B = o= i

B Lok <

_ , R 2 ’ A 3 ’ & 3 % 2 25
FR R LR SERBIE kL2 B

Computation and Application for ID-based

Cryptosystems in Mobile Network

T4 e

-
SRR REE B
oo L

A

Moite & 2



FR R Dl S MRE k22t E
Computation and Application for 1D-based
Cryptosystems in Mobile Network

oy oA P ga Student: Jing-Shyang Hwu
hERE o mER gL Advisors: Dr. Rong-Jaye Chen
- T #£4 Dr. Yi-Bing Lin
B 22 =~ FF a5 Kk
LA A S

TH,

\L-
v
<

A Dissertation
Submitted to Department of Computer Science
College of Computer-Seience
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science
October 2005

Hsinchu, Taiwan, Republic of China

PEREY e gL



EEERE PR BB M gL
o e

Hrrd «FFagriased i lr

NG

BT - R TE I K ALY o ST ORISR (T}IJ—QL"Z FHALE ) R
B- BE 284 kr ke gtap gl BF g% >4 (end-to-end security) o B w0 % A
TERBEAT IR B 2B FIA R A2 R o Ras p i) o R Y - BAAY E & AR

SE R4 0 FE O 2 My D AR B AR KA T KAELE Y

F TR R AL DR R0 FE R TEE 2 e & Az - Boneh fe Franklin
RS SRR RS AN FEARE S RS b Wty b

$#-% B 4(Weil pairing) ke 4c f2 % k5> £ ¢ BREHOEY B4 25
BT A E AR F Lo bed TAMHEE AL D E D B kN

PE - BAPE LR R A AR TR RA Y EREEENE T D

,L

>J

g PURE L PSR R RS REFR A oS ey B

BB 2PH B -



Computation and Application for ID-based
Cryptosystems in Mobile Network

Student: Jing-Shyang Hwu Advisors: Dr. Rong-Jaye Chen
Dr. Yi-Bing Lin

Department of Computer Science
College of Computer Science
National Chiao Tung University

ABSTRACT

In the next generation mobile telecommunications, any third party that provides
wireless data services (e.g., mobile banking) must have its own solution for
end-to-end security. Existing mobile security mechanisms are based on public-key
cryptosystem. The main concern in a public-key setting is the authenticity of the
public key. This issue can be resolved by identity-based (ID-based) cryptography
where the public key of a user can be derived from public information that uniquely
identifies the user. The first complete and efficient ID-based encryption scheme was
proposed by Boneh and Franklin. They use a bilinear map (the Weil pairing) over
elliptic curves to construct the encryption/decryption scheme. However, in the
existing ID-based cryptosystem, the pairing computing has significant overhead.
Therefore, efficient algorithm for computing bilinear pairing is essential for

implementation. In this dissertation, we will study the bilinear pairings over elliptic



curves and design improved algorithms for the computation of pairing over different
finite fields. This will provide efficient implementations for ID-based cryptosystems

in mobile devices to construct end-to-end security mechanisms
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Notation

The following notation is used throughout this thesis.

K

char(K)
GF(p)
GF(2")
L, k,mnr,s
X, Yy,a,b,c
A

a, f

E
PQR,STU
Xp, Yp

0]

Div(E)
DiVY(E)

D
supp(D)
deg(D)
f,g,h
div(f)

e(P, Q)
E[m]

Um

Tr(c)

finite field

characteristic of finite field K

finite field of size p, p is a prime larger than 3
finite field of size 2"

integer

element of finite field

element of finite field indicating the slope of a line
element of finite field GF(2")

group of points on elliptic curve

point on elliptic curve

coordinate of point P=(xp, yp)

point at infinite inelliptic curve group

group of divisors on elliptic curve

group of divisors enellipticcurve of degree zero
divisor on elliptic.curve

set of supporting points of divisor D

degree of divisor D

rational function over elliptic curve

divisor of rational function f

Weil pairing of points P and Q

group of m-torsion points on elliptic curve
group of m™ roots of unity in a finite field
trace of element c in a finite field



Chapter 1

Introduction

1.1 Research Motivation

In the recent years, the third generation (3G) and beyond 3G (B3G) mobile
telecommunications networks=[21] have been:widely deployed or experimented.
These networks offer large bandwidths-and-high transmission speeds to support
wireless data services besides traditionalivoice services. For circuit-switched
voice services, mobile operators have provided security protection including
authentication and encryption.  On the other hand, wireless data services (such as
mobile banking) are likely to be offered by the third parties (e.g., banks) who
cannot trust the security mechanisms of mobile operators. In this case, the third
parties must have their own solution for end-to-end security [22]. End-to-end
security mechanisms used in mobile services are typically based on public-key

cryptosystem.



In public-key cryptosystem each user has a key pair (Ky, Kgr), where Ky is

the public key and Kg is the private key. To generate the key pair, one first

chooses a private key Kgr and applies some one-way function to Kg to obtain a

random and uncontrollable Ky. The main concern in a public-key setting is the

authenticity of the public key. If an attacker convinces a sender that a receiver’s

public key is some key of the attacker’s choice instead of the correct public key,

he can eavesdrop and decrypt messages intended for the receiver. This is the

well known man-in-the-middle attack [32]. This authentication problem is

typically resolved by the use of verifiablesiinformation called certificate, which is

issued by a trusted third party and consists of the user name and his public key.

In 1984, Shamir [30] introduced; the concept of identity-based (ID-based)

cryptography where the public key of a user can be derived from public

information that uniquely identifies the user. For example, the public key of a

user can be simply his/her email address or telephone number, and hence

implicitly known to all other users. A major advantage of ID-based

cryptosystem is that no certificate is needed to bind user names with their public

keys. The first complete and efficient I1D-based encryption scheme was

proposed by Boneh and Franklin in 2001 [8]. They used a bilinear map (the Weil



pairing) over elliptic curves to construct the encryption/decryption scheme.

After that, the bilinear pairings have been used to design numerous ID-based

schemes, such as key exchange [18] and short signature [9].

In addition to the Weil pairing, there exists another bilinear map on the group

of points on an elliptic curve, which is known as the Tate pairing [13]. From a

computational point of view, the Tate pairing can be done approximately twice as

fast as the Weil pairing as it requires half the evaluations of rational functions in

Weil pairing. As our proposed algorithm improves the evaluation of a rational

function, it can be similarly=applied :to, the. computation of the Tate pairing

theoretically. A disadvantage of ithe Tate_pairing is that the outcome is not a

unique value, and so cannot be used‘in. many applications. This problem can be

solved by performing an exponentiation on the outcome of the Tate pairing [29].

The advantage of the Weil pairing is that its definition is more comprehensible

than that of the Tate pairing, which involves equivalence classes of quotient

groups. For the reader to easily follow the derivation of our proposed algorithm,

we introduce the Weil pairing and implement our proposed algorithm on it.

ID-based cryptosystem transparently provides security enhancement to the

mobile applications without requiring the users to memorize extra public keys.



For example, sending an ID-based encrypted short message is exactly the same as

sending a normal short message [16] if the mobile phone number of the short

message recipient is used as the public key. Therefore, the mobile user (the

sender) does not need to memorize the public key of the receiver. This feature is

especially desirable for mobile applications such as banking or stock transactions.

However, with the existing ID-based cryptosystem, the pairing computing has

significant overhead. Therefore, an efficient algorithm for ID-based

cryptosystem is essential in mobile devices with limited computing power.

The original algorithm for computing Weil pairing was proposed by Miller

[26] and most current algorithms arebased.-on it/in some way. It is an efficient

probabilistic polynomial-time algorithm for computing the pairings. The work

of Barreto, Kim, Lynn and Scott [2] and Galbraith, Harrison and Soldera [14]

focus in particular on the Tate pairing and they proposed methods for its fast

computation. They also considered a practical case of fields of characteristic

three. Eisentrager, Lauter and Montgomery developed an algorithm to speed up

point multiplication of an elliptic curve [10]. The most important part of the

Miller’s algorithm is the evaluation of a rational function associated with an

m-torsion point of the elliptic curve. In this dissertation, we extend the idea of



point halving, which was proposed by Knudsen [19], to speed up the evaluation of
a rational function. We also illustrate an applicable 1D-based end-to-end mobile

encryption system for short message service (SMS).

1.2 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 states some facts about
elliptic curves and functions on elliptic curves. Then we deal with divisor theory

on elliptic curves, which lies at the heart of the definitions of the Weil pairing.

