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摘    要 

 

在下一代的行動通訊系統中，無線資訊服務提供者(例如：行動銀行)必須發

展一套安全機制來確保端點對端點之間的安全性(end-to-end security)。目前存在

的端點對端點的安全機制主要是建立在公鑰密碼系統上，其中一個非常重要的議

題是如何確保公鑰的認證正確性。身份導向公鑰密碼系統利用可以用來確認使用

者身份的資訊來產生公鑰，進而確保所取得公鑰的認證正確性。Boneh和 Franklin

提出一個完整且有效率的身份導向加密系統，他們利用橢圓曲線上的一種雙線性

對-威耳對(Weil pairing)來建構加解密系統，其中雙線性對的運算在整個加解密

運算過程中佔相當大的份量，因此如何加速雙線性對的運算在身份導向密碼系統

中是一個相當重要的議題。本論文主要研究橢圓密碼上雙線性對的特性，並提出

在不同有限體上的雙線性對加速演算法，同時也提供行動通訊上有效率的端點對

端點安全機制的應用。 
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ABSTRACT 
 

In the next generation mobile telecommunications, any third party that provides 

wireless data services (e.g., mobile banking) must have its own solution for 

end-to-end security.  Existing mobile security mechanisms are based on public-key 

cryptosystem.  The main concern in a public-key setting is the authenticity of the 

public key.  This issue can be resolved by identity-based (ID-based) cryptography 

where the public key of a user can be derived from public information that uniquely 

identifies the user.  The first complete and efficient ID-based encryption scheme was 

proposed by Boneh and Franklin.  They use a bilinear map (the Weil pairing) over 

elliptic curves to construct the encryption/decryption scheme.  However, in the 

existing ID-based cryptosystem, the pairing computing has significant overhead.  

Therefore, efficient algorithm for computing bilinear pairing is essential for 

implementation.  In this dissertation, we will study the bilinear pairings over elliptic 
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curves and design improved algorithms for the computation of pairing over different 

finite fields.  This will provide efficient implementations for ID-based cryptosystems 

in mobile devices to construct end-to-end security mechanisms 
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Notation 
 

The following notation is used throughout this thesis. 

 
K    finite field 
char(K)   characteristic of finite field K 
GF(p)   finite field of size p, p is a prime larger than 3 
GF(2n)   finite field of size 2n

i, j, k, m, n, r, s integer 
x, y, a, b, c  element of finite field 
λ    element of finite field indicating the slope of a line  
α, β    element of finite field GF(2n) 
E    group of points on elliptic curve 
P, Q, R, S, T, U point on elliptic curve 
xP, yP   coordinate of point P=(xP, yP) 
O    point at infinite in elliptic curve group 
Div(E)   group of divisors on elliptic curve 
Div0(E)   group of divisors on elliptic curve of degree zero 
D    divisor on elliptic curve 
supp(D)   set of supporting points of divisor D 
deg(D)   degree of divisor D 
f, g, h   rational function over elliptic curve 
div(f)   divisor of rational function f 
e(P, Q)   Weil pairing of points P and Q 
E[m]   group of m-torsion points on elliptic curve 
Um    group of mth roots of unity in a finite field 
Tr(c)    trace of element c in a finite field 
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Chapter 1 

Introduction 

 

1.1 Research Motivation 

In the recent years, the third generation (3G) and beyond 3G (B3G) mobile 

telecommunications networks [21] have been widely deployed or experimented.  

These networks offer large bandwidths and high transmission speeds to support 

wireless data services besides traditional voice services.  For circuit-switched 

voice services, mobile operators have provided security protection including 

authentication and encryption.  On the other hand, wireless data services (such as 

mobile banking) are likely to be offered by the third parties (e.g., banks) who 

cannot trust the security mechanisms of mobile operators.  In this case, the third 

parties must have their own solution for end-to-end security [22].  End-to-end 

security mechanisms used in mobile services are typically based on public-key 

cryptosystem. 
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In public-key cryptosystem each user has a key pair (KU, KR), where KU is 

the public key and KR is the private key.  To generate the key pair, one first 

chooses a private key KR and applies some one-way function to KR to obtain a 

random and uncontrollable KU.  The main concern in a public-key setting is the 

authenticity of the public key.  If an attacker convinces a sender that a receiver’s 

public key is some key of the attacker’s choice instead of the correct public key, 

he can eavesdrop and decrypt messages intended for the receiver.  This is the 

well known man-in-the-middle attack [32].  This authentication problem is 

typically resolved by the use of verifiable information called certificate, which is 

issued by a trusted third party and consists of the user name and his public key.  

In 1984, Shamir [30] introduced the concept of identity-based (ID-based) 

cryptography where the public key of a user can be derived from public 

information that uniquely identifies the user.  For example, the public key of a 

user can be simply his/her email address or telephone number, and hence 

implicitly known to all other users.  A major advantage of ID-based 

cryptosystem is that no certificate is needed to bind user names with their public 

keys.  The first complete and efficient ID-based encryption scheme was 

proposed by Boneh and Franklin in 2001 [8].  They used a bilinear map (the Weil 
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pairing) over elliptic curves to construct the encryption/decryption scheme.  

After that, the bilinear pairings have been used to design numerous ID-based 

schemes, such as key exchange [18] and short signature [9]. 

In addition to the Weil pairing, there exists another bilinear map on the group 

of points on an elliptic curve, which is known as the Tate pairing [13].  From a 

computational point of view, the Tate pairing can be done approximately twice as 

fast as the Weil pairing as it requires half the evaluations of rational functions in 

Weil pairing.  As our proposed algorithm improves the evaluation of a rational 

function, it can be similarly applied to the computation of the Tate pairing 

theoretically.  A disadvantage of the Tate pairing is that the outcome is not a 

unique value, and so cannot be used in many applications.  This problem can be 

solved by performing an exponentiation on the outcome of the Tate pairing [29].  

The advantage of the Weil pairing is that its definition is more comprehensible 

than that of the Tate pairing, which involves equivalence classes of quotient 

groups.  For the reader to easily follow the derivation of our proposed algorithm, 

we introduce the Weil pairing and implement our proposed algorithm on it. 

ID-based cryptosystem transparently provides security enhancement to the 

mobile applications without requiring the users to memorize extra public keys.  
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For example, sending an ID-based encrypted short message is exactly the same as 

sending a normal short message [16] if the mobile phone number of the short 

message recipient is used as the public key.  Therefore, the mobile user (the 

sender) does not need to memorize the public key of the receiver.  This feature is 

especially desirable for mobile applications such as banking or stock transactions.  

However, with the existing ID-based cryptosystem, the pairing computing has 

significant overhead.  Therefore, an efficient algorithm for ID-based 

cryptosystem is essential in mobile devices with limited computing power. 

The original algorithm for computing Weil pairing was proposed by Miller 

[26] and most current algorithms are based on it in some way.  It is an efficient 

probabilistic polynomial-time algorithm for computing the pairings.  The work 

of Barreto, Kim, Lynn and Scott [2] and Galbraith, Harrison and Soldera [14] 

focus in particular on the Tate pairing and they proposed methods for its fast 

computation.  They also considered a practical case of fields of characteristic 

three.  Eisentrager, Lauter and Montgomery developed an algorithm to speed up 

point multiplication of an elliptic curve [10].  The most important part of the 

Miller’s algorithm is the evaluation of a rational function associated with an 

m-torsion point of the elliptic curve.  In this dissertation, we extend the idea of 
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point halving, which was proposed by Knudsen [19], to speed up the evaluation of 

a rational function.  We also illustrate an applicable ID-based end-to-end mobile 

encryption system for short message service (SMS). 

 

1.2 Organization of the Dissertation 

This dissertation is organized as follows.  Chapter 2 states some facts about 

elliptic curves and functions on elliptic curves.  Then we deal with divisor theory 

on elliptic curves, which lies at the heart of the definitions of the Weil pairing. 

In Chapter 3, we give expositions for certificate-based and ID-based 

cryptography which provide authentic solutions for public key distribution.  

After defining ID-based cryptography, we compare ID-based cryptography with 

conventional certificated-based cryptography in some practical aspects, such as 

authenticity of system parameters, registration at the authority, key escrow, key 

revocation, key distribution, master key security, and additional possibilities. 

In Chapter 4, we extend the idea of point halving to design an improved 

evaluation algorithm for a rational function, which is the most important part of 

Weil pairing computation.  We first describe the original Miller’s algorithm for 
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computing Weil pairing and show the double-and-add method.  Then we present 

a new algorithm for computation of Weil pairing using the point halving technique 

and the normal basis implementation.  We actually implement the ID-based 

encryption schemes and compare the performance to show the advantage of our 

approach over a previously proposed popular solution. 

In Chapter 5, we implement two encryption systems for Short Message 

Service (SMS) and estimate the encryption overheads compared with the original 

non-ciphered message transmissions.  These two applicable end-to-end 

encryption mechanisms for SMS are based on the certificate-based public key 

cryptosystem and the ID-based public key cryptosystem, respectively.  We also 

evaluate and compare the delivery overheads of these two mechanisms. 

Chapter 6 summarizes our results and proposes future work. 
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Chapter 2 

Preliminaries 

 

In this Chapter, we describe divisor theory on elliptic curves.  First, we 

briefly give some facts about elliptic curves in Section 2.1.  Next we deal with 

divisor theory in Section 2.2.  For details on divisor theory, the reader is referred 

to [24][31]. 

