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以 copula-based GARCH 模型探討原油價格與匯率 

共移性的經濟價值 

 

研 究 生：張譽獻                   指導教授：鍾惠民  博士   

吳志強  博士   

 

國立交通大學 

財務金融研究所碩士班 

 

 

摘要 

 

    由於美元為國際原油交易的主要貨幣。近幾年來，美元的大幅貶值導致了原油價格

的飆升。本研究採用關連結構 GARCH 模型試圖更有彈性的去探討原油與匯率之間的依

賴結構。而實證結果也表示，對稱的關連結構 GARCH 模型具有較好的解釋能力。此外

我們使用動態資產配置策略去評估模型的經濟價值及其實際的效率性。在樣本外的預測

中，使用 Frank 關連結構 GARCH 模型要比其他靜態及動態模型具有較高的經濟價值。

而較為保守的投資者也願意付出較高的費用將靜態的投資策略轉為關連結構GARCH模

型的動態策略。 

 

 

 

 

 

關鍵字：原油，匯率，共移性，關連結構，經濟價值。
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copula-based GARCH models 
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Abstract 

 
The US dollar is used as the major currency of international crude oil trading, and thus 

the substantial depreciation of US dollar results in the soar of crude oil prices in recent years. 

In addition, the oil and exchange rate returns have been shown to be skew and leptokurtic and 

exhibit asymmetric or tail dependence structure. Therefore, this study uses the dynamic 

copula-based GARCH models to flexibly explore the dependence structure between the oil 

and US dollar exchange rate, and the empirical results demonstrate that the GARCH model 

with symmetric copulas has better explanatory ability. Furthermore, an asset allocation 

strategy is implemented to evaluate economic value and confirm the efficiency of the 

copula-based GARCH models. In terms of out-of-sample forecasting performance, a dynamic 

strategy based on the GARCH model with Frank copula exhibits larger economic benefits 

than static and other dynamic strategies. An investor with a higher risk aversion attitude also 

generates higher fee for switching from a static strategy to a dynamic strategy based on 

copula-based GARCH models. 

 

 

 

Key words：Oil, Exchange rate, Co-movement, Copula, Economic value
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1. Introduction 

The energy commodities differ from other trading products in their uniqueness as well as 

non-renewable nature. Most countries must rely on energy imports owing to the rareness of 

oil-producing countries. This also leads to that the prices of energy commodities are easily 

affected by many factors, such as government policy, politics, season, demand, supply, etc. In 

particular, the US dollar is commonly used as a major currency in the international energy 

commodity market, and hence the change in US dollar exchange rate will induce the 

commodity price fluctuation and then affect the economic actions of energy commodity 

importing and exporting countries. 

Over the last few years, energy commodity prices have been experiencing an 

unprecedented high fluctuation. For example, the crude oil price has risen steadily from $20 

per barrel in January 2002 to the tiptop $145 per barrel in July 2008 while fallen sharply and 

returned to $40 in December 2008 (see, Figure 1). In the meantime, the US dollar index 

(USDX1) after 2002 exhibits a greatly different tendency to that before 2002 and shows a 

significantly opposite direction to the crude oil price, that is to say, crude oil prices have been 

soaring while the US dollar has depreciated to a historical low price meantime and vice versa. 

This negative relationship will enable the crude oil commodity and the US dollar currency 

tool to have diversification and hedging benefits. As a result, modeling and forecasting the 

volatility and dependence structures of oil and exchange rate returns accurately are of 

considerable interest to investors and financial institutions. 

In recent years, there have been a number of methods proposed to explore the 

relationship between oil price and US dollar exchange rate. For example, Yousefi and 

Wirjanto (2004) investigated the impact of US dollar exchange rate fluctuation on the 

                                                
1 The US Dollar Index (USDX®) is an average of six major world exchange rates: Euro (57.6 %), Japanese Yen 
(13.6 %), UK Pound (11.9 %), Canadian Dollar (9.1 %), Swedish Krona (4.2%) and Swiss Franc (3.6 %). 
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formation of OPEC2 by using Hansen’s GMM model and verified that the correlation of oil 

and US dollar exchange rate is negative. Akram (2004) presented evidence of a non-linear 

negative relationship between oil prices and the Norwegian exchange rate, and pointed out 

that the nature of the relationship varies with the level and trend in oil prices. Cifarelli and 

Paladino (2010) used a multivariate CCC GARCH-M model to discover oil price dynamics 

are associated with exchange rate behavior and found strong evidence that oil price shifts are 

negatively related to exchange rate changes. 

Furthermore, there are other studies focus on the discussion of lead-lag relationship 

between oil and exchange rate and their interactive influence. Although those studies different 

from our studies aim but they also support the negative relationship between oil and exchange 

rate. For Example, Krichene (2005) used the vector error correction model (VECM) and 

demonstrated the negative impact that falling nominal effective exchange rate could lead to a 

surge in oil prices, and inversely either long-term effect or short-term effect. Sari et al. (2009) 

employed the generalized forecast error variance decompositions and generalized impulse 

response functions to find evidence of weak long-run equilibrium relationship but strong 

feedback in the short run. Lizardo (2009) used the vector autoregressive (VAR) model and 

revealed that oil prices significantly explain movements in the value of the US dollar against 

major currencies. The currencies of oil importers depreciate relative to the USD when the real 

oil price goes up. 

According to the majority of literatures, they point out the negative relationship between 

oil price and US dollar exchange rate. A number of possible explanations for this negative 

relationship between the US dollar and crude oil price are summarized as follows. First, 

oil-exporting countries want to stabilize the purchasing power of their export revenues (US 

dollar) in terms of their imports (non-US dollar), so they might adopt currencies pegged to the 

                                                
2 The Organization of the Petroleum Exporting Countries is a cartel of twelve countries. The principal goals are 
safeguarding the cartel's interests and securing a steady income to the producing countries. 
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US dollar in order to avoid causing loss. Second, the depreciation of US dollar makes oil 

cheaper for consumers in non-US dollar regions, thus changing their crude oil demand, which 

eventually causes adjustments in the oil price, denominated in US dollars. Third, a falling US 

dollar reduces the returns on US dollar denominated financial assets, increasing the 

attractiveness of oil and other commodities to foreign investors. Commodity assets are also 

regarded as a hedge against inflation, since the US dollar’s depreciation raises the risk of 

inflationary pressures in the United States. Based on above reasons, we must consider the 

change of exchange rate and oil price at the same time. 

