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摘要  

此篇論文的主旨為在資訊不完全的市場下，建立一個以雙邊指數型跳

躍過程為基礎的信用風險模型、推導此模型下之破產機率，並探討不

對稱跳躍與不完全資訊對於破產機率、破產強度、以及信用利差之衝

擊。研究結果顯示，相較於未考慮跳躍過程之模型，在此含有跳躍過

程之一般化模型的假設下，所求得之信用利差的時間結構更為豐富且

多元。亦即，此篇論文建構之模型將對於真實市場有較佳之解釋能力。  

 

 

關鍵字：信用風險；不完全資訊；雙邊指數型跳躍過程；破產機率；

信用利差；破產強度；時間結構。 
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What Are the Impacts of Asymmetric Jumps and Noisy Information on 

the Credit Risk Model? 

 

Student : Hsuan Rern                 Advisor : Dr. Jia-Hau Guo 

 

Institute of Finance 

National Chiao Tung University 

 

ABSTRACT 

The pure diffusion approach for credit risk model with noisy information is 

generalized in this paper by including jumps in the firm-value processes. The explicit 

solution of the default probability for this credit risk model is derived, and the impacts 

of asymmetric jumps and noisy information on the credit risk are illustrated with 

numerical results on the default probability, the default intensity, and the credit spread. 

With the term structure of credit spreads being enriched, our approach is potential to 

interpret empirical data in real world. 

 

Keywords: credit risk; noisy information; double exponential jump; default probability; 

default intensity; credit spread; term structure. 
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1. Introduction 

Default risk analysis plays a critical role in managing the credit risk of bank loan portfolios. In 

recent research, there are two types of default risk that have been widely used for modeling 

credit risk. One is the jump risk. For instance, Zhou (1997) and Scherer(2005) incorporates 

jump risk into the default process and suggests that a firm, the assets of which are perfectly 

observable, can default instantaneously because of a sudden drop in its value, and the short 

credit spread of this firm is also bounded away from zero. Another is the default risk due to 

noisy information. Duffie and Lando(2001) indicates the impacts of the noisy information on 

the default intensity and the yield spread, and shows that a firm, the asset value of which 

follows a pure diffusion process but can not be observed directly, can default instantaneously 

either. However, how do the two types of default risk affect the credit risk model in the same 

time remains open, and this paper intends to focus on the simultaneous impacts of the 

asymmetric jumps and noisy information on credit risk. 

According to Kou(2002), the double exponential jump-diffusion can capture the 

empirical phenomenon, which is the asymmetric leptokurtic features that the return 

distribution is skewed to the left and has a higher peak and two heavier tails than those of pure 

Brownian motion. With the mean sizes and the probabilities of upward and downward being 

set respectively, the double exponential jump-diffusion is considered asymmetric and 

therefore appropriate to capture more realistic jump.  
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In this paper, a double jump-diffusion process is chosen as the basic model for the asset 

value of a firm and the noisy information assumption proposed by Duffie and Lando (2001) is 

incorporated for incomplete information market. The impacts of asymmetric jumps and noisy 

information on the credit risk are illustrated with numerical results on the default probability, 

the default intensity, and the credit spread. The result of our analysis shows that the term 

structure of credit spreads is enriched by simultaneously incorporating the asymmetric jump 

and the noisy information into the credit risk model. This generalization could be more 

potential to interpret empirical data in future. 

The remainder of this paper is organized as follows. The incorporation of the double 

exponential jump-process for the asset value of the firm into the credit risk model is given, 

and then the default probability of the modeled firm is analytically derived in section 2. In 

section 3, the analysis of the credit risk model is provided for several cases with different 

arrival rates of jump and information quality to show how asymmetric jumps and noisy 

information simultaneously influence the default probability, default intensity, and credit 

spreads. Section 4 concludes this paper. 

 

2. The Basic Model 

This section presents our basic model of a firm with noisy information about the credit quality 

of its debt. We derive the conditional distribution of firm’s assets, given noisy information, 
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along with the associated default probability. 