 

2.1 Elliptic Curves 

Let p be a prime larger than 3.  An elliptic curve over a finite field of size p 

denoted by GF(p) can be given by an equation of the form: y2 = x3 + ax +b, 

where a, b ∈ GF(p) and 4a3+27b2 ≠ 0 mod p. (The equation over a finite field of 

size 2n denoted by GF(2n) looks slightly different and will be given later.)  The 

set of points on the curve is the collection of ordered pairs (x, y) with coordinates 
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in the field such that x and y satisfy the equation defining the curve, plus an extra 

point O called the infinity point.  These points form an abelian group E under a 

certain addition over GF(p).  That is,  

E = {(x,y) ∪ O | (x,y) satisfies the equation y2 = x3 + ax +b, x, y∈ GF(p)}. 

The group addition operation is defined as follows: to add two points P=(xP, 

yP) and Q=(xQ, yQ) on the curve, we first pass the straight line through them, find 

out the third point (xP+Q, yP+Q′) intersected with the curve, and then reflect the 

point over the x-axis to obtain point P+Q=(xP+Q, yP+Q), i.e., yP+Q= -yP+Q′ (see Fig. 

2.1). 

Assume that P=(xP, yP) and Q=(xQ, yQ) are on the curve, λ is the slope of the 

line passing through P and Q, then the coordinates of P+Q = (xP+Q, yP+Q) are  

    , where 
PQPPQP

QP
2

QP

)( yxxy
xxx

−−=

−−=

++

+

λ

λ

⎪
⎪
⎩
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=
+

≠
−
−

=

Q Pif   
2

3

Q Pif   

P

2
P

PQ

PQ

y
ax

xx
yy

λ . 

The infinity point O plays a role as the identity element, that is, P+O = O+P 

= P for any point P.  Each point P has a unique inverse element -P such that 

P+(-P)=O.  For P=(xP, yP) in elliptic curve E over GF(p), the unique additive 

inverse of P is defined by -P=(xP, -yP). 
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(xP+Q, yP+Q′) 

 
(xP+Q, yP+Q) 

P
Q

P+Q

Figure 2.1 Group law on an elliptic curve 

Another category of elliptic curves is defined over the finite field of size 2n 

denoted by GF(2n).  The equation defining elliptic curves over GF(2n) is of the 

form y2 + xy= x3 + ax2 +b , where a, b∈GF(2n) and b≠0.  The addition operation 

on points P and Q is the same as before except that yP+Q= xP+Q + yP+Q′.  

Therefore we can obtain the addition formula as follows.  Let P=(xP, yP), Q=(xQ, 

yQ)∈E.  Let λ be the slope of the line passing through P and Q, and the 

coordinates of P+Q be (xP+Q, yP+Q).  Then 

    , where 
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The inverse of P=(xP, yP) is defined by -P=(xP, xP+yP) when P is in elliptic 
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curve E over binary field GF(2n). 

For elliptic curves, the group operation is written as addition instead of 

multiplication.  Thus the exponentiation in the general multiplicative group can 

be appropriately referred to as the scalar multiplication in the elliptic curve group.  

That is, we denote rP as 4434421
 times

P...PP
r

+++  for an integer r. 

 

2.2 Divisor Theory 

A divisor is a useful device for keeping track of the zeros and poles1 of 

rational functions [24].  A divisor provides a representation to indicate which 

points are zeros or poles and their orders for a rational function over the elliptic 

curve.  A divisor D can be defined as a formal sum of points on elliptic curve 

group E: , where n∑
∈

=
E

n
P

P )P(D P is a non-zero integer that specifies the zero/pole 

property of point P and its respective order.  Inequality nP > 0 indicates that point 

P is a zero, and nP < 0 indicates that P is a pole.  For example, for P, Q, R∈E, D1 

= 2(P) + 3(Q) – 3(R) indicates that divisor D1 has zeros at P and Q with order 2 

and 3 respectively, and a pole at R with order 3.  And D2= 2(P) + (-2P) – 3(O) 

                                                 
1 Let f be a non-zero rational function, and P∈E.  If f(P)=0 then f is said to have a zero at P.  If f 
is not defined at P then f is said to have a pole at P and we write f(P)=∞. 
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indicates that P and -2P are zeros with order 2 and 1, and O is a pole with order 3 

for the divisor D2.  Note that the parenthesis is used to separate the order and the 

specific point.  For example, (2P) indicates that 2P is a zero with order 1, while 

2(P) indicates that P is a zero with order 2. 

The group of divisors on E, denoted as Div(E), forms an abelian group with 

the following addition operation.   

       For D1, D2∈Div(E), if ∑
∈

=
EP

n )P(D P1 , ∑
∈

=
EP

m )P(D P2 ,  

       then ∑ ∑∑
∈ ∈∈

+=+=+
E EE

mnmn
P P

PPP
P

P21 )P)(()P()P(DD .   

For a divisor , we define supp(D)={P∈E | n∑
∈

=
E

n
P

P )P(D P≠0} as the 

support of divisor D, and ∑
∈

=
E

n
P

P)D(deg as the degree of divisor D.  For 

example, if D1 = 2(P) + 3(Q) – 3(R), D2= 2(P) + (-2P) – 3(O), then supp(D1)={P, 

Q, R}, supp(D2)={P, -2P, O} and deg(D1)=2+3-3=2, deg(D2)= 2+1-3=0. 

From now on, we consider only the set of divisors of degree zero, denoted as 

Div0(E).  Let f be a rational function from K×K to K, where K is a finite field.  

For example, 
235
523),(

−+
−−

=
xy
xyyxf .  The evaluation of a rational function f on a 

point P=(xP, yP) is defined by f(P)=f(xP, yP) and the evaluation of f on a divisor 

 is defined by f(D)=∑
∈

=
E

n
P

P (P)D ∏
∈ )(DP

P)P(
supp

f n .  Define the divisor of a rational 

function f as , where n∑
∈

=
E

n
P

P, )P()( ffdiv P,f is the zero/pole order of point P on f.  
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It is well known that the degree of the divisor of a rational function must be zero 

[24]; that is, div(f)∈Div0(E) for any rational function f.  For example, let P=(xP, 

yP)∈E, f(x,y)= x-xP, then div(f) = div(x-xP) = (P) + (-P) − 2(O).  P and -P are the 

zeros of f because only they are on both the vertical line x-xP=0 and the elliptic 

curve E.  The infinity point O is a pole of order 2 because div(f)∈Div0(E).  

Then for two rational functions f1 and f2, we have div(f1) + div(f2) = div(f1f2) and 

div(f1) − div(f2) = div(f1/f2). 

As an example, let E be the elliptic curve defined by y2=x3+7x over GF(13).  

We have P=(4,1), Q=(5,2)∈E, and P+Q=(5,11).  Assume that 
5

3),(
−
+−

=
x

xyyxf .  

Since P, Q, -(P+Q)=(5,2)=Q are on the line y-x+3=0, div(y-x+3) = (P) + (Q) + 

(-(P+Q)) − 3(O) = (P) + 2(Q) − 3(O).  Also, div(x-5) = (Q) + (-Q) + 2(O) = (Q) + 

(P+Q) − 2(O) because Q, -Q=(5,11)=P+Q are on the line x-5=0.  Therefore, we 

have div(f) = div(y-x+3) − div(x-5) = (P) + (Q) − (P+Q) − (O). 

A divisor D∈Div0(E) is defined to be principal if D=div(f) for some rational 

function f.  The principal divisor ∑
∈

=
E

n
P

P )P(D  is characterized by 

[24], where  denotes the sum by applying addition operation on the points 

in elliptic curve E.  For example, let D

∑
∈

=
E

n
P

P OP  

∑
∈E

n
P

PP

3 = (P) + (-P) − 2(O), then D3 satisfies 

deg(D3)=0 and P+(-P)−2O = P−P = O.  Therefore D3 is principal.  In fact, 
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D3=div(x-xP) for the function x-xP. 

Two divisors D1, D2∈Div0(E) are said to be equivalent (denoted as D1 ~ D2) 

if D1−D2 is principal.  For any divisor ∑
∈

=
E

n
R

R )R(D ∈Div0(E), there is a unique 

point ∈E such that D ~ (P) – (O).  In other words, D can be always 

written in canonical form: D = (P) – (O) + div(f), where f is a rational function. 

∑
∈

=
E

n
R

RRP

Now we introduce a formula for adding two divisors in canonical form, such 

that the result is still in canonical form.  This formula provides a method of 

finding a rational function f such that div(f) = D for a given divisor D, and is 

critical for computing Weil pairing.  Let D1, D2 ∈ Div0(E) be given by D1 = 

(P1) – (O) + div(f1) and D2 = (P2) – (O) + div(f2).  Assume that P1+P2=P3.  Let 

cbxayyx ++=),(
21 P,Ph  be the equation of the straight line passing through P1 

and P2, and  be the equation of vertical line passing through Pdxyx +=),(
3Ph 3. 

(Note that if P1 = P2,  is the line tangent to P),(
21 P,P yxh 1.  And if P3 = O, we 

have =1, a constant equation.)  Then we have div( ) = (P),(
3P yxh

21 P,Ph 1) + (P2) + 

(-P3) – 3(O) where P1, P2, and -P3 are zeros because they are on line , and 

div( ) = (P

21 P,Ph

3Ph 3) + (-P3) – 2(O) where P3, -P3 are zeros because they are on line  

(see Fig. 2.1).  From the above discussion, the sum of divisors D

3Ph

1 + D2 is written 

as:    D1 + D2 = (P1) + (P2) – 2(O) + div(f1f2) 
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        = (P3) – (O) + div(f1f2) + div( ) – div( ) 

        = (P

21 P,Ph
3Ph

3) – (O) + div( ).   (2.1) 
321 PP,P21 /hhff

Eq. (2.1) will be used in the computation of Weil pairing in Chapter 4. 
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Chapter 3 

ID-Based Cryptography 

 

In this chapter, we first introduce the public key cryptography and the 

authentication of key distribution.  Next described are the certificate-based and 

the ID-based public key cryptosystems which provide authentic solutions for 

public key distribution.  A comparison is also done between the certificate-based 

and the ID-based systems. 

