (o) + p13 ) (6-5)
M = (at =301 Nt + i Wt + 1 =3ty + 1)’ (6-6)

+ (3/121 — M3 )(/121 + s )[3(,“30 + 4y )2 - (:u21 + s )2 ]
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Mg = (,Uzo —Hp )[(,uso + Uy )2 - (;u21 + Lo )2 ]"' (6-7)
4u,, (/u30 + Uy, )(/‘21 + L )

M, = (3/“21 — My )(ﬂso + 4, )[(:uso + 4, )2 - 3(#21 + Uy )2] (6-8)
sy = 320 Xty + 4103 B atsg + 11 V' = (st + 1103 ]

6.2.3 Representing Temporal Variations of MIMB Moments

In this section, we shall describe how to characterize the temporal variations among

moving blobs exploiting the DCT. The algorithm that can be exploited to generate

video sequence representation is as follows:

Video Sequence Representation Algorithm

Input: Consecutive P-frames {P1, P2, P3, ..., PN}

Output: Representative truncated DCT coefficients [ X, , ], where Ae[1,q).

Procedure:

1.

For each P-frame Pi,
Detect moving blobs using a cascaded filter followed by using morphological
operations.

For each P-frame Pi,

Compute Hu’s seven moment invariants {7, } in the filtered MVF, where

me[l,7]-

Compute the transformed sequence [ x, ] using the Discrete Cosine Transform

N
X, = C(f)z Mm’,cos(%j , where fe[l,N]

t=1

For m transformed sequences, [ X, ] of DCT coefficients,

Truncate the number of DCT coefficients to &, which is composed of the DC

coefficient and (a-7) AC coefficients to represent a transformed sequence.

Generate a feature vector F(X, |, X,,, X,5» X,,» X,5.X,4,X,,) for each
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video segment, where A e[l,«]-

For each P-frame, the spatial feature of moving blobs in P-frames is represented by
Hu’s seven moment invariants. In order to characterize the temporal variations of
moving blobs within successive frames, DCT is exploited to transform the MIMB

moments of the original video sequence into the frequency domain. The value of the

MIMB M, . in the ith P-frame is considered to be a signal in time 7, and thus the
corresponding MIMB A7, in the N P-frames is regarded as a time signal x, =
[Mm,,], where ¢ = 1, 2, 3, ..., N. The N-point DCT of a signal x, is defined as a

sequence X =[x, 1./=1, 2, 3, ..., Nas follows:

N
X,,=C(N, Mm,ICOS[%jaC(O)ﬂ/%, and C(f)=\/§, f=12,,N-1,(6-9)

t=1

where N is the number of P-frames and-m: e [1,7].- Eq. (6-9) indicates that a video
sequence is represented by 7 sequences<of DCT coefficients. It means that temporal
variations among original objects”in the successive P-frames are characterized by 7
sequences of DCT coefficients in frequency domain. It is well known that the first
few low-frequency AC terms together with the DC term will suffice for the need.
Therefore, for considering computation cost we only choose these terms to represent a
video sequence instead of selecting all coefficients. However, to select an appropriate
amount of AC coefficients is always a crucial issue. The experimental results imply
that two DCT coefficients are enough for similarity measurement of video segments.
This indicates the DC coefficient and the lowest-frequency AC coefficient will

suffice.

6.3 Experimental Results

6.3.1 Choice of Similarity Measure
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The similarity measure is for computing the similarity between a feature vector of a
query video shot and a feature vector of a target video shot. To choose a similarity
measure, in statistics we prefer a distance that for each of the components takes the
variability of that variable into account when determining its distance from the center.
Components with high variability should receive less weight than components with
low variability. Therefore, a Mahalanobis distance is used as a similarity measure,

which is defined as

1/2

; (6-10)

2

F{—F/

Oy

D(F?,F')= Z

k=1

where F! and F, denote the kth components of a query feature vector F? and a

target feature vector F', respectively and n denotes the dimension of a feature vector.

o, denotes the standard deviation of thegkth:. component for feature vectors in the

testing dataset.

6.3.2 Evaluation of Retrieval Performance

In order to show the effectiveness..of the proposed method, we simulated the
algorithm of video sequence matching by using MPEG-7 testing dataset [69] which
includes various programs such as news, sports, entertainment, education, etc and
consists of 1173 shots. The degree of strength of the motions in these shots ranged
from low, medium to high, and the size of moving objects were classified as either
small, medium or large. To evaluate the performance, precision and recall were used
as the metrics to measure the performance of the proposed retrieval system. Recall

and precision were defined as follows:

||Retrieve(q) N Relevant(q)"
||Relevant(q)||

||Retrieve(q) N Relevant(q)"

Recall =
||Retrieve(q)||

(6-11)

, Precision =

where “Retrieve(q)” means the retrieved video sequences that corresponded to a query

sequence ¢; “Relevant(q)” denotes all video sequences in the database that were
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relevant to a query sequence g and ||| indicates the cardinality of the set.