In Chapter 3, we give expositions for certificate-based and ID-based
cryptography which provide authentic solutions for public key distribution.
After defining ID-based cryptography, we compare ID-based cryptography with
conventional certificated-based cryptography in some practical aspects, such as
authenticity of system parameters, registration at the authority, key escrow, key

revocation, key distribution, master key security, and additional possibilities.

In Chapter 4, we extend the idea of point halving to design an improved
evaluation algorithm for a rational function, which is the most important part of

Weil pairing computation. We first describe the original Miller’s algorithm for



computing Weil pairing and show the double-and-add method. Then we present

a new algorithm for computation of Weil pairing using the point halving technique

and the normal basis implementation. We actually implement the ID-based

encryption schemes and compare the performance to show the advantage of our

approach over a previously proposed popular solution.

In Chapter 5, we implement two encryption systems for Short Message

Service (SMS) and estimate the encryption overheads compared with the original

non-ciphered message transmissions. These two applicable end-to-end

encryption mechanisms for SMS lare based on the certificate-based public key

cryptosystem and the 1D-based public-Key.cryptosystem, respectively. We also

evaluate and compare the delivery overheads of these two mechanisms.

Chapter 6 summarizes our results and proposes future work.



Chapter 2

Preliminaries

In this Chapter, we describe divisor theory on elliptic curves. First, we
briefly give some facts about elliptic curves in Section 2.1. Next we deal with
divisor theory in Section 2.2. = For details on divisor theory, the reader is referred

to [24][31].

2.1 Elliptic Curves

Let p be a prime larger than 3. An elliptic curve over a finite field of size p
denoted by GF(p) can be given by an equation of the form: y* = x> + ax +b,
where a, b € GF(p) and 4a>+27b® = 0 mod p. (The equation over a finite field of
size 2" denoted by GF(2") looks slightly different and will be given later.) The

set of points on the curve is the collection of ordered pairs (x, y) with coordinates



in the field such that x and y satisfy the equation defining the curve, plus an extra
point O called the infinity point. These points form an abelian group E under a

certain addition over GF(p). That s,

E = {(x,y) U O | (x,y) satisfies the equation y* = x> + ax +b, x, ye GF(p)}.

The group addition operation is defined as follows: to add two points P=(xp,
yp) and Q=(Xq, Yo) on the curve, we first pass the straight line through them, find
out the third point (Xe:+q, Yr+') intersected with the curve, and then reflect the
point over the x-axis to obtain point P+Q=(Xpiq, Yr+q), 1.€., Yr+q= -Yr+q' (See Fig.

2.1).

Assume that P=(xp, yp) and-Q=(Xq, Yo) are on the curve, 1 is the slope of the

line passing through P and Q, then the coordinates of P+Q = (Xp+q, Yr+q) are

yQ_yP

2 T~ if P=Q

X = - X, — X -

PrQ Pore  where 1=1 ° X i .

Ypiq = ﬂ’(XP - XP+Q) —Ye 33X, +a if P=Q
Y

The infinity point O plays a role as the identity element, that is, P+O = O+P

= P for any point P. Each point P has a unique inverse element -P such that

P+(-P)=0. For P=(xp, yp) in elliptic curve E over GF(p), the unique additive

inverse of P is defined by -P=(xp, -yp).



/(XP+Qa yp+Q')

N

P+Q \(XP+Q, Yp+Q)

Figure 2.1 Group law on an elliptic curve

Another category of elliptic curves is defined over the finite field of size 2"
denoted by GF(2"). The equation defining elliptic curves over GF(2") is of the
form y? + xy= x> + ax’* +b , where a, beGF(2") and b=0. The addition operation
on points P and Q is the same as. before except that ypig= Xpiqg + Yp+q'.
Therefore we can obtain the addition formula as follows. Let P=(xp, yp), Q=(Xo,
yo)eE. Let A be the slope of the line passing through P and Q, and the

coordinates of P+Q be (Xp+q, Yp+q). Then

+
X P+ l+% +X, +a o TP=Q
= X + X
PQ Pore  where A=4"% F .
yP+Q:2’(XP+XP+Q)+XP+Q+yP XP+£ if P=Q
Xp

The inverse of P=(xp, yp) is defined by -P=(xp, Xptyp) When P is in elliptic



curve E over binary field GF(2").

For elliptic curves, the group operation is written as addition instead of
multiplication. Thus the exponentiation in the general multiplicative group can

be appropriately referred to as the scalar multiplication in the elliptic curve group.

That is, we denote rPas P+P+...+P foran integerr.
—_—

r times

2.2 Divisor Theory

A divisor is a useful device forskeeping track of the zeros and poles’ of
rational functions [24]. A divisor provides a representation to indicate which
points are zeros or poles and their orders for a rational function over the elliptic

curve. A divisor D can be defined as a formal sum of points on elliptic curve

groupE: D= ZnP(P) , Where np is a non-zero integer that specifies the zero/pole
PeE

property of point P and its respective order. Inequality np > 0 indicates that point
P is a zero, and np < 0 indicates that P is a pole. For example, for P, Q, ReE, D;
= 2(P) + 3(Q) - 3(R) indicates that divisor D; has zeros at P and Q with order 2

and 3 respectively, and a pole at R with order 3. And D,= 2(P) + (-2P) — 3(0)

! Let f be a non-zero rational function, and P<E.  If f(P)=0 then f is said to have a zero at P. If f
is not defined at P then f is said to have a pole at P and we write f(P)=co.

10



indicates that P and -2P are zeros with order 2 and 1, and O is a pole with order 3
for the divisor D,. Note that the parenthesis is used to separate the order and the
specific point. For example, (2P) indicates that 2P is a zero with order 1, while

2(P) indicates that P is a zero with order 2.

The group of divisors on E, denoted as Div(E), forms an abelian group with

the following addition operation.

For Dy, D2€Div(E), if D, =) n,(P),D,=>"m,(P),

PeE PeE
then D, +D, =Y n,(P)+> m,(P)= > (n, +m,)(P).
PeE PeE PeE

For a divisor D:ZnP(P), we- define. supp(D)={P<E | np=0} as the

PeE

support of divisor D, and deg(D):ZnP as .the degree of divisor D. For

PeE

example, if D; = 2(P) + 3(Q) — 3(R), D= 2(P) + (-2P) — 3(0), then supp(D1)={P,

Q, R}, supp(D2)={P, -2P, O} and deg(D;)=2+3-3=2, deg(D,)= 2+1-3=0.

From now on, we consider only the set of divisors of degree zero, denoted as

DiV’(E). Let f be a rational function from KxK to K, where K is a finite field.

3y —-2x-5

. The evaluation of a rational function f on a
Sy +3x-2

For example, f(x,y)=

point P=(xp, yp) is defined by f(P)=f(xp, yp) and the evaluation of f on a divisor

D= n,(P) is defined by f(D)= [ ]f(P)™. Define the divisor of a rational

PeE Pesupp(D)

function fas div(f) = anlf (P), where nps is the zero/pole order of point P on f.
PeE

11



It is well known that the degree of the divisor of a rational function must be zero
[24]; that is, div(f)eDiv°(E) for any rational function f. For example, let P=(xp,
yp)€E, f(X,y)= X-Xp, then div(f) = div(x-xp) = (P) + (-P) — 2(0). P and -P are the
zeros of f because only they are on both the vertical line x-xp=0 and the elliptic
curve E. The infinity point O is a pole of order 2 because div(f)eDiv’(E).
Then for two rational functions f; and f,, we have div(fy) + div(f,) = div(fif,) and
div(f;) — div(f,) = div(f/f,).

As an example, let E be the elliptic. curve defined by y?=x*+7x over GF(13).

y—X+3

We have P=(4,1), Q=(5,2)E,and P+Q=(5,11). = Assume that f(x,y) = =
X —_

Since P, Q, -(P+Q)=(5,2)=Q are on-the_ line.y-x+3=0, div(y-x+3) = (P) + (Q) +
(-(P+Q)) - 3(0) = (P) + 2(Q) — 3(0).“!Also, div(x-5) = (Q) + (-Q) + 2(0) = (Q) +
(P+Q) — 2(O) because Q, -Q=(5,11)=P+Q are on the line x-5=0. Therefore, we

have div(f) = div(y-x+3) — div(x-5) = (P) + (Q) — (P+Q) — (O).

A divisor DeDiV°(E) is defined to be principal if D=div(f) for some rational

function f.  The principal divisor D = ZnP(P) is characterized by ZnPP =0

PeE PeE

[24], where ZnPP denotes the sum by applying addition operation on the points

PeE

in elliptic curve E. For example, let D3 = (P) + (-P) — 2(O), then D3 satisfies

deg(Ds3)=0 and P+(-P)-20 = P-P = O. Therefore D3 is principal. In fact,

12



Ds=div(x-xp) for the function Xx-xp.

