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Abstract

The goal of the paper is to provide a useful and.efficient analytic formula for pricing
American options applied by quadratic approximation method that allows for stochastic
volatility and double exponential jump. Our results also show that asymmetric jumps play an
important role on the early-exercise premium. The early-exercise premium increases as the

probabilities of upward jumps increase of put options.
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I. Introduction

Because American option could be exercised at any time before expiry, the valuation and
optimal exercise boundary is one of the most difficult problems in derivative securities. Past
two decades, pricing American-style-options has been investigated widely in numerical
methods and analytical approximation. In this paper, we present an efficient approximation
for pricing American call and put options that allows for stochastic volatility and double
exponential jump.

Ramezani and Zeng (1999).used empirical tests to.illustrate that the double exponential
jump-diffusion model to fit stock data better than the normal jump-diffusion model. Kou and
Wang (2004) extended the analytical tractability-of Black-Scholes analysis for the classical
geometric Brownian motion to the alternative model with double exponential jump diffusion.
One may regard the jump part of the model as the market affected by the outside impacts.
Good or bad impacts occur in terms of a Possion process, and the asset price changes in
response in terms of the jump size distribution. Owing to the double exponential distribution
has high peak and heavy tails, it can justify the overreaction and underreaction to outside
impacts.

Compared to Black and Scholes (1973) proposed European options with closed form

solutions, American options with an early exercise feature complicated their valuation.
1



MacMillan (1986) developed the quadratic approximation method to solve the American put

option on a non-dividend-paying stock pricing problem. Barone-Adesi and Whaley (1987)

applied this method to evaluate American options by using the separable technique (but may

generate some pricing errors in some cases). Bates (1991) first adopted jumps to the process

of the underlying asset return. Chang, Kang, Kim, and Kim (2007) applied this scheme to

American barrier (knock-out) and floating-strike lookback options. Guo, Hung and So (2009)

extended the method for stochastic volatility and the normal return jump model. These articles

illustrate that quadratic approximation method plays an important role on pricing American

options. We used stochastic volatility and double exponential jumps as examples to compare

with the least-squares simulation approach proposed by Longstaff and Schwartz (2001). The

results illustrate that the quadratic approximation scheme is efficient in pricing American

options based on these diffusion processes. And for put options, the estimates of

approximation and the values of early-exercise premium are decrease by reducing the jump

size on the probabilities of downward jumps.

The remainder of the paper is organized in third sections: Section 2 describes the

stochastic volatility model with double exponential jumps. Section 3 is the numerical results

and Conclusions summarize in Section 4.



1. Model

The following presents the stochastic volatility model with double exponential jump

diffusion. Under the risk-neutral probability measure P", the dynamics of the underlying asset

price, S(t) with the conditional variance, V(t) that allows for mean-reverting process :

% =(r—d-AE"(Y -1)dt+ ,\fv*(t)dws*(t) +d (%) (Yi* -1)) D
AV (1) = (V — V" O)dt + 0, VO, (1) 2)

where r is the risk-free interest rate and d is the dividend yield. W (t) represents a
standard Brownian motion, N (t) is a Poisson process with rate A .{Y;} is a sequence of
independent identically distributed.(i.i.d.) nonnegative random variables such that
G =log(Y) has an asymmetric double exponential distribution with the density :

fo(9) = pre "Ly 0 + A" Lgays i >1,7,>0

where p,q >0, p+g=1,represent the probabilities of upward and downward
jumps. N(t),W(t) and Gs, are assumed to be independent . p is the instantaneous correlation
coefficient between the stock price return process and its variance process. In order to hold

the Martingale property,

is subtracted from the stock price process, it remains the growth rate of the stock return

rateas r—d.



The Partial Integro-differential equation for the price P is therefore

0= % P SV +% R, oV + Py, po, SV

+PJ(r-d)—AE"(Y -1)IS+R, (V —x,V)-P. —rP (3)
+ A7, [P(Sy,V) - P(S,V)]1®(y)dy

American options with an early exercise feature complicated their valuation. The price of
a basic American call option, C*(S,V,T;K) with a strike price, K , and a maturity date, T ,
can be described as

C"SVTKIACESYTK +£3VTK 4

where CF(S,V,T;K) represents the price of European call option and &(S,V,T;K) is
the value of the corresponding early-exercise premium.-The early-exercise premium must
satisfy Equation (3) because American option values, as well as European option values,
satisfy the above-mentioned partial differential equation.in the nonstopping region under the
risk-neutral measure.

