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Moment-Preserving Curve Detection 
LING-HWEI CHEN AND WEN-HSIANG TSAI, MEMBER, IEEE 

Ab.srracr -A novel method for curve detection based on the moment- 
preserving principle is proposed. The method can be used to estimate curve 
locations and widths to subpixel accuracy. For each 4.5-unit circle in an 
input image that includes a curve segment, the approach derives a parabolic 
equation as well as a width value to describe the curve segment. Experi- 
mental results are included to show the effectiveness of the proposed 
detector. 

I. INTRODUCTION 
Curve detection plays an important role in image processing. 

Several main steps in image processing, such as image encoding, 
compression, segmentation, and object recognition, depend on 
successful extraction of curvilinear features. There are also many 
applications, such as mapping, drafting, and cartooning, that 
require robust algorithms for extracting curvilinear features from 
images. 

Several curve detectors have been developed [l]. Rosenfeld and 
Thurston [2], 131 presented a nonlinear matched filtering curve 
detector. Arbitrary smooth curves are detected by the use of 
various local line detection operators in which different masks 
are used to determine curve directions and widths. The method 
cannot be used to detect corners and curves that are not smooth. 
Wu and Rosenfeld [4] proposed the use of the x and the y 
projections of an image to locate corners in the image. Paler et ul. 
[ 5 ]  also presented a method for detecting corner points in a scene, 
based on features extracted from the distribution of ordered 
gray-level values within a local window. 

All these algorithms detect curves only to the “pixel” level, and 
most of them do not detect curve widths. Some problems, such as 
calibration, remotely sensed imagery curve detection, image- 
to-image and image-to-map registration, etc., need accurate mea- 
surement. A few algorithms have been developed to meet the 
need. The Hough transform is a method for detecting curves to 
subpixel accuracy. The approach involves applying a coordinate 
transformation to the picture such that all the points belonging to 
a curve C of a given type map into a single location P in the 
transformed space. The coordinates of P are just the coefficients 
of the equation describing C. Based on the curve equation, the 
curve locations can be calculated to subpixel accuracy [6]-[SI. 
Ballard [9] presented a generalized Hough transform to detect 
arbitrary shapes. All these methods assume that the curve points 
have been known and use these curve points to extract the 
parameter of the curve. Therefore, their effectiveness depends on 
the successful extraction of curve points. 

Based on the moment-preserving principle which has been 
used in several other applications [lo]-[13], Chen and Tsai [14] 
proposed a line detector that can be used to estimate line 
locations and widths to subpixel accuracy. The method can also 
be used to detect smooth curves. Based on the assumption that 
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the curve points are nearly straight locally, the approach derives a 
line equation to approximate the curve points in a detection area. 
It is inapplicable when the curve points are not nearly linear 
locally or when a comer exists in the detection area. In  short. 
each of the aforementioned methods, except the Hnugh trans- 
form, can detect either smooth curves or corners but not both. I n  
this correspondence, a unified method is proposed that can bc 
used for detecting all types of curvilinear features, including 
smooth curves, lines, comers, and unsmooth curves. The pro- 
posed approach assumes that the background on either side of 
the detected curve is the same. Based on the moment-preserving 
principle, the approach derives a parabolic equation as well as a 
width value to estimate the curve location and width locally to 
subpixel accuracy. 

In the remainder of this correspondence, we first describe the 
proposed curve detector. The parabolic equation is then derived 
and the equation coefficients solved. Finally. some experimental 
results are presented to show the effectiveness of the p r o p o d  
method and its superiority to conventional line-type curve detec- 
tors in curved feature and comer detection. 

11. PROPOSED CURVE DETECTOR 
The proposed curve detector approximates a curve segment 

with any thickness by a parabolic segment represented by i t ,  
centralparuholu (Le., the skeleton of the “ thicker” parabola) and 
width (Le., the curve “thickness”). Similar to [lo]. the proposed 
detector accepts as input the gray values of a set of 69 pixels 
arranged in such a way to best approximate the area of a circle 
with 4.5 units in radius: 

255 0 0 0 255 
255 255 0 0 0 255 255 

255 255 255 0 0 0 255 255 255 
0 0 0 0 0 0 255 255 255 
0 0 0 0 0 0 255 255 255 
0 0 0 0 0 0 255 255 255 

255 255 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 

255 255 255 255 255. 
The detector generates as output a central parabolic equation, a 
parabolic width, and two intensity values h ,  and h 2  (assume 
h 2  > h,).  The detector separates the circle into two regions A ,  
(curve area) and A 2  (background) with h ,  and h l  as the 
representative intensity values for A ,  and A : ,  respectively. as 
illustrated in Fig. 1. 