Two divisors D;, D,eDiv°(E) are said to be equivalent (denoted as Dy ~ D)

if D1—D; is principal. For any divisor D = ZnR(R) eDiV’(E), there is a unique

ReE

point P = anR €E such that D ~ (P) — (O). In other words, D can be always

ReE

written in canonical form: D = (P) — (O) + div(f), where f is a rational function.

Now we introduce a formula for adding two divisors in canonical form, such
that the result is still in canonical form. This formula provides a method of
finding a rational function f suchthat div(f),= D for a given divisor D, and is
critical for computing Weil pairing. Let D, Ds-c Div’(E) be given by D; =
(P) = (O) + div(fy) and D, = (Pz) = (O) +-div(f}). Assume that P;+P,=P3. Let
e 5, (X,y)=ay +bx+c be the equation of the straight line passing through P,
and P2, and h; (x,y)=x+d be the equation of vertical line passing through Ps.
(Note that if Py = Py, hy , (X,y) is the line tangent to P,.  And if P; = O, we
have h; (X,y)=1, a constant equation.) Then we have div(h; ; ) = (P1) + (P2) +
(-Ps) — 3(O) where Py, P, and -Ps are zeros because they are on line h; , , and
div(h, ) = (Ps) + (-P3) — 2(O) where Ps, -P; are zeros because they are on line h;,
(see Fig. 2.1). From the above discussion, the sum of divisors D; + D, is written

as. D; + Dy = (Py) + (P2) — 2(0) + div(fif,)

13



= (P3) - (0) + div(fsf,) + div(h,,_,. ) - div(h;,)

= (P3) = (0) + div(f.f,h, 5, /h;)). (2.)

Eq. (2.1) will be used in the computation of Weil pairing in Chapter 4.

14



Chapter 3

ID-Based Cryptography

In this chapter, we first introduce the public key cryptography and the
authentication of key distribution. Next described are the certificate-based and
the ID-based public key cryptosystems .which provide authentic solutions for
public key distribution. A comparison-is-also done between the certificate-based

and the ID-based systems.

3.1 Public Key Cryptography

All security mechanisms deployed today are based on either
symmetric/secret key or asymmetric/public key cryptography, or sometimes a
combination of both. Here we introduce the basic aspects of the secret key and

public key techniques and compare their main characteristics; a detailed

15



description of cryptographic mechanisms and their application can be found in

[25]. We will explain the most important elements and procedures that constitute

the public key infrastructure (PKI) on which public key techniques rely. A

general description of a public key infrastructure can be found in [1].

Secret key techniques are based on the fact that the sender and recipient

share a secret, which is used for various cryptographic operations, such as

encryption and decryption of messages and the creation and verification of

message authentication data. This secret key must be exchanged in a separate

procedure prior to the intended communication. - For example, in a GSM (Global

System for Mobile) cellular-radiosystem.the secret key shared between the

mobile subscriber and the home operator “is installed on a subscriber identity

module (SIM) that is owned by the mobile subscriber and administered in the

database of the subscriber’s home operator. The need to exchange a secret key

prior to the intended communication complicates the provision of security for

communications between entities that do not have a pre-established relationship.

Authentication is done by proving possession of the pre-shared secret key to each

other. A widely used method for doing this is the challenge-and-response

method. A challenge is sent to the challenged node, which then calculates a

16



response using the challenge and the secret key as input for an algorithm. This

response is sent to the challenger, which performs the same operation and

compares the result with the received response. The administration and

management of secret keys, including their generation, distribution, renewal and

tamper-resistant storage, can become very complicated as the number of keys

grows. For each pair of entities a secret key has to be created and distributed, so

that for a group of n entities communicating with each other, n(n - 1)/2 keys are

required. Because of the need for pre-shared secret keys, secret key based

solutions have low scalability. A majorradvantage of secret key techniques is

that they are computationally=very fast.th-comparison with public key techniques.

This is the main reason why many: pretocols today still use secret key mechanisms

for authentication.

Public key techniques utilize the asymmetric key pairs. In an asymmetric

key pair, one key is made publicly available, while the other is kept private.

Because one of the keys is available publicly, there is no need for a secure key

exchange. However, it is required to distribute the public key authentically.

Because there is no need for pre-shared secrets prior to a communication, public

key techniques are ideal for supporting security between previously unknown
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parties. Authentication is achieved by proving possession of the private key.
One mechanism for doing this is digital signature, which is generated with the
private key and verified using the corresponding public key. Public key
techniques make it possible to establish secret session keys dynamically. A
simplified procedure is for one end-entity to calculate a secret session key and
send it encrypted with the public key of the entity with which it wants to initiate a
session. That entity then obtains the secret key by decrypting the received
information with its private key. Since the public key of a key pair is usually
published in a directory, the overhead,associated with distributing keys is reduced

significantly in comparison with secret key techniques.

3.2 Authentication of Key Distribution

A main concern in public key distribution is the authenticity of the public key.
Fig. 1 illustrates how an adversary between a sender B and a receiver A can
impersonate receiver A in the public key encryption scheme. The adversary
achieves this by replacing A’s public key KU with a false public key KUA' which
is then received by B (Fig. 3.1 (1) and (2)). User B uses the false public key

KUA' to encrypt the message M (Fig. 3.1 (3)). The adversary obtains the secret
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message M (Fig. 3.1 (4)) and delivers the re-encrypted cipher to user A (Fig. 3.1
(5)). In this way, the secret message M is acquired by both user A (Fig. 3.1 (6))
and the adversary. Similar impersonation settings exist between the signer and
verifier in the signature schemes. This is the well known man-in-the-middle
attack. The following issue arises from the need to prevent these kinds of attacks:
how does B know (or authenticate) which particular public key is A’s? To
answer this question, authentication of public key distribution is required.
Authenticating public keys provides assurance to the entity that the received

public key corresponds to the sender’s identity.

User B <K—U—A,— Adversary ‘K_U_A_ User A
@ | ®U. KR, ) | 1) |KU,KRY

M KU, KRAl M LKUA KR, M

C oI Decrypt | [ Encrypt &
3) 4 %) 6)

Figure 3.1 The man-in-the-middle attack
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3.3. Certificate-based Public Key Cryptosystem

A typical approach to guarantee the authentication of the public key holder
relies on a trusted agent named Certificate Authority (CA). The CA’s digital
signature binds entity A’s identity IDa to the corresponding public key KUA.
The CA’s signature, when sent along with the identity (e.g., name or telephone
number) and public key, forms a digital certificate which can be verified by any

entity in possession of the CA’s public key.

This certificate provides a.binding between the identity and the public key.
Digital certificates can contain extrainformation, such as cryptographic
algorithms to be used in conjunction with the public key in the certificate. The
most widely adopted certificate format is based on the X.509 standard [17]. A

basic certificate issued by a CA for entity A is of the form:

Certa = (lDA, KUag, SignKR_CA(IDA, KUA)),

where Signkr ca(.) denotes the signing algorithm with the CA’s private key

as the signing key.

The certificate-based public-key distribution works as follows. User A first

chooses a public key cryptosystem, and generates his/her own key pair (KU4,
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KRa), where KUA denotes the public key and KRa is the private key. To attain

the authenticity of public-key distribution, user A has to subscribe to the trusted

Certificate Authority (CA; see Fig. 3.2 (1)), and requests a certificate Certa for

his/her public-key from CA (Fig. 3.2 (2)). The CA signs the certificate with its

private key. Then user A can send his/her certificate directly to another user B

(Fig. 3.2 (3)) or put it on the public key directory. Once user B is in possession

of A’s certificate, B verifies the certificate with the CA’s public key and has

confidence that the messages he/she encrypts with A’s public key will be secure

from eavesdropping and that messages-'signed with A’s private key are

unforgeable.

