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用在移動式機械臂之嵌入式影像處理平台 

研究生：沈 栢 瀚 指導教授：宋 開 泰  博士 

 

國立交通大學電機與控制工程學系 

 

摘     要 

 

本論文的目的在於發展硬體及軟體以實現移動式機械臂的控制系統。

此控制系統採用的是影像資訊之迴授。在硬體實現方面包括一 CMOS 影

像擷取系統以及使用德州儀器 C6416 主處理器之數位信號處理發展

板。使用所建構之嵌入式平台之好處在於可以相對低的價格來提供高

效能之影像處理。在軟體實現方面本文提出了透過基於行為模式的方

式去設計一視覺伺服系統，以解決移動式機械臂的控制問題。 
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An Embedded Image Processing Platform for a Mobile 

Manipulator 

Student: Andrian, Henrry Advisor: Dr. Kai-Tai Song 
 

Department of Electrical and Control Engineering 
National Chiao-Tung University 

Abstract 

 

This thesis aims to construct a hardware and software implementation that provides a 

control scheme for a mobile manipulator. The control scheme uses visual information as 

feedback. The hardware implementation consists of a CMOS image board and a TI DSP 

DSK board which uses C6416 as the main processor. The merits of using these two 

boards are the construction of a low cost embedded platform with high performance. 

Meanwhile the software implementation proposed a visual servoing using a 

behavior-based approach to solving the control scheme of the mobile manipulator 

problem. 

 

 
 
 
 
 
 
 
 
 
 
 



III

 

Acknowledgments 

 First and certainly foremost, I wish to acknowledge my advisor, Dr. Kai-Tai Song, for his 

continuous encouragement, insight, patient guidance and invaluable contribution throughout 

this study. It was his hard work that has ensured that I was always supported both financially 

and with the equipment my research required.  

 I would like to thank Dr. Kuu-Young Yang, Dr. Yu-Lun Huang and Dr. Kun-Wei Lin, for 

their comments and suggestions for the editing of my thesis. 

 I would like to thank my uncle Ir. Muis Moksin with his family for giving and supporting 

financial aid for me to study at National Chiao Tung University (NCTU).  

 I would like to thank my family, for providing me with the opportunity to undertake my 

studies at National Chiao Tung University (NCTU). They have provided me with endless 

support and opportunity to reach new heights. 

 Lastly, I thank my colleagues in ISCI lab, Chia-How Lin, Chih-Chieh, Chih-How and 

Yao-Qing for sharing experiences and knowledge during the time of study. I thank my senior 

Ph.D student Chi-Yi for his helping and guidance during the time of study.  

 

 
 
 
 
 



IV

 CONTENTS 
 

ABSTRACT(CHINESE)...........................................................................................................I 
ABSTRACT(ENGLISH) ........................................................................................................ II 
ACKNOWLEDGE ................................................................................................................ III 
CONTENTS ............................................................................................................................IV 
LIST OF TABLES ..................................................................................................................VI 
LIST OF FIGURES.............................................................................................................. VII 
1 .  INTRODUCTION .................................................................................................... 1 

1.1. Motivation ..........................................................................................................1 
1.2. Background and Related Work...........................................................................2 

1.2.1. Behavior-based controller...........................................................................3 
1.2.2. Visual servoing controller...........................................................................4 

1.2.2.1. Position-based visual servo (PBVS) control ......................................5 
1.2.2.2. Image-based visual servo (IBVS) control ..........................................6 
1.2.2.3. Camera configuration .........................................................................7 

1.3. Problem Statements ............................................................................................9 
1.4. Organization of the thesis .................................................................................10 

2 .  EMBEDDED IMAGE PROCESSING PLATFORM.......................................... 11 
2.1. System Overview.............................................................................................. 11 

2.1.1. Stand-alone ...............................................................................................12 
2.1.2. Communicate directly with other module ................................................12 

2.2. CMOS sensor....................................................................................................15 
2.3. DSK6416 daughter board .................................................................................20 

2.3.1. Frame buffer (AL422B)............................................................................21 
2.3.2. 7 ports GPIO of DSK6416 for emulating 4 COM ports RS232 interface 25 

2.4. FPGA (Altera UP2) ..........................................................................................31 
2.4.1. I2C module ...............................................................................................32 
2.4.2. Clock divider module ...............................................................................34 
2.4.3. Buffer_controller module .........................................................................34 
2.4.4. Implementation of the Buffer_controller..................................................36 

2.4.4.1.Acquired image for 15 fps ..................................................................36 
2.4.4.2.Acquired image for 30 fps ..................................................................39 

2.5. DSK6416 Board ...............................................................................................42 
2.5.1. EMIF.........................................................................................................43 
2.5.2. EDMA (Enhanced DMA) controller ........................................................45 

2.6. Experimental result Image processing ....................................................................47 
3 .  VISUAL SERVOING ........................................................................................... 50 

3.1. System architecture ........................................................................................50 
3.2. Switching mode ................................................................................................53 
3.3. Barcode-like Object ........................................................................................54 



V

  
3.3.1. Definition..................................................................................................54 
3.3.2. Remarks ....................................................................................................57 

3.4. Barcode-like identification .............................................................................58 
3.5. Foot motion control ........................................................................................61 

4 .  OBSTACLE AVOIDANCE USING OPTICAL FLOW ...................................... 66 
4.1. Introduction to the algorithm............................................................................66 
4.2. Implementation of mixed optical flow algorithm ...........................................67 

4.2.1. Acquired two subsequent images .............................................................69 
4.2.2. Down sampling.........................................................................................69 
4.2.3. Smoothness constraing (Pre-processing)..................................................70 
4.2.4. Calculate the Ex, Ey and Et ......................................................................72 
4.2.5. Search the (u,v) over brightness constraints.............................................72 
4.2.6. Correlation constraint ...............................................................................75 
4.2.8. Create Depth Histogram or TTC ..............................................................77 
4.2.9. Safety distribution histogram ...................................................................79 

4.3. Experiment results with mixed optical flow algorithm ..................................81 
5 .  EXPERIMENTAL RESULTS ............................................................................... 83 

5.1. The experimental mobile robots .......................................................................83 
5.2. Experiment of grasping ..................................................................................84 
5.3. Experiment of grasping of an object from a person .........................................89 
5.4. Experiment of obstacle avoidance....................................................................94 

6 .  CONCLUSIONS AND FUTURE WORK............................................................ 99 
5.1. Conclusions ......................................................................................................99 
5.2. Future work ....................................................................................................100 

REFERENCES ..................................................................................................................... 101 



VI

 LIST OF TABLES  

 
Table 2.1 List of CMOS sensor built in function module that has been change. ..................... 19 

Table 2.2 Configuration of McBSP pins as GPIO. ................................................................... 27 

Table 2.3 Baud rate value detect from HR_SoftUartSpeedDetect function. ............................ 29 

Table 2.4 Configuration of the CMOS sensor. ......................................................................... 34 

Table 2.5 DSK6416 board specification................................................................................... 42 

Table 2.6 List of setup time, strobe time and hold time. .......................................................... 45 

Table 3.1.Barcode-like feature to distance transform............................................................... 60 

Table 3.2.The scale factor value for foot motion control. ........................................................ 64 

 
 

 



VII

 LIST OF FIGURES 
 

Figure 1.1 Subsumption architecture which introduced by Brookds........................................3 
Figure 1.2 Position-based visual servo (PBVS) structure.........................................................5 
Figure 1.3 Image-based visual servo (IBVS) structure.............................................................6 
Figure 1.4 Static camera mounted for robotic manipulator ......................................................7 
Figure 1.5 Eye-in-hand camera configuration ..........................................................................8 
Figure 2.1 Hardware architecture of embedded image processing .........................................13 
Figure 2.2 Software architecture of embedded image processing ..........................................14 
Figure 2.3 EVT202 and its application ...................................................................................16 
Figure 2.4. Frame buffer (AL422B)........................................................................................22 
Figure 2.5.AL422B Functional block diagram .......................................................................23 
Figure 2.6 Daughter board for 4 COM ports RS232 interfaces ..............................................25 
Figure 2.7.Block diagram of McBSP pins configuration for 4 COM ports. ...........................27 
Figure 2.8.UART Auto Baud rate detection............................................................................28 
Figure 2.9 HR_SoftUartInChar UART data fetch in ..............................................................29 
Figure 2.10 HR_SoftUartOutChar UART data fetch out........................................................30 
Figure 2.11 Altera UP2 board and its specification ................................................................31 
Figure 2.12 The complete control signal of FPGA, DSK6416 and CMOS sensor.................33 
Figure 2.13 I2C module ..........................................................................................................32 
Figure 2.14 Clock divider .......................................................................................................34 
Figure 2.15 Buffer controller module .....................................................................................35 
Figure 2.16 Full timing diagram for 15 fps configuration ......................................................37 
Figure 2.17 Timing diagram of Frame Buffer in writing stage...............................................37 
Figure 2.18 Timing diagram of Frame Buffer in reading stage ..............................................38 
Figure 2.19 Full timing diagram of writing and reading stage ...............................................40 
Figure 2.20 Full timing diagram of 30 fps configuration........................................................40 
Figure 2.21 Timing diagram for reading and writing stage in 30 fps configuration...............41 
Figure 2.22 DSK6416 board with its main list components ...................................................42 
Figure 2.23 Basic EMIF asynchronous control signal ............................................................43 
Figure 2.24 EMIF control signal.............................................................................................44 
Figure 2.25 The configuration of the EDMA controller .........................................................45 
Figure 2.26 The flow chart of the implementation of the EDMA transfer .............................46 
Figure 2.27 Original image of the CMOS sensor ...................................................................48 
Figure 2.28 Applying sobel mask operation in the original image .........................................48 
Figure 2.29 Applying binary operation in the original image.................................................49 
Figure 3.1. Hand-in-eye camera configuration .......................................................................51 
Figure 3.2. Architecture of the visual servoing based on behavior-based...............................52 
Figure 3.3. Communication line between each behavior module...........................................53 
Figure 3.4. Flow chart of grasping mode ................................................................................55 
Figure 3.5. Barcode-like feature as the main feature of our object.........................................56 



VIII

  
Figure 3.6. The flow chart of barcode-like identification.........................................................59 
Figure 3.7. The model of non-holonomic mobile robot system..............................................61 
Figure 3.8. Foot motion control ..............................................................................................65 
Figure 4.1. Flowchart of mixed optical flow algorithm..........................................................67 
Figure 4.2. Flowchart of mixed optical flow algorithm implement in embedded image 

processing platform ...............................................................................................68 
Figure 4.3. EDMA transfer for down sampling method .........................................................70 
Figure 4.4. Smoothness constraint of optical flow..................................................................71 
Figure 4.5. Sobel mask to calculate Ex, Ey and Et .................................................................72 
Figure 4.6. The imaging geometry..........................................................................................73 
Figure 4.7. The motion constraint line ....................................................................................74 
Figure 4.8. Brightness constraint for possibly flow motion....................................................74 
Figure 4.9. Correlation constraint algorithm...........................................................................76 
Figure 4.10.a. The camera moves toward the object...............................................................78 
Figure 4.10.b. The object moves toward the camera ..............................................................78 
Figure 4.11. The representation of 3D space to 2D ZX-plane ................................................80 
Figure 4.12.a Optical flow field ..............................................................................................81 
Figure 4.12.b Histogram of TTC (7 region)............................................................................81 
Figure 4.13.a Optical flow field ..............................................................................................82 
Figure 4.13.b Histogram of TTC (7 region)............................................................................82 
Figure 5.1.Mobile manipulator (H2) platform ........................................................................84 
Figure 5.2.The robot is faced to the object that put in top of chair.........................................84 
Figure 5.3.a The mobile robot is turned left about 30° ...........................................................85 
Figure 5.3.b The mobile robot is turned right about 30°.........................................................86 
Figure 5.4. The robot change its orientation and speed after it locates the object in front of 

it ………………………………………………………………………………….87 
Figure 5.5.a The mobile manipulaotr is approaching the object...........................................  87 
Figure 5.5.b The mobile manipulaotr is approaching the object (cont’d).............................  88 
Figure 5.6.a The object is get into the area of the gripper ....................................................  88 
Figure 5.6.b The mobile manipulator grasp the object .........................................................  89 
Figure 5.7. The mobile manipulator robot is faced to the human that hold the object .........  90 
Figure 5.8.a The robot is turned left about 30°  ...................................................................91 
Figure 5.8.b The robot has located the object that holds by human........................................91 
Figure 5.9.a The robot is approaching the object..................................................................  92 
Figure 5.9. b The robot is approaching the object (cont’d)...................................................  92 
Figure 5.10. a The object is in the gripper area.....................................................................  92 
Figure 5.10. b The gripper grasped the object ......................................................................  92 
Figure 5.11. The trajectory of the mobile manipulator .........................................................  92 
Figure 5.12. The robot orientation ........................................................................................  94 
Figure 5.13. The trajectory approach of the avoid obstacle ....................................................96 
Figure 5.14.a. ........................................................................................................................  96 
Figure 5.14.b. ........................................................................................................................  96 



IX

  
Figure 5.14.c. ........................................................................................................................  97 
Figure 5.14.d.........................................................................................................................  97 
Figure 5.14.e. ........................................................................................................................  97 
Figure 5.14.f. ...........................................................................................................................97 
Figure 5.15.the trajectory approach of the mobile navigation experiment ...........................  98 



 1

1 .  Introduction 

1.1. Motivation 

There are many existing mobile robots with a manipulator such as XR4000 platform 

[1][2], Stanford mobile platform [3], COSMOS system [4], YAMABICO Type-Ten[5] and our 

previous self-constructed guide-robot mobile manipulator[6] and etc. These existing mobile 

manipulators somehow use a personal computer (PC) as the main processor for computation 

and control of the mobile manipulator. There are fewer researchers who focus on embedded 

platform for control of the mobile manipulator.  

