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Optimal Capital Structure Model under the CEV Process

Student : Chun-Hsuan Tseng Advisor : Dr. Han-Hsing Lee

Graduate Institute of Finance

National Chiao Tung University

Abstract

The well-known Leland (1994) and Leland and Toft (1996) models provide some insights of
the capital structure issues. However, in order to obtain analytical solutions of corporate
securities, researchers need to impose some unrealistic assumptions to avoid time and path
dependency. While evaluating a single corporate debt with finite maturity or complex
bankruptcy proceedings, no analytical solution is available and one needs to resort to
numerical methods. In this study, we extend the binomial lattice method by Broadie and
Kaya (2007) to develop a capital structure model, which incorporates finite maturity as well
as the feature of Chapter 11 bankruptcy proceedings. To make the model more realistic, we
assume that the underlying asset value follows the constant elasticity of variance (CEV)
process. Our numerical results show that when the reorganization period is longer or the
elasticity constant S is smaller, the value of corporate risky debt will be lower.

Keywords: Capital Structure, Chapter 11, Binomial Lattice Method, Constant Elasticity of

Variance (CEV) Process
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1. Introduction

A model for pricing risky debt is very important for determining optimal capital
structure. The Black-Scholes (1973) model which corporate liabilities can be viewed as a
covered call — debt holders own the asset but short the call option. Black and Scholes
assumed that the company only issued one zero-coupon bond and equity. When debt is
mature, debt holders either receive the face value of debt, or take over the company. The
Black-Scholes (1973) model also provides a close-form solution for corporate securities as
an option. Merton (1974) used the Black-Scholes (1973) structural model to value risky
zero coupon bond and risky consol bond. The result is, the structural model tied default risk
to the firm value process and the optimal structure was formed by using the capital structure
to value corporate securities.

According to the U.S. bankruptcy code, which includes a liquidation process (Chapter
7) and reorganization process (Chapter 11), the code is used to solve the problems when the
firm is under financial distress. Contractual agreements and bankruptcy laws may cause
different outcome when the firm fails to make debt payments and declares bankruptcy. For
example, bankruptcy may lead to liquidation under Chapter 7 of the bankruptcy code,
reorganization under Chapter 11, or the debt may be renegotiated between debt holders and
equity holders. Because of the bankruptcy code, we can view corporate securities as a
consecutive down-and-out Parisian option. A consecutive down-and-out Parisian option
calculates the time price of the underlying asset staying below the barrier level
consecutively, not like a barrier option which can knock in or out when the price of
underlying asset touches the barrier.

According to the Leland (1994) model, financial distress is triggered when
shareholders no longer find a running a company is profitable, even when the cash flow
produced by the assets continue servicing the debt. Therefore, bankruptcy is determined
endogenously rather than by a certain level of net asset or cash flow constraint.
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Merton (1974) and Leland’s (1994) model assumes that the underlying asset follows
geometric Brownian motion. This implies that prices of underlying asset are lognormally
distributed. However, empirical studies have shown just the opposite. That is the reason
why we price corporate debt when underlying asset follows constant elasticity of variance
(CEV) diffusion process. This process has the advantage that the volatility of the underlying
asset is linked to its price level, which is consistent with the empirical observation that
prices of underlying asset volatility tend to change as those of underlying asset move up and
down.

In this paper, we used binomial lattice numerical evaluation of structure models to
price corporate debt because numerical method can be use to solve complex models when
analytical pricing techniques are not available. To work in a time-independent setting, these
models usually price infinite maturity bonds although these bonds are almost never used in
practice. Due to Chapter 11 of the bankruptcy code, we needed to consider the property of
Parisian option to price corporate debt. Therefore, it was difficult to obtain analytical
solutions in models of bankruptcy proceedings that included automatic stay provisions and
grace periods since these features introduced path dependency. Recently, most researches of
structural models are under the assumption of geometric Brownian motion that the volatility
of underlying asset is constant. As a result, we added the constant elasticity of variance
(CEV) to make the volatility more flexible and our structural model more realistic.

