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What Are the Impacts of Asymmetric Jumps and Noisy Information on

the Credit Risk Model?

Student : Hsuan Rern Advisor : Dr. Jia-Hau Guo

Institute of Finance

National Chiao Tung University

ABSTRACT
The pure diffusion approach for credit risk model with noisy information is
generalized in this paper by including jumps in the firm-value processes. The explicit
solution of the default probability for this credit risk model is derived, and the impacts
of asymmetric jumps and noisy information on the credit risk are illustrated with
numerical results on the default probability, the default intensity, and the credit spread.
With the term structure of credit spreads being enriched, our approach is potential to

interpret empirical data in real world.

Keywords: credit risk; noisy information; double exponential jump; default probability;

default intensity; credit spread; term structure.
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1. Introduction

Default risk analysis plays a critical role in managing the credit risk of bank loan portfolios. In

recent research, there are two types of default risk that have been widely used for modeling

credit risk. One is the jump risk. For instance, Zhou (1997) and Scherer(2005) incorporates

jump risk into the default process and suggests that a firm, the assets of which are perfectly

observable, can default instantaneously because of a sudden drop in its value, and the short

credit spread of this firm is also bounded away from zero. Another is the default risk due to

noisy information. Duffie and Lando(2001) indicates the impacts of the noisy information on

the default intensity and the yield spread, and shows that a firm, the asset value of which

follows a pure diffusion process but can not be observed directly, can default instantaneously

either. However, how do the two types of default risk affect the credit risk model in the same

time remains open, and this paper intends to focus on the simultaneous impacts of the

asymmetric jumps and noisy information on credit risk.

According to Kou(2002), the double exponential jump-diffusion can capture the

empirical phenomenon, which is the asymmetric leptokurtic features that the return

distribution is skewed to the left and has a higher peak and two heavier tails than those of pure

Brownian motion. With the mean sizes and the probabilities of upward and downward being

set respectively, the double exponential jump-diffusion is considered asymmetric and

therefore appropriate to capture more realistic jump.



In this paper, a double jump-diffusion process is chosen as the basic model for the asset

value of a firm and the noisy information assumption proposed by Duffie and Lando (2001) is

incorporated for incomplete information market. The impacts of asymmetric jumps and noisy

information on the credit risk are illustrated with numerical results on the default probability,

the default intensity, and the credit spread. The result of our analysis shows that the term

structure of credit spreads is enriched by simultaneously incorporating the asymmetric jump

and the noisy information into the credit risk model. This generalization could be more

potential to interpret empirical data in future.

The remainder of this paper is organized as follows. The incorporation of the double

exponential jump-process for the asset value of the firm into the credit risk model is given,

and then the default probability of the modeled firm is analytically derived in section 2. In

section 3, the analysis of the credit risk model is provided for several cases with different

arrival rates of jump and information quality to show how asymmetric jumps and noisy

information simultaneously influence the default probability, default intensity, and credit

spreads. Section 4 concludes this paper.

2. The Basic Model

This section presents our basic model of a firm with noisy information about the credit quality

of its debt. We derive the conditional distribution of firm’s assets, given noisy information,



along with the associated default probability.

According to Duffie and Lando(2003), after issuance, bond investors are not kept
informed of the status of the firm. Although they do understand that optimizing equity owners
will force liquidation when assets fall to v, they can not observe the actual asset level of the

company (V,). Instead, they observe the noisy report of assets (Vi ). We suppose that the value

A

and Z, = log(%} =X, +U,, where

0

of a company follow a stochastic process V = {K}

t=20 2

U, follows a normal distribution with mean 7z and variance @’ and is independent of X,.

