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This paper proposes a robust proportional-integral (PI) controller design for multivariable
complex processes to achieve both well-decoupled and well-damped output behavior. By
reformulating PI-controlled processes in a way similar to the LQG/LTR control design problem,
the proposed model matching technique in the first design stage successfully results in the robust
PI controller with well-decoupled output behavior and sufficient stability. Moreover, control
performance can be further improved to achieve well-damped responses by applying gain
modification in a second design stage. Both simulated results using chemical processes and
experimental results using a wind tunnel have proven the feasibility of the proposed PI controller
design in real applications.

1. Introduction

The proportional-integral-derivative (PID) control-
ler is the most widely used controller in the process
industries because of its simple structure and wide
applicability to various processes. Although significant
developments in modern control theories have been
made recently, over 90% of industrial controllers are still
of the PI-type, due to the problems caused by process
noise (Deshpande, 1989). Over the years, many well-
known formulas have been derived to tune PI (PID)
controllers (A° ström et al., 1993). However, due to the
existence of complex interactions, the extension of the
single-loop design procedure for PI(PID)-type controllers
to multivariable processes cannot be straightforward
unless they are transformed into decoupled systems.
Therefore, in addition to the requirement for stability,
removing interactions while providing satisfactory con-
trol performance is a major concern in designing mul-
tivariable PI controllers for complex industrial pro-
cesses. Generally, methods for obtaining the PI gain
matrices can be classified into two categories: on-line
tuning and off-line design. In the on-line tuning method,
an approximate process model is obtained experimen-
tally and the PI controller adopted is usually incorpo-
rated in a multiloop structure (Luyben, 1986; Loh et al.,
1993; Friman and Waller, 1994). These approaches
usually are required to verify a suitable pairing between
inputs and outputs before tuning (Bristol, 1966; Gros-
didier and Morari, 1986; Seborg et al., 1989; Hwang,
1995). Usually, each loop is tuned with all other loops
open, to adjust performance, and then detuned as they
are all put into closed loop to reduce interaction. In this
controller structure, a compromise has to be made
between performance adjustment and interaction elimi-
nation.
On the other hand, if a reasonable process model is

available, the off-line design method can be applied.
Compared to the multiloop controller, more design
freedom for a multivariable controller can be used to
adjust control performance and reduce interaction si-

multaneously. In time-domain approaches, PI control-
ler design methods that use the state feedback approach
have been reported (Wong and Seborg, 1985; Pulleston
and Mantz, 1993). However, direct state feedback may
be impractical since states are not usually measurable.
Necessary and sufficient conditions for achieving a
robust PI controller in the output feedback structure
have been discussed by Pohjolainen (1982), Morari
(1985), and Lunze (1989). Some PI controllers use
simple formula to determine controller gains (Penttinen
and Koivo, 1980; Pohjolainen, 1982), with additional fine
tuning through a trial-and-error approach. Lewis (1992)
formulated a PI-controlled system as a linear quadratic
output feedback design problem, but achieving a desir-
able performance is not straightforward. Eigenstruc-
ture assignment was employed for PI controller design
(Han, 1989) so that stability can be more easily achiev-
able by assigning stable poles, but numerical complexity
in selecting the appropriate eigenstructure is unavoid-
able. Using frequency domain design, Chen and Munro
(1989) proposed a decoupled design via the Nyquist
array method, but this involves intensive computation.
More intuitively, Knoop and Perez (1993) proposed a
model matching approach to design a PI controller
without providing a direct approach to choose a suitable
reference model and achieve satisfactory robustness.
Although many approaches to PI control design have
been proposed using various assumptions, engineers
and researchers are still pursuing effective methods to
achieve satisfactory stability and performance for PI-
controlled processes.
In this paper, we will present a robust PI controller