 

3.1 Public Key Cryptography 

All security mechanisms deployed today are based on either 

symmetric/secret key or asymmetric/public key cryptography, or sometimes a 

combination of both.  Here we introduce the basic aspects of the secret key and 

public key techniques and compare their main characteristics; a detailed 
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description of cryptographic mechanisms and their application can be found in 

[25].  We will explain the most important elements and procedures that constitute 

the public key infrastructure (PKI) on which public key techniques rely.  A 

general description of a public key infrastructure can be found in [1]. 

Secret key techniques are based on the fact that the sender and recipient 

share a secret, which is used for various cryptographic operations, such as 

encryption and decryption of messages and the creation and verification of 

message authentication data.  This secret key must be exchanged in a separate 

procedure prior to the intended communication.  For example, in a GSM (Global 

System for Mobile) cellular radio system the secret key shared between the 

mobile subscriber and the home operator is installed on a subscriber identity 

module (SIM) that is owned by the mobile subscriber and administered in the 

database of the subscriber’s home operator.  The need to exchange a secret key 

prior to the intended communication complicates the provision of security for 

communications between entities that do not have a pre-established relationship.  

Authentication is done by proving possession of the pre-shared secret key to each 

other.  A widely used method for doing this is the challenge-and-response 

method.  A challenge is sent to the challenged node, which then calculates a 
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response using the challenge and the secret key as input for an algorithm.  This 

response is sent to the challenger, which performs the same operation and 

compares the result with the received response.  The administration and 

management of secret keys, including their generation, distribution, renewal and 

tamper-resistant storage, can become very complicated as the number of keys 

grows.  For each pair of entities a secret key has to be created and distributed, so 

that for a group of n entities communicating with each other, n(n - 1)/2 keys are 

required.  Because of the need for pre-shared secret keys, secret key based 

solutions have low scalability.  A major advantage of secret key techniques is 

that they are computationally very fast in comparison with public key techniques.  

This is the main reason why many protocols today still use secret key mechanisms 

for authentication. 

Public key techniques utilize the asymmetric key pairs.  In an asymmetric 

key pair, one key is made publicly available, while the other is kept private.  

Because one of the keys is available publicly, there is no need for a secure key 

exchange.  However, it is required to distribute the public key authentically.  

Because there is no need for pre-shared secrets prior to a communication, public 

key techniques are ideal for supporting security between previously unknown 
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parties.  Authentication is achieved by proving possession of the private key.  

One mechanism for doing this is digital signature, which is generated with the 

private key and verified using the corresponding public key.  Public key 

techniques make it possible to establish secret session keys dynamically.  A 

simplified procedure is for one end-entity to calculate a secret session key and 

send it encrypted with the public key of the entity with which it wants to initiate a 

session.  That entity then obtains the secret key by decrypting the received 

information with its private key.  Since the public key of a key pair is usually 

published in a directory, the overhead associated with distributing keys is reduced 

significantly in comparison with secret key techniques. 

 

3.2 Authentication of Key Distribution 

A main concern in public key distribution is the authenticity of the public key.  

Fig. 1 illustrates how an adversary between a sender B and a receiver A can 

impersonate receiver A in the public key encryption scheme.  The adversary 

achieves this by replacing A’s public key KUA with a false public key KUA' which 

is then received by B (Fig. 3.1 (1) and (2)).  User B uses the false public key 

KUA' to encrypt the message M (Fig. 3.1 (3)).  The adversary obtains the secret 
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message M (Fig. 3.1 (4)) and delivers the re-encrypted cipher to user A (Fig. 3.1 

(5)).  In this way, the secret message M is acquired by both user A (Fig. 3.1 (6)) 

and the adversary.  Similar impersonation settings exist between the signer and 

verifier in the signature schemes.  This is the well known man-in-the-middle 

attack.  The following issue arises from the need to prevent these kinds of attacks: 

how does B know (or authenticate) which particular public key is A’s?  To 

answer this question, authentication of public key distribution is required.  

Authenticating public keys provides assurance to the entity that the received 

public key corresponds to the sender’s identity. 

 

Figure 3.1 The man-in-the-middle attack 
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3.3. Certificate-based Public Key Cryptosystem 

A typical approach to guarantee the authentication of the public key holder 

relies on a trusted agent named Certificate Authority (CA).  The CA’s digital 

signature binds entity A’s identity IDA to the corresponding public key KUA.  

The CA’s signature, when sent along with the identity (e.g., name or telephone 

number) and public key, forms a digital certificate which can be verified by any 

entity in possession of the CA’s public key.   

This certificate provides a binding between the identity and the public key.  

Digital certificates can contain extra information, such as cryptographic 

algorithms to be used in conjunction with the public key in the certificate.  The 

most widely adopted certificate format is based on the X.509 standard [17].  A 

basic certificate issued by a CA for entity A is of the form:  

CertA = (IDA, KUA, SignKR_CA(IDA, KUA)),  

where SignKR_CA(.) denotes the signing algorithm with the CA’s private key 

as the signing key. 

The certificate-based public-key distribution works as follows.  User A first 

chooses a public key cryptosystem, and generates his/her own key pair (KUA, 
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KRA), where KUA denotes the public key and KRA is the private key.  To attain 

the authenticity of public-key distribution, user A has to subscribe to the trusted 

Certificate Authority (CA; see Fig. 3.2 (1)), and requests a certificate CertA for 

his/her public-key from CA (Fig. 3.2 (2)).  The CA signs the certificate with its 

private key.  Then user A can send his/her certificate directly to another user B 

(Fig. 3.2 (3)) or put it on the public key directory.  Once user B is in possession 

of A’s certificate, B verifies the certificate with the CA’s public key and has 

confidence that the messages he/she encrypts with A’s public key will be secure 

from eavesdropping and that messages signed with A’s private key are 

unforgeable. 

 

Figure 3.2 The certificate-based public key distribution 
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3.4. ID-based Public Key Cryptosystem 

Shamir [30] proposed the identity-based (ID-based) public key approach to 

support public key cryptography without the use of certification.  In ID-based 

public key cryptosystem, user A’s public key KUA is not delivered to user B, and 

therefore eliminates the attack presented in Fig. 3.1.  User B encrypts a message 

for user A or verifies a signature from user A using a public key which is derived 

from user A’s identifier IDA (e.g., email address or telephone number; see Fig. 3.3 

(3)).  The trusted agent has a new role in ID-based public key cryptosystem, and 

is renamed as the Private Key Generator (PKG).  The PKG issues the private key 

corresponding to the public key (derived from the identifier IDA) to user A over a 

secure channel (Fig. 3.3 (2)).  This issuing action takes place after user A is 

authenticated by the PKG (Fig. 3.3 (1)).  To generate private keys, the PKG 

makes use of a master key which must be kept secret.  The requirement to have 

an authentic CA’s public key for verifying certificates in certificate-based 

cryptosystem is replaced by the requirement to have authentic PKG’s system 

parameters in ID-based cryptosystem.  Notice that both the PKG and the user A 

know the private key KRA. 
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Figure 3.3 The ID-based public key distribution 

 

3.5 ID-based Cryptography vs. Certificate-based 

Cryptography 

The conventional public key cryptosystem uses the certificate to solve the 

authentication problem and is denoted as certificate-based cryptosystems.  Both 

ID-based and certificate-based cryptosystems are asymmetric.  Hence, the 

protocols for encryption, decryption, signing and signature verification have 

similar functionality in both systems.  The main difference, however, is key 

management.  ID-based cryptography was initially proposed to avoid the need 

for certificates for public key authentication.  In fact, an ideal ID-based system 

would possess the following properties: 
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1. Users only need to know the identity of the user they want to communicate 

with. 

2. There is no need for keeping public directories such as files with public keys or 

certificates. 

3. The services of the Private Key Generator (PKG) are needed only during the 

system set-up phase. 

However, in practice such an ideal scheme seems to be infeasible.  

Depending on the application, there are several practical issues that stand in the 

way of the realization of an ideal ID-based system.  We compare ID-based 

cryptography with the traditional certificate-based cryptography in the following 

practical aspects: authenticity of system parameters, registration at the authority, 

key escrow, key revocation, key distribution, master key security, and additional 

possibilities. 

Authenticity of system parameters 

Suppose an attacker in an ID-based system generates his own master key and 

corresponding system parameters, and fools users into believing that these forged 

system parameters are correct.  Then for any public key, he can derive the 
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corresponding secret key under his master key.  Hence, he can decrypt any 

message encrypted under his forged parameters.  Further, he can create 

signatures under any name, which will be accepted by users who believe his 

parameters.  The attacker might even impersonate the PKG and issue secret keys 

to users on request.  A similar problem occurs in a traditional situation, where the 

users need to be sure of the authenticity of the public key of the CA.  Namely, if 

an attacker can make users believe that some public key of his choice is the public 

key of the CA, then he can create certificates containing forged public keys for 

which he owns the secret key.  Consequently, the attacker can read the messages 

encrypted under the forged public keys and create signatures that appear to be 

valid under those keys.  The only difference with the ID-based setting is that the 

attacker cannot impersonate the CA, as users would notice that their requested 

certificate contains an incorrect public key. 