 According to Duffie and Lando(2003), after issuance, bond investors are not kept 

informed of the status of the firm. Although they do understand that optimizing equity owners 

will force liquidation when assets fall to v , they can not observe the actual asset level of the 

company ( tV ). Instead, they observe the noisy report of assets ( tV̂ ). We suppose that the value 

of a company follow a stochastic process   0ttVV  , and ,UX
V

V̂
logZ tt

0

t
t 








  where 

tU  follows a normal distribution with mean   and variance 2a  and is independent of tX . 

The return process 









0

t
t V

V
logX is supposed to follow a double exponential jump-diffusion. 

Under the physical probability measure  , the process is given by: 














tN

1i
it

2

t YWt
2

X  , 0X =0                                           (1) 

where tW  is a standard Brownian motion, tN  is a Poisson process with rate  , and   iY  

is a sequence of independent identically distributed (i.i.d.) nonnegative random variables that 

has an asymmetric double exponential distribution with the density 

   0y
y

20y
y

1Y IeqIep)y(f 21


    . The constants 1  0,  0; 1  qpq,p, 21  . All 

randomness, tN , tW , and tY  are assumed to be independent; the drift   and the volatility 

  are assumed to be constant, and the Brownian motion and jumps are assumed to be one 

dimensional. Furthermore, the moment generating function of tX  is 

      tGexpeE:t, tX    , where the function  G  is defined as 
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  




















  1

qp

2

1

2

1
:G

2

2

1

1222





 .                           (2) 

The information filtration  tH  available to the secondary market is defined 

by        ,ts0,tZ,,tZ sn1t   : H for the largest n such that ttn  , where 

   vtinfv  tV:: , the first time that the asset falls below v . 

The main objective in this section is to compute the default probability. Firstly, define 

 t,x,x0  as a probability of event that   0: 


ts0Xmin s
ts0

, conditional on 00 vV   and 

xXt  ; that is 

    00t00s
ts0

0 vV,xX,xXXmin,x,x 


           00  t           

 
 **

t

**
t

*
s

ts0

dxX

dxX,Xmax




 



 0
                                           (3) 

where s
*
s XX  . The distribution of *

tX  and the joint distribution of the process *
tX  and 

its running maxima 

 s
ts0
Xmax , used in (3) can be computed by the differentiations of the 

cumulative distribution function of *
tX  and the joint cumulative distribution of *

tX  and 



 s
ts0
Xmax  respectively. The cumulative distribution function of *

tX  and the joint cumulative 

distribution of *
tX  and 

 s
ts0
Xmax  are given by 

  







 



  xYWtlimxX
n

1j
jt

mn

0n
n

mn
t        

   21210 ,,q,p,M,,q,p,L
t

tx 


 














                 (4) 

and 
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     






 xX,XmaxxXxX,Xmax ts

ts0
tts

ts0
 00   

     







  xX,XmaxXmaxxX ts
ts0

s
ts0

t  00-1          (5) 

where 









2

2 ,   , YY   which have the distribution as 

   0y
y

20y
y

1Y IeqIep)y(f 21






     where p'q,q'p, 1221    1; 0  , and 

n ,  21 ,,q,p,L   , and  21 ,,q,p,M    are provided in appendix A.  bXmax s
ts0




  

and  xX,bXmax ts
ts0

 


   can be computed explicitly from their Laplace transforms. The 

Laplace transforms of the two cumulative distributions can be written as  

  















  



  






















 ,2,1 b

,1,2

,1

1

1,2b

,1,2

,2

1

,11

0 s
ts0

t ee
1

dtbXmaxe ,     (6)           

and 

        
    
   
 x,b,,,q,p,Fe

0;c,,hHb,,,q,p,Be

x,b,,,q,p,Ex,b,,,q,p,De

x,b,Cb,,,q,p,Bb,,,q,p,AdtxX,bXmaxe

21
h

021
h

2121
h

21210 ts
ts0

t

2

1

1

























 













