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隨機波動性和雙重指數跳躍模型之 

美式選擇權近似解 

 

研究生：邱允鼎                         指導教授：郭家豪 博士  

 

國立交通大學財務金融研究所碩士班  

 

 

摘要 

這篇論文的目標是提供一個在隨機波動性和雙重指數跳躍模型之下讓評價

美式選擇權快速而且有效率的近似解方程式。我們的數值結果說明了不對

稱跳躍與提早履約溢酬的關係：在美式賣權的時候，提早履約溢酬會隨著

往上跳的機率增加而增加。 

 

 

 

關鍵字：美式選擇權；隨機波動性；雙重指數跳躍；提早履約溢酬。 
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An Efficient Approximation for Pricing  

American Options under  

Stochastic Volatility and Double Exponential Jumps 

 

Student: Yun-Ting Chiu             Advisor: Dr. Jia-Hau Guo 

 

Institute of Finance 

National Chiao Tung University 

 

Abstract 

The goal of the paper is to provide a useful and efficient analytic formula for pricing 

American options applied by quadratic approximation method that allows for stochastic 

volatility and double exponential jump. Our results also show that asymmetric jumps play an 

important role on the early-exercise premium. The early-exercise premium increases as the 

probabilities of upward jumps increase of put options. 

 

 

Keywords: American options; stochastic volatility; double exponential jump; early-exercise 

premium. 
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I. Introduction 

Because American option could be exercised at any time before expiry, the valuation and 

optimal exercise boundary is one of the most difficult problems in derivative securities. Past 

two decades, pricing American-style-options has been investigated widely in numerical 

methods and analytical approximation. In this paper, we present an efficient approximation 

for pricing American call and put options that allows for stochastic volatility and double 

exponential jump.  

Ramezani and Zeng (1999) used empirical tests to illustrate that the double exponential 

jump-diffusion model to fit stock data better than the normal jump-diffusion model. Kou and 

Wang (2004) extended the analytical tractability of Black-Scholes analysis for the classical 

geometric Brownian motion to the alternative model with double exponential jump diffusion. 

One may regard the jump part of the model as the market affected by the outside impacts. 

Good or bad impacts occur in terms of a Possion process, and the asset price changes in 

response in terms of the jump size distribution. Owing to the double exponential distribution 

has high peak and heavy tails, it can justify the overreaction and underreaction to outside 

impacts.  

Compared to Black and Scholes (1973) proposed European options with closed form 

solutions, American options with an early exercise feature complicated their valuation. 
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MacMillan (1986) developed the quadratic approximation method to solve the American put 

option on a non-dividend-paying stock pricing problem. Barone-Adesi and Whaley (1987) 

applied this method to evaluate American options by using the separable technique (but may 

generate some pricing errors in some cases). Bates (1991) first adopted jumps to the process 

of the underlying asset return. Chang, Kang, Kim, and Kim (2007) applied this scheme to 

American barrier (knock-out) and floating-strike lookback options. Guo, Hung and So (2009) 

extended the method for stochastic volatility and the normal return jump model. These articles 

illustrate that quadratic approximation method plays an important role on pricing American 

options. We used stochastic volatility and double exponential jumps as examples to compare 

with the least-squares simulation approach proposed by Longstaff and Schwartz (2001). The 

results illustrate that the quadratic approximation scheme is efficient in pricing American 

options based on these diffusion processes. And for put options, the estimates of 

approximation and the values of early-exercise premium are decrease by reducing the jump 

size on the probabilities of downward jumps.  

The remainder of the paper is organized in third sections: Section 2 describes the 

stochastic volatility model with double exponential jumps. Section 3 is the numerical results 

and Conclusions summarize in Section 4.   
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II. Model 

The following presents the stochastic volatility model with double exponential jump 

diffusion. Under the risk-neutral probability measure *P , the dynamics of the underlying asset 

price, ( )S t with the conditional variance, ( )V t  that allows for mean-reverting process : 

* ( )
* * * * * *

1

( )
( ( 1)) ( ) ( ) ( ( 1)) 

( )

N t

s i

i

dS t
r d E Y dt V t dW t d Y

S t 

                  (1) 

* * * *( ) ( ( )) ( ) ( )V V VdV t V V t dt V t dW t                       (2) 

where r is the risk-free interest rate and d is the dividend yield. ( )W t  represents a 

standard Brownian motion, ( )N t  is a Poisson process with rate  .{ }iY  is a sequence of 

independent identically distributed (i.i.d.) nonnegative random variables such that 

log( )G Y  has an asymmetric double exponential distribution with the density : 