Registration at the authority 

In both systems, a user who wants to participate needs to register at a 

Registration Authority (RA), which we often consider part of the PKG or CA.  

After some authentication procedure, the RA issues a unique digital identity to the 

user, for instance, in the form of an email address.  In a certificate-based system, 
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a user can now present his digital identity and public key to the CA, along with a 

proof of possession of the corresponding secret key.  The CA then issues a 

certificate that binds together the digital identity and the public key.  Similarly, in 

an ID-based setting, the user presents his digital identity to the PKG.  The PKG 

then computes the secret key corresponding to the public key derived from the 

digital identity.  ID-based systems have an additional disadvantage that the secret 

key needs to be transported from the PKG to the user.  Thus, a secure channel 

that guarantees both confidentiality and authenticity is required.  Therefore, 

ID-based systems seem to work best in applications where it is easy to achieve a 

secure channel or where users request secret keys not very often. 

Key escrow 

ID-based cryptosystems have inherent key escrow.  That is, since the PKG 

owns the master key, he can generate any private key at any moment.  

Depending on the application, key escrow is not necessarily a bad thing.  For 

instance, key escrow enables recovery of lost keys.  For signatures schemes, 

however, it is often highly undesirable to have key escrow, as it prevents 

non-repudiation.  Note that this escrow capability is also present in traditional 

public key settings where key pairs are generated by some central authority and 
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this authority stores the issued keys.  On the other hand, if users generate the key 

pairs themselves or the central authority does not store the keys, there is no way 

that keys can be retrieved and there is no key escrow.  This is in contrast to an 

ID-based setting, where the PKG always has the ability to regenerate keys.  The 

ID-based encryption scheme by Boneh and Franklin provides a way to block key 

escrow by introducing multiple PKGs.  In brief, each of these n PKGs has its 

own master key.  A user presents his public key to each KGC and gets from each 

of them a partial secret key in return.  Then the correct secret key is obtained by 

combining the n partial secret keys.  Thus the ability to retrieve any user’s secret 

key is distributed among n PKGs.  In practice, setting up a system with multiple 

PKGs can be a complex task.  Hence, an ID-based system works best in an 

application where key escrow is not an objection, or where the group of users is 

small enough to allow multiple PKGs. 

Key revocation 

When a certificate is revoked in a certificate-based scheme, other users are 

notified by means of a public Certificate Revocation List (CRL).  This occurs 

when a user leaves the user group or a secret key is compromised.  In the latter 

case, or when a key pair needs to be replaced after expiration of the certificate 
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(key rollover), a user can simply generate a new key pair and obtain a certificate 

for it.  However, in an ID-based setting, since a user’s public key is derived from 

his identity, he cannot simply obtain a new key pair after revocation as in a 

certificate-based scheme.  That is, it can be very inconvenient to change identity 

every time a new key pair is needed. 

A partial solution to this problem could be to derive the public key not only 

from the identity, but to concatenate the identity with some other general 

information.  For instance, if the current year is added to the identity, users can 

use their secret key during this year only.  Hence, secret keys expire annually and 

each user has to request a new key every year.  Unlike traditional situation, users 

do not have to obtain new certificates from other users, because the public key is 

still uniquely determined in a straightforward manner (since the current year is 

common knowledge).  But what if a user’s secret key is compromised during the 

year?  Then the user has to wait until the end of the year.  This situation can be 

improved by concatenating the identity with the current date instead of the current 

year.  But the big disadvantage is that each user has to obtain a new secret key 

from the PKG every day.  This results in a large increase in communications and 

a computational overhead for the PKG.  Hence, the length of the validity period 
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is a trade-off between convenience and efficiency. 

Key distribution 

The great simplification of key distribution (from the users’ point of view) is 

the main reason to introduce ID-based cryptography.  That is, all public keys can 

be derived from the identity of the users.  So obtaining someone’s public key, for 

encryption or signature verification, becomes a simple and transparent procedure.  

This is in contrast to certificate-based setting, where one has to look up the 

corresponding certificate, verify the CA’s signature, and check the expiration date 

of the certificate. 

Master key security 

The PKG in an ID-based scheme forms a single point of weakness.  An 

attacker who is able to retrieve the PKG’s master key can derive all secret keys, 

and is thus able to read all messages and forge signatures under everyone’s name.  

Therefore, it is very important for a PKG to keep his master key secret.  To 

prevent the master key from being stored in one place, it can be distributed among 

several KGCs, like the prevention of key escrow.  Similarly, the CA in a 

certificate-based setting is a single point of weakness as well.  If the CA’s secret 
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key is compromised, an attacker can create certificates in the CA’s name for new 

public keys of his own choice, thereby fooling other users into believing those 

public keys.  However, the leak of the CA’s secret key does not enable an 

attacker to retrieve previously existing secret keys.  So the attacker cannot read 

messages encrypted under previously existing public keys, or forge signature 

under corresponding secret keys. 

Additional possibilities 

The fact that any value can be a public key offers some additional 

possibilities. For instance, we can concatenate the identity with other information 

to accomplish certain nice properties that do not exist in a certificate-based setting.  

In fact, in this setting, users can send encrypted messages into the future.  This is 

done by using the public key as the concatenation of the identity with a future date.  

Now the recipient cannot decrypt the message until the specified date, when the 

PKG issues the corresponding secret key.  Here we assume that the PKG is 

honest and does not issue keys before the specified date. 

Furthermore, another application arises from the original idea of ID-based 

cryptography.  For example, we can combine ID-based cryptography with 

traditional public key systems as follows.  User U plays the role of PKG and 
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generates his own system parameters and master key for an ID-based encryption 

scheme.  U keeps his master key secret and publishes the system parameters.  

These parameters function as U’s public key in a certificate-based encryption 

scheme.  As in a regular PKI setting, the authenticity of U’s public key (the 

system parameters) is guaranteed by a certificate from a CA.  Now other users 

can encrypt messages for user U as in an ID-based scheme with system 

parameters that are given by U’s public key.  Since U (and in fact only U) owns 

the master key for the ID-based system, he can derive the secret key for any 

identifier key and is thus able to read the messages encrypted under his system 

parameters. 
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Chapter 4 

Efficient Computation for Weil Pairing 

 

In this chapter, we propose a halve-and-add method to speed up the 

evaluation for Weil pairing.  We first describe the original Miller’s algorithm for 

computing Weil pairing.  Then we introduce the point halving operation 

proposed by Knudsen in speeding up scalar multiplication on elliptic curve over 

GF(2n).  The advantage of point halving relies on the fast arithmetic operations 

over GF(2n) in a normal basis.  We then propose an efficient halve-and-add 

evaluation algorithm in Weil pairing computation and compare the performance 

with original double-and-add method. 

 

4.1 Miller’s Algorithm 

Given an elliptic curve E over a finite field K, let m be an integer prime to 

char(K), the characteristic of K [20]. For example, char(GF(p))=p and 
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char(GF(2n))=2.  The Weil pairing is a function 

mUmEmE →× ][][:e , 

where  is called the m-torsion group, U} PO,P|P{][ EmmE ∈== m is the group 

of the mth roots of unity in K , the algebraic closure of K [20].   

Weil pairing e(P, Q) is defined as follows.  Given P, Q∈E[m], there exist 

divisors DP, DQ∈Div0(E) such that DP ~ (P) – (O) and DQ ~ (Q) – (O).  Here we 

randomly choose points T, U, and assign DP = (P+T) – (T) and DQ = (Q+U) – (U).  

It is easy to verify that DP ~ (P) – (O) and DQ ~ (Q) – (O).  As mP = mQ = O, 

divisors mDP and mDQ are principal and there exist rational functions fP , fQ such 

that div(fP) = mDP and div(fQ) = mDQ.  Suppose that DP and DQ have disjoint 

supports, i.e., supp(DP) ∩ supp(DQ) = φ, then the Weil pairing of P and Q is 

defined as: 

)D(
)D(

)Q,P(
PQ

QP

f
f

e = . 

The Weil pairing has the bilinearity property: for P, Q, R∈E[m], we have 

e(P+Q, R) = e(P, R)e(Q, R) and e(P, Q+R) = e(P, Q)e(P, R).  The first algorithm 

for e(P, Q) computation is described as follows. 
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Miller’s Algorithm [26] 

INPUT: P, Q∈E[m] 

OUTPUT: e(P, Q) 

Step 1. Select random points T, U∈E such that P+T, T, Q+U, U are distinct. 

Let DP = (P+T) – (T) and DQ = (Q+U) – (U). 

Step 2. Use an evaluation algorithm to compute fP(Q+U), fP(U), fQ(P+T) and 

fQ(T), where fP and fQ satisfy that div(fP) = mDP and div(fQ) = mDQ. 

Step 3. Compute 
)U()TP(
)T()UQ(

)D(
)D(

)Q,P(
PQ

QP

PQ

QP

ff
ff

f
f

e
+
+

== . 

 

4.2 Double-and-Add Method for Weil Pairing 

A crucial part in Miller’s algorithm is the evaluation algorithm in Step 2.  

The evaluation algorithm for fP(S) produces fP such that div(fP) = mDP, and 

computes fP(xS, yS) for S=(xS, yS).  Recall that DP = (P+T) – (T).  For each 

integer k, there exists a rational function fk such that  

)O()P()T()TP()( +−−+= kkkkfdiv . 