So it motivates us in this study to develop an embedded platform for controlling mobile 

manipulation that are less expensive using low cost components, and can operate 

independently like a module. This module has its main processor, operate together and also 

communicate directly with other module such as motion control board or PC. This embedded 

platform will have built-in vision board, so there is no need for an additional vision system.  

Later, the functional of this embedded platform can be used to control the mobile 

manipulator to locate certain object and grasp it; meanwhile the robot can also move 

autonomously to avoid obstacles. Therefore by using this embedded platform, the 

computational load of the main processor (PC) of the manipulator robot can be reduce and the 

robot can do any other task such as face recognition, localization and etc. Also these tasks can 

also interact or combine with the manipulation task to complete a more complex task.  
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1.2. Background and related work 

The advances of robotics research in the last two decades have led to new generations of 

robotics system and new scenarios for applications. The successful introduction of robots into 

human environments will depend on the development of competent and practical systems that 

are dependable, safe and easy to use. To work, cooperate, assist, and interact with human, this 

new generation of robots need mechanism that accommodates interaction while fitting into 

our unstructured, sizeable and unpredictable environments.  

Many methodologies and techniques have been proposed by many researchers to address 

this challenge. Many robots have also been developed into the human environment to help 

human for doing tasks such as cleaning (Roomba which is produced by iRobot Corporation), 

elderly-care (Wakamaru, which is produced by Mitsubishi Heavy Industries) and the extreme 

one is humanoid robots (Asimo [7], which is produced by Honda) which is able to accurately 

understand and respond to a range of human motions. Another kind of a new application of 

robots is personal-assistant robots. This robotic capability to aid human is in the 

accomplishment of a variety of physical operations and presents various control strategies 

developed for vehicle-arm coordination.  

Like a common personal assistant robot, our lab also introduced a new kind application of 

a personal-assistant which is so-called Easybot (Easy is pronunciation of ISCI Lab, while bot 

is Robot). Easybot is a personal assistant robot which is equipped with manipulator that can 

interact with people and environment autonomously. The term interact here means that the 
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robot can recognize people, locate certain object and grasp it and move autonomously in 

dynamic environment with its manipulator attached on it.  

This new emerging application involved a depth study of mobile manipulation research 

area. Because it is not just a mobile robot but there is a manipulator attached onto the mobile 

robot the system introduces a new control scheme problem in the scope of the mobile 

manipulation robotics area.  

1.2.1. Behavior-based controller 

In the early stage of the mobile manipulator research, J. H. Connel introduced a 

behavior-based arm controller [8]. The goal of the system is to locate and retrieve empty soda 

cans in an unstructured environment using a variety of local sensors. The arm controller 

consists of 15 independent behaviors which each of these behaviors contains some grain of 

expertise concerning the collection task and cooperates with the other to accomplish its goal. 

The structure of the arm controller is based on a subsumption architecture [9], which is 

proposed by Brooks (see figure 1.1).  

Level 0

Level 1

Level 2

Level 3

Sensors Actuators

 

Figure 1.1 subsumption architecture which introduced by Brooks [9] 
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Each of the 15 independent behaviors run concurrently, in real time, on a set of eight loosely 

coupled on-board 8-bit microprocessors. In the experimental result, the arm controller work 

well in practice and can be used in many different environment. The advantage of this control 

scheme is that the control problem of mobile manipulator can be solved by behavior-based 

controller that can relax the kinematic of manipulator and the motion control problem.  

Later work that also used behavior-based but combined with fuzzy logic [10] and a 

hierarchical behavior based [11] as the control scheme is introduced by Wasik and Saffioti. 

However but their implementation is limited to the control of a robot manipulator of 5 DOF 

(degree of freedom) to do a pick and place task. In the behavior-based design, they introduced 

a hierarchical behavior-based design that consists of a simple behavior that implement a 

simple control strategy and complex behavior by combining these simple behaviors. 

Meanwhile the fuzzy logic is used to fuse behaviors in the control scheme.  

1.2.2. Visual servoing controller 

Recent advances in vision sensor technology and image processing allow the effective 

use of vision data in the control of a robot. Based on this fact, many researchers are focusing 

to use vision sensor data as the feedback control for their control scheme. This kind of 

controller is called visual servoing controller. In the tutorial on visual servo control [12], the 

problem of the visual servoing control scheme and configuration of the vision sensor on the 

robot is described. 
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1.2.2.1. Position-based visual servo (PBVS) control 

In the position-based visual servoing control (see figure 1.2), features (f) are extracted 

from the image and used to estimate the pose of the target with respect to the camera. Using 

these values, an error between the current ( acx ) and desired pose (cxd) of the robot is defined 

in task space (Cartesian coordinate). These errors are then given to the control law to correct 

the current position to the desired position and still in the task space (Cartesian coordinate). 

Finally the result of control law in Cartesian coordinate is transformed to the joint controller 

coordinate by computing the inverse kinematics for each joint of the manipulator.  

The advantage of this configuration is that the Cartesian control law is easy to design. 

Respectively, the disadvantage over this configuration is that the camera need calibration 

related to the camera and the manipulator position that introduce some camera calibration 

error, and somehow the pose estimation can waste the time because of the computing delay. 

Control
law

Inverse
kinematics

Joint
controllers

Feature
extraction

Pose
determination

Power
amplifiers

faacx

dcx

+ -

d : desired
a : actual

 

Figure 1.2 Position-based visual servo (PBVS) structures [12] 
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1.2.2.2. Image-based visual servo (IBVS) control 

In image-based visual servo control (see figure 1.3), feature (f) of desired object is 

extracted from the image, and will be compared with the desired feature in the image plane (fd) 

by subtracting the desired feature in the image with the current feature in the image plane. 

Usually the desired feature is the center (x,y) of image, for example: an image with 160 x 120 

res. the center of the image is at (80, 60).  

Later the error between the current features with the desired feature will be given to 

the feature space control law to transform the feature into each joint controller of the 

manipulator, after that the position of the manipulator will change to the new desired position.  

The advantage of this configuration is the computational delay may be reduced 

because there is no need to estimation the pose of the object. Also it can eliminate errors due 

to camera calibration because in this scheme there is no need to do a camera calibration. The 

challenge of this configuration is to design the feature space control law. 

Feature space
control law

Joint
controllers

Feature
extraction

Power
amplifiers

fa

df

+ -

d : desired
a : actual

 

Figure 1.3 Image-based visual servo (IBVS) structures [12] 



 7

1.2.2.3. Camera Configuration 

The choice of the camera mounting position can cause drastic changes in the basic 

system design. Camera poisoning in visual servoing technique involves a choice between 

statically mounted camera (see figure 1.4) and robot mounted camera (eye-in-hand 

configuration) (see figure 1.5).  

In a robotic manipulator with fixed bases, the statically mounted camera means the 

camera position is not in the body of the robot so the camera will act like an observer because 

the working space of the space already defined.   

Object

Gripper

Static camera
mounted

Possible camera
locations

 

Figure 1.4 static camera mounted for robotic manipulator [13] 
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In this case the static camera must observe both the manipulator and the object that want 

to be grasped.  Since the camera position is static and it is assumed that any motion energy in 

the view of the camera is the object to be grasped.  

A static camera simplifies the control algorithms, but raises a calibration issue for precise 

camera-to-manipulator coordinate system transformation. The second configuration of camera 

positioning is the camera mounted in the manipulator (eye-in hand configuration). In this 

configuration, the camera does not have to observe the manipulator; it just observes the 

desired object to be grasped. The choice of an eye-in-hand configuration reduces the need for 

a calibrated camera-to-manipulator coordinate transformation. 

Object

Gripper

Eye-in-hand
camera

configuration

 
Figure 1.5 eye-in-hand camera configurations 
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It also closed the control loop by providing visual feedback (robot motion causes camera 

motion) without requiring the vision system to track the end-effector, as would have been the 

case with the static camera. The movements of the manipulator were predefined and no details 

of the control algorithm required implementing the motion nor were the vision algorithms 

required to track the given object’s position. 

1.3. Problem statements 

This study aims to construct hardware and software implementation that solves a 

mobile manipulator problem.  

The strategy of hardware implementation is to develop an embedded platform with a 

less expensive vision system built-in. The design allows to use low cost components and 

construct a stand-alone module because it has its main processor and accomplish real-time 

image processing including acquiring image from vision sensor, and communication directly 

with other modules such as motion control DSP-board and PC (main processor of the mobile 

manipulator) to receive and sending commands.  

The second strategy on software implementation is to propose an arm controller that 

can do a specific task such as to locate a specific object and grasp it. Also the robot needs to 

autonomously to avoid obstacles.  

Therefore, by combining the hardware and software implementation, we develop a 

stand-alone arm controller for a mobile manipulator that can do a basic task of manipulator 

and navigation by combining this stand-alone arm controller with other controller that already 
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provided for the mobile manipulator such as localization and face recognition. 

1.4. Organizations of the thesis 

In the following chapters, we present the details of the selected problem, our proposed 

algorithm, and the experimental results that demonstrate the validity of our approach. We 

begin by presenting hardware implementation of our embedded platform including the 

choosing selected low cost components and hardware design of our embedded platform in the 

chapter 2. After presenting the hardware implementation, next we will present the software 

implementation that run on our embedded platform. The software implementation is divided 

into two chapters (chapter 3 and chapter 4). In chapter 3 we begin explanation our proposed 

behavior-based algorithm that combined with visual servoing. In the same chapter, we present 

the use of this algorithm for grasping a certain object. In the following chapter (chapter 4), we 

present the use of this algorithm for mobile navigation. Experimental results of grasping and 

vision-based navigation are included in the chapter 5. Finally we summarize the thesis and 

detail contributions of the thesis in chapter 6. We also discuss what we believe should be the 

next future work in the research beyond the content of the thesis.  
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2 .  Embedded Image Processing 

Platform 

2.1. System Overview 

In this chapter, we introduced the proposed embedded image processing platform. The 

components of the embedded image processing platform include a CMOS sensor board from 

IC Media as the sensor board and the DSK6416 board from Texas Instrument as the main 

processor unit. The selection of the CMOS sensor as the sensor is based on that the image 

quality of the CMOS sensor is good enough and the price of CMOS sensor less expensive 

compared with CCD sensors. The term good enough means here is the image produce by the 

CMOS sensor still can be used for further processing for machine vision applications. 

Meanwhile the selection of the DSK6416 board as the main image processing board which is 

based on that C6416 has highest-performance fixed-point Digital Signal Processors (DSPs) 

with 600 MHz clock rate, can do instruction for 4800 MIPS with 1.67-ns instruction cycle 

time.  