design which achieves both well-decoupled and well-
damped performance using a straightforward approach
based on the frequency response criteria. Basically,
robust stability and performance requirements are more
conveniently represented in the frequency domain
(Safonov et al., 1981; Stein and Athans, 1987; McFar-
lane and Glover, 1992). Moreover, the linear quadratic
gaussian/loop transfer recovery (LQG/LTR) loop shaping
design methodology can be appropriately applied to
multiinput multioutput (MIMO) processes to achieve a
robust observer-based controller (Athans, 1986; Stein
and Athans, 1987). We reformulate the PI-controlled
loop using a format similar to that employed in LQG/
LTR design, so that the strategy used in LQG/LTR loop
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shaping can be directly employed. The proposed method
includes two design stages. A target open-loop model,
called the Kalman filter loop, is constructed which
renders satisfactory closed-loop stability with well-
decoupled time responses. In the first stage, based on
a model matching technique, the PI-controlled loop is
matched to this target loop by a derived approximation
theory. Once a low-interaction design is attained, we
can then improve the performance of each channel
output individually in the second stage to achieve well-
damped output responses, as shown in the second
simulation example. This robust PI controller was also
tested in the wind tunnel experiments to verify its
effectiveness and feasibility.

2. Formulation

Consider a linear dynamic process represented by a
general state-space equation as in the following:

where xp, u, and y are state, control, and output,
respectively, and the matrices A, B, and C are of
appropriate dimensions. Note that, if the available
process model is in a transfer function description, it
can be directly represented in a state-space model as
in eq 1 (as shown in Example 1, section 5). For most
PI-controlled processes, the number of inputs and
outputs is assumed to be the same without loss of
generality; the PI controller can then be represented as

where xc is the controller state, r is the setpoint, and
Kp and Ki are the proportional and integral gain
matrices, respectively. Furthermore, if we combine the
dynamic process in eq 1 and the PI controller in eq 2
with the concern of measurement noise and disturbance,
the overall controlled system can be written in the
following augmented form:

where

and

The dynamic driving noise w with distribution matrix
La can be accounted for as modeling error with the
assumption of Gaussian distribution, zero mean, and
variance W. Also, the measurement is assumed to be
contaminated by Gaussian noise n with zero mean and

variance N. LL and LH are submatrices of La corre-
sponding to the low- and high-frequency ranges, respec-
tively. As a result, the PI-controlled system is essen-
tially an output feedback control design that can be
rewritten as follows:

with

where the PI gain matrices are factored into Ka and ua
is a modified output feedback control signal. Since this
augmented system equation shares the same design
model {Aa, La, Ca} used in the LQG/LTR loop shaping
design (Athans, 1986), the LQG/LTR loop shaping
design technique can be directly employed in the present
robust PI controller design.
For many processes, the process model is frequently

represented as a transfer matrix with time delays. We
can use a rational approximation (e.g., the Padé ap-
proximation or all-pole approximation; Seborg et al.,
1989) to obtain the state-space realization. A balanced
state-space realization (Laub et al., 1987) is recom-
mended to achieve a state-space model with equal
controllability and observability properties.

3. Stage 1: Well-Decoupled Design through
Model Matching

3.1. The Target Model. In general, stability and
performance requirements can be conveniently repre-
sented in the frequency domain (Safonov et al., 1981;
McFarlane and Glover, 1992). Information on param-
eter variations and unmodeled dynamics, such as
neglected high-frequency modes or time delay, is sum-
marized to form a high-frequency limit that is sufficient
to specify the robust stability (Maciejowski, 1989). On
the other hand, a low-frequency limit is specified to meet
the requirements of tracking and disturbance rejection.
In the loop shaping design technique, a desired loop
transfer function which comprises all the performance
specifications is assigned within the two limits men-
tioned above and serves as the target model. In the
LQG/LTR loop shaping method, a target loop transfer
matrix known as the Kalman filter loop (shown in
Figure 1) is expressed as

where the matrix Kf is the Kalman filter gain (Athans,
1986). By selecting La,W, and N as in eq 3 to assign a

x̆p ) Axp + Bu

y ) Cxp (1)

x̆c ) Ki(r - y)

u ) xc + Kp(r - y) (2)

x̆a ) Aaxa + Bh a(r - y) + Law

y ) Caxa + n (3)

xa ) [xcxp ]

Aa ) [0 0
B A ], Bh a ) [Ki

B Kp ], La ) [LL
LH ]

Ca ) [0 C ] (4)

Figure 1. Target model with the Kalman filter loop.