In the experiments, we used three classes of shots to test the performance of our
algorithms. Among these test videos, the shots covered in the Close-Up Tracking
(CUT) and the Walking Persons (WP) were with high degree of motion and medium
degree motion, respectively. The Anchorperson and Interview (IV) shots were with
low degree of motion. Considering the sensitivity of the proposed descriptor to the
size of moving blobs, the blob size ranges between small blobs of 2x2 macroblocks
and large blobs of half or larger frame size. The 30 most relevant shots corresponding
to every query were selected out of 1173 shots.

also do the same experiments using the algorithm of motion-based run-length

In order to give a comparison, we

descriptor (RLD) and shot activity histogram (SAH) provided by MPEG-7.
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Fig. 6-2 shows the precision versus recall performance of the combination of RLD



in MPEG-7 and the proposed MIMB+DCT descriptor. The proposed descriptor
yielded 49% average performance gain in the IV shots, 29% in the CUT shots and
37% in the WP shots over the RLD. Also, the proposed descriptor yielded 40% and
21% average performance gain in all the testing classes over the RLD and SAH in

MPEG-7, respectively.

6.4 Summary

A novel framework of high-level video representation for video sequence matching
has been developed in this work. The proposed framework has two special features: 1)
the proposed temporal MIMB moments has exploited both spatial and temporal
features of moving blobs and characterized video sequences in a high-level manner; 2)
the dimensionality of feature space has been.reduced using DCT while characterizing
the temporal variations among .moving blobs; Experimental results obtained using
MPEG-7 testing dataset have demonstrated that a few DCT coefficients could suffice
for representing a video sequerice and. alseshown -that the proposed motion-pattern
descriptor was quite robust and effictent. "Using this framework, one can perform

video retrieval in an accurate and efficient way.
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Chapter 7. Conclusions and Future Work

7.1 Contributions

In this thesis, we have proposed several object-based approaches in compressed
videos for detecting semantic events, characterizing video shots, localizing
superimposed closed captions, and structuring video content. We have several
contributions as follows:

1. An effective object-based mechanism is proposed to detect semantic events in
sports videos.

2. Two novel object-based motion pattern descriptors are proposed to characterize
the spatio-temporal variations of moving objects in a video shot. These descriptors
are not only in a compact form:but are effective for video similarity retrieval.

3. A transformed feature employing DCT that is low dimensional but semantically
meaningful is proposed for efficiént content-based video retrieval.

4. A novel algorithm for detecting superimposed closed captions in compressed
videos is proposed.

5. A font size filter is designed as the support for users to automatically select the
desired closed captions.

All the proposed descriptors are verified by extensive test dataset of various

characteristics. In the experiments comprising comprehensive comparisons, the

proposed descriptors outperform several related motion activity descriptors.

7.2 Future Work
In the future, in order to allow users to browse and to search a video sequence in a
short time, a more compact semantic form representing video content is indispensable.

Therefore, with the video characterization capabilities of the proposed text and motion
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activity features, there are several interesting extensions on extractions of high-level

semantic features, as listed below.

® Design of New Visual Features

Although several visual descriptors are proposed in MPEG-7, such as color, texture
and motion, MPEG-7 standardizes only a number but not nearly all useful features. It
is necessary to design and implement additional descriptors for symmetry detection of
objects (e.g., face detection), object-based description in video streams (e.g., structure
recognition from motion), and semantic high-level video event analysis from
uncompressed as well as compressed video streams. Additionally, we plan to describe
object-based 3D features. For example, in compressed videos we can generate 3D
objects in two steps (1) detect .moving blobs“in B- or P-frames (2) locate the
corresponding blobs in I-frames. Subsequently, new-features in the 3D blobs should

be investigated such as the feature point.and.shape of the 3D volume.

® Employment of Video Context Information

In an article, we can often tell the meaning of a word from its context. Similarly, in
the video content, human can realize what the shot means from its neighboring shots —
the video context. In the research issue of video context, neighboring shots related
with the target should be identified. However, how to identify related neighboring
shots with least time constraint is the first critical problem. Once related shots are
identified, how to compute the similarity between the query and target shot sets is

another challenge.

® Similarity Measurement

The goal is the design of methods for query definition that are flexible enough to
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satisfy the different ways how humans can perceive and judge similarity and are
applicable in different querying environment. In this thesis, we have proposed
motion-based weighted distance metric, which can be used to effectively distinguish
between video clips that are of dominant motion either in horizontal or vertical
directions. In the future, camera motion can be estimated and be considered in the
similarity measurement because camera motion is not only the content of human

perception but it is an important cue for classifying general videos.
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