The remainder of this paper is organized as follows. Section 2 introduces the
literature we use in this paper or the methods we recommend. In Section 3, we describe our
model how to implement with more complexity. Section 4 illustrates the result of the model

and some computational analysis. Section 5 is the conclusions of our paper.



2. Literature Review
2.1 Structural Model

In the capital structure models, the most famous are the Leland (1994) and Leland and
Toft (1996) models. They extend the endogenous default approach by Black and Cox (1976)
to include the bankruptcy costs and tax shield of debt, and analyze the static tradeoff theory
of capital structure. Leland and Toft (1996) point out that equity in a capital structure model
is not similar to a plain vanilla call option or an ordinary down-and-out barrier option.

In Leland model (1994), financial distress is happened when equity holders find that
running company is unprofitable, given the debt is still serviced. Bankruptcy is determined
endogenously rather than given a certain level of asset or other constraint exogenously.
There are two major assumptions as follows: (1) the firm’s activities such as financial
structure and the capital structure decisions do not change when the decisions was made; (2)
the face of debt remains static through time when it was issued. First, Leland (1994)
provides the solution of the perpetual debt. Next, Leland (1994) derives the total value of
the firm, which contains three terms: the firm’s asset value, plus the value of the tax shield
of coupon payments, less the value of bankruptcy costs. Then Leland (1994) provides the
bankruptcy asset level Vg which is determined endogenously by maximizing the value of
equity. Finally, Vg is independent of time and it confirms the assumption of the constant
bankruptcy-triggering asset level Vg. However, optimal capital structure relates not only to
leverage ratio but also the maturity of debt.

In Leland and Toft (1996) model, the assumption of financial distressed follows Leland
(1994) model when shareholders find that running company is unprofitable. In this model,
they can choose both maturity and amount of the debt. Their stationary debt structure is that
they issue new finite maturity debt with continuous coupon and the same amount of
principle will be retired at the same time. The result extends Leland’s (1994) closed-form
solution to much more alternatives of possible debt structures and dividends payment and
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develops the method to measure optimal maturity of debt as well as optimal amount of debt.

The Leland and Toft (1996) model has some different implications contrast to Leland (1994)
model. First, they allow firm to choose its debt maturity, also explain why a firm issue

short-term debt even that long-term debt provide more firm value. They find that short-term

debt can reduces agency cost. Although long-term debt produces more tax benefit,

short-term debt can balance bankruptcy and agency cost in determining the optimal maturity

of the capital structure. Second, they find that Macaulay duration overstates the true

duration of risky debt for bond portfolio management.

The Fan and Sundaresan (2000) model propose a game-theoretic setting that
incorporates bargaining powers to the equity holders and the debt holders. If the firm is
liquidated at the bankruptcy point, then debt holders receive liquidation value and equity
holders receive nothing. However, if the firm is not liquidated, the firm value will be shared
between equity holders and debt holders. The Fan and Sundaresan model shows that debt
renegotiation encourages early default and increases credit spreads on corporate debt, given
that shareholders can renegotiation in distress to avoid inefficient and costly liquidation. If
shareholders do not have bargaining power, no strategic debt service occurs and the model
converges to the Leland model.

The Francois and Morellec (2004) model extends the Fan and Sundaresan (2000)
model to add the possibility of Chapter 11 proceeding. Shareholders hold a Parisian
down-and-out option on the firm’s asset. Francois and Morellec solve the endogenous
default barrier by maximizing equity value and providing closed-form solution for corporate
debt and equity values. The sharing rule of cash flows during bankruptcy has a large impact
on optimal leverage, while credit spread on corporate debt shows little sensitivity to the

varying bargaining power.



