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Abstract

After the worldwide financial crisis in 2007, credit risk of the company is getting
vast attention not only from academic but also from people in practice. Specifically,
many firms had good rating but suddenly default during the financial crisis. Hence, how
to accurately model the default risk of the firm is a much more important issue

nowadays.

In this paper, we develop a more efficient numerical simulation method to value
the corporate risky bond. Our model employs the structural approach for valuing
corporate bonds under the double exponential jump diffusion process (Kou 2002). This
approach has more flexibility in matching the empirical data than previous models. In
addition, to make our model more realistic, we adopt the caution time setting, which is

parallel to the Parisian option in option pricing, to model the bond safety covenant.

Keywords: Parisian option, double exponential jump diffusion process, Monte Carlo

simulation, structural credit risk model
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1. Introduction

There are two fundamental approaches to model the default risk of corporations.
One approach is the structural form which models the firm value pioneer by Black and
Scholes (1973) and Merton (1974), and extended by Black and Cox (1976), Longstaff
and Schwartz (1995), Leland (1998), Zhou (2001), and others. The other is the reduced
form, brought up by Jarrow et al.(1997), Madan and Unal (1998), Duftie and Singleton
(1999), and others, using the Possion distribution to model the default rate. The reduced
form does not consider the relation between corporation’s capital structural and default
risk.

The primary purpose of this paper is to build a model extending the structural form
under the jump-diffusion process that combines the concept of safety covenants and
features of empirical data that return has features of heavier tails and left-skewed. Under
the above condition, we provide a new model composed of the Parisian option
framework and double exponential jump diffusion process. The new model should
better fit in with the empirical data of both short-term and long-term default rates and
yield spreads.

The main reason that we use the Parisian option framework under double
exponential jump diffusion to simulate asset value is that this model is more reasonable
and flexible for pricing bond values than barrier option under Merton jump-diffusion.
The assumption of barrier option is that if firm value drops below the pre-specific level,
the firm will shut down immediately. This first-passage time model helps us to model
the safety covenants, but such safety covenants are often too strict to firms. Fujita and
Ishizaka (2002) use the Parisian option framework to present the concept of “caution
time” into original first-time passage model. In their model, if firm value hits the barrier,

the firm is into caution time. The firm defaults if the time that firm value is below the



barrier exceeds caution time. Their model gives more flexibility to the structural form

model and safety covenant. In this paper, we follow the concept of caution time to

pricing bond value plus double exponential jump diffusion process. The double

exponential jump diffusion model has many nice features for structural model,

including:

A.

According to research, bond price often drops surprisingly around the time of
default (Beneish and Press, 1995; Duffie and Lando, 2001). The jump-diffusion
model, including the double exponential jump diffusion mode, is consistent with
this evidence. Many situations may cause the jump of bond price, such as a nature
disaster, lawsuits and sudden financial turmoil.

In practice, the empirical data of return distribution are skewed to left, and have
higher peak and heavier tails than normal distribution. The double exponential
jump diffusion model is more flexible in parameter setting than Merton
jump-diffusion. This model can adjust the probability of up-side jump and
down-side jump. In addition, it also can set the up-side jump and down-side jump
amplitude separately. These features of the double exponential jump diffusion let
the return fit in with the empirical data.

The double exponential jump diffusion has more flexibility to match empirical
credit spreads. Credit spreads styled facts are: (1) Credit spreads do not converge to
zero even for very short maturity bonds. (2) Credit spreads have downward,

humped, and upward shapes. These shapes present firms’ financial distresses.

All of the above points are motives for pricing bonds under the double exponential jump

diffusion.

The remaining sections of this paper are as follows: Section 2 reviews the literature

related to this paper. Section 3 presents the structural model which is based on Parisian



option framework under the double exponential jump diffusion. Section 4 proposes a
fast numerical method to simulate bond value and presents the results of simulations.

Section 5 1s the conclusions.

2. Literature Review

2.1 Option Pricing Model Reviews

Black and Scholes (1973) offer an explicit model for option pricing. They derive a
close-form expression from Brownian motion for pricing the European option. They
provide a new vision of pricing option.

