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Abetraet--A steady-state model concerning the buoyancy-induced plane flows in porous media saturated 
with cold pure water is studied. By applying the finite-difference method, two families of solutions are 
found which exhibit the behavior of unidirectional flows near the impermeable veU.ical isothermal surface. 
A gap, with varying ambient temperature, is found where none of the solutions corresponding to upward 
or downward flows exists. Without applying the boundary-layer approximation, the results show that the 
steady-state model gives no indication of the flows when the ambient temperature lies inside the gap. 

N O M E N C L A T U R E  

% = Specific heat 
g = Gravitational acceleration 

gt, 8"2, g3 = Coefficients in some expressions 
k = Thermal conductivity 
K = Permeability of porous media 
n = Porosity of porous materials 
q = Exponent in density relation 
R = Temperature ratio 
s = Salinity 
t = Temperature 
u = Darcy velocity in the x-direction 
v = Darcy velocity in the y-direction 
V = Velocity vector 
x = Coordinate tangential to the impermeable surface 
y = Coordinate normal to the impermeable surface 
~t, = Thermal-diffusivity ratio 
/t = Viscosity of the fluid 
p = Density 
¢, = Stream function 

Subscripts 
e = Effective quantities of porous media 
f--  Quantities of fluid 

m = Quantities at the extremes 
r = Quantities at the reference condition 
s = Quantities of porous material 
0 = Quantities at the interface 

oo = Quantities at infinity 

1. I N T R O D U C T I O N  

In  the na tu ra l  world, we frequently encounter  t ranspor t  process in fluids where the mo t ion  is dr iven 
by the interface of  a difference in density in a gravi ta t ional  field. The occurrence of  a mot ion-dr iven  

buoyancy  effect may arise f rom a density difference caused by a temperature  difference. Also, as 

in oceanic circulat ion,  the difference in salinity may  further affect the density differences. Therefore,  
the buoyancy  force is the s t imulus to the fluid flow, part icularly in oceanic circulation.  All such 
occurrences are similar and  termed "na tu ra l  convect ion" .  

The buoyancy  effect arises f rom the act ion of  a body  force, usually gravity, on  density differences 
in a body  of  fluid. The density differences are the result of  temperature  or species-concentrat ion 
differences which are control led by the na ture  of  the diffusion processes. Thus,  all diffusions may  
be s imul taneously  occurr ing and  interact ing with each other. The consequence is that  all aspects 
o f  the flow and  diffusive processes must  be considered simultaneously.  The  mechanisms of  such 
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flows are further complicated by the occurrence of density extrema as the temperature varies. It 
is known that a density extremum is reached at about 4°C in pure water at atmospheric pressure. 
Density extrema also occur in saline water up to a salinity level of about 26 ppt (parts per thousand) 
and at elevated pressures up to 300 bar-abs. 

Such mechanisms also occur in saturated media such as permeable soils flooded by cold lake 
or sea water, or water slurries, since density extrema may occur in this situation as well. There are 
a number of experimental or theoretical studies [1-14] in connection with porous media. In these 
studies, the fluid density is assumed to be varied linearly with temperature. However, this is 
inapplicable for water at low temperatures. Thus, Gebhart and Mollendorf [15] developed a new 
density relation for pure or saline water by imposing the temperature extrema. Moreover, 
Ramilison and Gebhart [16], by applying the new density relation, presented a study on the problem 
of transport of porous media saturated with pure or saline water at low temperatures. 

A temperature ratio R is introduced [16], R = ( to  - t m ) / ( t o  - -  tm), where too, to and t m denote the 
temperature, respectively, at ambient, at the vertical surface and at the occurrence of density 
extrema. With R, Ramilison and Gebhart [16], Gebart et  al. [17], and Hastings and Kazarinoff [18], 
have reported numerically or mathematically that there is a gap, 0.19 < R < 0.4, for which no 
steady-state similarity solution is found. A similar gap has been found in both numerical and 
mathematical studies of a vertical ice surface melting in a porous medium saturated with cold pure 
and saline water [19]. Moreover, various theoretical and numerical studies on buoyancy-induced 
flows in pure or saline water show the existence of a similar gap. 

Combining these studies, for either Newtonian or non-Newtonian steady-state flows, it is found 
that both the flow and buoyancy force are upward if R < 0 and downward if R > 1/2. For R 
ranging from 0 to 1/2, two distinct flow regimes with local buoyancy force reversal across the 
thermal-diffusion region have also been found. The first regime is upward flow, as in Fig. 1 (a), and 
the second regime, as in Fig. l(b), is downward flow. Flows with R close to zero correspond to 
the first regime and those with R close to 1/2 correspond to the latter. 