In the interface design, the C6416 offers an interface called EMIF (External memory 

interface) which supports glueless memory architecture interface such as FIFO or SDRAM. In 

the memory controller, C6416 offers EDMA (Enhanced DMA) controller that can be used to 

move a block of memory from current address memory into desire address memory.  
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2.1.1. Stand-alone 

The first criterion of our developed embedded image processing platform is stand-alone. 

The term stand-alone means that the embedded image processing can run independently 

without any devices such as PC, so even there is no PC in the robot, the embedded image 

processing platform still can control the mobile manipulator robot. 

2.1.2. Communication directly with other modules 

The second criterion of our developed embedded image processing platform is that it can 

communicate directly with other modules. The selection of the communication link is 

important. The available communication link on module is RS232 communication line. 

Unfortunely, C6416 does not support UART (RS232 communication standard) standards 

natively. To solve this problem, we emulate the UART signal by using the available GPIO 

(General Purpose Input Output) in the C6416. The implementation of the UART emulation is 

using software implementation. The description how to create the UART emulation is 

described in the section 2.3.2 in this chapter. 

The hardware and software architecture of our embedded imaging processing platform is 

illustrated in figure 2.1 and 2.2. There are three boards in the architecture of embedded 

platform. The first board is the main board, which is the DSK6416. The second board is the 

vision sensor board, which has CMOS sensor that using ICM205B as the main vision sensor. 

The third board is the DSK6416 daughter board which is a supporting board for DSK6416 

board. The DSK6416 daughter board consists of two sub-boards. 
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 The first sub-board is the temporary storage board which consists of frame buffer 

(AL422B) and FPGA (Field Programmable Gate Array) which use Flex10K70RC240 from 

Altera. The second DSK6416 daughter board is the RS232 communication lines which have 4 

COM ports to communicate with other modules or PC. 

Next, the embedded imaging processing platform has one input, which comes from the 

first DSK6416 daughter board and have four outputs to the 4 COM ports to communicate 

with three DSP motion control card, which is controlling ELBOW and SHOULDER motor 

(COM1), FOOT motor (COM2), GRIPPER motor (COM4) and one to communicate with PC 

for receiving or sending command (COM3). 

The image acquired from CMOS sensor is first stored in the frame buffer for certain time, 

after that it is sent to the DSK6416 for storing in the SDRAM. When the image frame is 

already in the SDRAM, the C6416 begins to process the image. After processing the image, 

the obtained information is used to control the motor by sending a command to the COM port. 

In the following section, we will discuss each component of the embedded image processing 

platform. 

2.2. CMOS sensor board 
The used CMOS sensor board is EVT202. EVT202 specification: 
 

 Number of Active Pixels: 640 x 480 

 Number of Physical Pixels: 650 x 490 

 Main Clock Frequency: 3 to 24 MHZ 

 Frame rate: from 1 to 30 fps 
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 Output data format: 8/16-bit YCbCr, 24-bit RGB, 16-bit RGB and 8-bit raw data 

 Input / output interface: SIF 

EVT202 is a CMOS sensor boards with an ICM205B vision chip from IC media Corp 

[18]. Figure 2.3 Illustrates the EVT202 CMOS sensor board. The ICM205B sensor chip is a 

single-chip digital color imaging device. It incorporates a 640 x 480 sensor array operating at 

1 - 30 frames per second in progressive manner. Each pixel is covered by a color filter which 

formed a so-called Bayer pattern.  

There are several module built in the sensor that can be used for enhanced the image 

quality, such as the brightness of the scene by adjusting the digital gain for all pixels, color 

correctness by using automatic white balance circuit, image sharpening by correcting the 

value of the sharpening function and gamma correction to boost darker signal by selecting the 

appropriate gamma value. The modules that available inside the chip are described as below: 

 

Figure 2.3 EVT202 and its specification 
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 Real time color interpolation 

The functionality of this module is to reconstruct each pixel that covered by a color 

filter that form so-called Bayer pattern into complete set of RGB values. 

 Programmable / Automatic exposure control 

The Automatic Exposure (Auto Exposure) module is to control the Exposure time, 

Digital gain and Anti-flickering function automatically.  

 Programmable / Automatic white balancing and color correction 

The Automatic white balance is to perform white balancing when the lighting is 

suddenly changed in the environment by changing the R (Red), G (Green) and B 

(Blue) to produce a new value of white color. When this function is disabled, the 

value of the red gain, green gain and blue gain is set manually.  

 Programmable sharpening control  

The functionality of this module is to sharpening the edge of the image. The edge 

will sharpen according to the weighting value that given to the CMOS sensor.  

 Programmable gamma correction 

The gamma correction module is to boost the image from darker. The gamma 

correction function of the CMOS sensor is γ
1

io VV = , where Vi is normalized (ranged 

from 0 to 1) R, G, or B signal coming from the white balancing module and Vo is 

normalized final output. So by adjusting the γ  value we can adjust gamma 

correction.  
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 Programmable brightness correction 

The brightness correction is to increase / decrease the brightness level of the CMOS 

sensor. 

 Programmable anti-flickering (50 Hz, 60 Hz or off, like outdoor)   

The functionality of this module is to prevent flicker that can occur from light 

source by making the flicking stable at 50 Hz / 60 Hz.  

All of these modules can be changed or activated via serial bus control which known as 

I2C by changing the value of the register in each modules. Although these feature are 

available inside the chip, but not of these entire feature are activated or changed. It is because 

some of available function can affect the image that want to be process, such as sharpening 

function, auto exposure and auto white balance function. The sharpening function can sharpen 

the edge of the image by changing its value but because the inconsistency of the sharpening 

edge between image at time t and time t+1, so it can make false motion detection for our 

optical flow algorithm so we disabled the sharpening module.  

Another function that we disabled is the auto exposure time function, by disabling this 

function the frame rate of the image will be fix although there is any changes of the 

environment such as lighting changes that coming from the light source so by fixing the frame 

rate, we can acquire the image from CMOS sensor with a fix frame rate for all the time.  

The last function that we disabled is auto white balance function. Activated the function 

of auto white balance function can also make false motion detection for our optical flow 

algorithm. It is because when there are any suddenly changing in environment from dark to 
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white the auto white balance function will try to adapt by changing the R, G and B value to 

make a new white color for several image frames. In this time, there will be false motion 

detection even there is no any motion in the image. Generally, the need of motion detection 

algorithm is that the image must be consistently same for all the time without any suddenly 

changes so it will be clearly detect motion occur in the image instead of the changing of the 

environment. Instead of the above module, we also change the gamma correction from the 

gamma=1 to gamma=1.5 for boosting the darker signal so the image will be brighter. 

Meanwhile the brightness correction will not be change; it is no necessary to change the value 

of brightness correction after changing the gamma correction value. The value of the module 

that has been changed or disabled can be seen in the table 2.1.  

 Another configuration of the CMOS sensor that should be considered is data output 

format and data output mode. The ICM205B CMOS sensor offer a various data output format 

such as: 8/16 bit YCbCr, 24-bit RGB, 16-bit RGB and 8-bit raw data and also output modes 

such as VGA and its sub-sampling QVGA/QQVGA.  

 

Table 2.1 list of CMOS sensor built in function module that has been changed   

No Module name Default value New value 
1 Auto exposure Automatic Disable 
2 Auto white balance Automatic Disable 
3 Sharpening Sharpen weight = 2 Disable sharpening 
4 Gamma correction Gamma = 1 (no gamma) Gamma = 1.5 
5 Brightness correction 0 No changes 
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In our embedded image processing platform, we configure the output data as 16-bit YCbCr 

with the 8-bit low output data is Y and the next 8-bit high output data is sequential output of 

Cb/Cr which we are just using the 8-bit low output data (Y), so we doesn’t use the 8-bit high 

output data (Cb/Cr). And for the output data mode, we are using VGA data output mode. The 

YCbCr data format itself is a similar with YUV color space format which is used in European 

TVs. 

2.3. DSK6416 daughter board 
The DSK6416 daughter board consists of two kind interfaces for embedded image processing 

platform. The first daughter board interface uses for temporary 8-bit image data storage of 

CMOS sensor data before the image data send to the SDRAM in DSK6416 board. DSK6416 

daughter board specification: 

 Frame buffer (AL422B): 384 Kbytes 

 7 ports GPIO of DSK6416 for 4 port RS232 emulation 

This daughter board uses AL422B from Averlogic Corp [21]. There are several reasons 

why we choose this frame buffer (AL422B). First, the frame buffer has enough capacity (384 

Kbytes) that can store image data up to one image frame (640x480). Second, the speed of the 

frame buffer is fast enough to operate at 50 MHZ, so it can match with our embedded image 

processing platform speed that run at 3 MHZ. Third, the control signal of the frame buffer is 

simple comparable with other similar frame buffer which provide by other company. So the 

AL422B match with our criteria for temporary image data storage for CMOS sensor data.  
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The second daughter board consists of 4 COM ports of RS232 interfaces. The need of 

these 4 COM port of RS232 interfaces are to communicate with other module such as motion 

card to control motor and IPC. So by having these interfaces, the embedded image processing 

can run independently to control motor or to communicate with any other module directly. 

These 4 COM ports of RS232 interfaces emulate from 7 ports GPIO (General Input Output) 

of the C6416 chip [20]. The emulation use software emulation that writing in the C6416 chip. 

The software emulation can emulate two ports of GPIO to generate signal RX and TX for one 

COM port RS232 interfaces signal.  

In order to emulate 4 COM ports we need at least 8 ports GPIO, because there are only 7 

ports GPIO available so one of the 4 COM ports will have no RX signal which means that one 

of the 4 COM ports will only have transmit signal (TX) while the other 3 COM ports will 

have both TX and RX signal. The software emulation can also emulate several baud rates for 

the COM port RS232 interfaces. The baud rates speed that can emulate by the software 

emulations are 2400, 4800, 9600, 14400, 19200 and 57600 bps. So within this various baud 

rate configuration, software emulation can emulate COM port RS232 for several COM port 

configurations. 

2.3.1. Frame buffer (AL422B) 

The frame buffer (AL422B) is a video frame buffer consists of DRAM that work like a 

FIFO which long enough to hold up to 393,216 bytes (384 Kbytes) of picture information and 

fast enough to operate at 50 MHz [21]. AL422B specification (see figure 2.4): 

- 384K (393,216) x 8 bits FIFO organization 
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- Independent read/write operations (different I/O data rates acceptable) 

- Read/write cycle time: 20ns 

- Output enable control (data skipping) 

- 5 or 3.3. V power supply 

From the functional block diagram in figure 2.5, we can see that the frame buffer 

consists of two kind of separating part that are writing part and reading part. The writing part 

and reading part have three control signals to be able to write and read data in and out.  

These control signals are described as below: 

1. Writing part 

In the writing part, there are three control signals that control the data from outside that 

connected to the DI0 … DI7 to be written in to the memory cell array in the frame buffer. 

These control signal are WCK, /WRST and /WE. The functional of each control signal 

are: 

- WCK (Write Clock)  

This control signal is to give a periodic clock to the frame buffer, because  the frame 

buffer memory cell uses DRAM as the storage memory so it required a periodic 

clock to refresh its data for certain time so the data will still available in  

 

Figure 2.4 frame buffer (AL422B) [21] 
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the memory cell array. Instead of refreshing the data in the memory cell, this control 

signal is used to synchronizing incoming data from DI0 … DI7 to be writing into the 

memory cell array and will increase the internal counter address memory of the 

frame buffer. 

- /WRST (Write Reset) 

This control signal is used to reset the internal counter from current address memory 

into beginning address memory and active low. Its mean that if we want to write the 

memory cell array from beginning address, we must to use this control signal to reset 

the current memory address into the beginning memory address. 

- /WE (Write Enable) 

This control signal is used to enable the writing operation and active low, so that the 

data coming from DI0 … DI7 can write into memory array cell. 

 

 

Figure 2.5 AL422B Functional block diagram [21] 
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2. Reading part 

In the reading part, there are four control signals that use to read the data out from 

memory array cell into DO0 … DO7. For the first three control signals, the functional of 

these control signals will be same as the control signal in the writing part. These three 

control signals are RCK (Read clock) similar with WCK (Write clock), /RRST (Read 

Reset) similar with /WRST and /RE similar with /WE. The other control signal that is 

different with the writing part is /OE (Output Enable).  