The analytic European option solution with the stochastic volatility model has existed
(see Appendix), the unsolved part in pricing formula of an American option is a good
approximation for the early-exercise premium. Since options are homogeneous in S and K, the
premium is also homogeneous in S and K.

E(S,V,T;K)=KE&(S/K,V,T;1). The Barone-Adesi and Whaley (1987) defined the
premium as

SV, T;K9 KH(T)F(S/ K, ¥, H) KHTH )
4



where z=S/K and H(T) isan arbitrary function of time-to-maturity, T .
The partial derivatives of & are & = HF,, & =HF, /K, &, =KHF,, &, =KHF,,&, =HF,,
and & = KFH,; = KHF, H, . Substitute Equation (5) into Equation (3):
0 :%KHFZZZZV +% KHF,, a2V + KHF,, pa, 2V

+KHF,[(r—d)-A"E" (Y =1)]z+ KHF, (V —&,V) — H, (KF + KHF,,) - rKHF
+A'KH [ [F(zy,V) - F(z,V)]®(y)dy (6)

Barone-Adesi and Whaley (1987) choose H(T) as 1 - exp(- rT) for simplicity. Chang et
al. (2007) further adjusted H(T) to equal 1-exp(- arT) for controlling « to reduce
barrier option pricing errors of the quadratic approximation. After substituting
H(T) =1 - exp(- arT) into Equation (6), Equation (7) is:

0= % KHF, 2%V +% KHF,, o2V + KHE,, po, 2V

+KHF,[(r—d)—A"E" (Y =]z + KHF, (V=& V) = ar(1- H)KHF, —ar(l-H)KF (7)
+ AKH [~ [F(zy,V) - F(z,V)](y)dy

As described in Barone-Adesi and Whaley (1987), Bates (1991), and Chang et al. (2007),
ar(l-H)KHF, is negligible. Substituting F(z,V) = a, exp[BV ]z* +a, exp[B,V]z* into
equation (7) and separating variables a, anda,, generating yields

0= %¢(¢—1)v +% B252V + ¢Bpo,V

rhlr—d)— AP Ay BV k) —ar@/H-1)—r )
n -1 n,+1
+ﬂ, [_p¢ + _q¢
p—m o+n,

Further separating Equation (8) into two equations for V-terms and non-V-terms,



respectively, Equations (9) and (10) are resulted:
1 1 1
0="¢" +¢8 pg — ) +B* & — ©)
2 2° 2
and

0= BV —(ar(W/H-1)+r)+4 [P+~

g—m o+, (10)

rgl(r—d) - A2 )
m-1 n,+1
After given the value of the parametersr, d, V, K, Py Oy, A, a, p,Q, m, myand T

the values of ¢, ¢,, B, and B, can be rapidly deduced from Equations (9) and (10) by using

Newton’s method. If 7,77, >> ¢, we replace the Equation (10) term of

Al g, 09 1= /1[_p¢+ —q¢] to obtain the'value B.
=1 P+, T 1

The result of the approximation of Equation (10) is

1
B= v o —v19) (11)

where y, =ar(/H -1 +r and g=red)+A(L-PA 4 A% g
m o m-1n, n+1

Substituting Equation (11) into Equation (9) generates

1 — 1
0=V —pavl//lV—Eavzwf)tzﬁ ?
—_ — 1—
+HpouyoV +ovyoy, +ry,V =2V )¢ (12)
- 1 2.2
_(Kv‘//ov+§o-v‘//o)

K,V
2
\

Parameters that satisfy the relationship , > 2 ensure that one root (4,) is

negative for puts, and the other (¢,) is positive for calls. Because the



relationships ¢, <0 and a, = 0 imply that the IsiLrgCA(S,V,T; K) =, therefore that a =0.
Once we have the values for a, and B,, a, and S (the early-exercise price for calls) can be
determined from the value-match condition and the high contact condition:
ESV,T;KD § KEC(SV ' (13)
and
EBVTK D -CESYTK (14)
where & (§,V,T; K) and CS (§,V,T; K) are the differential-form for early-exercise
premium and European option on S.
Equations (13) and (14) infers that:

S_#B-K-CERVTK; )] (15)
1-C; (S,V,T;K)

and a, can be determined by

S-K-C*SVTK )

a, = S (16)
K@ —exp(—arT)) exp[BZV](K)‘ﬁ2
The resulting formula for a basic American call option is
CASVTKIC SYTK ; )
+[S-K—-CE(S,V,T;K)] (S/S)*
(17

for S<S or S-K for S>S.