2.2 The CEV Process and Option Pricing

Merton (1973) provided a closed-form solution for down-and-out options. Most of
path-dependent options assume that the underlying asset follows geometric Brownian
motion. This implies that price of the underlying asset is lognormally distributed. It has
some drawbacks when the underlying assumption under Black-Scholes (1973) model.
Empirical studies have shown that stock prices are not lognormally distributed. If we use
Black-Scholes model to price stock options, there exist well-known strike price bias
(volatility smile). Therefore, we price path-dependent options when price of underlying
asset follows the constant elasticity of variance (CEV) diffusion process. The CEV option
pricing model was developed by Cox (1975). This process let the volatility of underlying
asset linked to its price level, which is consist with the empirical evidence that the stock
volatility tend to change as stock prices move up and down. The origin of the “volatility
smile” is the negative correlation between stock price changes and volatility changes.

Nelson and Ramaswamy (1990) developed a simple binomial tree under the CEV
process. They construct a binomial tree which its number of nodes grows linearly in the
number of time intervals. It is shown how to construct computationally simple binomial
process that converge weakly to commonly employed diffusion in financial models.

It is not always possible to build a very complex model with realistic features and
solve the closed-form solution. As a result, we use a binomial lattice method to price
corporate debt and model Chapter 11 proceedings developed by Broadie and Kaya (2007).
Their method takes the asset value of the firm as the primitive variable and prices equity
and debt value as derivatives of this basic variable. The model generates results that are
consistent with the limited liability of equity principle. It uses backward valuation, the
continuation value of equity is known at each time step, so it can use to make bankruptcy
decision. When the firm has a Chapter 11 bankruptcy alternative, their method can easily
extend to the case by adding bankruptcy boundary and increasing the state space on the
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lattice nodes if necessary. This numerical method (Broadie and Kaya (2007)) described the
details of the implementation for three different models: Leland (1994), Francois and
Morellec (2004), and Broadie, Chernov and Sundaresan (2005).
2.3 Parisian Options

A down-and-out Parisian option is options that know-out if the underlying asset price
remains constantly beyond a given barrier over a pre-specified time interval, the so-called
grace period. When a Parisian option is activated, its payoff at maturity is equal to standard
European option while the payoff is zero if the option know-out before its maturity. The
advantage of Parisian option with respect to standard barrier options is that it is more
difficult to influence the option payoff. We use a variant of the lattice-based method, called
the forward shooting grid (FSG), it has successfully applied to price path-dependent options,
like Parisian option. The FSG approach was developed by Hull and White (1993) and
Ritchken, Sankarasubramanian and Vijh (1993) for the pricing of American- and
European-style Asian and lookback options. The FSG approach uses auxiliary state vector at
each node on the lattice tree. The state vector is used to capture the path-dependent feature

of the option contract, like grace period of the asset price.

3. The model

We first denote the asset value of the firm ¥, and use it as the primitive variable, and

therefore other variables can be view as derivatives with respect to asset value. We assume

that the asset value ¥, is independent of the capital structure and other financial decisions;

its diffusion process under the risk-neutral measure Q and Cox and Ross (1976) constant

elasticity of variance (CEV) is given by

B
dv,=(r—q)V,dt+oV2aw, (1)

where W, is a standard Brownian motion under Q, ¢is the payout ratio of the firm, and



o is the volatility of asset returns, [ is a constant, know as a elasticity factor, and
0< B <2.Inthe case when =2, equation (1) reduces to geometric Brownian motion, this
implies that geometric Brownian motion is a special case of the CEV process. Cox (1975)
restricted [ between 0 and 2. But empirical study shows that § <0.
3.1 A binomial model for the CEV process

We construct a discrete approximation for the CEV process using the binomial method.
We assume the asset price dynamics are expressed in terms of the Q-measure. Nelson and
Ramaswamy (1990) derived a binomial approximation of the stochastic process described
in (1); they built a “computationally simple binomial tree” in order to let the number of

nodes in the tree structure grows linearly with number of time intervals. We let
y=y(tV)

Applying Ito’s Lemma, the stochastic differential equation for y is

2
dy=F?+@—wzfz+la%ﬂay]w+——dzdw @)

oot ov 2 ov?