The functional of the reading part control signal are described as below: 

- RCK 

This control signal is to give a periodic clock to the frame buffer, so the data memory 

still remains for certain time in the memory cell array, also used to synchronize the 

data read out from memory cell array into DO0 … DO7 and to increased internal 

counter address. So when there is an incoming clock into RCK, the data will readout 

from memory cell array into DO0 … DO7 and after that will increase the internal 

memory address.  

- /RRST 

This control signal is used to reset the current internal counter address into beginning 

address memory and active low. Its mean that if we want to read out the data from 

beginning address of the memory cell array we must to use this control signal to reset 

the current memory address back to the starting memory address.  

- /RE 
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This control signal is used to enable the data to read out from the memory cell array 

into DO0 … DO7 and active low.  

- /OE 

This control signal is used to enable reading the data that already available in the 

DO0 … DO7 and active low. If this control signal is disabling, the output data of the 

DO0 … DO7 will be in high impendence state. 

According to above description of the frame buffer control signal, it is important to give 

a correct timing for the control signal to write data into frame buffer or to read data out from 

frame buffer. For this part, we already design the correct timing and it will describe in the 

following section while describing the FPGA part.  

2.3.2. Seven ports GPIO of DSK6416 for emulating four 

COM ports RS232 interfaces. 

 

Figure 2.6 daughter boards for 4 COM ports RS232 interfaces 
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The COM ports RS232 interface in our embedded image processing platform is very 

important for communication with other modules such as motion control module and PC 

directly. The C6416 itself does not provide COM port or RS232 interface that support UART 

standard, but the C6416 provides so-called multichannel buffered serial port (McBSP) that 

have seven ports that can be configured for General Input Output (GPIO) function [20]. 

Figure 2.6 shows daughter board for four COM ports RS232 interfaces. So we need to 

emulate these seven ports GPIO to work as COM port RS232 that supporting UART standard. 

One way to emulate these GPIO port are using software to emulate it. The software need to 

emulate two ports of GPIO to act like RX and TX as part of the COM port RS232 interfaces 

signal which RX for receive signal and TX for transmit signal. To configure the McBSP pins 

as GPIO, we must configure two registers of the McBSP. These registers are SPCR (Serial 

Port Control Register) and PCR (Pin Control Register).  

The configuration of the McBSP pins as GPIO can be seen at table 2.2 and the block 

diagram of the McBSP configuration as GPIO can be seen in the figure 2.7. After configuring 

the seven ports of the GPIO into for four COM ports RS232 interfaces, next we will explain 

about the software implementation to emulate the TX and RX signal. The software 

implementation itself has four functions to emulate the COM port RS232 interface. Below is 

the description of these three functions: 

1.) void HR_Initiate_GPIO(void); 

This function sets the McBSP in GPIO mode by setting the SPCR and PCR registers 

according to the table 2.2. 
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Table 2.2 configuration of McBSP pins as GPIO [20]. 

Pins GPIO enabled When … 

(SPCR register) 

Selected as Output 

When … 

(PCR register) 

Selected as Input 

When … 

(PCR register) 

CLKX CLKXM = 1 --- 

FSX FSXM = 1 --- 

DX 

/XRST = 0, 

XIOEN = 1 
Always Never 

CLKR CLKRM = 1 --- 

FSR --- FSRM = 1 

DR Never Always 

CLKS 

/RRST = 0, 

RIOEN=1 

Never Always 

 

 

UART McBSP
CLKR

UART McBSP
FSX

FSR

COM3

UART McBSP
DX

DR

COM4

UART
TX

RX

McBSP
CLKX

CLKS

COM1 COM2

TX

TX

RX

TX

RX

Configuration of McBSP pins as GPIO for 4 COM ports RS232 interface  

Figure 2.7 block diagram of McBSP pins configuration for 4 COM ports 
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2.) unsigned int HR_SoftUartSpeedDetect(void); 

This function of HR_SoftUartSpeedDetect performs Auto-Baud rate detection by 

measuring the length of the Start bit, plus the length of the first data bit (logic high) by 

using character <cr> (carriage return = 0x0d). So while this function tries to detect the 

baud rate, users need to ensure (in software) that the first character sent is <cr> or any 

other character that the first data bit has to be a logical one. This is shown in figure 2.8. 

The time T is determined by this function that using a software counter incremented by 

one until the second transition from high to low is detected (D0) by reading the serial data 

input (RX). T represent twice the time of the time of a bit length. This measurement is 

required because the RX signal from UART is not always very clean. Simply measuring 

the length of the Start bit to determine the baud rate is not accurate enough so we need to 

use the first data bit which must be at logic high to fix the accuracy. The time reference 

value UART speed = T/2 is returned from HR_SoftUartSpeedDetect function which 

this value will use as reference for the Baud rate speed.  

The return value of this baud rate will depend on the clock speed of the main processor. In 

our case, we are using C6416 with 600 MHz, and the return value of this function 

according to its baud rate speed can be seen in the table 2.3.  

Start bit Stop bitD0

Carriage return character <cr>

T = UART speed x 2

 

Figure 2.8 UART Auto Baud rate detection [20] 



 29

Table 2.3 baud rate value detect from HR_SoftUartSpeedDetect function 

No 
Baud rate speed

(bps) 

Return value from 

HR_SoftUartSpeedDetect function 

1 2400 0x144E (5198) 

2 4800 0xA27 (2599) 

3 9600 0x513 (1299) 

4 14400 0x362 (866) 

5 19200 0x289 (649) 

6 57600 0xD8 (216) 

This result is obtaining by transmitting character <cr> from PC to each of the COM ports. 

3.) char HR_SoftUartInChar(int BaudRate, int COM_Port); 

The HR_SoftUartInChar takes the value of the Baud-rate speeds detected from 

HR_SoftUartSpeedDetect and select which COM Port that use for receiving the serial 

data input (RX). Every single 8-bit character read from the serial data input returned from 

this function. This function parses bit-by-bit the UART data on the serial data input and 

detects the Start bit by poling the first transition from inactive (logic 1) to active (logic 0) 

state.  

Start bit D0 D1 D2 D3

P/2 P P

Wait Sample data

Where P = UART speed value

Serial data input (RX)

 

Figure 2.9 HR_SoftUartInChar UART data fetch in [20] 
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The 8 data bits are transmitted by the UART device immediately after the Start bit. The 

best time to fetch the right value of each data bit is in the middle of the data bit waveform. 

Figure 2.9 shows how HR_SoftUartInChar function read out the serial data input. Firstly, 

it waits for half of the UART speed (P/2) which detected from 

HR_SoftUartSpeedDetect function during the Start bit. Then for each of the eight valid 

data bits, it samples the serial data input in the middle of the data bit waveform. Finally 

this function shifts each binary bit result into a single 8-bit character 

4.) void HR_SoftUartOutChar(int BaudRate,char Buffer, int COM_Port); 

The HR_SoftUartOutChar function is based on the same mechanism as the 

HR_SoftUartInChar function. It has had three input arguments, which are Baud-rate 

speed that detected from HR_SoftUartSpeedDetect function, the single 8-bit character  

to be sent via serial data output (TX) and last argument is to specify the COM port that 

one wants to use. At the beginning of a transfer, HR_SoftUartOutChar function writes a 

logic low (‘0’) to the serial data output as Start bit. Subsequently, it transmits each data bit 

until 8-bit already send to serial data output. The transmit character is first placed into the 

least significant 8 bits (LSB) in a register padded with three stop bits (0x00000700).  

Start bit D0 D1

Stop bit

1 1 1

P P

Where P = UART speed valueSerial data output (TX)

 

Figure 2.10 HR_SoftUartOutChar UART data fetch out 
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For example, the character ‘A’ with ASCII code is 0x41 will be placed in the padded 

register to become 0x00000741. Figure 2.10 shows how HR_SoftUartOutChar function 

sends out the serial data out.  

So by emulating the GPIO into COM port RS232 interfaces, there will have more 

additional COM port RS232 interfaces which will depend on the availability of the GPIO 

itself. In our case, we can emulate up to four COM ports. But by emulating the GPIO into 

COM port RS232 interface, the way to receive serial data from other module is not supporting 

serial port interrupt, so we can just use polling method to receive serial data from other 

module.  

2.4. FPGA (Altera UP2) 

Altera UP2

EPM27128S  (MAX7000S)
-Gate count : 2500 
-Max I/O : 104
-EEPROM-based programmable

EPF10K70RC240 (Flex10K)
-Gate count : 70,000 

-Max I/O : 358

-SRAM-based programmable

Altera configuration device (EPC1)

 

Figure 2.11 Altera UP2 board and its specification [22] 
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 The Altera UP2 board (see figure 2.11) consists of two FPGA chips that have different 

gate counts, and number of I/O (Input and output) [22]. The first FPGA chip (EPM27128S) 

has 2,500 gate count, max 104 I/O and EEPROM-based programmable. Meanwhile the 

second chip (EPF10K70RC240) has 70,000 gate counts, max 358 I/O and SRAM-based 

programmable.  

We choose the second chip (EPF10K70RC240) because of the larger gate count and have 

more available I/O. But this chip (EPF10K70RC240) needs additional boot ROM (EPC1) 

because of the architecture is SRAM-based  

The use of FPGA (Field Programmable Gate Array), Altera UP2 board (see figure 2.11) in 

our embedded image processing platform is to generate control signals for CMOS sensor, 

Frame buffer and DSK6416. The design of control signal in FPGA consists of three modules 

(see figure 2.12). These three modules are I2C, Buffer controller and 8bit_to_32bit_clk.  

2.4.1. I2C module 

The I2C module is used to generate SDA and SCL signal (I2C signal) in bidirectional input 

port SDA and SCL to initiate the CMOS sensor (see figure 2.13).  

I2C interface

PCLK

SDA

Start

SCL

 

Figure 2.13 I2C module 
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Table 2.4 configuration of the CMOS sensor 

No Feature name Status 
1 Auto white balance Disabled 
2 Image sharpening Disabled 
3 Auto exposure Disabled 
4 Gamma correction Gamma = 1.5 
5 Data output format 16-bit 4:2:2 YCbCr 
6 Data frame rate  30 fps 

As we already mentioned in the previous section (section.2.2) the feature of the CMOS 

sensor can be disabled or enabled by using this I2C module. After completion initiation the 

CMOS sensor, this module generates a “high” signal in the output port Start to the next 

module (buffer controller module) to starting to work. The complete configuration of the 

CMOS sensor that initiates this module is shown in table 2.4. 

2.4.2. Clock divider module 

The clock divider module (see figure 2.14) that divides the input port CLK_IN by four and 

the output can be taken from CLK_OUT and Ext_Int7 output port. Later, “high” signals on 

Start_conversion will active this module. 

2.4.3. Buffer_controller module 

 

Figure 2.14 clock divider 
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The Buffer_controller module (see figure 2.15) is the main module of the three other 

modules in the FPGA design. The functional of this module (see figure 2.12) is to read out the 

correct 8-bit image data from CMOS sensor according to the PCLK, HSYNC and VSYNC 

control signal. The correct 8-bit image data is then first stored in the frame buffer by 

generating a correct write control signal (/WE, /WRST, WCK).  

After the correct 8-bit image data are stored for a certain time in the frame buffer, the 

Buffer_controller generates a correct read control signal (/RE, /OE, /RRST, RCK) to read out 

the 8-bit image data from the Frame Buffer and stored the data in the FPGA. When the 8-bit 

image data already stored in the FPGA, it is then converted to the 32-bit image data by 

shifting the 8-bit image data four times.  

 

I2C interface

Buffer controller

D 7..D 0

RCK
/RE

8bit_to_32bit_clk
Start_conversion

CLK _IN

D ata_shift_clk

D 31..D 0

Ext_Int7
CLK _O U T

Ext_Int6

PCLK

PCLK

/RE

SD A
SCL

PCLK
H SY N C

/V SY N C

/O E
/RRST

/W RST

W CK
/W E

 

Figure 2.15 buffer controller modules 
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After completing shifting the 8-bit image data for four times, the CLK_OUT control signal, 

that comes from Clock divider module, (see section 2.4.2) tells the Buffer_controller to shift 

the 32-bit image data [D31 … D0] out from the FPGA. 

At the same time, the Clock divider module generates an interrupt signal to C6416 using 

Ext_Int7 control signal (see figure 2.14) to tell C6416 to fetch 32-bit image data out from 

FPGA. The last control signal of Buffer_controller is Ext_int6 control signal.  

