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巴黎選擇權架構與跳躍擴散模型下之公司證券評價 

 

 

研 究 生：張汶傑                   指導教授：李漢星  博士 

 

國立交通大學財務金融研究所碩士班 

 

摘要 

估計違約風險是定價公司債、交換合約與信用衍生性金融商品的一個關鍵因

素。2007 年全球金融風暴過後，企業的違約風險更加受到學術界與實務界的重視，

特別像是有些公司原本營運狀況良好，卻受到金融風暴影響而突然發生破產危

機，因此，如何能夠準確的預測企業的違約風險比以往更受到重視。 

    本篇研究提出一種新的架構來評價公司證券，以結構性信用風險模型為基

礎，加入了巴黎選擇權的架構，並且以跳躍擴散模型 (Kou 2002) 來當作評價公司

市場價值的模型，此模型較之前文獻中的模型具有較彈性的參數設定，更符合實

證上之需求。此外，我們並改善數值模擬方法以加快數值計算的速度，以此方法

來估計公司債價值。  

 

關鍵字：巴黎選擇權、跳躍擴散模型、蒙地卡羅模擬法、結構性信用風險模型 
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double exponential jump diffusion process 
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Abstract 

After the worldwide financial crisis in 2007, credit risk of the company is getting 

vast attention not only from academic but also from people in practice. Specifically, 

many firms had good rating but suddenly default during the financial crisis. Hence, how 

to accurately model the default risk of the firm is a much more important issue 

nowadays. 

In this paper, we develop a more efficient numerical simulation method to value 

the corporate risky bond. Our model employs the structural approach for valuing 

corporate bonds under the double exponential jump diffusion process (Kou 2002). This 

approach has more flexibility in matching the empirical data than previous models. In 

addition, to make our model more realistic, we adopt the caution time setting, which is 

parallel to the Parisian option in option pricing, to model the bond safety covenant.  

 

Keywords: Parisian option, double exponential jump diffusion process, Monte Carlo 

simulation, structural credit risk model 
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1. Introduction 
There are two fundamental approaches to model the default risk of corporations. 

One approach is the structural form which models the firm value pioneer by Black and 

Scholes (1973) and Merton (1974), and extended by Black and Cox (1976), Longstaff 

and Schwartz (1995), Leland (1998), Zhou (2001), and others. The other is the reduced 

form, brought up by Jarrow et al.(1997), Madan and Unal (1998), Duffie and Singleton 

(1999), and others, using the Possion distribution to model the default rate. The reduced 

form does not consider the relation between corporation’s capital structural and default 

risk. 

The primary purpose of this paper is to build a model extending the structural form 

under the jump-diffusion process that combines the concept of safety covenants and 

features of empirical data that return has features of heavier tails and left-skewed. Under 

the above condition, we provide a new model composed of the Parisian option 

framework and double exponential jump diffusion process. The new model should 

better fit in with the empirical data of both short-term and long-term default rates and 

yield spreads. 

The main reason that we use the Parisian option framework under double 

exponential jump diffusion to simulate asset value is that this model is more reasonable 

and flexible for pricing bond values than barrier option under Merton jump-diffusion. 

The assumption of barrier option is that if firm value drops below the pre-specific level, 

the firm will shut down immediately. This first-passage time model helps us to model 

the safety covenants, but such safety covenants are often too strict to firms. Fujita and 

Ishizaka (2002) use the Parisian option framework to present the concept of “caution 

time” into original first-time passage model. In their model, if firm value hits the barrier, 

the firm is into caution time. The firm defaults if the time that firm value is below the 
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barrier exceeds caution time. Their model gives more flexibility to the structural form 

model and safety covenant. In this paper, we follow the concept of caution time to 

pricing bond value plus double exponential jump diffusion process. The double 

exponential jump diffusion model has many nice features for structural model, 

including: 

A. According to research, bond price often drops surprisingly around the time of 

default (Beneish and Press, 1995; Duffie and Lando, 2001). The jump-diffusion 

model, including the double exponential jump diffusion mode, is consistent with 

this evidence. Many situations may cause the jump of bond price, such as a nature 

disaster, lawsuits and sudden financial turmoil. 

B. In practice, the empirical data of return distribution are skewed to left, and have 

higher peak and heavier tails than normal distribution. The double exponential 

jump diffusion model is more flexible in parameter setting than Merton 

jump-diffusion. This model can adjust the probability of up-side jump and 

down-side jump. In addition, it also can set the up-side jump and down-side jump 

amplitude separately. These features of the double exponential jump diffusion let 

the return fit in with the empirical data. 