x̆a ) Aaxa + Baua + Law

y ) Caxa + n

ua ) Ka(r - y) (5)

Bh a ) BaKa, Ba ) [I 0
0 B ], Ka ) [Ki

Kp ] (6)

GKF(s) ) Ca(sI - Aa)
-1 Kf (7)
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desired loop shape of GKF(s), the Kf can be obtained by
solving the well-known algebraic Riccati equation (ARE)
as in the following:

Accordingly, the Kalman filter loop has the following
guaranteed stability (Lehtomaki et al., 1981): (a) -6
dB to ∞ gain margin; (b) 60° phase margin. Moreover,
the interactions in the multivariable system have been
removed (Maciejowski, 1989). Interaction is undesirable
as the ith output corresponding to the jth input.
Therefore, the Kalman filter loop is suitable to serve as
the target feedback loop in the present PI controller
design.
As described in the appendix, the method of selecting

La,W, andN to obtain the desirable loop shape has been
simplified to choosing a single design parameter, the
crossover frequency $c, which is closely related to
bandwidth and rise time. Guidelines for choosing $c
to produce suitable loop shapes are also provided in the
appendix.
3.2. PI Controller Approximation. By eq 5, the

PI-controlled system has the following loop transfer
function:

where Gp(s) and Gc(s) are the transfer functions of the
process and the PI controller, respectively. Equation 9
is similar to eq 7 for the Kalman filter loop except that
Kf is replaced by BaKa. Their closed-loop system ma-
trices are also represented similarly:

With suitable selection of the PI gain matrices Ka, the
system matrix of the PI output feedback design (Aa -
BaKaCa) will approach the output injection (Aa - KfCa)
in the LQG/LTR target loop. The model matching result
is summarized in the following theorem:
Theorem 1. Let Ac0 be the closed-loop systemmatrix

of a target Kalman filter loop as described in eq 10, and
let Ac be the closed-loop system matrix of the PI-
controlled process as described in eq 11. The PI control-
ler gain matrices as

achieve the minimum norm solution, which minimizes
the Frobenius norm of |Ac - Ac0|F.
Proof. To minimize |Ac - Ac0|F, with eqs 10 and 11,

we have

If |Ac - Ac0|F2 is minimized with respect to KaCa, we
obtain

Furthermore, as long as Ca is of full rank, Ka is uniquely
determined as in the following:

Full rank of Ca is essential for the system’s observability
requirement. Then, substitute the following matrices
into eq 14:

We obtain the PI gain matrices

3.3. Discussion. By Theorem 1, the PI-controlled
system is matched to the target model of the Kalman
filter loop to ensure its stability and well-decoupled
output responses. Discussion of the first design stage
is made as follows:
(1) If performance is satisfied in the first stage.
By eqs 12 and 13, we can see that, if each column of

KfH lies precisely in the subspace spanned by the
columns of the B matrix, i.e.

the PI-controlled loop will perfectly match the target
Kalman filter loop. Satisfactory performance can thus
also be guaranteed in the first design stage alone. Some
well-known processes, such as stirred tanks (Kwaker-
naak and Sivan, 1972; Pulleston and Mantz, 1993), are
particular cases.
In fact, the condition of eq (15) is very restrictive.

Nevertheless, as will be shown in the first simulation
example, although approximation error exists, satisfac-
tory results can still be obtained in the first stage since
both the closed-loop poles and the frequency loop shapes
(singular value plots) are well-approximated for the PI-
controlled system.
(2) If the interaction is significant.
By Theorem 1, its approximation error can be repre-

sented as

Equation 16 indicates that the approximation error
is system-dependent and affected by matrices B and C.
However, we can reduce Kf to improve the model
matching error; it can be accomplished by selecting a
smaller $c (see eq A4 in the appendix) to obtain a
smaller La and Kf (Willems, 1971). Consequently,
interaction can be reduced.