Certificate
Authority

(1)Authenticate(IDa, KU,)

(2) CertA=(IDA, KUA, SignKR_CA(IDA, KUA))

3)Cert
User A () Certa » User B

Figure 3.2 The certificate-based public key distribution
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3.4. ID-based Public Key Cryptosystem

Shamir [30] proposed the identity-based (ID-based) public key approach to
support public key cryptography without the use of certification. In ID-based
public key cryptosystem, user A’s public key KU, is not delivered to user B, and
therefore eliminates the attack presented in Fig. 3.1. User B encrypts a message
for user A or verifies a signature from user A using a public key which is derived
from user A’s identifier IDa (e.g., email address or telephone number; see Fig. 3.3
(3)). The trusted agent has a newsrole in‘ID-based public key cryptosystem, and
is renamed as the Private Key-Generator (PKG).. ' The PKG issues the private key
corresponding to the public key (derived from the-identifier IDA) to user A over a
secure channel (Fig. 3.3 (2)). This issuing action takes place after user A is
authenticated by the PKG (Fig. 3.3 (1)). To generate private keys, the PKG
makes use of a master key which must be kept secret. The requirement to have
an authentic CA’s public key for verifying certificates in certificate-based
cryptosystem is replaced by the requirement to have authentic PKG’s system
parameters in ID-based cryptosystem. Notice that both the PKG and the user A

know the private key KRAa.
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Private Key
Generator

(1) Authenticate(ID,)

IDa
By

User A User B

Figure 3.3 The ID-based public key distribution

3.5 ID-based Cryptography vs. Certificate-based

Cryptography

The conventional public key eryptosystem uses the certificate to solve the
authentication problem and is denoted as certificate-based cryptosystems. Both
ID-based and certificate-based cryptosystems are asymmetric. Hence, the
protocols for encryption, decryption, signing and signature verification have
similar functionality in both systems. The main difference, however, is key
management. ID-based cryptography was initially proposed to avoid the need
for certificates for public key authentication. In fact, an ideal 1D-based system

would possess the following properties:
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1. Users only need to know the identity of the user they want to communicate

with.

2. There is no need for keeping public directories such as files with public keys or

certificates.

3. The services of the Private Key Generator (PKG) are needed only during the

system set-up phase.

However, in practice such an ideal scheme seems to be infeasible.

Depending on the application, there are several.practical issues that stand in the

way of the realization of an ideal ID-based system. We compare ID-based

cryptography with the traditional certificate-based cryptography in the following

practical aspects: authenticity of system parameters, registration at the authority,

key escrow, key revocation, key distribution, master key security, and additional

possibilities.

Authenticity of system parameters

Suppose an attacker in an ID-based system generates his own master key and

corresponding system parameters, and fools users into believing that these forged

system parameters are correct. Then for any public key, he can derive the
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corresponding secret key under his master key. Hence, he can decrypt any

message encrypted under his forged parameters.  Further, he can create

signatures under any name, which will be accepted by users who believe his

parameters. The attacker might even impersonate the PKG and issue secret keys

to users on request. A similar problem occurs in a traditional situation, where the

users need to be sure of the authenticity of the public key of the CA. Namely, if

an attacker can make users believe that some public key of his choice is the public

key of the CA, then he can create certificates containing forged public keys for

which he owns the secret key. .Consequently, the attacker can read the messages

encrypted under the forged public keys-and create signatures that appear to be

valid under those keys. The only difference with the ID-based setting is that the

attacker cannot impersonate the CA, as users would notice that their requested

certificate contains an incorrect public key.

Registration at the authority

In both systems, a user who wants to participate needs to register at a

Registration Authority (RA), which we often consider part of the PKG or CA.

After some authentication procedure, the RA issues a unique digital identity to the

user, for instance, in the form of an email address. In a certificate-based system,
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a user can now present his digital identity and public key to the CA, along with a

proof of possession of the corresponding secret key. The CA then issues a

certificate that binds together the digital identity and the public key. Similarly, in

an ID-based setting, the user presents his digital identity to the PKG. The PKG

then computes the secret key corresponding to the public key derived from the

digital identity. ID-based systems have an additional disadvantage that the secret

key needs to be transported from the PKG to the user. Thus, a secure channel

that guarantees both confidentiality and authenticity is required. Therefore,

ID-based systems seem to work best in-applications where it is easy to achieve a

secure channel or where users.request secret keys not very often.

Key escrow

ID-based cryptosystems have inherent key escrow. That is, since the PKG

owns the master key, he can generate any private key at any moment.

Depending on the application, key escrow is not necessarily a bad thing. For

instance, key escrow enables recovery of lost keys. For signatures schemes,

however, it is often highly undesirable to have key escrow, as it prevents

non-repudiation. Note that this escrow capability is also present in traditional

public key settings where key pairs are generated by some central authority and
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this authority stores the issued keys. On the other hand, if users generate the key

pairs themselves or the central authority does not store the keys, there is no way

that keys can be retrieved and there is no key escrow. This is in contrast to an

ID-based setting, where the PKG always has the ability to regenerate keys. The

ID-based encryption scheme by Boneh and Franklin provides a way to block key

escrow by introducing multiple PKGs. In brief, each of these n PKGs has its

own master key. A user presents his public key to each KGC and gets from each

of them a partial secret key in return. Then the correct secret key is obtained by

combining the n partial secret keys. Thus. the ability to retrieve any user’s secret

key is distributed among n PKGs.  In.practice, setting up a system with multiple

PKGs can be a complex task. “‘Hence, an ID-based system works best in an

application where key escrow is not an objection, or where the group of users is

small enough to allow multiple PKGs.

Key revocation

When a certificate is revoked in a certificate-based scheme, other users are

notified by means of a public Certificate Revocation List (CRL). This occurs

when a user leaves the user group or a secret key is compromised. In the latter

case, or when a key pair needs to be replaced after expiration of the certificate
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(key rollover), a user can simply generate a new key pair and obtain a certificate

for it. However, in an ID-based setting, since a user’s public key is derived from

his identity, he cannot simply obtain a new key pair after revocation as in a

certificate-based scheme. That is, it can be very inconvenient to change identity

every time a new key pair is needed.

A partial solution to this problem could be to derive the public key not only

from the identity, but to concatenate the identity with some other general

information. For instance, if the current year is added to the identity, users can

use their secret key during this-year only. . Hence, secret keys expire annually and

each user has to request a new keyrevery-year. Unlike traditional situation, users

do not have to obtain new certificates from ‘other users, because the public key is

still uniquely determined in a straightforward manner (since the current year is

common knowledge). But what if a user’s secret key is compromised during the

year? Then the user has to wait until the end of the year. This situation can be

improved by concatenating the identity with the current date instead of the current

year. But the big disadvantage is that each user has to obtain a new secret key

from the PKG every day. This results in a large increase in communications and

a computational overhead for the PKG. Hence, the length of the validity period
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is a trade-off between convenience and efficiency.

Key distribution

The great simplification of key distribution (from the users’ point of view) is

the main reason to introduce 1D-based cryptography. That is, all public keys can

be derived from the identity of the users. So obtaining someone’s public key, for

encryption or signature verification, becomes a simple and transparent procedure.

This is in contrast to certificate-based setting, where one has to look up the

corresponding certificate, verify the!CA’s signature, and check the expiration date

of the certificate.

Master key security

The PKG in an ID-based scheme forms a single point of weakness. An

attacker who is able to retrieve the PKG’s master key can derive all secret keys,

and is thus able to read all messages and forge signatures under everyone’s name.

Therefore, it is very important for a PKG to keep his master key secret. To

prevent the master key from being stored in one place, it can be distributed among

several KGCs, like the prevention of key escrow. Similarly, the CA in a

certificate-based setting is a single point of weakness as well. If the CA’s secret
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key is compromised, an attacker can create certificates in the CA’s name for new

public keys of his own choice, thereby fooling other users into believing those

public keys. However, the leak of the CA’s secret key does not enable an

attacker to retrieve previously existing secret keys. So the attacker cannot read

messages encrypted under previously existing public keys, or forge signature

under corresponding secret keys.

Additional possibilities

The fact that any value can’ be a public key offers some additional

possibilities. For instance, we-can.concatenate the identity with other information

to accomplish certain nice properties that-do-not exist in a certificate-based setting.

In fact, in this setting, users can send encrypted messages into the future. This is

done by using the public key as the concatenation of the identity with a future date.

Now the recipient cannot decrypt the message until the specified date, when the

PKG issues the corresponding secret key. Here we assume that the PKG is

honest and does not issue keys before the specified date.

Furthermore, another application arises from the original idea of 1D-based

cryptography. For example, we can combine ID-based cryptography with

traditional public key systems as follows. User U plays the role of PKG and
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generates his own system parameters and master key for an 1D-based encryption

scheme. U keeps his master key secret and publishes the system parameters.