Following the Black and Scholes model, Merton (1976) extends the Black and
Scholes diffusion process model to the jump-diffusion process model. He is the first to
derive the close-form expression of jump diffusion model. This model has an advantage
to match the real world in that asset return sometimes has a discontinuous jump due to
incomplete information. However, the assumption of this model is that rate of return
follows log-normal distribution. It is not consistent with the empirical research that
return distribution has left skewed and heavier tail than normal distribution.

Kou (2002) provides an option pricing approach under double the exponential
jump diffusion process. This process has many good features, including the probability
and tendency that up-side and down-side jumps could be given separately. Because of
the nice features of the double exponential jump diffusion, the log-normal return
assumption of Merton model could be corrected. In addition, double exponential jump

diffusion process is easy to use for option pricing.

2.2 Structural Form Model

Early theorization of structural form model can be traced back to Merton (1974).
Merton provides an approach that can use corporate capital structure to price corporate

debt and default risk. He points out that equity value could be considered as a call
3



option which is priced by the Black-Scholes model (1973). There are some
disadvantages of using Black-Sholes model when pricing equity value, such as ignoring
that low liquidity makes corporate bond default and bond default happen only at
maturity, hence the following literatures modified the original structural model of
Merton.

Black and Cox (1976) extend the Black-Sholes model and solve the problem that
bond default only occurs at maturity. It allows for corporate bond default anytime before
maturity only if the bond value hits a pre-specific level. Once the bond value reaches the
pre-specific level, the corporation goes into default or is liquidated immediately.
Although Black and Cox relax the assumption of default time of Black-Scholes and
Merton framework, this model still shares some assumptions with the Merton model.
One of the drawbacks of this approach is that interest rate is assumed to be constant.

After Black and Cox, Longstaff and Schwartz (1995) develop a new approach to
pricing risky bonds. This model incorporates the Black and Cox model with interest rate
risk. This approach has an important advantage in that close-form expression for both
risky fixed-rate and floating-rate bonds could be derived. It relaxes the assumption of a
constant interest rate.

Another assumption of the Black and Cox model is that the remaining value of the
firm at default has to be equal to the default boundary. Zhou (2001) provided a new
model for solving this assumption. He combines Merton jump-diffusion process with
the Black and Cox structural model; hence this model is able to endogenously produce
random variation in recovery rate. Besides this, the jump-diffusion model solves another
problem that the default rate reaches to zero when time maturity is in a very short-term.

Because of the features of a down-and-out Parisian option that expires if the
underlying asset price goes down, hits a specific barrier level and stays below this level

for a period window, Fujita and Ishizaka (2002) propose a new concept, “caution time,”
4



for relaxing safety covenant. Their model states if firm value drops below the barrier,
the bondholders will have observations on operation of the firm; this is what is meant by
“caution time”. If the time in which firm value stays below the barrier exceeds “caution
time”, bondholders think the firm defaults. Also, if the firm value is below the barrier at
maturity, bondholders believe the firm to be in default.

Francois and Morellec (2004) use the down-and-out Parisian option for modeling
risky bonds under Chapter 11 of the U.S. Bankruptcy Code. They point out that Parisian
option’s special feature of period window could fundamentally represent that a
corporation renegotiate in financial distress under Chapter 11 of the U.S. Bankruptcy
Code. This model lets bondholders and shareholders have an unambiguous effect on
default incentives and credit spread.

Chen and Kou (2009) extend the model under the double exponential jump
diffusion model of the barrier option framework for credit risk. This model presents that
jump risk and endogenous default can have significant effect on credit spread. This
model has more flexible shapes of jump to explain the empirical data than

jump-diffusion model.
2.3 Parisian Option Reviews

Chesney, Jeanblanc and Yor (1997) define a new option called Parisian option
which is extended from the barrier option framework. A down-and-out (up-and-out)
Parisian option is an option that expires if the underlying asset price goes down (up),
hits a specific barrier level and stays below (above) for a period window. Conversely, A
down-and-in (up-and-in) Parisian option is an option that comes into existence if the
underlying asset price goes down (up), hits a specific barrier level and stays below
(above) the period window. They derive a formula based on the Brownian motion

theory for pricing Parisian option.