Pf Aa
T + AaPf - PfCa

TN-1 CaPf + LaWLa
T ) 0

Kf ) PfCa
TN-1 (8)

Gp(s) Gc(s) ) Ca(sI - Aa)
-1BaKa (9)

target model with Kalman filter loop

Ac0 ) Aa - KfCa ) [0 -KfLC
B A - KfHC ] (10)

PI-controlled system

Ac ) Aa - BaKaCa ) [0 KiC
B A - BKpC ] (11)

Ki ) KfL (12)

Kp ) (BT B)-1 BTKfH (13)

|Ac - Ac0|F
2 ) |BaKaCa - KfCa|F

2

) trace{(BaKaCa - KfCa)
T ×

(BaKaCa - KfCa)}

KaCa ) (Ba
T Ba)

-1 Ba
TKfCa

Ka ) (Ba
T Ba)

-1 Ba
TKf (14)

Ka ) [Ki
Kp ] Ba ) [I 0

0 B ] and Kf ) [KfL
KfH ]

Ki ) KfL

Kp ) (BT B)-1 BTKfH 0

KfH ∈ range(B) (15)

|{B(BT B)-1BT - I}KfHC|F (16)
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(3) If the control performance is not satisfied.
Although we can obtain well-decoupled design in the

first stage as above, the corresponding output responses
may be sluggish or have undesirable overshoot. There-
fore, we propose a second design stage to achieve a
desirable performance without causing deterioration in
terms of interaction.

4. Stage 2: Well-Damped Design by Modifying
the Gain

Because a well-decoupled design can be achieved in
the first stage, the multivariable control loop can be
recognized as multiple independent loops. Thus, clas-
sical gain design can be employed to achieve desirable
phase and gain margins. For the closed-loop transfer
function Tii(s) from the setpoint ri to the output yi, an
equivalent open-loop transfer function Gii(s) can be
obtained as follows:

Since the phase margin is closely related to the damping
ratio of the dominant closed-loop poles, the controller
gains can thus be adjusted to obtain a desirable phase
margin of Gii(j$), meeting a specified value correspond-
ing to a desired damping behavior of the output re-
sponses.
Graphical interpretation of the proposed tuning strat-

egy in the second stage is shown in Figure 2. If the
phase margin of an initial design is not satisfied, we
can determine the frequency$c′ in the phase plot of Gii-
(j$) with a desirable phase margin. Then, we can add
suitable gain at this frequency point to 0 dB as the new
crossover frequency. In this fashion, for an nth input/
output system, a diagonal gain K

is multiplied by the original PI controller Gc(s) to obtain
modified PI gains as

Accordingly, the well-decoupled behavior is unchanged
solely by postmultiplying a diagonal gain matrix K to
Gc(s). However, the frequency responses of the con-
trolled process are improved to achieve well-damped
output behavior with the specified phase margin.
Note that the tradeoff between the desired phase

margin and the crossover frequency in the design
implies the inherent limitation of the output feedback
PI controller which is in a simple structure. In other
words, if the response after stage 2 is not fast enough,
another controller of higher order such as the LQG/LTR
controller should be considered to further improve the
design.
The proposed two-stage design procedure for the

robust PI controller is summarized as below.
Design Procedure. Data: Given {A, B, C}.
Stage 1 (well-decoupled design)
Step 1. Set W ) N ) I (identity matrix) and

determine La by selecting $c (eq A4).
Step 2. Obtain the Kalman filter gain Kf in eq 8.
Step 3. Obtain the PI gain matrices Ki and Kp by eqs

12 and 13.
If the performance of the design is not satisfied,

continue the design into stage 2 for further damping
improvement.
Stage 2 (well-damped design)
Step 1. Compute T(s) of the initial design and obtain

the corresponding Gii(s) by eq 17.
Step 2. From a Bode plot of each Gii(s), find the

frequency $ci′ and |Gii(j$ci′)|.
Step 3. Compute the diagonal gain K by eq 18 and

the resulting PI controller in eq 19.

5. Examples

Example 1. A High-Purity Distillation Column.
Consider the high-purity distillation column of Skoge-
stad and Morari (1988). In this process, the top
composition (yD) and bottom composition (xB) are con-
trolled by manipulating the reflux (L) and boilup (V).
For the case of negligible reboiler and condenser holdup,
at specific nominal operating points of yD ) 0.9 and xB
) 0.002, a properly scaled two-time-constant model
which yields a satisfactory approximation of the 41st-
order linear model is as follows:

with

where T1 ) 24.5 min and T2 ) 10 min and ∆(:) denotes
the perturbation variable with respect to the nominal
operating point. A balanced state-space realization of
the above transfer matrix can be obtained as

Figure 2. Strategy of PI gains modification in the proposed
equivalent open-loop transfer functionGii(j$). PM: phase margin.
(PM)d: desired phase margin.