                                                 

                                                 

                                                 

 

       (7)           

where   ,2,1 ,  are the only two positive roots of the equation   G  defined in (2), and 

A, B, C, D, E, F are given in appendix A. Since the cumulative distributions of the first 

passage times are given in terms of Laplace transforms, numerical inversion of Laplace 

transforms becomes necessary. To do this, the Gaver-Stehfest algorithm, which does the 

inversion on the real line, is used in this paper. For any bounded and continuous function  f  

defined on  ,0 ,    tf
~

limtf n
n 

 , 

where 
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       
       

  






 























































 


n

1k

^
)

2

n
,kmin(

)1k(
2

1
j

2

n

2

n
k

n
n t

2lnk
f

kj2jk1jjj
2

n
j2j

1
t

2ln
limtf

~

! ! ! ! ! 

! 
  (8) 

and f
~

 is the Laplace transform of f , i.e.    
 

0

t dttfef
~  . 

Next, the density  t,x,Zb 0t  of tX , given 00 vV   and “killed” at  xXtinf t  :  

where x  is set to be 








0v

v
log , conditional on the observation ttt UXZ  , can be 

calculated. By definition,  

    00tt0 vVxx,dzZdxX,tdxt,x,zxb   and                  

     
 dzZ

xzdxXt,xx,x

t

Ut








                                (9) 

where U  denotes the density of tU  and  

  


















 







zYUWt
2

zZ
n

1j
jtt

2

0n
nt   

 

 

 

 21

2

1

21

2

1

2

0

,,q,p,M
2

e

,,q,p,L
2

e

t
2

z

2
2

2

1
2

1
























































                                       (10) 

where 222 at  .  21 ,,q,p,L  ,  21 ,,q,p,M  , and the proof of (12) are given in 

appendix B. 

  Thirdly, according to the result of Duffie and Lando (2001), the density  t,x,Zg 0t  of 

tX , conditional on the noisy observation tZ  and on t , is given by  
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   
 



v 0

0
0

dxt,x,zxb

dxt,x,zxb
t,x,zxg .                                              (11) 

Finally, the tH –conditional default probability is given by 

     



v 0 dxt,x,zxgxx,tstsp                                    (12) 

where  

      00h
sht

th
sht

vVXXmaxΡxXxXminΡxx,ts  


      , 00 0                (13) 

where 0    
0ss X,XX . 

 

3. An Analysis of the Credit Risk Model 

In order to analyze how the combination of the noisy information and the asymmetric jump 

brings the impacts on the credit risk model, we provide several cases for the default 

probability, the default intensity, and the credit spread with different arrival rates of jump ( λ ) 

and standard deviations of noise (a). In these case, the initial asset level given one year ago 

0V =86.3 and the default boundary 78v  . We also suppose in all case that tU  has 

expectation 
2

a2

 , so that   1tUeE  implies an unbiased asset report. For the 

jump-diffusion process, r=0.05, 0.05σ , 0.02
1η

1
, and 0.03

12η

1
. Our basic case is 

%10a  . All parameters refer to Duffie and Lando(2001) and Kou and Wang(2003). 

 

3.1 Default Probability                      

This section presents the numerical illustration for the default probability with varying 
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standard deviation of noise and different jumps to analyze the cooperative impacts of the 

asymmetric jump and noisy information on the default probability.  

Table 1a and 1b compare the explicit solution computed by (14) with the Monte Carlo 

simulation in the two cases of 0.01λ  and 3λ . The simulation is based on 1,000,000 

simulation runs.  

