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摘要 

 

隨著數位視訊在教育、娛樂、以及其它多媒體應用的發展下，造成數位視訊

資料大量且迅速增加。在此情況之下，對於使用者而言，需憑藉一個有效的工具

來快速且有效率地獲得所要的視訊資料。在搜尋視訊資料的方法中，對於使用者

而言以內容為基礎之方法最具有高階語意意義，也最為自然且友善。因此，以視

訊內容為基礎之搜尋、瀏覽以及擷取吸引各領域的學者研發各種粹取視訊資料中

的高階特徵，以提供有效率地搜尋並擷取資料。但另一方面，隨著視訊資料壓縮

法的成熟，愈來愈多的視訊資料以壓縮型態儲存，特別是 MPEG 格式。因此也

吸引了愈來愈多的學者投入在壓縮的視訊資料中粹取其高階特徵之研究。本論文

主旨在於研發粹取精簡且有效之視訊特徵，並達成具有語意之高階視訊資料結構

化。 

    首先，我們在壓縮視訊資料中偵測移動物體，並提出移動物體追蹤演算法，

以追蹤物體並產生物體軌跡，憑藉著物體軌跡，推測相對應之事件並產生事件之

標籤，最終建立以事件為基礎之視訊資料結構化瀏覽系統。 

    在建立高階視訊資料結構化當中，除了視覺資料之外，文字資料亦是更具有

語意意義的特徵，因此我們也提出了在壓縮視訊資料當中偵測文字字幕，並利用

字幕的長時間出現特性作為濾除雜訊之基礎以及文字字幕其梯度能量較高之特

性，以此獲得有意義的文字字幕，提供具語意之視訊結構化之計算。 

    為了提供有效的視訊資料相似性的比對，以利視訊資料擷取，我們也提出了
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兩個以移動物體為基礎之高階特徵(T2D-Histogram Descriptor 以及 Temporal 

MIMB Moments Descriptor)。與傳統方法在粹取視訊資料特徵僅考慮空間特性不

同，我們所提出的兩個 descriptor 利用了視訊資料之空間以及時間的特性。我們

以 Discrete Cosine Transform之能量集中之特性，將各個影格之空間特性作為連

結，並大幅降低特徵值之資料量，達到高階視訊特徵精簡化但視訊資料相似性比

對高效率的目的。 

    我們進行了大規模完整的實驗以評估所提各方法的效能。在我們的實驗範圍

中，結果顯示，對於眾多的測試視訊資料，我們的視訊資料相似性比對的方法都

優於許多著名的方法。 
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Abstract 

With the increasing digital videos in education, entertainment and other multimedia 

applications, there is an urgent demand for tools that allow an efficient way for users 

to acquire desired video data. Content-based searching, browsing and retrieval is more 

natural, friendly and semantically meaningful to users. With the technique of video 

compression getting mature, lots of videos are being stored in compressed form and 

accordingly more and more researches focus on the feature extractions in compressed 

videos especially in MPEG format. This thesis aims to investigate high-level semantic 

video features in compressed domain for efficient video retrieval and video browsing. 

  We propose an approach for video abstraction to generate semantically meaningful 

video clips and associated metadata. Based on the concept of long-term consistency of 

spatial-temporal relationship between objects in consecutive P-frames, the algorithm 

of multi-object tracking is designed to locate the objects and to generate the trajectory 

of each object without size constraint. Utilizing the object trajectory coupled with 

domain knowledge, the event inference module detects and identifies the events in the 

application of tennis sports. Consequently, the event information and metadata of 

associated video clips are extracted and the abstraction of video streams is 
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accomplished. 

A novel mechanism is proposed to automatically parse sports videos in compressed 

domain and then to construct a concise table of video content employing the 

superimposed closed captions and the semantic classes of video shots. The efficient 

approach of closed caption localization is proposed to first detect caption frames in 

meaningful shots. Then caption frames instead of every frame are selected as targets 

for detecting closed captions based on long-term consistency without size constraint. 

Besides, in order to support discriminate captions of interest automatically, a novel 

tool – font size detector is proposed to recognize the font size of closed captions using 

compressed data in MPEG videos. 

For effective video retrieval, we propose a high-level motion activity descriptor, 

object-based transformed 2D-histogram (T2D-Histogram), which exploits both spatial 

and temporal features to characterize video sequences in a semantics-based manner. 

The Discrete Cosine Transform (DCT) is applied to convert the object-based 

2D-histogram sequences from the time domain to the frequency domain. Using this 

transform, the original high-dimensional time domain features used to represent 

successive frames are significantly reduced to a set of low-dimensional features in 

frequency domain. The energy concentration property of DCT allows us to use only a 

few DCT coefficients to effectively capture the variations of moving objects. Having 

the efficient scheme for video representation, one can perform video retrieval in an 

accurate and efficient way. 

Furthermore, we propose a high-level compact motion-pattern descriptor, temporal 

motion intensity of moving blobs (MIMB) moments, which exploits both spatial 

invariants and temporal features to characterize video sequences. The energy 

concentration property of DCT allows us to use only a few DCT coefficients to 

precisely capture the variations of moving blobs. Compared to the motion activity 
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descriptors, RLD and SAH, of MPEG-7, the proposed descriptor yield 40% and 21 % 

average performance gains over RLD and SAH, respectively. 

Comprehensive experiments have been conducted to assess the performance of the 

proposed methods. The empirical results show that these methods outperform 

state-of-the-art methods with respective various datasets of different characteristics.  
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Chapter 1. Introduction 

  Due to the tremendous growth in the number of digital videos, the development of 

video retrieval algorithms that can perform efficient and effective retrieval task is 

indispensable. In this proposal, as shown in the top of Fig. 1-1, we propose an 

object-based video content parsing and event understanding technique in MPEG 

compressed videos to support semantic content indexing and abstraction. Its aim is to 

reliably analyze the semantic video contents. Because moving objects and the 

corresponding trajectories are the important visual cues for content parsing, methods 

of object detection and object tracking are proposed using motion features. Therefore, 

a strategy of object-based event inference is introduced according to the 

spatio-temporal relationships between objects. Since high-level semantic events are 

domain dependent, the semantic events are detected and inferred from the long-term 

consistent spatio-temporal relationships between moving objects utilizing specific 

domain knowledge. Consequently, video content descriptions for MPEG-7 are 

generated automatically to support efficient content-based retrieval. Here, we use 

tennis sports videos as a demonstration of the system. Experimental results show the 

high accuracy of event detections and justify the effectiveness of the proposed 

mechanism.  

Moreover, since object-based features are semantically more meaningful than other 

visual features, we propose a high-level motion activity descriptor – 2D histogram, as 

shown in the middle of Fig.1-1, that exploits both spatial and temporal features of 

moving objects characterize video sequences in a semantic manner. The Discrete 

Cosine Transform (DCT) is applied to convert the high-level features from the time 

domain to the frequency domain. Using this transform, the original high-dimensional 

time domain features used to represent successive frames are significantly reduced to 
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the low-dimensional features in frequency domain. The energy concentration property 

of DCT allows us to use only a few DCT coefficients to precisely represent the 

variations of moving objects. Having the proposed mechanism and the efficient 

scheme of video representation, one can perform video retrieval in an accurate and 

efficient way. 
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Fig. 1-1. Overview of the proposed approaches 

  In addition to employing visual features to characterize video shots, textual 

information in closed captions is also important for users to understand overall video 

content in a short time. Therefore, as shown in the bottom of Fig. 1-1, a novel 

approach of automatic closed caption detection and font size differentiation among 

localized text regions in MPEG videos. The tracking-based noise filtering is exploited 

to remove the noise of potential captions. When the general closed captions are 

localized, the designed tool – font size differentiation is used as a filter to assist in the 

discrimination of the specific and significant text captions, like scoreboards in sports 

videos.  

  To provide users a compact form of video content, video structuring is a crucial 
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step in video content analysis and is the process of extracting temporal structural 

information of video sequences. It involves detecting temporal boundaries, identifying 

meaningful segments of a video and then building a compact representation of video 

content. Therefore, we propose a novel approach to automatically parse MPEG 

sequences and then to construct a table of video content based on the textual 

information on superimposed closed captions and the semantic classes of video shots. 

First, video sequences are efficiently segmented into shots using the approach of 

GOP-based video segmentation. Each video shot is then characterized to be a novel 

feature – object-based motion activity, which takes into account the spatio-temporal 

motion activity among moving objects obtained from motion information of the 

compressed data. The shots are then classified into semantic classes when the specific 

domain-knowledge is employed. Finally, a clustering-based algorithm is exploited to 

distinguish the target captions – superimposed closed captions from the high-textured 

background regions in the shots of interest. Having the proposed video structuring 

approach, the system can allow users to browse video sequences at different levels of 

detail in an efficient way. 

The rest of the thesis is organized as follows. Chapter 2 shows the algorithm of video 

event detection in compressed domains. Effective algorithm of closed caption 

detection and filtering is illustrated in Chapter 3. Semantic video structuring for 

volleyball games is introduced in Chapter 4. Two high-level compact video 

descriptors and their corresponding matching measurements are described in Chapter 

5 and Chapter 6, respectively. Finally, Chapter 7 concludes this thesis.  
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Chapter 2. Automatic Content Parsing and Semantic Event 

Identification for Sports Video Abstraction and Description 

 

2.1 Introduction 

The tremendous growth in the amount of digital videos is driving the need for more 

effective methods to access and acquire desired video data. Advances in automatic 

content analysis and feature extraction improve capabilities for effectively searching 

and filtering videos along perceptual features and semantics. Content-based indexing 

provides users natural and friendly query, searching, browsing and retrieving. In order 

to provide users more efficient and effective access methods, it is necessary to support 

high-level and semantic features for video content representation and indexing. The 

need of representation and indexing for high-level and semantic features motivates the 

emerging standard MPEG-7, formally called multimedia content description interface 

[1]. However, the methods that produce the desired features are non-normative part of 

MPEG-7 and are left open for research and future innovation. 

  In many practical queries of MPEG-7 database, high-level and semantic features 

can support users to acquire desired data more efficiently and effectively. Features of 

high-level semantics can be extracted and inferred from the closed caption streams [2], 

the edge information [3], the variation of camera motions and also from 

spatial-temporal relationship of object locations in uncompressed [4-7] or compressed 

domain [8-10]. In order to save computation cost and storage space, recently more 

researches extract features or segment video data directly in compressed video 

domain [11-13] instead of uncompressed raw data. To support semantic indexing of 

video content, domain specific knowledge is useful for content identification or 

annotation and is often applied accordingly. Some researches focus on classification 
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of video content by identifying significant camera operations [14-15] by using motion 

vectors of MPEG video streams with specific domain knowledge. In general, distinct 

camera operations would apply to different kinds of video events. For example, in a 

basketball game the slam-dunk may correspond to the zoom-in operation and the fast 

break may be with panning camera motion. However, shots of the same event may be 

regarded as different kinds of events when these shots are taken by various 

photographers. Babaguchi et al. [2] search the predefined keywords of American 

football games in closed caption streams to find out the possible time intervals, which 

contain the event-shots and subsequently apply the low-level color feature to discover 

shots similar to predefined events. However, this method would be confronted with 

some limitations. The target events would be lost due to the reason that the announcer 

or the commentator may not explain the whole game clearly enough. In addition, 

target event detection in sports videos based on simple color features would not work 

well while the court of games is in different colors.  

  Although these examples of semantic content analysis have achieved certain goals 

of interest, the features exploited are not general enough. Analyzing video content 

based on appearance of moving blobs or objects is more general and clearly 

advantageous since it can show the variation of objects in consecutive frames and 

even the relationship or event between objects while prior domain knowledge is 

applied. In addition, few researches focus on video abstraction based on event 

inference directly from compressed videos. Sports videos contain, besides game 

competition clips, many clips of commercials, close-up of players or clips that the 

competition is not actually ongoing. Hence, it is necessary to remove these 

insignificant clips from the large amount of video sequences so that users can browse 

or retrieve the desired relevant video data more efficiently.  

Therefore, in this chapter, we propose an approach for video abstraction to generate 
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semantically meaningful video clips and associated metadata. It exploits the efficient 

mechanism of scene change detection and the effective high-level features of 

spatial-temporal relationships between objects in MPEG compressed domain. In video 

segmentation, the proposed GOP-based scene change detection [16] is utilized to 

segment video streams into shots efficiently since video streams are examined GOP 

by GOP to detect scene cuts instead of frame by frame and the experimental results 

show the effectiveness of the approach. Generally, in sports videos, the clips of sports 

competition are the focus of interest. Shots identification mechanism is proposed to 

distinguish the interesting shots for further sports event detection. Moreover, objects 

should be located for event understanding. Based on the concept of long-term 

consistency of spatial-temporal relationship between objects in consecutive P-frames, 

the algorithm of multi-object tracking is designed to locate the objects and to generate 

the trajectory of each object without size constraint. Utilizing the object trajectory 

coupled with domain knowledge, the event inference module detects and identifies the 

events in the application of tennis sports. Consequently, the event information and 

metadata of associated video clips are extracted and the abstraction of video streams 

is accomplished. Furthermore, video content descriptions and description schemes 

based on the Hierarchical Summary Description Scheme [17] in MPEG-7 are 

generated automatically to support high-level video content indexing, retrieval and 

browsing. 

  The rest of the chapter is organized as follows. The overview of the proposed video 

abstraction approach is described in section 2.2 and the video segmentation and shots 

identification are presented in section 2.3. Section 2.4 presents the method of global 

motion estimation and section 2.5 describes the object-tracking algorithm. 

Experimental results and discussions are shown in section 2.6. Conclusion and future 

work are given in section 2.7.  
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2.2 Overview of The System Architecture 
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Fig. 2-1. Proposed system architecture of video abstraction and description 

Fig. 2-1 shows the proposed system architecture for event-based semantic 

abstraction of videos. Video streams are first segmented into shots using the proposed 

GOP-based video segmentation and segmented shots are further classified using the 

color-based scene identification. In general, sports shots can be classified as two types 

according to the color features. The first type is the shot consisting of the competition 

court or field whose color variation is small throughout the whole shot and the second 

type is the shot including the commercials, close-up shots, the crowd, etc. in which 

the color variation is relatively significant. Significant video clips that contain 

competition court are usually the shots of interest and are thus selected for further 

event inference. In order to reduce computation cost, objects are detected using the 

motion information in P-frames. However, in sports videos, the camera is not static 

because it may pan or tilt to capture the players. To localize the positions of objects 

robustly, camera motion must be estimated. Instead of exploiting the motion 

estimation model such as affine motion model, the camera motion indicated by the 

dominant motion is characterized using the histogram-based method, in which motion 

vectors in P-frames are directly extracted and used for camera motion estimation.  

Moreover, after objects are tracked, the trajectories of objects in a video shot can be 
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obtained and be exploited to infer high-level semantic events of sports videos with the 

aid of domain knowledge. Video shots are distinguished into semantically meaningful 

clips based on the events inferred in the previous phase. After the thorough procedure, 

semantic video clips are obtained and the associated high-level metadata can be used 

for automatic generation of video descriptions, video indexing and video abstraction. 

For example, three major events in tennis games are: serve and volley, baseline rally 

and passing shot. Players always staying near baseline are considered as baseliners 

and thus the corresponding event is regarded as baseline-rally. When one of the 

players is a serve-and-volleyer, the event would be serve-and-volley or passing shot 

according to the final position of the serve-and-volleyer. These events are defined in 

terms of not only objects appearing in a time interval but also spatial relationships 

between the objects. Therefore, objects must be localized in a time point and further 

be tracked in a time interval.  

In the experiments, we use tennis video streams formatted in MPEG-2 as testing 

sequences and its’ temporal tree structure for domain knowledge is shown in Fig. 2-2. 

A match can be played to the best of some sets (the player needs to win two sets out 

of three in order to win the match or to win three sets out of five in order to win the 

match). A set consists of several games (say six games) and a game is made up of 

some points (say four points) [18]. It is worth noting that such a tree can be 

constructed for any kind of sports games. The proposed object-based video analysis 

scheme can be applied to most kind of sports games and even the well-structured 

videos such as news because their video sequences can be structured as a tree and the 

video content can be modeled or described using objects. Therefore, given the 

structure and the domain knowledge, we are able to adapt the event detection scheme 

for specific application domain. The details of each module are explained in the 

following sections. 
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Fig. 2-2. Structure of typical tennis video program 

2.3 Video Segmentation and Shots Selection 

2.3.1 GOP-Based Video Segmentation 

Video data is segmented into clips to serve as logical units called “shots” or 

“scenes”. Fig. 2-3 illustrates our proposed GOP-based scene change detection 

approach [16]. In MPEG-II format [19-20], GOP layer is a random accessed point and 

contains GOP header and a series of encoded pictures including I, P and B-frames. 

The size of a GOP is about 10 to 20 frames, which is less than the minimum duration 

of two consecutive scene changes (about 20 frames) [21]. 

We first detect possible occurrences of scene change GOP by GOP (inter-GOP) 

instead of frame by frame to speed up the computation. The difference between each 

consecutive GOP-pair is computed by comparing the I-frames in each consecutive 

GOP-pair. If the difference of DC coefficients between these two I-frames is larger 

than the threshold, then there may have scene change in between these two GOPs. 

Hence, the GOP that contains the scene change frame is located. In the second step – 

intra GOP scene change detection, we further compute the ratio of forward to 

backward and the ratio of backward to forward motion vectors in B-frames. By 
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comparing the two ratios with predefined thresholds, the actual frame of scene change 

within a GOP can be located. The experimental results in [16] are convincing and 

justify that the efficiency and the effectiveness of video segmentation. 

yes

no

Step 1.

Step 2.

Inter-GOP scene change
detection
Calculate the difference in each
consecutive GOP-pair

If difference is more than
threshold?

Intra-GOP scene change
detection
Find out the actual scene change
frame within the GOP

 

Fig. 2-3. GOP-based scene change detection algorithm 

2.3.2 Scene Identification 

  While the boundary of each shot is detected, the video sequence is segmented into 

shots consists of various types of clips, which need further processing to identify the 

scenes. In order to detect and infer events, application domain of interest needs to be 

specified and knowledge model needs to be incorporated. Taking sports videos as an 

example, such as tennis, football and baseball, the clips might be commercials, 

close-up shots and competition court shots. However, commercials may not be 

interesting to clients and only the ongoing competition shots in sports games are 

clients’ concern. Hence, only the clips of interest are meaningful and need to be 

processed and analyzed further. Therefore, scene identification is to recognize the 

clips of the type desired (say competition court shots).  

  Focusing on tennis games, we observe that the variation of the intensity of the 
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tennis court frame is very small through the whole clip and the value of intensity 

variation between consecutive frames is very similar. In contrast, the intensity of the 

commercial clips and close-up clips varies significantly in each frame and the 

difference of the intensity variance between two neighboring frames is relatively large. 