Gii(s) )
Tii(s)

1 - Tii(s)
(17)

K ) [ 1
|G11(j$c1′)| 0

‚
‚

‚
1

|Gnn(j$cn′)|
] (18)

G̃c(s) ) Gc(s) K ) I
s
KiK + KpK (19)

[∆yD/0.1
∆xB/0.002 ]) G(s) [∆L

∆V ]

G(s) ) [ 16.0
1 + T1s

16.0
1 + T1s

+ 0.023
1 + T2s

9.3
1 + T1s

-9.3
1 + T1s

- 1.41
1 + T2s

]
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In the first-stage controller design, after referring to the
rise time of the reported responses of Skogestad and
Morari (1988), the crossover frequency was chosen as 5
rad/min for each loop. The proposed PI controller is
obtained as

The resulting PI-controlled system properly matches the
target model in the Kalman filter loop, and they have
very similar closed-loop poles as shown below.

Moreover, their frequency loop shapes (singular value
plots) are almost the same in all frequencies. The
advantages of guaranteed stability and performance can
be preserved for the present PI-controlled system.
Simulation results of the proposed PI controller were

compared with the results obtained by Skogestad and
Morari (1988). As shown in Figure 3, the proposed PI
controller achieves fully decoupled and well-damped
output response and renders better performance in all
tracking accuracy and damping behavior.
To evaluate the proposed PI controller under modeling

error, the following input uncertainties are included
(Skogestad and Morari, 1988):

Here ∆L and ∆V are the actual changes in manipulated
flow rates, while ∆Lc and ∆Vc are the desired values as
computed by the controller. With the proposed PI
design, a slight deterioration in time responses, as
shown in Figure 4, indicates that the proposed PI design
is robust with regard to the discussed uncertainties.
Example 2. A Chemical Process That Produces

a Solution of Ammonia and Urea. Consider the
chemical process discussed in Lunze (1989). The output
variables of the process are the concentrations of am-
monia (CA) and urea (CU) within the final solution; these
should be maintained at a constant level during opera-
tion. The input variables are the quantity of the second
component flowing through an input valve and the
temperature of the initial solution. The coefficient
matrices of its state-space representation are as follows:

Figure 3. (a) Setpoint change in yD and (b) small setpoint change
in xB for the PI controller (solid), multiloop PI controller of
Skogestad and Morari, 1988 (dashed), and their PI controller with
static decoupler (dash-dot).

A ) [-0.0410 0.00002 -0.0011
0.0029 -0.0443 0.0167
-0.0095 0.0115 -0.0964 ]

B ) [0.6542 0.7081
0.5532 -0.5591
0.0027 0.1501 ]

C ) [0.9605 0.0446 0.0010
-0.0833 0.7853 -0.1502 ]

Ki ) [0.1671 0.2501
0.1452 -0.2497 ] Kp ) [4.3748 5.5162

3.2127 -5.5451 ]

closed-loop poles of the target model:

{-0.0408, -0.0465, -0.0878, -5.0001 ( 0.0003j}

closed-loop poles of the present PI design:

{-0.0414, -0.0451, -0.0905, -4.9299, -5.0002}

Figure 4. Responses of the proposed PI design without input
uncertainty (dashed) and with uncertainty (solid).