Figure 1 shows the probability of first passage of a double exponential jump diffusion 

from an initial condition 0 vVt  given 0v  to a level below v  before time s. In order to 

emphasize the result affected by the jump frequency and the probability of upward jump, the 

case of λ =3 with symmetric jump is compared with the case of λ =0.01 with symmetric 

jump, which is near to without jump and the case of λ =3 with asymmetric jump (p=0.7). The 

previous year’s asset level is set to be 86.3 arbitrarily. As can be seen from Figure 1, given a 

jump-condition, the probability of first passage time decreases in the actual asset level v at 

time t, which is in line with our intuition. Furthermore, given the same actual asset level v at 

time t, the probability of first passage time increases in jump frequency but decreases in the 

probability of upward jump, which is also in line with our intuition.  

Figure 2a, Figure 2b, and Figure 2c show the conditional density of the current asset 

level tV , given tH , that would be realized in the event that the bond has not yet default and 

the current asset level reported tV̂  has a outcome equal to the previous year’s report. There 

are three cases of different jump-conditions considered here. One is λ =0.01, p=0.5 (shown 
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in Figure 2a); another is λ =3, p=0.5 (shown in Figure 2b); still another is λ =3, p=0.7 

(shown in Figure 2c). And the standard deviation of noise is set as 5% and 40% for all cases. 

The previous year’s asset level is set to be 86.3 arbitrarily. It can be shown that in all cases, 

the density becomes flattened as the standard deviation of noise (a) increases, and the peak 

density is shifted to the right with jump, p=0.7, which is asymmetric and favoring upward. It 

is worthy to note that the amount of this shift due to asymmetric jump is magnified by the 

dubious level of information. It seems that the asymmetric jump cooperates with the 

information noise and creates a composite effect on the conditional density. 

Figure 3 illustrates outcomes of the conditional default probability for cases of different 

jumps and various levels a of noise. One is for 0.01λ and p=0.5; another 3λ   and p=0.5; 

and the other 3λ   and p=0.7, given the same previous year asset level of 86.3. For the case 

of 0.01λ , representing a jump of once per hundred year, which is considered rare to 

happen, the curve we obtained is quite close to that obtained by Duffie and Lando (2001). It 

means that our generalized model can be reduced to Duffie and Lando’s model. The default 

probability will increase first and then converge to a certain level as the standard deviation of 

noise increases. This is because the noise affection will eventually saturate if the standard 

deviation of noise is large enough. For 3λ  and p=0.5, the whole curve of the default 

probability is raised by the jump, and the point probability of the curve increases first as in the 

case of λ =0.01, reaches the peak value, and then decreases to converge to a saturation level 
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as the information become more and more dubious. For the case of 3λ  and p=0.7, the 

whole curve of the default probability is lowered with respect to the case of 3λ  and p=0.5, 

because the asymmetric jump favors upward by assumption; there is also a 

decrease-to-saturation phenomenon in this case of asymmetric jump. The 

decrease-to-saturation phenomenon is the result of cooperation of the jump and noisy 

information. As shown in the equation (12), the default probability is equal to the inner 

product of the probability of first passage time  xx,ts   and the conditional probability 

 dxt,x,zxg 0 . From Figure 2a-2c, it can be seen that noisy information makes the conditional 

density more flattened. At the lower and higher actual asset level, the conditional density 

increases in the standard deviation of noise, which generates an affection that increases the 

default probability, whereas the conditional density decreases in the standard deviation of 

noise at the middle actual asset level, which generates a contrary affection that decreases the 

default probability. The default probability is determined by these two contrary powers. 

Because the probability of first passage time decreases and converges to zero more slowly, the 

affection that decreases the default probability can be displayed more obviously in the case of 

3λ   than in the case of λ =0.01, which result in the decrease-to-saturation phenomenon. 

 

3.2 Default Intensity 

We turn now to the implications of asymmetric jumps and noisy information for the default 
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intensity of the modeled firm. 