However, the use of boundary-layer approximations, which were applied to obtain similar results 
in Refs [16-18], in describing the possible behavior of bidirectional flow with the temperature ratio 
inside the gap is questionable. Therefore, the steady-state model, presented by Ramilison and 
Gebhart [16], is worth studying to understand the nature of buoyancy-induced flows in porous 
media saturated with cold pure water. 

2. ANALYSIS OF THE MODEL 

Consider the model of vertical buoyancy-force-driven plane flows imbedded in an extensive 
porous medium saturated with either pure or saline water under conditions in which density 
extrema might occur. We take a Cartesian coordinate system with the origin at the leading edge 
of the flow, as shown in Fig. 1 (a, b), where x increases in the downstream direction. 
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Fig. I. Coordinate systems for the two flow regimes: (a) mostly upward flow; and (b) mostly downward 
flow. 
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and 

To simplify the study, the following hypotheses have been made: 

(H1) The physical properties of the fluid and the medium are isotropic and 
homogeneous. 

(H2) Darcy's law, which states that the specific flux vector is proportional to the 
hydraulic gradient in porous media, is assumed. 

(H3) The saturating liquid and porous layer are in local thermodynamic equilibrium. 
(H4) The Boussinesq approximation resulting from Ap/p ~ 1, where p is the density 

of the saturating liquid in the porous media and Ap denotes the average change 
of p with respect to temperature, is used. 

(H5) There is no salinity diffusion, and the Dufour and Sor~t effect are both 
negligible, for small wall-to-ambient temperature differences. 

With the above assumptions, the governing equations are given by 

V .V=0 ,  (1) 

V = K ( p g  _ Vp ) ,  (2) 
# 

( Pr" Cp)f" V .  Vt = ko V 2 t, (3) 

p = p m ( S , p ) [ l  - -  =!(s,p)lt - t m ( s , p ) l q ,  (4) 

where V is the vector of Darcy velocity, ~ and Cp are the viscosity and specific heat of the convective 
fluid and Pr is its density at a reference temperature. Also, K and k= arc, respectively, the 
permeability and the effective thermal conductivity of the saturated porous medium, p and g are 
the fluid pressure and the gravitational acceleration and s is the salinity level of the water. 

Moreover, the buoyancy force in equation (2) is calculated from a new density equation (4), 
where Pm and tm denote the maximum density and temperature for the given pressure and salinity 
level. The forms and values of q, =, Pm and tin, for the case "n = 2" in Ref. [15], are given by 

and 

p(t,s,p)= 

Pm(S,P) = 

=(S, p )  = 

t m ( S , p )  = 

q(s ,p )  = 

pm(S ,p ) {1  --  O~(s,p)lt  --  tm(s,P)lqO~)}, 

pm(0, 1){l + A ( P )  + Sg,(p)}, 

=(0, 1){1 +A(P)  + sg2(p)} ,  

tin(O, 1){1 +f3(P) -I- sg3(p) }, 
q(O, 1){1 +f4(P)}, 

2 
f , (p )  = ~ f~jq, - l)J 

j= ,  

2 
g , (p )  = T, gu(p  - 1)J, 

j=0 

where q(0, 1)= 1.894816, pro(0, 1)= 0.999972 gem -3, =(0, 1)= 9.297173 x 10-6(°C) -~°,l) and 
tm(0, 1) = 4.025°C. The constantsf~js and gqs are given in Ref. [15]. To simplify the study, we take 
p = 1 bar-abs and s = 0 ppt. This yields q(s ,  1) = q(0, 1) and reduces the density correlation to the 
following: 

p = p ( t )  = p ( t ,  O, I) = pm(0, ] ) { |  - -  0[(0, 1)It -- tin(0, 1)l~0")}. (5) 

For a vertical plane flow in a saturated porous medium, u and v are the downstream and normal 
components of the filtration velocity V. Darcy's law and the equation of energy can be written as 
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and 

-K@ 
v = ---- (6b) 

.Oy 

0t O t =  ke ( 0 2 t  02t~ 
U-~x + V ~ y  (pr. Cp)f\Ox2+ Oy2], (7) 

where the plus sign in equation (6a) is for the coordinate system shown in Fig. l(b) and the minus 
sign is for that in Fig. l(a). The pressure term in equations (6a, b) can be eliminated through 
cross-differentiation and then the Darcy's equation can be written as 

Ou Oy K ' g  Op 
. . . .  i (8) 
Oy Ox t~ Oy" 