The Ext_Int6 control signal is used to interrupt C6416 that there is an incoming one 

frame image data. So after receiving this interrupt the C6416 open an EDMA channel to 

starting fetch the 32-bit image data out from FPGA 

2.4.4. Implementation of the Buffer_controller 

The implementation of Buffer_controller module is successful that we can acquire image 

from CMOS sensor for 15 fps and 30 fps. The acquiring methods for 15 fps and 30 fps are 

different especially in controlling the timing diagram of frame buffer. Next we will discuss 

these two methods for acquiring images. 

2.4.4.1. Acquired image for 15 fps 

In the earlier implementation of the Buffer_controller, the way of controlling the frame 

buffer is divided into two stages; namely, writing stage and reading stage (see figure 2.16). So 

in the first incoming /VSYNC, the writing stage is active while the reading stage is not active 

and the next incoming /VSYNC it switches to the reading stage while the writing stage is not 
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active (see figure 2.16).  

 

Figure 2.16 full timing diagrams for 15 fps configuration 

    Figure 2.17 timing diagram of Frame Buffer in the writing stage 
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EXT INT7 [D3] 
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The writing stage here means that the Buffer_controller enables the writing part control 

signal of frame buffer to stored 8-bit image data from CMOS sensor for 640x480 pixels (see 

figure 2.17) by asserting the control signal /WE (/WE=LOW), and disserting /WRST 

(/WRST=HIGH) which are active low. Meanwhile the reading part of the frame buffer is 

disabled by disserting the control signal /RE (/RE=HIGH), /OE (/OE=HIGH) and asserting 

/RRST (/RRST=LOW). 

On the other hand, the reading stage here means that in the second incoming /VSYNC, the 

buffer controller enabled the reading part control signal of the frame buffer to read out 8-bit 

image data that already stored in frame buffer for 640x480 pixels (see figure 2.18) by 

asserting the /RE (/RE = LOW), /OE (/OE = LOW) and disserting the /RRST (/RRST = HIGH) 

control signal. Meanwhile the writing part of the frame buffer is disabled by disserting the 

control signal of /WE (/WE = HIGH) and asserting /RRST (/RRST = LOW).  

 

Figure 2.18 timing diagram for Frame Buffer in the reading stage 

Pixel Clock [D9] 
Data In [D10] 

/WE [D1] 
/WRST [D2] 

Data Out [D0] 
/RE or /OE [D5] 
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EXT INT7 [D3] 
EXT INT6 [D7] 
/VSYNC [D8] 

The second incoming /VSYNC signal 

8-bit image-data is read out from frame buffer  
(Reading stage) 
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It is because the Buffer_controller needs two /VSYNC signal to write the 8-bit image data 

into frame buffer, read it out from frame buffer and move it to the FPGA before it is moved to 

DSK6416, Therefore the acquire image speed from CMOS sensor until the DSK6416 is 

     fpsVSYNCrateFrame 15
2

30
2

/
===  

From figure 2.18, we also can see that in the reading stage, the incoming one image 

frame (/VSYNC = LOW), will active EXTINT6 (EXTINT6 = HIGH) signal.  Since The 

EXTINT6 signal is connected to the interrupt of the C6416 (see figure 2.12) so the active 

EXTINT6 signal will interrupt the C6416 to tell for an incoming one image frame. Therefore 

the C6416 enable EDMA channel and open its channel to begin to move 32-bit image data 

from FPGA to the SDRAM until 640 x 480 by counting EXTINT7 signal.  

2.4.4.2. Acquired image for 30 fps 

In the second implementation of the Buffer_controller time delay that caused by the 

switching mode between writing stage and reading stage is reduced that two /VSYNC signals 

is reduced to one /VSYNC signal. It means that in the same /VYSNC signal, the switching 

mode between writing stage and reading stage occurs (see figure 2.19).  

The time difference between writing stage occurs and the following reading stage in one 

/VSYNC signal (see figure 2.20) is 192 ns or 5.2 KHz. So at the first stage, the 

Buffer_controller will first store 8-bit image data from CMOS sensor (writing stage) up to 3 x 

640 image data into frame buffer by asserting the /WE and disserting /WRST control signal,  
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EXT_INT7

Hsync
Vsync
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/OE
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An incoming EXT_INT6 
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C6416 response the EXT_INT6 signal by enabled EDMA 
channel, then 32-bit is read out using EMIF channel 2 

EXT_INT7 speed EDMA speed  

Figure 2.19 full timing diagrams of writing and reading stage 

   Figure 2.20 full timing diagram of 30 fps configuration 
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after that the Buffer_controller activates the reading stage by asserting the /RE, /OE control 

signal and disserting /RRST control signal to read the 8-bit image data out from the frame 

buffer to move into FPGA, (before it moves to DSK6416). So at the instant of 192 ns (see 

figure 2.21), the writing stage and reading stage will run concurrently to write and read the 

8-bit data image in the Frame Buffer. According to this new configuration method, the frame 

rate speed of the acquiring image from CMOS sensor is 

fpsVSYNCrateFrame 30
1
30

1
/

=== . 

The 30 fps frame speed can be reach because there is no additional delay between the 

writing stage and reading stage in the Frame Buffer. 

 

 

Figure 2.21 timing diagram for reading and writing stage in 30 fps configuration 
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Figure 2.22 DSK6416 board with its main list components [19] 

2.5. DSK6416 board 
Table 2.5 DSK6416 board specification  

No. Feature name Details 

1 TMS320C6416 DSPs 600 MHz, fixed point, 1 Mbytes internal RAM 

2 External RAM 16 Mbytes, 64-bit interface 

3 External Flash 512 Kbytes, 8-bit interface 

4 Daughter card Expansion Allows users to enhance functionality with add-on 

daughter cards 

5 HPI Expansion Interface Allows high speed communication with another DSPs 

6 Embedded JTAG Emulator Provides high speed JTAG debug through widely 

accepted USB host interface 
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The DSK6416 is a standalone platform which is equipped with a high-performance DSP 

chip (C6416), external RAM for a bigger storage solution, external Flash for booting process, 

daughter card expansion which enabled the DSK6416 to communicate with daughter card / 

daughter board, with HPI expansion interface to communicate with other DSPs and last 

Embedded JTAG emulator which enabled the DSK6416 to communicate to Code Composer 

studio (CCS) while in the development process (see table 2.5) [19]. In our proposed 

embedded image processing platform, DSK6416 is the main processing platform including 

acquiring image from CMOS sensor. Next, we will discuss about software implementation 

acquiring image from CMOS sensor into DSK6416 which need a basic understanding about 

EMIF for interfacing to FPGA that holds 32-bit image data and EDMA controller for selecting 

an appropriate transfer mode according to the control signal from FPGA.  

2.5.1. EMIF (External Memory Interface) 

Read data

/CE

/OE

/ARE

ECLKOUT1

Setup Strobe Hold

ED [31..0]

 

Figure 2.23 basic EMIF asynchronous control signal [23] 
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 The EMIF is designed for a flexible interface to a wide variety of external memory 

devices [23]. We use the EMIF as interface to FPGA to read 32-bit image data from FPGA. 

We treat the FPGA as an asynchronous external memory device which is equivalent to FIFO 

memory architecture. Figure 2.23 showed the basic asynchronous control signal of EMIF. 

 In order to read 32-bit data through asynchronous interface from FPGA (see figure 2.12), 

the timing of the EMIF asynchronous control signal must be chosen carefully. The design of 

required timing can be done by setting the correct setup time, strobe time and hold time for 

the EMIF timing diagram. In our implementation we choose the correct setup time, strobe 

time and hold time for the EMIF asynchronous control signal shown in table 2.6. 

EXT_INT6
EXT_INT7

Hsync
Vsync

/ARE
/OE

/CE2

D0-D7

An incoming EXT_INT6 
signal, to tell C6416 to read 
out 32-bit from FPGA

C6416 response the EXT_INT6 signal by enabled EDMA 
channel, then 32-bit is read out using EMIF channel 2 

EXT_INT7 speed EDMA speed  

Figure 2.24 EMIF control signal 
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Table 2.6 lists of setup time, strobe time and hold time 

No Timing diagram Value (ns) 

1 Setup time 60 

2 Strobe time 60 

3 Hold time 20 

In the figure 2.24, the EXT_INT7 control signal shift out the 32 bit image data from 

FPGA. We can see that every EMIF control signal (/CE, /OE and /ARE) matches with the 

EXT_INT7 control signal. So the correct 32-bit image data are successfully read out from 

FPGA and will be stored in the SDRAM. 

2.5.2. EDMA (Enhanced DMA) controller 

The EDMA provides two types of data transfer, 1-dimensional (1D) and 2-dimensional 

(2D) transfer. The number of dimensions a transfer has determines the makeup of a frame of 

data. In a 1-D transfer, frames are made up of a number individual element. 

0x80030000

Event Triggered (EXT_INT7)

0x8007B000

0xA0000000

CPU

Enabled EDMA7
ChannelExtInt6 Occured Start _addr

End_adress

SDRAM32-bit FPGA data output

 

Figure 2.25 the configuration of the EDMA controller [24] 
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In a 2-D transfer, blocks are made up of a number of arrays, each of which is made up a 

number of elements. According to our previous implementation of Buffer_controller, the 

control signal that provided from Buffer_controller is similar to 1-dimensional (1D) transfer. 

It is because that the output of the Buffer_controller are made up of a number individual 

which is a individual 32-bit image data with following two control signal that are EXT_INT6 

and EXT_INT7. In the figure 2.25, we can see that an incoming EXT_INT6 will tell the CPU 

that there is one incoming image frame. The CPU then will open EDMA channel 7 that is 

already directly mapping with the EXT_INT7 signal.  

Start

Initial DSK6416

Enable interrupt 6

Initial EDMA for
Element Sync

Int6
occurred?

No

Already one
frame ?

EDMA channel 7
capture 4 pixels

Ext Int7 trigger
EDMA channel 7 to

capture 4 pixels

Disable  Int6 & enable
EDMA Channel 7

Yes

No

Next Image
Frame ?

Yes

Finish

Enable interrupt 6 Yes

No

Disable EDMA channel 7

 

Figure 2.26 the flow chart of the implementation of the EDMA transfer 
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So for every incoming EXT_INT7 interrupt will trigger the EDMA to read out an individual 

32-bit image data from the FPGA. And this is repeated until 640 x 480 image data been read 

out from FPGA. The flowchart of the implementation of EDMA transfer is shown in the 

figure 2.26. 

2.6. Experimental result Image processing 

In this section, we show experiment results of acquiring image from the embedded image 

processing platforms. After acquiring image from the embedded image processing platform, 

we do a simple processing with the acquired image by using simple algorithm. In the first 

processing of the image, we use sobel mask to find an edge detection of the image. Later we 

use image threshold to make a binary image. The embedded image processing platform uses 

the second configuration with a frame rate of 30 fps. The image resolution is 640 x 480 pixels. 

The first experiment is acquired one image frame with 640 x 480 pixels, from the 

embedded image processing platform. Figure 2.27 show the original image acquired from 

CMOS sensor. Figure 2.28 shows the original image while applying the sobel mask. Figure 

2.29 shows the binary image from thresholding.  
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Figure 2.27 original image of the CMOS sensor 

 

Figure 2.28 applying sobel mask operation in the original image 
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Figure 2.29 applying binary operation in the original image 
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3 .  Visual Servoing 

3.1. System architecture 

In the early stage of the mobile manipulator research, Connel introduced a 

behavior-based arm controller in his paper [8]. In his research, Connel combined a multi 

sensor feedback with the eight loosely-coupled on-board 8-bit microprocessors using 

behavior-based arm controller. Similar with the work, we propose a motion control for mobile 

manipulator by combining a behavior-based controller that does not use multiple sensor 

feedback but only use one visual sensory feedback. The proposed behavior-based algorithm is 

based on subsumption architecture which is introduced by Brooks [9] (see figure 1.1). The 

subsumption architecture, control is layered with higher layers subsuming the roles of lower 

level layers when they wish to take control. The system can be partitioned at any level, and 

the layers below form a complete operational control system.  