C. The double exponential jump diffusion has more flexibility to match empirical 

credit spreads. Credit spreads styled facts are: (1) Credit spreads do not converge to 

zero even for very short maturity bonds. (2) Credit spreads have downward, 

humped, and upward shapes. These shapes present firms’ financial distresses. 

All of the above points are motives for pricing bonds under the double exponential jump 

diffusion. 

    The remaining sections of this paper are as follows: Section 2 reviews the literature 

related to this paper. Section 3 presents the structural model which is based on Parisian 
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option framework under the double exponential jump diffusion. Section 4 proposes a 

fast numerical method to simulate bond value and presents the results of simulations. 

Section 5 is the conclusions. 

2. Literature Review 

2.1 Option Pricing Model Reviews 

Black and Scholes (1973) offer an explicit model for option pricing. They derive a 

close-form expression from Brownian motion for pricing the European option. They 

provide a new vision of pricing option. 

Following the Black and Scholes model, Merton (1976) extends the Black and 

Scholes diffusion process model to the jump-diffusion process model. He is the first to 

derive the close-form expression of jump diffusion model. This model has an advantage 

to match the real world in that asset return sometimes has a discontinuous jump due to 

incomplete information. However, the assumption of this model is that rate of return 

follows log-normal distribution. It is not consistent with the empirical research that 

return distribution has left skewed and heavier tail than normal distribution. 

Kou (2002) provides an option pricing approach under double the exponential 

jump diffusion process. This process has many good features, including the probability 

and tendency that up-side and down-side jumps could be given separately. Because of 

the nice features of the double exponential jump diffusion, the log-normal return 

assumption of Merton model could be corrected. In addition, double exponential jump 

diffusion process is easy to use for option pricing. 

2.2 Structural Form Model 

    Early theorization of structural form model can be traced back to Merton (1974). 

Merton provides an approach that can use corporate capital structure to price corporate 

debt and default risk. He points out that equity value could be considered as a call 
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option which is priced by the Black-Scholes model (1973). There are some 

disadvantages of using Black-Sholes model when pricing equity value, such as ignoring 

that low liquidity makes corporate bond default and bond default happen only at 

maturity, hence the following literatures modified the original structural model of 

Merton. 

    Black and Cox (1976) extend the Black-Sholes model and solve the problem that 

bond default only occurs at maturity. It allows for corporate bond default anytime before 

maturity only if the bond value hits a pre-specific level. Once the bond value reaches the 

pre-specific level, the corporation goes into default or is liquidated immediately. 

Although Black and Cox relax the assumption of default time of Black-Scholes and 

Merton framework, this model still shares some assumptions with the Merton model. 

One of the drawbacks of this approach is that interest rate is assumed to be constant. 

    After Black and Cox, Longstaff and Schwartz (1995) develop a new approach to 

pricing risky bonds. This model incorporates the Black and Cox model with interest rate 

risk. This approach has an important advantage in that close-form expression for both 

risky fixed-rate and floating-rate bonds could be derived. It relaxes the assumption of a 

constant interest rate. 

    Another assumption of the Black and Cox model is that the remaining value of the 

firm at default has to be equal to the default boundary. Zhou (2001) provided a new 

model for solving this assumption. He combines Merton jump-diffusion process with 

the Black and Cox structural model; hence this model is able to endogenously produce 

random variation in recovery rate. Besides this, the jump-diffusion model solves another 

problem that the default rate reaches to zero when time maturity is in a very short-term. 

    Because of the features of a down-and-out Parisian option that expires if the 

underlying asset price goes down, hits a specific barrier level and stays below this level 

for a period window, Fujita and Ishizaka (2002) propose a new concept, “caution time,” 
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for relaxing safety covenant. Their model states if firm value drops below the barrier, 

the bondholders will have observations on operation of the firm; this is what is meant by 

“caution time”. If the time in which firm value stays below the barrier exceeds “caution 

time”, bondholders think the firm defaults. Also, if the firm value is below the barrier at 

maturity, bondholders believe the firm to be in default.  

    Francois and Morellec (2004) use the down-and-out Parisian option for modeling 

risky bonds under Chapter 11 of the U.S. Bankruptcy Code. They point out that Parisian 

option’s special feature of period window could fundamentally represent that a 

corporation renegotiate in financial distress under Chapter 11 of the U.S. Bankruptcy 

Code. This model lets bondholders and shareholders have an unambiguous effect on 

default incentives and credit spread. 