The analysis of financial market movements and co-movements are important for 

effective diversification in portfolio management. Previous researches commonly use 

multivariate GARCH models to provide one way to estimate time-varying dependence 

structure, but it is often based on severe restrictions to guarantee a well-defined covariance 

matrix. The VAR model and multivariate GARCH models assume that the asset returns 

follows a multivariate normal or student-t distribution with linear dependence. This 

assumption is at odds with numerous empirical researches, in which it has been shown that 

crude oil and exchange rate returns are skewed, leptokurtic and fat-tail. And the dependence 

relationship between oil and exchange rate is non-linear or asymmetrical. To improve the 

drawbacks, we use the copula-based GARCH models to capture the volatility and dependence 

structures of crude oil and exchange rate returns. The copula-based GARCH models allow for 

better flexibility in joint distributions than bivariate normal or student-t distribution. In 

addition, three types of marginal models are employed to capture a variety of characteristics 

of oil and exchange rate returns including of volatility clustering, leverage effect, or the 

long-run effect. Five types of copula functions are also used to provide a more general 

dependence structures rather than treat it as simple linear correlation. 
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Furthermore, model performs better statistically does not equivalently imply that the 

model performs well in practice, and hence we follow Fleming et al. (2001) to evaluate the 

out-of-sample covariance forecast performance based on the copula-based GARCH models 

by the use of a strategic asset allocation problem. We also take the transaction cost problem 

into consideration and compute the break-even transaction cost, discussed in Han (2006). 

Based on the break-even cost, an investor would decide to trade or not if the real transaction 

cost is much higher than the estimated break-even cost. 

Our contribution to the literature is twofold. First, we propose the copula-based GARCH 

models to elastically describe the volatility and dependence structure of oil and US dollar 

exchange rate returns. The copula-based GARCH model can be used to capture the probable 

skewness and leptokurtosis in the oil and exchange rate returns as well as the possibly 

asymmetric and tail dependence between the oil and exchange rate returns. We find that the 

symmetric copulas seem superior to the asymmetric copulas in the description of dependence 

structure between the oil and exchange rate returns, The GARCH model with Student-t copula 

exhibits better explanatory ability of the oil and USDX futures returns. We also observe that 

the dependence structure between oil and US dollar exchange rate returns is not very 

significant before 2003 while becomes negative and descends continuously after 2003. 

Second, rather than statistical criteria, we examine whether the copula-based GARCH models 

can benefit an investor by implementing an asset allocation strategy. In terms of 

out-of-sample results, we find that the dynamic strategies based on the copula-based GARCH 

models outperform the static strategy and other dynamic strategies based on the CCC 

GARCH and DCC GARCH models, which demonstrates that skewness and leptokurtosis of 

crude oil and USDX futures returns are economically significant. Furthermore, a more 

risk-averse investor would be willing to pay higher fees to switch his strategy from the static 

strategy to the dynamic strategies based on copula-based GARCH models. 
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The remainder of this paper is organized as follows. In the next section, we introduce the 

copula-based GARCH models in detail. Section 3 presents the empirical estimation results. 

Section 4 introduces an economic evaluation methodology and investigates the out-of-sample 

forecasts of the copula-based GARCH models. Finally, Section 5 concludes. 
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2. Econometric Model 

2.1 Time-varying copula 

According to the Sklar’s theorem, a joint distribution function can be separated into the 

marginal distributions and dependence structure. For any bivariate cumulative distribution 

function, 1 2 1 1 2 2( , ) ( , )F x x P X x X x   , which has continuous marginal cumulative 

functions, ( )i i iF P X x   for 1 2i  , there exist a unique copula function ( , )C u v  

such as 1 2 1 1 2 2( , ) ( ( ), ( ))F x x C F x F x . Thus, different copula functions can be used to depict 

a flexible dependence structure between two random variables. 

Because previous studies had indicated that the comprehensive economic factors will 

induce dependence structure to change over time, thus Patton (2006) extended the Sklar’s 

theorem and introduced the conditional copula function to model the time-varying conditional 

dependence. Let ,o tr  and ,e tr  be random variables that denote oil and exchange rate returns 

at period t , respectively, with marginal conditional cumulative distribution functions 

, , , 1( | )o t o t o t tu G r    and , , , 1( | )e t e t e t tu G r   , where 1t  denotes the past information. 

Then, the conditional copula function , , 1( , | )t o t e t tC u u   can be written by the two 

time-varying cumulative distribution functions. Extending Sklar’s theorem, the bivariate 

conditional cumulative distribution functions of random variables ,o tr  and ,e tr  can be 

written as 

  , , 1 , , 1( , | ) , |o t e t t t o t e t tF r r C u u     (2.1) 

Assume the cumulative distribution function is differentiable, and the conditional joint density 

can be expressed as 

 
     

2
, , 1

, , 1
, ,

, , 1 , , 1 , , 1

( , | )
( , | )

, | | |

o t e t t
o t e t t

o t e t

t o t e t t o t o t t e t e t t

F r r
f r r

r r

c u u g r g r




  

 
 

 

     

 (2.2) 

where 2
1 1( , | ) ( , | ) /t t t t t t t t t tc u v C u v u v        is the conditional copula density function 
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and ( )ig   is the density function corresponding to ( )iG  . 

 
2.2 Marginal density 

Many financial time series have been shown to have a number of important features, 

including leptokurtosis, volatility clustering, long memory, volatility smile, leverage effect 

and so on. That is, assumption of constant variance is not appropriate and in such instances it 

is preferable to examine patterns that allow the variance to depend upon its history. Therefore, 

we consider three types of GARCH-type models to describe the time-varying volatility 

structures of oil and exchange rate returns. Except to the traditional GARCH model, we 

further use GJR-GARCH and component GARCH models to construct marginal distributions. 

On the description of volatility structures, one takes asymmetry effect into consideration, and 

the other distinguishes the difference of duration. 

 
2.2.1 GARCH model 

First, we utilize the GARCH model to specify the conditional marginal densities of oil 

and exchange rate returns, defined by 

 
, , . 1 . . .

2 2 2
, , 1 , 1

, | , ~ ( | , )

 , ,
i t i i t i t t i t i t i t i i i

i t i i i t i i t

r h z z skewed t z

h c a b h i o e

    




 

    

   
 (2.3) 

The parameters restrictions in variance equation are 0ic  , , 0i ia b  , and 1i ia b  . 

The error term ,i t  is assumed to be skewed-t distribution which can be used to describe the 

possibly asymmetric and heavy tail characteristics of oil and exchange rate returns. Following 

Hansen (1994), the density function is 

 

2 ( 1) / 2

2 ( 1) / 2

1(1 ( ) ) ,
2 1

( | , )
1(1 ( ) ) ,

2 1

bz a abc z
b

skewed t z
bz a abc z

b





 
 

 

 

 

           
  

 (2.4) 
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The value of a, b, c are defined as 

  
24
1

a c






, 2 2 21 2b a    and 
( 1/ 2)

( 2) ( / 2)
c 

  
 


 

 

where   and   are the asymmetry and kurtosis parameters, respectively. These are 

restricted to be 1 1    and 2    . When 0  , it will turn to the Student-t 

distribution. If 0   and   diverge to infinite, it will be the normal distribution. 