In the sequel, the central parabola will be denoted as P ,  and 
the symmetrical axis of P will be denoted as SP. In this ap- 
proach, we assume that SP passes through the center of the circle 
and that its direction is defined to be toward P (see Fig. 2(a)) .  
This is reasonable because the circle size is small. Note that i f  SP 
does not pass through the center of the circle, a certain technique 
has been proposed to solve the problem, which will be discussed 
later in Section V. If the angle between SP and the positive ,Y 
axis is q,  we can rotate the circle counterclockwise with respect to 
the origin through an angle of m/2- q so that the rotated SP 
coincides with the Y axis (see Fig. 2(b)). Then the new coordi- 
nates ( x ’ , y ’ )  of any rotated point can be expressed by the 
coordinates (x, y )  of the corresponding original unrotated point 
as 

x‘= x sin 4 - y cos 4 

y’=xcosq+  ysinq, (1)  

y’= ux” + h.  ( 2 )  

and the equation for the rotated P can be expressed as 
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Fig I Curve detection on 4.5-unit circle. Output data with h ,  = 0. h 2  = 255. 

(a) 

Y 
..;,the r o t a t e d  SP 

a(xs i nq -ycosq )  '+b 
= xcosq+ysinq 

(b) 

Fig. 2. Parabola before and after rotation. (a) Parabolic pattern expressed by 
its width H and its central parabolic equation as function of a ,  6, q. (b) 
Central parabolic equation as function of a ,  h only, after parabola is rotated 
counterclockwise with respect to origin through angle of 11/2 - q. 

Let H be the parabolic width that is measured in the direction as 
SP (see Fig. 2); then the two boundary parabolas of the rotated 
parabolic segment can be expressed as 

y ' = axt2 + b i- H/2  

y ' =  ax" + b - H/2 .  

a(  x sinq - ycos ql2+ b = xcosq + ysinq 

(3) 

( 4) 
Combining (1)-(4), we get the original central parabolic equation 
as 

(5) 

and the two boundary parabolas of the original parabolic seg- 
ment as 

a( x sinq - ycos q)? + b + H / 2  = xcos q + y sinq 

n (  x sinq - ycos q ) 2 +  b - H / 2  = xcosq + y sinq. 

Therefore, the four parameters q, a ,  b,  and H uniquely de- 
termine the detected parabolic segment. In the next two sections 
two analytic equations for computing q will first be derived, 
followed by three other nonlinear equations for calculating a ,  b, 
and H .  

111. DERIVATIONS OF THE EQUATIONS FOR COMPUTING 
THE PARAMETER 

In this section several theorems will be proved from which two 
analytic equations for computing the q parameter can be derived. 
Recall that the curve detector is applied to a 4.5-unit circle, 
resulting in a central parabolic equation described by (5) and a 
width H ,  and that the circle is separated into two regions A ,  
(parabola) and A ,  (background) with intensity values h,  and h , , 
respectively. First, we define 

as the coordinates of the center of gravity of the intensities of the 
output data inside the circle [lo]. 

If we rotate the 4.5-unit circle counterclockwise with respect to 
the origin through an angle of ~ / 2 -  q (see Fig. 2), then the 
rotated SP will coincide with the Y axis. Let (F',.?') be the 
coordinates of the center of gravity of the intensities inside the 
rotated circle, in which there are two different regions A ; ,  A i  (see 
Fig. 2(b)). Then (X', j ' )  are related to ( X ,  j )  through (1) [15]. 

Let BPI, BP, be the two boundary parabolas of the rotated 
parabolic pattern (with width H ) .  Assume that BP, and BP, 
intersect the circle at four points ( xl,  yl), ( -  x,, yl), ( x2, y2) ,  
and ( - x, , y,). Two cases can be identified here. One is xl >, x, 
(see Fig. 3(a)); the other is x1 < x2 (see Fig. 3(b)). For each case, 
different equations will be developed. 
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Theorem I :  If x1 > x2 and the rotated parabolic segment in- 
tersects the 4.5-unit circle in any one of the eight distinct ways 
shown in Fig. 4, then E’ = 0 and 7’ < 0. 