For an impermeable surface at y = 0 with a prescribed temperature to, the appropriate boundary 
conditions are 

at the isothermal surface, y = 0: t = 

at the ambient, y ~ oo: u --, 0, t --* too 

Furthermore, the continuity equation (2) 
00/0y  = u and 0 0 / 0 x  = - v .  Therefore, equations (7) and (9) can be written as follows: 

020 020 K Op 
0x--2 + ~y  2 = - U + -  " g " -~Y (10-+) 

and 

to, V = 0  

• (9) 

gives the existence of  the stream function 0(x,  y)  with 

Oy Ox Ox 'cOy = 0q \Ox2+ Oy:],  

where ~tl = ke/(p,.cp)f. The corresponding boundary conditions now become 

00 
a t y = 0 :  t = t 0 , ~ x = 0  

( l l )  

(12a) 

00 ~ 0 .  (12b) w h e n y ~ o o :  t ~ t ~ , ~ y  

Let P denote the problem with equations (1), (5), (7) and (8), along with conditions (9); and Q 
denote the problem with equations (5), (10) and (11), along with the associated conditions (12a, b). 
By observing problems P and Q, problem Q is much more suitable to be studied numerically due 
to the large amount of  grid points which need to be chosen when applying the finite-difference 
method (FDM). We now turn to discuss the discretization process in the following section• To be 
more specific, problem Q+ denotes the upward flow problem with equations (5), (10+), (1 l) and 
conditions (12a, b), while problem Q -  denotes the downward flow problem governed by equations 
(5), (10-),  ( l l )  and conditions (12a, b). 

3. D I S C R E T I Z A T I O N  

Due to the bounded nature of  the FDM,  the defined domain for problem Q will be confined 
on a bounded rectangle B = {(x, y)10 ~< x ~< x~,  0 ~< y ~< y® }. The ambient condition (12b) will be 
imposed on the vertical line Y~ = {(x, yoo)[0 ~< x ~< x~o }. Meanwhile, it is found [16, 17] that the 
plane flows are driven mainly by the physical conditions at the ambient y-direction. Therefore, x~ 
is set at unity in our study. 

The discretization process will be given carefully as follows: 

Let {x0 . . . . .  x , }  and {Y0 . . . . .  Ym} be the nodes along the x- and y-directions 
respectively, with x0 = Y0 = 0, x,  = x~ ,  Ym = Y~" Set hi = xi - xi_, and kj = yj - yj_ j. 
Also 0i j  and t~.j denote 0(xi,  yj) and t ( x ,  yj), respectively. 
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Assume the uniform meshes (x~, yj) are chosen, where x~ = ih, yj = j k  with h = xoo/n 
and k = y®/m. 

Based on the model,  the rectangle B is considered to consist of  the interior B' ,  the vertical surface 
line Y0 = {(x, 0) 10 ~< x ~< x® }, the vertical ambient  boundary  Yoo = {(x, Yoo)10 ~< x ~< xoo }, the lower 
horizontal  line Xo = {(0, y)10 <~ y ~< yoo }, the upper horizontal line Xoo = {(x®, y)10 ~< y ~< y® } and 
two comer  points A = (0, y®) and B = (x~o, Yoo). Therefore, the discretization process should be 
given carefully on these parts. With the local truncation error O ( h 2 +  kS), we have following 
difference equations: 

(i) I n B ' :  for l<<.i<<.n-1,  l < ~ j < < . m - 1 ,  

~',+ i . j -  2~,,.j + ~b,_,.j ~Ji,  j +  1 - -  2~k,.j + ~'~- t.j- 1 
h2 -F kS = _+c "l t i . j -  t~l q-t ti, j+j 2k- ti, j - I  (13) 

( i i )  

and 

(I]Ji,j + 1  - -  I/Ji, j-  I )(ti + l,j -- t,_l,y) -- (l[Ji + l,j -- ~J,-I.j)(ti.y +, -- ti, j_,  ) 

= 4hk~l \fti+lj--2tiy+ti'J-I' ~ t- ti'/+l--2ti'j+ti'j-1)kS (14) 

where c = (K/Iz)gpm~q sgn(t;j - tin) with Pm= pro(0, 1), • = ~(0, 1) and q = 1.894816. 