In the design of the visual servoing, we choose hand-in-eyes camera configuration to 

reduced the need for calibrated camera-to-manipulator coordinate transform, and it closed the 

control loop by providing visual feedback (robot motion caused camera motion) without 

requiring the vision system to track the end-effector’s (see figure 3.1). 

Our proposed algorithm is implemented in the embedded image processing platform for 

controlling the mobile manipulator robot. The architecture of visual servoing design can be 

seen in the figure 3.2.  
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Figure 3.1 hand-in-eye camera configurations 

The visual servoing based on behavior-based architecture is divided into three layers. 

These three layers are navigation layer, vision guide layer, and grasping layer. The navigation 

layer uses mixed optical flow algorithm [14] to navigate the robot to avoid obstacles in 

dynamic environments. The second layer is vision-guided layer; the functional of this layer is 

to guide the manipulator approaching certain object with barcode-like print on the body of the 

object. The third layer is grasping layer that has functional to gasp the object while the object 

is already detected in the gripper of the mobile manipulator. Based on the subsumption 

architecture, the higher level of the visual servoing based on behavior-based (Grasping layer) 

will subsuming the lower layer (Vision-guided layer and navigation layer) example: if there 

are already detected the object in the gripper so the gripper will closed and the robot will stop.  

Gripper Gripper 

ICM205 CMOS sensor CMOS sensor board CMOS sensor 
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Later, the communication line between each behavior uses priority request. Behavior 

module with high priority request will suppress the low behavior priority request (see figure 

3.3). The lower priority request behavior module can only pass the communication line if 

there is no any request from higher priority behavior module. Using this communication line, 

it will guarantee the high level behavior can always pass the communication line.   

3.2. Switching mode 

In order to choose which layer that will active at certain time, the grasping mode (see 

figure 3.4) and the navigation are allocated in the same communication line but the grasping 

mode can suppress the navigation mode (see figure 3.3). It is because the grasping mode is 

put in the higher request priority line. Meanwhile the navigation mode is put in the lower 

request priority line.  

If the navigation mode is activated and the grasping mode is not activated, the mobile 

manipulators will activate the navigation layer. If the grasping mode is activated, the mobile 

manipulators will activate the vision-guide layer and grasping layer to grasp a barcode-like 

object.  

S ACTION
Low Request

High Request

 

Figure 3.3 communication lines between each behavior module 
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This selection mode behavior is sent by main processor of robot (IPC) to the embedded 

image processor platform whether to switch which one of the modes to be activated although 

the navigation mode is still active because of the priority of the grasping mode is higher than 

the navigation layer.  

A simple example scenario of using our proposed algorithm: when the mobile 

manipulator does not find the object or the object location is far away from mobile 

manipulator, the mobile manipulator robot still can move autonomously in the environment 

by activating the navigation layer. Meanwhile, when mobile manipulator robot located near 

with the barcode-like object, then by activating the grasping mode (see figure 3.4) so the 

mobile manipulator robot can try to locate the barcode-like object by scanning its 

environment, and when the mobile robot locate the barcode-like object it will approach to the 

object by changing its speed and orientation until the barcode-like object get in to in the 

gripper and then it grasp the object.  

3.3. Barcode-like Object 
3.3.1. Definition 

It is important to define an object that the robot wants to grasp first. By knowing the 

object, the mobile manipulator robot then can locate the object and grasp it. To knowing or 

identifying an object using visual information, it is required some good feature on the object 

over another objects or environment so the object can be identified.  
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Figure 3.4 flow chart of grasping mode 
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In our proposed embedded vision system, the image data only provide 8-bit gray level 

information without any color information so we can not use color information as the feature 

of the object. The feature of the object can only extract gray-level information. This however 

is not a limitation of our platform, because by using gray-level information the feature of the 

object still can be extracted. There are many research has done related on this problem. 

Yoon[15] that using 3D geometric model to identify object, Kaneko[16] that using 

pyramidal-like objects as the feature to identify the object and Richards[17] using 

“figure/ground” approach to identify the object.  

Related to this problem, we create a unique feature for our object to be easily identified. 

For the unique feature, we choose a barcode-like feature as object feature (see figure 3.5).  

The barcode-like feature is divided into two kinds of bars which are vertical bar that 

located in the middle of the barcode-like and the horizontal bar that located in the top and 

bottom of the vertical bar.  

 

Figure 3.5 barcode-like features as the main feature of our object 
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The height (o) and width (n) of each vertical bar is same with other vertical bar. The length of 

the horizontal bar somehow is design to cover the vertical bar. The spacing (n) between first 

vertical bars with other vertical is same as the width. The spacing (m) between top horizontal 

bars and vertical bars is same as the spacing (m) bottom of horizontal bars and vertical bars.  

To use the barcode-like feature on the object, the barcode-like must be labeled in the 

object. So any object that is labeled with the barcode-like can be identified by our mobile 

manipulator robot. The idea of choosing the barcode-like feature is that it is simple to search. 

It does not take a long time to identify the barcode-like, unique structure so it can differentiate 

the barcode-like features with other object in the environment.  

3.3.2. Remarks 

The design of the barcode-like have two horizontal bars that cover the middle vertical bars 

(see figure 3.5). The horizontal bars are used to extract the width of the barcode-like. 

Meanwhile the vertical bars are used to extract the height of the barcode-like.  

The structure of our barcode-like is different from ordinary barcode structure that uses to 

label manufacture product. The ordinary barcode structure is thinner than ours. So when 

applying this kind of barcode, it has a weak feature to identify it.  

The size of the barcode-like is already well defined (m, n and o). This well defined size is 

already matched with the lookup table (see table 3.1), so it can be used to transform to 

estimate the real distance of the object. Although the size is already well defined, it still can be 

re-defined. When the size of the barcode-like redefined, the lookup table (see table 3.1) also 
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has to change according to the new size of the barcode-like.   

3.4. Barcode-like identification  

If an object in the image frame is labeled with barcode-like, the object will have features 

that can be used to identify. In this section, we will discuss our proposed algorithm to identify 

the barcode-like features. The algorithm begins by down sampling the acquiring image from 

CMOS sensor into 160 x 120 pixels.  

After that the image is converted into binary image. The converted binary image is then 

filtered by 1D horizontal and vertical filter. This filter is to filter a noise such as a small bar in 

the horizontal and vertical direction. After that it begins to find the barcode-like feature in 

vertical direction.  

We choose vertical direction because we want to find the horizontal bar first before 

finding the vertical bar in the barcode-like feature. It is to prevent a false detection of 

barcode-like feature because the horizontal bar is covering the vertical bar. This 1D vertical 

search is to find the corner of the barcode-like feature. Meanwhile, the distance of the 

barcode-like object can be extracted from barcode-like distance transform. The barcode-like 

distance transform is constructed using a look up table (see table 3.1) to extract the distance. 

We choose look up table because this method is suitable for hardware implementation and 

faster than other method. Figure 3.6 illustrates the flow chart of the proposed algorithm. 
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Figure 3.6 the flow chart of barcode-like identification 
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The barcode like distance transform uses three kinds of possibilities of the barcode-like 

features. The first barcode-like feature is to detect whether the barcode-like still consist of two 

horizontal bars, if it so then the possible distance are 80 cm, 60 cm or 40 cm. The second 

barcode-like features is to detect whether the bottom horizontal is missing if it is so then the 

possible distance are 30 cm or 20 cm. The last barcode-like features is detected when the 

object already in the gripper, with the distance is 5 cm.  

This transformation distance is then compared with the current barcode-like feature that 

was found by 1D vertical search to extract the correct distance of the barcode and the center 

mass of the barcode-like object (see table 3.1) 

Table 3.1 barcode-like feature to distance transform 

Pixel to distance mapping 

No 
Barcode-like 

features 
Height of Top 

Horizontal Barcode-like 
(pixels) 

Estimate 
distance 

(cm) 

Real 
distance 

(cm) 

1 - 3 80 70 – 80  

4 - 6 60 50 – 60 

1 

 7 - 10 40 30 – 40 

11 - 14 30 20 – 30 
2 

 
15 - 20 20 10 – 20 

3 

 

21 - 90 10 5 – 10 
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The transformation of object distance begins by comparing the top horizontal barcode 

feature found by the 1D vertical search. For example: If the current top horizontal barcode 

feature found by the 1D vertical search has height about 1 – 3 pixels, according to the look-up 

table, the estimate distance of the object is about 80 cm. The difference between estimate 

distance and real distance is the estimate distance will be used in the computational for 

calculate the speed of the mobile robot while approaching the object while the real distance is 

the real distance of the object but in the certain range.   

3.5. Foot motion control 

The foot motion control behavior is used to control the orientation and velocity of the 

mobile robot while approaching the barcode-like object. Figure 3.7 show the model of the 

mobile robot system. According to the model, we can derivate: 

Va

X-axis

Y-axis
desired
pose

actual
pose

yd

ya

xa xd

θa

Θd

Vd

dX

dY Vl

VrW

Θe

 
Figure 3.7 the model of non-holonomic mobile robot system 
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2
rl

d
vvv +

=      ……….    (3.1) 

D
vv lr

dd
−

==ωθ      ……….    (3.2) 

ad xxdX −=       ……….   (3.3) 

ad yydY −=       ……….   (3.4) 

 Where: 

- Va is the actual robot velocity         cm/s 

- aθ is the actual angular velocity        rad/s 

- Vd is the desired robot velocity        cm/s 

- dθ is the desired angular velocity        rad/s 

- VL is the left motor velocity         cm/s 

- VR is the right motor velocity         cm/s 

- D is the diameter of the robot         30 cm 

- Xa is the actual location of the robot in the x-axis      cm 

- Ya is the actual location of the robot in the y-axis     cm 

- Xd is the desired location of the robot in the x-axis .    cm 

- Yd is the desired location of the robot in the y-axis    cm 

- dX is different location between estimate with actual in x-axis  cm 
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- dY is different location between estimate with actual in y-axis  cm 

- eθ  is different between the actual angular speed with estimate angular velocity 

                        rad/s 

From equation 3.1 and 3.2, we can derivate the left motor speed and right motor speed: 

2
2 dd

L
DVV ω−

=     ……….   (3.5)  

2
2 dd

R
DVV ω+

=     ……….   (3.6) 

The left motor speed (3.5) and the right motor speed (3.6) can be controlled directly by 

sending a speed command to the DSP motion card that controlling the left motor and the right 

motor. Figure.3.8 shows the foot motion control system. The foot motion control is designed 

using the concept of image-based visual servo (IBVS) control. In this control scheme the 

closed loop control scheme uses sensor information is used as the visual feedback which is 

the features of the barcode-like.  

The features of the barcode consist of two kind’s information which is the barcode-like 

distance (cm) and the center-mass of the barcode like in the x-axis (pixels). The difference 

between the center mass of the barcode-like in x-axis and center mass of image plane in 

x-axis (error in pixels) is then transformed into dω (desired angular velocity – rad/s) by 

scaling down the error (pixels) using 1/k scaling factor to desire of the orientation of the robot. 

Similarly, extracted barcode-like distance (cm) is also directly transformed into Vd (desired 

robot velocity – cm/s) by scaling down the distance (cm) using 1/m scaling factor to desire of 



 64

the velocity of the robot. Tables 3.2 show the value of the k and m that are used in the foot 

motion control. 

 The value k in the table 3.2 consists of two values. These two values will depend on the 

distance of the barcode-like. The idea behind this is to make the estimate orientation of the 

robot can be adaptive. While the object distance is greater than 30 cm the robot orientation 

tried to locate in bigger orientation. Meanwhile, the object distance is smaller than 30 which it 

means that the robot is approaching the object; the orientation of the robot is made to be 

smaller. 

 On the other hand, the value of m is to control the velocity of the robot according to the 

object distance of the robot. We define the value of m is constant to the object distance of the 

robot, it is because we want to make the velocity of the robot is constant so the robot can 

move smoothly while approaching the object. 

 Table 3.2 the scale factor value for foot motion control 

No Scale factor Value Status 

16 < 30 cm (barcode-like distance) 1 K 

8 >= 30 cm (barcode-like distance) 

2 M 4 ---  
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4 .  Obstacle Avoidance Using Optical 

Flow 

4.1. Introduction to the algorithm 

Mixed optical flow algorithm was proposed by an earlier graduate student in our lab [14] 

this algorithm features a combination of the conventional correlation-based principle and the 

differential-based method for optical flow estimation. By employing image intensity gradients 

as features for pattern matching, this algorithm uses a brightness constraint to configure the 

search area. After that using correlation-based principle to search the best match between two 

successive images and finally find the optical flow field.  