Therefore, the DC-image of each I-frame, which consists of DC coefficients of each 

block, is used to compute the intensity variation of I-frames. In addition to the 

intensity variance of each I-frame, the variance of each shot is also computed to be the 

shot feature. The definition of the frame variance and that of shot variance are shown 

in Eq. (2-1) and Eq. (2-2).  means the jth block of the ith frame and N 

represents the total number of blocks in a frame.  is the intensity variance of 

the frame i in shot s and the variance of shot s is expressed by , where M is the 

total number of frames in shot s. The variation of the intensity variance of each 

I-frame in a video sequence from frame-0 to frame-1965 is exhibited in Fig. 2-4. In 

the video sequence, four clips of tennis court are marked by the dotted ellipses and the 

close-up clips are marked by the dotted rectangles. The last clip of this sequence is an 

advertisement clip signed by the dotted circle. From Fig. 2-4, we can see that the 

intensity variance of the tennis court clips is very small and the intensity values of 

them are very similar through the whole clip. Thus, the clips of tennis court can be 

indicated and selected by the characteristic of the value of intensity variance being 

small in each frame and permanent through the shot.  
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adaptive threshold decision is defined in Eq. (2-3) where  means the threshold 

for global motion estimation, N represents the number of macroblocks in an I-frame 

and α can be set to a half of the outline region or larger than that because most 

regions (say more than half) would have similar motion directions when the camera 

pans or tilts.  
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Fig. 2-5. (a) original I-frame (b) result of tennis court region detection 

  An example of the outline region detection is demonstrated in Fig. 2-5. The largest 

region is the region of tennis court as marked in the bottom of Fig. 2-5 (b) and other 

unmarked regions in the top of Fig. 2-5(b) belonging to the outline regions are used 

for adaptive threshold decision. 

2.4.2 Camera Motion Estimation 

  To correctly locate the position of players, camera motion should be estimated to 

compensate players for the camera motion. In this section, a fast and simplified 

camera motion detection approach is proposed. Fig. 2-6 shows the procedure of the 

camera motion detection. For the computation efficiency, only the motion vectors of 

P-frames are used for camera motion analysis since in general, in a 30 fps video 

consecutive P-frames separated by two or three B-frames, are still similar and would 
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not vary too much. Therefore, it is sufficient to use the motion information of 

P-frames only to detect camera motions. 
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Fig. 2-6. The approach of camera motion estimation 

 

However, the motion vectors of P-frames or B-frames in MPEG-2 compression 

standard are best match and may not actually represent correct motions in a frame 

because the motion estimation in MPEG videos is for the purpose of data compression. 

This problem in the sports video streams is more serious since consecutive frames in 

competition court clips are very similar. This will lead to the situation that for a 

macroblock in competition court, it is easy to find a good match around its neighbor 

in the reference frame. However, this motion estimation does not mean that the 

position of the macroblock is correctly located in its reference frame. Therefore, in 

order to achieve more robust analysis, it is necessary to select the regions that do not 

belong to the area of competition court for global motion estimation, since the motion 

vectors of the area of competition court cannot actually reflect the global motion. 

Taking the tennis court as an example, in Fig. 2-7, we can observe that motion vectors 

in the upper part of the frame are more reliable since these macroblocks are of similar 

motion vector magnitude and direction, but in most of the macroblocks within the 

area of tennis court, the magnitudes and directions are not consistent and are very 

noisy. 
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Fig. 2-7. An example of camera pan to the direction of left-bottom (frame 237) 

The histograms of magnitude and direction of motion vectors in the outline region, 

which are more reliable for camera motion estimation, are computed to acquire 

dominant motion direction and dominant motion magnitude to further identify 

whether camera motion, pan and tilt, happens or not. Using the approach of 

histogram-based dominant motion computation, we can avoid matrix multiplications, 

which are computationally inefficient when motion vectors are fit to affine motion 

models. Furthermore, pan and tilt are two major camera motions in most sports and 

can be detected fast and correctly by the proposed motion vector histogram-based 

approach. The threshold  that is adaptively decided is used to identify the 

existence of camera motion in a frame. The magnitude and direction of camera 

motion are obtained by using Eq. (2-4) and Eq. (2-5).  

globalT
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DMH means the dominant magnitude of motion vector histogram, DAH the 

dominant direction of motion vector histogram,  the summation of three bins 

( , and ) of magnitude histogram of the  frame, 

 the summation of three bins ( ,  and ) of 

direction histogram of the  frame, and  represents the value of the  

bin in the  frame.  
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In the ideal situations, macroblocks in an object would have the same motion 

magnitude and direction. However, although the entire object moves toward the same 

direction, some regions in the object might have different but similar motion 

magnitudes and direction because objects in real world are not rigid in their shape and 

size. Consequently, to tolerate the error of motion estimations, the values of 

,  and  of magnitude histogram 

( ,  and  of direction histogram) are summed to 

examine whether the summation  ( ) is larger than the threshold or 

not. If  and  are both larger than the threshold , camera 

motion happened, and DMH and DAH are identified as magnitude and direction of 

camera motion in frame i. Moreover, motion vectors are compensated with the 

magnitude and direction of camera motion for further player detections. 

iDMHBin ,1− iDMHBin , iDMHBin ,1+

iDAHBin ,1− iDAHBin , iDAHBin ,1+
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iSDMH iSDAH globalT

2.5 Events Detection and Description 

  To infer events of sports games, we need to track the positions of players in 

consecutive frames and generate a trajectory for each player. However, the intrinsic 
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problem of motion estimation in MPEG-2 standard mentioned in the previous section 

makes players tracking difficult. Moreover, the difficulty is also due to the varied 

shape or size of players in consecutive frames. Therefore, in order to solve these 

problems, we propose a robust algorithm to track players in consecutive P-frames. 

Focusing on tennis videos, we have to recognize the server further by utilizing the 

proposed algorithm of server and receiver differentiation. The object-tracking 

algorithm is introduced in section 2.5.1 and the server-receiver differentiation 

algorithm is shown in section 2.5.2. The description scheme and descriptor in 

MPEG-7 for tennis game are presented in section 2.5.3.  

2.5.1 Object Tracking Algorithm 

2.5.1.1 Object Localization 

Object localization algorithm is to locate potential objects in video shots for 

subsequent object tracking. The overview of the algorithm of potential object 

localization is shown in Fig. 2-8. Initially, we verify if there is any camera motion of 

each P-frame and compensate motion vectors with global motion if camera motion 

happens. Otherwise, noisy motion vectors are eliminated directly without motion 

compensation. Subsequently, motion vectors that have similar magnitude and 

direction are clustered together and this group of associated macroblocks of similar 

motion vectors is regarded as a potential object. Details are presented in the object 

localization algorithm. 

Object Localization Algorithm 

Input: N P-frames of a video clip { , … , } 1P NP

Output: N object sets { }, { }, …, and { }, where N is total 

number of P-frames and means the  object of the  P-frame. Each 

object size is measured in terms of number of macroblocks. 

1,1 nObj
2,2 nObj

NnNObj ,

jnjObj ,
th
jn thj
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1. Analyze motion vector of inter-coded macroblocks in a P-frame to see if there is 

any camera motion. 

2. If there is no camera motion, go to step 3. If camera motion is detected, motion 

vectors that are not noisy are compensated with camera motion magnitude and 

direction.  

3. Cluster motion vectors that are of similar magnitude and direction into the same 

group with region growing approach. 

3.1  Set search windows (W) size 3x3 macroblocks            . 

3.2 Search all macroblocks (MB) within W, and compute the difference 

( and ) of motion vector magnitude (kdiffMag kdiffAng MV ) and direction 

( )  between center  and its neighboring eight motion 

vectors  within W.  

MV∠ centerMV

kMV

)( kcenterk MVMVabsdiffMag −=  

)( kcenterk MVMVabsdiffAng ∠−∠= , where k∈[1,8] and is the 

motion vector in the center position of W 

centerMV

kMV ∈  motion vectors within W except  centerMV

For all k∈[1,8], flag  
⎩
⎨
⎧ <<

=
otherwise

TdiffAngandTdiffMag
F AngkMagk

k ,0
,1

, where  is the predefined threshold for motion vector magnitude 

and is the threshold for motion vector direction 

MagT

AngT

If , mark f  as 1, where is the flag of the 

center motion vector within W. 

∑
=

≥
8

1

6
k

kF centerF o centerMV centerF

Otherwise, set all flags within W to 0. 

1MV 2MV 3MV

4MV 5MV

6MV 7MV 8MV

Center

3.3 Go to step 3.2 until all MBs are processed. 
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3.4 Group MBs that are marked as 1 into the same cluster.  

3.5 Compute each object center and record its associated macroblocks. 

3.6 Generate one object set for each P-frame. 

4. Go to step 1 until all P-frames are processed. 
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Fig. 2-8. Object localization algorithm 

By applying the object localization algorithm, potential objects are located for each 

frame and the result is demonstrated in Fig. 2-9. Potential objects are marked by the 

bold-line rectangles. We can see that two players are localized except for the frame of 

Fig. 2-9(g), in which the top player is not detected. Since the top-player may turn and 

twist his body and its shape changes dramatically, therefore its associated 

macroblocks cannot find the matched macroblocks. Besides, some noisy objects also 

appear in these frames. However, our target is to locate the two players. In order to 

automatically recognize the two players and filter out noisy objects, long-term 
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consistency of the spatial-temporal relationship of objects in consecutive frames is 

employed as the measurement to check if two objects in successive frames are the 

same one. Therefore, the forward and backward object-tracking algorithm based on 

long-term consistency is proposed and is described in the following section. 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Fig. 2-9. Demonstration of the result of potential object localization, where frame(a) 

to frame(h) are numbered as 26, 38, 80, 89, 95, 110, 119 and 125. 
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2.5.1.2 Object Tracking Forward and Backward 

   

While potential objects are located, those objects that are not long-term consistent 

are regarded as noise and should be removed from the candidates. To compute the 

long-term consistency of each object, the motion information of each object in 

P-frames is used to track forward and backward. The forward and backward 

object-tracking algorithms are demonstrated in Fig. 2-10 and Fig. 2-11 respectively. In 

Fig.2-10(a), the first case is that object i  of P-frame  matches an object j 

 of P-frame  by using the motion vector  and object  

continues to search if any object matched in the previous P-frame. However, if there 

is no match for  in ,  searches if any object matched in  by 

using the motion vector  which is weighted by the frame distance between 

target and reference frames. While there is an object , which matches the 

object , the frame  is set as the target frame and  continues to 

find if any object matched in the previous P-frame. The concept of the third case is 

similar to the 2

iNObj , NP

jNObj ,1− 1−NP iNMV , jNObj ,1−

iNObj , 1−NP iNObj , 2−NP

iNMV ,2

jNObj ,2−

iNObj , 2−NP jNObj ,2−

nd case except that the weighted motion vector is . Furthermore, 

if  cannot find any matched object in the previous three P-frames, the 

procedure of object tracking for  is terminated.  

iNMV ,3

iNObj ,

iNObj ,
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(a) 
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iNMV ,
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1−NP

jNMV ,1−

 (b) 
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iNMV ,2

TargetReference
1−NP2−NP

jNMV ,2−

 

I 

NP1−NP2−NP3−NP

iNMV ,3

TargetReference

jNMV ,3−

 

Fig. 2-10. Three cases of tracking forward (a) object match in previous P-frame (b) 

object match in P-frame (c) object match in P-frame  2−NP 3−NP

  The procedure of tracking backward is shown in Fig. 2-11 and the three cases are 

analogous to those of tracking forward. However, the reference direction of 

inter-coded macroblocks is forward reference and thus we can just use the motion 

information of objects of next frame to trace forward to previous frame while we want 

to realize backward tracking. Hence, in Fig. 2-11, the dotted line illustrates 

conceptually the backward object tracking from target frame to reference frame. In 

Fig. 2-11(a), all objects in frame  are searched to see if any object matches the 

object . However, in Fig. 2-11(b), if there is no match in frame , the 

objects in  are sought to find the matching object by using the weighted motion 

vector . The case in Fig. 2-11(c) is similar to the 2

1+NP

iNObj , 1+NP

2+NP

jNMV ,22 +
nd case and the frame 

distance 3 weights the motion vector  and the procedure of backward object 

tracking is terminated when there is no match for  in consecutive three 

P-frames. 

jNMV ,3+

iNObj ,

 22



(a)
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jNMV ,1+

Target Reference

 (b)

NP 1+NP 2+NP

jNMV ,22 +

Target Reference

 

I 

NP 1+NP 2+NP 3+NP

jNMV ,33 +

Target Reference

 

Fig. 2-11. Three cases of tracking backward (a) object match in next P-frame (b) 

object match in 2nd P-frame (c) object match in 3rd P-frame 

  By applying the algorithm of forward and backward tracking, we may generate 

several trajectories of each object. However, based on the long-term consistency of 

objects, the longest trajectory is what we concern and hence other trajectories of the 

object are ignored. In addition, the longest two trajectories of objects are kept and 

these two objects are regarded as the two players. 

2.5.2 Events Inference Model 

While the object trajectory is acquired, we can infer video events from the object 

trajectory by applying some domain knowledge. Thus an event inference model, as 

shown in Fig. 2-12, is designed to infer events of tennis game from two trajectories of 

top and bottom players. In this chapter, three events of interest are identified: “serve 

and volley”, “baseline rallies” and “passing shot” since they are the major occurrences 

in tennis competitions. Notice that it is necessary to distinguish between server and 

receiver before event inferences. Server should be located for server related events, 

“serve and volley” and “passing shot”. Therefore, we propose an algorithm to 

differentiate between server and receiver based on the observation that the shape of 
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server varies more than receiver in consecutive P-frames from “two players ready” 

state to “one player serves” state.  

Two
Players
Ready

Start One
Player
Serves

Two
Players near
Baseline

Server
Near Net

Server
Approaching

 Net

Two Players
Stay near
Baseline

Server Back
to Baseline

End of One Point

End of One Point

Server Near
Service
Line

Server
Approaching
 Service Line

End of One Point

Two Players
Stay near
Baseline

 

Fig. 2-12. Tennis events inference model 

Diff = 0.5 Diff = 0.43 Diff = 1.6

Diff = 0.5 Diff = 0.25 Diff = 0.2

Server:

Receiver:

 

Fig. 2-13. An example of shape variation of server and receiver 
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Algorithm: Server and Receiver Differentiation Algorithm 

Input: Top player { } and bottom player { } in 

consecutive P-frames { , … , } 

NTPTPTP ,...,, 21 NBPBPBP ,...,, 21

1P NP

Output: {Server, Receiver} 

1. Set i =0, Stop = 0, = 0 and = 0 probTP probBP

2. Do until  ≧ Threshold or ≧ Threshold TP
iiDist ,1−

BP
iiDist ,1−

i = i + 1 

Compute the center position of Top Player and Bottom Player respectively iTP iBP

∑
=

=
m

j
jiiTP yxMB

m
yxC

1
,, ),(1),( , ∑

=
=

n

j
jiiBP yxMB

n
yxC

1
,, ),(1),(  

, where { } imiii TPMBMBMB ∈,2,1, ,...,,  and { } iniii BPMBMBMB ∈,2,1, ,...,,  

m is the number of MBs in  and n is the number of MBs in  iTP iBP

3. If ),(),( ,1,,1 yxCyxCDist iTPiTP
TP

ii −= −−  < Threshold and 

 ),(),( ,1,,1 yxCyxCDist iBPiBP
BP

ii −= −−  < Threshold  Then 

     Compute  and ii TPTP ⊗−1 ii BPBP ⊗−1  

     If  <))(( 1∑ ⊗− ii TPTPNorm ))(( 1∑ ⊗− ii BPBPNorm  Then 

    1+= probprob BPBP

     Else If >))(( 1∑ ⊗− ii TPTPNorm ))(( 1∑ ⊗− ii BPBPNorm Then 

      1+= probprob TPTP

4. If  Then  Server = TP  probprob BPTP >

Else  Server = BP 
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  In the server and receiver differentiation algorithm, we first compute the center of 

top and bottom player. The distance of top player (bottom player) between 

consecutive P-frames is computed in the third step. If both the distance  and 

 are smaller than β macroblocks (say three), it means that players do not 

actually move and are still in “two players ready” state. In order to obtain the shape 

variations of two players, we utilize the exclusion Boolean operation  to compute 

the shape difference between consecutive P-frames. The center of  and  

(  and ) are overlapped and macroblocks in  and  (  and 

) are excluded (  and 

TP
iiDist ,1−

BP
iiDist ,1−

⊗

1−iTP iTP

1−iBP iBP 1−iTP iTP 1−iBP

iBP ii TPTP ⊗−1 ii BPBP ⊗−1 ). The exclusion results of each 

macroblock-pair are summed to be the shape difference between frame i-1 and i. 

However, usually one player, either the server or receiver, is closer to the camera than 

the other one and the shape of the player closer to the camera would be larger in size. 

Therefore, to prevent the object size from being taken into account, the summation of 

the exclusive results should be normalized by the object size which is defined as the 

average of the minimum size between the object pair  and . The equation of 

normalization is defined in Eq. (2-6) and Eq. (2-7). To manifest the size variation of 

objects between consecutive P-frames, the shape difference 

1−iTP iTP

( )∑ ⊗− ii TPTP 1  or 

 is normalized by the minimum value of the size of the object pair 

instead of normalizing by the average or maximum size. 

(∑ ⊗− ii BPBP 1 )

))(( 1∑ ⊗− ii TPTPNorm  = ),(/)( 11 iiii TPTPMinTPTP −−∑ ⊗     (2-6) 

))(( 1∑ ⊗− ii BPBPNorm  = ),(/)( 11 iiii BPBPMinBPBP −−∑ ⊗     (2-7) 

By applying the proposed server-receiver differentiation algorithm, bottom player 

is a potential server if its shape difference is larger than that of top player and hence 
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its possibility value  is incremented. In contrast, if the shape difference of top 

player is larger than that of bottom player, the potential server is the top player and 

 is incremented. Subsequently while the distance  or  is 

larger than threshold, two players are recognized as starting moving. The possibility 

values (  and ) of top and bottom player are examined to indicate which 

player is the server. Top player is the server if  is larger than  and 

bottom player is the server if  is larger than .  

probBP

probTP TP
iiDist ,1−

BP
iiDist ,1−

probTP probBP

probTP probBP

probBP probTP

An example of the result of the server-receiver differentiation algorithm is 

demonstrated in Fig. 2-13. The detected object is represented by the bold-line 

rectangles. We can see that the normalized difference of the server is larger than the 

receiver and it means that the variation of the size and shape of the server is more 

obvious than the receiver while the players are in the ready state of the state transition 

diagram. 

The following are the definition of the three events.    

1. Baseline Rally 

Baseline Rally means that two players stay near baseline of tennis court in 

consecutive frames. We can infer baseline rally event from the trajectories of two 

players while these two trajectories within a video clip are near the baseline, i.e. the 

state transfers from initial state – two players ready state – to one player serves state 

and finally falls in “two players near baseline” state.    

2. Serve and Volley 

The event server and volley – means that the server serves and then approaches 

the net to volley, i.e. from “one player serves” state to “server near net” state in 

the inference model.  
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3. Passing Shot 

Passing shot means that a player approaches the service line and then stops. We 

can infer this event from a trajectory, which ends its path near the service line, i.e. 

the state finally falls in “server near service line” state. 

2.5.3 Event Description Scheme 

  Tennis event description is based on the Hierarchical Summary Description Scheme 

of MPEG-7 as shown in Fig. 2-14. While the event of each shot of tennis competition 

is inferred, the information of the type of events, the boundary of events and the key 

frame of events are generated automatically and the information can be used in the 

Highlight Level Description Scheme to support users’ query by high-level semantic 

features. 

The description scheme of tennis game is demonstrated in the following. The part 

in boldface is the highlight level description scheme that can be generated without any 

manual participation. The name of highlight corresponds to the type of tennis event, 

the descriptor of video segment locator is described by the event boundary and the 

position of the key frame in the video sequence is used for the key image locator.  