These parameters function as U’s public key in a certificate-based encryption

scheme. As in a regular PKI setting, the authenticity of U’s public key (the

system parameters) is guaranteed by a certificate from a CA. Now other users

can encrypt messages for user U as in an ID-based scheme with system

parameters that are given by U’s public key. Since U (and in fact only U) owns

the master key for the ID-based system, he can derive the secret key for any

identifier key and is thus able.to readrthe:messages encrypted under his system

parameters.
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Chapter 4

Efficient Computation for Weil Pairing

In this chapter, we propose a halve-and-add method to speed up the
evaluation for Weil pairing. We first describe the original Miller’s algorithm for
computing Weil pairing. Then we: introduce* the point halving operation
proposed by Knudsen in speeding:ug-scalar-multiplication on elliptic curve over
GF(2"). The advantage of point halving relies on the fast arithmetic operations
over GF(2") in a normal basis. We then propose an efficient halve-and-add
evaluation algorithm in Weil pairing computation and compare the performance

with original double-and-add method.

4.1 Miller’s Algorithm

Given an elliptic curve E over a finite field K, let m be an integer prime to

char(K), the characteristic of K [20]. For example, char(GF(p))=p and
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char(GF(2")=2. The Weil pairing is a function

e:E[m]xE[m]->U,,

where E[m]={P|mP=0,PeE} is called the m-torsion group, U, is the group

of the m™ roots of unity in K, the algebraic closure of K [20].

Weil pairing e(P, Q) is defined as follows. Given P, QeE[m], there exist
divisors De, DQEDiVO(E) such that Dp ~ (P) — (O) and Dqg ~ (Q) — (O). Here we
randomly choose points T, U, and assign Dp = (P+T) — (T) and Dq = (Q+U) — (V).
It is easy to verify that Dp ~ (P):=(O) and Dg*= (Q) — (0). As mP =mQ = O,
divisors mDp and mDq are principal and there exist rational functions fp , fo such
that div(fp) = mDp and div(fg)"= mDq. Suppose that Dp and Dq have disjoint
supports, i.e., supp(Dp) N supp(Dg) = ¢, then the Weil pairing of P and Q is

defined as:

e(P,Q) =fp(—D)-
Q P

The Weil pairing has the bilinearity property: for P, Q, ReE[m], we have
e(P+Q, R) = e(P, R)e(Q, R) and e(P, Q+R) = e(P, Q)e(P, R). The first algorithm

for e(P, Q) computation is described as follows.
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Miller’s Algorithm [26]
INPUT: P, QeE[m]
OUTPUT: e(P, Q)
Step 1. Select random points T, UeE such that P+T, T, Q+U, U are distinct.
Let Dp = (P+T) — (T) and Dg = (Q+U) — (U).
Step 2. Use an evaluation algorithm to compute fo(Q+U), fp(U), fo(P+T) and

fo(T), where fp and fq satisfy that div(fs) = mDp and div(fg) = mDo.

(Do) _ f(Q+ U)o (T)
fo(De)., fo(P+T)f(U)

Step 3. Compute e(P,Q) =

4.2 Double-and-Add Method for Wetl Pairing

A crucial part in Miller’s algorithm is ‘the evaluation algorithm in Step 2.
The evaluation algorithm for fp(S) produces fp such that div(fp) = mDp, and
computes fp(xs, ys) for S=(xs, ys). Recall that Dp = (P+T) — (T). For each

integer k, there exists a rational function fi such that
div(f,) =k(P+T)—-Kk(T) - (kP) + (O).

If kK = m, then div(f,)=mP+T)-m(T)—-(mP)+(0)=m(P+T)-m(T),
and fp = f,.  For any points R, S, let hr s and hg be linear functions, where hg s(X,

y)= 0 is the straight line passing through R, S, and hg(x, y)= 0 is the vertical line
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passing through R.  Then we have

div(fy ., ) = (K + K )(P+T) = (k; + k, )(T) = ((k; + k;,)P) + (O)
=k (P+T)-ky(T) - (k,P) +(O)
+K; (P +T) =k, (T) - (k,P) + (O)
+ (k,P) + (k;P) + (=(k; +k;)P) - 3(0)
—[((k; + k,)P) + (=(k, + k;)P) - 2(0)]
=div(f ) +div(f,,) +div(h ) —div(hy ., e)

and hence

f f.h
fi o, = K ke kPP (4.1)

(k;+ky)P

Eqg. (4.1) is recursive with initial cenditionsfy =1 and f, = Ry since
P, T

div(f,) = (P+T) - () - (P) +(0)
=(P+T)+(PRP+T)=2(0)
—[(P) +(T) +(:(P+T)) =3(0)]
=div(he,;) —div(h, ;).
Based on Eq. (4.1), a conventional double-and-add method was proposed for
evaluation of a rational function fp on a given point S, where fp satisfies div(fp) =

m(P+T) — m(T). The algorithm denoted as double-and-add evaluation algorithm

is described as follows.
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Double-and-Add Evaluation Algorithm (Step 2, Miller’s Algorithm) [4]

n-1
INPUT: the points P, T, S, and the order m = Zbizi with bje{0,1}, b1 =1

i=0
OUTPUT: f(S) = a(S)

<« hP+T (S) :
hP,T(S)

f«f1; Z«P;

forj<n-2,n-3,...,0do
hz2(5) 12« 27;
hZZ(S)

if bj =1 then

f«f2

hz,P S)

adr<— Zuhilli
hZ+P(S)

fff

endif
endfor

return f

4.3 Point Halving

We restrict our attention to elliptic curves E over finite field GF(2") defined
by the equation y*+xy=x>+ax*+b where a, beGF(2"), b=0. The finite
field GF(2") can be viewed as a vector space of dimension n over GF(2). That is,

each ce GF(2") can be represented as a vector (c,_,...c,c,) where ¢, e{0,1}. Let
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P=(xp, yp) be a point on E, where P = —P. The coordinate of Q = 2P = (Xq, Yq)

can be computed as follows:

A=x, +i—: 4.2)
Xo=A+A+a (4.3)
and

Yo =X+ Xo(A+1) (4.4)

Point halving was first proposed by Knudsen with the following operation:
given Q=(Xq, Yo), compute P=(xp, ¥p)'suchthat Q = 2P. Point halving provides
fast computation for scalar multiplication on elliptic curve. The basic idea for
halving is to solve Eq. (4.3) for 4,~Eq. (4.4)-for %p, and finally Eq. (4.2) for yp if
needed. If G isa subgroup of odd order m in E, point doubling and point halving
are automorphisms in G [19]. Therefore, given a point QeG, there is a unique
point PeG such that Q = 2P. To uniquely find P, Fong et al. [12] designed a

point halving computation algorithm using the trace function Tr : GF(2")—>GF(2)

n-1
defined by Tr(c)=> ¢, , where c=(c,,..c.C,) € GF(2").

i=0
The halve-and-add method for scalar multiplication uses two kinds of point
representation: the usual affine representation P=(xp,yp) and the A-representation

(xp,2p), Where Ap = Xp + yp/Xp denotes the slope of the tangent line to the curve at P.
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As shown in the following point halving algorithm, repeated halving can be
performed directly on the A-representation of a point. Only when a point

addition is required, a conversion to affine coordinate is needed.

Point Halving Algorithm [12]

INPUT: A-representation (Xq, Ag) of Q

OUTPUT: A-representation (Xp, Ap) of P=(xp, Yp), Where Q = 2P
Step 1. Findasolution A forequations=i2 + A= Xq +a.
Step 2. Compute € = Xo(Xq * Ao 4.
Step3. IFTr(c) = 0then dp <A, Xp < JC+ X, ,

else Ap < A +1, Xp < +/C.

Step 4. Return (Xp, Ap).

The point halving algorithm requires one field multiplication (Step 2) and

three operations: solving the quadratic equation 4> + A = Xo+a (Step 1), one
trace computation (Step 3), and computing a square root (Step 3). In a normal

basis, the time needed for these three operations is negligible in comparison with
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the time needed for a multiplication or an inversion. An inversion can be
computed using a number of multiplications. The ratio of inversion to
multiplication cost is about 8 in our Pentium 11l platform. In the next subsection
we select a normal basis and introduce arithmetic operations over it. With the
normal basis we select, the square root operation at Step 3 can be significantly

simplified.