In order to have a constant diffusion coefficient for the Y-process we let

P vz =, 3)

a_y _L V_g
v o'’
For 8 # 2, the transformation is given by
]
U -
= )
N (11
and for [ =2, the transformation is given by
v
=—In(V
y=—In(V)

Now we can build up a computationally simple binomial tree to approximate the y -process.



Then two-dimensional grid in the (t, y) -space can be build as follows. The value y, of
the process at time t, after one period at times+1, can rise to y,+v+Af or decrease
toy, — vvJA? . In this way, we can build up the value of the y -process as

Vi =y, +(2j—i) oA, i=0,..,n, j=0,..i

where y/ . represents the value on the binomial tree under y-process at time ¢+ iAt
after j up steps and i—; down steps. Next step is to build up a binomial tree with
V' -process on the two-dimensional grid in the (t,V) space; we can use the inverse

transformation of (4)

1
1-2) |-%
- {M%} , if y, >0 (5)

0, otherwise.

Once we have constructed the binomial tree with V -process, and then we define the

to be the greatestV’

t+iAt °

probability of each up step. First we define V.

in j=0,...,7, make

Vg Vi 20 and Vi, to be the smallest V/ ., j=0,...,i, make
Via—€V’ (- = 0. The probability with (¢, V) space makes an up steps is

rAtT 7 j J
er V

(i-0ar — Vevine . 7
, - , if V], >0
p’J+(i‘])A’ - V;iiAt _V;i’At o (6)
0 otherwise

The probability with (¢,7) space makes a down steps i8¢, ,,, =1 p/ ;- With the

definition given above pt’;( represents a probability for the evolution of the price of

i—1)At
underlying asset in the approximation binomial tree. Since the primitive variable has been
constructed, we want to compute the value of equity, debt and firm on the lattice. First we

denote equity value by £ . Second, the value of the debt holder we denote by D . Finally, we
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want to compute the total firm value we denote by /. At current node, the present value of

the equity is given by
E=e¢"™(pE,+(1-p)E,) (7)
The values of D and F also can be calculated in the same way:

D=e¢"™ (pDu +(1—p)Dd) (8)

F=e"™(pF,+(1-p)F,) 9)
These values will be modified based on events such as coupon payment, distress cost and
liquidation.
Suppose we are at the current node and we know the equity values in the next step,
these are given by £, and E,. Assume that at the current node, the firm has to pay coupon
payment C and firm cash flowo,. The present value of equity which do not consider

current coupon payment and current firm cash flow is given by
E=e"™(pE,+(1-p)E,) (10)
We denote the difference between the coupon payment and firm cash flow C = C — 0,. When

the coupon payment is less than firm cash flow, Cis negative and it means that excess firm
cash flow over the coupon payment can be receive by equity holders. If Cis positive, it
means equity holders should raise money by equity dilution. So we can show equity value at

the current node as follows:

(1)

s

Il
—
t ©
|
QY
a=Y
e B
A\VARRRVAN
ar Al



3.2 Bankruptcy with grace period and bargaining

In the real world, the equity holders can liquidate the firm under Chapter 7 of the U.S.
bankruptcy code or renegotiate debt payments under Chapter 11. When the firm declares
bankruptcy under Chapter 11, the bankruptcy court allows the firm to restructure its debt
during a certain grace period. Chapter 11 also prevents debt holders from liquidating the
firm’s asset. Therefore, a firm may declare bankruptcy under Chapter 11 when it is in
financial distress, and it spends some time as a bankruptcy firm which does not make full
coupon payment, and then recover to be a healthy firm. In this section, we consider the
approach of Francois and Morellec (2004). We assume that equity holders decide to declare
bankruptcy at a certain level of the firm asset valuel/,, and a grace period G is granted by
bankruptcy court. If the firm does not come out from bankruptcy at the end of the grace
period, the firm is liquidated. Distress cost @ reduces the net firm cash flow when the firm
is in bankruptcy. The liquidation cost isa . When the firm asset value is under default
boundaryV,, the debt is serviced strategically. At the time bankruptcy is declared, the debt
service is determined by the bargaining game between debt holders and equity holders. We