By the definition, the default intensity is a local default rate, in that 

 
  

h

ht,ttp
lim

0h
t

tH



 .                                                 (14)  

Figure 4a illustrates the different between the default intensity of the modeled firm, the asset 

value of which has an asymmetric jump, with and without perfect information; besides, the 

special case of one-sided jump is also given. From this figure, we have three findings about 

the default intensity. First, the intensity with noise (a=10%) is less sensitive with reported 

asset level than the intensity without noise (a=0) as long as the jump is considered in the asset 

process. However, in the case that the value of asset follows a pure diffusion ( =0), the 

intensity with noise is always greater than the intensity without noise, which is zero at any 

reported asset level (Duffie and Singleton 2001). Second, if only the upward jump is included, 

the intensity is close to zero regardless of information quality. Third, at the same probability 

of upward jump, the intensity increases over the whole level of the reported asset as the 

arrival rate of jump increases, as illustrated in Figure 4b, whereas the intensity decreases for 

the low reported asset level but increase for the high reported asset level as information 

become more dubious, as illustrated in Figure 4a. It is suggested that there is a neutral point 

where the intensity is not affected.  

From Figure 4c, it may be concluded that the arrival rate of jump creates greater impact 

on the intensity as the standard deviation of noise increases (a) from 0 to 25% at the reported 
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asset level (86) higher than the neutral point. In contrast, from Figure 4d, at the reported asset 

level (80) lower than the neutral point, the impact of jump initially increases as a increases 

from 0 to 5% and then decrease as a increases from 5% to 25%. In addition, the impact of 

noise on intensities will be saturated as the standard deviation of noise is large enough for 

both higher and lower reported asset level. 

 

3.3  Credit Spreads 

According to Kou and Wang(2004), under the risk-neutral probability measure  , the return 

process given by 






 





 

tN

1i
it

2
t YWt

2

1
rX  , 00X .                                 (15) 

Where 
tW  is a standard Brownian motion under  ,  0 ;  tNt  is a Poisson process with 

intensity  . The log jump size  
21 Y,Y  still from a sequence of i.i.d. random variables 

with a new double exponential density    0y
y

20y
y

1Y
IeqIep)y(f 21





 

     The constants 

1  0,  0; 1   qpq,p, 21  , and   11: 





 






 

1

q

1

p
eE

2

2

1

1Y





 . All sources of 

randomness, 
tN , 

tW , and sY  , are still independent under  .  

For a given time to maturity T, the yield spread on a given zero-coupon bond sold at a 

price 0  is the real number   such that   tT
T,t

  r-e . We assume the bond holder 

can receive some fraction  1,0R  of its market value tV  at default. According to Duffie 

and Sinleton(1999), the secondary market price  T t,  of the bond in the event of no default 
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at time t is given by  

        T,ttt
tr

tT,ttt
tr

t
tT

T,t REehEeh1 



  




 

 r-e                        (16) 

where sh  is the conditional probability at time s under a risk-neutral probability measure   

of default between s and s+1, given the information available at time s in the event of no 

default by s. Besides, r is the risk-free rate. 

From Figure 5, it can be shown how the asymmetric jumps and noisy information create 

impacts on the term structure of credit spreads. First of all, noisy information tends to reshape 

the term structure from a hump to a monotone; in other words, the short spread will ascend 

and the long spread will descend while noise increases. This phenomenon results from the fact 

that the uncertainty causes the default probability having a more moderate variation with 

maturity, as illustrated in Figure 6. Secondly, as the arrival rate of jump increases, the term 

structure is still a humped-like curve, but the spread will be ascended over the whole range of 

maturity. Finally, the term structure of credit spreads is monotone if the both the asymmetric 

jump and the noisy information are simultaneously considered and large enough. The term 

structure of credit spreads therefore can be more enriched by including jumps and noise.  

 

4 Conclusion 

The pure diffusion approach for structural model with noisy information is generalized in this 

paper by including jumps in the firm-value processes. The explicit solution of the default 
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probability for this structural model is given, and numerical results show how the combination 

of the noisy information and the asymmetric jump brings the impacts on the credit risk.  