    Chen and Kou (2009) extend the model under the double exponential jump 

diffusion model of the barrier option framework for credit risk. This model presents that 

jump risk and endogenous default can have significant effect on credit spread. This 

model has more flexible shapes of jump to explain the empirical data than 

jump-diffusion model. 

2.3 Parisian Option Reviews 

    Chesney, Jeanblanc and Yor (1997) define a new option called Parisian option 

which is extended from the barrier option framework. A down-and-out (up-and-out) 

Parisian option is an option that expires if the underlying asset price goes down (up), 

hits a specific barrier level and stays below (above) for a period window. Conversely, A 

down-and-in (up-and-in) Parisian option is an option that comes into existence if the 

underlying asset price goes down (up), hits a specific barrier level and stays below 

(above) the period window. They derive a formula based on the Brownian motion 

theory for pricing Parisian option.  
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    According to the definition of Parisian option, Avellaneda and Wu (1999) 

formulate a partial differential equation (PDE) for Parisian option. The PDE solves 

Parisian option pricing numerically on a trinomial lattice. They also characterize the 

value function of Parisian option in the continuous limit. 

    Bernard, Le Courtois and Quittard (2005) develop a new inverse Laplace which 

transforms the method used to price Parisian option. They provide a quick and simple 

numerical method to compute the price and Greeks of Parisian option. 

3. Model 

3.1 Asset Model 

    In this section, we describe the model of pricing a firm’s assets using the double 

exponential jump diffusion process model of Kou (2002). Under the double exponential 

jump diffusion process model, the firm’s asset value has two parts. One is a 

continuously pure diffusion process worked by geometric Brownian motion. The other 

is a jump part. Jump sizes follow the double exponential distribution and the jump times 

are driven by the event times of a Possion distribution.  

To price the asset under the double exponential jump diffusion process, following 

the research of Lucas (1978) with a HARA type of utility function for the representative 

agent, we could consider that equity and debt are contingent claims of an asset. The 

rational equilibrium price of an asset is given by the expectation of discounted asset 

payoff, where the expectation is estimated under the risk-neutral probability measure P.  

More precisely, we build the following equation used for modeling value of firm’s 

assets ( )V t  following a double exponential jump diffusion process under risk-neutral 

measure P : 

  
( )

1

( ) ( ) ( 1)
( )

N t

i
i

dV t r dt dW t d Z
V t

 


 
       

  (3.1) 

The solution of the equation is given by 
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( )

2

1

1( ) (0)exp ( )
2

N t

i
i

V t V r t W t Z  


       
  

  (3.2) 

where r  is the risk-free interest rate (we assume that interest rate is constant),   is 

the volatility of the asset, and   is the mean of percentage jump size: 

  1 1 1
1 1

Y u d

u d

p qE Z E e  


 
          

 (3.3) 

( )W t  is a standard Brownian motion under risk-neutral measure P, ( )N t  is a 

homogenous Possion process with mean  , and iZ  is a series of independent 

identically distribution nonnegative random variables so that ln( )Y Z  has a density 

of the double exponential distribution: 

    0 0( ) ,  1,  0u d
y u d u dy y

y yf y p e I q e I     
         (3.4) 

where ,  0,  1p q p q   ,  0yI  ,  0yI   are indicator functions. The condition 1u   

is to confirm that expectation of ( )V t  is finite. p  and q  are the probability of 

up-side jump and down-side jump. The means of two exponential distributions are 1 u  

and 1 u . The mean of Y  is u dp q  . In this model, ( )W t , ( )N t , and Y  are 

assumed to be independent. The return process  ( ) ln ( ) (0)X t V t V  is the following 

equation: 

 
( )

1

1 2( ) ( )
2

N t

i
i

X t r t W t Y  


      
 

  (3.5) 

where (0) 0X  , and the equation is still under risk-neutral probability measure P. If 

Y  is a normal distribution, the model is the same as the Merton jump-diffusion model.  

3.2 Pricing corporate debts 

The next step is to build the bond value model. We follow the assumptions of the 

asset pricing model described in section 3.1 and Parisian option framework. We assume 

that the bond defaults if a firm’s asset value is under a level, H , which is a exponential 

barrier, and the time of asset value below the barrier t̂  is over a window period  
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Figure 1. The “caution time” and the situation defaults.  