 

HierarchicalSummar
y

HighlightLevel

HighlightSegment

VideoSegmentLocator KeyImageLocator

1,*

1,*

1,*0,1

0,*

 

Fig. 2-14. Hierarchical Summary Description Scheme [17] 
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<?XML version= “1.0”><!DOCTYPE MPEG-7> 
<Program> 
 <MediaInformation> 
  <MediaProfile> 

<MediaInstance> 
    <Locator>file://sports/tennis/v1.mpg</Locator> 

</MediaInstance> 
  </MediaProfile> 
  <Players>Pete Sampras vs. Todd Martin</Players> 
  <Classification>Sports: Tennis</Classification> 
 </MediaInformation> 
</Program> 
<Summarization> 
 <HierarchicalSummary>  
  <HighlightLevel name= “Baseline Rally”> 
   <HighlightSegment name= “Baseline Rally #1”> 
         <VideoSegmentLocator> 
       <MediaTime> 0 430 </MediaTime> 
          </VideoSegmentLocator> 
         <KeyImageLocator> 
              <MediaTime>0</MediaTime> 
         </KeyImageLocator> 
   </HighlightSegment> 
   …     <!- - more video clips - - > 

</HighlightLevel>  
<HighlightLevel name=“Serve and Volley”> 

. . .                  
</HighlightLevel> 
<HighlighLevel name=“Passing Shot”> 

. . .                  
</HighlightLevel> 

  … <! – more HighlightLevel -- > 
 </HierarchicalSummary> 
</Summarization>  

2.6 Experimental Results and Discussion 

In the experiments, we take MPEG-2 compressed video streams as the testing 

sequences. The video streams obtained from Star-Sports TV channel are encoded 
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adopting the GOP structure of IBBPBBPBBPBBPBB at 30 frames per second with 

the resolution of 720 x 480 pixels. The ground truth of the testing videos is shown in 

Table 2-1. Taking tennis sports videos as demonstration, two video sequences are 

selected from Australia Open and US Open, respectively. The length of the first video 

sequence is 50 minutes and the number of the shots of tennis court view is 300, which 

are extracted using the proposed approach of scene identification. The length of the 

second video sequence is 28 minutes and it contains 146 shots of tennis court view. 

The playing styles of the players in these two sequences are different, in which a 

classic serve-and-volleyer is present in the first sequence and two players in the 

second one are baseliners. The experimental results of tennis event detection are 

detailed in the following.  

The event inference model shown in Fig. 2-12 is used to infer three events – 

“baseline rallies”, “serve and volley” and “passing shot” from the results of objects 

tracking algorithm. Fig. 2-15 shows the interface of the tennis event detection system. 

The system shows the coordinates of the trajectory of two players and the result of 

events inference in the “result” field after choosing the video clip in the “Scene ID” 

field. From the fields “TP” and “BP” in the system interface, we can see the 

coordinates of two players, top player (TP) and bottom player (BP) in the scene. Here 

the value 9 in TP field and the value 14 in BP field are the number of detected top 

player and the number of detected bottom player in consecutive P-frames within a 

shot, respectively. 
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Fig. 2-15. The system interface shows an example of tennis event detection 

Examples of the experimental results of trajectories detection are shown from 

Fig.2-16 to Fig.2-18 and the last frame of each video clip is also displayed to 

represent the scene. In Fig. 2-16, we can see that the trajectories of two players are 

both near the baseline and the event is recognized as baseline rallies. Fig. 2-17 shows 

an example event of “serve and volley”. The bottom player is the server and the final 

position of the trajectory is very close to the net. From the trajectory, the event can be 

classified as the event of “serve and volley”. As for the event of “passing shot”, we 

can see an example in Fig. 2-18. The bottom player moves from the baseline and ends 

near the service line. Accordingly, the event is identified as “passing shot”. 

 

Fig. 2-16. An example of baseline rally event 
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Fig. 2-17. An example of serve and volley event 

 

Fig. 2-18. An example of passing shot event 

In the experiment, the numbers of effective tennis court clips in these two videos 

are 230 and 94, respectively while other clips are the shots in which the ball service is 

not successful or the ball boy runs to pick up the ball. The criterion used for judging 

whether tennis court clip belongs to the type of ball boy running is that there is a 

trajectory appearing along a curve near the middle location of y-coordinate or a 

trajectory across the court in a clip. Examples of detecting the trajectory of a ball boy 

are shown in Fig. 2-19 and Fig. 2-20. Fig. 2-19 and Fig. 2-20 respectively show the 

starting and ending frames of a ball boy running clip in which the ball boy is marked 

by an ellipse. We can observe that the trajectory lies near the center position of each 
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frame within the clip and hence this clip is classified as the type of ball boy running. 

This type of tennis court clips is recognized as insignificant and is filtered out 

thereafter. 

Table 2-1. Ground truth of the testing video 

Video
Sequences Length

Number of
Tennis Court

Shots

Video 1 50 minutes 300

28 minutes 146 94Video 2

Number of
Competition

Shots

230

 

 

Fig. 2-19. Start-frame of a ball boy running clip 

 

Fig. 2-20. End-frame of a ball boy running clip 

The performance metrics used in the experiments are precision and recall, which 
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are collectively used to measure the effectiveness of a retrieval system. Eq. (2-8) 

shows the definition of precision and recall, where “Retrieve(q)” means the retrieved 

video sequences corresponding to a query sequence q, “Relevant(q)” denotes all the 

video sequences in the database that are relevant to a query sequence q and ⋅  

indicates the cardinality of the set. Recall is defined as the ratio between the number 

of retrieved relevant video sequences and the total number of relevant video 

sequences in the video database, and precision is defined as the ratio between the 

number of retrieved relevant video sequences and the number of total retrieved video 

sequences. 

)Relevant(q
)Relevant(q)Retrieve(q

Recall
∩

=                (2-8) 

)Retrieve(q
)Relevant(q)Retrieve(q

Precision
∩

=  

In the first video, the events of 213 clips are correctly detected and identified 

among the significant 230 clips of tennis court and 17 clips are falsely detected. 

Therefore, the average recall is about 90% and the average precision is about 89%. In 

the second video, the events of 85 clips are correctly recognized among 94 clips of 

tennis court. The average recall is about 89% and the average precision is about 86%. 

Table 2-2 shows the details of the number of correct detection, false detection, miss 

detection, the recall and the precision of event inference. The overall performance of 

precision and recall in the testing video sequences is 87% and 90%, respectively. The 

precision of detecting the event of baseline rally in these two videos is 95% and the 

recall is 94%. The inference result of baseline rally is better than the other two events 

since we assume that the net is located in the middle position in the event inference 

model. In addition, the camera may pan or tilt and moreover the size and shape of 
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players would change abruptly while the players approach the net. The factor of 

abrupt change of object size and shape would lead to the situation that the blocks 

match the wrong position in the reference frame. In this case, the position of the 

players may not be correctly located, even though the global motion has been 

estimated and compensated before the process of object detection.  

Table 2-2. Experimental Results of Tennis Event Inference 

Results

Baseline Rally
(BR)

Serve and Volley
(SV)

Passing Shot
(PS)

Actual
Number of

Clips

Correct
Detection Recall

91 87 96%

115 106 92%

24 20 83%

Average 90%

Miss
Detection

4

9

4

Precision

95%

95%

77%

87%

Scene Type

65 60 5 95% 92%

19 16 3 80% 84%

10 9 1 82% 90%

False
Detection

5

6

6

3

4

2

 

  The precision and recall of passing shot detected though are satisfactory but not so 

high as expected. The number of miss detection of passing shot in the first video is 4 

in which 2 clips are classified as baseline rally event and other 2 clips are regarded as 

serve and volley. However, the occurrence frequency of passing shots is relative low 

in a tennis game, especially in the games of baseline-rally style such as the second 

testing video. Usually, the activity area of passing shot event is confined to the area 

around service line. Since the position of the service line is pre-assumed, while the 

camera moves too dramatically, it is difficult to keep track of the service line area. 

After serving the ball, the server may still stays near the baseline while the ball is 

subsequently hit and passed back very fast by the receiver. In this case, the event 

would be regarded as baseline rally event.  

2.7 Summary 

  In this chapter, we propose an object-based video content parsing and event 
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understanding technique in MPEG compressed videos to support semantic content 

indexing and abstraction. GOP-based video segmentation is exploited to efficiently 

segment video streams into shots in compressed domain. The shots of tennis court are 

recognized and selected by the module of scene identification. The insignificant shots 

of tennis court like the fault service, or so called ball boy running, are removed based 

on the detected trajectory of the ball boy. The proposed object-tracking algorithm 

employing the information of motion vectors is utilized to locate the position of 

moving objects in consecutive P-frames and to generate trajectory of the objects with 

prominent movement. Furthermore, video events can be inferred from the generated 

trajectories based on the inference model with specific domain knowledge. 

Experimental results are convincing and verify that the proposed approach can 

effectively detect events of tennis games and generate the description of tennis videos 

automatically. Therefore, by utilizing the proposed mechanism and applying domain 

knowledge, video streams can be automatically parsed and annotated, and thus the 

associated metadata of the inferred high-level semantic clips can be used to 

automatically structure videos, summarize videos and generate the description scheme 

(DS) and descriptor (D) of video content for MPEG-7 standard. 

  The proposed mechanism also provides several reusable modules. For example, the 

module of scene identification can be used to recognize the shots of full or partial 

view of athletic field of football, soccer, baseball and volleyball when the 

corresponding domain knowledge is employed. While these kinds of shots are 

acquired, sports events can be inferred from the spatial-temporal relationship of 

objects or some active regions in consecutive frames. For example, in baseball games, 

the striker scene, which is normally composed of a catcher in the middle of the scene, 

a striker in the left or right and an umpire in the top, can be identified according to the 

distribution of these objects. Based on the proposed mechanism, we have successfully 
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applied some of the proposed modules to semantic indexing of volleyball games [22], 

in which the major events of “service”, “full-court competition” and “close-up” are 

recognized. In addition, the multi-object tracking algorithm can also be used in the 

localization and tracking of text captions [23] and in surveillance system to detect 

suspicious circumstances and the alarm can be triggered according to the detected 

events.  

In the future, we will develop some global edge detection approach to detect the 

boundary of tennis court in MPEG videos for improving the accuracy of event 

detections. We will extend the approach of motion-based semantic event detection to 

other kinds of sports video to extract semantically meaningful video events. 

Concurrently, the description schemes and descriptors generations for effective 

content-based query are also the future research.  
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Chapter 3. Automatic Closed Caption Detection and 

Filtering in MPEG Videos for Video Structuring 

3.1 Introduction 

With the increasing digital videos in education, entertainment and other multimedia 

applications, there is an urgent demand for tools that allow an efficient way for users 

to acquire desired video data. Content-based searching, browsing and retrieval is more 

natural, friendly and semantically meaningful to users. The need of content-based 

multimedia retrieval motivates the research of feature extractions of the information 

embedded in text, image, audio and video. With the technique of video compression 

getting mature, lots of videos are being stored in compressed form and accordingly 

more and more researches focus on the feature extractions in compressed videos 

especially in MPEG format. For instances, edge features are extracted directly from 

MPEG compressed videos to detect scene change [24] and captions are processed and 

inserted into compressed video frames [25]. Features, like chrominance, shape and 

texture are directly extracted from MPEG videos to detect face regions [26-27]. 

Videos in compressed form are analyzed and parsed for supporting video browsing 

[28]. 

However, textual information is semantically more meaningful and attracts increasing 

researches on closed caption detection in video frames [29-37]. The researches [31-34] 

detect closed captions in pixel domain. In [36-37], they proposed to detect closed 

captions in specific areas. However, it is impractical to localize closed captions in 

specific areas of a frame since in different video sources closed captions normally do 

not appear in a fixed position.  

A number of previous researches extract closed captions from still images and 

video frames [33-35][38-39] with a constraint that characters are bounded in size. 
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Besides, these approaches usually require the property that text has a good contrast 

from the background. However, text region localization with size constraint is not 

practical especially for the cases that those captions are small in size but are very 

significant and meaningful. For example, in sports videos, the superimposed 

scoreboards show the intermediate results between competitors and present the match 

as clearly as possible without interference.  

There has been very little effort to extract features in compressed domain to detect 

closed captions in videos. Zhong et al. [29] and Zhang and Chua [30] detect large 

closed captions frame-by-frame in MPEG videos using DCT AC coefficients to obtain 

texture information in I-frames without exploiting the temporal information in 

consecutive frames. However, it is impractical and inefficient to detect closed 

captions in each frame. Due to the temporal nature of long-term consistency of closed 

captions over continuous video frames, it would be more robust to detect the closed 

caption based on its spatial-temporal consistency. Gargi et al. [35] perform text 

detection by counting the number of intra-coded blocks in P and B frames based on 

the assumption that the background is static. Hence, it is vulnerable to abrupt and 

significant camera motion. Besides, this approach is only applied to the P and B 

frames and does not handle captions that appear in the I-frames.  

In this chapter, in order to detect closed captions efficiently and flexibly, we 

propose an approach for compressed videos to detect caption frames in meaningful 

shots. Then caption frames instead of every frame are selected as targets for localizing 

closed captions without size constraint while considering long-term consistency of 

closed captions over continuous caption frames for removing noise. Moreover, we 

propose a novel tool – font size detector to identify font size in compressed videos. 

Using this tool, after the targeted font size is indicated, we can allow users to 

automatically discriminate captions of interest instead of captions in the presumed 
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position. It is worth noticing that font size recognition is a critical step in the process 

of video OCR since a bottleneck for recognizing characters is due to the variation of 

text font and size [40-43]. Therefore, this tool can be used as a pre-filter to quickly 

signal the potential caption text and thus reduce the amount of data that needs to be 

processed.  

The proposed system architecture is shown in Fig. 3-1. All the tasks are 

accomplished in compressed domain. GOP-based video segmentation [16] is 

exploited to efficiently segment video into shots. The color-based shot identification is 

proposed to automatically identify meaningful shots. Caption frames in these shots are 

detected by computing the variation of DCT AC energy both in the horizontal and 

vertical directions. In addition, we detect closed captions using the weighted 

horizontal-vertical DCT AC coefficients. To detect closed captions robustly, each 

candidate closed caption is verified further by computing its long-term consistency 

that is estimated over the backward shot, the forward shot and the shot itself. After 

closed captions are obtained, we differentiate the font size of each closed caption 

based on horizontal projection profile of DCT AC energy in the vertical direction. 

Captions of interest can then be identified by the font size and size variance. Finally, 

captions of interest and the meaningful shots can be employed together to construct a 

high-level concise table of video content.   

The rest of the chapter is organized as follows. Section 3-2 describes the 

color-based shot identification. Section 3-3 presents the proposed approach of closed 

caption localization. Section 3-4 shows the experimental results and the prototype 

system of video content visualization. The conclusion and future works are given in 

section 3-5. 
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Fig.3-1. Overview of the system architecture 

3.2 Shot Identification 

3.2.1 Video Segmentation 
Video data is segmented into clips to serve as logical units called “shots” or 

“scenes”. In MPEG-2 format, GOP layer is a random accessed point and contains 

GOP header and a series of encoded pictures including I, P and B-frame. The size of a 

GOP is about 10 to 20 frames, which is less than the minimum duration of two 

consecutive scene changes (about 20 frames). Instead of checking frame-by-frame, we 

first detect possible occurrences of scene change GOP-by-GOP (inter-GOP). The 

difference between each consecutive GOP-pair is computed by comparing the 

corresponding I-frames. If the difference of DC coefficients between these two 

I-frames is larger than the threshold, then there might exist scene change in between 

these two GOPs. Hence, the GOP that might contain the scene change frames is 

located. In the second step – intra GOP scene change detection, we further use the 

ratio of forward and backward motion vectors to find out the actual frame of scene 

change within a GOP. By this approach, the experimental results are encouraging and 

prove that the scene change detection is efficient for video segmentation. 

3.2.2 Shot Identification 

While the boundary of each shot is detected, the video sequence is segmented into 

shots consisting of the advertisement, close-up and court-view. Closed captions can 

then be detected in each video shot. However, it is impractical to detect closed 
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captions in all video shots. In sports videos, the shots of court-view are our focus 

since the matches of the sports are primarily shown in the shots of court-view and the 

scoreboards are presented mostly in these kinds of shots. Therefore, scene 

identification approach is proposed to identify the shots of court-view.    

To recognize the shots of court-view, it is worth noticing that the variation of the 

intensity in the court-view frames is very small through a whole clip and the value of 

intensity variation between consecutive frames is very similar. In contrast, the 

intensity of the advertisement and close-up varies significantly in each frame and the 

difference of the variance of intensity between two neighboring frames is relatively 

large. Therefore, the intensity variation within a video shot can be exploited to 

identify the shots of court view. In order to efficiently obtain the intensity variance of 

each frames and that of a video shot, DC-images of I-frames are extracted to compute 

the intensity variance. The frame variance  and the shot variance  are 

defined by 
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where  denotes the DC coefficient of the jth block in the ith frame, N represents 

the total number of blocks in a frame, and M denotes the total number of frames in 

shot s.  

DC

Based on the fact that the intensity variance of a court-view frame is very small 

through a whole clip, shots are regarded as the type of court-view  by   CourtShot
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where frameδ  and shotδ  are the predefined thresholds. 

In order to demonstrate the applicability of the proposed shot identification, the 

variation of the intensity variance of each I-frame in sports videos including tennis, 

football and baseball is exhibited in Fig. 3-2.  

 

(a) 

 

(b) 

 

(c) 

Fig. 3-2. Variation of I-frame DC value (a) tennis; (b) football; (c) baseball 

Fig. 3-2(a) shows a tennis video composed of four tennis court shots, three close-up 

shots and a commercial shot. Fig. 3-2(b) introduces a football sequence consisting of 

close-up shots and football field shots. A baseball sequence is presented in Fig. 3-2(c) 

including pitching shots, baseball field shots and close-up shots. From Fig. 3-2, we 

can observe that the intensity variance of the type of court-view is very small and the 

value is very similar through a whole clip. Thus, the clips of court-view can be 
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indicated and selected by the characteristic that the value of intensity variance  

is small in each individual frame and is consistent over the whole shot. Therefore, the 

proposed approach of shot identification can be applied to identify court-view shots of 

sports videos, in which the view of a match consists of the intensity-consistent 

background of a court or athletic field. 
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3.3 Closed Caption Localization 
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Fig. 3-3. The approach of closed caption localization 

In this section, we shall elaborate how to detect caption frames and how to detect 

closed captions in caption frames. After shots of interest are identified, the closed 

captions, like the scoreboard, are then detected in these significant shots. However, in 

general, the scoreboard does not always appear in the frames continuously through a 

whole clip. It comes up for some while, disappears and comes up again. Therefore, to 

avoid the time-consuming overhead of closed caption examination frame-by-frame, 

caption frames should be detected first. The proposed closed caption localization is 

shown in Fig. 3-3. In the process of caption detection, DCT AC coefficients of 

I-frames in MPEG-2 video are extracted and are used to determine the energy 

variation of 8x8 blocks in horizontal and vertical directions, respectively. Potential 

caption regions are indicated using the weighted horizontal-vertical AC coefficients 
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and then the fragmented regions are merged using the morphological operations. For 

more robust localization of closed captions, the spatial-temporal relationship over 

consecutive frames is exploited to compute the long-term consistency of each 

candidate caption region by referring certain I-frames in forward and backward shots. 

Localized closed caption regions may contain the scoreboard, or the logo of a certain 

channel or some billboard. However, the scoreboard is what viewers are most 

interested in. Therefore, based on the observation that these different types of closed 

captions are generally different in font size, we propose an approach to discriminate 

font size among localized captions. The details of caption frame detection are 

described in section 3.3.1 and the approach of closed caption localization is shown in 

section 3.3.2. Section 3.3.3 presents the approach of font size differentiation. 