Firstly, the opposite ways of impact of noise on the default intensity depends on whether 

the lower or higher range of the reported asset level is considered, and the noisy information 

will hence make the intensity with jump less sensitive with the reported asset level. Secondly, 

for the term structure of credit spread, the noisy information tends to reshape the term 

structure from a hump-like curve to a more flattened one; however, as the arrival rate of jump 

increases, the term structure is still hump-like, but the spread will be ascended over the whole 

range of maturity. Furthermore, it is found that the term structure of credit spreads is 

monotone if the two factors are simultaneously considered and large enough.  

In short, the term structure of credit spreads is enriched by simultaneously incorporating 

the asymmetric jump and the noisy information into our credit risk model, and this 

generalization could be more potential to interpret empirical data in real world where rare 

events beyond the realm of normal expectations happen. 

 

 

 

 

 



 
 

15

Reference 

[1] Duffie, D., and K. Singleton. “Modeling Term Structures of Defaultable Bonds”,  

Reviews of Financial Studies, 12, 4, pp. 687-720, 1999. 

[2] Duffie, D., K. Singleton. Credit Risk: Pricing, Measurement, and Management. 

[3] Duffie, D., and D. Lando. “Term structures of credit spreads with incomplete accounting 

information”, Econometrica, 69, 3, pp. 633-664, May 2001. 

[4] Guo, X., R. A. Jarrow, and Y. Zeng. “Credit Risk Models with Incomplete Information”, 

working paper, June 2008.  

[5] John C. H.. Option, Futures, and other Derivatives. Pear.  

[6] Kou, S. G.. “A Jump-Diffusion Model for Option Pricing”, Management Science, 48, 8, pp. 

1086-1101, August 2002. 

[7] Kou, S. G., and H. Wang. “First passage times for a jump diffusion process”, Adv. Appl. 

Probab, 35, pp. 504-531, 2003.  

[8] Kou, S. G., and H. Wang. “Option pricing under a double exponential jump diffusion 

model”, Management Science, 50, 9, pp. 1178-1192, September 2004. 

[9] Scherer, M.. “A structural Credit-Risk Model based on a Jump Diffusion”, working paper, 

December 2005. 

[10] Schmid, B.. Credit Risk Pricing Models: Theory and Practice. 

[11] Shreve, S. E.. Stochastic Calculus for Finance: Continuous-Time Models, Springer. 



 
 

16

[12] Zhou, C.. “The term structure of credit spreads with jumps”, Journal of Banking and 

Finance, 1997 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

17

Table 1a: Comparison between Monte Carlo simulation and explicit solution of default 

probability. ( λ =0.01). The simulation is based on 1,000,000 simulation runs. 

  5% 10% 25% 40% 

0.25 year Formula 0.0086 0.0148 0.0170 0.0173 

 Simulation 0.0085 0.0153 0.0174 0.0178 

 Error (%) 1.176 3.27 2.30 2.81 

0.5 year Formula 0.0235 0.0323 0.0352 0.0356 

 Simulation 0.0234 0.0323 0.0357 0.0355 

 Error (%) 0.427 0 1.40 0.282 

1 year Formula 0.0591 0.0681 0.0706 0.0709 

 Simulation 0.0580 0.0682 0.0706 0.0708 

 Error (%) 1.90 0.147 0 0.141 

Parameter setting:  

86.3 86.3; 0.5; 0.03; 0.02; 0.01; 0.05; 0.01;  t0
21

2

V̂Vp
η

1

η

1
λσ

2

 . 

 

Table 1b: Comparison between Monte Carlo simulation and explicit solution of default 

probability. ( λ =3). The simulation is based on 1,000,000 simulation runs. 

