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ABSTRACT : A practical method is presented for the analysis of limit cycles in multivariable 
feedback control systems having separable nonlinear elements. The limit cycles are found by 

use of a criterion generated by the stability-equation method. Numerical examples are given 
and compared to other methods in the current literature. 

I. Introduction 

In this paper, a practical method is presented which can be used to analyse the 
limit cycles of nonlinear multivariable feedback control systems having separable 
nonlinear elements. The general configuration of the considered nonlinear systems 
is shown in Fig. 1, where N(a) and G(S) represent the nonlinear and linear parts 
of the system, respectively. The method is based upon the stability-equation method 
which has been widely used for single-input-single-output nonlinear feedback 
control systems (l-5). The basic approach is to consider the equivalent gains of 
the nonlinearities as parameters to be analysed in the parameter-plane (l-5), and 
then the describing-function method is used to evaluate the amplitudes of the limit 
cycles at the inputs of nonlinearities. 

In current literature, for multivariable systems the Nyquist, inverse Nyquist, and 
numerical optimization methods are usually used to predict the existence of limit 
cycles. These methods are based upon the graphical or numerical solutions of 
the linearized harmonic balance equations (614). It has been shown that, for 
multivariable systems, over arbitrary ranges of amplitudes (AJ, frequency (CO) and 
phases (QJ, an infinite number of possible solutions may exist (14). Gray has 
proposed a sequential computational procedure to seek the solutions for only 
specified ranges of discrete values of Ai, o and Oj (12-14) ; these specified ranges 
are determined by use of the Nyquist or inverse Nyquist plots. Although the 
aforementioned methods are powerful, large computational efforts are usually 
required. 
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FIG. 1. A general block diagram of nonlinear multivariable feedback control systems. 
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It will be shown in this paper that the proposed method can give a single set of 
solutions (& w) mathematically, and the derivations of these solutions are very 
simple. 

II. The Basic Approach 

Consider the system shown in Fig. 1. The linearized harmonic balance equations 
(12-14) governing the existence of limit cycles can be expressed as : 

[G(S)N(a) +I]a = 0, (1) 

where N(a) is a matrix of describing functions of the nonlinear elements, and a is 
a column vector of sinusoidal inputs to these nonlinear elements, such that 

aj = Ai exp [j(ot+eJ] (i= 1,2 ,..., n), (2) 

where Ai are the amplitudes of a,; Qi are the phase angles about a reference input ; 
and II is the number of nonlinearities. 

From (1) and (2), one can see that the number of parameters to be found is 
larger than that of the linearized harmonic balance equations. Therefore, an infinite 
number of possible solutions (14) exist which can satisfy (1). 

For illustration, assume that a 2 x 2 nonlinear multivariable system with two 
single valued nonlinearities in the diagonal terms is considered ; the block diagram 
is shown in Fig. 2. The harmonic balance equations (614) of loop 1 and loop 2 are 

Al ejelNl(a,)gl,(jo)+A, ej’ZN2(a,)g,2(jw) = -Al eiel (3) 

Al eje~N,(al)g,,(jw) +A2 eis2N2(a2)g22(jm) = -AZ e@z (4) 

respectively, where g,(S) are the (i, j) elements of G(S) ; Nl(al) and Nz(az) are 
the describing functions [or equivalent gains (15, 16)] of the nonlinearities N, and 
N2, respectively. 

Consider the input of Ni as the reference input. Then one has 8, = 0, and (3) 

gives : 

(5) 

Similarly, (4) gives 

FIG. 2. Block diagram of a 2 x 2 nonlinear multivariable feedback control system. 
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(6) 

Equating (5) and (6), one has 

F(@) = l+N~(ak~~(j~) +N&)gA@) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 (7) 

which is the characteristic equation of the considered system. Note that N1 (a J and 
N,(aJ are considered as variable parameters. 

Equation (7) can be decomposed into two stability equations (l-5) ; i.e. 

F,(o) = B,(w)+N,(a,)C,(co)+N,(az)ol(o)+Nl(a,)Nz(a,)El(o) = O (8) 

and 

F,(o) = B2(0)+N1(a,)Cz(o)+Nz(a2)oz(~)+N*(a,)N*(a2)Ez(o) = O. (9) 

Equation (8) gives 

N&d = - 
Bl(~)+Nl(aACl(~) 
~l(~)+Nl@dEl(o)’ 

Similarly, (9) gives 

N2(a2) = - 
~2(~)+N~(aX’d~) 
D2(u)+Nl(aM2(o) 

(10) 

(11) 

Equating (10) and (1 I), one has 

[C,(~~)E,(~)-C,(~)E,(~)~N,(~,)‘+ICZ(CO)D~(~)+BZ(~)EI(~) 
-c,(o)D,(o)--B,(w)E,(w)lN,(a,)+[B2(co)Dl(w)--B,(w)D2(w)l = 0. (12) 
For specified values of frequency (w), the values of Nl(al) can be found by 

solving (12) ; the corresponding values of N,(a,) can be found from (lo), (11). For 
a number of suitable values of CD, the real solutions of N,(aJ and N,(a2) can be 
plotted in a Nl(aJ vs N2(a2) plane. The typical result for a latter example is shown 
in Fig. 3. 