follow Fan and Sundaresan (2000) to determine the debt service using a Nash bargaining
game. If the firm is liquidated at the bankruptcy point, the debt holders receive (l—a) V,
and equity holders receive nothing. If the firm is not liquidated, firm asset value will be , ,

and will be share between debt holders and equity holders.
We assume the bargaining power of the equity holders is 7 and the bargaining power

of debt holders is1—7n. If we denote the sharing rule at the bankruptcy point asé@, the

incremental value gained by equity holders is 0F, and the incremental value gained by

debt holders is(1-0) F, —(1-a)V, .
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The optimal sharing rule:
0" =arg max{[@FVB 1'[(1-0)F, -(1-a)F, ]“”} (12)

and its solution is

o =n[1——(1_“)VB] (13)

F

Vg
As a result, at the bankruptcy point, the value of the claim of the equity holders is
0°'F, =n(F, -(1-a)V,) (14)
and the value of the claim of the debt holders is
(1-0")F, =(1-n)(F, -(1-a)V,)+(1-a)V, (15)
The bargaining game determines the value of equity and debt at the bankruptcy point
through equation (14) and (15). So we don’t need to know how the debt is serviced when
firm 1s in bankruptcy, just need to know the total firm value F, .
3.2.1 Binomial lattice computations
We use the binomial lattice as described in section 3.1. If the bond is a consol bond, the
bankruptcy boundary will be constant and time independent. However, if the bond has finite
maturity, the bankruptcy boundary will be time dependent. In the beginning, we first price
infinite maturity debt. We assume that the default boundary ¥, fits with the level of nodes
on the lattice. If it is not on the lattice, we use the first node level that is higher than V, to
approximate V,. We assume firm has issued a consol bond with coupon payment C and the
effective tax rate is 7 and all interest payments are tax deductible. In the binomial lattice,
since we use discrete time steps the total firm cash flow at a certain node with asset value is
given by:

6, =Ve™ -V, (16)
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The following calculation divides into three types:

® Nodes with V' >V,. The firm is in healthy state in these nodes, the coupon payments
are paid by firm cash flow and equity dilution if firm cash flow is not enough to pay coupon
payments. The effective tax rate is7 . Equity, debt, and firm value can update as follows:

If £+6,2(1-1)CAt: E=E+5,—(1-1)CAt,
D=CAt+e™ (pD, +(1-p)D,), (17)
F=6+e"™(pF,+(1-p)F,)+tCAt

If E+6,<(1-7)CA¢:

where E is given in (10) and o, is given in (16).

® Nodes with /' <V,. The firm is in bankruptcy. The debt is serviced strategically and
we do not know how the firm cash flow is shared between debt holders and equity holders.
We can use equation (14) and (15) to determine the value of debt and equity at the
bankruptcy point, so we only need to track of the firm value F when the firm is in
bankruptcy. Also there are no tax benefits while the firm is in bankruptcy. The total time
spent below the default boundary V, needs to be recorded. Let g record the length of
time the firm spends in bankruptcy. Because we are working on the binomial lattice, g can

only take discrete values. Let g denote the maximum number of time steps that the firm

can spend in bankruptcy. We have g = % P where G is the grace period. Assume g is an

integer, then g will be the value in|0,1,...,g—1,g|. For a given node and a given g, there
g g g

three possibilities in the next time steps. First, the firm comes out of bankruptcy next time

step. Second, if g =g -1 in the current node, and V' <V, in the next time step, then the

grace period will be in expiration and the firm will be liquidated. Finally, the firm can still

be in bankruptcy without grace period expires in the next time step. So the value of g will be