 
2.2.2 GJR-GARCH model 

Another style feature of financial time series is the leverage effect whereby there is an 

asymmetric reaction of volatility changes in response to positive and negative shocks of the 

same magnitude. To this effect, we employ the GJR-GARCH model, proposed by Glosten et 

al. (1993), to take into account the asymmetric effect in the volatility structure, which is given 

by 

 
, , . 1 . . .

2 2 2 2
, , 1 , 1 . 1 . 1

, | , ~ ( | , )i t i i t i t t i t i t i t i i i

i t i i i t i i t i i t i t

r h z z skewed t z

h c a b h d k

    

 


   

    

   
 (2.5) 

where . 1 1i tk    if , 1i t   is negative, otherwise , 1 0i tk   , and  the parameter id  regards 

as an asymmetric impact to volatility from the lagged one residual. If there is leverage effect 

on oil or exchange rate markets, the parameter id  will be expected to be positive. 

 
2.2.3 Component GARCH model 

The component GARCH (CGARCH) model can be used to decompose the conditional 

volatility into a long-run trend component and a short-run transitory component. Contrary to 

the traditional GARCH model, the component GARCH model allows the conditional 

volatility reverts to the time-varying long-run volatility level rather than the constant long-run 

volatility level. Engle and Lee (1999) replaced the constant unconditional variance with a 

time-varying permanent component, which represents the long-run volatility, to ensure that 
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the volatility is not constant in the long-run and proposed the following component GARCH 

model: 

 
. 1 . . .
2 2 2
, , , 1 , 1 , 1 , 1

2 2
, , 1 , 1 , 1

| , ~ ( | , )

( ) ( )

( )

i t t i t i t i t i i i

i t i t i i t i t i i t i t

i t i i i t i i t i t

h z z skewed t z

h q a q b h q

q q h

  



   



   

  

  

    

   

 (2.6) 

where 1i   and 1i ia b  . The parameter i  measures the persistence in the permanent 

component, and the forecast error  2 2
, 1 , 1i t i th    serves as the driving factor for the 

time-dependent movement of the permanent component. The parameters i  and ia  regard 

as the short-run shock effect of the permanent component and the transitory component, 

respectively. 
 

2.3 Copula function 

In the past, the correlation is usually employed to describe co-movement. But it is only a 

simple measure of dependence structure so that cannot express the relationship completely. 

Generally, studies use multivariate normal distribution to measure the relationship of assets 

movement. However, empirical evidence has shown that the distributions of financial asset 

returns are usually skewed and fat-tail differs from normality. Hence, we adopt copula 

functions which provide a flexible method to construct multivariate distributions given the 

marginal distributions and the dependence structures separately. 

Here we use two families of copula function to describe the dependence structure 

between oil and exchange rate returns, in order to fit various phenomenons. Two elliptical and 

three Archimedean’s copula functions are employed, so as to capture different dependence 

structures. The advantage of elliptical copula is that one can specify different levels of 

correlation between the marginals but they are restricted to have radial symmetry. On the 

other hand, Archimedean copulas exhibit greater explanation for asymmetric and tail 

dependence. 
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Figure 2 demonstrates the different copula contour plots under standard normal and 

skewed-t marginal distributions. Under the skewed-t marginal distribution, the axis of 

symmetry becomes a concave curve and the distribution becomes more centralize. These plots 

indicate that even use the same copula, the difference of marginal still causes enormous 

dissimilarity. Hence, under false marginal distribution hypothesize will induce fault to 

estimate copula function. 

 
2.3.1 Elliptical copulas 

Gaussian copula 

  1 1
, ,

2 2

, , 22

1 2( , | ) exp
2(1 )2 1

o t o tu uGaussian
t o t e t t

tt

x xy yC u u dxdy
 

  

 

  
    
   (2.7) 

Gaussian copula density function 

          2 22 1 1 1 1
, , , ,

, , 22

21( , | ) exp
2(1 )1

t o t e t t o t e t
Gaussian
t o t e t t

tt

u u u u
c u u

 




          
    

 

 (2.8) 

where  1  is the inverse of standard normal cumulative density function. 

It is the well knows bivariate normal distribution under the normal distribution marginal. 

The property of Gaussian copula is symmetric and implies zero dependence in the extreme 

tails. 

 

Student-t copula 

  1 1
, ,

2 2

, , 22

1 2( , | ) exp 1
(1 )2 1

o t o tt u t uStudent t
t o t e t t

tt

x xy yC u u dxdy  
  

 


 

  
    
   (2.9) 

where  1t
   is the inverse of Student-t cumulative density function, 2  . 

Student-t copula density function 
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       

         
 

1 1
2 22 21 1

, ,
, , 2

2

2 21 1 1 1
, , , ,

2

2
2 2, 1 1

11
2

2
                                  1

1

o t e tStudent t
t o t e t t

t

o t t o t e t e t

t

t u t u
c u u

t u t u t u t u

 

 

   

 


 



 

 

 



   

           
                           

 
 



1
2


 
 
  
 

 (2.10) 

When the number of degrees of freedom becomes larger, the copula converges to the 

Gaussian one. Student-t copula also symmetrical, specially, this copula has the nature of tail 

dependence. 

 
2.3.2 Archimedean copulas 

The families of Archimedean copulas have been named by Ling (1965) and were realized 

by Schweizer and Sklar (1961). Differ from Elliptical copula, Archimedean copulas are 

characterized by some generator function which have many useful properties. They have 

upper tail dependence, lower tail dependence or both, so that, they could describe better the 

reality of the behavior of the financial markets. Here three types of Archimedean copulas are 

used to combine the marginal distributions into the joint distributions. In general, people use 

three Archimedean copulas commonly: the Clayton, Frank and Gumbel. Unfortunately, the 

Gumbel copula is limited to the description of positive dependence structure. Hence, we turn 

to use the survival Clayton copula which possesses the similar property to the Gumbel copula 

but does not have positive dependence restriction. First we should define the survival 

function: 

   , , , , , ,( , | ) 1 (1 ,1 | )t o t e t t o t e t t o t e t tC u u u u C u u        

The density of survival function is 
 , , , ,( , | ) (1 ,1 | )t o t e t t t o t e t tc u u c u u     

Here use Kendall’s   to measure the co-movements between different markets in the 

presence of non-linear relationships. 
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Clayton copula 

   1/

, , , ,( , | ) max 1 ,0t
t tClayton

t o t e t t o t e tC u u u u
 

      
 (2.11) 

Clayton copula density function 

 
  

 

12

, ,
, , 1

, ,

1 1
( , | )

tt t

t

t o t e tClayton
t o t e t t

o t e t

u u
c u u

u u

 






  



  
  (2.12) 

where 2 /(1 )t t t    ,    1, \ 0t     

The Clayton copula was first proposed by Clayton (1978). It is an asymmetric 

Archimedean copula, exhibiting greater dependence in the negative tail than in the positive. 