If k = m, then )T()TP()O()P()T()TP()( mmmmmm −+=+−−+=fdiv , 

and fP = fm.  For any points R, S, let hR,S and hR be linear functions, where hR,S(x, 

y)= 0 is the straight line passing through R, S, and hR(x, y)= 0 is the vertical line 
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passing through R.  Then we have  
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Eq. (4.1) is recursive with initial conditions f0 = 1 and 
TP,

TP
1 h

hf +=  since 
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Based on Eq. (4.1), a conventional double-and-add method was proposed for 

evaluation of a rational function fP on a given point S, where fP satisfies div(fP) = 

m(P+T) – m(T).  The algorithm denoted as double-and-add evaluation algorithm 

is described as follows. 
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Double-and-Add Evaluation Algorithm (Step 2, Miller’s Algorithm) [4] 

INPUT: the points P, T, S, and the order  with b∑
−

=

=
1

0

2
n

i

i
ibm i∈{0,1}, bn-1 = 1 

OUTPUT: fm(S) = fP(S) 

f1 ← 
)S(
)S(

TP,

TP

h
h + ; 

f ← f1; Z ← P; 

 for j ← n-2, n-3, …, 0 do 

  
)S(
)S(

2Z

ZZ,2

h
h

ff ← ; Z ← 2Z; 

  if bj = 1 then 

   
)S(
)S(

PZ

PZ,
1

+

←
h
h

fff ; Z ← Z + P; 

  endif 

 endfor 

return f 

 

4.3 Point Halving 

We restrict our attention to elliptic curves E over finite field GF(2n) defined 

by the equation  where a, b∈GF(2baxxxyy ++=+ 232 n), b≠0.  The finite 

field GF(2n) can be viewed as a vector space of dimension n over GF(2).  That is, 

each c∈GF(2n) can be represented as a vector .  Let }1,0{    where)...( 011 ∈− in cccc
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P=(xP, yP) be a point on E, where P ≠ −P.  The coordinate of Q = 2P = (xQ, yQ) 

can be computed as follows: 

P

P
P x

yx +=λ         (4.2) 

       (4.3) 

and 

      (4.4) 

ax ++= λλ2
Q

)1(Q
2

PQ ++= λxxy

Point halving was first proposed by Knudsen with the following operation: 

given Q=(xQ, yQ), compute P=(xP, yP) such that Q = 2P.  Point halving provides 

fast computation for scalar multiplication on elliptic curve.  The basic idea for 

halving is to solve Eq. (4.3) for λ, Eq. (4.4) for xP, and finally Eq. (4.2) for yP if 

needed.  If G is a subgroup of odd order m in E, point doubling and point halving 

are automorphisms in G [19].  Therefore, given a point Q∈G, there is a unique 

point P∈G such that Q = 2P.  To uniquely find P, Fong et al. [12] designed a 

point halving computation algorithm using the trace function Tr : GF(2n)→GF(2) 

defined by , where  ∑
−

=

=
1

0

)(
n

i
iccTr ).2()...( 011

n
n GFcccc ∈= −

The halve-and-add method for scalar multiplication uses two kinds of point 

representation: the usual affine representation P=(xP,yP) and the λ-representation 

(xP,λP), where λP = xP + yP/xP denotes the slope of the tangent line to the curve at P.  
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As shown in the following point halving algorithm, repeated halving can be 

performed directly on the λ-representation of a point.  Only when a point 

addition is required, a conversion to affine coordinate is needed. 

 

Point Halving Algorithm [12] 

INPUT: λ-representation (xQ, λQ) of Q  

OUTPUT: λ-representation (xP, λP) of P=(xP, yP), where Q = 2P 

Step 1. Find a solution  for equation . λ̂ ax +=+ Q
2 λλ

Step 2. Compute c = xQ(xQ + λQ + ). λ̂

Step 3. If Tr(c) = 0 then λP ← , xλ̂ P ← Qxc + , 

else λP ← +1, xλ̂ P ← c . 

Step 4. Return (xP, λP). 

The point halving algorithm requires one field multiplication (Step 2) and 

three operations: solving the quadratic equation  (Step 1), one 

trace computation (Step 3), and computing a square root (Step 3).  In a normal 

basis, the time needed for these three operations is negligible in comparison with 

ax +=+ Q
2 λλ
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the time needed for a multiplication or an inversion.  An inversion can be 

computed using a number of multiplications.  The ratio of inversion to 

multiplication cost is about 8 in our Pentium III platform.  In the next subsection 

we select a normal basis and introduce arithmetic operations over it.  With the 

normal basis we select, the square root operation at Step 3 can be significantly 

simplified. 

 

4.4 Normal Basis Implementation 

Recall that the binary field GF(2n) can be viewed as a vector space of 

dimension n over GF(2).  That is, there exists a set of n elements α0, α1, …, αn-1, 

in GF(2n) such that each c∈GF(2n) can be written in the form 

.  In general, there are many bases of GF(2)...( 011 ccccc nii −== ∑ α n).  A 

typical one is the polynomial basis of the form {1, x, x2, …, xn-1}, and a kind of 

special basis called normal basis is the set of the form { }.  In a 

normal basis, a field element c on GF(2

122 ,...,,
−n

βββ

n) is represented by 

  The squaring of c can be obtained by 

.  That is, squaring of c can be 

accomplished by a simple left rotation on the vector representation of c.  On the 

)....( 011
2 ccccc ni

i

−== ∑ β

)...( 102
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other hand, the square root computation is just a right rotation, i.e., 

)...( 110 cccc n−=  at Step 3 in point halving algorithm.  Therefore the quadratic 

equation  can be solved bitwise at Step 1 in point halving algorithm.  

These operations are expected to be inexpensive relative to the field multiplication 

or the field inversion.  The field multiplication in a normal basis is more 

complicated, but, with optimization, it can be reduced to a series of n cyclic shifts 

of the two vector multiplicands.  Mullin, Onyszchuk, Vanstone and Wilson [27] 

introduced optimal normal bases that can optimize the time complexity for field 

multiplication in GF(2

cxx =+2

n).  The normal basis implementation is the basic 

architecture in the halve-and-add evaluation algorithm to be described in the next 

subsection. 

 

4.5 Halve-and-Add Method for Weil Pairing 

Now we propose a halve-and-add method for the evaluation of rational 

functions used in the Miller’s algorithm.  The evaluation algorithm described in 

Section 4.2 applies the double-and-add method to compute Weil pairing.  To take 

advantage of point halving, we propose a halve-and-add version of the evaluation 

algorithm. 
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Let the λ-representation of a point P=(xP, yP) be (xP, λP), and the canonical 

form of a divisor DP be (P) – (O) + div(g), where g is a rational function.  

Assume that Q=2P with λ-representation (xQ, λQ) corresponds to a divisor DQ with 

canonical form (Q) – (O) + div(f).  Let 0),(PP, =yxh  be the equation of the 

tangent line at P and 0),(2P =yxh  be the vertical line through Q=2P.  By the 

addition formula of two divisors with canonical form (see Eq. (2.1)), we have 

DP + DP = (2P) – (O) + div(
2P

PP,2

h
h

g ) 

= (Q) – (O) + div(f).         (4.5) 

We also have 

2
PPPPPPP,  )(),( xxyxxyyyx ++=+++= λλh  and Q2P ),( xxyx +=h . (4.6) 

From Eqs. (4.5) and (4.6), we have 
Q

2
PP2

2P

PP,2

xx
xxy

+
++

==
λg

h
h

gf  and thus  

2
PP

Q

xxy
xx
++

+
=

λ
fg . 

Denote the 1/2-representation of m as (m)1/2 = ( … ) such that 1
ˆ
−nb 0̂b

rbm
n

i
ii  mod 

2
1ˆ

1

0
∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛= , where r is the order of point P.  In order to apply the 

halve-and-add operation in the evaluation of f, we first determine (m)1/2.  A 

simple translation was described in [19].  For Weil pairing computation, integer 
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m is not only the scalar in evaluating f but also the order of the point P, i.e., mP=O.  

To evaluate the rational function fm, we first evaluate fm-1 by using halve-and-add 

method, and then obtain fm from fm-1.  This is because (m)1/2 is always the zero 

string (00…0) after translation and we can not evaluate fm by using the 

halve-and-add method directly.  The translation of (m-1)1/2 in our algorithm is 

given as follows.  Let , and 2⎡ mn 2log= ⎤ n-1(m-1) mod m = .  

Then (m-1)

)...(2 01

1

0

ccc n

n

i

i
i −

−

=

=∑

1/2 = ( … ), where =  for i = 0, …, n-1.  For example, let 

m = 25 and 

1
ˆ
−nb 0̂b ib̂ inc −−1

⎡ ⎤ 5252 == logn , we can compute 24×(25-1) mod 25 = 9 and 

represent it as (01001).  Thus the 1/2-representation of 24 is (10010). 

Now we compute Step 2 of the Miller’s algorithm by the following 

halve-and-add evaluation algorithm. 
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Halve-and-Add Evaluation Algorithm 

INPUT: points P, T, S, where P is given by λ-representation (xP, λP), and the order 

m  

OUTPUT: fm(S) = fP(S) 

Find the 1/2-representatin (m-1)1/2.= ( … ) with ∈{0,1}, =1; 

f

1
ˆ
−nb 0̂b ib̂ 1

ˆ
−nb

1 ← 
)S(
)S(

TP,

TP

h
h + ; 

f ← f1; Z ← P; 

 for j ← n-1, n-2, …, 0 do 

  2
Z/2SZ/2S

ZS

xxy
xx
++

+
←

λ
ff ; Z ← 

2
1 Z; 

  if = 1 then 

   

jb̂

)S(
)S(

PZ

PZ,
1

+

←
h
h

fff ; Z ← Z + P; 

  endif 

 endfor 

)S(
)S(

PZ

PZ,
1

+

←
h
h

fff ; Z ← Z + P; 

return f  
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In our halve-and-add evaluation algorithm, the halving stage requires 1 

inversion, 3 multiplications, 1 squaring, and 1 square root computing, and has an 

advantage over the doubling.  A detailed comparison will be given in the next 

section. 