12



one higher than the current node. For each node, we need to keep track of the firm value in

every possible state ofg. Thus, F [z] will represent the firm value at the current node

when g =i . We can update the firm value as follows:

ALF e R 0P i
Fli|=

18
(1-a)(V,+5,) fori=g 1o

where

5, =V, -V, (19)

t

o0, represents the distress cost adjusted cash flow of the firm.

® Nodes with V' =V,

This node is the last healthy state before firm goes into bankruptcy or the first healthy
state the firm just comes out from bankruptcy. The equity and debt values can be calculate
use equation (14) and (15) after firm value i1s computed. We update equity, debt, and firm

values as follows:
F[0]=6,+e™(pF, +(1-p)F,[1]),
Fli]=6,+e"™ (pF,+(1=p)F,[1]) fori=1,...,g,
E=n(F[0]-(1-a)V,),
D=(1-n)(F[0]-(1-a)V,)+(1-a)V,.

(20)

F [0] represents the value of the firm at the bankruptcy boundary ¥, that have never been

in bankruptcy, and it is the value for the node reaching V, from above. The F’ [z] is the
value of the firm at the bankruptcy boundary ¥, just coming out from bankruptcy. As the

result, F[i] takes into account the distress cost, while F[0] does not.

®  Price finite maturity debt
We can use the procedure described above for pricing finite maturity bond with coupon

C, face value P and maturity 7 .At maturity, the face value and the coupon payment

13



should be paid; otherwise the firm will be liquidated. If the firm is still under the bankruptcy

boundary V, when the bond matures, the firm will be liquidated. The terminal values will

be calculated as follows:

1. Nodes with V' >V,

If V,+6,2(1-7t)CAt+P: E=V,+6,—(1-7)CAt—P
D=CAt+P
F=V,+06,+tCAt

If V,+6,<(1-7)CAt+P: E=0 1)
D=(1-a)(V; +6;)
F=(1-a)(V,+6;)
2. Nodes with V' =V,
Fli]=(1-a)(V; +6;) for i=1,...g (22)
3. Nodes with V' <V,
If V,+68,2(1-1)CAt+P: E=V,+6,—(1-7)CAt-P
D=CAt+P
F[0]=V; +6; +TCAt
Fli]|=V,+6, +1CAt fori=1,...,g
(23)

If V,+68,<(1-7)CAt+P: E=0
D=(1-a)(V; +6;)
Fl0]=(1-a)(V; +5;)
Fli]=(1-a)(V; +5,) fori=1,....g

14



® Bankruptcy boundary

We assume that V, is a vector that contains the bankruptcy boundary for each time
steps. The optimal ¥V, in the finite maturity setting will not be constant, but will be time
dependent since the remaining value of the bond is changing over time. So we assume a
functional form for the bankruptcy boundary and let the equity holders choose a parameter
of that function to maximize the equity value. We use this linear function of the riskless

bond price.
Vs =9¢F, (24)

t

V, is the bankruptcy boundary at an intermediate time ¢, P is the riskless bond price at

time ¢, and ¢ is a positive number that is time independent. Also, if ¥ is not on the

lattice, we use the first node level that is higher than ¥ to approximate V.
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4. Result
4.1 Numerical method
4.1.1 The FSG approach
We have already described the binomial lattice computation in section 3.2. The most

we care about is how to deal with path-dependence price. We use the Forward Shooting

Grid approach which was developed by Hull and White (1993). Let g(k, j ) denote the

grid function. The binomial tree of the FSG algorithm can be represent by

Vim=1jik)={pV [m.j+Lg(k.j+1)]+ py [m j+Lg(k.j+1)]}e™ (25)
g(kj)=(k+1)1, (26)

As a result, we use the method to cope with nodes which are under the bankruptcy boundary.