(caution time) w 1. The first time that bond default is defined as time  . 

Mathematically,  

 ( )( ) T tH t e F  , r  , 0T  , 0 t T    (3.6) 

  ˆinf 0 |t t w     (3.7) 

  
0               if V(t) ( )ˆ ( ),

          if V( ) ( )t

H t
t V t t

t g t H t


   
 (3.8) 

  sup | ( ) ( )tg s t V s H s    (3.9) 

where   is barrier discount rate, F  is face value of bond, tg  is the last time before 

t  that asset value hit the barrier. If T   it means that the bond does not default 

before maturity. If T   means that the bond defaults before maturity, the 

bondholders only receive the asset value of the firm minus the write-down value at 

                                                        
1 Barrier option framework is a special case of Parisian option framework, if caution time equal to zero. 
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default time. If the asset value is under the barrier with bond life-expired, bondholder 

consider the bond as default. Figure 1 shows the “caution time" framework. In general, 

write-down value is a non-increasing function of asset value. We assume the equation of 

write-down value is a linear form: 

   1R V R V   (3.10) 

where 1R  is a non-negative constant. Because we follow the concept of caution time, 

we consider the firm in default if the firm’s asset value is below the barrier at maturity. 

In this model, we also assume that coupon rate does not affect the result of our research 

such that we focus on zero-coupon bond for our research. We can derive the price of a 

risky bond by using a fundamental bond pricing approach that discounted cash flow. 

The bond price ( ,  )B V T : 

              ( ) ( ) ( ) ( ),  exp ( ) ( )P
V T H T V T H T TB V T E rT F I V T R V T I I   

      
 

       exp ( ) ( ) Tr V R V I    
     (3.11) 

where P is risk-neutral probability measure, I  is indicator function, T  is time of 

maturity, and   is time of default. This equation is combined with two parts. The first 

part of equation is the present value of cash flow which bondholder could receive at 

maturity. The second part is the present value of cash flow which bondholder could 

receive if bond default before maturity. For a tractable approach in Monte Carlo method, 

we provided the following equation: 

              ( ) ( ) ( ) ( )
1

1,  lim exp ( ) ( )
i i

N

i i TV T H T V T H TN i
B V T rT F I V T R V T I I

N   


        

       exp ( ) ( )i i Tr V R V I    
     (3.12) 

This equation for pricing bond value could be easily programmed by the Monte Carlo 

Method.  
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4. Result 

4.1. Numerical Method 

Parisian option is a path-dependent option which takes considerable time to 

simulate. In order to reduce the computing time of the Monte Carlo method, Metwally 

and Atiya (2002) provide an approach called Uniform Sampling for speeding up the 

simulation time of calculation. This approach is based on the Brownian bridge concept 

which is proposed by Karatzas and Shreve (1991), and Revuz and Yor (1994). The 

Brownian bridge concept is that, if you have a Wiener process defined by a series of 

time-indexed random variables     1 2, ,...W t W t . You could use the Brownian bridge 

method to insert a random variable  kW t , where 1i k it t t   , into the series in such a 

manner that the result of series remains unchanged. Given  W t  and  1 2W t t t    , 

we want to get  1W t t  . We use Brownian Bridge method to assume that we could 

get  1W t t   by a weighted average of  W t  and  1 2W t t t     plus an 

independent normal random variable: 

      1 1 2W t t W t W t t t Z            (4.1) 

2

1 2

t
t t

 

  

 

1    

1t    

where  ,   and   are constants to be determined, and Z  is a standard normal 

random variable. 

Metwally and Atiya follow the Brownian bridge concept to calculate the 

probability of no crossing barrier, if we know the two-end point value. Let the jump 

times be 1 2, ,..., MT T T , these are the first variables that should be generated. We assume 

 ix T   is the instant process value before the -i th  jump and  ix T   is the instant 
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process value after the -i th  jump. Between any two jumps,  ix T   and  1ix T 
 , the 

process is under the pure Brownian motion. From Metwally and Atiya (2002), whose 

model is jump diffusion model and they assume barrier is flat. Let sB  be a Brownian 

bridge in the interval  1,i iT T   and  1i iT T   . The probability of no barrier 

crossing in the interval  1,i iT T  :  

 

     

     

1
1

1

1
12

ln | ,inf

2 ln ln
1 exp        ln

   