Because of this lower tail dependence property, Clayton copula is commonly used to captures 

the markets collapse. 

 

Survival Clayton copula 

      1/

, , , , , ,( , | ) 1 1 1 1
t

t tSClayton
t o t e t t o t e t o t e tC u u u u u u

 


 
         (2.13) 

Survival Clayton copula density function 

 
      

   

12

, ,

, , 1

, ,

1 1 1 1
( , | )

1 1

tt t

t

t o t e tSClayton
t o t e t t

o t e t

u u
c u u

u u

 






  



    


 
 (2.14) 

The Survival Clayton copula is an asymmetric Archimedean copula, exhibiting greater 

dependence in the positive tail than in the negative one. 
 

Frank copula 

 
, ,

, ,
1 ( 1)( 1)( , | ) ln 1

1

t o t t e t

t

u u
Frank
t o t e t t

t

e eC u u
e

 




 



  
    

 (2.15) 

Frank copula density function 

 
   

  
, ,

, ,
, , 2

1
( , | )

1 1 1

t o t e tt

t o t t e tt

u u
tFrank

t o t e t t
u u

e e
c u u

e e e



 




 

 



     

 (2.16) 
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where    , \ 0t    . The association parameter 1 4[ ( ) 1]/t t tD     , so that 

( 1,1)t   . ( )D   is called Debye functions, defined as  

 
0

1( )
exp( ) 1

tD dt
t







  

The Frank copula firstly appeared in Frank (1979). It is a symmetric Archimedean copula. 

There is neither lower nor upper tail dependence in Frank copula. Form Figure 2 we can see 

the distribution in the similar way with the Gaussian copula. 

 
2.3.3 Dynamic dependence structure 

In the description of dependence structure, Person’s correlation coefficient is commonly 

used in Gaussian copula and Student-t copula. On the other hand, we use the Kendall’s tau in 

Archimedean copulas. In addition, we follow the concept of Patton (2006) and Bartram et al. 

(2007), to assume that the dependence parameters rely on the past dependence and historical 

information, , 1 , 1( 0.5)( 0.5)o t e tu u   . If both , 1o tu   and , 1e tu   are either bigger or smaller 

than 0.5, then we infer that the dependence is higher than last. Let *
t  and *

t  be 

appropriate logistic transformation3 of dependence parameters t  and t  , respectively, 

and the time-varying parameters *
t  and *

t  can be expressed as: 

 
  
  

* *
1 , 1 , 1

* *
1 , 1 , 1

0.5 0.5

0.5 0.5
t c c t c o t e t

t c c t c o t e t

u u

u u

    

    

  

  

    

    
 (2.17) 

where 0 1c  .  

 
2.4 Parameter estimation method 

When the maximum likelihood method is implemented over a high dimension case will 

confront the huge computation and the accuracy of parameters estimation, the optimization 

                                                
3 The appropriate logistic transformation is used to ensure the dependence parameters to be in the interval (-1,1), 
which can be written as        * *1 1  ,  1 1t t t t

t te e e e           
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problem becomes more difficult. Consequently, we use the two-stage estimation method, or 

called inference functions for margins (IFM), to estimate parameters of our copula-based 

GARCH models. In addition, Joe (1997) showed that this estimator is close to the maximum 

likelihood estimator and asymptotic efficiency to it. Hence, the two-stage estimation method 

will compute the estimator efficiently without losing the realist information. 

The log-likelihood function of the observation t  can be derived by taking the logarithm 

of (2.2): 
 , ,log log log logt o t e t tf g g c    (2.18) 

Let o  and e  be the parameters of marginal distributions of oil and exchange rate 

returns, respectively, and c  be the parameters be the parameters in the copula function, tc . 

The likelihood function of ( , , )o e c      can be expressed as: 
 , ( ) ( ) ( ) ( )o e o o e e c cL L L L        (2.19) 

In the first stage, we estimate the parameters of marginal distributions by the use of 

maximum likelihood method, respectively, 

 
, , 1

1

, , 1
1

ˆ arg max log ( | ; )

ˆ arg max log ( | ; )

T

o o t o t t o
t

T

e e t e t t e
t

g r

g r







   

   




 (2.20) 

In the second stage, given the marginal estimates obtained above, the dependence 

parameters are estimated by 

 , ,
1

ˆ ˆ ˆarg max log ( , , , ; )
T

c t o t e t o e c
t

c u u


      (2.21) 

where , , , 1
ˆ( | , )o t o t o t t ou G r     and , , , 1

ˆ( | , )e t e t e t t eu G r    .
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3. Data and Empirical Results 

3.1 Data and descriptive statistics 

This study uses West Texas Intermediate (WTI) crude oil futures and US dollar index 

(USDX) futures data to stand for oil and exchange rate markets. WTI crude oil, also known as 

light sweet oil, is the futures contract traded on New York Mercantile Exchange (NYMEX). 

The USDX represents the trade-weighted value of the US dollar in terms of a basket of six 

major foreign currencies. There exist a futures contract and an option contract traded on the 

New York Board of Trade (NYBOT). Both WTI crude oil and USDX futures prices data4 

with the nearest to maturity for the period from January 1, 1990 to December 31, 2009 are 

obtained from DATASTREAM and 5,008 daily return observations are generated for each 

asset. In addition, we use the three-month Treasury bill as the risk-free rate, which are 

obtained from the Federal Reserve Board. The daily close prices, daily excess returns, and 

annual trading volumes of WTI crude oil and USDX futures over the sample period are 

graphed in Figure 1. 

The descriptive statistics of crude oil and exchange rate excess returns are reported in 

Table 1. Both crude oil and exchange rate returns exhibit the left-skew and leptokurtic 

phenomenon. So that, we use the Jarque-Bera statistic to test the normality of distribution then 

we get the conclusion of both oil and exchange rate all reject the null hypothesis of normality. 

Consequently, we adapt the Hansen’s skewed-t distribution to dovetail with the feature in our 

study. 

 
3.2 Estimation results 

3.2.1 Marginal distribution 

                                                
4 The futures price data are continuous series, as defined by DATASTREAM. 
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Table 2 presents the estimate results of three classes of copula-based GARCH models. 