It is necessary to compute V [m, j;k| for all index value k, k=g—-1, g—2, ---, Obefore

we move to next time level. In order to enhance the compute efficiency and shorten the
compute time, we do not compute & in all nodes.

We only need to compute the nodes which are under the bankruptcy boundary. It is not
necessary to compute k for the nodes which are below the bankruptcy boundary for more

than g steps. As a result, we can save a lot of time in computation. Figure 1 gives an

example for the binomial lattice. Figure 2 shows how the FSG approach works in the

binomial lattice given ¢ =1. To illustrate the rollback procedure, we take node (3,1) as an

example to compute the firm value. From Equation (18), firm value
F[0]=57.57x (e("‘W)A’ B 1) o (68.08 x P+22.04x(1- P)) — 45.44

Where P=0.5205
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Figure 1

Binomial Lattice
The parameters are 7, =100, ¢ =20%, C =3, P =60, r =5%, q = 3%, a =50%,
0=1%, 1=25%, n=50%, G=1, =0, T=3, N=2, ¢=1, V,=60
The top number at each node denote the asset value, the middle number is the firm cash

flow and the bottom number is the payment due to debt holders
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Figure 2
Equity, Debt and Firm Value

The parameters are V, =100, o =20%, C =3, P=60, r=5%, q=3%, o =50%,
0=1%, 1=25%, n=50%, G=1, =0, T=3, N=2, ¢=1, V,=60

k : number of periods under barrier
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4.1.2 Optimal bankruptcy boundary

The optimal bankruptcy boundary will be chosen to maximize the equity value. In the
case of infinite maturity debt, we choose an arbitrary bankruptcy boundary that is lower
than optimal boundary. And then we start to increase the boundary on the lattice and reprice
the equity value. The equity value first increases and then starts to decrease after it reach the
maximum value when we move the boundary up on the boundary. Therefore, we stop
moving the boundary when the equity value starts to decrease. As a result, we obtain the
discrete observation points and we fit a cubic spline to approximate the exact functional

form and use this spline to find the maximum value of equity and the optimal boundary. In
the finite maturity debt case, V, =¢P, equity holders will choose ¢ to maximize the

equity value. We use the same method as describe in infinite maturity debt case, we choose
arbitrary ¢ and reprice the equity value. And thus we find the maximum equity value. We

need to find out the appropriate ¢ in the search algorithm and fit a cubic spline then find

out the maximum equity value.
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Figure 3
Cubic Spline

The model parameters are V, =100, o =20%, C =3, P=60, r =5%, q =3%, a =50%,
0

0=1%, 1 =25%, n=50%, G=1, B=1, T=5 At=0.005years equity is 45.4476
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4.1.3 Convergence of the method

In our method, we compute the equity value and debt value in 5000 time steps as the
true value. We analyze our numerical method by comparing the results from the method
with the true value describe above. Figure 4 and Figure 5 show, under =1 and §=0.5,
respectively, the convergence of equity and debt pricing errors as the number of time steps
increases. We can see the size of the oscillation is relatively small. When we use 1000 time

steps, the largest errors value is less than 0.2% of the true value.
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Figure 4
Convergence of Equity and Debt Errors (5=1)

The model parameters are 7, =100, o =20%, C =3, P=60, r =5%, q =3%, a =50%,
0=1%, 7 =25%, n=50%, G=1, =1, T =5.The true value of equity is 45.4671, and
the true value of debt is 55.0929.
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Figure 5
Convergence of Equity and Debt Errors ( 5=0.5)

The model parameters areV, =100, o =20%, C =3, P=60, r =5%, g =3%, a =50%,

0=1%, 7 =25%, n=50%, G=1, p=0.5 T =5.Thetrue value of equity is 45.8437,
and the true value of debt is 54.9405 .
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4.2 Numerical Results

In this section, we will study the price and the yield spreads of coupon bond with finite
maturity before comparing them with different s of the CEV process, different grace
periods and infinite maturities. We were aware that bankruptcy leads to intermediate
liquidation case because the length of the granted grace period in a Chapter 11 setting may
be different for bonds according to maturity. Therefore, we chose G=0 to make comparison
on effects of maturity on prices. We found as the maturity increases, the price of the finite
maturity coupon bond converged to the price of the infinite maturity coupon bond.