  5% 10% 25% 40% 

0.25 year Formula 0.0491 0.0584 0.0601 0.0602 

 Simulation 0.0483 0.0574 0.0598 0.0592 

 Error (%) 1.66 1.74 0.50 1.69 

0.5 year Formula 0.1053 0.1131 0.1127 0.1124 

 Simulation 0.1027 0.1109 0.1091 0.1083 

 Error (%) 2.53 1.98 3.30 3.79 

1 year Formula 0.2064 0.2061 0.2005 0.1994 

 Simulation 0.2033 0.2028 0.1958 0.1963 

 Error (%) 1.52 1.63 2.40 1.58 

Parameter setting:  

86.3 86.3; 0.5; 0.03; 0.02; 3; 0.05; 0.01;  t0
21

2

V̂Vp
η

1

η

1
λσ

2

 . 
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Figure 1: Probability of first passage time, for different arrival rate of jump and the 

probability of upward jump. 

 

Parameter setting: 86.3 86.3; 0.03; 0.02; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
σ

2

 . 
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Figure 2a: Conditional density of tV , for different standard deviation of noise. ( 0.01 , 

p=0.5) 

 

Parameter setting:  

86.3 86.3; 0.03; 0.02; 0.5; 0.01; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
pσ

2
  
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Figure 2b: Conditional density of tV , for different standard deviation of noise. ( =3, p=0.5) 

 

Parameter setting:  

86.3 86.3; 0.03; 0.02; 0.5; 3; 0.05; ;0  t0
21

2

V̂V
η

1

η

1
pσ01.

2
  
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Figure 2c: Conditional density of tV , for different standard deviation of noise. ( =3, p=0.7) 

 

Parameter setting:  

86.3 86.3; 0.03; 0.02; 0.7; 3; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
pσ

2
 . 
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Figure 3: Default probability for time horizon 1 year, varying standard deviation of noise. 

 

Parameter setting: 86.3 86.3; 0.03; 0.02; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
σ

2

 . 
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Figure 4a: Default intensity, for different probabilities of upward jump, with noiseless and 

noisy information. 

 

Parameter setting: 86.3 86.3; 0.03; 0.02; 3; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
σ

2
  
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Figure 4b: Default intensity, for different arrival rates of jump, with noisy information. 

 

Parameter setting: 86.3 86.3; 0.03; 0.02; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
σ

2

  
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Figure 4c: Default intensity, for different arrival rates of jump and varying standard deviation 

of noise. ( 86tV̂ ) 

 

Parameter setting:  

86 86.3; 0.03; 0.02; 0.7; 3; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
pσ

2
 . 
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Figure 4d: Default intensity, for different arrival rates of jump and varying standard deviation 

of noise. ( 80tV̂ ) 

 

Parameter setting:  

80 86.3; 0.03; 0.02; 0.7; 3; 0.05; 0.01;  t0
21

2

V̂V
η

1

η

1
pσ

2
 . 
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Figure 5: Credit Spread, for different arrival rates of jump, with noiseless and noisy 

information.
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Parameter setting: 86.3 86.3; 0.03; 0.02; 0.7; 0.05; 0.05;  t0
21

V̂V
η

1

η

1
pσr  
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Figure 6: The default probability, with noiseless and noisy information. 

 

Parameter setting: 86.3 86.3; 0.03; 0.02; 0.7; 3; 0.05; 0.05;  t0
21

V̂V
η

1

η

1
pσr  . 
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Appendix  

Appendix A. Notations 

Notation 1: (for equation (4)) 

Note that to simplify the notation, we shall drop the superscript ′ in parameters, i.e., using  , 

 , p , q , 1 , 2  rather than  ,  , p , q , 1 , 2 . 
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Note that to compute the Hh  function, the three-term recursion of Hh  which is 

1   ,   n)x(xHh)x(Hh)x(nHh 1n2nn  should be used. 
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Notation 2: (for equation (5)) 
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Note that to compute the H function, the three-term recursion of H which is 
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Appendix B. Derivation of the cumulative distribution of tZ ,  zZt   

Suppose  ,, 21   is a sequence of i.i.d. exponential random variables with rate 0 , V 
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(2) The tail probabilities are given by  
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