The return process X, = log(%j is supposed to follow a double exponential jump-diffusion.
0

Under the physical probability measure 2P, the process is given by:

2 N,
X[{ﬂ_%}mwt 3%, X,=0 (1)

i=1
where W, is a standard Brownian motion, N, is a Poisson process with rate A, and {Yl}
is a sequence of independent identically distributed (i.i.d.) nonnegative random variables that
has an  asymmetric  double  exponential  distribution  with  the  density
Sr(y)=pne " 1o +qn,e”" 1, 5 . The constants 7,>1,7,>0;p,q20, p+g=1. All

randomness, N,, W,,and Y, are assumed to be independent; the drift 4 and the volatility

o are assumed to be constant, and the Brownian motion and jumps are assumed to be one

dimensional. ~ Furthermore, the moment generating function of X, is

#0,t)=E legX ’ J: exp{G(@)t}, where the function G(-) is defined as
3



— _i 2 i 2 2 P qmn,
G(ﬁ).—ﬂ(y 20‘)+2ﬂa +/{f71—ﬂ+m+ﬂ ]j. )

The information filtration (#) available to the secondary market is defined
by ,//t:a({Z(tl),...,Z(tn),]{m}:OSSSI}), for the largest n such that 7 <t , where

T= r(y) =inf {t 1V, < y} , the first time that the asset falls below v.

The main objective in this section is to compute the default probability. Firstly, define

w(x,,x,t) as a probability of event that min{X,:0<s<t}>0, conditional on ¥, =v, and

0<s<t

X, =x; thatis

w(xo,x,t)zP{minXs>0X0:x0,Xt:x>0}, V,=v,

0<s<t

Pynax X, <0, X, edx*}

<s<t ]

- ) 7P{X* edx*} ©)

where X =—X_ . The distribution of X, and the joint distribution of the process X, and

t

its running maxima max X, used in (3) can be computed by the differentiations of the

0<s<t

cumulative distribution function of X, and the joint cumulative distribution of X, and

max X! respectively. The cumulative distribution function of X, and the joint cumulative

0<s<t

distribution of X, and max X are given by

0<s<t

mn—0 _

P{X:Zx*}= lim fznp(eﬂa'w, +in'2x*]
n=0

Jj=1
X* _'69? P (A A A

=1, D| - Ji +L(/1,p,q,771,772)+M(/1,p,q,77],772) 4)
ot

and



Pimax X; <0,X; <x' = PX; <x" |~ Pinax X! >0, X} <x'|

<s<t <s<t

=1-P{X 23" |~ Plmax X} > 0+ Pimax X! >0, X > x| (5)

<s<t <s<t

2

where 6”=—(,u—%] , o=—-0 , Y =-Y which have the distribution as

So(Y)=D'0e" Ly +q' e Iy where 73 =1,>0,1,=n,>1;p'=¢q,q'=p , and

T, L(/i,p',q',n;,n;), and M(/”t,p’,q',n;,n;) are provided in appendix A. Pynax X, >b}

<s<t

and Pynax X >b, X, > x} can be computed explicitly from their Laplace transforms. The

<s<t

Laplace transforms of the two cumulative distributions can be written as

J‘°° e_mP%nax X: > b}dt _ i[ﬂ] 7 181,01 ﬂZ,a efbﬂ,,a \ :Bz,a ’_771 ﬂ],a efbﬂz,a J ’ (6)
0 ssst o 771 ﬂZ,a - ﬂ],a 771 182,(1 - 181,0(

and

Iowe"“’P ax X >b, X, > x}dt =(4(2, p,q.n,,1,,b)+ B(4, p,q,1,,1,,b))C(2,b,x)

<s<t
+"(D(A, p,g 10,15, %)+ E(A, p,q, 1, 71,b, ) 7
+" 7" B(A, p.q. 0,1, 0)H, (1, 7,,,¢,,0)
- eiha'ﬂ%F(/L p 9,771:772:17:)5)

where f,,.p,, are the only two positive roots of the equationar = G(ﬁ ) defined in (2), and
A, B, C, D, E, F are given in appendix A. Since the cumulative distributions of the first
passage times are given in terms of Laplace transforms, numerical inversion of Laplace
transforms becomes necessary. To do this, the Gaver-Stehfest algorithm, which does the

inversion on the real line, is used in this paper. For any bounded and continuous function f ()

defined on [0,00), f(¢)=lim 7”(1‘),

Hn—»0

where



n

F(2)) {2 o

t

n
min(k,—
( 7/

F0=im ™Sty

TR (5O - ey

and f isthe Laplace transform of f,1i.e. f(a): J.:e*“’ (t)dt .