4.4 Normal Basis Implementation

Recall that the binary field GF(2") ‘can be ‘viewed as a vector space of
dimension n over GF(2). That.s, there existsa set of n elements o, a, ..., an1,
in GF(2") such that each ceGF(2") can be written in the form
szciai =(C,_,...c,C,) . In general, there are many bases of GF(2"). A
typical one is the polynomial basis of the form {1, x, X% ..., "'}, and a kind of
special basis called normal basis is the set of the form {3, 5°,...5% }. Ina
normal basis, a field element ¢ on GF(2") is represented by

C:Zciﬂzi:(cn_l...clco). The squaring of ¢ can be obtained by

n-1 - n-1 , . .
2= cf =D ¢ B =(C,,.CC, ) . That is, squaring of c can be
i=0 i=0

accomplished by a simple left rotation on the vector representation of c. On the
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other hand, the square root computation is just a right rotation, i.e.,
Je= (c,C,4---C;) at Step 3 in point halving algorithm. Therefore the quadratic
equation x>+ x=c can be solved bitwise at Step 1 in point halving algorithm.
These operations are expected to be inexpensive relative to the field multiplication
or the field inversion. The field multiplication in a normal basis is more
complicated, but, with optimization, it can be reduced to a series of n cyclic shifts
of the two vector multiplicands. Mullin, Onyszchuk, Vanstone and Wilson [27]
introduced optimal normal bases that can optimize the time complexity for field
multiplication in GF(2"). The_  normal basis, implementation is the basic
architecture in the halve-and-add evaluation algorithm to be described in the next

subsection.

4.5 Halve-and-Add Method for Weil Pairing

Now we propose a halve-and-add method for the evaluation of rational
functions used in the Miller’s algorithm. The evaluation algorithm described in
Section 4.2 applies the double-and-add method to compute Weil pairing. To take
advantage of point halving, we propose a halve-and-add version of the evaluation

algorithm.
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Let the A-representation of a point P=(xp, yp) be (Xp, 4p), and the canonical
form of a divisor Dp be (P) — (O) + div(g), where g is a rational function.

Assume that Q=2P with A-representation (Xq, Ag) corresponds to a divisor Dq with

canonical form (Q) — (O) + div(f). Let h,.(x,y)=0 be the equation of the
tangent line at P and h,,(x,y) =0 be the vertical line through Q=2P. By the

addition formula of two divisors with canonical form (see Eqg. (2.1)), we have
: 2 hP P
Dp + Dp = (2P) — (O) + div(g”—=)
h2P
= (Q) - (O) + div(f). (4.5)

We also have

hepo(X,Y) =Y+ Yp + Ao (X+ Xp) = Y + A X + x,,2 and hy(X,y) =X+ X, . (4.6)

h 2
From Egs. (4.5) and (4.6), we have f =g*-—>% =g Y*£4XEXe  and thus

» X+ Xo

X+ X
= f—9 .
J \/ Y+ AX+ X,
Denote the 1/2-representation of m as (m)y, = (Bn_l... 60) such that
m= '(i'j mod r, where r is the order of point P. In order to apply the
i=0

halve-and-add operation in the evaluation of f, we first determine (m)y,. A

simple translation was described in [19]. For Weil pairing computation, integer
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m is not only the scalar in evaluating f but also the order of the point P, i.e., mP=0.
To evaluate the rational function fy,, we first evaluate f,,.; by using halve-and-add
method, and then obtain f,, from fy.;. This is because (m)y, is always the zero
string (00...0) after translation and we can not evaluate f,, by using the
halve-and-add method directly. The translation of (m-1)y, in our algorithm is
given as follows. Let n=[log,m], and 2"*(m-1) mod m = nicizi =(C,_;-.Cy) -

i=0

Then (m-1)12 = (Bn_1 60), where Bi =C,,; fori=0,...,n-1. Forexample, let

m = 25 and n=[log,25]=5, we can compute 2*x(25-1) mod 25 = 9 and

represent it as (01001). Thus the 1/2-representation of 24 is (10010).

Now we compute Step 2 of the_Miller’s algorithm by the following

halve-and-add evaluation algorithm.
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Halve-and-Add Evaluation Algorithm

INPUT: points P, T, S, where P is given by A-representation (Xp, Ap), and the order

OUTPUT: f(S) = f»(S)

Find the 1/2-representatin (m-l)l,z.:(Bn_l...f)o)with 6ie{o,1}, Bn_lzl;

<« hP+T(S);
hP,T (S)

ff1;Z < P;

forj<«n-1,n-2,...,0do

f<—\/f s ¥ Xz o = EZ;
Ys + AzpXs ¥ X 2

A

if bj =1 then

hz,P (S)
hZ+P(S)

f«ff 2« Z+P;
endif

endfor

hZ,P (S)

hZ+P

f«ff 2« Z+P;

return f
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In our halve-and-add evaluation algorithm, the halving stage requires 1
inversion, 3 multiplications, 1 squaring, and 1 square root computing, and has an
advantage over the doubling. A detailed comparison will be given in the next

section.

4.6 Performance Evaluation

In this section we estimate the saved operations in our halve-and-add
evaluation algorithm compared with_therdouble-and-add evaluation algorithm.
When we consider the arithmetic operations in‘a normal basis, the time saved by
using halving instead of doubling-is._significant. In affine coordinates, both
elliptic doubling and addition for scalar multiplication require 1 inversion, 2
multiplications, and 1 squaring. In the A-representation, halving stage for scalar
multiplication requires 1 multiplication and three extra operations: solving the
quadratic equation, trace computation, and square root computation. The
addition stage requires an extra multiplication for the recovery of y-coordinate in
the A-representation. Let the order of the Weil pairing m be represented in binary

format by a bit string of length n with k non-zero entries, obviously n>k. Note
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that our halve-and-add method requires the 1/2-representation of m-1 to apply

halving and addition.

length n with k-1 non-zero entries.

step to obtain mP from (m-1)P, the total addition in halve-and-add method is still k.

Since we need an extra addition in the final

By the translation of (m-1)1,, (M-1)12 is a bit string of

The operations needed for the scalar multiplication are listed in Table 1.

Table 4.1  Arithmetic Operations for Scalar Multiplication (n>k)

Operation Double-and-Add | Halve-and-Add
Inversion n+k K

Multiplication 2n + 2k n + 3k

Squaring N,k K

P 0

Solving #*+4=x, +2a n

Square root 0 n

Trace computing 0 n

In affine coordinates, the doubling stage requires 2 inversions (one for the

slope of hzz(S), another for hyz(S)), 4 multiplications, and 1 squaring. Our

halving stage requires 1 inversion, 3 multiplications, 1 squiring, and 1 square root

computing in the A-representation. The addition in our halve-and-add method

requires two extra multiplications for the recovery of y-coordinate. The

operations needed for the evaluation of a rational function in Weil pairing are

listed in Table 2.
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Table 4.2  Arithmetic Operations for Rational Function Evaluation (n>k)

Operation Double-and-Add | Halve-and-Add
Inversion 2n + 2k n+ 2k
Multiplication 4n + 5k 3n + 7k
Squaring n n

Square root 0 n

As shown in Tables 1 and 2, by using halvings, we can save 2n inversions,

2n-3k (in general, n>2k as shown in Table 3) multiplications and n squarings at the

cost of solving n quadratic equation, 2n square roots, and n trace computing.

Note that, in a normal basis, the timeineeded to calculate the quadratic equation,

square root, and the trace is negligible compared with the time needed to compute

a multiplication or an inversion.

To investigate our improvement in computing the Weil pairing, we

implement the Boneh-Franklin’s ID-based encryption (IBE) scheme over the

NIST recommended curves [11] on a 700MHz Intel Pentium IIl. Their scheme

requires one pairing operation for both encryption and decryption. The recent

IBE schemes proposed by Boneh-Boyen [6][7] and Waters [34] pre-compute one

pairing operation before encryption, thus require no pairing for encryption but use

two pairings for decryption. Their contributions focus on constructing secure

provable IBE schemes in different security models such as selective-ID model and

46



standard model without random oracle. As our algorithm improves the
computation of pairing which is primitive in IBE schemes, we can implement
these new schemes in the future work. Our implementation is programmed in C
and uses the free GNU Multiple Precision (GMP) arithmetic library to deal with
the big number operations. The traditional double-and-add method and our
halve-and-add method are both implemented for computation of Weil pairing in
the ID-based encryption scheme over NIST recommended curves of different
strength.  Curves B-163, B-233 and B409 have the same form: y>+ xy = x®+ x>+
b over binary fields GF(2'%%), GF(2%**)rand GF(2*%), respectively. The orders of
the Weil pairing m chosen in these curves are listed in Table 3. The
representation of elements in the*binary field is-over a normal basis. The size of
message encrypted in our implementation is 160 ASCII characters. Table 4 lists
the execution times in the ID-based encryption scheme using double-and-add
method and halve-and-add method, and shows the improvements. The Weil
pairing is the primitive operation for both encryption and decryption in the
ID-based encryption scheme. Therefore, the efficient computation for Weil

pairing improves both encryption and decryption.
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Table 4.3 The Orders of Weil Pairing in the NIST Curves