0                                                               

i i
i i

i s i iT TT s T

i i
i

P P B H B x T B x T

H x T H x T
if x T H

otherwise



 




 


 

 
 



     
 

                 


 (4.2) 

In our model, we assume that barrier is an exponential function of time so that we have 

to modify the drift-term of the double exponential jump diffusion process to let the 

barrier be constant. In this case, our new process of return and barrier become: 

 
( )

1

1 2( ) ( )
2

N t

i
i

X t r t W t Y   


        
 

  (4.3) 

 e TH F   (4.4) 

We let c  equal the drift-term of ( )X t . The following approach is the Monte Carlo 

method for a bond pricing under Parisian option structural and modified double 

exponential jump diffusion process: 

Step 1. For n=1 to N do Monte Carlo simulations as follow Steps 2~5. 

Step 2. Generate the jump-timing it  from a given density function (In this paper, we 

use exponential distribution.). We repeat Step 2 until it T . 

Step 3. For 1i   to 1M   ( M  is the number of jumps that happen during the whole 

life of asset). Generate the return of asset for all jump point. 

      (a). We let   ln ( )x t V t , the initial value    0 0 ln (0)x t x V   and generate 

the return of asset before jump  ix t   from Gaussian distribution under 

mean    1 1i i ix t c t t   and standard deviation 1i it t  . 
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      (b). Generate a random variable from Uniform [0, 1]. Put the random variable in 

CDF of the double exponential distribution2 and generate the jump size iJ 3. 

      (c). Generate return of asset after jump    i i ix t x t J    . 

Step 4. For intervals 0i   to M , set 0default  , - 0check time  , 0i   at first, let 

   0 0x t x  , while (  = 0)default or ( 1)i M  , we continue the loop. 

(a). If ( ) ln( )ix t H   , set - 0check time   

1. if  1 lnix t H   , compute the probability of no barrier crossing iP  based 

on equation (4.2) 

2. Let 1( ) / (1 )i i ib T T P    

3. Generate s  from a uniform distribution in the interval  ,i iT T b  

4. If  1,i is T T  , then the asset value crosses the barrier for the first time at 

time s  in interval  1,i iT T  . Since we know the asset value at time s  and 

1iT   is ln H   and  1ix t   , we assume that 1 year could divide by K  

days and use the Brownian bridge method (4.1) to simulate the asset 

process from s  to 1iT  . We check the process of each point whether 

crossing above the barrier before the time 1iT  .  

For intervals 1j   to  1iT s K    

          (1). If  / lnx s j K H   , then - - 1/check time check time K   

          (2). If  / lnx s j K H   , then we reset - 0check time   

             i. If -check time w , then 1default   

      exp ( ) 1 exp ( )nDiscBond r R x         

Exit loop, compute another Monte Carlo cycle (Step 2~5). 

ii. else, 1j j   

(3). when  1ij T s K   , and -check time w , let 1i i  , repeat Step 4. 

                                                        
2 The proof of the double exponential jump diffusion CDF is in appendix A. 
3 Appendix B. shows the method to generate jump size under the double exponential jump diffusion. 
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        5. If  1,i is T T  , then asset does not cross the barrier, 

1i i  , repeat Step 4. 

(b). If ( ) ln( )ix t H   , since we know the asset value at time iT  and 1iT   is 

 ix t   and  1ix t   , we directly use the Brownian Bridge method (4.1) to 

simulate the asset process in interval  1,i iT T   such as Step 4.(a).4.. We check 

the process of each point whether crossing above the barrier before the time 

1iT  . For intervals 1j   to  1i iT T K    

(1). If  / lnix t j K H   ,  

then - - 1/check time check time K   

(2). If  / lnix t j K H   , then we reset - 0check time  . 

           i. If -check time w , then 1default   

      exp ( ) 1 exp ( )nDiscBond r R x         

Exit loop, compute another Monte Carlo cycle (Step 2~5).  

ii. else, 1j j   

(3). when  1i ij T T K   , and -check time w , let 1i i  , repeat Step 4. 

     (c). When 1i M  , check ( )x T  

        (1). If ( ) ln( )x T H   and 0default   

 expnDiscBond rT F    

        (2). Else, let 1default   

       exp ( ) 1 expnDiscBond r T R x T        

           Exit loop, compute another Monte Carlo cycle (Step 2~5). 