Next, the density b(-|Zt,x0,t) of X,, given ¥, =v, and “killed” at 7 =inf{t: X, <x}

14

where x 1s set to be log( ], conditional on the observation Z =JX,+U,, can be

Vo
calculated. By definition,

b(x|z,x0,t)dx =P{r >t,X, € dx|Zt edz } x>xandV, =v,

v(-x.x—x1)PX, e dxlp, (2~ x)
= ©)
P{Z, e dz}

where ¢, denotes the density of U, and

© 2 n
Pz, Zz}:Zﬂ'nP[(,u—%Jt+0'W, +U+YY, zz]

n=0 j=1

o’ >
Z_ _—— —_—
H 5 H
=7r,D| -

o

e§(501)2+/777/
+— LA, p,q,n, 10
5\/% ( p.q,1, 772) (10)

[P
S@n, Y -z,

+—M’ /lyp)q)n )77

E\/Z ( 1 2)

where &° =c’t+a’. L'(4,p,q.n,.1,), M'(2,p,q.n,.1,), and the proof of (12) are given in
appendix B.

Thirdly, according to the result of Duffie and Lando (2001), the density g(-|Zt,x0,t) of

X, , conditional on the noisy observation Z, and on 7 >¢,is given by

6



b(x|z, X, t)dx

g(¥z,x,.1)= jjb(x|z,x0,t)dx' (11)
Finally, the 7 —conditional default probability is given by

ple<sle>1}= LOO #(s — 1,5 x)g(z,x,. £ dx (12)
where
7(s —t,x-x) = Pimin X, <x|X, =x|= Pynax X; > 0\X; =0j, V=, (13)

where X '=-X_, X, =0.

3. An Analysis of the Credit Risk Model

In order to analyze how the combination of the noisy information and the asymmetric jump
brings the impacts on the credit risk model, we provide several cases for the default
probability, the default intensity, and the credit spread with different arrival rates of jump (1)
and standard deviations of noise (a). In these case, the initial asset level given one year ago

V,=86.3 and the default boundary v=78. We also suppose in all case that U, has

2
: _ a T :
expectation =T so that E(euf)zl implies an unbiased asset report. For the

jump-diffusion process, r=0.05, ¢ =0.05, i:0.02, and L=0.03. Our basic case is
m; M2

a =10% . All parameters refer to Duffie and Lando(2001) and Kou and Wang(2003).

3.1 Default Probability

This section presents the numerical illustration for the default probability with varying
7



standard deviation of noise and different jumps to analyze the cooperative impacts of the
asymmetric jump and noisy information on the default probability.

Table 1a and 1b compare the explicit solution computed by (14) with the Monte Carlo
simulation in the two cases of 4=0.01 and A=3. The simulation is based on 1,000,000
simulation runs.

Figure 1 shows the probability of first passage of a double exponential jump diffusion

from an initial condition ¥, =v >0 given v, to a level below vy before time s. In order to

emphasize the result affected by the jump frequency and the probability of upward jump, the
case of A=3 with symmetric jump is compared with the case of 1=0.01 with symmetric
jump, which is near to without jump and the case of 1 =3 with asymmetric jump (p=0.7). The
previous year’s asset level is set to be 86.3 arbitrarily. As can be seen from Figure 1, given a
jump-condition, the probability of first passage time decreases in the actual asset level v at
time ¢, which is in line with our intuition. Furthermore, given the same actual asset level v at
time ¢, the probability of first passage time increases in jump frequency but decreases in the
probability of upward jump, which is also in line with our intuition.

Figure 2a, Figure 2b, and Figure 2c show the conditional density of the current asset
level V,, given .7, , that would be realized in the event that the bond has not yet default and
the current asset level reported 17[ has a outcome equal to the previous year’s report. There

are three cases of different jump-conditions considered here. One is 4=0.01, p=0.5 (shown



in Figure 2a); another is A=3, p=0.5 (shown in Figure 2b); still another is 1=3, p=0.7

(shown in Figure 2¢). And the standard deviation of noise is set as 5% and 40% for all cases.