1 2

1 { 0} 2 { 0} 1 2( ) 1 1  , 1 , >0 
g g

G g gf g p e q e
    

     

where , 0 , p+q=1p q  ,represent the probabilities of upward and downward 

jumps. ( ), ( )  Gs , are assumed to be independentN t W t and .  is the instantaneous correlation 

coefficient between the stock price return process and its variance process. In order to hold 

the Martingale property, 

* * * *
* * 1 2

* *

1 2

( 1) 1
1 1

p q
E Y

 

 
   

 
 

is subtracted from the stock price process, it remains the growth rate of the stock return 

rate as r d . 
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The Partial Integro-differential equation for the price P is therefore 

2 2

* * *

*

1 1
0

2 2

    [( ) ( 1)] ( )

    [ ( , ) ( , )] ( )

SS VV V SV V

S V V T

P S V P V P SV

P r d E Y S P V V P rP

P Sy V P S V y dy



  

       

   

 

 



                (3) 

American options with an early exercise feature complicated their valuation. The price of 

a basic American call option, ( , , ; )AC S V T K  with a strike price, K , and a maturity date,T , 

can be described as 

         ( , , ; ) ( , , ; ) ( , , ; )A EC S V T K C S V T K S V T K                   (4) 

where ( , , ; )EC S V T K  represents the price of European call option and ( , , ; )S V T K  is 

the value of the corresponding early-exercise premium. The early-exercise premium must 

satisfy Equation (3) because American option values, as well as European option values, 

satisfy the above-mentioned partial differential equation in the nonstopping region under the 

risk-neutral measure. 

The analytic European option solution with the stochastic volatility model has existed 

(see Appendix), the unsolved part in pricing formula of an American option is a good 

approximation for the early-exercise premium. Since options are homogeneous in S and K, the 

premium is also homogeneous in S and K. 

( , , ; ) ( / , , ;1)S V T K K S K V T  . The Barone-Adesi and Whaley (1987) defined the 

premium as 

  ( , , ; ) ( ) ( / , , ) ( ) ( , , )S V T K K H T F S K V H K H T F z V H                 (5) 
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where /z S K  and ( )H T  is an arbitrary function of time-to-maturity,T . 

,The partial derivatives of  are , / , , ,S z SS zz V V VV VV SV zVHF HF K KHF KHF HF         

and T T H TKFH KHF H   . Substitute Equation (5) into Equation (3):  

2 2

* * *

*

1 1
0

2 2

    [( ) ( 1)] ( ) ( )

    [ ( , ) ( , )] ( )                                                                      

zz VV V zV V

z V V T H

KHF z V KHF V KHF zV

KHF r d E Y z KHF V V H KF KHF rKHF

KH F zy V F z V y dy



  

        

   

 

 


(6) 

Barone-Adesi and Whaley (1987) choose ( )  1 - exp(- rT)H T as for simplicity. Chang et 

al. (2007) further adjusted ( ) to equal  1 - exp(- rT)H T   for controlling   to reduce 

barrier option pricing errors of the quadratic approximation. After substituting 

( ) =1 - exp(- rT)H T  into Equation (6), Equation (7) is:  

2 2

* * *

*

1 1
0

2 2

    [( ) ( 1)] ( ) (1 ) (1 )

    [ ( , ) ( , )] ( )                                                                     

zz VV V zV V

z V V H

KHF z V KHF V KHF zV

KHF r d E Y z KHF V V r H KHF r H KF

KH F zy V F z V y dy

 

   

 



  

         

      

 (7) 

As described in Barone-Adesi and Whaley (1987), Bates (1991), and Chang et al. (2007), 

(1 ) Hr H KHF   is negligible. Substituting 1 2

1 1 2 2( , ) exp[ ] exp[ ]F z V a BV z a B V z 
   into 

equation (7) and separating variables 1a  and 2a , generating yields 

   

2 2

1 2

1 2

1 2

1 1
0 ( 1)

2 2

    [( ) ( 1)] ( ) (1/ 1)
1 1

    [ ]                                                                            

V V

V

V B V B V

p q
r d B V V r H r

p q

    

 
   

 

 


   

   

         
 

 
 

 

   (8) 

Further separating Equation (8) into two equations for V-terms and non-V-terms, 
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respectively, Equations (9) and (10) are resulted: 

        2 2 21 1 1
0 ( )

2 2 2
V V VB B B                                (9) 

and 

       
1 2

1 2

1 2

0 ( (1/ 1) ) [ ]

    [( ) ( 1)]                                        
1 1

p q
BV r H r

p q
r d

 
 

   

 
 

 

 
     

 

    
 

     (10) 

After given the value of the parameters 1 2,  ,  ,  ,  ,  ,  , ,  , ,  ,    V Vr d V p q and T        

the values of 1 2 1 2, ,  and  B B   can be rapidly deduced from Equations (9) and (10) by using 

Newton‟s method. If 1 2,   , we replace the Equation (10) term of  

1 2 1 2

[ ] [ ]
p q p q   

 
     

   
  

  
 to obtain the value B. 