For the American puts, the boundary conditions are different to those for calls. But it

must satisfy the same Partial Integro-differential equation. The boundary conditions for puts
7



are
PAS,V,T;K)=K-S (18)
and
PA(S,V,T;K)="-1 (19)
where S is the early-exercise price. The positive root (¢, ) is excluded for the puts

because it implies that the !im PA(S,V,T;K) =00, Resultinga, =0 and therefore,

PASYTK IPFSYTK ; )
+[K =S —PE(S,V,T;K)] (S/S)* (20)

for S>S« ‘or K-S forr S<S.

where

—1-F(S,V,T;K)



I11.Numerical Results

The least-squares method (LSM) proposed by Longstaff and Schwartz (2001) is a

well-known simulation method for pricing American options .Table 1 illustrates a comparison

of the LSM and the quadratic approximation proposed in this research for the stochastic

volatility model with double exponential jumps. The simulation estimates are based on 50,000

paths for the stock-price process and the option is exercisable 90 times before maturity. Table

1 shows that our approximation is consistent with the LSM. In addition, it is more efficient

than the LSM because its computing time is much-less than that of the LSM. Simulated

American represents the results of the LSM. Approximation means the quadratic

approximation and Diff is the difference between Simulated American and Approximation.

The standard errors of the simulation-estimates are given in parentheses. As shown, the

differences (Diff) between the LSM algorithms and the quadratic approximation are typically

small. Table 2 gives the comparison of Approximation (approx) and European value for put

options with T=0.25 year. Prem represents the value of early-exercise premium. Intuitively,

the approximation values increase after incorporating into the double exponential jump

diffusion (arrival rate A from O to 7).Table 3 shows that early exercise premium of

in-the-money options decrease after incorporating into the double exponential jump diffusion.

The results are consistent with Amin (1993). However, it may not be the case for

9



at-the-money or out-of-the-money options. We found that early-exercise premium has an
upward trend as reducing the probabilities of upward-jumps (p from 0.7 to 0.3) of put options.
Table 4 also presents the relations between the early-exercise premium (Prem) and the
difference probability of upward jumps (p from 0 to 1). For call options, the early-exercise
premium increases as the probabilities of upward jumps increase, and vice versa. Besides, by
reducing the jump size of the downward jump results in the decrease of early-exercise

premium of put options and the increase of call options.

10



1VV. Conclusion

In this paper, we provide a useful and efficient analytic formula for pricing American

options applied by quadratic approximation method that allows for stochastic volatility and

double exponential jJump.Comparison with the least-squares method algorithms presents that

the quadratic approximation technique is accurate and efficient.

As Amin (1993) incorporating the double exponential jump diffusion into the pricing

model results in the decrease of early-exercise premium for in-the money options. Our results

also show that asymmetric jumps play-an important role on the early-exercise premium. The

early-exercise premium increases.as the probabilities of upward jumps increase of put options.

11
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Appendix

Stochastic Volatility Model with Double Exponential Jumps
The present value of a basic European call option can be formulated as
CE(S,V,T:K)=E[e"™ max{S(T)—K,0}] and is given by

17 Im[eV "I (t, T;—i—V)]
—_[ y dv

C5(S,V,T; K):%J(t,T;—i)—

0

£ ivlog(K) .
-K(%J(t,T;O)—iJ'Im[e \;](t'T’ gy

0

where J(t,T;¢)is the characteristic function of the state density. Im(c) denotes the

imaginary part of ¢ e C. The characteristic function is given by
J(t,T:4) = exp(A(T: §) + B(T:p)V)S
Where A(T;¢) and B(T;¢) are

AT:4) = (ig)[r —d — A+ I Uqyr et
m-1 +1

2

+AT( —p771_ + q772_ —p—0q)—AT
_771+|¢ 772+|¢

-zz[c9+ igo, p—x,)T +2log(l— (e + if”"vp—’fé)(l—eXlO(—sT)))]
O'V c

ig(ig —1)(A—exp(=¢T))
2e —(e+ido, p—rx;, )(L—exp(—£T))

&= \(igo, p-x, ) ~idlip-Do?