Panel A reports the parameter estimates of marginal distributions with the GARCH, 

GJR-GARCH and component GARCH models. We use the Akaike information criteria (AIC) 

and Bayesian information criteria (BIC) to examine which model has better goodness of fit. 

The two methods resolve this problem by adding a corrected term to avoid the overfitting 

problems caused by different number of parameters in each models. According to these two 

information criteria, we can find the GARCH model has smaller value than the GJR-GARCH 

and component GARCH models based on each copula function, which imply that the 

GARCH model exhibits the best goodness of fit. 

As can be seen, the asymmetry parameters, i , are significant and negative for crude oil 

returns while insignificant for USDX returns, exhibiting that crude oil returns are skewed to 

left. In addition, in the GARCH model, the parameters ia  and ib  are significant to explain 

the crude oil and exchange rate returns have volatility clustering. And the sum of ia  and ib  

are very close to 1 implies that there is high volatility persistence in both crude oil and 

exchange rate markets. Further, the asymmetric parameters id  in the GJR-GARCH model 

are insignificant and exhibit no asymmetric effect in the volatility structures of crude oil and 

exchange rate markets, which is consistent to Manera et al. (2004) and Wang and Yang (2006). 

The result may be evidence that the asymmetric reaction to equities markets do not bring into 

the crude oil and USDX futures market. Next, we adapt component GARCH model to 

distinguish the return volatilities into permanent and transitory components. The result 

demonstrates the parameters i  of both crude oil and exchange rate markets are very close to 

1 and shows there is high persistence in the permanent component. The result also reveals that 

it significantly diminishes the value of estimate i ia b  of crude oil from the GARCH model 

to the component GARCH model. Such that i ia b  much less than i , which signifies the 

transitory component persistence will decline faster than the permanent component. The 
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parameters i  and ia  in the component GARCH model are regarded as the reaction of 

shocks to the permanent and transitory components, respectively. From Table 2, we can also 

see the impact on the permanent component is significantly greater than that on the transitory 

component. And the parameter ia  turns to insignificant which explain sudden information 

will not cause volatility impulsion. 

 
3.2.2 Copula function 

The parameter estimates for different copula functions are reported in Panels B-F of 

Table 2. In terms of AIC and BIC, the Student-t dependence structure exhibits better 

explanatory ability than other dependence structures no matter what marginal models are 

employed, while Clayton and survival Clayton copulas have worse explanatory ability. The 

results imply the tail dependence between oil and exchange rate returns may be significant 

while not asymmetric. In addition, the GARCH model with Student-t copula perform superior 

to any other selected model. Moreover, we can see the autoregressive parameter c  is 

closely to 1 in each copula function, indicating the dependence structure between oil and 

exchange rate returns is high persistent. And the latent parameter c  is also significant in 

every copula function which displays that latest return information is a meaningful measure. 

Specially, c  in Clayton copula is much larger than others and mean it had more short-run 

response than others copula functions. 

 
3.2.3 Volatility estimates plot 

Figure 3 plots the volatility estimates of crude oil and USDX returns based on GARCH, 

GJR-GARCH and CGARH models. The crude oil had undergone two periods of larger unrest 

in our sample period. First period began in August 1990 which commonly known as “The 3rd 

energy crisis” due to the Persian Gulf War. Because the oil demand of most countries must 
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rely on imports, the wars of oil-producing countries cause supply diminish so that price 

soaring. Another period began in September 2008, which stemmed from the American 

subprime mortgage crisis and then the OPEC claim of oil output reduction. By comparison, 

the volatility of USDX is much stable. The gravest period is from 2008 to 2009. That reason 

might come from the purposely control by US government in order to rescue the American 

economic decline after the financial tsunami. In addition, the volatility estimates based on 

three different marginal models are similar consistent with the results of goodness of fit. We 

also can find the circumstance that the crude oil and USDX volatilities usually rise at the 

same time, implying there exist some connections between crude oil and USDX. 

 
3.2.4 Correlation estimates plot 

The correlation parameter estimates between oil and exchange rate returns over the 

sample period generated from different copula models are plotted in Figure 45. During the 

period 1990 to 2003, the dependence structure between crude oil and USDX returns keeps a 

lower level or zero correlation. But since 2003, the correlation started descending 

continuously to this day due to the crude oil prices have steadily increased caused the 

international oil price reaches a historical break-through. On the other hand, because the US 

government wanted to pull the export effectively and reducing the international trade deficit, 

causing US dollar tremendously decreased in value relative to most other countries’ 

currencies. Moreover, the depreciation of US dollar against other currencies has helped to 

drive up the oil price over the past few years. The most major reason is that the US dollar is 

the main invoicing currency of crude oil futures trading. Thus, the falling of US dollar 

motivated speculators to buy an abundance of crude oil futures contracts to get greater profits, 

and then promote raise oil price uncommonly. 

                                                
5 We transform all dependence structures into the correlation by numerical integral, in order to more clear 
compare the estimate results. 
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In addition, in Figure 4, the two paths from Gaussian and Student-t copulas are very 

close consistent with the results in Panel C of Table 2, which present the degree of freedom of 

Student-t copula is considerable. The Clayton and survival Clayton copulas exhibit similar 

dependence trend for each other while display low level dependence relative to the symmetric 

copulas. Moreover, the main difference in correlation estimates between Clayton and survival 

Clayton copulas is that the Clayton copula exhibits larger ripples. Finally, the correlation trend 

based on the Frank copula falls in between and close to Gaussian and Student-t copulas. 
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4. An Economic Evaluation Methodology 

In previous section, we have checked the explanatory ability of each selected model. 

However, the estimation results perform well does not equivalently imply economically useful 

consequences. Thus, in this section, we follow Fleming et al. (2001) to evaluate the economic 

value of volatility timing by a dynamic asset allocation strategy. We use crude oil futures, 

USDX futures and three-month Treasury bill to construct a portfolio. First, the optimal 

portfolio weights of selected assets are constructed under the mean-variance framework. 

Second, the quadratic utility function is employed to assess the performance of dynamic 

strategies based on different models and to quantify how personal opinion affects the 

performance. Finally, this framework establishes a concise approach to assess the significance 

and robustness of results. 