According to the definition of Parisian option, Avellaneda and Wu (1999)
formulate a partial differential equation (PDE) for Parisian option. The PDE solves
Parisian option pricing numerically on a trinomial lattice. They also characterize the
value function of Parisian option in the continuous limit.

Bernard, Le Courtois and Quittard (2005) develop a new inverse Laplace which
transforms the method used to price Parisian option. They provide a quick and simple

numerical method to compute the price and Greeks of Parisian option.

3. Model

3.1 Asset Model

In this section, we describe the model of pricing a firm’s assets using the double
exponential jump diffusion process model of Kou (2002). Under the double exponential
jump diffusion process model, the firm’s asset value has two parts. One is a
continuously pure diffusion process worked by geometric Brownian motion. The other
is a jump part. Jump sizes follow the double exponential distribution and the jump times
are driven by the event times of a Possion distribution.

To price the asset under the double exponential jump diffusion process, following
the research of Lucas (1978) with a HARA type of utility function for the representative
agent, we could consider that equity and debt are contingent claims of an asset. The
rational equilibrium price of an asset is given by the expectation of discounted asset
payoff, where the expectation is estimated under the risk-neutral probability measure P.
More precisely, we build the following equation used for modeling value of firm’s
assets V' (¢t) following a double exponential jump diffusion process under risk-neutral

measure P :

v _

N(t)
i) (r—if)dt+odW(t)+d(Z(Zi —1)] (3.1)

i=l1

The solution of the equation is given by



V(t)=V(0)exp {(r—%oz —ﬂxj]t+0W(t)}ﬁZi (3.2)

i=l1

where r is the risk-free interest rate (we assume that interest rate is constant), o is

the volatility of the asset, and & is the mean of percentage jump size:

—E[Z-1]=E[e —1]= Py TTa__, 3.3
s [ ] [e ] 77u_1+774+1 G

W(t) is a standard Brownian motion under risk-neutral measure P, N(¢) is a
homogenous Possion process with mean A, and Z, is a series of independent
identically distribution nonnegative random variables so that Y =In(Z) has a density

of the double exponential distribution:

nuy .I

(y=0) T4 'Udendy 1

f,W=pne s M, >1, 1, >0 (3.4)

{y<0}

I/

(<0 are indicator functions. The condition 7, >1

where p, ¢=0, p+g=1, I{yzo},
is to confirm that expectation of V(¢) is finite. p and ¢ are the probability of
up-side jump and down-side jump. The means of two exponential distributions are 1/7,

and 1/n,. The mean of Y is p/n, —q/n,. In this model, W(t), N(¢), and Y are
assumed to be independent. The return process X (¢) = ln(V(t) / V(O)) is the following
equation:

X(t)z(r—%az—léjt+aW(t)+NZ(thi (3.5)

where X (0)=0, and the equation is still under risk-neutral probability measure P. If

Y is a normal distribution, the model is the same as the Merton jump-diffusion model.

3.2 Pricing corporate debts

The next step is to build the bond value model. We follow the assumptions of the
asset pricing model described in section 3.1 and Parisian option framework. We assume
that the bond defaults if a firm’s asset value is under a level, H , which is a exponential

barrier, and the time of asset value below the barrier 7 is over a window period
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Figure 1. The “caution time” and the situation defaults.

(caution time) w'. The first time that bond default is defined as time 7 .

Mathematically,
Ht)=e'"F, ¢>r, T>0, 0<t<T (3.6)
r=inf{r>0[f>w| (3.7)
. B if V(t) > H(z)
(ro.)= {t ~g if V()< H(t) 3-8)
g, zsup{s <t|V(s) =H(s)} (3.9)

where ¢ is barrier discount rate, F is face value of bond, g, is the last time before
¢t that asset value hit the barrier. If ¢ >7 it means that the bond does not default
before maturity. If 7 <7 means that the bond defaults before maturity, the

bondholders only receive the asset value of the firm minus the write-down value at

Barrier option framework is a special case of Parisian option framework, if caution time equal to zero.
8



default time. If the asset value is under the barrier with bond life-expired, bondholder
consider the bond as default. Figure 1 shows the “caution time" framework. In general,
write-down value is a non-increasing function of asset value. We assume the equation of

write-down value is a linear form:

R(V):R,-V (3.10)
where R, is a non-negative constant. Because we follow the concept of caution time,
we consider the firm in default if the firm’s asset value is below the barrier at maturity.
In this model, we also assume that coupon rate does not affect the result of our research

such that we focus on zero-coupon bond for our research. We can derive the price of a

risky bond by using a fundamental bond pricing approach that discounted cash flow.