 

4.6 Performance Evaluation  

In this section we estimate the saved operations in our halve-and-add 

evaluation algorithm compared with the double-and-add evaluation algorithm.  

When we consider the arithmetic operations in a normal basis, the time saved by 

using halving instead of doubling is significant.  In affine coordinates, both 

elliptic doubling and addition for scalar multiplication require 1 inversion, 2 

multiplications, and 1 squaring.  In the λ-representation, halving stage for scalar 

multiplication requires 1 multiplication and three extra operations: solving the 

quadratic equation, trace computation, and square root computation.  The 

addition stage requires an extra multiplication for the recovery of y-coordinate in 

the λ-representation.  Let the order of the Weil pairing m be represented in binary 

format by a bit string of length n with k non-zero entries, obviously n≥k.  Note 
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that our halve-and-add method requires the 1/2-representation of m-1 to apply 

halving and addition.  By the translation of (m-1)1/2, (m-1)1/2 is a bit string of 

length n with k-1 non-zero entries.  Since we need an extra addition in the final 

step to obtain mP from (m-1)P, the total addition in halve-and-add method is still k.  

The operations needed for the scalar multiplication are listed in Table 1. 

Table 4.1  Arithmetic Operations for Scalar Multiplication (n≥k) 

Operation Double-and-Add Halve-and-Add 
Inversion n + k k 
Multiplication 2n + 2k n + 3k 
Squaring n + k k 

Solving  axQ +=+ λλ ˆ2̂ 0 n 

Square root 0 n 
Trace computing 0 n 

 

In affine coordinates, the doubling stage requires 2 inversions (one for the 

slope of hZ,Z(S), another for h2Z(S)), 4 multiplications, and 1 squaring.  Our 

halving stage requires 1 inversion, 3 multiplications, 1 squiring, and 1 square root 

computing in the λ-representation.  The addition in our halve-and-add method 

requires two extra multiplications for the recovery of y-coordinate.  The 

operations needed for the evaluation of a rational function in Weil pairing are 

listed in Table 2. 
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Table 4.2  Arithmetic Operations for Rational Function Evaluation (n≥k) 

Operation Double-and-Add Halve-and-Add 
Inversion 2n + 2k n + 2k 
Multiplication 4n + 5k 3n + 7k 
Squaring n  n  
Square root 0 n  

 

As shown in Tables 1 and 2, by using halvings, we can save 2n inversions, 

2n-3k (in general, n≥2k as shown in Table 3) multiplications and n squarings at the 

cost of solving n quadratic equation, 2n square roots, and n trace computing.  

Note that, in a normal basis, the time needed to calculate the quadratic equation, 

square root, and the trace is negligible compared with the time needed to compute 

a multiplication or an inversion. 

To investigate our improvement in computing the Weil pairing, we 

implement the Boneh-Franklin’s ID-based encryption (IBE) scheme over the 

NIST recommended curves [11] on a 700MHz Intel Pentium III.  Their scheme 

requires one pairing operation for both encryption and decryption.  The recent 

IBE schemes proposed by Boneh-Boyen [6][7] and Waters [34] pre-compute one 

pairing operation before encryption, thus require no pairing for encryption but use 

two pairings for decryption.  Their contributions focus on constructing secure 

provable IBE schemes in different security models such as selective-ID model and 
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standard model without random oracle.  As our algorithm improves the 

computation of pairing which is primitive in IBE schemes, we can implement 

these new schemes in the future work.  Our implementation is programmed in C 

and uses the free GNU Multiple Precision (GMP) arithmetic library to deal with 

the big number operations.  The traditional double-and-add method and our 

halve-and-add method are both implemented for computation of Weil pairing in 

the ID-based encryption scheme over NIST recommended curves of different 

strength.  Curves B-163, B-233 and B409 have the same form: y2 + xy = x3 + x2 + 

b over binary fields GF(2163), GF(2233) and GF(2409), respectively.  The orders of 

the Weil pairing m chosen in these curves are listed in Table 3.  The 

representation of elements in the binary field is over a normal basis.  The size of 

message encrypted in our implementation is 160 ASCII characters.  Table 4 lists 

the execution times in the ID-based encryption scheme using double-and-add 

method and halve-and-add method, and shows the improvements.  The Weil 

pairing is the primitive operation for both encryption and decryption in the 

ID-based encryption scheme.  Therefore, the efficient computation for Weil 

pairing improves both encryption and decryption.   
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Table 4.3 The Orders of Weil Pairing in the NIST Curves 

NIST 
Curve 

m (order of Weil pairing in 
decimal) 

n (length of 
(m)2) 

k (weight of 
(m)2) 

B-163 5846006549323611672814742442
876390689256843201587 

163 41 

B-233 6901746346790563787434755862
2770255558398127373450135553
79383634485463 

233 59 

B-409 6610559687902485989519153080
3277103982840468296428121928
4648798304157774827374805208
1437237621791109659798672883
66567526771 

409 103 

 

Table 4.4 Execution Times (in msec) in ID-based Encryption Schemes  
for the NIST Curves 

 Double-and-Add Halve-and-Add Improvement

Weil Pairing Evaluation 10.76 6.95 35 % 
Encryption 16.72 12.45 26 % 

 
B-163 

Decryption 12.95 8.37 35 % 
Weil Pairing Evaluation 41.56 30.48 27 % 
Encryption 76.28 50.13 34 % 

 
B-233 

Decryption 46.75 37.48 20 % 
Weil Pairing Evaluation 126.48 91.35 28 % 
Encryption 198.43 135.97 31 % 

 
B-409 

Decryption 150.25 110.64 26 % 

 

Our method reduces a number of inversions and multiplications which are 

expensive in computing the Weil pairing.  Overall a 20~35% improvement in 

encryption/decryption has been accomplished. 
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Chapter 5 

End-to-End Security for Short Message 
Service 

 

In the mobile communication systems, security (encryption) offered by the 

network operator only applies on the wireless link.  Data delivered through the 

mobile network can be acquired by any core network.  Existing end-to-end 

security mechanisms are provided at application level and typically based on 

public key cryptosystem.  In this chapter, we first introduce the short message 

service (SMS) for GSM [21][23].  Then we propose two applicable end-to-end 

encryption mechanisms for SMS based on the certificate-based public key 

cryptosystem and the ID-based public key cryptosystem, respectively.  Finally, 

we also evaluate and compare the delivery overheads between these two 

mechanisms. 
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5.1. Short Message Service Architecture 

The network architecture of short message service in GSM is illustrated in 

Fig. 5.1.  In this architecture, the short message is first delivered from the mobile 

station (MS) A to a short message service center (SM-SC) through the base station 

system (BSS), the mobile switching center (MSC), and then the interworking 

MSC (IWMSC).  The SM-SC then forwards the message to the GSM network 

through a specific GSM MSC called the short message service gateway MSC 

(SMS GMSC).  The SM-SC may connect to several GSM networks and to 

several SMS GMSCs in a GSM network.  Following the GSM roaming protocol, 

the SMS GMSC locates the current MSC of the message receiver and forwards 

the message to that MSC.  The MSC then broadcasts the message through the 

BSS to the destination MS B.  In the next sections, we will describe two 

encryption mechanisms for end-to-end secure SMS based on certificate-based and 

ID-based cryptosystems. 
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Figure 5.1 GSM short message service network architecture 

 

5.2. RSA Mechanism 

The most widely implemented approach to public key encryption is the 

Rivest-Shamir-Adleman (RSA) scheme [28].  The RSA scheme is a block cipher 

in which the original non-ciphered text and cipher text are integers between 0 and 

n-1 for some n.  That is, the block size kRSA is determined by the bit length of the 

integer n and regarded as the key size of the RSA scheme.  This scheme consists 

of the following three functions: 

Key generation: A user first selects two prime numbers p and q, randomly 

chooses e with gcd(e, (p-1)(q-1)) = 1, and calculates d ≡ e-1 mod (p-1)(q-1).  
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Then the public key is KU = (e, n) and the private key is KR = (d, n), where n = 

pq. 

Encryption: For a given message represented as an integer M < n, the cipher 

text is computed by C = M e mod n. 

Decryption: For a given cipher text C, the original non-ciphered text is 

computed by  

M = C d mod n. 

A RSA mechanism for end-to-end secure SMS is introduced as follows.  

The end-to-end security service provider (ESSP) plays a role as the CA in the 

certificate-based public key cryptosystem.  To access the end-to-end security 

service, a user first chooses his/her own key pair (KU, KR) and subscribes to the 

ESSP for requesting a certificate of his/her public key KU.  The ESSP signs the 

certificate with its private key and publishes the certificate in the public key 

directory for public access.  When a mobile user A (the sender) wants to encrypt 

a short message to user B, he/she first sends a public key request (Fig. 5.2 (1)) to 

the public key directory in short message format.  The public key directory 

retrieves user B’s certificate.  If it succeeds, user B’s certificate is sent to user A 

as the public key response (Fig. 5.2 (2)).  Once user A is in possession of B’s 
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certificate, he/she verifies the certificate with the ESSP’s public key and uses the 

user B’s public key to encrypt short message for B (Fig. 5.2 (3)).  If the request 

fails (due to unavailability of user B’s certificate), the ESSP will inform user B to 

subscribe to end-to-end security service if he/she wants to securely communicate 

with user A. 