∆L ) (1 + ∆1)∆Lc, ∆1 ) 0.2

∆V ) (1 + ∆2)∆Vc, ∆2 ) - 0.2
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Stage 1 (Well-Decoupled Design). Referring to the rise
time of the reported responses of this chemical process
(approximately 194 min, as shown in Lunze, 1989), the
crossover frequency can be set as 0.0001 rad/s (Franklin
et al., 1994). Following the design procedure we have
described, we obtain an initial design with the following
PI gain matrices:

The closed-loop poles of the target model and the PI-
controlled system are similar:

The corresponding singular value plots of the PI-
controlled loop and the Kalman filter loop, as shown in
Figure 5, indicate that they are different in the high-
frequency range. Consequently, the phase character-
istics of the PI-controlled system deviate from the target
model in the high-frequency region. Although a well-
decoupled design is accomplished in the first stage,
response is sluggish because of choosing a small cross-
over frequency. Therefore, the PI controller requires
further modification to achieve a desirable phase mar-
gin.
Stage 2 (Well-Damped Design). Frequency responses

of the first-stage design are as shown in Figurea 6 and
7 for loops 1 and 2, respectively. If the desired phase
margins are selected as 65° for loop 1 and 60° for loop
2, following the proposed algorithm the gain K can be
obtained as

The final controller gains are then obtained:

The phase margin of each loop can then be adjusted
satisfactorily:

As shown in Figure 8, a well-decoupled design is
obtained in the first stage but with sluggish response,
while the rise time of the responses have been signifi-
cantly improved in the second stage to achieve both well-
decoupled and well-damped performance.
Compare this with the results reported in Lunze

(1989). As shown in Figure 9a, the present PI design
achieves the best results in the responses to a unit step
change in CA. In the time responses to a unit step
change in CU as shown in Figure 9b, Lunze’s result
exhibits a quicker response but with larger interaction.
In summary, the proposed PI controller achieves a

Figure 5. Singular value plots of the Kalman filter loop (dashed)
and the PI-controlled loop (solid).

A ) [-0.00606 0
0

0.00166 -0.00166
-0.00641 0
0.00084 -0.00084

-0.00641 0
0.00166 -0.00166

-0.00084 0
0

0.00040 -0.00040

]
B ) [0.00606 0

0 0
0 0.00641
0 0
0.00641 0
0 0
0 0.00084
0 0

] C ) [0 2.2 0 0.033 0 0 0 0
0 0 0 0 0 -0.026 0 0.09 ]

Ki ) [4.4077 × 10-6 -1.1097 × 10-5

1.2270 × 10-4 1.0828 × 10-3 ]
Kp ) [0.0069 -0.0025

0.0215 0.1815 ]
closed-loop poles of the target model:

{-0.0001, -0.0001, -0.0004, -0.0008, -0.0008,
-0.0061, -0.0064 ( 5 × 10-6j, -0.0166}

closed-loop poles of the present PI design:

{-0.0001, -0.0002 ( 0.0001j, -0.0008, -0.0009,
-0.0061, -0.0064 ( 2 × 10-6j, -0.0165}

K ) [83.9441 0
0 1.7547 ]

Ki ) [0.0037 -0.00003
0.0103 0.0019 ] Kp ) [0.5806 -0.0044

1.8016 0.3184 ]

loop 1 (concentration of ammonia)

crossover frequency, 0.00720 rad/s;
phase margin, 65.04°

loop 2 (concentration of urea)

crossover frequency, 0.00016 rad/s;
phase margin, 59.99°
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better overall control performance. Note that we di-
rectly achieve the present PI controller, while in Lunze’s
design the controller was fine-tuned by trial-and-error.

Example 3. Application to a Supersonic Wind
Tunnel Experiment. The high-speed wind tunnel
systems are commonly used to test the performance of
high-speed flight vehicles under various conditions
(Pope and Goin, 1965; Soeterboek et al., 1991; Hwang
and Hsu, 1992). With a chosen nozzle and the referred
Standard Atmosphere Table (NOAA, 1976), the experi-
mental conditions of Mach number and altitude can be
transformed into the conditions of the setting pressure
and temperature in the wind tunnel system. They are
achieved via proper operations of the air and fuel control
valves (refer to Figure 10). Based on the mass and
energy balance principles, nonlinear governing equa-
tions for the present supersonic wind tunnel system
were derived by Hwang and Hsu (1992) and Hwang
(1997). A properly scaled linearized nominal model of
the wind tunnel is