3.3.1 Caption Frame Detection 

Caption frame detection is an essential step for closed caption localization because 

captions may disappear in some frames and then appear subsequently. Therefore, to 

avoid detecting closed captions frame-by-frame, we first identify the possible frames 

in which captions might be present. However, the caption size of closed captions in 

the shots of court-view is usually very small. Under this circumstance, the change of 

the AC energy of the entire frame with the appearance or disappearance of the small 

caption would not result in significant variation. It means that the variance of the AC 

energy obtained from an entire frame cannot be used as a measurement of the 

possibility of the presence of a small caption.  

In order to robustly detect closed captions without size constraint, each I-frame is 

divided into an appropriate number of regions (say R). However, the size of a region 

should be moderate to reflect the actual variation of appearance or disappearance of 

small captions. If the size of a divided region were too small, any slight change of 

color or texture would incur quite prominent variation of AC energy. Accordingly, in 
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order to detect the appearance of super-imposed closed captions in four corner areas 

as well as in the middle of a frame, the number of regions R here can be set to six and 

its division method is shown in Fig. 4. Based on the frame division method, the 

variance  of AC coefficients of each region r in the ith frame of shot s is 

computed by 

r
isRVar ,
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where  denotes the horizontal AC coefficients from  to  and the 

vertical AC coefficients from  to  in region r and N is the total number of 

blocks in region r. The DCT AC coefficients used are shown in Fig. 3-5.  

jvhAC ,/ 1,0AC 7,0AC

0,1 0,7AC AC

Region 1 Region 2

Region 3 Region 4

Region 5 Region 6  

Fig. 3-4. An original frame is divided into R regions (e.g. R = 6) 

 

DC 1,0AC 7,0AC

0,1AC

0,7AC

0,6AC

0,5AC

0,4AC

0,3AC

0,2AC

2,0AC 3,0AC 4,0AC 5,0AC 6,0AC

 
Fig. 3-5. DCT AC coefficients used in text caption detection 
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Using the energy variance  of each region, the method proposed to 

determine caption frames is illustrated as follows: 

r
isRVar ,

For each region r,                                                  (3-5) 

If Diff( , )≦ -δ, captions may disappear in frame (i+1)      r
isRVar 1, +

r
isRVar ,

If Diff( , )≧ δ, captions may appear in frame (i+1) r
isRVar 1, +

r
isRVar ,

where Diff( , ) = . In the method,  of region-r in 

frame i+1 is compared with  of region-r of frame i. If the difference between 

 and  is larger than a threshold δ (3000), it means the texture of 

region-r in frame i+1 is more complex than that of region-r in frame i, i.e., closed 

captions may be superimposed in frame i+1. Similarly, if the difference between 

 and  is smaller than the threshold –δ, the texture of region-r in frame 

i+1 becomes less complex than that of region-r in frame i, i.e., closed captions in 

frame i may disappear in frame i+1. 
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Examples of caption frame detection are demonstrated in Fig. 3-6. Fig. 3-6(a) 

shows the detection of caption frames with small closed captions presented. We can 

see that the curve of DCT AC variance  of region-1 drops abruptly in the 18r
isRVar ,

th 

I-frame and rises in 39th I-frame since the scoreboard disappears from the 18th I-frame 

to the 38th I-frame in the area of region-1 and then appears again in the 39th I-frame. 

Similarly, detection of caption frames with a large closed caption presented is 

demonstrated in Fig. 3-6(b). The text region covering both region-5 and region-6 

appears in the 47th I-frame and is presented through the 59th I-frame and disappears in 

the 60th I-frame. Although the variance of AC energy in region-5 is larger than that in 

region-6 due to the text of the scoreboard presented in the left side, the variance of AC 

energy of both regions conforms to Eq. (3-5). Therefore, video frames from the 47th to 

the 59th I-frames are indicated as caption frames and can be selected for closed 

caption localization. 
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(a) 

 
(b) 

Fig. 3-6. Demonstration of caption frame detection: (a) small closed caption (b) large 
closed caption 

3.3.2 Closed Caption Localization 

While the caption frames are identified, we then locate the potential caption regions 

in these frames by utilizing the gradient energy obtained from the horizontal and 

vertical DCT AC coefficients. We can observe the fact that closed captions generally 

appear in rectangular form and the AC energy in the horizontal direction would be 

larger than that in the vertical direction since distance between characters is fairly 

small and the distance between two rows of text is relatively large. Therefore, we 
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assign higher weight to horizontal coefficients than that to vertical coefficients. The 

weighted gradient energy of an 8x8 block E used as a measurement for evaluating the 

possibility of a text block can be defined as follows: 

E 22 )()( vvhh EwEw +=                (3-6) 
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If the energy E of a block is larger than a predefined threshold, this block is 

regarded as a potential text block. Otherwise, the block would be considered as a 

non-text block and be filtered out without further processing. Besides, in order to save 

computation cost, we select only 3 I-frames (first, middle and last) as representative 

frames in a shot for closed caption localization. 

(a)  (b)  

(c)  (d)  

Fig. 3-7. Illustration of intermediate results of closed caption localization (a) 
Original frame (b) Closed caption detection (c) Result after applying morphological 

operation (d) Result after long-term consistency verification 

The result of closed caption localization is demonstrated in Fig.3-7 with  set to 

0.7 and  to 0.3. Although the scoreboard and the trademark in Fig. 3-7(b) in the 

upper part of the frame are all located and indicated, caption regions are fragmentary 

hw

vw
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and some noisy regions remains. Therefore, we adopt a morphological operator in the 

size of 1x5 blocks to merge fragmentary text regions and the result is demonstrated in 

Fig.3-6(c). Afterward, the merged text regions are further verified by computing the 

long-term consistency. For long-term consistency checking, we select another two 

I-frames as temporal reference, the last I-frame of the forward shot ( ) and the first 

I-frame of the backward shot ( ) as depicted in Fig. 3-8, where ,  and  

are the first, middle and the last I-frames of the specific shot. One possible 

measurement of the long-term coherence of text blocks in potential regions is to check 

if the text blocks of a potential caption region appear more than half of the time in a 

shot. That is text blocks appear in more than or equal to three times among the five 

representative five I-frames.  

FP

BF fT mT rT

Here, we exploit the position, intensity and texture information of potential text 

blocks among these representative I-frames ( , , ,  and ) to measure the 

temporal coherence as defined by 
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where  denotes the value of DC coefficient of , 
kBDC kB DC  is the average of  

and ,  represents the weighted gradient energy E of  as defined in Eq. 

(3-6) and 

kBDC

1+kBDC
kBE kB

E  is the average of  and . A block is characterized by its 

intensity represented by the DC coefficient and also by its texture obtained from AC 

coefficients. We compute the correlation C to measure the similarity between two 

blocks  and , which are in the same corresponding position in their respective 

frame i and frame i+1. If a value C of a block pair is larger than 

kBE
1+kBE

kB 1+kB

Cδ , these two blocks 

are regarded as the same. To estimate the temporal coherence of potential text blocks, 
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we need to compute the pair wise correlation C four times among the 5 representative 

I-frames as depicted by the arrow-lines in Fig. 3-8. Therefore, a text block is 

long-term consistent in the specific video shot only when more than half of the times 

the pair wise I-frames correlation C is larger than Cδ . 

The result of long-term consistency checking of text blocks is demonstrated in Fig. 

3-7(d). We can see that the scoreboard and the trademark are all successfully localized 

and most of the noise is removed. The proposed closed caption localization can also 

be applied to other kinds of videos such as baseball, news and volleyball as 

demonstrated in Fig. 3-9. In Fig. 3-8(a), we can observe that the closed caption 

primarily composed of Chinese characters is also localized correctly. 

 

fT mT rT BFFP

Specific Shot
Forward

Shot
Backward

Shot  
Fig. 3-8. Potential caption regions are further verified based on the long-term 

consistency 

 

  (a)             (b)             (c) 

Fig. 3-9. Examples of closed caption localization (a) baseball; (b) news; (c) volleyball 
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3.3.3 Font Size Differentiation 

From Fig. 3-7(d), we can notice that the scoreboard in the left upper corner and the 

trademark in the right upper corner are all successfully detected. Since scoreboards 

can be used for the content structuring of sports videos, the issue of separating out the 

captions in the scoreboard is one of our concerns. Hence, the tool – font size detector 

is proposed to automatically discriminate the font size as a support in the 

discrimination of scoreboards. To detect the font size, the gradient energy of each text 

block is exploited. Since a block consisting of characters will have much larger 

gradient energy than that of a block consisting of blank space, the distance between 

two character blocks can thus be determined by evaluating the distance between peak 

gradient values among blocks in a row or column. It means that the font size can be 

evaluated by measuring the distance between blocks with peak gradient value (i.e., the 

periodicity of peak values). The gradient energy in the vertical direction instead of 

horizontal direction is exploited since the blank space in between two text rows is 

generally larger than that between two letters and hence the variation of gradient 

energy in the vertical direction would present in more regular pattern.  

In addition, to obtain robust periodicity, we compute the DCT coefficients of the 

8x8 overlap-block between two neighboring blocks as defined in Eq. (3-8). A 

overlap-block  shown in Fig. 3-10 comprises lower portion of the top 

neighboring 8x8 block  and upper portion of the bottom neighboring block , 

where  and  are the identity matrix in the dimension of w0 x w0 and w1 x w1, 

respectively. More robust results would be achieved if more overlap-blocks are 

computed and exploited. For example, w0 and w1 can be respectively set to 1 and 7, 2 

and 6, 3 and 5, etc. to acquire more overlap-blocks for more accurate estimation of 

font size. 

blockoverlapB −

tB bB

0wI 1wI
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Fig. 3-10. Overlap-block is interpolated from its two neighboring blocks  and  tB bB
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Fig. 3-11. The proposed approach of font size differentiation in compressed domain 

Fig. 3-11 shows the proposed approach of font size differentiation, in which the 

periodicity and variance are estimated for each block column. However, localized 

closed captions like the example in the top of Fig. 3-11 may not be complete in shape 

because some pieces with low gradient energy are filtered out. Therefore, to achieve 

robust font size differentiation, a region that forms a rectangular in the localized 
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caption is determined for font size computation. Font size differentiation is performed 

on each block column in the selected region of the closed caption, where a block 

column depicted in Fig. 3-11 is defined as a whole column of blocks. While the AC 

energy of each block is extracted, the curve of the variation of AC energy for each 

block column is checked to locate each local maximum. We can observe that the 

region containing the boundary of closed captions would have conspicuous texture 

variation in the vertical direction and the value of the gradient energy would be 

relatively high. Therefore the local maximum of the curve of vertical AC gradient 

energy is regarded as the boundary of closed captions. While all local maximums are 

recognized, we must filter out noise and select reliable curve peaks for further 

verification. Due to the fact that the first and the last local maximums usually reflect 

the boundary of closed captions, hence we select the first and the last peaks of the 

curve and compute the average of the value of these two peaks as the threshold 

adaptively for noise filtering. If the value of a peak is smaller than the threshold, the 

peak is filtered out. Otherwise, the peak is kept for font size computation. Therefore, 

the periodicity of each block column  is computed by averaging the distance 

between two peaks of the curve of AC energy. Finally, the average periodicity T and 

the periodicity variance V of the closed caption are obtained by 
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where N is the total number of block columns in the selected area of the closed 

caption. 

The results of font size analysis of the scoreboard and the trademark in Fig.3-12 are 
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demonstrated in Fig. 3-13 and Fig. 3-14. In the example, each column of the 

scoreboard and the trademark consists of 9 blocks, in which 5 blocks are original and 

4 overlap-blocks are interpolated. For robustness of font size measurement, we should 

select some portion of localized closed caption, in which the height of each block 

column is consistent. Therefore, we compute T for first five block columns because 

the first part “Doki” of the localized scoreboard consists of five block columns of 

consistent height and several non-text blocks separate the second part of the 

scoreboard. Hence, in Fig. 3-13(b), the block columns of the trademark are all 

selected for font size computation because the height of each block column is 

consistent. 

(a)  (b)  

Fig. 3-12. The localized closed captions (a) scoreboard (b) trademark 

From Fig. 3-13 and Fig. 3-14, we can see that the average distance T of the 

scoreboard is about 2.2 which is smaller than 2.9 of the trademark. Besides, the 

variance V of the row distance of blank space among block columns of the scoreboard 

is 0.05 which is also smaller than 0.8 of the trademark. Hence, we can correctly 

discriminate the scoreboard from trademark since the font size of the scoreboard is 

smaller than that of the trademark and the font size is of better regularity in the 

scoreboard than that in the trademark. 
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Fig. 3-13. Variation of AC energy of the scoreboard in Fig. 3-12(a) (T=2.2, V=0.05) 
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Fig. 3-14. Variation of AC energy of the trademark in Fig. 3-12(b) (T=2.9, V=0.8) 

Furthermore, in order to estimate periodicity of font size more efficiently, we 

exploit the concept of the projection analysis of a print line [44-45]. Since it can serve 

for the detection of blank space between successive letters, we thus compute the 

horizontal projection profile  of each block row  by summing up the vertical 

AC coefficients of the blocks.  is defined as follows: 
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where  is the summation of the number of original blocks (H) and the number of TH
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overlap-blocks (H-1) of a block column in an H x W caption region, and  is a 

block of coordinate (x, y). By this method, we compute the periodicity T of each 

localized closed caption once instead of inspection of the periodicity T and of the 

variance V in each block column. The horizontal projection profile of the scoreboard 

and the trademark is demonstrated in Fig. 3-15, where the average periodicity T of the 

scoreboard and the trademark is about 2 and 3, respectively. Using horizontal 

projection profile, font size can be detected more efficiently since one curve of AC 

energy variation needs to be computed for a closed caption. 
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Fig. 3-15. Horizontal projection profile of DCT AC energy of the scoreboard and the 
trademark in Fig. 3-12(a) and Fig. 3-12(b), respectively 

3.4 Experimental Results and Visualization System  

3.4.1 Experimental Results 

In the experiment, testing dataset consisted of four kinds of videos including tennis, 

baseball, volleyball and news. Two tennis videos selected from US Open and 

Australia Open, respectively were recorded from the Star-Sport TV channel. A 

volleyball video was recorded from ESPN TV channel and a baseball game was 

recorded from VL-Sport TV channel. A news video was selected from MPEG-7 

testing dataset. The testing sequences were encoded in MPEG-2 format with the GOP 

structure IBBPBBPBBPBBPBB at 30 fps. The length of the first tennis video and the 
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news video was about 50 minutes, and the length of the second tennis video was about 

30 minutes. The length of the volleyball video and the baseball video was about 40 

minutes and 60minutes, respectively.  

The ground truth of the number of caption I-frames of tennis videos shown in Table 

1 was 903 and 414, respectively. In Table 2, there were totally 42183 text blocks in 

the representative frames of tennis video 1 and totally 25680 text blocks of tennis 

video 2. The number of text blocks in baseball was larger than other videos due to the 

large superimposed captions. The results of caption frame detection and closed 

caption localization were evaluated by estimating the precision and recall. The 

experimental result of caption frame detection was shown in Table 3-1, and the best 

performance was achieved in the first tennis video. In tennis video 1, the recall was up 

to 100% and the precision was about 97%. There were 26 frames of false detection 

due to the factor that the scoreboard was not presented but some high-texture 

billboards appear with significant camera movement. In this case, we would detect 

large variation in the region where billboards were presented. In tennis video 2, the 

precision of caption frame detection was up to 98% and the recall was about 93%. 

The number of frames of miss detection was 31 because of the low intensity of the 

scoreboard in this video sequence. Besides, the color of the scoreboard and that of the 

tennis court were quite similar and hence it would be more difficult for caption 

detection in the case of low contrast between closed captions and the background. The 

worst case in detecting caption frames was presented in the baseball video since the 

background of several shot types was highly textured, such as the pitching shots and 

the audience shots. Therefore, when the camera moved, high-textured regions would 

be considered as the presence of captions. However, recall rate in detecting caption 

frames in the baseball video remained more than 80%.  
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Table 3-1. Performance of caption frame detection 

Ground Truth of
Caption Frames

Frames of
Correct

Detection

Frames of
False

Detection

Frames of
Miss

Detection
Precision RecallMiss

Rate

Tennis 1

903

Tennis 2

414

903 26 0 0% 97% 100 %

383 8 31 7% 98% 93%

Volleyball

602

Baseball

1554

578 57 24 4% 91% 96 %

1290 407 264 24% 76% 83%

News

960 873 113 87 9% 88% 91%

Average 90% 93%  

 

The results of closed caption localization were shown in Table 3-2. In tennis video 

1 41030 text-blocks were correctly detected, 347 blocks were falsely detected and 395 

text blocks were missed. The precision was about 99% and the recall was about 97%. 

In tennis video 2, 24624 text blocks were detected, 732 blocks were falsely detected 

and totally 1056 text blocks were missed. Hence, the precision and recall of tennis 

video 2 was 97% and 95%, respectively. Some text blocks were missed since the 

background of the closed caption was transparent and would change with the 

background while camera moved. In this case, if the texture of the background was 

similar to the closed caption, the letters of captions cannot reflect the large variation 

in gradient energy and some text blocks would be missed. The precision rate of the 

baseball video in detecting text blocks was 81% due to the highly textured 

background. However, the recall rate was up to 92% since the temporal consistency 

was exploited to filter noise. Most of the blocks, which appeared for a short duration 

and their the spatial position were not consistent, were regarded as noise and were 

thus eliminated. The good performance was due to the reason that the weighted 

horizontal-vertical AC coefficients were exploited and the long-term consistency of 

the closed caption over consecutive frames was considered. 
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Table 3-2. Performance of closed caption localization after caption frame detected 

Ground Truth
of

Text Blocks

Blocks of
Correct

Detection

Blocks of
False

Detection

Blocks of
Miss

Detection
Precision RecallMiss

Rate

Tennis 1

42183

Tennis 2

25680

41030 347 395 1% 99% 97%

24624 732 1056 4% 97% 95%

Volleyball

28122

Baseball

296405

27353 4087 2250 8% 87% 92%

269792 63270 26676 9% 81% 91%

News

201616 192016 23732 10080 5% 89% 95%

Average 91% 94%  

 

To manifest the feasibility of the approach of font size differentiation, we selected 

various closed captions with different fonts presented in the testing videos for 

experiments. The results were illustrated in Table 3-3. The first column of the table 

introduced the selected closed captions and the second one was the diagram of the 

curve of vertical AC gradient energy. The average font size of the associated closed 

caption in terms of the number of blocks was shown in the third column and the last 

column illustrated the font size of the different kinds of detected fonts. In these closed 

captions, each covered square represented a macroblock. In the experimental results, 

we can see that the font size of each closed caption was correctly discriminated. The 

most complicated case was the closed caption since three kinds of fonts appear in 

the caption, which were all detected as the fonts of size 1, 4 and 2. In the case of 

bold-faced font shown in the

thG

thA and  closed captions, we can also successfully 

detect their font size. Closed captions with capital and lowercase letter present 

together would be more difficult for differentiation of font size. For example, in the 

thB

thH  closed caption, only three capital letters “A”, “S” and “S” were present in two 

text rows respectively. We cannot find out the regularity of font size with insufficient 

number of letters of the same typeface. In the thH  closed caption, although the font 
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size of the capitals was not detected, most letters in the caption were lowercase with 

font size 2 approximately and hence the detected result was still correct.  

Moreover, the case of one row text was tested and an example was shown in the 

 closed caption of Table 3-3. We can observe that the energy in the top and bottom 

of the caption was much smaller than the energy in the middle since AC energy was 

computed in the processed text regions, in which localized text regions were 

expanded one block row up and down by the morphological operation. Additional 

block rows were normally the blank non-text regions, and thus the energy in the text 

blocks would be significantly larger than non-text blocks. Therefore, text-blocks can 

be successfully detected and font size in one row text can be recognized.  

thJ

By applying the proposed approach of font size differentiation, we can 

automatically discriminate the font size either in a closed caption or in different ones. 