The merit of this scheme is that the computation load can be greatly reduced and in the 

mean time the possibility of estimation error is decreased. After obtaining the estimated 

optical flow field, we can calculate the scene depth and time-to-collision (TTC).  

This depth information of object is used as input to an obstacle avoidance algorithm. 

This algorithm was implemented using Pentium 233 MMX and took 0.9 second to perform 

one calculation of obstacle avoidance. The flowchart of the proposed algorithm can be seen in 

figure 4.1[14] 
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Figure 4.1 flowchart of mixed optical flow algorithm [14] 

4.2. Implementation of mixed optical flow 

algorithm 

In this thesis, the mixed optical flow algorithm is implemented in the embedded image 

processing platform. We implement the mixed optical flow algorithm as part of our 

behavior-based architecture in the navigation layer for navigating our mobile manipulation 

robot that already describe in previous section. Figure 4.2 showed the flow chart of 

implementation mixed optical flow algorithm in our embedded image processing platform. 
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There are several differences between the original mixed optical flow algorithms with 

the implementation in our embedded image processing platform. The next following section 

will describe the implementation of mixed optical algorithm in our platform. 

4.2.1. Acquired two subsequent images 

The first step of the mixed optical flow acquires two subsequent images. These two 

images is acquired from CMOS sensor, these two subsequent images resolution are 640 x 480 

and just acquired 8-bit Y image data. Although the embedded image processing platform can 

acquire image for 30 fps, but we choose to use 15 fps. It is because our robot speed is not fast 

enough (15 cm/s) so if we use 30 fps for acquired image the mixed optical flow algorithm can 

hardly detect motion field because these two subsequent images nearly same so it is not detect 

any motion field. We do not increased the speed of our robot instead of reducing the frame 

rate, it is because the robot speed is already ideal according to robot heavy and after there is a 

manipulator attach on it. So we consider about the safety for the movement of the robot. 

4.2.2. Down sampling 

The method to do the down sampling from 640 x 480 to 160 x 120 is to fetch original 

image data (640x480) out for every 3 pixel (1, 4, 7, 10, …, 640 x 480 ) and put in the new 

address location. After the data already fetch out, the new image data resolution is reduced to 

160 x 120. We choose this method because it fit for hardware implementation which can be 

done by using EDMA transfer that already available in the C6416 processor. The simplicity 
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and need not any computational to do the down sampling that can make this method faster 

than other method such as nearest neighbor interpolation or bilinear interpolation [25]. The 

result of this method also is good enough and without reduces the feature of the image such as 

edge or corner so we use this method instead of other down sampling method. The 

implementation of the down sampling method is using two channel of EDMA to move two 

images (640 x 480) that located in SDRAM into new location address that locate in L2 Cache 

for 160 x 120 res. After the EDMA transfer already done to two subsequent images into L2 

Cache, the image 160 x 120 is ready for next processing step. Figure 4.3 showed the EDMA 

transfer for this down sampling method. 

4.2.3. Smoothness constraint (Pre-processing) 

Commonly, the moving objects viewed in the world are opaque and undergo rigid 

motion or deformation. In this case, the neighboring points on the objects have similar 

velocities. It is same in the optical flow case; we can assume that the optic flow varies 

smoothly in small neighborhoods in the visual field [26]. 

1 2 3 4 ... 640

2 .. .. .. ... 640

: .. .. .. ... 640

: .. .. .. ... :

640 .. .. .. ... 640 x480
120 ... ... 160x120

: .. ... :

2 .. ... 160

1 .. ... 160

640x480 res. 
(located in SDRAM)

160x120 res.
(located in L2 Cache)

fetch fetch

fetch

fetch

 

Figure 4.3 EDMA transfer for down sampling method 
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In the mixed optical flow algorithm, this additional constraint is combined with brightness 

constraint to provide an additional constraint to the underdetermined system for optic flow 

determination in the presence of the aperture problem.  

The implementation of the smoothness constraint uses the filter averaging. The reason to 

choose the filter averaging is because of this filter can average each pixel of the image within 

its neighbor so each pixel is having equivalently gray level value within its neighborhood 

boundary and based on this condition, the result of the filter averaging is similar with the 

assumption of the smoothness constraint in optic flow. Figure 4.4 illustrate the smoothness 

constraint.  

 It is clearly that by applying the smoothness constraint the boundary of an object can be 

easily extract so the optical flow can detect the motion object using the boundary of the object 

and it can be done by applying filter averaging. The disadvantages by applying the filter 

averaging for the smoothness constraint are that the image after applying the averaging filter 

is having blurring effect. Although there have blurring effect over the image, the mixed 

optical flow algorithm still can detect the motion object so the blurring effect doesn’t affect 

the mixed optical flow algorithm. 

Image plane  

Figure 4.4 smoothness constraint of optical flow 
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4.2.4. Calculate the Ex, Ey and Et 

 
Figure 4.5 sobel mask to calculate Ex, Ey and Et 

The method to calculate Ex, Ey and Et is straight forward by using Sobel mask for 

x-direction, y-direction and t-direction. The Sobel mask for these directions can be seen in the 

figure 4.5.  

4.2.5. Search the (u,v) over brightness constraints 

Brightness constraints assume that for a given scene point the intensity (E) at the 

corresponding image point remains constant over time. That is, if a scene point P (see figure 

4.6) projects onto the image point (x,y) at time t and onto the image point ( yyxx δδ ++ , ) at 

time ( tt δ+ ), we can write 

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

-1 -2 -1
-2 -4 -2
-1 -2 -1

1 2 1
2 4 2
1 2 1

EX1 EX2 EY1 EY2 

Et EX EY 
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Figure 4.6 the imaging geometry 

),,(),,( ttyyxxEtyxE δδδ +++=     …     (4.1) 

We can straight forward derived the (4.1), and we get the brightness constraint formulation is 

0=+⋅+⋅ EtvEyuEx      …     (4.2) 

The brightness constraints based on (4.2) provide a linear equation of variables u and v. 

As the consequence, the velocity vector (u,v) cannot be determined locally without applying 

additional constraints. Equation 4.2 also referred to as the motion constraint line, and can be 

plotted in uv space, as shown in figure 4.7. In the mixed optical flow algorithm, it applies 

correlation constraint for the additional constraint. The next following section will describe 

about correlation constraint. 
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Figure 4.7 the motion constraint line 

 

 The implementation of the brightness constraint itself is based on the (4.2). After 

calculating the Ex, Ey and Et using sobel mask, it is checked whether the calculated values of 

Ex, Ey and Et satisfy for the motion constraint line.  

If it satisfies the motion constraint line, it means that there is no possible flow motion on 

the calculated pixel. Alternatively, if it does not satisfy, it means that the calculated pixel have 

possibly flow motion. We apply 7x7 window to configure the search area for the flow motion.  

-3
-2
-1
0
1
2
3

100 71 42 13 -16 -45 -74
81 52 23 -6 -35 -64 -93
62 33 4 -25 -54 -83 -112
43 14 -15 -44 -73 -102 -131
24 -5 -34 -63 -92 -121 -150
5 -24 -53 -82 -111 -140 -169

-14 -43 -72 -101 -130 -159 -188

x

Ex=-29, Ey=-19, Et=-44

7x7 window mask

-3 -2 -1 0 1 2 3u
v

 

Figure 4.8 Brightness constraints for possibly flow motion 

 



 75

Figure 4.8 shown an example for searching the (u,v) over the search area for possible flow 

motion using brightness constraint. In this example, the Ex, Ey and Et of a pixel is calculated 

and checked whether it satisfies the motion constraint line. The result is the values of the Ex, 

Ey and Et do not satisfy the motion constraint line. So a 7x7 windows is to configure the 

search area and the shaded line in the 7x7 windows mask on figure 4.8 is the possible flow 

motion (u,v). The searching method to find (u,v) for the possible flow motion is looking for 

the transition value between + (positive) and – (negative) in the u or v direction. Below is the 

searching method to find the possible flow motions: 

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥++−<++
<+−+≥++
≥++−<++
<++−≥++

∈

0)1(&0
0)1(&0
0)1(&0
0)1(&0|),(

,

EtvEyExvEtvEyuExOR
EtEyvExEtvEyuExOR
EtvEyExuEtvEyuExOR
EtvEyExuEtvEyuExvu

vu  … (4.3) 

 

4.2.6. Correlation constraints 

The correlation constraints [27] [28] of optical flow is estimated in terms of the relation 

of a pixel (x,y) in one frame to its next frame. It is assumed that the pixel motion in two 

successive frames of instant t and ( tt δ+ ) will retain in range of -N<u<N and –N<v<N, 

where N is the largest possible displacement of u and v, and (u,v) is the optical flow vector. 

The optical flow is determined from the correlation match of the patch represented by (2n+1) 

x (2n+1) pixels centered at (x,y), out of (2N+1) x (2N+1) possible displacements. The 

correlation match equation is given by [28]: 
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Figure 4.9 correlation constraint algorithms 

∑∑
−= −=

++ ++++−++=
n

nj

n

ni
tt jvyiuxIjyixIvuyx 2

11tt, )],(),([),;,(SSD … (4.4) 

where -N<u<N and –N<v<N and SSD denotes the sum of squared difference between the 

patch and a (2n+1) x (2n+1) window around each pixel in (2N+1) x (2N+1) possible 

displacement. Figure 4.9 shown the correlation constraint algorithm based on (4.4).  

 From the (4.4), we can see if the search area is increasing it will greatly increase the 

computation load. In order to reduce computational complexity and still hold acceptable 

estimation accuracy, the mixed optical algorithm proposes to include the brightness constraint 

[26] that already mention in previous section combine with this correlation constraint. So in 

the mixed optical flow algorithm, it is using the principle of correlation match of 

correlation-based (4.4) technique as the kernel, and adds the brightness constraint (4.2) of 

differential-based technique to condense the search area of correlation match.  

So the implementation of the correlation constraint in mixed optical flow algorithm is 

straight forward. Firstly, we find the motion constraint line which is based on the (4.2). After 

we find the motion constraint line, we then perform SSD (sum of squared difference) based 

v
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on the (4.4), to find the displacement of current pixel in the possibly search area that lying the 

motion constraint line. After performing SSD search in all pixels that lying in the motion 

constraint line, then we look for the minimum value of all SSD value. The displacement of 

the pixel which is motion field vector (u,v) is the minimum value of the SSD value. After 

finding for one motion field vector, we repeated this step until the entire pixel in the one 

image frame already done. In our case, we find the motion field vector for 160 x 120. 

4.2.7. Create Depth Histogram 

Using the obtained optical flow field, we can calculate the scene depth and 

time-to-collision (TTC). This depth information of object is then input to an obstacle 

avoidance algorithm which locates in the navigation layer in our behavior-based architecture. 

As shown in figure 4.10, the camera focuses to the positive Z-axis direction. Let the origin of 

the world coordinate Oc locate at the camera center. For both the cases that the camera moves 

toward the object with a velocity (0,0, Wc) or the object moves toward the camera with a 

velocity (0,0, Wc), the TTC or depth can be calculated using the equation below [29]: 

Z
D

f
d
=       …     (4.5) 

 

where d is distance between focus of expansion (FOE) to a point p int the image plane (see 

Fig. 4.10). f is focal length, D is the distance between an interest point P and the Z-axis, Z is 

the depth. Differentiating with respect to time and dividing by d, we can get: 
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where V is the flow velocity and τ  is TTC.  
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Figure 4.10 (a) The camera moves toward the object.  

(b) The object moves toward the camera. 
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The implementation of computing TTC is also straight forward using (4.6), which is for the 

condition as the object is still. By modifying the (4.6) with our real implementation in our 

program we obtain the computation formula for TTC: 

t
vEst
posvEstabs

V
dTTC

_
)60__()( −

==τ     …    (4.7) 

where Est_v_pos is the position (y-axis) for point p of the motion flow field in the image 

plane at T (see figure 4.10 (b)). Est_v_pos is subtracted with 60 (the coordinate center of 

y-axis with 160x120 res.) and then absolute the result value to get the d value (see figure 4.10 

(b)). Meanwhile to compute V (motion field speed) we need y∆ (see figure 4.10 (b)) or in this 

case Esv_v (the motion field compute by mixed optical flow) and the sampling time of the 

image which equivalent with frame rate per second.  