NIST
Curve

m (order of Weil

decimal)

pairing in

n (length of

(m)2)

k (weight of

B-163

5846006549323611672814742442
876390689256843201587

163

B-233

6901746346790563787434755862
2770255558398127373450135553
79383634485463

233

B-409

6610559687902485989519153080
3277103982840468296428121928
4648798304157774827374805208
1437237621791109659798672883
66567526771

409

Table 4.4 Execution Times:(in msec).in 1D=based Encryption Schemes

for the NIST Curves

Double-and-Add | Halve-and-Add | Improvement
Weil Pairing Evaluation 10.76 6.95 35%
B-163 | Encryption 16.72 12.45 26 %
Decryption 12.95 8.37 35 %
Weil Pairing Evaluation 41.56 30.48 27 %
B-233 | Encryption 76.28 50.13 34.9%
Decryption 46.75 37.48 20 %
Weil Pairing Evaluation 126.48 91.35 28 %
B-409 | Encryption 198.43 135.97 31%
Decryption 150.25 110.64 26 %

Our method reduces a number of inversions and multiplications which are

expensive in computing the Weil pairing. Overall a 20~35% improvement in

encryption/decryption has been accomplished.
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Chapter 5

End-to-End Security for Short Message
Service

In the mobile communication systems, security (encryption) offered by the
network operator only applies-on the wireless. link. Data delivered through the
mobile network can be acquirediby-any._core network. Existing end-to-end
security mechanisms are provided at application level and typically based on
public key cryptosystem. In this chapter, we first introduce the short message
service (SMS) for GSM [21][23]. Then we propose two applicable end-to-end
encryption mechanisms for SMS based on the certificate-based public key
cryptosystem and the ID-based public key cryptosystem, respectively. Finally,
we also evaluate and compare the delivery overheads between these two

mechanisms.
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5.1. Short Message Service Architecture

The network architecture of short message service in GSM is illustrated in
Fig. 5.1. In this architecture, the short message is first delivered from the mobile
station (MS) A to a short message service center (SM-SC) through the base station
system (BSS), the mobile switching center (MSC), and then the interworking
MSC (IWMSC). The SM-SC then forwards the message to the GSM network
through a specific GSM MSC called the short message service gateway MSC
(SMS GMSC). The SM-SC may: ‘connect;to several GSM networks and to
several SMS GMSCs in a GSM network. - Following the GSM roaming protocol,
the SMS GMSC locates the current-MSC-of the message receiver and forwards
the message to that MSC. The MSC then broadcasts the message through the
BSS to the destination MS B. In the next sections, we will describe two
encryption mechanisms for end-to-end secure SMS based on certificate-based and

ID-based cryptosystems.
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Figure 5.1 GSM short message service network architecture

f

5.2. RSA Mechanism- “

The most widely impleméhied approacfh"‘fb public key encryption is the
The RSA scheme is a block cipher

Rivest-Shamir-Adleman (RSA) scheme [28].
in which the original non-ciphered text and cipher text are integers between 0 and

That is, the block size kgsa Is determined by the bit length of the

n-1 for some n.
This scheme consists

integer n and regarded as the key size of the RSA scheme.

of the following three functions:
Key generation: A user first selects two prime numbers p and g, randomly

chooses e with gecd(e, (p-1)(g-1)) = 1, and calculates d = e* mod (p-1)(g-1)
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Then the public key is KU = (e, n) and the private key is KR = (d, n), where n =

Pa.

Encryption: For a given message represented as an integer M < n, the cipher

text is computed by C =M ® mod n.

Decryption: For a given cipher text C, the original non-ciphered text is
computed by

M = C 9 mod n.

A RSA mechanism for end-to-end secure. SMS is introduced as follows.
The end-to-end security service provider-(ESSP) plays a role as the CA in the
certificate-based public key cryptosystem. To."access the end-to-end security
service, a user first chooses his/her own key pair (KU, KR) and subscribes to the
ESSP for requesting a certificate of his/her public key KU. The ESSP signs the
certificate with its private key and publishes the certificate in the public key
directory for public access. When a mobile user A (the sender) wants to encrypt
a short message to user B, he/she first sends a public key request (Fig. 5.2 (1)) to
the public key directory in short message format. The public key directory
retrieves user B’s certificate. If it succeeds, user B’s certificate is sent to user A

as the public key response (Fig. 5.2 (2)). Once user A is in possession of B’s
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certificate, he/she verifies the certificate with the ESSP’s public key and uses the

user B’s public key to encrypt short message for B (Fig. 5.2 (3)). If the request

fails (due to unavailability of user B’s certificate), the ESSP will inform user B to

subscribe to end-to-end security service if he/she wants to securely communicate

with user A.

- ESSP
NS
Q

s [

Public Key
Directory

——(1) Public Key Request—>

<«—(2) Public Key Response—

A 4

(3) Encrypted Short Message

Figure 5.2 Procedure of sending an encrypted short message

5.3. ID-based Mechanism

In the above RSA approach, the sender needs to communicate with the public
key directory for requesting the public key. If the request fails (e.g., the

directory server is down or there is no certificate existing for the receiver), the
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sender can not encrypt a short message for the receiver. On the other hand, in an
ID-based encryption scheme, the sender simply uses the receiver’s ID (i.e., the
telephone number) as his public key without any request and verification. Thus,
the sender does not need to access any public key directory before sending an

encrypted short message.

The first complete and efficient ID-based encryption scheme was proposed
by Boneh and Franklin [8] which uses a bilinear map called Weil pairing over
elliptic curves. The bilinear map transforms a pair of elements in group G; and
sends it to an element in group G; in a way. that satisfies some properties. The
most important property is the bilinearity-that it should be linear in each entry of
the pair. Assume that P and Q are two elements (e.g., points on elliptic curves)
of an additive group G;. Let e(P, Q) be the element of a multiplicative group G,,
which is the pairing applied to P and Q. Then the pairing must have the

following property:

e(rP, Q) =e(P, Q)" =e(P, rQ),

where r is an integer and rP denotes the element generated by r times of
additions on P, e.g., 2P=P+P, 3P=P+P+P and so on. Weil pairing on elliptic

curves is selected as the bilinear map. That is, the elliptic curve group (the set of
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point collection on elliptic curves) is used as G; and the multiplicative group of a

finite field is used as G,.

The ID-based scheme consists of four algorithms: Setup, Extraction,

Encryption, and Decryption.  Setup is run by the PKG to generate the master key

and the system parameters. This is done on input of a security parameter kip,

which specifies the bit length of the group order and is regarded as the key size of

the ID-based scheme. The Extraction algorithm is carried out by the PKG to

generate a private key corresponding to. the identity of a user. As with regular

public key cryptography, the Encryption algorithm takes a message and a public

key as inputs to produce a ciphen.text.Similarly, the Decryption algorithm is

executed by the owner of the corresponding‘private key to decrypt the cipher text.

These four functions are described as follows.

Setup: With the parameter kp, the algorithm works as follows:

1. Generate a random kp-bit prime p, two groups (Gi; +); (Gz; *) of order

p, and the Weil pairing e: G; x G; — G,.  Choose an arbitrary generator P € G;.

2. Pick a random number s € Zy* and set Ppy, = SP .

3. Choose cryptographic hash functions h;:{0, 1}*—>G;* and h,:G, —{0,
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1}" for some n.

The public system parameters are {p, G1, Gz, e, n, P, Pouw, h1, 2} and the

master key s is kept in secret by the PKG.

Extraction: For a given string IDe{0, 1}* as the public key, the algorithm

works as follows:

1. Compute QID = h1(|D) e Gy.

2. Set the private key KR = sQip, where s is the master key held by PKG.

Encryption: To encrypt a message M under the public key KU = ID, the

algorithm works as follows:

1. Compute Q;p = hy(ID) € G;.

2. Choose arandomr € Zy*.

3. Set the cipher text to be C = (U, V) = (rP, M @ h,(e(Qip, sP)"))

Decryption: To decrypt a cipher C = (U, V) encrypted using the public key
KU = ID, the algorithm uses the private key KR = sQ,p to compute M =V &
h,(e(sQip, U)). This decryption procedure yields the correct message due to the

bilinearity of the Weil pairing (i.e., e(sQip, U) = e(sQp, rP) = e(Qip, sP)").
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Details of Weil pairing for ID-based cryptosystem can be found in Chapter 4.