 
4.1 Evaluation model 

First we consider an investor who wants to minimize portfolio variance subject to 

achieving a particular expected return. Let tr  be 1N   vector of returns on the risky assets, 

the investor solves the following optimization at each period t , 

 
min

s.t. (1 )

t

f pr 

 

   

t
t tw

t t

w w

w w 1
 (4.1) 

where tw  is an 1N   vector of portfolio weights on risky assets, t  and t  are the 

vector of conditional expected returns and conditional covariance matrix of risk assets, 

respectively, fr  is return on the riskless asset, p  is the target conditional expected return 

of portfolio. The solution of the optimization problem is 
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 (4.2) 
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which is the optimal weights on risky assets. The weight on the riskless asset is 1  tw 1 . In 

order to focus on the evaluation of volatility and dependence structures based on different 

models, we assume the conditional expected returns of selected risky assets at time t  equal 

their unconditional means, i.e.,  1t tE r    , and the optimal time-varying weights only 

rely on the one-step-ahead covariance matrix forecasts of selected risky assets, 

 1 1( )( )t t t tE r r        

In order to measure the value of our models, we compare the performance of the 

dynamic strategies based on copula-based GARCH models to that of the static strategy based 

on sample covariance matrix. By the Taylor series, we can obtain the quadratic utility as a 

second-order approximation to the investor true utility function. Under this specification, the 

investor’s realized utility in period 1t   can be written as 

  
2

2
1 , 1 , 12

t
t t p t p t

aWU W W r r     (4.3) 

where 1tW   is the investor’s wealth at 1t  , a  is his absolute risk aversion (ARA), 

'
, 1 1p t f t tr r r   w  is the portfolio return at period 1t  . Under the assumption of constant 

relative risk aversion, the average realized utility can be used to estimate the expected utility 

generated by a given level of initial wealth 0W , which is as follows 
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  (4.4) 

For the purposes of comparison between the static strategy and dynamic strategies based 

on selected models, we estimate the switching fees by equating the two average utility 

equations as follows: 

          
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 

      
    (4.5) 

where , 1
s
p tr   and , 1

d
p tr   denote the portfolio returns based on the static and dynamic 

strategies, respectively, and   is explained as the maximum fee that an investor would be 

willing to pay to switch from the static strategy to the dynamic strategy. 
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On the other hand, transaction cost is important consideration for any dynamic strategy. 

It is an important fact to impact our profitability of trading strategies. But making an accurate 

determination of the size of transaction costs is difficult because it involves many factors. 

According to Han (2006), be assumed that transaction costs equal a fixed proportion tc  of 

the value traded in each asset.   

 1
,

1cost
1

t
t t

d t

rtc w w
r


 


 (4.6) 

In the lack of reliable estimates of suitable transaction costs, we consider the break-even 

transaction cost, which is the maximum transaction cost. In comparing the dynamic strategy 

with the static strategy, an investor will prefer the dynamic strategy when the break-even 

transaction cost is high enough. Furthermore, the fact that the break-even transaction cost is 

much higher will make it easier to implement the dynamic strategy. 

 
4.2 Out-of-sample evaluation result 

In this section, we consider that a constant relative risk aversion investor can allocate 

wealth between the risk-free asset, crude oil futures and USDX futures based on different 

models. We involve rolling the five years sample data to compute the one-period-ahead 

forecasted in order to determine the series of optimal portfolio weights. The out-of-sample 

period for the dates covers five years ranging from January 2005 to December 2009. Then we 

measure the economic value of the short-term covariance forecasts between crude oil and 

exchange rate futures returns by a strategic asset allocation problem. We compare the 

out-of-sample performance of the dynamic strategies based on selected models with the static 

strategy based on a constant covariance matrix. In this part, our research focuses on the 

performance fees  , which an investor is willing to pay for switching from the static strategy 

to the dynamic strategy. The fees display the economic value of each selected models relative 

to the static strategy with target return 5%, 10% and 15%. We present the fees with the 
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relative risk aversion level of 1   and 5  . 

Table 3 presents the out-of-sample performance fees and break-even transaction costs for 

the dynamic strategies based on selected models versus the static strategy under different 

target returns and risk aversion level with the minimum variance strategy. The most of 

dynamic strategy models have positive performance fee which demonstrate that the dynamic 

strategy is superior to the static strategy. For instance, when using the copula-based GARCH 

models, the investor is willing to pay form 50 to 407 annualized basis points (bps) for using 

that dynamic strategy instead of the static strategy. Next we compare the different dynamic 

models to verify their merits. We can find that GaussianGARCH  is better than DCC  

everywhere. The discrepancy of the two models is produced by its residual distributions. 

Because crude oil and exchange rate returns are not normality, the skewed-t distribution has 

better ability to describe the characterization and then leads to higher economic value. 

Furthermore, comparing with three different marginal distributions, we find the GARCH 

model performs better than the others based on each copula function. This phenomenon is 

also concordant to the previous estimate result. We conclude the GARCH model is the best 

volatility model to explain the variation of crude oil and exchange rate. For example, using 

the copula-based GARCH dynamic strategy instead of the static strategy, the performance fee 

is between 40 and 104 basis points. Among them, FrankGARCH  has excellent achievement. 

In fact, Frank copula has better achievement on economic value among all selected copula 

functions no matter what marginal distributions. Finally, the survival Clayton has the poorest 

performance even worse than static strategy on some place. 

The impact of transaction costs is an important consideration in constructing the 

profitability of trading strategies. Here we compute the break-even transaction costs betc  as 

the minimum proportional cost. Because if the transaction costs are sufficiently high, the 

period-by-period changes in the dynamic weights of an optimal strategy will cause the 
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strategy too costly to implement relative to the static model. Comparing the dynamic strategy 

with the static strategy, an investor prefers the dynamic strategy when he pays a transaction 

costs lower than break-even transaction costs. The break-even transaction costs values are 

expressed in basis points per trade and are reported only when performance fee   is positive. 

Besides, we assume the transaction costs of crude oil and USDX futures are at the same level. 

Under different relative risk aversion levels, the high level commonly accompanies a 

high break-even transaction costs. Results demonstrates that the betc  value of FrankGARCH  

are positive and high; they tend to be higher almost 50 bps and can be as high as 59 bps. In a 

word, as the betc  values are generally positive and reasonably high, we conclude that the 

performance fees we have reported is robust to reasonably high transaction costs for the 

dynamic strategy. After examining the forecast performance of all models by performance fee 

and break-even transaction cost, we can find that the GRACH marginal has excellent 

accomplishment in all respects. Among them, Frank copula is the most prominent. 



 25 

5. Conclusions 

In recent years, both oil commodity and US dollar currency have been experiencing an 

unprecedented high fluctuation while exhibit the significantly opposite trends. This negative 

relationship will enable the oil commodity and the US dollar currency to be useful tools for 

strategic asset allocation and risk management. For these reasons, the forecast of the volatility 

and co-movement structures of oil and exchange rate returns have attracted much attention 

among academics and institutional investors. 