Figure 6 shows the graph of equity, debt and yield spread value as the maturity
increases. The yield spread is defined as Spreads = yield —r , where r is a risk-free rate.
The value of the equity increases and the value of the debt decreases as the [ of the CEV
process increases. The result makes sense because the decrease in f can be viewed as an
increasing volatility. Therefore, equity, also an option, increases value. Debt holders who
expect the firm to have steady cash flow thus lose its value. The yield spread first goes up

when the maturity is becoming longer and then decreases.
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Figure 6
Effect of Maturity on Equity, Debt and Yield Spreads

for a Coupon Bond for Various [
The model parameters areV, =100, o =20%, C =3, P=60, r =5%, g =3%, a =50%,

0=1%, 7 =25%, n=50%, G=0.The time increment in the lattice is Az = 0.005 years .
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Yield Spread
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Figure 7 shows the graph of equity and yield spread values as the grace period is
prolonged. We can tell that, when the S of the CEV process increases, the value of the
equity increases and the value of the debt decreases. The reason is the same as what we
have seen in Figure 1. We can see that as grace period increases, the equity and spread
increase then converge to a certain level. Debt value goes down as grace period is on the
rise because grace period serves as a benefit for equity holders and debt holders do not
benefit from it. The results are expected: when maturity increases, the equity value rise

accordingly while the debt value decreases.
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Figure 7
Effect of Grace Period on Equity, Debt and Yield Spread

for a Coupon Bond with Various [
The model parameters areV, =100, o =20%, C =3, P=60, r =5%, g =3%, a =50%,

0=1%, 7 =25%, n=50%, T=35 The time increment in the lattice is Az = 0.005 years
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Yield Spread
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5. Conclusion

In this paper, we provide a lattice method to price risky corporate debt using structural
model. We take the asset value of the firm as the primitive variable and calculate other
variables as derivatives of this basic variable. Furthermore, we add constant elasticity of
variance (CEV) process into the primitive variable in order to give the risky corporate debt
pricing model a more realistic touch. Our method generates results that are consistent with
the limited liability of equity principle.

Our method can be beneficial to corporate debt pricing model as well. While many
existing models use infinite maturity bonds to obtain a close-form solution, our method can
be used to solve these for finite maturity debt.

We analyze the equity value with finite maturity coupon bonds in different grace
periods and the result is intuitive: the equity value increases and the debt value decreases
when the grace period increases. We can find that increasing in grace period is extra benefit
for equity holders. In a viewpoint of equity holders, if there is no grace period the firm is
liquidated immediately and equity holders receive nothing ( Gilson, John and Lang (1990) ).
But if there is grace period for equity holders, equity holders can wait for firm recovery
from financial distress, not just only liquidation. An infinite maturity case had the same
result as in a finite maturity case. We also compared finite maturity debt and infinite
maturity debt in different f s of the CEV process. We can find that S of the CEV process
decreases in value while the equity value increases. In addition, we analyze the term
structure of yield spreads for finite maturity coupon bonds and leave out the Chapter 11
bankruptcy code. We find that term structure of yield spreads first rise up and then converge
to a certain level. The future research in our paper may be about shortening the
time-computing in the numerical method, taking more complex bankruptcy procedures
under discussion and adding empirical study to see why low firm asset value has high
volatility( 5 <0).
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