The result of the approximation of Equation (10) is  

                 0 1

1
( )B

V
                                   (11) 

where 0 (1/ 1)r H r     and  1 2
1

1 1 2 2

( ) ( 1)
1 1

p qp q
r d

 
 

   
      

 
 

Substituting Equation (11) into Equation (9) generates 

           

2
2 2 2

1 1

2
2

0 0 1 1

2 2

0 0

1 1
0 ( )

2 2

1
     ( )

2

1
     ( )                                                               

2

V V

V V V

V V

V V

V V V

V

    

       

   

  

   

 

(12) 

Parameters that satisfy the relationship 
0 2

2 V

V

V



  ensure that one root 1( )  is 

negative for puts, and the other 2( )  is positive for calls. Because the 
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relationships 1 1
0

0 and a 0 imply that  the lim ( , , ; )A

S
C S V T K


   , therefore that 1 0a  . 

Once we have the values for 2 2 and Ba , 2  and a S (the early-exercise price for calls) can be 

determined from the value-match condition and the high contact condition: 

       ( , , ; ) ( , , ; )ES V T K S K C S V T K                                (13) 

and 

        ( , , ; ) 1 ( , , ; )E

S SS V T K C S V T K                                 (14) 

where ( , , ; ) ( , , ; )E

S SS V T K and C S V T K  are the differential-form for early-exercise 

premium and European option on S. 

 Equations (13) and (14) infers that:  

   2 [ ( , , ; ) ]
                                                

1 ( , , ; )

E

E

z

S K C S V T K
S

C S V T K

  



          (15) 

and 2a  can be determined by  

  
2

2

2

( , , ; )
                                                  

(1 exp( ))exp[ ]( )

ES K C S V T K
a

S
K rT B V

K



 


 

     (16) 

The resulting formula for a basic American call option is 

            

2

( , , ; ) ( , , ; )

                          [ ( , , ; )] (S/ )  

                         

for S<    or  S-K   for   S .                                                          

A E

E

C S V T K C S V T K

S K C S V T K S

S S





  



(17) 

For the American puts, the boundary conditions are different to those for calls. But it 

must satisfy the same Partial Integro-differential equation. The boundary conditions for puts 
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are 

P ( , , ; )= K-A S V T K S                          (18) 

and 

                          P ( , , ; )= -1 A

S S V T K                         (19) 

where S  is the early-exercise price. The positive root (
2 ) is excluded for the puts 

because it implies that the lim ( , , ; )A

S
P S V T K


  . Resulting 2 0a   and therefore, 

                
1

( , , ; ) ( , , ; )

                          [ ( , , ; )] (S/ )  

                         

for S>    or  K-S   for   S .                                                

A E

E

P S V T K P S V T K

K S P S V T K S

S S





  



 (20) 

where  

            1 [ ( , , ; ) ]
                                                  

1 ( , , ; )

E

E

s

K S P S V T K
S

P S V T K

  


 
   (21) 
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III. Numerical Results 

The least-squares method (LSM) proposed by Longstaff and Schwartz (2001) is a 

well-known simulation method for pricing American options .Table 1 illustrates a comparison 

of the LSM and the quadratic approximation proposed in this research for the stochastic 

volatility model with double exponential jumps. The simulation estimates are based on 50,000 

paths for the stock-price process and the option is exercisable 90 times before maturity. Table 

1 shows that our approximation is consistent with the LSM. In addition, it is more efficient 

than the LSM because its computing time is much less than that of the LSM. Simulated 

American represents the results of the LSM. Approximation means the quadratic 

approximation and Diff is the difference between Simulated American and Approximation. 

The standard errors of the simulation estimates are given in parentheses. As shown, the 

differences (Diff) between the LSM algorithms and the quadratic approximation are typically 

small. Table 2 gives the comparison of Approximation (approx) and European value for put 

options with T=0.25 year. Prem represents the value of early-exercise premium. Intuitively, 

the approximation values increase after incorporating into the double exponential jump 

diffusion (arrival rate   from 0 to 7).Table 3 shows that early exercise premium of 

in-the-money options decrease after incorporating into the double exponential jump diffusion. 