The bond price B(V, T):
B(V’ T) =E" [{exp(_rT)'(F'I{V(T)>H(T)} +(V(T)_R(V(T)))'I{V(T)<H(T)})}]{rzr}
+exp(—rr)(V(r)—R(V(T)))I{KT}] (3.11)

where P is risk-neutral probability measure, / is indicator function, 7" is time of
maturity, and 7 is time of default. This equation is combined with two parts. The first
part of equation is the present value of cash flow which bondholder could receive at
maturity. The second part is the present value of cash flow which bondholder could
receive if bond default before maturity. For a tractable approach in Monte Carlo method,
we provided the following equation:

M1

B(V’ T) = lim ZN[{GXP(_FT)'(F'[{V,.(T)>H(T)} +(Vi(T)_R(K(T)))'I{K(T)<H(T)} )} I{rZT}

N—oo “
i=l1

+exp(=r7) (V@) = R(V(D)) .y | (3.12)

This equation for pricing bond value could be easily programmed by the Monte Carlo

Method.



4. Result

4.1. Numerical Method

Parisian option is a path-dependent option which takes considerable time to
simulate. In order to reduce the computing time of the Monte Carlo method, Metwally
and Atiya (2002) provide an approach called Uniform Sampling for speeding up the
simulation time of calculation. This approach is based on the Brownian bridge concept
which is proposed by Karatzas and Shreve (1991), and Revuz and Yor (1994). The
Brownian bridge concept is that, if you have a Wiener process defined by a series of
time-indexed random variables {W(t, ),W(tz),...} . You could use the Brownian bridge

method to insert a random variable W (¢, ), where ¢, <t, <t,,, into the series in such a

i+
manner that the result of series remains unchanged. Given W (¢) and W (¢+At, +At,),
we want to get W(t + At, ) We use Brownian Bridge method to assume that we could
get W(t+Ar) by a weighted average of W(z) and W (t+Af+At,) plus an
independent normal random variable:

W(t+At)=aW (t)+ W (t+At +AL)+yZ 4.1

At,
o =—r>—
At + At,

p=1-a
y = Ata

where a, B and y are constants to be determined, and Z is a standard normal
random variable.

Metwally and Atiya follow the Brownian bridge concept to calculate the
probability of no crossing barrier, if we know the two-end point value. Let the jump
times be 7,,7,,...,T,,, these are the first variables that should be generated. We assume

x(Z") is the instant process value before the i-th jump and x(]f) is the instant

10



process value after the i-th jump. Between any two jumps, x(]f) and x(Tl.;]), the
process is under the pure Brownian motion. From Metwally and Atiya (2002), whose
model is jump diffusion model and they assume barrier is flat. Let B, be a Brownian

+1

bridge in the interval [7,,7,,] and 7=(T,,—T,). The probability of no barrier

crossing in the interval [7,7,,]:

P= P( inf {B,>WmH}|B =x(T),B_=x(T )]

T,<5<T,
2[insi—s(1) [t -x(1,)]

2

(4.2)

I—exp| - if x(Z;])>lnH

= 1o}
0 otherwise

In our model, we assume that barrier is an exponential function of time so that we have

to modify the drift-term of the double exponential jump diffusion process to let the

barrier be constant. In this case, our new process of return and barrier become:

N(t)

X'(t):(r—¢—%az—Aé‘]t+aW(t)+Z]:X (4.3)
H=¢"F (4.4)
We let ¢ equal the drift-term of X'(¢#). The following approach is the Monte Carlo
method for a bond pricing under Parisian option structural and modified double
exponential jump diffusion process:
Step 1. For n=1 to N do Monte Carlo simulations as follow Steps 2~35.
Step 2. Generate the jump-timing ¢, from a given density function (In this paper, we
use exponential distribution.). We repeat Step 2 until Ztl. >T.
Step 3. For i=1 to M +1 (M is the number of jumps that happen during the whole
life of asset). Generate the return of asset for all jump point.
(a). We let x(¢)=1InV(z), the initial value x(z,)=x(0)=In¥(0) and generate
the return of asset before jump x(tl. —) from Gaussian distribution under
mean x(f,,)+c(t, —1,,)and standard deviation o/, —, , .