User A User BPublic Key 
Directory

(1) Public Key Request

(3) Encrypted Short Message

(2) Public Key Response

ESSP

 

Figure 5.2 Procedure of sending an encrypted short message 

 

5.3. ID-based Mechanism 

In the above RSA approach, the sender needs to communicate with the public 

key directory for requesting the public key.  If the request fails (e.g., the 

directory server is down or there is no certificate existing for the receiver), the 
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sender can not encrypt a short message for the receiver.  On the other hand, in an 

ID-based encryption scheme, the sender simply uses the receiver’s ID (i.e., the 

telephone number) as his public key without any request and verification.  Thus, 

the sender does not need to access any public key directory before sending an 

encrypted short message. 

The first complete and efficient ID-based encryption scheme was proposed 

by Boneh and Franklin [8] which uses a bilinear map called Weil pairing over 

elliptic curves.  The bilinear map transforms a pair of elements in group G1 and 

sends it to an element in group G2 in a way that satisfies some properties.  The 

most important property is the bilinearity that it should be linear in each entry of 

the pair.  Assume that P and Q are two elements (e.g., points on elliptic curves) 

of an additive group G1.  Let e(P, Q) be the element of a multiplicative group G2, 

which is the pairing applied to P and Q.  Then the pairing must have the 

following property:  

e(rP, Q) = e(P, Q)r = e(P, rQ),  

where r is an integer and rP denotes the element generated by r times of 

additions on P, e.g., 2P=P+P, 3P=P+P+P and so on.  Weil pairing on elliptic 

curves is selected as the bilinear map.  That is, the elliptic curve group (the set of 

 54



point collection on elliptic curves) is used as G1 and the multiplicative group of a 

finite field is used as G2. 

The ID-based scheme consists of four algorithms: Setup, Extraction, 

Encryption, and Decryption.  Setup is run by the PKG to generate the master key 

and the system parameters.  This is done on input of a security parameter kID, 

which specifies the bit length of the group order and is regarded as the key size of 

the ID-based scheme.  The Extraction algorithm is carried out by the PKG to 

generate a private key corresponding to the identity of a user.  As with regular 

public key cryptography, the Encryption algorithm takes a message and a public 

key as inputs to produce a cipher text.  Similarly, the Decryption algorithm is 

executed by the owner of the corresponding private key to decrypt the cipher text.  

These four functions are described as follows. 

Setup: With the parameter kID, the algorithm works as follows: 

1. Generate a random kID-bit prime p, two groups (G1; +); (G2; *) of order 

p, and the Weil pairing e: G1 × G1 → G2.  Choose an arbitrary generator P ∈ G1. 

2. Pick a random number s ∈ Zp* and set Ppub = sP . 

3. Choose cryptographic hash functions h1:{0, 1}*→G1* and h2:G2 →{0, 
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1}n for some n. 

The public system parameters are {p, G1, G2, e, n, P, Ppub, h1, h2} and the 

master key s is kept in secret by the PKG. 

Extraction: For a given string ID∈{0, 1}* as the public key, the algorithm 

works as follows: 

1. Compute QID = h1(ID) ∈ G1. 

2. Set the private key KR = sQID, where s is the master key held by PKG. 

Encryption: To encrypt a message M under the public key KU = ID, the 

algorithm works as follows: 

1. Compute QID = h1(ID) ∈ G1. 

2. Choose a random r ∈ Zp*. 

3. Set the cipher text to be C = (U, V) = (rP, M ⊕ h2(e(QID, sP)r)) 

Decryption: To decrypt a cipher C = (U, V) encrypted using the public key 

KU = ID, the algorithm uses the private key KR = sQID to compute M = V ⊕ 

h2(e(sQID, U)).  This decryption procedure yields the correct message due to the 

bilinearity of the Weil pairing (i.e., e(sQID, U) = e(sQID, rP) = e(QID, sP)r). 
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Details of Weil pairing for ID-based cryptosystem can be found in Chapter 4. 

Based on an improved algorithm proposed in Chapter 4, an efficient 

ID-based end-to-end encryption mechanism for mobile services is illustrated in 

Fig. 5.3.  The PKG (Fig. 5.3 (1)) constructs the ID-based cryptosystem and uses, 

for example, the phone number as the ID (Fig. 5.3 (2)).  Every mobile user 

involved in the ID-based cryptosystem is given a subscriber identity module (SIM) 

card (Fig. 5.3 (3)) at the subscription time.  The ID (phone number; e.g., 

0912345678 in Fig. 6) and its corresponding private key KR are loaded in the 

SIM card by the end-to-end security service provider.  Note that for standard 

GSM/UMTS service, SIM card is always given to a mobile user at the 

subscription time, and the proposed ID-based encryption scheme can be 

pre-loaded into the SIM card without incurring any extra overhead.  The mobile 

station contains two security modules: ID-based encryption module (Fig. 5.3 (4)) 

and ID-based decryption module (Fig. 5.3 (5)).  When a mobile user A (the 

sender; (Fig. 5.3 (6))) wants to encrypt a short message to user B (the receiver), A 

uses B’s phone number 0912345678 (Fig. 5.3 (7)) as the public key and encrypts 

the message through the ID-based encryption module.  Once user B receives the 

cipher (the encrypted message), he/she uses the private key KR (Fig. 5.3 (8)) 
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stored in the SIM card to decrypt the cipher through the ID-based decryption 

module and obtain the original non-ciphered message. 

Figure 5.3 ID-based end-to-end encryption mechanism 

To estimate the encryption overheads between the RSA and the ID-based 

mechanisms, we implement these two encryption schemes and give the evaluation 

in the next section. 
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5.4 Performance Comparison 

This section compares the delivery delay of ciphered short messages based 

on the RSA and the ID-based approaches, respectively.  The experimental 

environment is illustrated in Fig. 5.4.  Both the sender and the receiver are 

notebooks (Fig. 5.4 (1) and (3)) configured with a Pentium-III 500 MHz CPU, 

256MB main memory, and 20GB disk space, and running on the Windows XP 

Professional operating system.  To deliver short messages, every notebook is 

plugged in a NOKIA Card Phone version 2.0 and the short message is sent via the 

ChungHwa GSM network (Fig. 5.4 (2)) from the sender to the receiver. 

Figure 5.4 Experimental environment for encrypted short message 

We first note that to support the same security level, the key length for the 

ID-based and the RSA approaches are different.  The ID-based cryptosystem 

using Weil pairing is over elliptic curves, thus its security level depends on the 

key length of Elliptic Curve Cryptosystem (ECC).  As listed in Table 5.1 [15], a 
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108 bits ECC key provides the same security level as a 512 bits RSA key, a 160 

bits ECC key provides the security level equivalent to a 1024 bits RSA key, and a 

224 bits ECC key is equivalent to a 2048 bits RSA key.  For a fair comparison, 

we measure the delivery delays of ID-based system and RSA system over the 

same security level, and the results are shown in Fig. 5.5. 

Table 5.1 Key sizes for equivalent security levels (in bits) 

ECC (ID-based) RSA 

108 512 

160 1024 

224 2048 

 

This figure plots delivery delays of the RSA and ID-based approaches for the 

same non-ciphered length (in bytes), where the ◆ curves represent the RSA 

delivery delay, the ▓ curves represent the ID-based delivery delay, and the ▲ 

curves represent the non-ciphered message delay. 

Based on the RSA encryption algorithm described in Section 5.2, for a 
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non-ciphered message of length i, the length of a RSA ciphered message is 

( ) ⎥
⎥

⎤
⎢
⎢

⎡
×=

RSA
RSARSA k

ikiL   

where  is the key length of RSA approach.  For RSAk 512=RSAk , 

( )
⎩
⎨
⎧

≤<
≤

=
1024i512          1024
512                    251 i

iLRSA . 

Therefore, in Fig. 5.5 (a), we observe a step curve for the RSA ciphered message 

delivery.  For  and 1024=RSAk 2048=RSAk , if 1024≤i , ( )iLRSA  is 1024 and 

2048 respectively.  Therefore, in Figs. 5.5 (b) and (c), we observe horizontal 

lines for the RSA-ciphered message delivery. 

Based on step 3 of ID-based encryption algorithm described in Section 5.3, 

the length of an ID-based ciphered message is 

( )
4
ID

ID
kiiL +=   

where  is the key length of ID-based approach.  For a fixed , 

 increases as i increases.  Therefore, in Figs. 5.5 (a), (b), and (c), we 

observe linear lines for ID-based ciphered message delivery. 

IDk IDk

( )iLID

Based on the above delivery delay analysis, Fig. 5.5 (a) shows that the 

ID-based approach outperforms the RSA approach when the length of a 
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non-ciphered message is less than 30 bytes or is between 65 and 90 bytes.  Fig. 