The previous year’s asset level is set to be 86.3 arbitrarily. It can be shown that in all cases,

the density becomes flattened as the standard deviation of noise (@) increases, and the peak

density is shifted to the right with jump, p=0.7, which is asymmetric and favoring upward. It

is worthy to note that the amount of this shift due to asymmetric jump is magnified by the

dubious level of information. It seems that the asymmetric jump cooperates with the

information noise and creates a composite effect on the conditional density.

Figure 3 illustrates outcomes of the conditional default probability for cases of different

jumps and various levels a of noise. One is for 4 =0.01and p=0.5; another A=3 and p=0.5;

and the other 41=3 and p=0.7, given the same previous year asset level of 86.3. For the case

of 21=0.01, representing a jump of once per hundred year, which is considered rare to

happen, the curve we obtained is quite close to that obtained by Duffie and Lando (2001). It

means that our generalized model can be reduced to Duffie and Lando’s model. The default

probability will increase first and then converge to a certain level as the standard deviation of

noise increases. This is because the noise affection will eventually saturate if the standard

deviation of noise is large enough. For A=3and p=0.5, the whole curve of the default

probability is raised by the jump, and the point probability of the curve increases first as in the

case of 1=0.01, reaches the peak value, and then decreases to converge to a saturation level



as the information become more and more dubious. For the case of 1=3and p=0.7, the
whole curve of the default probability is lowered with respect to the case of 1 =3 and p=0.5,
because the asymmetric jump favors upward by assumption; there is also a
decrease-to-saturation  phenomenon in this case of asymmetric jump. The
decrease-to-saturation phenomenon is the result of cooperation of the jump and noisy
information. As shown in the equation (12), the default probability is equal to the inner
product of the probability of first passage time 7Z'(S —t,x—z) and the conditional probability
g(x|z,x0,t)dx . From Figure 2a-2c, it can be seen that noisy information makes the conditional
density more flattened. At the lower and higher actual asset level, the conditional density
increases in the standard deviation of noise, which generates an affection that increases the
default probability, whereas the conditional density decreases in the standard deviation of
noise at the middle actual asset level, which generates a contrary affection that decreases the
default probability. The default probability is determined by these two contrary powers.
Because the probability of first passage time decreases and converges to zero more slowly, the
affection that decreases the default probability can be displayed more obviously in the case of

A=3 than in the case of 1=0.01, which result in the decrease-to-saturation phenomenon.

3.2 Default Intensity
We turn now to the implications of asymmetric jumps and noisy information for the default

10



intensity of the modeled firm.

By the definition, the default intensity is a local default rate, in that

A = lim plre (t,t+h)|~///').

h—>0 h

(14)
Figure 4a illustrates the different between the default intensity of the modeled firm, the asset
value of which has an asymmetric jump, with and without perfect information; besides, the
special case of one-sided jump is also given. From this figure, we have three findings about
the default intensity. First, the intensity with noise (a=10%) is less sensitive with reported
asset level than the intensity without noise (a=0) as long as the jump is considered in the asset
process. However, in the case that the value of asset follows a pure diffusion (A4=0), the
intensity with noise is always greater than the intensity without noise, which is zero at any
reported asset level (Duffie and Singleton 2001). Second, if only the upward jump is included,
the intensity is close to zero regardless of information quality. Third, at the same probability
of upward jump, the intensity increases over the whole level of the reported asset as the
arrival rate of jump increases, as illustrated in Figure 4b, whereas the intensity decreases for
the low reported asset level but increase for the high reported asset level as information
become more dubious, as illustrated in Figure 4a. It is suggested that there is a neutral point
where the intensity is not affected.