11



(b). Generate a random variable from Uniform [0, 1]. Put the random variable in
CDF of the double exponential distribution® and generate the jump size J, 3,
(c). Generate return of asset after jump x(#,+) =x(t,—)+J,.
Step 4. For intervals i =0 to M, set default =0, check-time=0, i=0 at first, let
x(t,+)=x(0), while (default =0)or (i <M +1), we continue the loop.
(@). If x(¢,+)>1In(H"), set check-time =0
1.1f x(tm —) >1In H', compute the probability of no barrier crossing P based
on equation (4.2)
2.Let b=(T,,~T)/(1-P)
3. Generate s from a uniform distribution in the interval [7;,7; +b]

4. 1If se [T.,Yj ,], then the asset value crosses the barrier for the first time at

+

time s ininterval 7,7, ]. Since we know the asset value at time s and

+1

T

i+1

is InH' and x(, —), we assume that 1 year could divide by K
days and use the Brownian bridge method (4.1) to simulate the asset
process from s to T,,,. We check the process of each point whether

crossing above the barrier before the time T,,,.

For intervals j=1 to [T,

i+1

- s] -K
(1).1f x(s+j/K)<InH', then check-time= check-time+1/K
(2).1f x(s+j/K)=InH', then we reset check-time =0
i. If check-time>w, then default =1
DiscBond, = exp[(¢—r)r]- [(1 —R) (exp (x(z')))}
Exit loop, compute another Monte Carlo cycle (Step 2~5).
ii.else, j=j+1

(3). when j=[T, —s]-K,and check-time<w,let i=i+1,repeat Step 4.

1

> The proof of the double exponential jump diffusion CDF is in appendix A.
3 Appendix B. shows the method to generate jump size under the double exponential jump diffusion.
12



5.1f s¢[T,T.,], then asset does not cross the barrier,
i=i+1, repeat Step 4.

(b). If x(t,+)<In(H'), since we know the asset value at time 7, and T, is
x(t,+) and x(t,,—), we directly use the Brownian Bridge method (4.1) to
simulate the asset process in interval [Z , T, +,] such as Step 4.(a).4.. We check
the process of each point whether crossing above the barrier before the time

T

i+1

. For intervals j=1 to [T,

i+1

~T]K
(). If x(t,+j/K)<InH',
then check-time = check-time+1/ K
(2).1f x(t,+j/K)=InH', then we reset check-time=0.
i. If check-time>w, then default =1
DiscBond, = exp[(¢5 r)r] [( )(exp(x(r)))}
Exit loop, compute another Monte Carlo cycle (Step 2~5).
ii.else, j=j+1
(3). when j=[T, ~T]-K,and check-time<w,let i=i+1,repeat Step 4.
(c). When i=M +1, check x(T)
(). If x(T)>In(H") and default =0
DiscBond, = exp(—rT)-F
(2). Else, let default =1
DiscBond, =exp[(¢—r)T]: [( )(exp( (T)))]
Exit loop, compute another Monte Carlo cycle (Step 2~5).
Step 5. If n= N, we finish the Monte Carlo simulation. We could calculate the estimate
for the risky bond price:

1 N
DiscBond = N z DiscBond,,

n=1

We run a MATLAB program on an Intel T4400 2.20 GHz CPU 1 million Monte

13



Exhibit 1. The comparisons between different simulation methods. F =80.

Method Std Error CPU Time Std Error
(per million iterations) x CPU Time
Standard Monte 0.0227 1096 24.8792
CarloA=1/12
Standard Monte 0.0217 4695 101.8815
CarloA=1/52
Standard Monte 0.0201 21007 422.2407
CarloA =1/252
Uniform Sampling 0.0123 66 0.8118
K =252

The CPU time is seconds per million iterations.