Step 5. If n N , we finish the Monte Carlo simulation. We could calculate the estimate 

for the risky bond price: 

1

1 N

n
n

DiscBond DiscBond
N 

   

    We run a MATLAB program on an Intel T4400 2.20 GHz CPU 1 million Monte 
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Exhibit 1. The comparisons between different simulation methods. 80F  . 
Method Std Error 

 
CPU Time 

(per million iterations) 
Std Error 

× CPU Time 

Standard Monte 
Carlo 1/12    

0.0227 1096 24.8792 

Standard Monte 
Carlo 1/ 52   

0.0217 4695 101.8815 

Standard Monte 
Carlo 1/ 252   

0.0201 21007 422.2407 

Uniform Sampling 
252K   

0.0123 66 0.8118 

The CPU time is seconds per million iterations.  

 

Exhibit 2. The comparisons between different simulation methods. 90F  . 
Method Std Error 

 
CPU Time 

(per million iterations) 
Std Error 

× CPU Time 

Standard Monte 
Carlo 1/12    

0.0342 1123 38.4066 

Standard Monte 
Carlo 1/ 52   

0.0334 5236 174.8824 

Standard Monte 
Carlo 1/ 252   

0.0325 20629 670.4425 

Uniform Sampling 
252K   

0.0184 83 1.5272 

The CPU time is seconds per million iterations.  

Carlo iterations for each method to value the bond price. We compare the Uniform 

sampling method with standard Monte Carlo method. In exhibit 1, we use parameter 

settings as follows: (0) 100V  , 80F  , 0.05r  , 0.05  , 0.2  , 1 0.4R  , 

0.5p  , 0.5q  , 1 2.79667154579233  , 2 2.12168612641381  , 1T  , 1/12w  , 

2 0.02  . In exhibit 1, the Uniform Sampling method greatly reduces time of 

simulation. From the result of Std Error × CPU time, we know the Uniform Sampling 
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Exhibit 3. The comparisons between different simulation methods. 95F  . 
Method Std Error 

 
CPU Time 

(per million iterations) 
Std Error 

× CPU Time 

Standard Monte 
Carlo 1/12    

0.0382 905 34.5710 

Standard Monte 
Carlo 1/ 52   

0.0381 4148 158.0388 

Standard Monte 
Carlo 1/ 252   

0.0379 19437 736.6623 

Uniform Sampling 
252K   

0.0184 93 1.7112 

The CPU time is seconds per million iterations.  

method is more efficient than standard Monte Carlo. The standard error of the Uniform 

Sampling method is also smaller than standard Monte Carlo. It presents that Uniform 

Sampling has a more accurate Monte Carlo simulation result with the same t . In 

addition to more efficiency, the Uniform Sampling method has lower bias than standard 

Monte Carlo method. The reason is that the Uniform Sampling method uses uniform 

distribution to generate the time of hitting barrier. This action make the Uniform 

Sampling has less discontinuous simulation. In exhibit 2 and 3, we change the face 

value and other parameters remain the same. We increase the face value from 80 to 90 

and 95 in exhibit 2 and exhibit 3. The standard error significantly increases with higher 

face value in standard Monte Carlo methods. The probability of using Brownian bridge 

method is increased with higher face value in the Uniform Sampling method, but the 

simulation time is almost unchanged. 

4.2. Numerical Result 

In this paper, we propose a difference between a Parisian option framework and a 

barrier option framework. Also, we want to present a difference between the double 

exponential jump diffusion model and the Merton jump-diffusion model. We follow the 
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concept of Zhou’s approach (2001). We control the overall mean and volatility of the 

firm’s value to be constants as we change the parameter values which domain the 

random component of asset value. Therefore we know that the variations of bond values 

are truly caused by different combinations of parameter values rather than by the 

changes in overall mean and volatility of the firm’s value. To do this, we have to know 

under the risk-neutral measure P , the mean and volatility of return in these models. 

From Ramezani and Zeng (2006), we know the moment of return under physical 

measure Q  in these models, thus we can use this result to easily get the moment of 

return under risk-neutral measure P . We let X  be the return of asset value. We 

control EX  and ( )Var X  by these moments4 of return X  in different models to 

observe the effect caused by changing the parameter. In the following figures, each 

point is simulated 1 million times for precise value. 