However, it has been demonstrated that oil and exchange rate returns are skew and 

leptokurtic and perhaps follow extremely dissimilar marginal distributions as well as different 

degrees of freedom parameters. The relationship structure between the oil and exchange rate 

returns may also exhibit asymmetric or tail dependence structure. Therefore, in order to 

improve the drawbacks of conventional multivariate GARCH model, this paper proposes 

three classes of copula-based GARCH models to elastically describe the volatility and 

dependence structure of oil and US dollar exchange rate returns. We find that the GARCH 

model with Student-t copula possesses better explanatory ability of crude oil and USDX 

futures returns, suggesting that there is symmetric tail dependence structure between crude oil 

and USDX futures returns. In addition, the leverage effects are demonstrated to be 

insignificant for both crude oil and USDX futures. Based on the marginal distribution with the 

component GARCH model, we can find that the persistence of short-run volatility is 

apparently smaller than that if long-run volatility for the crude oil futures, while it is not 

significant for the USDX futures. We also observe that the dependence structure between 

crude oil and US dollar exchange rate returns becomes negative and descends continuously 

after 2003 unlike the pattern before. 

In addition, in order to examine whether the copula-based GARCH models can benefit 

an investor, we evaluate the economic value of our models by implementing a strategic asset 
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allocation problem. In terms of out-of-sample results, we find that the dynamic strategies 

based on the copula-based GARCH models outperform the static strategy and other dynamic 

strategies based on the CCC GARCH and DCC GARCH models, which demonstrates that 

skewness and leptokurtosis of crude oil and USDX futures returns are economically 

significant. Furthermore, the GARCH model with Frank copula yields highest performance 

fees and break-even transaction costs to attract investors to switch their trading strategy and 

performs the most prominent among all selected models. More risk-averse investors are also 

willing to pay higher fees to switch their strategies from the static strategy to the dynamic 

strategies based on copula-based GARCH models. 
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Table 1. Summary Statistics for Crude oil and USDX rate Excess Returns 
 Crude oil Futures USDX Futures 

Mean(%) 0.0108 -0.0186 

SD(%) 2.5404 0.5655 

Skewness -0.8964 -0.028 

Kurtosis 19.6644 4.6938 

Max(%) 16.4097 2.8167 

Min(%) -40.072 -2.7401 

JB 58617.8208*** 599.3234*** 

Note: This table reports the descriptive statistics for daily crude oil and USDX futures excess returns for the sample 
period from January 2, 1990 to December 31, 2009. JB is the Jarque-Bera statistic, which is used to test for normality. 
The symbols *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 2. Estimation Results of  Copula-Based GARCH Models 
 GARCH GJR-GARCH Component GARCH 

 Crude oil USDX Crude oil USDX Crude oil USDX 
Panel A: Estimation of Marginals 

i  0.03033 -0.00753 0.02846 -0.00793 0.01660 -0.02430*** 
 (0.02761) (0.00722) (0.02718) (0.00725) (0.02696) (0.00718) 

ic  0.04376*** 0.00106** 0.04405*** 0.00100**   
 (0.01186) (0.00047) (0.01189) (0.00047)   

ia  0.05639*** 0.02967*** 0.05383*** 0.02763*** 0.01257 0.00019 
 (0.00650) (0.00399) (0.00819) (0.00506) (0.01486) (0.00065) 

ib  0.93700*** 0.96772*** 0.93679*** 0.96778*** 0.70329*** 0.99295*** 
 (0.00673) (0.00435) (0.00671) (0.00432) (0.17045) (0.01921) 

i  6.74588*** 7.36002*** 6.75076*** 7.35605*** 6.80645*** 7.39712*** 
 (0.11656) (0.25135) (0.12199) (0.24559) (0.18823) (0.53335) 

i  -0.04734** -0.02554 -0.04806** -0.02584 -0.04662** -0.01543 
 (0.01931) (0.01893) (0.01946) (0.01902) (0.01942) (0.01872) 

id    0.00533 0.00419   
   (0.01098) (0.00682)   

i      0.04244*** 0.00118** 
     (0.01144) (0.00053) 

i      0.99349*** 0.99679*** 
     (0.00298) (0.00206) 

i      0.05465*** 0.03183*** 
     (0.00662) (0.00413) 
Panel B: Estimation of Gaussian Dependence Structure 

c  0.00004  0.00005  0.00005  
 (0.00005)  (0.00005)  (0.00005)  

c  0.99901***  0.99900***  0.99902***  
 (0.00074)  (0.00075)  (0.00074)  

c  0.05573***  0.05649***  0.05563***  
 (0.01509)  (0.01539)  (0.01510)  
AIC 29622.112  29626.776  29629.609  
BIC 29719.894  29737.595  29753.466  
Panel C: Estimation of Student-t Dependence Structure 

c  0.00004  0.00004  0.00004  
 (0.00005)  (0.00005)  (0.00005)  

c  0.99908***  0.99908***  0.99909***  
 (0.00078)  (0.00079)  (0.00078)  

c  0.05468***  0.05526***  0.05463***  
 (0.01604)  (0.01623)  (0.01606)  
  14.75600***  15.10001***  14.78200***  
 (0.35900)  (0.19900)  (0.30349)  
AIC 29598.641  29603.089  29605.945  
BIC 29702.941  29720.427  29736.321  
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Table 2. (Continued) 
Panel D: Estimation of Clayton Dependence Structure 

c  -0.00463**  -0.00443**  -0.00446**  
 (0.00199)  (0.00219)  (0.00180)  

c  0.94601***  0.94728***  0.94741***  
 (0.01897)  (0.02169)  (0.01670)  

c  0.22416***  0.22639***  0.22268***  
 (0.06326)  (0.07430)  (0.05571)  
AIC 29715.952  29719.963  29723.991  
BIC 29813.734  29830.782  29847.848  
Panel E: Estimation of Survival Clayton Dependence Structure 

c  -0.00051**  -0.00052**  -0.00050**  
 (0.00025)  (0.00026)  (0.00024)  

c  0.99367***  0.99349***  0.99375***  
 (0.00229)  (0.00240)  (0.00226)  

c  0.03840***  0.03720***  0.03678***  
 (0.00916)  (0.00900)  (0.00872)  
AIC 29715.007  29721.328  29722.405  
BIC 29812.789  29832.147  29846.262  
Panel F: Estimation of Frank Dependence Structure 

c  0.000004  0.000006  0.000005  
 (0.00003)  (0.00005)  (0.00004)  

c  0.99814***  0.99817***  0.99817***  
 (0.00008)  (0.00007)  (0.00010)  

c  0.04656***  0.04685***  0.04639***  
 (0.00021)  (0.00018)  (0.00022)  
AIC 29627.313  29630.515  29633.982  
BIC 29725.094  29741.334  29757.839  
Note: The table presents the maximum likelihood estimates of  three classes of  copula-based GARCH 
models, which are based on the daily crude oil and USDX futures excess returns for the sample period 
from January 2, 1990 to December 31, 2009. Three types of  marginal distributions (GARCH, 
GJR-GARCH and component GARCH models) are used, and they are expressed as follows: 
(A) GARCH model: 

, ,i t i i tr    , 
, 1 , ,i t t i t i th z   , 

, ~ ( , )i t i i i
z skewed t z   , 2 2 2

, , 1 , 1i t i i i t i i th c a b h     , , ,i o e . 