The results are consistent with Amin (1993). However, it may not be the case for 
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at-the-money or out-of-the-money options. We found that early-exercise premium has an 

upward trend as reducing the probabilities of upward-jumps (p from 0.7 to 0.3) of put options. 

Table 4 also presents the relations between the early-exercise premium (Prem) and the 

difference probability of upward jumps (p from 0 to 1). For call options, the early-exercise 

premium increases as the probabilities of upward jumps increase, and vice versa. Besides, by 

reducing the jump size of the downward jump results in the decrease of early-exercise 

premium of put options and the increase of call options. 
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IV. Conclusion 

In this paper, we provide a useful and efficient analytic formula for pricing American 

options applied by quadratic approximation method that allows for stochastic volatility and 

double exponential jump.Comparison with the least-squares method algorithms presents that 

the quadratic approximation technique is accurate and efficient. 

 As Amin (1993) incorporating the double exponential jump diffusion into the pricing 

model results in the decrease of early-exercise premium for in-the money options. Our results 

also show that asymmetric jumps play an important role on the early-exercise premium. The 

early-exercise premium increases as the probabilities of upward jumps increase of put options. 
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Appendix 

Stochastic Volatility Model with Double Exponential Jumps 

The present value of a basic European call option can be formulated as 

*( , , ; ) [ max{ ( ) ,0}] E rTC S V T K E e S T K  and is given by 

 

log( )

0

log( )

0

1 1 Im[ ( , ; )]
( , , ; ) ( , ; )

2

1 1 Im[ ( , ; )]
                         -K( ( , ;0) )

2

iv K
E

iv K

e J t T i v
C S V T K J t T i dv

v

e J t T v
J t T dv

v









 
  








 

where ( , ; )J t T  is the characteristic function of the state density. Im( )c denotes the 

imaginary part of c C . The characteristic function is given by  

 ( , ; ) exp( ( ; ) ( ; ) ) iJ t T A T B T V S      

Where ( ; )A T   and ( ; )B T   are 

1 2

1 2

1 2

1 2

2

( ; ) ( )[ ( 1)]
1 1

                + ( )

( )(1 exp( ))
                - [( ) 2 log(1 )]

2

V V
V V

V

p q
A T i r d T rT

p q
T p q T

i i

i TV
i T

 
  

 

 
 

   

    
   

 

     
 


   

  

   
   

 

 
2 2

( 1)(1 exp( ))
( ; )

2 ( )(1 exp( ))

( 1)

V V

V V V

i i T
B T

i T

i i i

  


     

      

  


    

   

 

The proof is published in Duffie [2000].Once we have the solution for European calls, 

the formula for puts, ( , , ; )EP S V T K , can be obtained by the put-to-call conversion equation 
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Grabbe [1983] : 

 ( , , ; ) ( , , ; ) exp( ) exp( )E EP S V T K C S V T K S dT K rT      

Table 1 Comparison of American Options: Stochastic Volatility with Double Exponential Jumps 

 

Note: The CPU times are in seconds.  

0

1 2

100,  0.06,  0.06,  0.01, 0.49,  0.25,  3,  0.2,  5.08,  1.64,  

0.6,  0.4,  25,  25, =0.25

V VK r d V V

p q T
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 Table 2 Comparison of Approximation (approx) and European value for Put Option with p=0.5 
Table 2       Comparison of Approximation (approx) and European value for Put Option with  p=0.5

parameter values

approximation (a)
European

option (b)
Diff (a)-(b)