Proo) Since both Af and A ;  are symmetric to themselves 
about the Y axis, it is easily seen that E’ = 0. To show that j’  < 0 
for the cases shown in Fig. 4, let us redraw Fig. 4 as shown in 
Fig. 5.  In Fig. 5 each circle is divided into several subregions B ,  
D ,  C,, and/or C,. A;  is composed of B and C,, and A ;  of D 
and C,. It follows that 

h,  11 dx’dy’+ h ,  11 dx’dy’ 

h, ( [/ y ’ dx’ dy + 11 y ’ dx’ dy ’ 

A i  A i  

CA 

h, // dx‘dy’+ h ,  11 dx‘dy‘ 
A i  A i  

Since C, and C, both are symmetric to themselves about the X 
axis, the integration value over C, or C, in the previous equation 
is zero. Therefore, (8) can be simplified to be 

h,  j / y ‘ d x ‘ d y ’ +  h , / / y ’ d x ’ d y ’  

which can be further reduced to be 

( h 1 -  h 2 )  JJY’dX’dY’ 
J’= ( 9) 

h, j /  dx’dy’+ h ,  // dx‘dy‘ 
A i  A i  

because B is symmetric to D about the X axis. Since h2  > h,  
and the area of B is not zero, we get 7’ < 0 and the theorem is 
proved. 

By Theorem 1 and the fact that (X’, J’) are the rotated version 
of (E,  j ) ,  we immediately have the following theorem. 

Theorem 2: If x1 2 x2 and the rotated parabolic segment in- 
tersects the 4.5-unit circle in any one of the eight distinct ways 
shown in Fig. 4, then the direction of the vector from the origin 
to (- X, - 7) is identical to the direction of SP, i.e., ( -  X, - j )  is 
on SP. 

By Theorem 2, we have the following corollary whose proof is 
easy and is omitted. 

Corollary: If x1 x, and the rotated parabolic segment inter- 
sects the 4.5-unit circle in any one of the eight distinct ways 
shown in Fig. 4, then the angle q between SP and the positive 
X-axis satisfies the equations 
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sing = (11) Fig. 4. Eight possible cases (not exhaustive) in which rotated parabolic 
segment might intersect 4.5-unit circle when x, 2 x 2 .  
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Flg 5 Circle in each case of Fig. 4 is divided to consist of several types of 
rubregions E ,  D, C,, and/or C,. C,, and C, both are symmetric to 
thcmsclves about X axis. B is symmetric to D about X axis. (a) Ai = B ,  
A $  = D u C,. (b) A; = B ,  AI, = D U C,. (c) Ai = B U C,,, AI, = D U  C,. (d) 
A ;  = B u c,,, A ;  = D u C,. (e) A {  = B ,  A’, = D U C,. ( f )  Ai = B U C,, A i  = 

DIJC,  (g) Ai = BUC,, A $ = D U C , . ( h )  A i = B U C h ,  A’ ,=DuC, .  

Let the grids of the 4.5-unit circle be indexed as 

1 2 3 4 5  
12 11 10 9 8 7 6 

13 14 15 16 17 18 19 10 21 
30 29 28 27 26 25 24 23 22 
31 32 33 34 35 36 37 38 39 
48 47 46 45 44 43 42 41 40 
49 50 51 52 53 54 55 56 57 

64 63 62 61 60 59 58 
65 66 67 68 69. 

Then (X,j) used in (10) and (11) can be approximated from 
input data as follows [14]: 

k 

xJ!I? 
j = l  x =  

4u: 
j = l  

k 

44u: 

c 4”: 
(13) 

J = 1  
j = 7 9  

J - 1  

where 

I, u: 
( xJ , 4) coordinates of the center of the j th grid, 
k 69. 

Here we take to be the fraction of the intersection area of the 
J th grid and the disk enclosed by the 4.5-unit circle. This leads to 
the following u: values: 

intensity associated with the j t h  grid, 
weight associated with the j t h  grid, 

0.0084670539, j = 1,5,13,21,49,57,65,69; 
0.0137929169, j = 2,4,22,30,40,48,66,68; 

= 0.013068037, j = 6,12,58,64; 
0.01557318963, j = 3,31,39,67; I 0.01 571 9006, otherwise. 

Now for those cases shown in Fig. 4, we have completed the 
derivation of (10) and (11) for calculating the q parameter. For 
the other cases (including x1 < x2), we can get Xi = 0 similarly. 
However, it is hard to decide whether j ’  > 0 or j’ < 0 in advance. 
For this, we can assume j’< 0 and estimate q as before. If the 
detection result is unsatisfactory, then we can reverse the assump- 
tion (i.e., assume j ’>  0), and evaluate q by the following two 
equations: 

Iv.  DERIVATIONS OF THE EQUATIONS FOR COMPUTING 
PARAMETERS a ,  b, H 

First, define the first three sample moments of the empirically 
obtained data in the 4.5-unit circle C as 

69 

m, = ~ q ,  i=1,2,3. 