FIG. 3. Root-loci of the stability-equations for Example 1 with K = 2. 
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By use of Fig. 3, the conditions of having a limit cycle are explained as follows : 

(i) Every point on the curves, as shown in Fig. 3, represents a set of N,(a,), N2(aJ 
and CO, which can satisfy the condition of having a limit cycle ; i.e. the roots oei and 
wOi of the even and odd stability equations F,(o) and FJo(w), respectively, are all 
real and alternative in sequence except that one root pair is equal to each other 
(i.e. oei = wOi = CO) (Z-S). But for nonlinear multivariable systems, an infinite 
number of solutions can satisfy this condition (14). This is quite different from the 
single-input-single-output system. 

(ii) If the root-loci as shown in Fig. 3 separate the stable and unstable regions, 
then a limit cycle may exist. The reason is that the system will become stable or 
unstable when the amplitudes Aj increase or decrease. In other words, if the system 
becomes stable (unstable) when the amplitudes Aj increase (decrease), a stable limit 
cycle may exist at the stability boundary (2-5). 

(iii) A limit cycle may exist only if the values of Nl(al) and N,(a,) are less than 
the maximal gains (N,,,, and N Zmax) of the nonlinearities N1 and N2 ; e.g. in 
Fig. 3, the useful solution may exist only in the section between points Qz and Q3. 

(iv) A limit cycle may exist if the roots NI(al) and N,(a,) satisfy (3) and (4). 
From (3) and (4), the possible solution can be found by equating the real and 
imaginary parts of (5) and (6), respectively ; i.e. 

jejo,, _e@z6] = 0 (13) 

where eZ5 and QZ6 represent the phase angles found by (5) and (6), respectively. 
Therefore, the values of A 1, A 2 and CO, for having a limit cycle, can be found from 

(g), (9) and (13). 

If the considered nonlinear system satisfies all of the above four conditions, 
a limit cycle will exist. More explanations are given along with the numerical ex- 
amples given in the next section. 

IZZ. Examples 

Example 1 
Assume that the system shown in Fig. 2 is a 2 x 2 system with transfer function 

matrix (11) 

G(S) = K 2[ -o.2;-o.2 :.;I s(s+ 1) (14) 

where Krepresents the loop gains. The nonlinearities are two identical on-off relays 
with dead-zones having unit switching level and unit height. 

From (7), the characteristic equation of the closed-loop system is 

F(S) = S6+4S5+6S4+4S3+S2+KNl(al)(S3+2S2+S) 

+KNz(a2)(S3+2S2+S)+K2N1(a1)N2(a2)(0.06S+1.06) = 0. (15) 

The stability equations are 
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FIG. 4. Root-loci of wei and woi of the stability-equations with fixed Nl(a,) and varying 

N&Z>. 

F,(o) = -~6+6~4-u?+KN1(a1)(-2~2)+KN~(a,)(-2d) 

+K2NI(aI)N2(a,)(1.06) = 0 (16) 

and 

F,(o) = 405-4c03+KN1(a1)(-~3++)+KN2(aa)(-c03+o) 

+K2Nl(al)N2(a2)(0.06co) = 0. (17) 

For K = 2, and for a number of frequencies o, the simultaneous solutions [N,(a 1) 
and Nz(a2)] of (16) and (17) are calculated and represented by two root-loci, as 
shown in Fig. 3, where the stability of each region is also shown. At every point 
on the root-loci, the roots oei and ooi of the stability-equations Fe(o) and F,(o) 
are all real and alternative in sequence except that one root pair is equal to each 
other (i.e. wei = ooj = w). 