100 0 0 25 25 10.8400 10.7550 0.0850

100 0 0 25 50 10.8400 10.7550 0.0850

100 0 0 50 25 10.8400 10.7550 0.0850

100 0 0 50 50 10.8400 10.7550 0.0850

100 -0.25 0 25 25 10.8057 10.7124 0.0933

100 -0.25 0 25 50 10.8057 10.7124 0.0933

100 -0.25 0 50 25 10.8057 10.7124 0.0933

100 -0.25 0 50 50 10.8057 10.7124 0.0933

100 -0.75 0 25 25 10.7342 10.6232 0.1109

100 -0.75 0 25 50 10.7342 10.6232 0.1109

100 -0.75 0 50 25 10.7342 10.6232 0.1109

100 -0.75 0 50 50 10.7342 10.6232 0.1109

100 0 7 25 25 11.4069 11.3349 0.0720

100 0 7 25 50 11.2653 11.1963 0.0690

100 0 7 50 25 11.1310 11.0468 0.0843

100 0 7 50 50 10.9857 10.9039 0.0818

100 -0.25 7 25 25 11.3811 11.3040 0.0771

100 -0.25 7 25 50 11.2376 11.1630 0.0747

100 -0.25 7 50 25 11.1027 11.0118 0.0909

100 -0.25 7 50 50 10.9549 10.8657 0.0892

100 -0.75 7 25 25 11.3275 11.2398 0.0877

100 -0.75 7 25 50 11.1801 11.0938 0.0863

100 -0.75 7 50 25 11.0442 10.9391 0.1050

100 -0.75 7 50 50 10.8904 10.7858 0.1045

90 0 0 25 25 3.8757 3.8446 0.0311

90 0 0 25 50 3.8757 3.8446 0.0311

90 0 0 50 25 3.8757 3.8446 0.0311

90 0 0 50 50 3.8757 3.8446 0.0311

90 -0.25 0 25 25 3.8765 3.8410 0.0356

90 -0.25 0 25 50 3.8765 3.8410 0.0356

90 -0.25 0 50 25 3.8765 3.8410 0.0356

90 -0.25 0 50 50 3.8765 3.8410 0.0356

90 -0.75 0 25 25 3.8784 3.8328 0.0456

90 -0.75 0 25 50 3.8784 3.8328 0.0456

90 -0.75 0 50 25 3.8784 3.8328 0.0456

90 -0.75 0 50 50 3.8784 3.8328 0.0456

90 0 7 25 25 4.6399 4.6109 0.0290

90 0 7 25 50 4.3897 4.3631 0.0266

90 0 7 50 25 4.3586 4.3254 0.0332

90 0 7 50 50 4.0913 4.0606 0.0307

90 -0.25 7 25 25 4.6391 4.6072 0.0319

90 -0.25 7 25 50 4.3863 4.3566 0.0297

90 -0.25 7 50 25 4.3616 4.3247 0.0369

90 -0.25 7 50 50 4.0917 4.0569 0.0348

90 -0.75 7 25 25 4.6365 4.5983 0.0382

90 -0.75 7 25 50 4.3784 4.3418 0.0366

90 -0.75 7 50 25 4.3671 4.3220 0.0451

90 -0.75 7 50 50 4.0922 4.0486 0.0436

K   1 2
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         Comparison of Approximation (approx) and European value for Put Option with  p=0.5 

parameter values

approximation (a)
European

option (b)
Diff (a)-(b)

80 0 0 25 25 0.6610 0.6508 0.0101

80 0 0 25 50 0.6610 0.6508 0.0101

80 0 0 50 25 0.6610 0.6508 0.0101

80 0 0 50 50 0.6610 0.6508 0.0101

80 -0.25 0 25 25 0.6960 0.6839 0.0121

80 -0.25 0 25 50 0.6960 0.6839 0.0121

80 -0.25 0 50 25 0.6960 0.6839 0.0121

80 -0.25 0 50 50 0.6960 0.6839 0.0121

80 -0.75 0 25 25 0.7632 0.7463 0.0169

80 -0.75 0 25 50 0.7632 0.7463 0.0169

80 -0.75 0 50 25 0.7632 0.7463 0.0169

80 -0.75 0 50 50 0.7632 0.7463 0.0169

80 0 7 25 25 1.1213 1.1108 0.0105

80 0 7 25 50 0.9065 0.8973 0.0092

80 0 7 50 25 0.9959 0.9842 0.0117

80 0 7 50 50 0.7796 0.7693 0.0103

80 -0.25 7 25 25 1.1466 1.1347 0.0119

80 -0.25 7 25 50 0.9344 0.9238 0.0106

80 -0.25 7 50 25 1.0235 1.0101 0.0135

80 -0.25 7 50 50 0.8111 0.7990 0.0121

80 -0.75 7 25 25 1.1953 1.1802 0.0151

80 -0.75 7 25 50 0.9903 0.9763 0.0140

80 -0.75 7 50 25 1.0770 1.0594 0.0175

80 -0.75 7 50 50 0.8721 0.8557 0.0164

K   1 2

 

Note: 
0 090,  0.06,  0.06, V 0.01,  0.49,  0.2,  5.06,  1.64,  T= 0.25V VS r d V            
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Table 3 The early-exercised premium (Prem) with different probability of upward jumps (p) 

 

Note: 
0 090,  0.06,  0.06, V 0.01,  0.49,  0.2,  5.06,  1.64,  T= 0.25V VS r d V         

 

Prem: the value of early-exercise premium (approximates – european option) 

 

 

 

 



 

19 

 

 

Table 4 Comparison of the early-exercised premium (Prem) with different probability of upward jumps (P) 

Note:  

0 090,  0.06,  0.06,  0.01, 0.49,  0.75,  0.2,  5.06,  1.64, 0.25V VS r d V V T             

 

 

 

 

 