By preserving the first three moments in the output of the 

J = 1  
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detector, we get the following three equalities: 
P,hl + P,h, = ml 

P,h: + P,h: = m2 

P,h:+P,h:=m,, 

Proof: From Fig. 6 ,  we see that the shaded area u ,  of the 
parabolic pattern can be computed as 

a1 = // dydx = // dydx + // dydx + // dvdx  
A i  A l l  AIL A l l  

where the three left terms of the equations are the first three 
moments of the output data in the disk C, and the fractions P, 
and P2 are 

= x 1 y 1 - x , y , - 2 ~ ( x ~ - x ~ ) / 3 - 2 h ( , ~ ,  - x - , )  

+ H(  X ,  + x , )  + R2(  Bl - B? ) . 
P, = a1/(4.52a) 

P,=l- P1=a,/(4.528). 
Since 8, = cos-, ( y l / R ) ,  8, = c0s-l ( y , / R ) ,  we can get (16) 
easily, and the theorem is proved. 

Note that a, and a, are the areas of A ,  and A , ,  respectively. 
Now, the foregoing equations can be solved to obtain Pl,  P2, h,, 
and h ,  as follows [ll]: 

Theorem 4: The following equalities are true: 

r z  = [(hz - h,)( a2/5( xs - x:) 

+ ( 1  + 2 a ( b - H / 2 ) ) / 3  ( X: - ) 
h ,  = ( 1 / 2 )  [ - c, - ( c: - 4c,)1/2] + 2 bHx2 + ( R’ - ( b - H/2)’) ( - x 2 ) 

+ 2 u ~ x : / 3 ) / (  h,al + h z a , ) ] ?  

for x I  2 Y-, ( 2 1 )  

r2 = [ ( h ,  - h1)(a2/5( x: - x:) 

+ ( 1 + 2 ~ ( b + H / 2 ) ) / 3 ( ~ : - ~ ; )  

+ ( R 2  - (  b + H/2)’)( x1 - x ? )  

+2aHx: /3+2bHxl) / (  h l a ,  + h , a 2 ) ]  ’ 
for x ,  < ‘I? (21’) 

where r = /m is the distance from the ongm to the onginal 
center of gravity. 

P, =1-  P, 

where 

Proof: Since cd = m2 - mi.  

After knowing P, and P,, a ,  and a, can be computed by r’ = ~2 + jj’ 
- - XIZ + Y I 2  

a, = P , ~ ( 4 . 5 ) ~  a, = p , ~ ( 4 . 5 ) ~ .  

These two values will be used in (16), (21), (21’), (27), and (27’) 
derived later. 

Rotating the 4.5-unit circle counterclockwise with respect to 
the origin through an angle of 7r/2- q, we can get the rotated 
parabolic segment as shown in Fig. 4 for some cases of x ,  > x,. 
In the following, we only investigate Fig. 4(a); the other cases 
(including those for x, < x 2 )  can be treated similarly. Geometric 
relations existing in the detection circle area will be used to 
derive three simultaneous equations expressed in terms of a, b ,  
and H .  The equations will then be solved by numerical analysis 
techniques to obtain the values for a ,  b,  and H. 

Theorem 3: The following equality is true: 

substituting (8) into (22), 

xlyl - X,Y,  -2a(  X:  - ~ ; ) / 3 - 2 b ( x ,  - x , )  + H ( x ,  + x , )  

+ Rz[cos-’( y J R )  -cos-l( y , / R ) ]  = a ,  (16) 

where ( x,, y l )  and ( x,, y,) satisfy the following equations: 

xf + y: = R2 

U X :  +( b - H / 2 )  = y ,  

x: + y; = R2 

ax; +( b + H / 2 )  = y, 

(17) 
= [( h ,  - h,)( 2 /5 (  x; - x:> 

(18) +(1+2a(  b - H / 2 ) ) / 3 (  x: - x: ) i 2hH-x: 

+( R2 -( 6 -  H/2)’)( x1 - x2) + 2 u H s ~ / 3 ) ] ’  
(19) 

(20) 
R = 4.5. /t h1Ql-t h2a2I2 .  
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where 

e ,=cos-qx, /R) ,  

e, = c o s - l ( x , / ~ ) .  

Proof: By (26) we have 

I For x 1  3 x2, the foregoing can be further decomposed, according 
Fig h Two rotated boundary parabolas intersect the circle at four points 

( \I. L L  )% ( ~ 71. 1 i ). ( 72 ,  ~2 1, ( ~ ~ 2 ,  y2 ), with xi  > x2, and the shaded region 
A; = A , ,  U A , ,  U A, ,  

to Fig, 6, to be 

z= [ h,j/x”dx’dy’ 
C 

Similarly, for x 1  < x 2 ,  we can get (21’), and the theorem is 
proved. 