First, we want to present the difference of structure model between a barrier option 

and a Parisian option framework. In this case, we simulate the asset value under the 

double exponential jump diffusion. We control the parameter settings that total variance 

0.09 , total mean 0.005 , (0) 100V  , 80F  , 0.05r  , 0.05  , 0.05  , 

1 0.4R  , 0.5p  , 0.5q  , and jump variance 0.35  thus we find one set that 

2.79667154579233u  , 2.12168612641381d  , and variance of pure diffusion 

2 0.0725  . We change the caution time by no caution time, 5 days, 10 days, 15 days, 

1 months, 6 months, and 1 year to observe the effects caused by these changes. Because 

there are no apparent differences after 15 days caution time, figure 2 and 3 only presents 

the result of no caution time to 15 days caution time. Figure 2. presents the relationship 

between cumulative default probability and maturity under different caution time. It 

shows that longer caution time has less cumulative default probability. Figure 3 shows  

                                                        
4 Appendix C presents the moments in Merton jump-diffusion model and the double exponential jump 

diffusion model. 
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Figure 2. The relationship between cumulative default probability and maturity in different 
caution time: ( ) : no caution time; (--): 5 days; ( ) : 10 days; ( ) : 15 days. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The relationship between credit spreads and maturity in different caution time: ( ) : 
no caution time; (--): 5 days; ( ) : 10 days; ( ) : 15 days. 
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Figure 4. The relationship between average recovery value and maturity in different caution 
time: ( ) : no caution time; (--): 5 days. 

that credit spread after 2 years maturity under barrier option framework is lower than 

Parisian option framework with 5 days caution time. The credit spreads decrease under 

Parisian framework with caution time increasing. To examine the result, we check the  

average recovery value of no caution time and 5 days caution time. We save the 

recovery value of no caution time and 5 days caution time in the same iteration. The 

result of average recovery value in figure 4. is consistent with figure 3. that no caution 

time has more average recovery value than 5 days caution time after 2 years maturity. 

The high credit spread under 5 days caution is due to the low recovery value. This 

combination of parameter settings leads this result that the process of asset value usually 

goes down in 5 days after first hit time. 

    Second, we want to present the flexibility of the double exponential jump diffusion 

model. We compare the double exponential jump diffusion model with the Merton  
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Figure 5. The relationship between cumulative times and asset value in different model and 
skewness. ( ) : Merton jump-diffusion model with 0skewness  , 0.2  , 2 0.01  , 

0.016250257  , 0.399738782  ;  the double exponential jump diffusion 
model 0.2  , 0.5p   and 0.5q  : (--): 0.5skewness   , 2.470527501u  , 

2.241299129d   and 2 0.017418446  ; ( ) : 0skewness  , 2.616159165u  , 
2.616159142d   and 2 0.03155712  ; ( ) : 0.5skewness  , 2.85627674u  , 
3.658956675d   and 2 0.050546344   

 

jump-diffusion model with the same EX , ( )Var X  and  . We control the total mean 

0EX  , total variance ( ) 0.09Var X  , 0.05r   and 0.2   that we adjust the 

parameter settings to generate different skewness. In Merton jump-diffusion model, the  

flexibility of skewness is limited. In this case, we let 0skewness   and variance of 

pure diffusion 2 0.01   generate a setting combination so that mean of jump size 

0.016250257   and variance of jump size 0.399738782   under the Merton 

jump-diffusion model. Also, we generate three setting combinations with different 

skewness under the double exponential jump diffusion model. First, we control 

0.5skewness   , 0.5p   and 0.5q   to generate a setting combination so that  
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Figure 6. the relationship between credit spreads and maturity in different model and skewness. 
( ) : Merton jump-diffusion model with 0skewness  , 0.2  , 2 0.01  , 

0.016250257  , 0.399738782  ;  the double exponential jump diffusion 
model 0.2  , 0.5p   and 0.5q  : (--): 0.5skewness   , 2.470527501u  , 

2.241299129d   and 2 0.017418446  ; ( ) : 0skewness  , 2.616159165u  , 
2.616159142d   and 2 0.03155712  ; ( ) : 0.5skewness  , 2.85627674u  , 
3.658956675d   and 2 0.050546344  . 