From Figure 4c, it may be concluded that the arrival rate of jump creates greater impact
on the intensity as the standard deviation of noise increases (@) from 0 to 25% at the reported

11



asset level (86) higher than the neutral point. In contrast, from Figure 4d, at the reported asset
level (80) lower than the neutral point, the impact of jump initially increases as a increases
from 0 to 5% and then decrease as a increases from 5% to 25%. In addition, the impact of
noise on intensities will be saturated as the standard deviation of noise is large enough for

both higher and lower reported asset level.

3.3 Credit Spreads

According to Kou and Wang(2004), under the risk-neutral probability measure P°, the return

process given by

v
Xt=[r—§0'2—/1*§*jt+aWt*+2Yi*, X,=0. (15)

i=1

Where W' is a standard Brownian motion under P°, {N > O} is a Poisson process with

t 2" =

intensity A". The log jump size {Y]*,Y; } still from a sequence of i.i.d. random variables

with a new double exponential density f.(y)= pne I eoy g™l | The constants

y<0}
P 4

” ———1. All sources of
m—-1 n+1

n,2Ln,>0,p,q" >0, p"+q =1, and & :=E*[ey*]—1=

randomness, N,, W,,and Y's, are still independent under P".

t

For a given time to maturity 7, the yield spread on a given zero-coupon bond sold at a

r+¢)(7T-1)

price @ >0 is the real number ¢ such that ¢, = e . We assume the bond holder

can receive some fraction R e [0,] ] of its market value V, at default. According to Duffie

and Sinleton(1999), the secondary market price (p(t, T) of the bond in the event of no default
12



at time ¢ is given by

0.0 =N = (1= h e E! @nr )+ he RE] (0.1 (16)
where A, is the conditional probability at time s under a risk-neutral probability measure P”
of default between s and s+, given the information available at time s in the event of no
default by s. Besides, 7 is the risk-free rate.

From Figure 5, it can be shown how the asymmetric jumps and noisy information create
impacts on the term structure of credit spreads. First of all, noisy information tends to reshape
the term structure from a hump to a monotone; in other words, the short spread will ascend
and the long spread will descend while noise increases. This phenomenon results from the fact
that the uncertainty causes the default probability having a more moderate variation with
maturity, as illustrated in Figure 6. Secondly, as the arrival rate of jump increases, the term
structure is still a humped-like curve, but the spread will be ascended over the whole range of
maturity. Finally, the term structure of credit spreads is monotone if the both the asymmetric
jump and the noisy information are simultaneously considered and large enough. The term

structure of credit spreads therefore can be more enriched by including jumps and noise.

4 Conclusion
The pure diffusion approach for structural model with noisy information is generalized in this
paper by including jumps in the firm-value processes. The explicit solution of the default

13



probability for this structural model is given, and numerical results show how the combination

of the noisy information and the asymmetric jump brings the impacts on the credit risk.

Firstly, the opposite ways of impact of noise on the default intensity depends on whether

the lower or higher range of the reported asset level is considered, and the noisy information

will hence make the intensity with jump less sensitive with the reported asset level. Secondly,

for the term structure of credit spread, the noisy information tends to reshape the term

structure from a hump-like curve to a more flattened one; however, as the arrival rate of jump

increases, the term structure is still hump-like, but the spread will be ascended over the whole

range of maturity. Furthermore, it is found that the term structure of credit spreads is

monotone if the two factors are simultaneously considered and large enough.

In short, the term structure of credit spreads is enriched by simultaneously incorporating

the asymmetric jump and the noisy information into our credit risk model, and this

generalization could be more potential to interpret empirical data in real world where rare

events beyond the realm of normal expectations happen.

14
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Table la: Comparison between Monte Carlo simulation and explicit solution of default

probability. (4=0.01). The simulation is based on 1,000,000 simulation runs.