Based on an improved algorithm proposed in Chapter 4, an efficient

ID-based end-to-end encryption mechanism for mobile services is illustrated in

Fig. 5.3. The PKG (Fig. 5.3 (1)) constructs the ID-based cryptosystem and uses,

for example, the phone number as the ID (Fig. 5.3 (2)). Every mobile user

involved in the ID-based cryptosystem is given a subscriber identity module (SIM)

card (Fig. 5.3 (3)) at the subscription time. The ID (phone number; e.g.,

0912345678 in Fig. 6) and its corresponding private key KR are loaded in the

SIM card by the end-to-end ;security service.provider. Note that for standard

GSM/UMTS service, SIM ‘card nis--always, given to a mobile user at the

subscription time, and the proposed: ID-based encryption scheme can be

pre-loaded into the SIM card without incurring any extra overhead. The mobile

station contains two security modules: ID-based encryption module (Fig. 5.3 (4))

and ID-based decryption module (Fig. 5.3 (5)). When a mobile user A (the

sender; (Fig. 5.3 (6))) wants to encrypt a short message to user B (the receiver), A

uses B’s phone number 0912345678 (Fig. 5.3 (7)) as the public key and encrypts

the message through the ID-based encryption module. Once user B receives the

cipher (the encrypted message), he/she uses the private key KR (Fig. 5.3 (8))
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stored in the SIM card to decrypt the cipher through the ID-based decryption

module and obtain the original non-ciphered message.

Private Key Generator
(PKG) (D)

(6)
)] ID=0912345678
User A User B (0912345678)
~'SIM Card A >(SIM Card
- Clpher (8) KR
\ 4
5
( Ib—based ID-based

Decryption - Decryption

Y

@ etwork -

Message Ib—based fm{/ ID-based D/l_esﬁgi
Encryption Encryption

. yp yp

(7) B's phone number Cipher
(0912345678)

Figure 5.3 ID-based end-to-end encryption mechanism

To estimate the encryption overheads between the RSA and the ID-based

mechanisms, we implement these two encryption schemes and give the evaluation

in the next section.
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5.4 Performance Comparison

This section compares the delivery delay of ciphered short messages based
on the RSA and the ID-based approaches, respectively. The experimental
environment is illustrated in Fig. 5.4. Both the sender and the receiver are
notebooks (Fig. 5.4 (1) and (3)) configured with a Pentium-I1l 500 MHz CPU,
256MB main memory, and 20GB disk space, and running on the Windows XP
Professional operating system. To deliver short messages, every notebook is
plugged in a NOKIA Card Phone version 2.0'and the short message is sent via the

ChungHwa GSM network (Fig. 5.4 (2)) from the sender to the receiver.

(1) Sender (3) Receiver

NOKIA Card
Phone 2.0

NOKIA Card

(2) GSM Network Phone 2.0

Figure 5.4 Experimental environment for encrypted short message

We first note that to support the same security level, the key length for the
ID-based and the RSA approaches are different. The ID-based cryptosystem
using Weil pairing is over elliptic curves, thus its security level depends on the

key length of Elliptic Curve Cryptosystem (ECC). As listed in Table 5.1 [15], a
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108 bits ECC key provides the same security level as a 512 bits RSA key, a 160

bits ECC key provides the security level equivalent to a 1024 bits RSA key, and a

224 bits ECC key is equivalent to a 2048 bits RSA key. For a fair comparison,

we measure the delivery delays of ID-based system and RSA system over the

same security level, and the results are shown in Fig. 5.5.

Table 5.1 Key sizes for equivalent security levels (in bits)

ECC (ID-based) RSA
108 512

160 1024
224 2048

This figure plots delivery delays of the RSA and ID-based approaches for the
same non-ciphered length (in bytes), where the € curves represent the RSA
delivery delay, the Il curves represent the ID-based delivery delay, and the A

curves represent the non-ciphered message delay.

Based on the RSA encryption algorithm described in Section 5.2, for a
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non-ciphered message of length i, the length of a RSA ciphered message is

RSA

L) = Ky {k;]

where kg, Iisthe key length of RSA approach. For kg, =512,

L (i) 512 i <512
RAY/ 11024 512<i<1024

Therefore, in Fig. 5.5 (a), we observe a step curve for the RSA ciphered message
delivery. For kg, =1024 and kg, = 2048, if i <1024, L,(i) is 1024 and
2048 respectively. Therefore, in Figs. 5.5 (b) and (c), we observe horizontal

lines for the RSA-ciphered message delivery:

Based on step 3 of ID-based encryption-algorithm described in Section 5.3,

the length of an ID-based ciphered message is

where k,, is the key length of ID-based approach. For a fixed k),
L,D(i) increases as i increases. Therefore, in Figs. 5.5 (a), (b), and (c), we

observe linear lines for ID-based ciphered message delivery.

Based on the above delivery delay analysis, Fig. 5.5 (a) shows that the

ID-based approach outperforms the RSA approach when the length of a
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non-ciphered message is less than 30 bytes or is between 65 and 90 bytes. Fig.
5.5 (b) shows that the ID-based approach outperforms the RSA approach when the
non-ciphered message length is less than 79 bytes. Fig. 5.5 (c) shows that the
ID-based approach outperforms the RSA approach up to 140-byte message limit
of short message service. These figures indicate that as the security level

increases, it is more likely that the ID-based approach outperforms the RSA

approach.
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Figure 5.5 Delivery delay of short message service
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Fig. 5.6 shows the overheads for ID-based and RSA approaches. We
assume that, for a non-ciphered message of length i, the transmission delay for
non-ciphered message is T, (i), the delay for ID-based approach is T, (i), and

the delay for RSA approach is T, (i). The curves for these delivery delays are

shown in Fig. 5.5. Thus, the overhead for ID-based and RSA approach are

_ TID(i)_TP(i)

overhead , = -
° T, (i)
and
overhead, = Tsn (Tl)d- -()
P

, respectively.

Fig. 5.6 (a) and (b) indicate that the overheads for both approaches decrease
as the non-ciphered message length. increases-for a fixed k,; and kg, . But,
for kg, =512, the curve increases dramatically when message length is 65 bytes.
In Fig. 5.6, we observe that as security level increases, the ID-based approach
outperforms than RSA approach. Besides, the ID-based approach avoids sending
more than one short message by decreasing the maximum length of non-ciphered

message as security level increases.
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Figure 5.6 Overhead of ciphered short message
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Chapter 6

Conclusions and Future Work

6.1 Summary

In Chapter 3, we introduced the certificate-based and the 1D-based public key
cryptosystems which provide-authentic solutions for public key distribution. A
major advantage of ID-based tryptosystem-is that no certificate is needed to bind
user names with their public keys. The first complete and efficient 1D-based
encryption scheme [8] uses a bilinear map (the Weil pairing) over elliptic curves
to construct the encryption/decryption scheme. The pairing computing has
significant overhead. Therefore, an efficient algorithm for ID-based

cryptosystem is essential in mobile devices with limited computing power.

In Chapter 4, we proposed a fast method for computing the Weil pairing
using point halving. With the A-representation in a normal basis, significant

improvement in terms of time saving has been demonstrated in computing Weil
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pairing. Our study indicates that this new approach significantly outperforms a

well-known, previously proposed ID-based solution. To sum up, our

contribution is twofold: firstly, we are the first to apply point halving algorithm to

the 1D-based scheme; secondly, we proposed an efficient approach to compute the

point halving algorithm. By reducing the computation complexity, our approach

provides an appropriate 1D-based encryption solution for mobile services where

the mobile terminals have limited computing power.

In Chapter 5, two applicable end-to-end security mechanisms for SMS based

on the RSA scheme and the ID-based :scheme are introduced and implemented.

The ID-based scheme provides a great simplification of key distribution. That is,

all public keys can be derived from ithe'identities of the users. Therefore

obtaining someone’s public key, for encryption or verification, becomes a simple

and transparent procedure.  This is in contrast to the RSA scheme, where one has

to look up the corresponding certificate and verify the CA’s signature. Another

advantage of the ID-based scheme is the linear scalability of increasing security

level. When the security level increases, the key size of the RSA scheme

increases faster than that of the ID-based scheme and therefore may not be

practical for the mobile service. Our study concludes that the ID-based scheme
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offers a convenient end-to-end security mechanism for mobile service such as

SMS.

6.2 Future Work

We recommend the following topics for further research.

Tate pairing: Realize the definition of the Tate pairing and the algorithm for

computation.

Algorithm improvement: General improvements of the algorithm can be

made and it is important to discover specific-efficient cases of the algorithm.

Applications of ID-based cryptosystem: Much effort has been dedicated to
ID-based applications already.  Nevertheless, we believe that [D-based
cryptography still has some interesting but less explored applications like

cryptographic workflow, authenticated service access control, and so on.

Practical experience of ID-based cryptosystem: We recommend a
systematic research into the practical experience of the ID-based cryptosystems in
different environments, such as mobile network, to make clear what the potentials

of ID-based cryptosystem really are.
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