2.470527501u  , 2.241299129d   and 2 0.017418446  . Second, we control 

0skewness  , 0.5p   and 0.5q   to generate a setting combination so that 

2.616159165u  , 2.616159142d   and 2 0.03155712  . Third, we control 

0.5skewness  , 0.5p   and 0.5q   to generate a setting combination so that 

2.85627674u  , 3.658956675d   and 2 0.050546344  . Figure 5 is the asset 

value distribution under these parameter settings with 1 year maturity. It shows the 

skewness with different parameter settings. Figure 6 shows the relationship between 

credit spreads and maturity with different skewness under the Merton model and the 

double exponential jump diffusion model. The result of figure 6, that lower skewness  
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Figure 7. The relationship between credit spreads and maturity in different model and skewness. 
( ) : Merton jump-diffusion model with 0skewness  ,  =0.05, 0.03403074  , 

0.825697084   and 2 0.48714694  ;  the double exponential jump diffusion model 
 =0.05, 0.5p   and 0.5q  : (--): 0.5skewness   , 1.83694595044413u  , 

1.58459906319395d   and 2 0.0552696595816093  ; ( ) : 0skewness  , 
1.92390672759791d   and 2 0.0629838660328502   with 0skewness  ; 

( ) : 0.5skewness  ,  2.07131120647897u  , 3.54067693331008d   and 
2 0.0743575057803415  . 

has lower credit spread, is not consist with the comment sense. The lower skewness has 

larger lose in a short maturity. It should have higher credit spread due to more 

probability to makes bonds default. In this case, We observe that the lower skewness has 

higher credit spread in a very short maturity. Therefore, we infer that the weight of 

variance between pure diffusion and jump size generate this result instead of skewness. 

To check our inference, we let  =0.05 so that we can change the weight of variance 

between pure diffusion and jump size with the same skewness, p and q. We generate a 

setting combination that 0.03403074  , 0.825697084   and 2 0.48714694   

under Merton jump-diffusion model. In addition, we generate the three parameter 
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settings under double exponential jump diffusion, 1. 1.83694595044413u  , 

1.58459906319395d   and 2 0.0552696595816093   with 0.5skewness   , 2. 

1.92390672760078u  , 1.92390672759791d   and 2 0.0629838660328502   

with 0skewness  , 3. 2.07131120647897u  , 3.54067693331008d   and 

2 0.0743575057803415   with 0.5skewness  . We increase the weight of variance 

in pure diffusion part in each setting. Figure 7. shows that the credit spread increases 

after 0.5 year maturity and decrease in a very short maturity. In the long term, the credit 

spreads under the same EX  and ( )Var X  are very close. This result is consistent with 

our inference. Although the skewness is not a main reason affecting the shape of credit 

spread, skewness still limits the varieties of parameter combinations. However, the 

double exponential jump diffusion model has more flexibility of parameter setting if we 

control the moments of models. We can use this model generate more shapes of credit 

spreads. 

5. Conclusion 

    This paper provides a Parisian option framework for corporation risky bond 

valuation and default risk estimation under the double exponential jump diffusion 

process. This framework has more flexibility of parameter settings than a barrier option 

framework under the Merton jump-diffusion model. We demonstrate the shapes of 

credit spreads in different caution time. Caution time leads to a variety of shapes for 

credit spreads, default probability and recovery value in every maturity. Besides, the 

two-side jumps also make bond valuation have more shapes in different maturity. This 

paper also presents an approach that has more efficient and accurate method to compute 

the Monte Carlo method under a Parisian option framework. This approach significantly 

reduces time of computation and bias compared to a standard approach. This is 

significantly beneficial when we need a quick calculation in a short time. 
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There are some directions for future research. First, the variance reduction could be 

used in the Monte Carlo simulation for improving the estimate. Second, it will be 

interest to study the corporate bond which is composed of senior bond and junior bond. 
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Appendix A. 

The proof of the double exponential distribution CDF  
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Appendix B. 

Let iJ  be the logarithm of the ratio of the asset value after and before jump. We 

assume it is a double exponential distribution. 

   ln ln lni i i i iJ A t A t Z Y       

We use the uniform distribution to generate the random jump size iY . 



 

27 
 

~ [0,1]x Uniform  

1    ,  0( )
          ,  0

u

d

y

y
pe yx F y

qe y









  


 

1. If 0
              

1              ln( )

2. If x q 0
               1

1 1              ln( )

d

u

y

d

y

u

x q y
x qe

xy
q

y
x pe

xy
p











  

 

 

  
  

  

 

1 1ln( )      

1 ln( )           

u

d

x x q
p

y
x x q
q





    
 


 

Appendix C. 

The moments of Merton jump-diffusion model and the double exponential jump 

diffusion model under risk-neutral measure. 
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The double exponential jump diffusion model: 
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