Therefore, this designed tool can be used as the closed caption filter to recognize and 

select those of interest, once the user indicates the targeted font size of closed captions. 

Moreover, researches [40-43] focusing on video OCR indicate that a bottleneck for 

recognizing characters was due to the variation of text font and size. In addition, to 

make learning data for the filter of character extraction, the size of the filter, which 

was defined to include a line element of characters, should be determined. Since the 

size of the line element strongly depends on the font size, it was possible to design a 

filter that can enhance the line elements dynamically with widely varying font sizes 

when the font size in the localized captions were known. Consequently, the tool – font 

size differentiation can be exploited to be a pre-processing tool for video OCR. 
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Table 3-3. Experimental results of font size differentiation based on horizontal 
projection profile using vertical DCT AC coefficients 

Analyses 

Font 

         
 
 

Closed Captions 
      

AC Energy  
Variation Font 

Size 
(AVG) 

Detected 

Font Size 
(blocks) 

A. 

        

 
 
3.5 

 
 
4, 3 

B.  
 
5 

 
 
 5 

C. 

 

 
 
2 

 
 
2, 2 

D. 

       

 
 
2.3 

 
 
1.5, 3 

E. 

        

 
 
4 

 
 
 4 

F. 

 

 
 
5 

 
 
5, 5 

G.  

 

  
 
2.3 

 
 
1, 4, 2 
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H.  
 
2 

 
 
2 

I. 

 
 

 
 
1.5 

  
 
1.5 

J. 
 

 

 2 2 

 

3.4.2 The Prototype System of Video Content Visualization 

With the successful localization of the super-imposed scoreboard in sports videos, 

video content can be visualized in a compact form by constructing the hierarchical 

structure. Taking tennis as an example, the structured contents composed of 

scoreboards and the related can be combined with the detected tennis semantic events 

[46], such as baseline rally, serve and volley and passing shot. Each competition shots 

can be annotated using the type of corresponding event and can be labeled exploiting 

the scoreboard. Consequently, the information of the type of events, the boundary of 

events, the key frame of events and the result of the event – the scoreboard can be 

used in the Highlight Level Description Scheme shown in Fig. 3-16 to support users 

to efficiently browse videos by viewing the images of scoreboards and the important 

text information of semantic events. The name of highlight corresponded to the type 

of tennis event, the descriptor of video segment locator was described by the event 

boundary and the position of the key frame in the video sequence was used for the key 

image locator. The key image locator for scoreboard indicates the time point in the 
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video sequence. 

HierarchicalSummary

HighlightLevel

HighlightSegment

VideoSegmentLocator KeyFrameLocator

1,*

1,*

1,*0,1

0,*

Scoreboard
KeyImageLocator

1,*

 

Fig. 3-16. Hierarchical Summary Description Scheme [17] 

The table of video content was composed of the original video sequence in the top 

level, the scoreboard of a set, the scoreboard of a game and the key frame of one point. 

The user interface of the prototype system was shown in Fig. 3-17 and two areas of 

“Playback” and “Visualization” were present in the left and the right side, respectively. 

Initially, the key frame of the original video sequence and the scoreboards of sets 

were exhibited. While users can click the symbol “ ” as the arrow lines indicated, the 

system would show the scoreboards of the corresponding games. Fig. 3-18 presented 

more detailed of the hierarchy. Users can select which game they want to watch 

according to the scoreboards of the games and click the symbol “ ” for more detail 

and the result was shown in Fig. 3-19. Each point of the game was represented by its 

key frame. Users can view the point by clicking the corresponding key frame and the 

shot of the point would be displayed in the “Playback Area”. By exploiting the system 

of video content visualization, users can efficiently browse video sequences. Since the 

length of a sports video was up to one or two hours generally, the system thus 

provided a compact and brief overall view of the match for users by exhibiting the 

textual information of the scoreboards hierarchically.  

We believe that the proposed video structuring method can be used in other 

well-structured sports, such as volleyball and baseball when the corresponding 
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domain knowledge is applied. In our previous research [22], volleyball videos were 

automatically structured when the rule of volleyball game was employed. 
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Fig. 3-19. Video shots were presented in the detailed video hierarchy 

3.5 Summary 

In the chapter, we have proposed a novel mechanism to detect temporal boundaries, 

identify meaningful shots and then build a compact table of video content. GOP-based 

video segmentation was used to efficiently segment videos into shots. To efficiently 

detect closed captions, color-based shot identification was proposed to identify shots 

of interest, especially for sports videos. Caption frames were detected in the shots of 

interest using the compressed data in MPEG videos. Then caption frames instead of 

every frame were selected as targets for detecting closed captions based on the 

long-term consistency without size constraint. While closed captions were localized, 

we differentiate the font size of closed captions based on the horizontal projection 

profile of AC gradient energy obtained from both the original blocks and the 

interpolated sub-blocks. The proposed tool – font size detector can thus be used as a 

prefilter to effectively eliminate uninterested closed captions and avoid most of the 

extremely time consuming post-processing of localized captions. Finally, having the 

proposed mechanism of high-level video structuring, one can browse videos in an 

efficient way through a compact table of content. 
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Chapter 4. Motion Activity Based Shot Identification and 

Closed Caption Localization for Video Structuring 
 

4.1 Introduction 

Tremendous growth in the number of digital videos is driving the need for more 

effective methods to access and acquire desired video data. Advances in automatic 

content analysis and feature extraction enable the possibility of effective browsing, 

searching and filtering of videos. On the other hand, well-developed content-based 

indexing techniques equip the users with natural and friendly querying, searching, 

browsing and retrieving tools. For supporting video content representation and 

indexing, semantic features of higher level must be prepared for achieving more 

efficient and effective access. The need of representation and indexing for high-level 

and semantic features underlies the emergence of the MPEG-7, formally called 

multimedia content description interface. However, the approaches that produce the 

desired features are a non-normative part of MPEG-7 and are left open for research 

and future innovation.  

Video structuring is a move intending to organize raw video data into a compact, 

easy-to-access format. Lu and Tang [47] described a video-structuring scheme, which 

classifies and clusters sports video shots based on low-level features, color and 

information on global motion. Kwon et al. [48] presented a scene segmentation 

scheme based on the adaptive weighing of color and motion features. For integrating 

scene units, they applied an improved overlapping link scheme to achieve the goal. 

Hanjalic and Lagendijk [49] segmented movies into logical story units based on the 

global temporal consistency of the color features. Yeung and Yeo [50] proposed a 

time-constrained and MPEG DC based visual similarity clustering method to segment 
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a video into logical story units. All the aforementioned research structures videos 

using low-level features, such as color and motion, and merges shots to generate 

logical story units based on visual similarity, by applying some time-constrained 

mechanisms. However, the classification of video shots based on motion activity 

information of objects or events that little efforts have involved in would be more 

semantically meaningful. Although visual content is a major source of information in 

a video, an effective strategy in video structuring is to exploit other valuable 

information such as text in superimposed closed captions. Therefore, there is an 

increasing research in localizing superimposed closed captions in video programs 

either in raw videos [31-37] or in compressed videos [29-30][35]. Li et al. [32] 

exploited a neural network trained on texture features to obtain text regions and 

proposed a text-region tracker for tracking of moving text. Shim et al. [33] segmented 

text areas using chaincodes in the pixel domain and exploited temporal information to 

refine the segmentation of text. Both Li et al. [32] and Shim et al. examined the 

similarity among text regions in terms of their positions, intensities and shape features. 

Chen and Zhang [31] detected text areas using information on vertical edges followed 

by information on horizontal edges before applying a Bayesian based shape 

suppression technique for refining the results. Ohya et al. [34] segmented characters 

by setting a local threshold and merging neighboring regions based on the similarity 

of gray levels. Kannangara et al. [36] extracted text from specific areas and proposed 

a method based on the vertical projection profile to segment individual letters. Wu et 

al. [37] segmented text areas that exploited both multiscale texture segmentation and a 

spatial cohesion constraint in the pixel domain. Zhong et al. [29], and Zhang and 

Chua [30] localized text in MPEG videos using DCT AC coefficients to obtain texture 

information in individual I-frames. Zhang and Chua also identified text regions using 

a size filter. Gargi et al. [35] detected text by counting the number of intra-coded 
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blocks in P and B frames based on the assumption that the background is static and a 

threshold for the size of text segments is also predefined to filter noise.  

Previous research made little efforts to localize superimposed closed captions in 

compressed videos. Besides, the localization of text regions using size filters may not 

work well, especially in cases in which captions are small but very important and 

meaningful to viewers. For example, in sports videos, the scoreboard is generally very 

small but it is significant as it details the competition as clearly as possible. In 

addition, automatic post-processing in the detected potential text regions is a critical 

step to speed up following analysis in caption regions, such as video OCR. Previous 

research made little efforts on filtering captions once potential text regions are 

localized, such as separating the superimposed captions from the highly textured 

regions in the background. Therefore, both the identification of text with no size 

constraints and the filtering of detected caption regions are of concern. 

 

Table of
Video Content

Superimposed
Closed-Caption

Localization

GOP-based
Shot

Segmentation

Motion Activity
based

Shot Identification

Clustering-
based

Noise Filtering

MPEG-2
Video Streams

Domain Knowledge

 

Fig. 4-1. System architecture of motion activity based video structuring 

In this chapter, in order to support high-level and semantic-based browsing, we 

propose a novel approach that structures videos exploiting superimposed closed 

captions and semantic classes identified by the motion activity descriptor of 

object-based 2D-histogram. Fig. 4-1 shows the architecture of the proposed system. 

First, video streams are efficiently segmented into shots using our proposed 

GOP-based detection of shot changes. This video segmentation module checks video 
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streams GOP-by-GOP rather than frame-by-frame, and then determines the actual 

shot change boundaries on the frame level. Video shots are characterized utilizing the 

proposed motion activity descriptor [51], which represents the spatial distributions of 

moving objects in a compact form. When the specific domain knowledge is applied, 

the model of object distributions can be employed to infer the semantic meaning or 

event in a shot. Accordingly, based on the criterion, video shots are classified into 

semantic classes. The shots of interests are then selected for localizing superimposed 

closed captions. Furthermore, the algorithm of clustering-based noise filtering is 

designed to effectively remove high-textured regions.  

The rest of this chapter is organized as follows. Section 4.2 illustrates the 

GOP-based detection of shot change and Section 4.3 describes identification of shots 

based on object motion activity. Section 4.4 introduces the approach of localization of 

superimposed closed captions. Section 4.5 presents the experimental results and 

Section 4.6 draws conclusions and the future work.  

4.2 Video Segmentation 

Video data are segmented into meaningful clips to serve as logical units called 

“shots” or “scenes”. In MPEG-2 format, the GOP layer can be randomly accessed and 

contains a GOP header and a series of encoded pictures, including I, P and B-frames. 

A GOP is approximately 10 to 20 frames, normally with duration shorter than two 

consecutive shot changes (around 20 frames). 

Possible occurrences of shot change are examined GOP-by-GOP (inter-GOP). The 

difference between each consecutive GOP-pair is computed by comparing the 

I-frames in each consecutive GOP-pair. If the difference between the DC coefficients 

of these two I-frames exceeds a threshold, then there may have shot change between 

these two GOPs. Hence, the GOP that contains the shot change frames is identified. In 
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the second step, detecting intra GOP shot change, the ratio of forward and backward 

motion vectors are further used to locate the exact frame of the shot change within a 

GOP. The experimental results obtained using real extensive videos are encouraging 

and prove that shot changes are efficiently detected for video segmentation. 

4.3 Shot Identification 

This section introduces the method of shot identification based on object motion 

activity. Section 4.3.1 describes the method of detecting significant moving objects 

and section 4.3.2 shows the motion activity descriptor. Section 4.3.3 presents shot 

identification based on the descriptor. 

4.3.1 Moving Object Detection 

For computational efficiency, motion information in P-frames is used for the 

detection of moving objects. In general, consecutive P-frames separated by two or 

three B-frames are still similar and would not vary too much. Therefore, it is 

reasonable to only use P-frames as targets for moving objects detection. On the other 

hand, since the motion vectors estimated in MPEG-2 videos may not be 100% correct, 

one has to remove noisy motion vector before the motion vectors are clustered. For 

those motion vectors that are small in magnitude, we consider they are noises and 

should be removed. For computational efficiency, the average of motion vectors in 

those inter-coded macroblocks is computed and selected as the threshold for noise 

removal. After noisy motion vectors are filtered out, motion vectors of similar 

magnitude and direction are clustered into a group (an object) by applying a region 

growing process.  
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 (a) (b) (c)  

 (d) (e) (f)  

Fig. 4-2. Moving objects detection; (a) anchor person; (b) football; (c) walking person; 
(d) tennis; (e) volleyball game; (f) traffic monitoring  

In our previous works [46] [51], we have successfully detected moving objects in 

several kinds of videos such as tennis, traffic monitoring, news and football. Moving 

objects in the environment of static camera are almost detected with both precision 

and recall higher than 95%. In the videos with moving camera, camera motion such as 

pan and tilt is estimated by determining the dominant motions before detecting 

moving objects. Under this circumstance, although the precision is lower than 90%, 

the recall remains higher than 90%. Examples of moving region detection are 

demonstrated in Fig. 4-2. Video shots shown in Figs.4-2(a) – 4-2(c) and Fig.4-2(f) are 

extracted from the MPEG-7 testing dataset – the Spanish News and the traffic 

monitoring. The tennis shot shown in Fig. 4-2(d) is recorded from the Star-Sports 

TV-channel. Fig. 4-2(e) shows the shot of volleyball game recorded from the ESPN 

TV-channel. In the volleyball videos, although several players may be clustered as 

one moving object such as the example in Fig 4-2(e), the spatial distribution of 

moving objects can still be characterized when the attributes of object size and object 

position are employed.  The details of the characterization of moving objects using 

these object attributes in the proposed object-based motion activity descriptor will be 
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described in the following section. Based on the results shown in Fig. 4-2, it is 

obvious that most moving objects are successfully detected. Although the detection 

algorithm detected some noises, usually one can eliminate this kind of noise via 

tracking moving objects in the forward and backward frames when more precise 

requirements are needed.  

4.3.2 Motion Activity Descriptor – 2D Histogram  

In this section, we shall elaborate how to describe object-based motion activity for 

a video shot considering the attributes of object size and object position. In order to 

describe the spatial relationships between moving objects in a compact manner while 

keeping the distinct and recognizable features among video shots, a video shot is 

characterized using the statistics derived from the object-based 2D-histogram. A 

2D-histogram for each P-frame consists of a X-histogram and a Y-histogram, in which 

the horizontal axis of the X-histogram (Y-histogram) is the quantized into β bins. The 

workflow of 2D-histogram computation is shown in Fig. 4-3. Initially, size of the 

object is estimated before it is assigned to a bin. If the object is larger than the 

predefined unit size (frame-size/ ), it is weighted and accumulated according to Eq. 

(4-1).  refers to the  bin of the X-histogram in frame i.  means 

the accumulated value in the  bin of object α in frame i for the X-histogram, and 

Obj represents the number of objects in frame i. Fig. 4-4 provides an example of the 

2D-histogram. In the example, the frame includes two objects of size of three units 

and four units. The size of each object is assigned to a histogram bin according to the 

position of its centroid on the horizontal axis to obtain the X-histogram. The football 

player of size three is assigned to the Bin 1 and the basketball player of size four is 

assigned to Bin 3 in the X-histogram. Similarly, in the Y-histogram, the Bin 2 is 

increased by three and the Bin1 is increased by four.  

2β

x
jiBin ,

thj x
jiAcc α,,
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Fig. 4-3. Workflow of motion activity descriptor 
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Fig. 4-4. An example of 2D-histogram computation 

Using the proposed 2D-histogram, the spatial distribution of moving objects in 
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P-frames is characterized in a concise form. The X-Y histogram pair shows the spatial 

relationships among the moving objects since each moving object is assigned to a 

histogram bin according to the X-Y coordinate of its centroid. Objects belong to the 

same coordinate interval are grouped into the same bins. Hence, the distance between 

object groups can be specified as the distance between the associated bins.  

4.3.3 Shot Identification Algorithm  

  Automatically identifying video shots or events is a domain-specific problem, 

because it requires higher-level content analysis. For sports videos, interesting shots 

are specific to a particular model of visual features, such as the spatial distribution of 

moving objects. Therefore, employing domain knowledge in sports videos to 

recognize specific video shots is indispensable. In this chapter, we select the 

volleyball game as the case study. In general, a volleyball game mainly consists of 

three shot types - the “service”, “full-court view” and close-up”. Fig. 4-5 presents the 

typical frames of these three shot types. The service shots have the characteristic that 

one or few objects appear in the left or right sides of the frame and more objects 

appear in the other side of the frame. In full-court view shots, the number of objects 

on the left is similar to the number of objects on the right and the difference between 

the numbers of objects is smaller than that in the service shots. In the close-up shots, a 

large object is near the middle of the frame. Accordingly, these main types of shots in 

volleyball videos can be distinguished according to the distribution of moving objects. 

Although description using both X-histogram and Y-histogram would be more 

detailed and complete than using one of them, it is reasonable to use the X-histogram 

only to distinguish these main shot types because most players in the volleyball games 

move along the horizontal axis. The algorithm of shot identification is based on 

K-means clustering and here K is set to four according to the number of shot types in 

the volleyball games (two for the type of “Service”, one for “Full-court view” and one 
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for “Close-up”). The algorithm is detailed as follows. After shots clustering, four 

clusters are obtained with their centroids, 1µ , 2µ , 3µ  and middleµ , and the shot type 

of them can be determined by comparing the variances of feature subspaces , 

,  and . If  or  is larger than others, the shot type is 

considered as “Service” because the server may serve in the right or left side of the 

court. If  is the largest among the four variances, the shot type is regarded as 

“Close-up”. Otherwise, the shot type is identified as “Full-court view”.  

1Var
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Fig. 4-5.

Shot Identification 

 Histograms of shots; (a) Service; (b) Full-court view; (c) Close-up 

Algorithm 

Input: Segmented shots { Shot , Shot1 2 , … , } sShot

Output: Shot types: { }, where the type of shot 1ST , 2ST , …, {S, F, C} (S: 

, C: Close-up) 

otion activity descriptor. 

         = 

sST i ∈iST

Service, F: Full-court view

1. X-coordinate is divided into β bins. 

2. For each shot, compute the representative m

jXhist ∑
=

jShot

i
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j

H
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3. Choose the initial cluster centroids, 1µ , 2µ ,…, Kµ  

 76



3.1 Divide each X-histogram Xhist in  Kto  subspaces in which each subspace is of 

bb ρρρ ...,, 3)1(2)1( +−+− , where 

m = β/K dimensions. 
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4.4 Closed Caption Localization 

h lize superimposed closed captions in 

I-f

In t is section, we shall elaborate how to loca

rames with directly exploiting the compressed data. The proposed approach is 

shown in Fig. 4-6. First, the horizontal gradient energy is computed to filter out noise 

using DCT AC coefficients. The next step is to remove noisy regions by applying the 

morphological operation. When the candidate caption regions are detected, the 

clustering-based algorithm is then employed to filter out high-textured non-caption 

regions. Section 4.4.1 details the detection of the closed captions and section 4.4.2 

shows the algorithm of SOM-based filtering.  