5% 10% 25% 40%
0.25year | Formula | 0.0086 | 0.0148 | 0.0170 | 0.0173
Simulation | 0.0085 | 0.0153 | 0.0174 | 0.0178
Error (%) | 1.176 | 327 2.30 2.81
0.5year | Formula | 0.0235 | 0.0323 | 0.0352 | 0.0356
Simulation | 0.0234 | 0.0323 | 0.0357 | 0.0355

Error (%) 0.427 0 1.40 0.282
1 year Formula 0.0591 | 0.0681 | 0.0706 | 0.0709
Simulation | 0.0580 | 0.0682 | 0.0706 | 0.0708
Error (%) 1.90 0.147 0 0.141
Parameter setting:
o’ 1 1 5
u——=0.016=0.05;2=0.01;—=0.02; —=0.03; p=0.5;V, =86.3;V, =86.3.
2 n m,

Table 1b: Comparison between Monte Carlo simulation and explicit solution of default

probability. (4=3). The simulation is based on 1,000,000 simulation runs.

5% 10% 25% 40%
0.25 year Formula 0.0491 | 0.0584 | 0.0601 | 0.0602
Simulation | 0.0483 | 0.0574 | 0.0598 | 0.0592
Error (%) 1.66 1.74 0.50 1.69
0.5 year Formula 0.1053 | 0.1131 0.1127 | 0.1124
Simulation | 0.1027 | 0.1109 | 0.1091 | 0.1083

Error (%) 2.53 1.98 3.30 3.79
1 year Formula 0.2064 | 0.2061 | 0.2005 | 0.1994
Simulation | 0.2033 | 0.2028 | 0.1958 | 0.1963
Error (%) 1.52 1.63 2.40 1.58
Parameter setting:
o’ 1 1 5

u——=0.01;0=0.05;A=3;—=0.02; —=10.03; p=0.5;¥V, =86.3;FV, =86.3.
2 ur m,
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Figure 1: Probability of first passage time, for different arrival rate of jump and the

probability of upward jump.
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Figure 2a: Conditional density of V,, for different standard deviation of noise. (4 =0.01,

p=0.5)
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Figure 2b: Conditional density of V, for different standard deviation of noise. (1 =3, p=0.5)
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Figure 2c: Conditional density of V,, for different standard deviation of noise. (4 =3, p=0.7)
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Figure 3: Default probability for time horizon 1 year, varying standard deviation of noise.
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Figure 4a: Default intensity, for different probabilities of upward jump, with noiseless and

noisy information.

05

Default Intensity
o ©
(%) £

=
N

01

S S S S S SN S s S ey S S U S W NP S N S U R S N
075 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100101102103104105106107 1081091

Reported Asset Level

(=]

2
Parameter setting: u —07 =0.01;0=0.05; 4 =3; i =0.02; i =0.03;V,=286.3;V, =86.3
", n;

23



Figure 4b: Default intensity, for different arrival rates of jump, with noisy information.

1=7, p=0.7, a=10% .
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Figure 4c: Default intensity, for different arrival rates of jump and varying standard deviation

of noise. (V, =86)
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Figure 4d: Default intensity, for different arrival rates of jump and varying standard deviation

of noise. (¥, =80)
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Figure 5: Credit Spread, for different arrival rates of jump, with noiseless and noisy

information.
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Figure 6: The default probability, with noiseless and noisy information.
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Appendix
Appendix A. Notations

Notation 1: (for equation (4))

Note that to simplify the notation, we shall drop the superscript ' in parameters, i.e., using &,

o, p, q, n, n, ratherthan & .0, p', ¢, 1, 1.

e ()
n!

(0'77 yi
/2mn n

Z P (o)1, I(x o, G%/;,—cm]\/?j

n=1I k=1

2t
(‘7772 2

1
M(ﬂ’:p:q;nwnz m{flnm \/—Z (an\/;)klkq(x_Ht;nz:a_\/;:_o'nz\/;J

ipn—k—1\n .
])nkzz( ‘ j( j.( J [ ] nl’lgksn_l
’ i=k i—k n,+n, n+n,
n—1 ——
' i=k i—k 771"'772 n+n,

_eaczn“(ﬂjniHhi(ﬁc—é)Jr( j+ \ELY ﬂ 2 di[ ﬂc+§+2}ﬂ>0,a¢0,n2—l
—\a

1”(C a,ﬁ,5)= aaC':: n—i +1r a’
_— ﬁj Hh(fe-35)- (ﬁj T ﬂ o @[ﬂc—é’—a}ﬂ<0,a<o,n2—]
a S\a a B B

th(x):j“th,J(y)dy :i/jw(t—x)"e’%zzo,n =0,12,....
X n‘ X
Note that to compute the Hhi function, the three-term recursion of Hh which is

nHh (x)=Hh, ,(x)—xHh, ,(x), n=1 should be used.
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Notation 2: (for equation (5))