In Fig. 3, it can be seen that the section between points Q2 and Q3 can satisfy 
conditions (i) to (iii). Solving (13) in this section, one has a limit cycle at point 
Qi (0.558, 0.585) with oscillating frequency o = 0.789 rad s-l, and amplitudes 
AI = 1.964 and AZ = 1.818. This fact is supported by checking the roots wCj and 
ooj of the stability-equations in the neighborhood of Qr (5). Figure 4 shows that 
the loci of oei and woj for N,(a,) is fixed at 0.558 and N,(a,) is varying. From Fig. 
3, one can see that if the value of N,(aJ is less (larger) than 0.585, the roots oei 
and woj are (not) alternative in sequence and the corresponding system is stable 
(unstable) (2-5). Therefore, a stable limit cycle will exist at the stability-boundary 
where N2(a2) = 0.585. Similar results can be obtained when N,(a,) is lixed at 0.585 
and N,(al) is varying. By computer simulation, Fig. 5 shows the limit cycle of the 
system for K = 2. 

In current literature, the purpose of analysis is to find the minimum value of K 
for just having a limit cycle. In this paper, for various values of K the locus of Qr 
can be plotted easily, as shown in Fig. 6, where the minimum value of K is at point 
Qlm, where the values of N,(a,) and N,(aJ are just equal to the maximum values 
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FIG. 5. The simulated limit-cycle of Example 1 for K = 2. 
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FIG. 6. Locus of Q , vs K. 

TABLE I 

The gains K for just having a limit cycle 
in Example I 

Methods Gain K 

Proposed method 1.79 
Aizerrnan Conjecture 1.79 
Hirsch plot 1.25 
Mee plot 1.50 
Digital simulation 1.787 

of the describing functions. For the system considered, the minimum value of K is 
found at 1.7924. From Ref. (ll), the results obtained by the use of other methods, 
are shown in Table I. Although all the results are approximately the same, the 
proposed method is relatively simple in computation. 

Example 2 
Consider a nonlinear system with transfer function matrix (16) 

K 16S2+23S+9 4s2-s-3 
G(S) = m W-s-3 16S2+23S+9 

1 

(18) 

where A(S) = (2S3+4.2S2+2.8S+0.6)/exp (-0.1s). The two nonlinearities N1 
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FIG. 7. Nonlinearities of Example 2. 

FIG. 8. Root-loci of stability equations for Example 2 with K = 2. 

-2 
t 

W=I~.~IKIC&, A,=/46z,A2=/45/ 

FIG. 9. The simulated limit-cycle of Example 2 for K = 2. 

and N2 are different, as shown in Fig. 7. Similar to the procedure stated in Examjple 
1, the root-loci of the stability-equations for K = 2 are plotted, as shown in Fig. 8, 
where point Q4 (0.823, 0.812) with oscillating frequency o = 16.32 rad s-l, and 
amplitudes Al = 1.454 and A2 = 1.427 can satisfy all the conditions of having a 
limit cycle. Figure 9 shows the simulated limit cycle of the system, in which a, is 
almost identical to a2. It can be seen that the simulated results are quite close to 
those obtained by calculation. 

Table II shows the values of K for just having a limit cycle predicted by various 
methods (8, 16). 

Example 3 
Consider a coupled-core reactor (17,lS) with system configuration, as shown in 

Fig. 10, where 
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and 

TABLE II 

The gains K for just having a limit cycle in 
Example 2 

Methods Gain K 

Proposed method 1.28 
Ramani and Atherton 1.29 
Kouvaritakis and Cameron 1.06 
Digital simulation 1.16 

b + a v-- 
---@=Q B CT&) + + G&) 1 

I I 

FIG. 10. Block diagram of a control system for a coupled-core reactor. 

G,,(S) = 
(S+a)(S+4 

(S+A)(S+a)+ tS(S+a)+ ?(S+d) 

(19) 

G,2(S) = ; 

G,(S) = no 
zS(l+ T,S)’ 

(20) 

(21) 

Assume that the parameters of the system are p = 0.0049,1 = 0.44, z = 0.0001 s, 
h = 10”F/(MW s), a = 10 s-l, M = O.OOl”F-‘, yto = 30 MW, r = 0.018, T, = 0.07 s, 
and the parameters of the nonlinearities, shown in Fig. 10, are B = 0.25 MW 
and V = M x 10e3 skjk - s (17, 18). For M = 22, by use of the same procedure 
stated in Example 1, the root-loci of the stability-equations are shown in Fig. 11, 
where point Qs (0.052, 0.052) with oscillating frequency o = 60.93 rad s- ‘, and 
amplitudes A, = 0.446 MW and A2 = 0.446 MW satisfies all the conditions of 
having a limit cycle. The simulated result is shown in Fig. 12. (Note that a, is 
identical to a2 because the considered system is symmetrical.) This is quite close to 
that obtained by calculation. 