The state x and input u are

P1 ) pressure in plenum 1 (bar), T1 ) temperature in
plenum 1 (K), P2 ) pressure in plenum 2 (bar), T2 )
temperature in plenum 2 (K), ua ) air control valve
opening (0-100), and uf ) fuel control valve opening
(0-100). Based on the testing flight conditions of the
Mach number 3.3 and the altitude 19.82 km, the
corresponding operating conditions are as in the follow-
ing (Hwang, 1997): P10 ) 10.36 bar, T10 ) 298 K, P20 )
3.25 bar, T20 ) 623 K, ua0 ) 32.5 opening, and uf0 )
32.5 opening. The tracking variables are P1 and T2, and
they are normalized by the nominal operating points,
as shown in the output matrix C. The distributed
characteristics of the process and the time lag involved
in the combustion process are summarized as input
delays Tda and Tdf for pressure and temperature control,
respectively, with

To this time-delayed process, the delay-free nominal
model as described is employed for the controller design.
The time delay effect is considered as the modeling
error. As computed from the model difference between
the time-delayed model and the delay-free model, the
corresponding uncertainty profile (Maciejowski, 1989)
shown in Figure 11 indicates that the crossover fre-
quency should be chosen within 0.5 rad/s to satisfy the

Figure 6. Bode plots of the equivalent open-loop transfer function
G11(j$) for stage 1 (dashed) and stage 2 (solid). (PM)d: desired
phase margin.

A ) [-21.0 -0.3 0 0
-140.8 -15.7 0 0
2.6 0 -21.5 -0.1
-281.7 25.2 -1556.8 -16.6

]
B ) [7.1 0

57.2 0
0 1.5
0 310.4

] C ) [1/10.36 0 0 0
0 0 0 1/623 ]

Figure 7. Bode plots of the equivalent open-loop transfer function
G22(j$) for stage 1 (dashed) and stage 2 (solid). (PM)d: desired
phase margin.

x(t) ) [P1(t) - P10

T1(t) - T10

P2(t) - P20

T2(t) - T20
]u(t - Td) ) [ua(t - Tda) - ua0

uf(t - Tdf) - uf0 ]

Tda ≈ 0.8 s, Tdf ≈ 2.0 s
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robust stability. Following the proposed two-stage
design procedure with desirable phase margins of 70°
for pressure control and 65° for temperature control, the
resulting controller gain matrices are obtained as

In the present experiments, the desired pressure P1
and temperature T2 in the closed-loop control are set
as 10.36 bar and 350 °C, respectively (Hwang, 1997).
Figure 12 shows that the present PI controller achieves
well-damped behavior in both pressure and temperature
responses in the initial test with the cold wind tunnel.
To verify the achieved control performance under dif-
ferent operating conditions, the setpoint of P1 is changed
from 10.36 to 11.72 bar. As shown in Figure 13, more
significant interaction exists between P1 and T2 due to
the model inaccuracy with the heated wind tunnel after
repeated tests. The responses were still acceptable from
the practical point of view. Moreover, the nonlinear and
time-varying characteristics of the process can be ob-
served by comparing the temperature responses as
shown in Figures 12 and 13. Figure 13 of an another
test shows more damped behavior. The existing non-
linearity and uncertainty limit the selection of higher
crossover frequencies that may speed up the responses,
because large overshoot may be induced which increases
the risk of combustion instability, especially to the wind
tunnel. Overall, the present robust PI controller design
achieves both satisfactory stability and control perfor-
mance.

6. Conclusions

In this paper, we have proposed a systematic design
procedure to obtain robust PI controllers for multivari-
able processes. The following points can be concluded
concerning the proposed two-stage design procedures:
(1) With suitable formulation, the PI-controlled loop

can be very similar to the Kalman filter loop in the LQG/
LTR approach. The PI-controlled loop can be thus easily
matched to the target Kalman filter loop in the first
stage via the model matching theorem we have devel-
oped.
(2) Well-decoupled design can usually be achieved in

the first stage by choosing a smaller crossover fre-
quency. Moreover, the robustness issues in the LQG/
LTR approach can be directly applied to the design of
the robust PI controller.

Figure 8. Results of stage 1 (dashed) and stage 2 (solid) subjected
to (a) unit step change in CA and (b) unit step change in CU.