5.5 (b) shows that the ID-based approach outperforms the RSA approach when the 

non-ciphered message length is less than 79 bytes.  Fig. 5.5 (c) shows that the 

ID-based approach outperforms the RSA approach up to 140-byte message limit 

of short message service.  These figures indicate that as the security level 

increases, it is more likely that the ID-based approach outperforms the RSA 

approach. 
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(a) 512 bits RSA key and 120 bits ID-based key cipher 
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(b) 1024 bits RSA key and 160 bits ID-based key cipher 
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(c) 2048 bits RSA key and 224 bits ID-based key cipher 

Figure 5.5 Delivery delay of short message service 
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Fig. 5.6 shows the overheads for ID-based and RSA approaches.  We 

assume that, for a non-ciphered message of length i, the transmission delay for 

non-ciphered message is , the delay for ID-based approach is , and 

the delay for RSA approach is 

( )iTP ( )iTID

( )iTRSA .  The curves for these delivery delays are 

shown in Fig. 5.5.  Thus, the overhead for ID-based and RSA approach are 

( ) ( )
( )iT

iTiToverhead
P

PID
ID

−
=  

and 

( ) ( )
( )iT

iTiT
overhead

P

PRSA
RSA

−
=  

, respectively. 

Fig. 5.6 (a) and (b) indicate that the overheads for both approaches decrease 

as the non-ciphered message length increases for a fixed  and .  But, 

for , the curve increases dramatically when message length is 65 bytes.  

In Fig. 5.6, we observe that as security level increases, the ID-based approach 

outperforms than RSA approach.  Besides, the ID-based approach avoids sending 

more than one short message by decreasing the maximum length of non-ciphered 

message as security level increases. 

IDk RSAk

512=RSAk
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Chapter 6 

Conclusions and Future Work 

 

6.1 Summary 

In Chapter 3, we introduced the certificate-based and the ID-based public key 

cryptosystems which provide authentic solutions for public key distribution.  A 

major advantage of ID-based cryptosystem is that no certificate is needed to bind 

user names with their public keys.  The first complete and efficient ID-based 

encryption scheme [8] uses a bilinear map (the Weil pairing) over elliptic curves 

to construct the encryption/decryption scheme.  The pairing computing has 

significant overhead.  Therefore, an efficient algorithm for ID-based 

cryptosystem is essential in mobile devices with limited computing power. 

In Chapter 4, we proposed a fast method for computing the Weil pairing 

using point halving.  With the λ-representation in a normal basis, significant 

improvement in terms of time saving has been demonstrated in computing Weil 
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pairing.  Our study indicates that this new approach significantly outperforms a 

well-known, previously proposed ID-based solution.  To sum up, our 

contribution is twofold: firstly, we are the first to apply point halving algorithm to 

the ID-based scheme; secondly, we proposed an efficient approach to compute the 

point halving algorithm.  By reducing the computation complexity, our approach 

provides an appropriate ID-based encryption solution for mobile services where 

the mobile terminals have limited computing power. 

In Chapter 5, two applicable end-to-end security mechanisms for SMS based 

on the RSA scheme and the ID-based scheme are introduced and implemented.  

The ID-based scheme provides a great simplification of key distribution.  That is, 

all public keys can be derived from the identities of the users.  Therefore 

obtaining someone’s public key, for encryption or verification, becomes a simple 

and transparent procedure.  This is in contrast to the RSA scheme, where one has 

to look up the corresponding certificate and verify the CA’s signature.  Another 

advantage of the ID-based scheme is the linear scalability of increasing security 

level.  When the security level increases, the key size of the RSA scheme 

increases faster than that of the ID-based scheme and therefore may not be 

practical for the mobile service.  Our study concludes that the ID-based scheme 
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offers a convenient end-to-end security mechanism for mobile service such as 

SMS. 

 

6.2 Future Work 

We recommend the following topics for further research. 

Tate pairing: Realize the definition of the Tate pairing and the algorithm for 

computation. 

Algorithm improvement: General improvements of the algorithm can be 

made and it is important to discover specific efficient cases of the algorithm. 

Applications of ID-based cryptosystem: Much effort has been dedicated to 

ID-based applications already.  Nevertheless, we believe that ID-based 

cryptography still has some interesting but less explored applications like 

cryptographic workflow, authenticated service access control, and so on. 

Practical experience of ID-based cryptosystem: We recommend a 

systematic research into the practical experience of the ID-based cryptosystems in 

different environments, such as mobile network, to make clear what the potentials 

of ID-based cryptosystem really are.

 68



Bibliography 

 

[1] C. Adams, and S. Lloyd, “Understanding public-key infrastructure: concepts, 

standards, and deployment considerations,” Macmillan Technical Publishing, 

1999 

[2] P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott, “Efficient algorithms for 

pairing-based cryptosystems”, Advances in Cryptology-CRYPTO’02, pp. 

354–368. 

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations among 

notions of security for public-key encryption schemes”, Advances in 

Cryptology-CRYPTO'98, pp. 26-45. 

[4] I. F. Blake, K. Murty and G. Xu, “Refinements of Miller’s Algorithm for 

Computing Weil/Tate Pairing”, to appear in Journal of Algorithms. 

[5] I. F. Blake, G. Seroussi and N. P. Smart, Elliptic Curves in Cryptography, 

Cambridge University Press, Cambridge, (1999). 

[6] D. Boneh and X. Boyen, “Efficient Selective-ID Secure Identity Based 

Encryption Without Random Oracle”, Advances in 

 69



Cryptology-EUROCRYPTO’04, pp. 223-238. 

[7] D. Boneh and X. Boyen, “Secure Identity Based Encryption Without Random 

Oracles”, Advances in Cryptology-CRYPTO’04, pp. 443–459. 

[8] D. Boneh and M. Franklin, “Identity-based Encryption from the Weil Pairing”, 

Advances in Cryptology-CRYPTO’01, pp. 213–239. 

[9] D. Boneh, B. Lynn and H. Shacham, “Short signatures from the Weil pairing”, 

Advances in Cryptology-ASIACRYPTO’01, pp. 514–532. 

[10] K. Eisentrager, K. Lauter and P. L. Montgomery, “Fast Elliptic curve 

arithmetic and improved Weil pairing Evaluation,” Topics in Cryptology, 

CT-RSA’03, pp. 343–354. 

[11] FIPS 186-2, Digital Signature Standard (DSS), Federal Information 

Processing Standards Publication 186-2, NIST 2000. 

[12] K. Fong, D. Hankerson, J. Lopez and A. Menezes, “Field Inversion and Point 

Halving Revisited”, IEEE Trans. on Computers, vol. 53, No. 8, 2004, pp. 

1047-1059. 

[13] G. Frey, M. Muller, and H.G. Ruck, “The Tate Pairing and the Discrete 

Logarithm Applied to Elliptic Curve Cryptosystems”, IEEE Trans. on 

Information Theory, vol. 45, No 5, 1999, pp. 1717-1719. 

 70



[14] S. Galbraith, K. Harrison and D. Soldera, “Implementing the Tate Pairing,” 

Algorithm Number Theory Symposium, 2002, pp. 324–337. 

[15] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curves 

Cryptography, Springer-Verlag, 2003. 

[16] H.-N. Hung, Y.-B. Lin, M.-K. Lu, and N.-F. Peng, “A Statistic Approach for 

Deriving the Short Message Transmission Delay Distributions”, IEEE Trans. 

on Wireless Communications, vol. 3, No. 6, 2004. 

[17] ITU-T Recommendation X.509, “Information technology - open systems 

interconnection - the directory: Public-key and attribute certificate 

frameworks”, 2000. 

[18] A. Joux, “A One Round Protocol for Tripartite Diffie-Helman”, Algorithm 

Number Theory Symposium, vol. 1838, Springer-Verlag Heidelberg, 2000, pp. 

385–393. 

[19] E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving”, Advances 

in Cryptology-ASIACRYPTO’99, pp. 135-149 

[20] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press. 

[21] Y.-B. Lin and I. Chlamtac, Wireless and Mobile Network Architectures, John 

Wiley and Sons, 2001. 

 71



[22] Y.-B. Lin, M.-F. Chen, and H. C.-H. Rao, “Potential Fraudulent Usage in 

Mobile Telecommunications Networks”, IEEE Trans. on Mobile Computing, 

vol. 1, No. 2, 2002, pp. 123-131. 

[23] Y.-B. Lin and A.-C. Pang, Wireless and Mobile All-IP Networks, John Wiley 

and Sons, 2005. 

[24] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic 

Publishers, 1993. 

[25] A. J. Menezes, P.C. van Oorschot, and S. Vanstone, Handbook of Applied 

Cryptography, CRC Press, Boca Raton, 1997. 

[26] V. Miller, “Short Programs for Functions on Curves”, Unpublished 

Manuscript, 1986. 

[27] R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, “Optimal normal bases 

in GF(pn)”, Discrete Applied Mathematics, vol. 22, 1988, pp. 149-161. 

[28] R. Revest, A. Shamir, and L. Aldeman, “A Method for Obtaining Digital 

Signature and Public Key Cryptosystems”, Communication of the ACM, 

February 1978 

[29] M. Scott, The Tate Pairing.  

Available from www.computing.dcu.ie/~mike/tate.html. 

 72



[30] A. Shamir, “Identity-based Cryptosystems and Signature Schemes”, 

Advances in Cryptology–CRYPTO’84, pp. 47-53. 

[31] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in 

Mathematics, 106, Springer-Verlag, 1986. 

[32] W. Stallings, Cryptography and Network Security, Prentice Hall, 1999. 

[33] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, 

Chapman & Hall/CRC, 2003. 

[34] B. R. Waters, “Efficient Identity-Based Encryption Without Random 

Oracles”, Advances in Cryptology-EUROCRYPTO’05, pp. 114-127. 

 

 73


	Student: Jing-Shyang Hwu    Advisors: Dr. Rong-Jaye Chen�   