,310, o P Boo—1 o P
IBZa ﬁ]a ﬂZ,a_ﬂ],a
(77] ﬁ] aXﬂZ a 771)[ ~bB 4 _ e—bﬁz,a ]
771( 2a IBI,a)
C(A4,b,x)= lim f:i"Ho(—h,ya,—ﬁ,-nj
(o2

mn—»oo
n=0 1!

A4, p.q.m,,1,,b)=

B(4, p.q.n,m,.b)=

mn n /1’1 j—1
Pannni)-in S5E o, { ontihrecn)
n=1 j=1 k=0
E(i:p’qﬂh:ﬂz:b x)=B lim z )jHj(h,}/a,c+,'n)

mn—»o0 iy J -0

mn n /1 e Jj=1
(;t P.9.1,,1,,b, x = hm zz (AQn,_j +BQn,_/(z 0-772 —h,Y,.C n)]

“ = 1 j= 1 n k=0
) n—i—1\(n i e
1%=Z ) [ Ul j ( db: j plgI<i<n-1I
=i .. .\, n,+1,
J 1 J
o n—i—1 n = n—j
O, :z . [ /. j ( Ui J q-’p”’-’,]SiSn—I
=i . j n,+n, n,+n,

while P, = p",0, , =4q"

Pui=Y 0, Pu=P,, 2<i<n-I
z (771+772J !

i=1

w(n n—i j—i n—j+1
=>1 l¢'p"’ [ b J ( i J , I1<i<n
J=i ] ]_l ?7]+772 ?7]+772

2 [
,uz’ h:b X
20 o

c =on,-—, y,=a+i+
o

icz -b |t

Hi(a,b,c;n)=LJ.:e(2 ]tn+2th.(c t+ijdt, i2—1, n=>0

Vi

Note that to compute the H function, the three-term recursion of H which is
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Hi(a,b,c;n):éHi_Z(a,b,c;n+1)—%H,._1(a,b,c;n+1)—%Hi_](a,b,c;n) should be used..
Appendix B. Derivation of the cumulative distribution of Z,, P{Z, >z}

Suppose {§],§2,...} is a sequence of i.i.d. exponential random variables with rate 7 >0, V
and U are random variables with normal distribution N (0, 0'2) and N (ﬁ,az) respectively.
Let H, :\/;V+U~N(/7, EZ) and &’ =c’t+a’. Then forevery n>1,

(1) The density functions are given by

(@)’

A
2 nH

_C " (hFEY o S H
s V=l et [~ L on )

_¢ (pa)en on F
O e L E

OAN27 o

(2) The tail probabilities are given by

(Gn) | _
eTWJ : ] o
PH L E>x(= o)l s —-n,——,—0on——
{ t+21—]§1 x} E\/ﬁ (770) nl[x 77 E 0-77 Ej
(5?27) - _
P{Ht_27=1§i2x}: = (770) I, 1()‘;77_ _0'77+ﬂj
Proof.

(1) The density functions of H,+3> ,& and H, -2, & :

Lo )= S5 (s=n)fy()a

hn n—1 —\2
A e (s—h) 1 _(h—,u) dh
el (-1} ov2zr 0| 257
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= [ (S(_ i’))_ m}_ exp{ 2(172 (W -2+ mh+ @ )}dh

:e‘sﬂn”Jjw(Lv(_f);laJ_exp{ ! [(h on— ,u)2 (O' 77)2 20 ny]}dh
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i e N

—2 —
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s)=[ fs- /s (k)
= es”ﬂ"f ° hl;’(qh_ ];!)” ] E\/IZ eXp{— %}dh
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, h=yo+5’n—pu, dh=ocdy yields

Letting y = w
c
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