(B) GJR-GARCH model: 
2 2 2 2
, , 1 , 1 , 1 , 1i t i i i t i i t i i t i th c b h a d k        , 

, 1 , 11    0i t i tk if     

(C) Component GARCH model: 
   2 2 2 2

, , , 1 , 1 , 1 , 1i t i t i i t i t i i t i th q a h b h q         ,  2 2
, , 1 1 , 1i t i i i t i t i tq q h         . 

In addition, five types of  copula functions are utilized to describe the dependence structure, and their 
densities are expressed as follows: 
(A) Gaussian Copula: 

 
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(B) Student-t Copula :  
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         
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(C) Clayton Copula :   
 
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(D) Survival Clayton Copula:    , , , ,, | 1 ,1 |SClayton Clayton
t o t e t t t o t e t tc u u c u u    . 

(E) Frank Copula:       , , , ,
2

, ,( , | ) 1 1 1 1t o t e t t o t t e tt tu u u uFrank
t o t e t t tc u u e e e e e                

. 

The proper logistic transformation of  dependence parameters, t  and t , obey the following process 
  * *

1 , 1 , 10.5 0.5t c c t c o t e tu u            and   * *
1 , 1 , 10.5 0.5t c c t c o t e tu u           , 

respectively, where    * 1 1t t
t e e      and    * 1 1t t

t e e      

The Akaike information criteria (AIC) and Bayesian information criteria (BIC) are used to evaluate the 
goodness of  fit of  the selected models. The numbers in parentheses are standard deviations. The 
superscripts *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
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Table 3. Out-of-sample Economic Value for Dynamic Strategy Based on selected Models versus Static Strategy with the Minimum Variance Strategy 
  CCC   DCC                 
*
p   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc                 

5%  37 8 41 9  51 10 46 9                
10%  82 8 103 10  79 7 59 6                
15%  146 8 195 12  95 5 52 3                

  GaussianGARCH   Student tGARCH    ClaytonGARCH   SClaytonGARCH   FrankGARCH  
*
p   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc  

5%  77 40 80 43  75 39 78 42  75 40 85 46  50 27 49 27  85 44 92 49 
10%  161 38 176 43  157 37 173 42  175 41 217 53  90 22 87 22  190 44 222 54 
15%  260 37 299 45  257 37 298 45  311 44 407 60  130 19 124 19  324 46 403 59 

  GaussianGJR GARCH   Student tGJR GARCH    ClaytonGJR GARCH   SClaytonGJR GARCH   FrankGJR GARCH  
*
p   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc  

5%  53 25 55 27  50 24 53 26  53 26 62 30  22 11 20 10  63 30 69 33 
10%  100 21 110 24  98 21 112 25  118 25 156 34  24 5 18 4  131 28 154 34 
15%  160 21 289 25  162 21 199 27  217 28 305 40  24 3 11 2  221 28 279 37 

  GaussianCGARCH   Student tCGARCH    ClaytonCGARCH   SClaytonCGARCH   FrankCGARCH  
*
p   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc   1  

1
betc  

5  
5
betc  

5%  50 25 45 24  46 24 43 22  49 26 53 28  27 14 22 12  54 28 56 29 
10%  78 18 59 14  74 17 60 14  100 23 114 27  27 6 3 1  106 24 112 26 
15%  93 13 50 7  93 13 61 9  162 23 193 28  7 1 -49 --  163 23 178 26 

Note: The table presents the out-of-sample performance fee ( ) and break-even transaction costs ( betc ) for a dynamic strategy based on selected models versus the static strategy for 
three target returns (5%, 10% and 15%) with a minimum variance strategy. Each minimum variance strategy builds an efficient portfolio by investing in the daily returns of the 
crude oil futures, USDX futures, and a risk-free asset. The fees are denoted as the amount which an investor is willing to pay for switching from the static strategy to another 
dynamic strategy with the relative risk aversion level  =1 and 5. The performance fee ( ) is expressed in annualized basis points. The break-even transaction cost ( betc ) is defined 
as the minimum proportional cost per trade for which the dynamic strategies would have the same utility as the static strategy. In addition, ( betc ) values are reported only when   
is positive. The out-of-sample period runs from January 2, 2005 to December 31, 2009. 
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Panel A:  Close Prices 
 

 
 
Panel B:  Excess Returns 
 

 
 
Panel C:  Trading Volumes 
 

 
 

Figure 1. Daily close prices, daily excess returns and annual trading volumes of  crude oil and 
USDX futures for the sample period from January 2, 1990 to December 31, 2009.
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Panel A:  Gaussian copula with Normal and Skewed-t marginal distributions 
 

 
 
Panel B:  Student-t copula with Normal and Skewed-t marginal distributions 
 

 
 
Panel C:  Clayton copula with Normal and Skewed-t marginal distributions 
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Panel D:  Survival Clayton copula with Normal and Skewed-t marginal distributions 
 

 
 
Panel E:  Frank copula with Normal and Skewed-t marginal distributions 
 

 
 
Figure 2. Contour plot based on two types of  marginal distributions (Normal(0,1) and Skewed-t 
(5,-0.1)) and five types of  copula functions (Gaussian, Student-t, Clayton, survival Clayton and 
Frank) under the specific dependence parameter, 0.2   . 
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Panel A:  Crude Oil 

 
 
Panel B:  USDX 

 
 
Figure 3. Volatility estimates of  crude oil and USDX futures excess returns based on the 
GARCH, GJR-GARCH, and Component GARCH models for the sample period from January 2, 
1990 to December 31, 2009. 
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Panel A:  GARCH Model 

 
Panel B:  GJR-GARCH Model 

 
Panel C:  Component GARCH Model 

 
 
Figure 4. Correlation estimates between crude oil and USDX futures excess returns based on 
marginal distributions of  the GARCH, GJR-GARCH, and component GARCH models and 
dependence structures of  the Gaussian, Student-t, Clayton, survival Clayton and Frank copulas. 
The sample period is from January 2, 1990 to December 31, 2009. 