Ki ) [13.2687 0.0657
8.9654 8.3538 ] Kp ) [0.1684 0.0005

0.0042 0.4229 ]

Figure 9. Results of example 2 (a) unit step change in CA and
(b) unit step change in CU for the present PI controller (solid) and
the PI controller of Lunze, 1989 (dash-dot).

Figure 10. Schematic diagram of a supersonic intermittent
blowdown wind tunnel.
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(3) Due to the existing approximation error, if the
performance in the first stage design is not satisfactory,
it can be effectively improved by applying classical gain
modification as proposed in the second stage. Because
of the limitations of the PI controller, if response after
the second-stage design is not fast enough, another
controller of higher order, such as the LQG/LTR con-
troller, should be considered to improve the design.
The results of the two simulation examples and the

supersonic wind tunnel experiment show that the
present PI controller achieves well-decoupled and well-
damped output behavior. The proposed two-stage de-
sign, providing straightforward procedures and guar-
anteed performance, should be very useful in real
industrial applications.

Appendix: Method of Selecting La, W, and N

In the LQG/LTR loop shaping design technique, the
desired loop shape of the Kalman filter loop is assigned

by selecting appropriate La, W, and N. Theoretically,
when the smallest singular values of the Kalman filter
loop σ[GKF] . 1, the Kalman equality shows that (Stein
and Athans, 1987)

where σi[:] represents the ith singular value of the
discussed transfer matrix, and theW1/2 in the equation
represents the square root decomposition of matrix W
and

Thus, the design parameters of matrices La andW can
be adjusted to achieve the desired loop shape.
The Kalman filter loop of eq (7) has the following

frequency properties (Stein and Athans, 1987):

and

If the open-loop system matrix A is invertible, a
popular target loop transfer function can be adopted
where the singular values of the loop are matched at
both low and high frequencies (Ridely, 1987; Garg,
1989). To achieve a matched Kalman filter loop shape,
we can simply set W ) N ) I (identity matrix) in eq 8

Figure 11. Uncertainty profile of the wind tunnel model.

Figure 12. Experimental results with a cold wind tunnel.

Figure 13. Experimental results with a heated wind tunnel.

σi[Ca(jωI - Aa)
-1Kf] ≈ σi[Ca(jωI - Aa)

-1LaW
1/2] (A1)

W ) W1/2(W1/2)T

lim
ωf0

σi[Ca(jωI - Aa)
-1Kf] ≈ I

ω
[C(-A)-1B]KfL (A2)

lim
ωf∞

σi[Ca(jωI - Aa)
-1Kf] ≈ I

ω
CKfH (A3)

Kf ) [KfL
KfH ]
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and choose LL and LH of La as

where $c is the assigned crossover frequency. As a
result, the singular values of the Kalman filter loop can
approach (I/$)$c in both the low- and high-frequency
regions. Then, Kf can be obtained by eq 8.
It should be noted here that Kf obtained from the

selection of La in eq A4 may tend to “invert the plant”;
i.e. the closed-loop poles will be very close to the stable
images of the open-loop poles, as noted by Ridely (1987).
Therefore, if the open-loop system contains lightly
damped poles, the selection of eq A4 may result in
oscillatory time responses; i.e., the loop characteristics
in the mid-frequency range may not be satisfactory.
Under such circumstances, another loop function (e.g.,
Maciejowski, 1989) is preferred.
Guideline for Choosing Pc. As shown in eq A4,

$c is the major design parameter for adjusting the
Kalman filter loop shape. The achievable$c should not
be beyond the high-frequency limit observed from the
uncertainty profile (Ridely, 1987; Maciejowski, 1989) in
order to achieve robust stability. It should also take
into account the physical limit inherent in the actuator.
On the other hand, because $c is closely related to the
reaction speed, e.g., for a system with second-ordered
dominant poles, the rise time tr and the $c for a
damping ratio of 0.7 can be represented as (Franklin et
al., 1994)

A lower bound of $c can thus be specified as the lowest
limit of the required speed of responses.
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LL ) [C(-A)-1B]-1$c

LH ) CT (C CT)-1$c (A4)

tr ≈ 1.165/$c
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