B(T;¢) =

The proof is published in Duffie [2000].Once we have the solution for European calls,

the formula for puts, P%(S,V,T;K), can be obtained by the put-to-call conversion equation

14



Grabbe [1983] :

P5(S,V,T;K)=CF%(S,V,T;K)—Sexp(—dT) + K exp(-IrT)

Table 1 Comparison of American Options: Stochastic Volatility with Double Exponential Jumps

S European option Af;?r?;z;e?a) CPU time (s.e.) approximation (b, CPU time Diff(b)-(a)
call 140 39424 39.844 47.099 0.034 40.000 1.837 -0.156
130 29.643 29.886 47856 0.025 30.001 1.758 -0.115
120 20.090 20.238 45536 0.029 20.258 1.781 -0.021
110 11.344 11.436 46.931 0.015 11.419 1.810 0.018
100 4.648 4.690 47.763 0.038 4.678 1.798 0.012
90 1.134 1.142 46.972 0.020 1.146 1.876 -0.004
put 60 39.405 39.928 45.554 0.031 40.000 1.852 -0.072
70 29563 29.948 45.947 0.033 30.000 1912 -0.052
80 19.842 20.085 46.319 0.024 20.048 1.839 0.037
90 10.985 11.048 46.555 0.032 11.068 1.747 -0.020
100 4.648 4712 46.489 0.033 4.684 1.844 0.028
110 1.493 1514 44.542 0.016 1.510 1.813 0.003

Note: The CPU times are in seconds.
K =100, r =0.06, d =0.06, V, =0.01, V= 0.49, p=-0.25 1=3, o0, =0.2, x, =5.08, o =1.64,
p=0.6, q=0.4, 7, =25, 1, =25, T=0.25
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Table 2 Comparison of Approximation (approx) and European value for Put Option with p=0.5

parameter values

European

K Yo, A 7, 7, approximation (a) option (b) Diff (a)-(b)
100 0 0 25 25 10.8400 10.7550 0.0850
100 (0] 0 25 50 10.8400 10.7550 0.0850
100 (0] 0 50 25 10.8400 10.7550 0.0850
100 (0] 0 50 50 10.8400 10.7550 0.0850
100 -0.25 0 25 25 10.8057 10.7124 0.0933
100 -0.25 0 25 50 10.8057 10.7124 0.0933
100 -0.25 0 50 25 10.8057 10.7124 0.0933
100 -0.25 0 50 50 10.8057 10.7124 0.0933
100 -0.75 0 25 25 10.7342 10.6232 0.1109
100 -0.75 0 25 50 10.7342 10.6232 0.1109
100 -0.75 0 50 25 10.7342 10.6232 0.1109
100 -0.75 0 50 50 10.7342 10.6232 0.1109
100 0 7 25 25 11.4069 11.3349 0.0720
100 0 7 25 50 11.2653 11.1963 0.0690
100 0 7 50 25 11.1310 11.0468 0.0843
100 0 7 50 50 10.9857 10.9039 0.0818
100 -0.25 7 25 25 11.3811 11.3040 0.0771
100 -0.25 7 25 50 11.2376 11.1630 0.0747
100 -0.25 7 50 25 11.1027 11.0118 0.0909
100 -0.25 7 50 50 10.9549 10.8657 0.0892
100 -0.75 7 25 25 11.3275 11.2398 0.0877
100 -0.75 7 25 50 11.1801 11.0938 0.0863
100 -0.75 7 50 25 11.0442 10.9391 0.1050
100 -0.75 7 50 50 10.8904 10.7858 0.1045