Horizontal
Gradient Energy

Filtering

Morphological
Operation

Candidate Caption
Filtering

(SOM-based)

I-Frames
Superimposed

Closed-Captions

 
Fig. 4-6. Closed caption localization in video frames 

4.4.1 Localiza

aption detection is 

ten

tion of Superimposed Closed Captions  

  After shots of interest are identified, the approach of closed c

proposed to localize the superimposed closed captions in these shots, such as the 

scoreboard and the channel trademark. To efficiently localize captions in compressed 

videos, several DCT AC coefficients shown in Fig.4-7 are used to compute the 

horizontal and vertical gradient energy. The horizontal gradient energy defined by 

Eq.(4-2) is computed using the AC coefficients from 1,0AC  to 7,0AC . Due to the 

fact that some blank space appears between consecutive  in c captions, the 

variation of the gradient energy in the horizontal direction would be more frequent 

and larger than that in the vertical direction. Hence, it is reasonable to filter out 

non-caption regions using the horizontal gradient energy. For each 8 x 8 block, the 

horizontal gradient energy hE  is exploited to determine the block type. If the hE  of 

a block exceeds a predefined threshold, then the block is regarded as a po tial 

letters losed 
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caption block. Otherwise, if the hE  of a block is below the threshold, then the block 

is removed.  

DC 1,0AC 7,0AC

0,1AC

0,7AC
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Fig. 4-7. DCT AC coefficients used in localizing superimposed closed captions 
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  However, va

a 

rious shots may have different lighting conditions, which are reflected 

in the contrast in frames. Besides, the contrast impacts the determination of the 

threshold and the detection of the closed captions might fail for this reason. Therefore, 

the threshold is determined adaptively according to contrast that is evaluated using 

horizontal gradient energy. The threshold sT  is computed by Eq. (4-3), where γ is an 

adjustable factor; sSVar  represents the average of horizontal gradient energy of shot 

s, AC
isFVar ,  repres he horizontal gradient energy of frame i in shot s, hAC  is 

the tal DCT ac coefficient from AC  to AC , M denotes the nu  of 

P-frames in a shot and N means the number of blocks in frame. Due to the fact that a 

higher AC
isFVar ,  implies a higher contrast in frame i, noisy regions can be more 

easily r rom a frame of higher gradient energy. Therefore, a lower weight is 

assigned to the frame with a higher contrast and a higher weight is assigned to one 

with a lower contrast. Accordingly, using this method, most of the non-caption 

regions can be removed. Fig. 4-8(b) demonstrates the results filtered using hE .  
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(d) (e)
 

  

  
Fig. 4-8. Demonstration of the localization of superimposed closed captions (a) 
original I-frame; (b) result after filtering by using horizontal gradient energy; (c) 
result after morphological operation; (d) result after filtering using SOM-based 
algorithm; (e) result after dilation 
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After most of the non-caption regions are eliminated, several small separate regions 

remain and are either very close or faraway from each other. Some regions are 

supposed to be connected, such as the scoreboard and the channel trademark. Hence, 

neighboring regions must be merged and isolated ones should be removed. Therefore, 

a morphological operator of 1x3 blocks is used to merge regions separated by a 

distance of under three blocks. Fig. 4-8(c) shows the result of applying a 

morphological operation. Several small and isolated regions are filtered out and the 

caption regions are merged. However, some background regions with large horizontal 

gradient energy remain present after morphological operation. Hence, an algorithm 

based on the concept of SOM (Self-Organization Map) is proposed to differentiate the 

foreground captions from the background highly textured regions.  

4.4.2 Clustering-Based Noise Filtering 

The Self-Organizing Map-based algorithm [52] has been applied to segment and 

recognize textures, and is well suited to the task of classifying textures. A SOM-based 

noise-filtering algorithm is proposed to further differentiate the foreground captions 

from the background highly textured regions. The details of the algorithm are 

described as follows. 

SOM-Based Noise Filtering Algorithm 

Input: Candidate regions after morphological operation Ψ = { , , … , } 1R 2R nR

Output: Closed caption regions 

1. Initially, the cluster number is set to zero (j=0). 

2. For each candidate region , the average horizontal-vertical gradient energy , 

weighted by  and , is computed. Here,  is set to 0.6 and  is set to 

0.4. n is the number of regions in Ψ. 
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3. For each region Ψ iR ∈

   If i = 1, j=j+1; assign  to cluster  iR jC

   Else if there is a cluster C such that ≦T and  is minimal among { }, 

where k∈[1,j] and  is defined in Eq. (5) 
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   Else  

j=j+1; create a new cluster  and assign  to  jC iR jC

4. Set T = T – δ 

Select the cluster  (say ) with the largest mean gradient energy , 

computed by Eq. (6) 

kC highC kavgE ,

∑
=

=
kC

i
i

k
kavg E

C
E

1
,

1                 (4-6) 

5. If  of  exceeds T, then reset Ψ = . highD highC highC

Go to step 3. 

Else  

Go to step 6. 

6. The cluster  is the set of closed captions. highC

In the algorithm, more weight is assigned to the horizontal DCT AC coefficients 

than the vertical ones because closed captions generally appear in rectangular form 

and the AC energy in the horizontal direction would then exceeds that in the vertical 

direction because the letters of each word are fairly close to each other whereas the 

distance between two rows of text is relatively large. Furthermore, the SOM-based 
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candidate region clustering is iterated until the gradient energy  of the cluster 

 is smaller than the threshold T. Based on the experiments, T is set to 70; δ is set 

to 11 empirically, and the number of iterations is two or three. Using this method, the 

set of closed captions can be automatically determined. This method is based on the 

fact that closed captions are in the foreground and are superimposed after filming. 

Consequently, the closed captions are clearer and their gradient energy exceeds that of 

the background. After SOM-based noise filtering, each closed caption region is 

dilated by one block row. The result is shown in Fig. 4-8(e) and we can see that 

regions belonging to the same closed caption are merged.  

kavgE ,

highC

4.5 Experimental Results and Analysis  

Two video sequences are recorded from the VL Sports and ESPN TV channels 

respectively and encoded in the MPEG-2 format in which the GOP structure is 

IBBPBBPBBPBBPBB and the frame rate is 30 fps. Since testing videos, Video I and 

Video II demonstrated in Fig.4-9, are recorded from different games, the background 

color, background texture, object color and lighting effect in these videos are thus 

different. The length of the Video I is about one hour and 163 shots of services, 

competition of the full-court views and close-up are obtained and the length of the 

Video II is around one and half hour and it consists of 199 shots. To measure the 

performance of the proposed scheme, precision and recall for the approach of shot 

identification and the algorithm for detecting closed captions are evaluated. Table 4-1 

and Table 4-2 show the experimental results of the shot identification in Video I and 

Video II, respectively. The precision of identification of all three kinds of shots in 

Video I and II are both higher than 92%. The values of recall in close-up shots of both 

videos are up to 98%. The recall values of full-court view shots is just 87% in Video I 

and 89 in Video II since the camera zooms in to capture shots in which players spike 
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near the net. In such a case, the shot would include a large portion of the net and a 

large object would be detected; the shot is thus regarded as a close-up shot. 

Additionally, when a team is defending, several players may run to save the ball. In 

this situation, the number of objects on the left might not be similar to the number of 

objects on the right and thus the shot is classified as a service shot. Although the recall 

value of the full court shot does not exceed 90%, the overall accuracy of shot 

identification is still very favorable. 

(a)  

(b)  

  Fig. 4-9. Demonstration of testing videos: (a) Video I (b) Video II 

  Table 4-3 presents the results of closed caption localization. In Video I, 107 

potential captions are detected in which 98 localized regions are the real closed 

captions including the scoreboard and the trademark. In Video II, there are 125 closed 

captions containing the scoreboard and the trademark and 128 potential captions are 

detected in which 118 localized regions are the real closed captions. The recall value 

reaches 100% and the precision is around 92% in Video I and the recall value is about 

94% and the precision is about 92% in Video II. The number of false detection in 

Video I is nine and that the number of false detection in Video II is ten because the 

background may include an advertising page whose gradient energy is similar to that 

of the scoreboard and the channel trademark. In such a case, this high-textured region 

is falsely detected as the closed caption. Fig. 4-10 presents an example. In Fig. 
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4-10(d), the billboard is not filtered out since its gradient energy is stronger than the 

superimposed scoreboard and the trademark.  

Table 4-1. Result of shot identification (Video I: 163 shots) 

Ground
Truth

Number of
Detection

Number of
Correct

Detection

Number of
False

Detection

Number of
Miss

Detection
Precision Recall

Closed-up

58

Service

53

Full Court

52

62

52

49

57

49

45

5

3

4

1

4

7

92%

94%

92%

98%

92%

87%
 

Table 4-2. Result of shot identification (Video II: 199 shots) 

Ground
Truth

(video 2)

Number of
Detection

Number of
Correct

Detection

Number of
False

Detection

Number of
Miss

Detection
Precision Recall

Closed-up

71

Service

64

Full Court

64

73

65

61

70

60

57

3

5

4

1

4

7

96%

92%

94%

98%

94%

89%
 

Table 4-3. Result of closed caption localization 

Ground
Truth

Video 1

Video 2

98

125

Number
of

Detection

Number of
Correct

Detection
Precision Recall

107 98 91.59% 100%

94.4%128 118 92.18%

 
  Fig. 4-11 shows the initial graphical user interface of the video browsing system. 

The table of video content is provided, in which the scoreboard at each game point is 

in the “Closed Caption” field and the representative frames of the three types of shot 

are shown in the “Service Shot”, “Full-Court Shot” and “Close-Up Shot” fields, 

respectively. Semantic high-level video structuring provides users an overall view of 

the competition as textual information in the scoreboard, and allows users to select the 
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point to watch, browsing through the video sequences in the different levels of detail. 

Additionally, when users want to see smashes, defense or offense, they can select full 

court view shots. Fig. 4-12 depicts all full-court view shots when users click the 

option “show all shots” in the “F shot” field. Moreover, when users want to see their 

favorite players, they can watch close-up view shots. Fig. 4-13 shows all “one-point” 

close-up shots obtained by selecting the “show other shots” option in the close-up 

shot field.  

(a)

(b) (c)

(d) (e)
 

 

 
Fig. 4-10. Closed caption localization; (a) original I-frame; (b) result after filtering by 
horizontal gradient energy; (c) result after morphological operation; (d) result after 
filtering by SOM-based algorithm; (e) result after dilation 
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Fig. 4-11. Video structure of caption frames as well as service,  

full-court view, and close-up shots 
 

 

Fig. 4-12. The bottom of the interface shows full-court shots 
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Fig. 4-13. The bottom of the interface presents close-up shots 

4.6 Summary 

  In this chapter, we propose a novel mechanism to automatically structuring 

volleyball videos in the MPEG compressed domain and construct the table of video 

content employing both the localized scoreboard and the semantic classes of shots. 

GOP-based video segmentation is used to efficiently segment videos into shots. The 

spatial distribution of moving objects is characterized using the object-based motion 

activity descriptor. Experimental results indicate that the proposed descriptor 

effectively identified several shot types in volleyball videos. Additionally, 

experimental results in localizing superimposed closed captions also show that the 

target captions are successfully localized and differentiated from the high-textured 

background regions. These target captions and the shots in semantic classes are well 

organized in a compact form. Therefore, users are allowed to browse videos 

nonlinearly in an efficient manner through the table of video content following either 
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the scoreboards or the semantic classes of shots. Although only volleyball games are 

used in the experiments, the proposed mechanism provides several reusable modules 

like the descriptor of motion activity and the method of closed caption detection. 

Once the spatial distribution model of moving objects is obtained from employing 

specific domain knowledge, shots of interest such as the full or partial view of athletic 

field with particular player distribution can be automatically identified using the 

proposed object-based motion activity descriptor.  

In the future, with the successful identification of shots in volleyball games in this 

chapter and the effective classification of video shots of MPEG-7 testing dataset in 

our previous research, we would like to apply the proposed system architecture for the 

motion activity shot identification/classification to other videos, including movies, 

documentaries and other sports. In addition, we will investigate video OCR to 

recognize the localized closed captions and thereby to support the automatic 

generation of meta-data, like the names of teams in sports videos, the names of 

leading characters in movies, or important people in other kinds of videos.  

 

 

 

 

 

 

 

 

 

 

 

 89



Chapter 5. Robust Video Sequence Retrieval Using A Novel 

Object-Based T2D-Histogram Descriptor 

5.1 Introduction 

The tremendous growth in the number of digital videos has become the main 

driving force for developing automatic video retrieval techniques. Among different 

types of tools that can push the advancement of retrieval techniques, an efficient 

automatic content analyzer that can help execute correct browsing, searching and 

filtering of videos is a must. In order to achieve this goal, one has to make use of 

high-level semantic features to represent video contents. The need of representing 

high-level semantic features has motivated the emergence of MPEG-7, formally 

called the multimedia content description interface [53]. However, the methods that 

produce the specific features and the corresponding similarity measures represent the 

non-normative part of MPEG-7 and are still open for research and future innovation.  

Usually, the high-level semantic features of video sequences can be inferred from 

low-level features. The low-level features can be color distribution, texture 

composition, motion intensity and motion distribution. Among different types of 

features that can be extracted from a video, motion is considered as a very significant 

one due to its temporal nature. In the literature, Divakaran et al. [54] used a 

region-based histogram to compute the spatial distribution of moving regions. The 

run-length descriptor in MPEG-7 [55] is used to reflect whether moving regions 

occurred in a frame. Aghbari et al. [56] proposed a motion-location based method to 

extract motion features from divided sub-fields. Peker et al. [57] calculated the 

average motion vectors of a P-frame and those of a video sequence to be the overall 

motion features. In addition to the above mentioned local motion features, Wang et al. 

[58] proposed to use some global motion features to describe video content.  
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In contrast to the motion-based features of individual frames, another group of 

researchers proposed to use spatio-temporal features between successive frames 

because these types of features are more abundant in the amount of information. 

Wang et al. [59] extracted features of color, edge and motion, and measured the 

similarity between temporal patterns using the method of dynamic programming. Lin 

et al. [60] characterized the temporal content variation in a shot using two descriptors 

- dominant color histograms of group of frames and spatial structure histograms of 

individual frames. Cheung and Zakhor [61] utilized the HSV color histogram to 

represent the key-frames of video clips and designed a video signature clustering 

algorithm for detecting similarities between videos. Dimitrova et al. [62] represented 

video segments by color super-histograms, which are used to compute color 

histograms for individual shots. Other works that fall into this category can be found 

in [63-67].  

There are several drawbacks associated with the key-frame based matching process. 

First, the features selected from key-frames usually suffer from the high 

dimensionality problem. Second, the features chosen from a key-frame is in fact local 

features. For a matching process that is targeting at measuring the similarity among a 

great number of video clips, the key-frame based matching method is not really 

feasible because the information used to characterize the relationships among 

consecutive frames is not taken into account. In order to overcome these drawbacks, 

we propose an object-based motion activity descriptor, which can exploit the 

spatio-temporal information of a video clip in the matching process. Basically, the 

proposed spatio-temporal features can support high-level semantic-based retrieval of 

videos in a very efficient manner. We make use of some spatio-temporal relationships 

among moving objects and then use them to support the retrieval task. In the retrieval 

process, we use the DCT to reduce the dimensionality of the extracted 
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high-dimensional feature. Using DCT, we can maintain the local topology of a 

high-dimensional feature. In addition, the energy concentration property of DCT 

allows us to use only a few DCT coefficients to represent the moving objects and their 

variations. Therefore, the transformation can make an accurate and efficient retrieval 

process possible.  

The rest of the chapter is organized as follows. Section 5.2 presents an overview of 

the proposed scheme. Section 5.3 illustrates the methods used to characterize video 

segments. Section 5.4 describes the representation and matching of video sequences. 

Section 5.5 presents the experimental results. Section 5.6 draws conclusions and 

suggests avenues for future work.  

5.2 Overview of the Proposed Scheme 

M PEG-1/-2
Video Stream s

GO P-Based V ideo
Segm entation

Shot Description by
O bject-based 2D-histogram

Apply DCT on
2D-H istogram  Sequences

Selection from  DCT Coefficients
of T2D-Histogram  Sequences

Low-Dim ension Description of
T2D-H istogram  Sequences  

Fig. 5-1. An overview of extracting the proposed T2D-Histogram descriptor – 
compressed videos are parsed semantically and represented by reduced 

low-dimensional DCT coefficients 

In this section, we shall provide an overview of the proposed video retrieval system. 
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Fig. 5-1 shows the flowchart of the proposed system. MPEG videos are efficiently 

segmented into shots using our previously proposed GOP-based video segmentation 

algorithm. This video segmentation algorithm checks video streams GOP-by-GOP 

rather than frame-by-frame. The actual shot boundaries are then determined at the 

frame level. After the process of shot segmentation, the next step is to execute an 

algorithm, which can generate an object-based motion activity description. The 

motion activity descriptor is able to describe moving objects in compressed videos. 

The features used by this motion descriptor are statistically computed by spatial and 

temporal distributions along the horizontal and vertical directions, respectively. The 

function of the descriptor is basically an encoder, which can encode video contents 

into high-level relational features. In order for maintaining high computational 

efficiency, we choose P-frames for motion activity analysis. Under these 

circumstances, a video clip can be represented by a set of motion activity descriptions 

of consecutive frames in the time domain. However, it is impractical to search a large 

video database using the time domain features. Therefore, we propose to apply DCT 

on the target frames and make them become lower dimensional in the frequency 

domain. Finally, we conduct an indexing process on the transformed DCT coefficients. 

As we mentioned before, due to the energy concentration property of DCT, we are 

able to represent the original moving objects in a most accurate and efficient way. 

5.3 Characterization of Video Segments  

In this section, we shall describe how to characterize a video segment so that it can 

be used to perform efficient video retrieval. We shall describe how to detect moving 

objects in a video segment in Section 5.3.1 and then discuss how to describe motion 

activity of a video segment in Section 5.3.2. 

5.3.1 Moving Object Detection 
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For computational efficiency, motion information in P-frames is used for the 

detection of moving objects. In general, consecutive P-frames separated by two or 

three B-frames are still similar and would not vary too much. Therefore, it is 

reasonable to use P-frames as targets for moving objects detection. On the other hand, 

since the motion vectors estimated in MPEG-2 videos may not be 100% correct, one 

has to remove the noisy part before they can be used. For those motion vectors that 

are small in magnitude, we consider they are noises and should be removed. For the 

sake of computation speed, the average of motion vectors in those inter-coded 

macroblocks is computed and selected as the threshold for noise removal. After noisy 

motion vectors are filtered out, the motion vectors with similar magnitude and 

direction are clustered into a group by applying a region growing process with an 

morphological operator of 2x2 macroblocks. Thus, moving areas with size smaller 

than 4 macroblocks would be recognized as noises and be removed. Fig. 5-2 

illustrates some examples of moving object detection in MPEG videos.  

In our previous works [10][51], we have successfully detected moving objects in 

several kinds of videos such as tennis, traffic monitoring, news and football. Moving 

objects can be detected with an over 90% success rate when the camera is stationary. 

When the camera moves, camera motion such as pan or tilt should be estimated in 

advance before detecting moving objects. In our previous work, the precision is about 

83% when the camera moves. However, the recall is still higher than 90%. Examples 

of moving object detection using our previous algorithm are demonstrated in Fig. 5-2. 

Video shots shown in Figs. 5-2(a) – 5-2(c) are extracted from an MPEG-7 testing 

dataset, and the shot of tennis competition in Fig. 5-2(d) is recorded from the 

Star-Sports TV-channel. Based on the results shown in Fig. 5-2, it is obvious that all 

moving objects are successfully detected. 
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 (a) (b)  

        (c) (d)  
Fig. 5-2. Demonstration of moving object detection (a) anchor person (b) football (c) 

walking person (d) tennis competition. 