Exhibit 2. The comparisons between different simulation methods. F =90.

Method Std Error CPU Time Std Error
(per million iterations) x CPU Time
Standard Monte 0.0342 1123 38.4066
CarloA=1/12
Standard Monte 0.0334 5236 174.8824
CarloA=1/52
Standard Monte 0.0325 20629 670.4425
CarloA =1/252
Uniform Sampling 0.0184 83 1.5272
K =252

The CPU time is seconds per million iterations.

Carlo iterations for each method to value the bond price. We compare the Uniform
sampling method with standard Monte Carlo method. In exhibit 1, we use parameter
settings as follows: V' (0)=100, F =80, r=0.05, ¢=0.05, 1=02, R =04,
p=0.5, ¢g=0.5,n7=2.79667154579233, n, =2.12168612641381, T =1, w=1/12,
6> =0.02. In exhibit 1, the Uniform Sampling method greatly reduces time of

simulation. From the result of Std Error x CPU time, we know the Uniform Sampling

14



Exhibit 3. The comparisons between different simulation methods. F =95.

Method Std Error CPU Time Std Error
(per million iterations) x CPU Time
Standard Monte 0.0382 905 34.5710
CarloA=1/12
Standard Monte 0.0381 4148 158.0388
CarloA=1/52
Standard Monte 0.0379 19437 736.6623
CarloA =1/252
Uniform Sampling 0.0184 93 1.7112
K =252

The CPU time is seconds per million iterations.

method is more efficient than standard Monte Carlo. The standard error of the Uniform
Sampling method is also smaller than standard Monte Carlo. It presents that Uniform
Sampling has a more accurate Monte Carlo simulation result with the same Af. In
addition to more efficiency, the Uniform Sampling method has lower bias than standard
Monte Carlo method. The reason is that the Uniform Sampling method uses uniform
distribution to generate the time of hitting barrier. This action make the Uniform
Sampling has less discontinuous simulation. In exhibit 2 and 3, we change the face
value and other parameters remain the same. We increase the face value from 80 to 90
and 95 in exhibit 2 and exhibit 3. The standard error significantly increases with higher
face value in standard Monte Carlo methods. The probability of using Brownian bridge
method is increased with higher face value in the Uniform Sampling method, but the
simulation time is almost unchanged.

4.2. Numerical Result

In this paper, we propose a difference between a Parisian option framework and a
barrier option framework. Also, we want to present a difference between the double

exponential jump diffusion model and the Merton jump-diffusion model. We follow the
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concept of Zhou’s approach (2001). We control the overall mean and volatility of the
firm’s value to be constants as we change the parameter values which domain the
random component of asset value. Therefore we know that the variations of bond values
are truly caused by different combinations of parameter values rather than by the
changes in overall mean and volatility of the firm’s value. To do this, we have to know
under the risk-neutral measure P, the mean and volatility of return in these models.
From Ramezani and Zeng (2006), we know the moment of return under physical
measure Q in these models, thus we can use this result to easily get the moment of
return under risk-neutral measure P. We let X be the return of asset value. We
control EX and Var(X) by these moments® of return X in different models to
observe the effect caused by changing the parameter. In the following figures, each

point is simulated 1 million times for precise value.

First, we want to present the difference of structure model between a barrier option
and a Parisian option framework. In this case, we simulate the asset value under the
double exponential jump diffusion. We control the parameter settings that total variance
=0.09, total mean =0.005,V(0)=100, F=80, r=0.05,¢=005, A2=0.05,
R =04, p=05, ¢=0.5, and jump variance =0.35 thus we find one set that
n, =2.79667154579233, n,=2.12168612641381, and variance of pure diffusion
o’ =0.0725. We change the caution time by no caution time, 5 days, 10 days, 15 days,
1 months, 6 months, and 1 year to observe the effects caused by these changes. Because
there are no apparent differences after 15 days caution time, figure 2 and 3 only presents
the result of no caution time to 15 days caution time. Figure 2. presents the relationship
between cumulative default probability and maturity under different caution time. It

shows that longer caution time has less cumulative default probability. Figure 3 shows