Similarly to defining X and j ((6) and (7)), we can define 

h,  j j  x 2  dxdy + h ,  j j  x 2  dxdy 

(23) 
7= AI A2 

h , j / d x d y +  h 2 j j d x d y  
AI A2 

- h l  j j X Y W Y  + h2 jjXYdXdY 

hl  j j  dXdY + h ,  j j  dXdY 

h l  jjY’dXdY + h’ j j r ’ d x d y  

hl jJ dXdY + h2 j j  dXdY 

(24) 
A I  A2 xy = 

AI A2 

(25) 
A2 

- 
y 2 =  

A ,  A2 

h ,  11 x f 2  dx‘ dy ‘ + h ,  j j  x t 2  dx’dy ’ 

h,  j j d x ’ d y ’ +  h 2 j j  dx‘dy‘ 
(26) 

p= A i  A i  

A i  A i  

where x’ and y’ are the coordinates of the rotated circle. Then 
we have the following theorem. 

Theorem 5: The following equalities are true: 

[ ( h L - h l ) ( ~ 4 / 4 ( ~ ,  -e,+sin4e,/4-sin4e1/4) 

+2u/5( x: - x : )  

+ rnR4h,/4]/(h,a, + hza , )  

- - 
+2(6  - H/2)/3( X :  - x:) -2Hx:/3) 

- - 

= x L  sin’ 4 - 2Gsinq cos 4 +y’cos2 q ,  

[ ( h ,  - h , ) (  ~ ~ / 4 ( e ,  - e ,  -sin4e2/4+sin4~,/4) 

for x1  x 2  (27) 

+ ( h ,  - h 2 )  j j d 2 d x ’ d y ’  

= [ h 2 j j x ~ ’ d x ’ d y ’ + ( h , - h 2 )  

(h,a,  + h 2 a 2 )  
4 I /  

C 

= [ ( h ,  -h,)(R4/4(8,-8,+sin48,/4-sin4B,/4) 

+2u/5( x: - xi) +2( b - ~ / 2 ) / 3 (  x: - x ; )  - 2 ~ x : / 3 )  

+ d h 2 / 4 ] / (  h,a, + h,a,). (28) 
On another hand, combining (1) and (23)-(26), we have 

+ 2a/5( x: - x : )  

+2( h - H/2)/3( x: - x:) -2Hx:/3) 

+ ~R4h2/4]/(h1U, +h,U,)  
~ - 

= x’ sin’ 4 - 2Gsin q cos q + y 2  cos’ q ,  for x ,  < x ,  (27’) 

= [ h , j j ( x s i n q -  y c o s q ) 2 d x d y  
A1 

+ h , j j ( x s i n q -  y c o s q )  dxdy 
A2 I /  

i h ,  j j d X d Y + h ,  j j d X d Y )  
AI A2 

sin2q( h,  // x 2  dxdy + h ,  j j x ’  dxdy 1 
- 2 sin q cos q ( h, j j  xy dxdy + h ,  / /  xy dxdy ) 
+ m a 2 q ( h , / ~ x 2 d x d y +  h 2 j j x 2 d x d y  ( h l a 1 + h 2 u 2 )  

A2 

A i  A2 

- 

(29) 

- A2 )I/ 
= x 2  sin’ q - 2Xy sin q cos q + y 2  cos2 q. 

Combining (29) and (28), we can get (27) for x1 3 x 2 .  Similarly, 
we can get (27’) for x1 < x,, and the theorem is proved. 
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l i n e  segfient 

Fig. 7. Result of applying proposed detector to line pattern is same as that 
of applying Chen-Tsai line detector. -central line equation y = 2.  

- - 
Here, x2, s, and y 2  used in (27) and (27’) can be approxi- 

mated from input data as follows: 

T I ,  (( x’dxdy 

where GJ is the area of the j t h  grid, and C is the area of the 
4.5-unit detection circle. Now, solving x , ,  y , ,  x 2 ,  and yr  appear- 
ing in (16), (21), (21’), (27), and (27’), we can get xi ,  y , ,  x 2 ,  and 
y ,  in terms of a ,  b ,  and H by (17)-(20). Therefore, (16), (21), 
and (27) become three nonlinear equations with three unknown 
parameters a ,  b, and H for x I  > x 2 ,  and (16), (21’), and (27’) 
become three nonlinear equations with three unknown parame- 
ters a ,  b, and H for x1 < x 2 .  A numerical method must be used 
to get the solutions. For this, the Newton’s method [16] is used. 