90 (0] 0 25 25 3.8757 3.8446 0.0311
90 0] 0 25 50 3.8757 3.8446 0.0311
90 0 0 50 25 3.8757 3.8446 0.0311
90 0 0 50 50 3.8757 3.8446 0.0311
90 -0.25 0 25 25 3.8765 3.8410 0.0356
90 -0.25 0 25 50 3.8765 3.8410 0.0356
90 -0.25 0 50 25 3.8765 3.8410 0.0356
90 -0.25 0 50 50 3.8765 3.8410 0.0356
90 -0.75 0 25 25 3.8784 3.8328 0.0456
90 -0.75 0 25 50 3.8784 3.8328 0.0456
90 -0.75 0 50 25 3.8784 3.8328 0.0456
90 -0.75 0 50 50 3.8784 3.8328 0.0456
90 0 7 25 25 4.6399 4.6109 0.0290
90 0 7 25 50 4.3897 4.3631 0.0266
90 0 7 50 25 4.3586 4.3254 0.0332
90 0 7 50 50 4.0913 4.0606 0.0307
90 -0.25 7 25 25 4.6391 4.6072 0.0319
90 -0.25 7 25 50 4.3863 4.3566 0.0297
90 -0.25 7 50 25 4.3616 4.3247 0.0369
90 -0.25 7 50 50 4.0917 4.0569 0.0348
90 -0.75 7 25 25 4.6365 4.5983 0.0382
90 -0.75 7 25 50 4.3784 4.3418 0.0366
90 -0.75 7 50 25 4.3671 4.3220 0.0451
90 -0.75 7 50 50 4.0922 4.0486 0.0436

16



parameter values

European

K P y) m 7, approximation (a) option (b) Diff (a)-(b)
80 0 0 25 25 0.6610 0.6508 0.0101
80 0 0 25 50 0.6610 0.6508 0.0101
80 0 0 50 25 0.6610 0.6508 0.0101
80 0 0 50 50 0.6610 0.6508 0.0101
80 -0.25 0 25 25 0.6960 0.6839 0.0121
80 -0.25 0 25 50 0.6960 0.6839 0.0121
80 -0.25 0 50 25 0.6960 0.6839 0.0121
80 -0.25 0 50 50 0.6960 0.6839 0.0121
80 -0.75 0 25 25 0.7632 0.7463 0.0169
80 -0.75 0 25 50 0.7632 0.7463 0.0169
80 -0.75 0 50 25 0.7632 0.7463 0.0169
80 -0.75 0 50 50 0.7632 0.7463 0.0169
80 0 7 25 25 1.1213 1.1108 0.0105
80 0 7 25 50 0.9065 0.8973 0.0092
80 0 7 50 25 0.9959 0.9842 0.0117
80 0 7 50 50 0.7796 0.7693 0.0103
80 -0.25 7 25 25 1.1466 1.1347 0.0119
80 -0.25 7 25 50 0.9344 0.9238 0.0106
80 -0.25 7 50 25 1.0235 1.0101 0.0135
80 -0.25 7 50 50 0.8111 0.7990 0.0121
80 -0.75 7 25 25 1.1953 1.1802 0.0151
80 -0.75 7 25 50 0.9903 0.9763 0.0140
80 -0.75 7 50 25 1.0770 1.0594 0.0175
80 -0.75 7 50 50 0.8721 0.8557 0.0164

Note: S, =90, r=0.06, d =0.06,V, =0.0, V=049, 5, =02, x, =5.06, =164, T=0.25
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Table 3 The early-exercised premium (Prem) with different probability of upward jumps (p)