4 Appendix C presents the moments in Merton jump-diffusion model and the double exponential jump
diffusion model.
16
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Figure 2. The relationship between cumulative default probability and maturity in different

caution time: (—): no caution time; (--): 5 days; (—): 10 days; (---): 15 days.
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Figure 3. The relationship between credit spreads and maturity in different caution time: (—):

no caution time; (--): 5 days; (—): 10 days; (---): 15 days.
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Figure 4. The relationship between average recovery value and maturity in different caution

time: (—): no caution time; (--): 5 days.

that credit spread after 2 years maturity under barrier option framework is lower than
Parisian option framework with 5 days caution time. The credit spreads decrease under
Parisian framework with caution time increasing. To examine the result, we check the
average recovery value of no caution time and 5 days caution time. We save the
recovery value of no caution time and 5 days caution time in the same iteration. The
result of average recovery value in figure 4. is consistent with figure 3. that no caution
time has more average recovery value than 5 days caution time after 2 years maturity.
The high credit spread under 5 days caution is due to the low recovery value. This
combination of parameter settings leads this result that the process of asset value usually
goes down in 5 days after first hit time.

Second, we want to present the flexibility of the double exponential jump diffusion

model. We compare the double exponential jump diffusion model with the Merton

18
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Figure 5. The relationship between cumulative times and asset value in different model and
skewness. (—): Merton jump-diffusion model with skewness=0, 1=0.2, o°=0.01,
a =0.016250257 , [ =0.399738782 ; the double exponential jump diffusion
model 1=0.2, p=0.5 and ¢=0.5: (--): skewness=-0.5, n, =2.470527501 ,
n, =2.241299129 and o’ =0.017418446 ; (—): skewness=0, n,=2.616159165,
n, =2.616159142 and o’ =0.03155712; (---) : skewness =0.5, n, =2.85627674 ,
n, =3.658956675 and o’ =0.050546344

jump-diffusion model with the same EX, Var(X) and A. We control the total mean
EX =0, total variance Var(X)=0.09, r=0.05 and A=0.2 that we adjust the
parameter settings to generate different skewness. In Merton jump-diffusion model, the
flexibility of skewness is limited. In this case, we let skewness =0 and variance of
pure diffusion o?=0.01 generate a setting combination so that mean of jump size
a =0.016250257 and variance of jump size [ =0.399738782 under the Merton
jump-diffusion model. Also, we generate three setting combinations with different
skewness under the double exponential jump diffusion model. First, we control

skewness =—0.5, p=0.5 and ¢=0.5 to generate a setting combination so that
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Figure 6. the relationship between credit spreads and maturity in different model and skewness.
(=) : Merton jump-diffusion model with skewness=0 , A=02 , o> =0.01,
a =0.016250257 , [ =0.399738782 ; the double exponential jump diffusion
model 1=0.2, p=0.5 and ¢=0.5: (--): skewness=-0.5, n, =2.470527501 ,
n, =2.241299129 and o’ =0.017418446 ; (—): skewness=0, n,=2.616159165,
n, =2.616159142 and o’ =0.03155712; (---) : skewness =0.5, n, =2.85627674 ,
n, =3.658956675 and o’ =0.050546344.

n, =2.470527501, n,=2.241299129 and o’ =0.017418446 . Second, we control
skewness=0, p=0.5 and ¢g=0.5 to generate a setting combination so that
n, =2.616159165 , n,=2.616159142 and o°=0.03155712 . Third, we control
skewness =0.5, p=0.5 and ¢g=0.5 to generate a setting combination so that
n, =2.85627674, n, =3.658956675 and o’ =0.050546344. Figure 5 is the asset
value distribution under these parameter settings with 1 year maturity. It shows the
skewness with different parameter settings. Figure 6 shows the relationship between
credit spreads and maturity with different skewness under the Merton model and the

double exponential jump diffusion model. The result of figure 6, that lower skewness
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Figure 7. The relationship between credit spreads and maturity in different model and skewness.
(=) : Merton jump-diffusion model with skewness=0, A =0.05, o =0.03403074 ,
B =0.825697084 and o =0.48714694; the double exponential jump diffusion model
A =0.05, p=05 and ¢=0.5: (-): skewness=-0.5, n,6 =1.83694595044413 ,
n, =1.58459906319395 and o° =0.0552696595816093 ; (—) : skewness=0 ,
n, =1.92390672759791  and o’ =0.0629838660328502  with  skewness =0 ;
(-+-) : skewness=0.5 , n, =2.07131120647897 , n, =3.54067693331008 and
o’ =0.0743575057803415 .