For the method to result in accurate solutions, we must start 
with good initial values (u,,  bo, H,) that are near the desired 
solutions. In general, most curves in an image are approximately 
linear locally. Therefore, a is close to zero. For safety, we 
enumerate a ,  from 0 to +4.5 with step increments of 0.2 or 
-0.2 alternately (i.e., a,=O, 02,  -0.2, 0.4, -0.4;..) until 
solutions are found. Also, we know that 0~ b <  4.5, so we 
enumerate bo from 0 to 4.5 with step increments of 0.5 until 
solutions are found. Since 0 < b + H/2 < 4 5, H, is enumerated 
from 1 to 9 - 2 bo with step increments of 1 until solutions are 
found. Now, all the four parameters a ,  b ,  q,  and H have been 
solved, by which we can compute curve locations to subpixel 
values. 

Note that we do not know whether xi > xr or xi < x ,  before 
detection. There are two methods to solve this problem. One is to 
assume x1 > x 2  first and to use (lo), ( l l) ,  (16), (21), and (27) to 
find the solution. If we cannot get a solution, try next (14)-(16), 
(21), and (27) to find the solution. If we cannot get a solution, try 
(lo), ( l l ) ,  (16), (21’), and (27’) to find the solution. If we still 
cannot find a solution, finally, try (14)-(16), (21’), and (27’) to 
find the solution. The other method, which is used in this study, 
is to always assume x, 3 x 2  and 7’ < 0, then use (lo), ( l l) ,  (16), 
(21), and (27) to find solutions. It is obvious that the method will 
fail when j ’ >  0 or xi < x2 In that situation, a technique is 
proposed to solve the problem, which will be discussed later in 
Section V. 

central parabola 

-6 

(b) 

Better result of proposed detector for corner finding than Chcn-Tw 
line detector. (a) Result of applying proposed curve detector to a)- central 
parabolic equation 0.324 (0 .707~ +0.707y)* + 1.347 = - 0 . 7 0 7 ~  1 0  707r ( h i  
Result of applying Chen-Tsai line detector to a)-central line equ; i~ ion  
- 0 . 7 0 7 ~  + 0 . 7 0 7 ~  = 2.05. 

Fig. 8. 

Y 

U 

( b )  

Fig. 9. Better result of proposed detector for sharp angle detection than  
Chen-Tsai line detector. (a) Result of applyi?g the proposed curve detector 
to b)-central parabolic equation -0.18.~‘ + l . h 7 =  - ri ( h )  Rcwlt  o f  
applying Chen-Tsai line detector to b)-central line equation x = ~ fl 545 

If we set a = 0 ,  it can be shown that the curve detector 
becomes equivalent to the Chen-Tsai line detector [14] Thi\ 
means that the proposed detection can detect line feature\ Fig\ 
8, 9, 10 show the results of applying the proposed curve detector 
to several empirical input curve patterns. For the sake of corn- 
parison, the Chen-Tsai line detector [14] are also applied to the 
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same input patterns. Fig. 7 is the result of applying either the 
proposed curve detector or the Chen-Tsai line detector to the 
following two-dimensional input line pattern, which shows that 
the proposed curve detector has the same capability as the 
Chen-Tsai line detector in line detection: 

255 255 255 255 255 

image boundary  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

255 255 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 255 255 

255 255 255 255 255 255 255 
255 255 255 255 255. 

Figs. 8 and 9 are the results of applying the proposed curve 
detector and the Chen-Tsai line detector to the following two- 
dimensional input curve patterns a) and b), respectively, show 
that the proposed detector, which is better than the Chen-Tsai 
line detector when a comer or a curve occurs in the detection 
circle: 

I 
Fig. 10. Locations of detection circles used in curve detection. 

255 0 0 255 255 
255 255 0 0 255 255 255 

255 255 255 0 0 255 255 255 255 
0 0 0 0 0 255 255 255 255 

a) 0 0 0 0 0 255 255 255 255 
255 255 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 255 255 

255 255 255 255 255 255 255 
255 255 255 255 255; 
255 255 255 0 255 

255 255 255 0 0 255 255 
255 255 255 0 0 255 255 255 255 
255 255 0 0 255 255 255 255 255 

b) 255 0 0 255 255 255 255 255 255 
255 255 0 0 255 255 255 255 255 
255 255 255 0 0 255 255 255 255 

255 255 255 0 0 255 255 
255 255 255 0 255. 

V. THE OUTPUT FORMAT AND EXPERIMENTAL RESULTS 
In the approach a digital image of size 256 X 240 is divided into 

a set of contiguous overlapping 4.5-unit circles as shown in Fig. 
10. The distance between the centers of every two neighboring 
circles in the horizontal (or vertical) direction is 5 pixels. 