parameter values Prem
K P Th L A Prem A p=0.7 p=06 p=03 p=04 p=03
100 0 25 25 0 0.0850 7 0.0670 0.0694 0.0720  0.0747  0.0777
100 0 25 50 0 0.0850 7 0.0651 0.0669 0.0690  0.0713  0.0739
100 0 50 25 0 0.0850 7 0.0824 0.0833 0.0843 0.0851 0.0860
100 0 50 50 0 0.0850 7 0.0808 0.0813 0.0818 0.0823  0.0828
100 -0.25 25 25 0 0.0933 7 0.0695 0.0744 0.0771  0.0800 0.0831
100 -0.25 25 50 0 0.0933 7 0.0704 0.0724 0.0747  0.0772  0.0802
100 -0.25 50 25 0 0.0933 7 0.0892 0.0901 0.0909 0.0917  0.0925
100 -0.25 50 50 0 0.0933 7 0.0881 0.0886 0.0892  0.0898  0.0904
100 -0.75 25 25 0 0.1109 7 0.0823 0.0849 0.0877 0.0908  0.0943
100 -0.75 25 50 0 0.1109 7 0.0813 0.0837 0.0863 0.0893  0.0929
100 -0.75 50 25 0 0.1109 7 0.1036 0.0987 0.1050  0.1057  0.1065
100 -0.75 50 50 0 0.1109 7 0.1034 0.1040 0.1045  0.1053  0.1062
90 0 0 25 25 0.0311 7 0.0268 0.0279 0.0290 0.0303 0.0316
90 0 0 25 50 0.0311 7 0.0253 0.0259 0.0266 0.0274  0.0282
90 0 0 50 25 0.0311 7 0.0319 0.0326 0.0332  0.0339  0.0345
90 0 0 50 50 0.0311 7 0.0303 0.0305 0.0307  0.0309 0.0312
90 -0.25 0 25 25 0.0356 7 0.0285 0.0307 0.0319 0.0332  0.0346
90 -0.25 0 25 50 0.0356 7 0.0282 0.0290 0.0297 0.0306  0.0317
90 -0.25 0 50 25 0.0356 7 0.0356 0.0363 0.0369  0.0375  0.0381
90 -0.25 0 50 50 0.0356 7 0.0343 0.0345 0.0348  0.0350 0.0352
90 -0.75 0 25 25 0.0456 7 0.0357 0.0369 0.0382 0.0397  0.0413
90 -0.75 0 25 50 0.0456 7 0.0439 0.0356 0.0366 0.0378  0.0392
90 -0.75 0 50 25 0.0456 7 0.0439 0.0421 0.0451  0.0457  0.0462
90 -0.75 0 50 50 0.0456 7 0.0431 0.0434 0.0436  0.0439  0.0443
80 0 0 25 25 0.0101 7 0.0096 0.0100 0.0105 0.0110  0.0116
80 0 0 25 50 0.0101 7 0.0088 0.0090 0.0092 0.0094  0.0096
80 0 0 50 25 0.0101 7 0.0110 0.0114 0.0117 0.0121 0.0125
80 0 0 50 50 0.0101 7 0.0101 0.0102 0.0103 0.0104  0.0104
80 -0.25 0 25 25 0.0121 7 0.0106 0.0114 0.0119 0.0124 0.0130
80 -0.25 0 25 50 0.0121 7 0.0102 0.0104 0.0106  0.0109 0.0112
80 -0.25 0 50 25 0.0121 7 0.0128 0.0131 0.0135 0.0138  0.0142
80 -0.25 0 50 50 0.0121 7 0.0119 0.0120 0.0121 0.0122  0.0123
80 -0.75 0 25 25 0.0169 7 0.0140 0.0145 0.0151  0.0157 0.0164
80 -0.75 0 25 50 0.0169 7 0.0134 0.0137 0.0140  0.0144 0.0149
80 -0.75 0 50 25 0.0169 7 0.0169 0.0163 0.0175 0.0179  0.0182
80 -0.75 0 50 50 0.0169 7 0.0162 0.0163 0.0164 0.0165 0.0167
Note: S, =90, r=0.06, d =0.06,V, =0.01, V =049, 5, =0.2, «, =5.06, ¢ =1.64, T=0.25

Prem: the value of early-exercise premium (approximates — european option)
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Table 4 Comparison of the early-exercised premium (Prem) with different probability of upward jumps (P)

parameter values

(approx-euro)

Prem

K 14 A I ) P
0 0.25 0.5 0.75 1
put 100 -0.75 7 25 50 0.1086 0.0949 0.0863 0.0802 0.0755
100 -0.75 7 50 50 0.1086 0.1066 0.1045 0.1030 0.1014
100 -0.75 7 50 25 0.1092 0.1068 0.1050 0.1032 0.1014
call 80 -0.75 7 25 50 0.0596 0.0635 0.0668 0.0696 0.0721
80 -0.75 7 50 50 0.0596 0.0605 0.0615 0.0626 0.0636
80 -0.75 7 50 25 0.0482 0.0509 0.0542 0.0583 0.0636

Note:

S, =90, r=0.06, d =0.06, V, =0.01, V =0.49, p=-0.75, o, =0.2, x, =5.06, «=1.64, T =0.25
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