has lower credit spread, is not consist with the comment sense. The lower skewness has
larger lose in a short maturity. It should have higher credit spread due to more
probability to makes bonds default. In this case, We observe that the lower skewness has
higher credit spread in a very short maturity. Therefore, we infer that the weight of
variance between pure diffusion and jump size generate this result instead of skewness.
To check our inference, we let A =0.05 so that we can change the weight of variance
between pure diffusion and jump size with the same skewness, p and q. We generate a
setting combination that « =0.03403074, B =0.825697084 and o’ =0.48714694

under Merton jump-diffusion model. In addition, we generate the three parameter
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settings under double exponential jump diffusion, 1. n, =1.83694595044413 ,
n, =1.58459906319395 and o’ =0.0552696595816093 with skewness=-0.5, 2.
n, =1.92390672760078 , n, =1.92390672759791 and o’ =0.0629838660328502
with  skewness=0 , 3. n,6=2.07131120647897 , n,=3.54067693331008 and
o’ =0.0743575057803415 with skewness =0.5. We increase the weight of variance
in pure diffusion part in each setting. Figure 7. shows that the credit spread increases
after 0.5 year maturity and decrease in a very short maturity. In the long term, the credit
spreads under the same EX and Var(X) are very close. This result is consistent with
our inference. Although the skewness is not a main reason affecting the shape of credit
spread, skewness still limits the varieties of parameter combinations. However, the
double exponential jump diffusion model has more flexibility of parameter setting if we
control the moments of models. We can use this model generate more shapes of credit

spreads.

5. Conclusion

This paper provides a Parisian option framework for corporation risky bond
valuation and default risk estimation under the double exponential jump diffusion
process. This framework has more flexibility of parameter settings than a barrier option
framework under the Merton jump-diffusion model. We demonstrate the shapes of
credit spreads in different caution time. Caution time leads to a variety of shapes for
credit spreads, default probability and recovery value in every maturity. Besides, the
two-side jumps also make bond valuation have more shapes in different maturity. This
paper also presents an approach that has more efficient and accurate method to compute
the Monte Carlo method under a Parisian option framework. This approach significantly
reduces time of computation and bias compared to a standard approach. This is
significantly beneficial when we need a quick calculation in a short time.
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There are some directions for future research. First, the variance reduction could be
used in the Monte Carlo simulation for improving the estimate. Second, it will be

interest to study the corporate bond which is composed of senior bond and junior bond.
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Appendix A.

The proof of the double exponential distribution CDF
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Appendix B.
Let J, be the logarithm of the ratio of the asset value after and before jump. We

assume it is a double exponential distribution.

J,=InA(t,+)-InA4(t,-)=InZ, =Y,

1

We use the uniform distribution to generate the random jump size Y.

1
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1—pe ™ | y>0
x=F(y)=1 P Y
ge' , ¥<0
l.Ifx<g=y<0
= x=ge'”
= y=—In(%)

d
2.Ifx2q=y=20

=>x=1-pe ™

= y= __lln(l__x)
p

u

nd=Y) sy

, n, P
Y 1 X
—In(—) x<q
ne 4
Appendix C.

The moments of Merton jump-diffusion model and the double exponential jump
diffusion model under risk-neutral measure.

Merton jump-diffusion model:

1 2 N(t)
X)) = (r—ga —Ak]t+aW(r)+ Y,

i=1
iid

Y,~N(a,p), k:exp(ong—l, N(t) ~ Possion(A), W(t)~ N (0,1)
EX:r—%Gz—lk+la
Var(X)ZO'2+l(oc2+ﬁ2)

ra’

(62 +ﬂ,(a2 +ﬁ2))2

Skewness =

The double exponential jump diffusion model:

N(t)

X(1) = (r—%az —ijt+0W(t)+ 3y,

i=l1
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