5.3.2 Describing Motion Activity in a Video Segment 

In this section, we shall elaborate how to describe object-based motion activity in a 

video segment. After moving objects are detected, the spatial distribution of them is 

characterized using the statistics derived from the 2D-histogram. A 2D-histogram for 

each P-frame consists of an X-histogram and a Y-histogram. The horizontal axis of the 

X-histogram (Y-histogram) is the quantized X-coordinate (Y-coordinate) in a frame. 

The X- and Y-coordinates are quantized into β bins, which should be moderate and be 

adaptive to various content types of MPEG videos. Thus, β should be related to the 

frame resolution and the threshold of object size based noise filtering, and is defined 

by 

⎟
⎠

⎞
⎜
⎝

⎛=
S

R
S

R columnrow ,minβ ,             (5-1) 

where  is the resolution of frame size in terms of macroblocks and S is 

the size of morphological operator in noise filtering. The decision of β will be verified 

by the simulated results in Section 5.3. Initially, the object size is estimated before bin 

rowR x columnR
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assignment. If an object is larger than the predefined unit size (frame-size/ ), then it 

is normalized and accumulated according to the following equation: 

2β
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where  denotes the  bin of an X-histogram in frame i,  means 

the accumulated value of the  bin of object r in frame i for an X-histogram, and 

Obj is the number of objects in frame i. Fig. 5-3 shows how a 2D-histogram is 

computed, with the number of histogram bins set to four. In the example, two objects 

with sizes of three units and four units are present in the frame. To obtain the 

X-histogram, the size of each object is assigned to a histogram bin based on its 

centroid (indicated by the symbol “ ”) on the horizontal axis. For example, the 

football player of size three is assigned to Bin 1 and the basketball player of size four 

is assigned to Bin 3 in the X-histogram. Similarly, in the Y-histogram, Bin 2 is 

increased by 3 and that of Bin1 is increased by 4.  

X
jiBin ,

thj X
rjiAcc ,,

thj

Bin0 Bin1 Bin2 Bin3

X-Histogram

Bin0 Bin1 Bin2 Bin3

Y-Histogram

Bin0 Bin1 Bin2 Bin3

B
in0

B
in1

B
in2

B
in3

* * 4=β

 

Fig. 5-3. Demonstration of the computation of 2D-histogram 

Using the proposed 2D-histogram, the spatial distributions among moving objects 

are approximately described since each moving object is assigned to the histogram bin 
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based on its centroid. Objects that belong to the same coordinate interval are grouped 

into the same bin, and thus the distance between object groups can be specified as the 

distance between the associated bins. 

5.4 Video Sequence Matching 

After video segments are characterized by the descriptor of object-based 

2D-histogram, temporal relationships among the moving objects have to be described. 

In order to characterize the temporal relationships among moving objects, a few DCT 

coefficients of the transformed time sequence are used to represent the variations of 

original objects among consecutive frames. A brief review of DCT will be elaborated 

in Section 5.4.1. Section 5.4.2 will describe how to represent a video sequence. The 

similarity metric that can be used to measure the degree of similarity will be discussed 

in Section 5.4.3.  

5.4.1 Discrete Cosine Transform 

The DCT (Discrete Cosine Transform) is a powerful tool that has been extensively 

used in many data compression applications. The DCT of a finite length sequence 

often has its coefficients more highly concentrated at low indices than other 

transforms do [67]. It has been proven in [68] that the approximation capability of 

DCT is much better than that of other approximation methods. Therefore, we shall use 

the DCT to characterize the temporal variations among moving objects in a video 

sequence. 

5.4.2 Representation of Video Sequences 

In this section, we shall describe how to characterize the temporal variations among 

moving objects exploiting the DCT. The algorithm that can be exploited to generate 

video sequence representation is as follows: 
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Video Sequence Representation Algorithm 

Input: Consecutive P-frames {P1, P2, P3, …, PN} 

Output: Sequences of representative DCT coefficients [ ], where jfZ , ],1[ α∈f  and 

],1[ β∈j  

Procedure: 

1. For each P-frame Pi,  

Detect moving objects by clustering macroblocks that have similar motion vector 

magnitudes and similar motion directions. 

2. For each object Obji,r, where i and r denote the rth object in the ith P-frame; 

Compute the centroid and the object size in the unit of macroblocks. 

3. Set the number of histogram bins to β 

4. For each P-frame Pi,  

Compute the X-histogram and the Y-histogram according to the horizontal and 

vertical position of the objects, respectively. 

5. For each sequence of histogram bins [ ], where Z
jtBin , ],1[ Nt∈ , ],1[ β∈j  and 

 },{ YXZ ∈

Compute the transformed sequence [ ] using the Discrete Cosine Transform jfZ ,

⎟
⎠
⎞

⎜
⎝
⎛ +

= ∑
= N

ftBinfCZ
N

t

z
jtjf 2

)12(cos)(
1

,,
π , where ],1[ Nf ∈  

6. Set the number of DCT coefficients to α. 

7. For β transformed sequences [ ] of DCT coefficients,  jfZ ,

Select the DC coefficient and (α-1) AC coefficients to represent a transformed 

sequence. 

8. Generate the β reduced low-dimensional sequences [ ], where jfZ , ],1[ α∈f  and 

],1[ β∈j  
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Fig. 5-4 is the graphical representation of the above algorithm. For each P-frame, 

the feature of the object-based motion activity is described by a 2D-histogram, in 

which the spatial distribution of moving objects in horizontal and vertical direction 

are characterized by the bin values of the X-histogram and the Y-histogram, 

respectively. Therefore, a video sequence can be represented by a sequence of 

2D-histogram with 2Nβ dimensions, where N is the number of P-frames in a video 

sequence and β is the number of bins in X-histogram and Y-histogram. In order to 

reduce the dimensionality of the feature space, DCT is exploited to transform the 

2D-histogram of the original video sequence into the frequency domain. The value of 

the  bin  of X-histogram (  of Y-histogram) in the ith P-frame is 

considered to be a signal in time i, and thus the corresponding  X-histogram bin 

in the consecutive N P-frames is regarded as a time signal = [ ] ( = 

[ ] of the Y-histogram), where t = 1, 2, 3, …, N. The N-point DCT of a signal 

 is defined as a sequence X = [ ], f= 1, 2, 3, …, N as follows: 

thj X
jiBin ,

Y
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jtBin , jy

Y
jtBin ,
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)12(cos)(
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,,
π  ,                             (5-3) 

N
C 1)0( =  and 1,..,2,1,2)( −== Nf

N
fC  

where N is the number of P-frames and j ∈ [1,β]. Eq. (5-3) indicates that a video 

sequence is represented by β sequences of DCT coefficients restricted by the number 

of bins in the histogram. It means that temporal variations among original objects in 

the successive P-frames are characterized by β sequences of DCT coefficients in 

frequency domain.  

It is well known that the first few low-frequency AC terms together with the DC 

term will suffice for the need. Therefore, for easy computation we only choose these 
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terms to represent a video sequence instead of selecting all coefficients. However, to 

select an appropriate amount of AC coefficients is always a crucial issue. Since the 

selection of coefficients is an ill-posed problem, we shall discuss this problem in the 

experiments. 
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Fig. 5-4. Video sequences are characterized by the object-based T2D-Histogram 
descriptor and further represented by reduced low-dimensional DCT coefficients 

 

5.4.3 Choice of Similarity Measure 

A very important property of Parseval’s theorem is that the Euclidean distance 

between DCT transformed signals is able to maintain the local topology. Therefore, 

for matching between video sequences we employ the modified Euclidean distance as 

the metric. Let  and  be two finite point sets of X-histogram (  and ][ X
fW ][ X

fH ][ Y
fW
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][ Y
fH  of the Y-histogram). Then the modified Euclidean distance between two video 

sequences w and h is defined as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)),1(,()),...,,2(,(

)),,1(,(),,(
),(

HshrWDistHshrWDist
HshrWDistHWDist

MinhwDist
XX

XX
X β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)),1(,()),...,,2(,(

)),,1(,(),,(
),(

HshrWDistHshrWDist
HshrWDistHWDist

MinhwDist
YY

YY
Y β

         (5-4) 

where ,  and W and 

H are the transformed signals of w and h, respectively. In Eq. (5-4), j denotes the jth 

histogram bin, f represents the fth coefficient and α denotes the number of selected 

DCT coefficients.  is a bin-rotating function which rotates the β histogram 

bins to the right n times in a cyclic way. For example,  shifts the first (β-1) 

bins 1 time to the right and the last bin rotates from the βth bin to the 1
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st bin. Using 

the distance metric with function shr(n,H), two video sequences will be regarded as 

similar when they are spatially and temporally similar. If the function shr(n,H) were 

not employed in the distance function, a shot A with objects poisoned in the left and a 

shot B with objects positioned in the right would be regarded as dissimilar because the 

peak bins of Shots A and B are in the left and right, respectively and thereby the 

distance between A and B would be very large.  

To further address the overall moving trend of objects within a video sequence, 

 and  are weighted adaptively based on the average motion 

vector magnitudes derived from the x- and y-directions. Under these circumstances, 

the total distance  between two video sequences w and h can be defined 

as 

),( hwDistX ),( hwDistY

),( hwDisttotal
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where  is the weight of the X-histogram (  of Y-histogram), N is the number HWT VWT
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of P-frames, and  and  are the average motion vector magnitudes of the 

X-component and Y-component, respectively, of the inter-coded macroblocks in the 

 P-frame. The reason why the analysis on object motion is split into two 

independent directions is as follows. It is well known that a camera would normally 

pan or tilt to catch moving objects in a scene. This act will in fact result in the 

situation that the global motion is mainly horizontal (vertical) when most active 

regions move in the horizontal (vertical) direction. Therefore, it is feasible to use the 

dominant moving trend to measure the video similarity. For example, we can 

discriminate between baseball and football videos using the above mentioned 

similarity metric because most players in a baseball game run vertically and the 

camera tilts to track them or the baseball, while players in a football game primarily 

run horizontally and the camera pans to track significant events. 

HiMV , ViMV ,

thi

5.5 Experimental Results and Discussions 

In order to show the effectiveness of the proposed method, we simulated the color 

video sequence matching algorithm by MPEG-7 test dataset [69], which includes 

various programs such as documentaries, news, sports, entertainment, education, 

scenery, interview, etc and consists of 1173 shots. In the test dataset, the degree of 

strength of the motions in these shots ranged from low, medium to high, and the size 

of moving objects were classified as either small, medium or large. The anchorperson 

shots and interview shots (API shots) are typical low activity shots with small-range 

motions of mouth and head. The close-up tracking shots (CUT shots) are medium or 

large activity shots with medium or large-area moving foreground objects. The 

walking person shots (WP shots) are typical medium activity shots with medium or 

large motion areas. The aims of the experiments were to (1) evaluate the retrieval 

performance using different number of DCT coefficients; (2) analyze the degree of 
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accuracy when distinct number of histogram bins was used in the retrieval process; 

and (3) evaluate the retrieval performance of the proposed object-based motion 

activity descriptor. To evaluate the performance of the above three issues, precision 

and recall were used as the metrics to measure the performance of the proposed 

retrieval system. Recall and precision were defined as follows: 

)Relevant(q
)Relevant(q)Retrieve(q

Recall
∩

= , 
)Retrieve(q

)Relevant(q)Retrieve(q
Precision

∩
= ,    (5-6) 

where “Retrieve(q)” means the retrieved video sequences that corresponded to a query 

sequence q; “Relevant(q)” denotes all video sequences in the database that were 

relevant to a query sequence q and ⋅  indicates the cardinality of the set. Recall 

was defined as the ratio of the number of retrieved relevant video sequences to the 

total number of relevant video sequences in the video database, and Precision was 

defined as the ratio of the number of retrieved relevant video sequences to the total 

number of retrieved video sequences. In the following subsections, we shall elaborate 

on how to determine some important thresholds that will be used in the experiments 

and report the retrieval performance of the proposed system. 

5.5.1 Selecting Appropriate Number of DCT Coefficients 

In the experiments, we used four shot classes to test the performance of our 

algorithms. Among these test videos, the shots of the Close-Up Tracking (CUT) and 

the Walking Person (WP) were with high degree of motion. The shots covered in the 

Bicycle Racing (BR) and the Anchor Person (API) were with medium degree of 

motion and low degree of motion, respectively. Figs. 5-5(a) – 5-5(d) show the 

examples of these four shot types, with key-frames sampled per 40 frames. To 

evaluate the effect when different number of DCT coefficients was used in the 

retrieval process, the number of DCT coefficients, α, including the DC and the first 

(α-1) AC coefficients, was varied and tested under the condition that the number of 
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histogram bins, β, was set to 8. β was set to 8 because in the test dataset the resolution 

of frame size in terms of macroblocks was 20x15 in SIF 320x240 format. The 

descriptors D, the X-histogram, the Y-histogram, the 2D-histogram and the weighted 

2D-histogram were independently used. 

 

Fig.5- 5. Examples of the Close-Up (CUT), Bicycle Racing (BR), Walking Person 

(WP) and Anchorperson and Interview (API) shots 

Figs. 5-6(a) – 5-6(d) show the retrieval performance using four different types of 

shots, CUT, BR, WP and API, respectively. The four curves shown in the figures 

corresponded to four descriptors, which had distinct number of DCT coefficients 

(α=1, α=2, α=3 and α=5). The horizontal axis denotes recall and the vertical axis 

denotes precision. Table 5-1 compared the performance among distinct settings of α. 
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“Rank” refers to the order of retrieval performance of recall-precision pairs and the 

first two ranks were listed for each descriptor measured by using different setting of α. 

The retrieval performance in the recall-precision pair with α=2 in the CU and BR 

shots was better than that obtained with other settings. Although the setting of α=1 

yielded better retrieval than α=2 in the WP shot, the performance obtained by setting 

α=2 was still in the second best. For the API shots, the setting α=5 was the best in 

terms of retrieval and the settings α=3 and α=2 were the second best as shown in 

Figs. 5-6(a) – 5-6(b) and Figs. 5-6(c) – 5-6(d), respectively.  

Table 5-1. Performance using distinct α and four feature descriptors (β = 8) 
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To evaluate the overall performance obtained using different numbers of DCT 

coefficients, the retrieval performance  for different α was determined by NDC
Pλ

∑ ∑
= =

=
D

i

Clips

j ji
NDCNDC Rank

P
1 1 ,

λλ
ρ                    (5-7) 

where “NDC” denotes the “Number of DCT Coefficients”; ρ is the total number of 

different α settings in the experiment and  is the ranking of the retrieval 

performance for the shot of type j with 

NDC
jiRankλ,

NDCλα = , using descriptor i. When  was 

larger, the performance obtained with 

NDC
Pλ

NDCλα =  was better. From the curves shown in 

Figs. 5-6(a) – 5-6(d), it is clear that  can be computed and its value was larger 2P
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than other values. This outcome means when α=2, the retrieval result was the best. 

Hence, the experimental results imply that two DCT coefficients are enough for 

similarity measurement of video segments. This indicates the DC coefficient and the 

lowest-frequency AC coefficient will suffice. 

P

  

(a) (b) 

  

(c) (d) 

Fig. 5-6. Average retrieval performance with different descriptors (β = 8, α∈ [1,5]) 

(a) X-histogram (b) Y-histogram (c) 2D-histogram (d) Weighted 2D-histogram 

5.5.2 Choosing an Appropriate Motion Activity Descriptor 

In order to determine an appropriate motion activity descriptor, we changed the value 

of β from 4 to 10, each time with an increment of 2. Figs. 5-7(a)-5-7(d) show, 

respectively, the performance of the recall-precision pair corresponding to β =4, β =6, 

β =8, and β =10. Table 5-2 illustrates the performance calculated by using four 

different number of histogram bins (β = 4, 6, 8, and 10). In most cases, the descriptor 

adopted weighted 2D-histogram outperformed other types of descriptors. In order to 
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quantitatively compute the performance, we used a metric, , to measure the 

retrieval results,   

D
Pλ

∑ ∑
= =

=
β

λλ
1 1 ,i

Clips

j ji
DD Rank

D
P                              (5-8) 

where β  denotes the total number of distinct settings of β; D  represents the 

number of testing descriptors;  is the retrieval performance raking of the shot 

of type j with the ith β parameter setting and the descriptor 

D
jiRankλ

,

DD λ= . Based on the 

results calculated by Eq. (5-8), we chose the weighted 2D-histogram descriptor as the 

motion activity descriptor for all the experiments conducted in this work.  

  

(a) (b) 

  

(c) (d) 

Fig. 5-7. Average retrieval performance (α=2) with different number of bins (β) 
(a) β = 4 (b) β = 6 (c) β = 8 (d) β = 10  
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Table5- 2. The performance obtained of four descriptors with different β (α = 2) 

R ank #1

R ank #2

X

W -2D

X

W -2D

W -2D

X

W -2D

2D

R ank #1

R ank #2

W -2D

X

Y

W -2D

X

W -2D

W -2D

2D

R ank #1

R ank #2

X

W -2D

W -2D

2D

W -2D

2D

W -2D

2D

R ank #1

R ank #2

W -2D

2D

W -2D

2D

W -2D

2D

X

2-2D

Shot T ype

Setting

C lose-U p
T racking

(C U T )

B icycle R acing
(B R )

W alking
P erson
(W P )

A nchor P erson
(A P I)

4=β

6=β

8=β

10=β

X : X -H istogram   Y : Y -H istogram   2D : 2D -H istogram   W -2D : W eighted  2D -H istogram

β

 

5.5.3 Determining the Best Number of Histogram Bins 

In this section, we shall verify the decision of the number of histogram bins β. 

Therefore, we evaluated the performance by using different number of histogram bins, 

which ranged from 4, 6, 8 to 10. The recall-precision pair corresponding to each β 

setting was depicted in Fig. 5-8, and the ranking of retrieval performance for each 

shot type was illustrated in Table 5-3.  

It is obvious that the retrieval performance at β = 8 decided by Eq.(5-1) was better 

than other settings and the worst case was when β = 4. The experimental results reveal 

that the number of histogram bins should be moderate, because fewer histogram bins 

correspond to a less precise description of the variation in spatial distribution. In 

contrast, when the number of histogram bins was too large, the descriptor would be 

extremely responsive to the slight changes. Under this circumstance, the distance 

obtained from excessive number of bins between two similar shots is relatively high 

such that these two shots would be regarded as dissimilar. 
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Fig. 5-8. Average retrieval performance with parameters:  
α=2, D: weighted 2D-histogram, β∈ {4,6,8,10} 

Table 5-3. Comparison of performance using different numbers of histogram bins (β) 

Rank #1

Rank #2

6

10

8

10

8

10

8

10

Rank #3

Rank #4

8

4

6

4

6

4

6

4

Close-Up
(CUT)

Bicycle Racing
(BR)

Walking
Person
(WP)

Anchor Person
(API)

Shot Type

Performance

 

5.5.4 Evaluation of Retrieval Performance 

After the number of DCT coefficients, the number of histogram bins and the 

descriptor type are determined, we shall evaluate the overall retrieving accuracy of the 

proposed system. The ground truth and the overall performance corresponding to the 

four shot classes are shown in Table 4. In the experiment, each shot in these four 

classes was used as a query shot. The top 30 similar shots were returned as a query 

result for evaluating retrieval performance. Finally, the respective average recall and 

precision for each class were computed. The recall of these four kinds of shots 

exceeded 80% in which the recall of BR, CUT and API were higher than 86%. The 

worst result was obtained by testing the API shots, with the precision of 78%. On the 

other hand, although the precision of the API shots was under 80%, the precision of 

the CUT, BR, and WP all exceeded 80%. From Table 5-4, the overall average recall 
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and average precision were 86% and 81%, respectively.  