The curve detection is repeatedly applied to each circle. A 
curve pattern is determined to exist in a circle if the computed h ,  
and h , values satisfy the following inequality: 

h ,  - h ,  > d .  (33) 

This means that the curve pattern must be “dark” enough with 
respect to the background to be considered to exist in the circle. 
The value of d can be determined experimentally, but a more 
intelligent method is proposed here. By considering the original 
image as a blurred noisy version of a binary input picture, the 
moment-preserving bilevel thresholding proposed by Tsai [ 111 is 
applied to the whole image globally to get two representative 
gray levels z,,, z1 (with z1 > z,,), presumably one for the curve 
patterns and the other for the background. d is selected to be 
(2, - q1)/2. If the original image can not be regarded as a binary 
version, we can divide the image into smaller nearly binary 

Fig. 11. Detection circle C, contains curve segment with x1 < x2. Neighbor- 
ing detection circles C,, G, and C, can help to detect curve segment. 

blocks and then locally apply the foregoing method to each block 
to get a distinct d value. 

In case (33) is not satisfied, we conclude that a curve pattern is 
not present. Otherwise, we test further for the condition: 

(34) 

where 

is the mean of the observed intensities in area A, ;  

is the mean of the observed intensities in area A , ;  and I (  x ,  y )  is 
the observed intensity at location ( x ,  y )  which is constant over 
the grid centered at ( x , ~ ) .  This step is employed to avoid 
considering as a parabolic pattern a curve that is not near a 
parabola or which is just noise existing in the detection circle. 
The threshold 6 depends on the requirement for the accuracy of 
the detected curve. In our experiment we set 6 to be 0.8. If 
conditions (34) as well as (33) are satisfied, then we conclude that 
a well-shaped parabolic pattern is present in the input circle and 
generate the parabolic pattern as the output. Recall that any 
curve pattern existing in the detection circle may have x1 2 x 2  or 
x1 < x 2 .  In our implementation we always assume x1 2 x 2  and 
j ’ <  0 to find a solution for any case. The reason is that when a 
curve segment with J’> 0 or x1 < x ,  exists in the detection 
circle, it cannot be found in the detection circle, but it may be 
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0 

'\ 

0 c, 

(b) (d) 

Fig. 12. Results of applying proposed curve detector and Chen-Tsai line detector to curve image. (a) Original inpul image. ( b )  
Output image with 4.5-unit overlapping circles as output areas and detected central parabolas drawn in each circle area. ( c )  Output 
image resulting from detection identical to that of (b) except that curve detection is additionally applied to some of 24 neighboring 
points of origin (or center) of each detection circle in (b) in which curve pattern is not detected. (d) Result of Chen-Tsai line 
detector. 

found in the neighboring detection circles (see Fig. 11 for an 
illustration). 

Fig. 12(a) includes a drawing with many curves and sharp 
turns, and Fig. 13(a) includes several polygons. Figs. 12(b) and 
13(b) show the results of the curve detection. In every circle of 
each output image, the detected central parabola is drawn 
according to its equation. From the output images we see that 
certain curve segments are missing. The reasons for this include 
the following: 1) the central curves of the missing curve segments 
are not near parabola; 2) the central parabolas do not pass 
through the centers of the detection circles; 3) the curve segments 
do not lie entirely inside the detection circles (see Fig. 14 for an 
illustration); or 4) j ' >  0 or x1 < x 2 .  To avoid these situations, in 
each of such detection circles a 5 x 5 neighborhood of the origin 
is taken. Then we order the pixels in the 5 x 5 neighborhood by 

their Euclidean distances to the origin as shown: 

22 15 10 14 21 
16 6 2 5 13 
1 1 3 0 1 9  
17 7 4 8 20 
23 18 12 19 24. 

According to the order, pixels in the neighborhood are taken in 
turn, and the proposed curve detection procedure is applied 
iteratively to the 4.5-unit circle with each pixel as the center until 
an acceptable solution is found or until all pixels have been 
processed. If an acceptable curve pattern exists, then we take i t  as 
the output of the original detection circle. Note that for case 
y '> 0 or x1 < x2 the curve segment can be detected with some of 
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Fig. 13. Results of applying proposed curve detector and Chen-Tsai line detector to polygon image. (a) Origlnal input image. (b) 
Output image with 4.5-unit overlapping circles as output areas and detected central parabolas drawn in each circle area. (c)  Output 
image reaulting from detection identical to that of (b) except that curve detection is additionally applied to sonle of 24 neighboring 
points o f  origin (or center) of each detection circle in (b) in which curve pattern is not detected. (d) Result of Chen-Tsai line 
dctcctor. 

Fig 14 c u w c  detection circle. 