On Yo: by conditions (12a), cTd//¢3x = 0 and t = to on the entire surface, then we have, 
for 0 ~< i ~<n, 

~b~,o - 2~,  t + ~ i ,  2 _ _  iq-1 3to - 4t/.t + ti.s (15) 
kS = + c I to tm 2h 

and 

to - 2ti, t + ti, s = 0. (16) 

(iii) On Yoo: by condit ion (12b), a¢/dy- -*0  and t--* too, we have, for 1 ~< i ~< m - 1, 

~ i , s  - -  2~bi, m-  I + I[Ji, m-2  4t~, m - I  + t~.m_: (17) 
kS = +c "lto~ - tin] q - I ' t ° °  - 2k 

and 

__(l~i+l,m__d/t'_lm)(3t~m-4t~m_t-F ti.m_2)=4hkoq ( t ~ -  2ti 'm-I' t ' t~'"-2 , . k2 . (18) 

(iv) On Xo: for 1 <~j ~<m - 1, 

¢O,j --  2~/l.j  + l~2,j ~o,j+ 1 -- 2~b0 + ~Jo,j-, (19) hS + h2 = + c  "1 to, j -  t .I  q-I to, j+ 12k- to, j -  I 

and 

(~ko.j+ 1 - ~bo, j -  l)(3tod -- 4h.j -I- t2j) -- (3~/oj -- 4~Jl.j -1- ~b2.j)(to,j+ l -- to, j -  i) 

= 4 h k ~ l (  t°'/-2ttj+t:jhl " ~ t°'J+t--2t°'j+t°'J-I)k2 . (20) 

(v) OnXoo: for l < ~ j ~ < m - 1 ,  

I/in.j - -  2111n_ l . j ' l -  I/In_ 2d I/In.j+ l - -  2t~n.j -I- I/In.j- | h 2 ~ k:  = -I-clt"j--tmiq-I-- tn'j+l--ln'j-12k (21) 

and 

( ~ . , j  + l - ~b.,j_ l )  ( 3 t . , / -  4 t .  _ , , j  + t .  _ 2,j) - ( 3 1 / / n . j  -- 4 ~ .  _ i , j  -I- ~ .  _ z J)  ( t . , / +  I - t . , j  _ ,  ) 

= 4 h k o ~ , ( t n . j - 2 t n - t . j ' l ' t n - 2 . J  tn, j + ' - - 2 t a j - F t ' , J - ' )  
h 2 + k 2 • 

(22) 



302 C.-A. WANO 

(vi) At the point A = (0, y~), 

~0,m - 2~Lm + ~b2,,. 
h 2 

and 

= + c l t  _tin[ q _  , ( 3 t ~ - 4 t o ,  m_~ + to, (23) 

tO, m-- 2tO, m-I 4- to,,,_ 9 (24) 
-- (3~b0,m -- 4~bl,m + ~k2,,~)(3t~ -- 4t0, m_ j +/0, m-2)  = 4hk°tl k 2 • 

(vii) At the point B = (x~, y~),  

IPn'n' -- 21//"- l" m 4- I]/n - 2' m ( ' ) (25) h z =_+c[t  _tm[q_~ 3t~-4t.,._~+t2k . . . .  z 

- 4~k._ l,m + ~0._2,,.)(3t~ --4tn, m_l + t . . . .  2) 

t., m -- 2t . . . .  !_ 
= 4 h k e t \  kS + t  . . . .  2.). (26) 

and 

-(3~k,,m 

4. N U M E R I C A L  RESULTS AND D IS CU S S IO N  

Equations (13)-(26) in Section 3 form a nonlinear system F ( x ) = O  with 
x = (~k0,0 . . . . .  ~b . . . .  tl, i , . . . ,  tl.m- l, t:, j . . . . .  t,_ ~,m-~)t. The quasi-Newton method is applied for 
solving the given system F ( x ) =  0. Moreover, the matrix inversion formula of  Sherman and 
Morrison is applied to bypass most of  the linear system solvers required in the quasi-Newton 
method except for the first iteration. Such a formula drastically reduces the number of  
computations and, of  course, the run time. 

The physical coefficients Cp,/z and K are evaluated, in some explicit forms in Ref. [20], at the 
reference temperature tf = (to + t~)/2. The effective thermal conductivity ke is evaluated with the 
following form [21], by assuming that the porous medium is of  series conduction: 

1/ke  = n / k f  + (1 - n ) / k  s , 

where n denotes the porosity of  the saturating solid and kr and k s are the thermal conductivity of  
the saturating fluid and solid, respectively. In this study, due to the lack of  experimental data, we 
assume that the porous medium consists of  well-distributed sand stones, with n = 40% and 
ks = 0.9806 x 10 -5 cal/cm s °C [22]. Meanwhile, kf is calculated in an explicit form in Ref. [23] at 
tf. Also, we assume that the entire vertical surface is uniform with temperature to = 0°C. 