From all the above examples, it can be seen that the proposed method provides 
a simple way for predicting the existence of limit cycles of nonlinear multivariable 
feedback control systems, and that in each system a unique solution can be obtained 
using simple calculations. 
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FIG. 11. Root-loci of stability equations for Example 3. 

FIG. 12. The simulated limit-cycle of Example 3 for M = 22 and B = 0.25 MW. 

IV. Conclusions 

In this paper, a method for limit cycle analysis in nonlinear multivariable feed- 
back control systems has been presented, and found to be simpler than other 
methods given in the current literature. It has been shown that the proposed method 
can be easily applied to very complicated systems. 

References 

(1) K. W. Kan and G. J. Thaler, “High Order System Analysis and Design using the Root 
Locus Method”, J. Franklin Inst., Vol. 281, No. 2, pp. 99-113, Feb. 1966. 

(2) K. W. Han, “Nonlinear Control System : Some Practical Method”, Academic Culture 
Company, 1977. 

(3) Y. L. Chen and K. W. Han, “Stability Analysis of a Nonlinear Reactor Control 
System”, IEEE Trans. Nucl. Sci., Vol. NS-17, No. 2, pp. 18-25, April 1970. 

(4) C. H. Ai and K. W. Han, “Stability Analysis of Nuclear Reactor Control System with 
Multiple Transport-lags and Asymmetrical Nonlinearity”, IEEE Trans. Nucl. Sci., 

Vol. NS-22, No. 5, Oct. 1975. 
(5) T. S. Tsay and K. W. Han, “Analysis of a Nonlinear Sampled-data Proportional 

Navigation System having Adjustable parameters”, J. Franklin Inst., Vol. 321, 
No. 4, pp. 203-218, April 1986. 

(6) D. P. Atherton, “Nonlinear Control Engineering”, Van Nostrand-Reinhold, London, 
1975. 

Vol. 325, No. 6, pp. 721-730, 1988 
Printed in Great Britain 729 



Tain-Sou Tsay and Kuang- Wei Han 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(181 

A. I. Mees, “Describing Functions, Circle Criteria and Multiloop Feedback Systems”, 
PROC. IEE, Vol. 120, No. 1, pp. 126130, 1973. 

N. Ramani and D. P. Atherton, “Frequency Response Method for Nonlinear 
Multivariable Systems”, Canadian Conference on Automatic Control, University 
of New Brunswick, Fredericton, 1973. 

N. Ramani and D. P. Atherton, “A Describing Function Method for the Approximate 
Stability of Nonlinear Multivariable Systems”, University of New Brunswick, Elec- 
trical Engineering Department, Report SDC- 1, 1975. 

S. Shankar and D. P. Atherton, “Graphical Stability Analysis of Non-linear 
Multivariable Control Systems”, Znt. J. Control, Vol. 25, pp. 375-388, 1977. 

A. K. El Shakkany and D. P. Atherton, “Computer graphics method for Nonlinear 
Multivariable Systems”, IFAC Computer-Aided Design of Control Systems, pp. 
157-161, 1979. 

J. 0. Gray and P. M. Taylor, “Frequency Responses Method in the Design of 
Multivariable Nonlinear Feedback Systems”, 4th IFAC, Multivariable Tech- 
nological Systems, pp. 225-232, 1977. 

J. 0. Gray and P. M. Taylor, “Computer Aided Design of Multivariable Nonlinear 
Control Systems using Frequency Domain Techniques”, Automatica, Vol. 15, pp. 
281-297, 1979. 

J. 0. Gray and N. B. Nakhla, “Prediction of Limit Cycle in Multivariable Nonlinear 
Systems”, PROC. IEE, Vol. 128, Pt.D, pp. 283-241, Sept. 1981. 

R. G. Cameron and M. Tabatabai, “Prediction of the Existence of Limit Cycles using 
Walsh Function: some Further Results”, ht. J. System Sci., Vol. 14, pp. 1043- 
1064, 1983. 

B. Kouvaritakis and R. G. Cameron, “The Use of Walsh Functions in Multivariable 
Limit Cycle Prediction”, Automatica, Vol. 19, pp. 5133522, 1983. 

G. V. S. Raju and R. S. Stone, “Control System in Spatially Large Cores”, IEEE 
Trans. Nucl. Sci., Vol. NS-17, pp. 534540, Feb. 1970. 

N. Tsouri, J. Rootenberg and L. J. Lidofsky, “Stability Analysis of a Reactor Control 
System by the Tsypkin Locus Method”, IEEE Trans. Nucl. Sci., Vol. NS-20, 

No. 1, pp. 649-660, Feb. 1973. 

730 
Journal of the Franklin Institute 

Pergamon Press plc 