Y 

Fig. 15. Detection circle C,, contains curve segment nith Y, < Some of 
24 neighboring detection circles can help to detect cuwe scgment ( C ,  iz 
example). 
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the 24 neighboring detection circles that have the pattern with 
x1 3 x 2  and j ‘ <  0 (see Fig. 15). Applying the method to Figs. 
12(a) and 13(a), we have the results as shown in Figs. 12(c) and 
13(c). Almost all curve segments in each image have been de- 
tected. It is seen that the proposed curve detector gives good 
results for curvilinear features, including lines, smooth curves, 
comers, and unsmooth curves. Figs. 12(d) and 13(d) show the 
results of line detection using the Chen-Tsai line detector. Obvi- 
ously, the line detector flattens certain curve segments and does 
not give proper approximations at corners. The proposed curve 
detector on the contrary gives better results. 

VI. CONCLUSION 
If an input image includes smooth curves, lines, curves with 

sharp turns, and corners, almost none of the existing curve 
detectors can detect all of these features. They always need at 
least two steps to complete the detection: one for smooth curves 
and the other for another type of feature. In this correspondence 
we propose a new curve detector that can detect all these features 
simultaneously. Based on the moment-preserving principle and 
on three geometrical relations which exist in the detection circle, 
the approach derives a parabolic equation and a width value to 
approximate the curve segment. Using the derived parabolic 
equation, the curve location can be estimated to subpixel accu- 
racy. The method has been tested on a variety of images and 
yields good results. 

If a curve segment exists in the detection circle, then it sep- 
arates the background into two parts. At present, the gray levels 
of either part are considered to be identical. It is not always true 
in the real world. Hence it is worth trying to remove this 
restriction. If a curve segment is not near a parabola, then the 
proposed detector is not applicable. Therefore, it is also worth 
trying to use curve-type equations other than the parabola to 
approximate curve features. 
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Convolution Operators as a Basis for Ob,jective 
Correlates of Texture Perception 

K. K. BENKE, D. R. SKINNER, AND C. J. WOODRUFF 

Abstract -A method is described for deriving, from digitiied imager. 
objective measures that correlate strongly with simple perceptual judge- 
ments on the same images. Each measure is the normalized variance of an 
image obtained by convolving the original image with a specific local 
operator. This operator is designed to optimize the correlation between the 
particular percept and the objective measure, subject to certain consbaint~. 

I. TEXTURAL FEATURES 
The analysis and characterization of visual textures is an 

important requirement for both human and machine vision. 
Mathematical approaches have been developed for the purposes 
of feature extraction, pattern recognition, and scene segmenta- 
tion, as summarized in the surveys of Haralick [l] and Van Goo1 
et al. [2]. Machine discrimination of textures is an area of 
considerable interest, requiring measurement of specific features 
rather than a knowledge of the underlying structure and synthesis 
of the texture. It would be of value if measures on digital images 
of textures could be found that correlated with human perfor- 
mance in discriminating these textures. 

In a significant experiment, Tamura el a/ .  [3] attempted to 
relate objective measures of digitized textures to psychophysical 
judgements of the same textures on the basis of defined percep- 
tual criteria. They implemented different computational proce- 
dures for each of six scales, and obtained rank correlations in the 
range 0.65 to 0.90 between the psychological and objective mea- 
sures. In this paper, we investigate further the problem of finding 
measures on the digitized image that correlate highly with human 
perception of texture. 

The results from our experiments suggest that the optimization 
of a local operator offers the prospect of a general technique for 
the determination of objective measures. There is an important 
difference between our approach and that of Tamura et a / .  They 
aimed at measuring the correspondence between computational 
definitions of textural features and psychophysical assessments. 
We have decided to use a general operator and adjust its parame- 
ters so as to optimize the correlation between objective measures 
and psychophysical assessments. The psychological assessment of 
the textures used by Tamura et al. required a judgement based 
on a verbally defined textural feature. 

We investigated three perceptual scales similar to those used in 
[3]. Subjects were asked to separately allocate images of textures 
along each of three psychological scales. These were line-like 
versus bloblike nondirectional versus directional (where monodi- 
rectionality was ranked above bidirectionality), and random 
versus regular. 

11. OBJECTIVE MEASURES OF TEXTURAL FEATURES 
In developing a mathematical approach to the problem of 

texture characterization, we will describe the texture in statistical 
rather than structural terms [l], [2]. The texture field is analysed 
by computing the statistics of the local properties after filtering 
with a convolution mask [4], [5]. In the past, these operators have 
inspired models for edge detection because of their similarities to 
the feature extractors believed to exist in the human visual 
system, as described, for example, by Marr 161. 
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