With the above preparation the numerical computations for the problem of upward flows, 
problem Q+, were performed on the CYBER 170/720 at N C T U  initially with too = tm= 4.025°C. 
The initial guesses we take from the similarity results obtained in' Ref. [17] with the inverse 
similarity transformation. By setting the tolerance e = 10 -6 in the quasi-Newton method and 
h = 0.1, k = 1, Y~o = 20, a solution was obtained with about 25 s CPU time. Then y~ was increased 
to 40, 60 and 80 with the initial data provided by the previous run. The agreement of  the solution 
data was to reach at least three digits when compared at y = 0 and y = y~.  The homotopy 
continuation technique was then applied to further increase too from t m with a step size of  0.05°C. 
It was found that solutions were obtained for each too up to 4.975°C, i.e. R ___0.19, and the 
quasi-Newton method failed to converge if too I> 5°C. For  the downward flow problem Q - ,  similar 
techniques were applied for too reduced from 2tin with the same step size. By imposing the initial 
data for too -- 2tin, taken from Ref. [17], it was also found that the lowest level of  to at which a 
solution was found is 6.7°C, R - 0.4. It was also found that a second solution is obtained for each 
t~ ranging from 6.8 to 7.5°C. Moreover, similar to Refs [16] or [17], a gap in too, with 
5°C ~< t~ ~< 6.7°C, was found where neither problem had a solution. However, none of  the multiple 
solutions for the upward flow problem reported in Ref. [17] were found in our study. This was 
expected since the multiple solutions in Ref. [17] are very similar and our discretization for the 
model is very approximate in some senses. 
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Fig. 2. The Darcy velocity profile for the downward flow problem, with too = 8°C. 

1o ,V 

| I 

. ~ _ ~ _ . , ~ I / S  / , -o., 

\ ~ / 1 / - /  , , 

! i / / l ' / I / "  ' 
/ I I I ! I I  ~ " ' 
I I X I I I  / ' " ~ 
I I X l l l  / ' ' ' ,  , 
/ / X / l l / ' , t  
/ 1 7 . 1 1 /  ~ ' , 
/ i / 1 1 / , , ,  ,.o 

Fig. 3. The Darcy velocity profile for the downward flow problem, with t® = 7°C 
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Fig. 5. The Darcy velocity profile for the upward flow problem, with t~ = t m = 4.025°C. 

Applying the relations a~,/ay = u and a~, /c]x  = v,  various Darcy's velocity V = (u, v) profiles with 
0 < x ~ 1 and 0 < y ~< 10 for selected too s were plotted and are shown in Figs 2-6. The solutions 
obtained are consistent with those in Ref. [16]. With R close to 1/2 (Fig. 2), flows are mostly 
downward with positions near the surface, y = 0. At too = 70°C, R - 0.42, the first solution shows 
that, the buoyancy forces dominate the upward flows near the surface and result in the occurrence 
of  downward flows with positions away from the surface. Therefore (as in Fig. 3), a boundary layer 
is found. However (as in Fig. 4), the second solution shows the drastic increase in the thickness 
of  such layer. Similar results are also reported in Ref. [17]. Usually, such a drastic change means 
instability. For the problem with t® near tm, the buoyancy forces are mainly generated near the 
surface and then it can be observed that the convection phenomena occur at a position away from 
the surface, as in Figs 5 and 6. The flows with too = t m and too = 4.975°C are similar. 

As mentioned earlier, no steady-state solution is obtained where the ambient temperature too 
varies inside the gap, 5°C < too < 6.7°C. This is similar to the result reported in Ref. [16]. However, 
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Fig. 6. The Darcy velocity profile for the upward flow problem, with too = 4.97YC. 
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Ramil i son  and  Gebha r t  indicated that  the boundary- layer  approx imat ions  applied in Ref. [16] are 

of quest ionable  use in s tudying bidirect ional  flows, especially when the temperature  t® varies inside 

the gap. Our  study shows that  the complete steady-state model  gives no indica t ion  of  the behavior  

of  any  steady-state flows inside the gap region. Unfor tuna te ly ,  we know of  no  data  f rom 
experimental  measurements  concern ing  t ranspor t  in porous  media. To  study the steady flows or 
the actual  occurrence of instabil i ty in the downward  flow, an  extensive experimental  study is 
required which may  lead to a new formulat ion.  Moreover,  it is worthwhile,  in s tudying the 

t ime-dependent  version of  the present  model,  to solve the mystery of  the buoyancy- induced  plane 

flows inside the gap. 
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