For performance comparison, we have performed the same experiments using the 

algorithms of motion-based run-length descriptor (RLD) and shot activity histogram 

(SAH) provided by MPEG-7 [70].  Fig. 5-9 shows the precision versus recall 

performance of RLD, SAH and T2D-Histogram. The T2D-Histogram descriptor had 

performance gain over RLD of 45% in API shots, 30% in the CUT shots, 34% in the 

WP shots and 35% in the BR shots. Also, the T2D-Histogram had performance gain 

over SAH of 11% in the API shots, 7% in the CUT shots, 20% in the WP shots and 

21% in the BR shots. In average, the T2D-Histogram descriptor had 35% and 15% 

performance gains over the RLD and SAH, respectively. The experimental results 

using extensive test videos show that the proposed T2D-Histogram outperforms RLD 

and SAH in MPEG-7 in the performance of video similarity retrieval.  

Table 5-4. Retrieval performance using the T2D-Histogram descriptor 

Recall

Precision

88%

80%

87%

84%

80%

81%

86%

78%

Close-Up
Tracking

(CUT)

Bicycle Racing
(BR)

Walking
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(WP)

Anchor Person
(API)

Clips

Performance

Average  Recall Average  Precision

86% 81%

Ground-Truth
Video shots 162 47 239 152

 

Examples of the query results were demonstrated in Figs. 5-10 – 5-14, in which the 

top 20 similar shots for CUT, BR, WP and API shots were listed, respectively. In Fig. 

10, most retrieved shots included large objects with significant motion belonged to the 

CUT shots. However, due to camera motion, some shots were mistakenly detected. 

For example, the full-court shots of the football game like (4), (8) and (12) of Fig. 

5-10 were retrieved due to the panning effect of the camera. As to the relevant shots, it 
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is worth noticing that the major objects in these shots, such as (3), (18) and (19) of Fig. 

5-10, had similar size with the object covered in the query although they had different 

colors. The reason why these shots could still be detected was due to their similarity 

with the objects in the query visually and semantically. When comparing with 

color-based methods such as color histogram, these shots with distinct dominant 

colors but semantically related cannot be retrieved.  

  

(a) (b) 

  
(c) (d) 

 

(e) 

Fig. 5-9. Retrieval performance of the four shot classes (a) API Shots (b) CUT 
Shots (c) WP Shots (d) BR Shots and (e) Average 
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In Fig. 5-11, the retrieval performance of the BR shot was quite good and most 

retrieved video segments were similar to the query due to the particular motion of the 

rider(s). In Fig. 5-12, most retrieved video segments had a few medium-size moving 

objects. Some video segments were mistakenly detected, such as (10) and (14) of Fig. 

5-12. These shots were retrieved due to the reason that the complex background was 

detected as several medium-size objects with a moving camera. In Fig. 5-13, most 

retrieved video segments included one large object with low motion, and so interview 

shots were also retrieved such as the shots (6), (8), (13), (16) and (20) of Fig.5-13. An 

example of false detection can be found in (12) of Fig.5-13, wherein some 

medium-size objects moved near to each other and so were incorrectly detected as a 

single large moving object. 

 

 
Fig. 5-10. Demonstration of the query result for a CUT shot 
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Fig. 5-11. Demonstration of the query result for a BR shot  

 
 
 

 
Fig. 5-12. Demonstration of the query result for a WP shot  
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Fig. 5-13. Demonstration of the query result for an API shot  

5.6 Summary 

A novel framework of high-level video representation for video sequence matching 

has been proposed in this work. The proposed framework has two special features: 1) 

the proposed descriptor of object-based T2D-Histogram has exploited both spatial and 

temporal features of moving objects and characterized video sequences in a 

semantics-based manner; 2) the dimensionality of feature space has been reduced 

using DCT while characterizing the temporal variations among moving objects. 

Experimental results obtained using the extensive test dataset of MPEG-7 have 

demonstrated that a few DCT coefficients could suffice for representing a video 

sequence and also shown that the proposed T2D-Histogram descriptor was quite 

robust. Using this novel motion activity descriptor of object-based T2D-Histogram, 

one can perform video retrieval in an accurate and efficient way. 
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Chapter 6. Robust Video Similarity Retrieval Using 

Temporal MIMB Moments 

6.1 Introduction 

The tremendous growth in the number of digital videos has become the main 

driving force for developing automatic video retrieval techniques. Among different 

types of tools that can push the advancement of retrieval techniques, an efficient 

automatic content analyzer that can help execute correct browsing, searching and 

filtering of videos is a must. In order to achieve this goal, one has to make use of 

high-level semantic features to represent video contents. The need of representing 

high-level semantic features has motivated the emergence of MPEG-7, formally 

called the multimedia content description interface [53]. However, the methods that 

produce the specific features and the corresponding similarity measures represent the 

non-normative part of MPEG-7 and are still open for research and future innovation. 

Usually, the high-level semantic features of video sequences can be inferred from 

low-level features. The low-level features can be color distribution, texture 

composition, motion intensity and motion distribution. Among different types of 

features that can be extracted from a video, motion is considered as a very significant 

one due to its temporal nature. In the literature, Divakaran et al. [54] used a 

region-based histogram to compute the spatial distribution of moving regions. The 

run-length descriptor in MPEG-7 [55] is used to reflect whether moving regions 

occurred in a frame. Aghbari et al. [56] proposed a motion-location based method to 

extract motion features from divided sub-fields. Peker et al. [57] calculated the 

average motion vectors of a P-frame and those of a video sequence to be the overall 

motion features. In addition to the above mentioned local motion features, Ngo et al. 

[58] and Tang et al. [15] proposed to use some global motion features to describe 
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video content.  

In contrast to the motion-based features of individual frames, another group of 

researchers proposed to use spatio-temporal features between successive frames 

because these types of features are more abundant in the amount of information. 

Wang et al. [59] extracted features of color, edge and motion, and measured the 

similarity between temporal patterns using the method of dynamic programming. Lin 

et al. [60] characterized the temporal content variation in a shot using two descriptors 

- dominant color histograms of group of frames and spatial structure histograms of 

individual frames. Cheung and Zakhor [61] utilized the HSV color histogram to 

represent the key-frames of video clips and designed a video signature clustering 

algorithm for detecting similarities between videos. Dimitrova et al. [62] represented 

video segments by color super-histograms, which are used to compute color 

histograms for individual shots. Other works that fall into this category can be found 

in [63-66].  

There are several drawbacks associated with the key-frame based matching process. 

First, the features selected from key-frames usually suffer from the high 

dimensionality problem. Second, the features chosen from a key-frame is in fact local 

features. For a matching process that is targeting at measuring the similarity among a 

great number of video clips, the key-frame based matching method is not really 

feasible because the information used to characterize the relationships among 

consecutive frames is not taken into account. In order to overcome these drawbacks, 

we propose a motion pattern descriptor, which can exploit the spatio-temporal 

information of moving blobs in a video shot in the matching process. Basically, the 

proposed spatio-temporal features can support high-level semantic-based retrieval of 

videos in a very efficient manner. We make use of some spatio-temporal relationships 

among moving blobs and then use them to support the retrieval task. In the retrieval 
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process, we use the DCT to reduce the dimensionality of the extracted 

high-dimensional feature. Using DCT, we can maintain the local topology of a 

high-dimensional feature. In addition, the energy concentration property of DCT 

allows us to use only a few DCT coefficients to represent the moving blobs and their 

variations. Therefore, the transformation can make an accurate and efficient retrieval 

process possible.  

The rest of the chapter is organized as follows. Section 6.2 illustrates the methods 

used to characterize video segments. Section 6.3 presents the experimental results. 

Section 6.4 draws conclusions. 

6.2 Characterization of Video Segments 

6.2.1 Detecting Moving Blobs in MPEG Videos 

For computational efficiency, motion information in P-frames is used for the 

detection of moving blobs. In general, consecutive P-frames separated by two or three 

B-frames are still similar and would not vary too much. Therefore, it is reasonable to 

use P-frames as targets for detecting moving blobs. On the other hand, since the 

motion vectors estimated in MPEG videos is for the purpose of compression and thus 

may not be 100% correct, one has to remove the noisy part before they can be used. In 

our previous work [71], a cascaded filter that is composed of a Gaussian filter 

followed by a median filter is exploited for noise removal. An example of noise 

filtering in MVF is demonstrated in Fig.6-1. The experimental results show that the 

precision is higher than 70% and the recall is higher than 80% and thus prove that the 

proposed spatial filter is effective to remove the noise in motion vector fields. To 

detect moving blobs in the filtered MVFs, macroblocks of similar MV magnitude and 

direction are clustered together by employing a region-growing method with an 

operator of 3x3 macroblocks. 
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           (a)       (b) 
Fig. 6-1. Demonstration of MVF noise reduction (a) MVF without filtering; (b) MVF 

smoothing with a cascaded filter 
6.2.2 MIMB Moments 

The motion intensity of moving blobs (MIMB) is a descriptor for describing sketch features 

in a frame that contain moving regions with motion intensity. Rather than directly employing 

the MIMB obtained in a P-frame, a temporal filter using Gaussian filter with temporal 

window size of 5 frames is exploited to smooth MIMBs.  To represent the spatial feature of 

MIMBs in a compact meaningful form, the moment invariants of MIMBs are computed. The 

use of moments for image analysis and object representation was inspired by Hu[72]. 

According to Hu’s Uniqueness Theorem, the moment set { pqµ } is uniquely determined by 

MIMB(x,y) and conversely, MIMB(x,y) is uniquely determined by { pqµ }. The central moment 

pqµ  computed from MIMB is defined by 

( ) ( ) ),(
1

0

1

0

yxMIMByyxx
N

y

qM

x

p
pq ∑∑

−

=

−

=

−−=µ                      (6-1) 

where (p,q) = {(0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0)} and CxR is the frame size in 

terms of macroblocks. To select a meaningful subset of moment values that contain 

sufficient information to uniquely characterize the MIMBs, the seven moment 

invariants defined by Hu are employed and defined by 
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6.2.3 Representing Temporal Variations of MIMB Moments 

In this section, we shall describe how to characterize the temporal variations among 

moving blobs exploiting the DCT. The algorithm that can be exploited to generate 

video sequence representation is as follows: 

Video Sequence Representation Algorithm 

Input: Consecutive P-frames {P1, P2, P3, …, PN} 

Output: Representative truncated DCT coefficients [ ], where ]mX ,Λ ,1[ α∈Λ . 

Procedure: 

1. For each P-frame Pi, 

    Detect moving blobs using a cascaded filter followed by using morphological 

operations. 

2. For each P-frame Pi, 

   Compute Hu’s seven moment invariants { } in the filtered MVF, where 

. 

imM ,

],1[ 7∈m

3. Compute the transformed sequence [ ] using the Discrete Cosine Transform mfX ,

    ⎟
⎠
⎞

⎜
⎝
⎛ +

= ∑
= N

ftcosMfCX
N

t
tmmf 2

)12()(
1

,,
π , where ],1[ Nf ∈  

4. For m transformed sequences, [ ] of DCT coefficients, mfX ,

   Truncate the number of DCT coefficients to α, which is composed of the DC 

coefficient and (α-1) AC coefficients to represent a transformed sequence. 

5. Generate a feature vector F( , , , , , , ) for each 1,Λ 2,Λ 3,Λ 4,Λ 5,Λ 6,Λ 7,ΛX X X X X X X
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video segment, where ],1[ α∈Λ . 

For each P-frame, the spatial feature of moving blobs in P-frames is represented by 

Hu’s seven moment invariants. In order to characterize the temporal variations of 

moving blobs within successive frames, DCT is exploited to transform the MIMB 

moments of the original video sequence into the frequency domain. The value of the 

MIMB  in the ith P-frame is considered to be a signal in time i, and thus the 

corresponding MIMB  in the N P-frames is regarded as a time signal = 

[ ], where t = 1, 2, 3, …, N. The N-point DCT of a signal  is defined as a 

sequence X = [ ], f= 1, 2, 3, …, N as follows: 

imM ,

imM , mx

tmM , mx

mf ,X

⎟
⎠
⎞

⎜
⎝
⎛ +

= ∑
= N

ftcosMfCX
N

t
tmmf 2

)12()(
1

,,
π , 

N
C 1)0( = , and 1,..,2,1,2)( −== Nf

N
fC , (6-9) 

where N is the number of P-frames and m ∈ [1,7]. Eq. (6-9) indicates that a video 

sequence is represented by 7 sequences of DCT coefficients. It means that temporal 

variations among original objects in the successive P-frames are characterized by 7 

sequences of DCT coefficients in frequency domain. It is well known that the first 

few low-frequency AC terms together with the DC term will suffice for the need. 

Therefore, for considering computation cost we only choose these terms to represent a 

video sequence instead of selecting all coefficients. However, to select an appropriate 

amount of AC coefficients is always a crucial issue. The experimental results imply 

that two DCT coefficients are enough for similarity measurement of video segments. 

This indicates the DC coefficient and the lowest-frequency AC coefficient will 

suffice. 

6.3 Experimental Results  

6.3.1 Choice of Similarity Measure 
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The similarity measure is for computing the similarity between a feature vector of a 

query video shot and a feature vector of a target video shot. To choose a similarity 

measure, in statistics we prefer a distance that for each of the components takes the 

variability of that variable into account when determining its distance from the center. 

Components with high variability should receive less weight than components with 

low variability. Therefore, a Mahalanobis distance is used as a similarity measure, 

which is defined as 

( )
2/12

1

,
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= ∑

=

n

k k

t
k

q
ktq FFFFD
σ

,                        (6-10) 

where  and  denote the kth components of a query feature vector q
kF t

kF qF  and a 

target feature vector tF , respectively and n denotes the dimension of a feature vector. 

kσ  denotes the standard deviation of the kth component for feature vectors in the 

testing dataset. 

6.3.2 Evaluation of Retrieval Performance 
In order to show the effectiveness of the proposed method, we simulated the 

algorithm of video sequence matching by using MPEG-7 testing dataset [69] which 

includes various programs such as news, sports, entertainment, education, etc and 

consists of 1173 shots. The degree of strength of the motions in these shots ranged 

from low, medium to high, and the size of moving objects were classified as either 

small, medium or large. To evaluate the performance, precision and recall were used 

as the metrics to measure the performance of the proposed retrieval system. Recall 

and precision were defined as follows: 

)Relevant(q
)Relevant(q)Retrieve(q

Recall
∩

= , 
)Retrieve(q

)Relevant(q)Retrieve(q
Precision

∩
=      (6-11) 

where “Retrieve(q)” means the retrieved video sequences that corresponded to a query 

sequence q; “Relevant(q)” denotes all video sequences in the database that were 
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relevant to a query sequence q and ⋅  indicates the cardinality of the set. 

In the experiments, we used three classes of shots to test the performance of our 

algorithms. Among these test videos, the shots covered in the Close-Up Tracking 

(CUT) and the Walking Persons (WP) were with high degree of motion and medium 

degree motion, respectively. The Anchorperson and Interview (IV) shots were with 

low degree of motion. Considering the sensitivity of the proposed descriptor to the 

size of moving blobs, the blob size ranges between small blobs of 2x2 macroblocks 

and large blobs of half or larger frame size. The 30 most relevant shots corresponding 

to every query were selected out of 1173 shots.  In order to give a comparison, we 

also do the same experiments using the algorithm of motion-based run-length 

descriptor (RLD) and shot activity histogram (SAH) provided by MPEG-7.   

 

(a) (b) 

 

(c) (d) 

Fig. 6-2. Recall versus precision performance of the three shot classes (a) Interview 

Shots (b) Close-Up Tracking Shots (c) Walking Person Shots (d) Average 

Fig. 6-2 shows the precision versus recall performance of the combination of RLD 
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in MPEG-7 and the proposed MIMB+DCT descriptor. The proposed descriptor 

yielded 49% average performance gain in the IV shots, 29% in the CUT shots and 

37% in the WP shots over the RLD. Also, the proposed descriptor yielded 40% and 

21% average performance gain in all the testing classes over the RLD and SAH in 

MPEG-7, respectively. 

6.4 Summary 

A novel framework of high-level video representation for video sequence matching 

has been developed in this work. The proposed framework has two special features: 1) 

the proposed temporal MIMB moments has exploited both spatial and temporal 

features of moving blobs and characterized video sequences in a high-level manner; 2) 

the dimensionality of feature space has been reduced using DCT while characterizing 

the temporal variations among moving blobs. Experimental results obtained using 

MPEG-7 testing dataset have demonstrated that a few DCT coefficients could suffice 

for representing a video sequence and also shown that the proposed motion-pattern 

descriptor was quite robust and efficient. Using this framework, one can perform 

video retrieval in an accurate and efficient way. 

 

 

 

 

 

 

 

 123



Chapter 7. Conclusions and Future Work 
 

7.1 Contributions  

 In this thesis, we have proposed several object-based approaches in compressed 

videos for detecting semantic events, characterizing video shots, localizing 

superimposed closed captions, and structuring video content. We have several 

contributions as follows: 

1. An effective object-based mechanism is proposed to detect semantic events in 

sports videos.  

2. Two novel object-based motion pattern descriptors are proposed to characterize 

the spatio-temporal variations of moving objects in a video shot. These descriptors 

are not only in a compact form but are effective for video similarity retrieval. 

3. A transformed feature employing DCT that is low dimensional but semantically 

meaningful is proposed for efficient content-based video retrieval.  

4. A novel algorithm for detecting superimposed closed captions in compressed 

videos is proposed.  

5. A font size filter is designed as the support for users to automatically select the 

desired closed captions.  

All the proposed descriptors are verified by extensive test dataset of various 

characteristics. In the experiments comprising comprehensive comparisons, the 

proposed descriptors outperform several related motion activity descriptors.  

 

7.2 Future Work 

In the future, in order to allow users to browse and to search a video sequence in a 

short time, a more compact semantic form representing video content is indispensable. 

Therefore, with the video characterization capabilities of the proposed text and motion 
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activity features, there are several interesting extensions on extractions of high-level 

semantic features, as listed below. 

 

 Design of New Visual Features 

Although several visual descriptors are proposed in MPEG-7, such as color, texture 

and motion, MPEG-7 standardizes only a number but not nearly all useful features. It 

is necessary to design and implement additional descriptors for symmetry detection of 

objects (e.g., face detection), object-based description in video streams (e.g., structure 

recognition from motion), and semantic high-level video event analysis from 

uncompressed as well as compressed video streams. Additionally, we plan to describe 

object-based 3D features. For example, in compressed videos we can generate 3D 

objects in two steps (1) detect moving blobs in B- or P-frames (2) locate the 

corresponding blobs in I-frames. Subsequently, new features in the 3D blobs should 

be investigated such as the feature point and shape of the 3D volume.  

 

 Employment of Video Context Information 

In an article, we can often tell the meaning of a word from its context. Similarly, in 

the video content, human can realize what the shot means from its neighboring shots – 

the video context. In the research issue of video context, neighboring shots related 

with the target should be identified. However, how to identify related neighboring 

shots with least time constraint is the first critical problem. Once related shots are 

identified, how to compute the similarity between the query and target shot sets is 

another challenge.  

 

 Similarity Measurement 

The goal is the design of methods for query definition that are flexible enough to 
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satisfy the different ways how humans can perceive and judge similarity and are 

applicable in different querying environment. In this thesis, we have proposed 

motion-based weighted distance metric, which can be used to effectively distinguish 

between video clips that are of dominant motion either in horizontal or vertical 

directions. In the future, camera motion can be estimated and be considered in the 

similarity measurement because camera motion is not only the content of human 

perception but it is an important cue for classifying general videos.  
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