 After we get the TTC (τ ), to compute the Z (depth information) we just multiplying the 

TTC (τ ) with Wc (robot speed) which is shown by Eq.4.8. 

cc W

t
vEst
posvEstabsWTTCZ ⋅

−
=⋅=

_
)60__()(τ    …   (4.8) 

4.2.8. Safety distribution histogram 

In order to establish a representation of the environment configuration, we transformed the 

calculated depth to a safety distribution histogram. This histogram is established from a 

mapping from a 3D space to 2D ZX-plane using the depth information to represent the 

obstacle in the environment. 
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Figure 4.11 the representation of 3D space to 2D ZX-plane 

Figure 4.11 illustrates the idea of safety histogram. From this figure, we see that the 

transformation of 3D space to 2D ZX plane can be done by pressing the y-axis value, pressing 

the y-axis means that the depth (Z) of the ZX histogram will depend on the y-axis value. This 

z-axis value is chosen the minimum value from the y-axis. So the bigger value of the z, the 

safer the location. On the other hand, a smaller value of z means that there are obstacles in 

front of the robot. 
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4.3. Experiment results with mixed optical 

flow algorithm 

In this section, we show experiment results of implementation mixed optical flow 

algorithm and the computation of safety histogram distribution. In figure 4.12 (a) shows the 

motion field vector in uv space and figure 4.12 (b) shows the safety histogram distribution 

that divide in to the 7 region. The width of the safety histogram distribution is 160 pixels; 

with each region of the safety histogram distribution is 20 pixels.  

 

 

Figure 4.12 Optical flow field [a] and histogram of TTC (7 regions) [b] 

 

Optical flow field 

      (a) 

Histogram of TTC (7 region)

          (b) 

160 0 
pixels 
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Next, we divide the seven regions into three sides which are left side, front side and right 

side. Figure 4.13 (b) shows the three side of safety histogram distribution that derived from 

seven regions and figure 4.13 (a) shows its motion field vector. By using these three regions, 

the robot can easily and fast to determine the safety location to avoid obstacle, like in the case 

of figure 4.13 (b), the left side of safety histogram distribution is bigger than the right side so 

the robot will turn left to avoid the obstacle.  

The implementation of mixed optical flow in embedded image processing platform took 

0.2 second or 5 Hz to perform one calculation of obstacle avoidance which in the previous 

research [14] it took 0.9 second or approx. 1 Hz.  

 

Figure 4.13 Optical flow field [a] and histogram of TTC (3 regions) [b]  
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5 .  Experimental Results 

5.1. The experimental mobile robot 
The experimental mobile robot is equipped with a manipulator. Below is the description 

of the mobile robot used in experiments: 

 Two independent drive wheels (Foot motors) and two casters for mobility. 

 A 3 DOF (Degree of freedom) manipulator for grasping.  

 Two 12 V and two 6 V batteries.  

 A Pentium III 1 GHZ IPC (Industrial Personal Computer) for main system control, using 

Windows XP as the operating system. 

 12 to 5 V DC – DC converter for power regulation. 

 Two DSP motion boards for controlling Foot motor and Head motor, and two DSP 

motion boards for controlling 3DOF manipulator 

 4 COM ports RS232 interface that provide communication between the embedded image 

processing and DSP motion boards or IPC. 

 Embedded image processing platform that using DSK6416 and CMOS sensor board for 

controlling the 3DOF manipulator. 
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Figure 5.1 Mobile manipulator (H2) platforms 

5.2. Experiment of grasping 

The goal of this experiment is to verify the mobile manipulator can locate barcode-like 

object using the proposed visual servoing method. 

 

Figure 5.2 the robot is faced to the object that put in the top of chair 
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In the experiment the object is put in certain place, which in this experiment is put in top 

of a chair. Figure 5.2 show the robot faced to the object. The object which labeled with the 

barcode-like feature is put at a distance about 115 cm. The object itself is put in the top of 

chair which height to the ground is 50 cm. 

In the first stage, the mobile manipulator robot scan its environment by turning left about 

30° (see figure 5.3 (a)) and right about 30° (see figure 5.3 (b)) to trying to locate the 

barcode-like object in front of the mobile manipulator.  

 

Figure 5.3 (a) the mobile robot is turned left about 30° 
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Figure 5.3 (b) the mobile robot is turned right about 30° 

The robot is tried to scan the environment for several times, and after the mobile 

manipulator robot located the object in front of it, it then changed its orientation and speed 

according to the barcode-like direction and distance. Figure 5.4 shows the mobile manipulator 

robot locates the object and change its orientation and speed according to the object 

orientation.  

Next, the mobile manipulator robot is approaching the object which adaptively change 

the orientation and speed according to the distance and the orientation which compute from 

the feature of the barcode-like that get from visual sensory feedback. (See figure 5.5 (a) and 

figure 5.5 (b)). 
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Figure 5.4 the robot change its orientation and speed after it locates the object in front of it 

 

Figure 5.5 (a) the mobile manipulator is approaching the object 
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Figure 5.5 (b) the mobile manipulator is approaching the object (cont’d) 

 

Figure 5.6 (a) the object is get into the area of the gripper 
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Figure 5.6 (b) the mobile manipulator grasp the object 

After the barcode-like object gets into the gripper area, (see figure 5.6 (a)), the mobile 

manipulator slowly approaches the object (see figure 5.6 (a)). Lastly, when the barcode-like 

distance approximately 5 cm, the mobile manipulator grasps the object and stops (see figure 

5.6 (b)). 

5.3. Experiment of grasping of an object 

from a person 

The goal of this experiment is to show how the mobile manipulator robot can locate 

barcode-like object as the object is hold by human. A human is standing while holding the 

object which is labeled by the barcode-like. The mobile manipulator is faced to the object 
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with distance about 90 cm. The object is hold by human with the height of the object to the 

ground about 55 cm. Figure 5.7 show the mobile manipulator faced the object that hold by the 

human. 

Similar with the previous experiment result, the mobile manipulator is tried to scan its 

environment by turning left about 30° (see figure 5.8 (a)) and by the time the robot is turn 

back to the forward direction, its locate the object that hold by the human (see figure 5.8 (b)) 

 

Figure 5.7 the mobile manipulator robot is faced to the human that hold the object 
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Figure 5.8 (a) the robot is turned left about 30° 

 

 

Figure 5.8 (b) the robot has located the object that holds by human 

Next, the mobile manipulation is approaching to the object, (see figure 5.9 (a) and (b)), and 

when the object already gets in to the gripper, it grasps the object (see figure 5.10 (a) and (b)). 
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Figure 5.9 (a) the robot is approaching the object 

 

Figure 5.9 (b) the robot is approaching [cont’d] 

 

Figure 5.10 (a) the object is in the gripper area 

 

Figure 5.10 (b) the gripper grasped the object 

The representation of this experimental in the qualitative data is shown as below: 

a. The mobile manipulator robot trajectory 

 
Figure 5.11 the trajectory of the mobile manipulator 

Figure 5.11 has shown the recorded trajectory of the mobile manipulator. This trajectory 
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is drawn using encoder pulses from the motor. The movement of the robot in x-axis is 

recorded in X (cm), meanwhile the movement of the robot in y-axis is recorded in Y (cm). 

In the figure 5.11, we divided the trajectory into five parts. In the part (a) the robot is 

starting from its starting point and is moving forward. Because the mobile manipulator 

robot can not find the object, the robot is trying to scan its environment by turning left 

side about 30 degree (part b). After turning left about 30 degree, the robot is then back to 

the forward position (part c), by the time the robot is turned to the forward position. The 

robot locates the object. That is why in part (d), the robot change its orientation, and then 

facing forward to approach the object. 

In the part (e), the robot is approaching the object approx 30 – 40 cm, in the last part (f) 

the robot is nearly the object that the distance about approx 0 - 20 cm. In this distance the 

velocity of the robot is reduced, and when the object get into the gripper it will grasped 

the object.  

b. The orientation of the robot 

The orientation of the robot while approaching the object can be seen in the figure 5.12. In 

this figure, it plots between the orientation of the robot in radian and time in second. The 

total time that is using to grasp the object is approx. 30 second. In the part (a), the robot is 

trying to scan its environment by scanning to the minus direction according to the graphic 

of the figure 5.12 which turning about 5 seconds. (From 10 second to 15 second). 

Next, because the robot does not find the object it then turn to the respectively direction 
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back to the forward direction (part b).  By the time, the robot want to back to the forward 

direction, the robot find the object, it can see in the part (c) where the robot only turn for a 

half of its direction. Next in the part (d), the robot already locates the object, and changing 

its orientation and direction. As we can see that in the part (d), there is an oscillation to 

make the robot stable at its orientation according to the object orientation. Later in the part 

(e), the robot is nearly from the object and trying to get the object into its gripper. As we 

can see that the trajectory in the part (e) is not changed and stable between -0.15 and -0.1. 

 

Figure 5.12 the robot orientation (rad - sec) 

5.4. Experiment of obstacle avoidance 

The goal of this experiment is to show how the mobile robot can avoid objects in front of 

it. If there is an obstacle in front of the robot, the robot will try to avoid the obstacle by 

determining the safety location between the left side and the right. After selection of the safety 
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location, the robot then turns about 30 degree to avoid the obstacle. 

Int the navigation mode the mobile manipulator robot works using the navigation layer 

in the behavior-based architecture. In the experiment, the mobile manipulator robot is 

free-running, if there is an obstacle in front of the mobile manipulator, the robot will try to 

find the safe location. Once the robot finds the safe location, the robot will change its 

direction and orientation to the safe location so it can avoid the obstacle safely.  

Figure 5.13 illustrate the trajectory of this experiment. Point (a) of figure 5.13, the robot 

faces the person approximately about 30 cm (see also figure 5.14 (a)). The robot then tries to 

find the safe location, once it finds the safe location the robot starting to turn about 30 degree 

to the safe location (see figure 5.14 (b)). At point (a), the robot chooses to turn left about 30 

degrees according to the result of safe location estimation.  

Point (b) of figure 5.13, the robot faces the person and the wall beside the human (see 

figure 5.14 (c)). After calculating the safe location, the robot successfully chooses (see figure 

5.14 (d)). Similar with points (a) and (b), at points (c) and (d), the robot finds the safe location 

to avoid the obstacle safely. Figure 5.15 illustrate the recorded trajectory of the robot in this 

experiment. 
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Figure 5.13 the trajectory approach of the mobile navigation experiment 

 

Figure 5.14 (a) Figure 5.14 (b) 
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Figure 5.14 (c) Figure 5.14 (d) 

Figure 5.14 (e) Figure 5.14 (f) 

Figure 5.14 (g) Figure 5.14 (h) 
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Figure 5.15 the trajectory of the mobile navigation mode 
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6 .  Conclusions and Future Work 

6.1. Conclusions 

This thesis presents a design and implementation of hardware and software to solve a 

mobile manipulator problem which is for navigation and grasping. The hardware 

implementation develops an embedded image processing platform which is stand-alone and 

can communicate directly to other module like DSP motion board and IPC. The embedded 

image processing consists of CMOS image sensor and DSK6416 as the main processing 

board. The result of this embedded image processing platform can be used for acquiring 

image for 15 fps and 30 fps.  

The experiment results of the visual servoing algorithm have shown that the mobile 

manipulator can locate a barcode-like object, approaching and grasp the object. The 

performance of this algorithm implement in embedded image processing platform to search 

the barcode-like object took 0.0667 second or 15 Hz.  

Meanwhile, the experiment results of the mixed optical flow algorithm can avoid a 

person in real time. The performance of this algorithm implement in embedded image 

processing platform for one calculation of obstacle avoidance took 0.2 second or 5 Hz.  
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6.2. Future work 

The proposed algorithm only has shown the use of the grasping mode and navigation 

mode independently without combining these two modes at the same time. In the future, by 

combining these two modes at the same time, the mobile manipulator can autonomously 

navigate it while the barcode-like object hasn’t detected. And if the barcode-like object 

already detect, the mobile manipulator can approach and to grasp it.  

In this work we just control the speed and the orientation of the mobile robot. The 

proposed algorithm visual servoing algorithm needs to improve by controlling the 

manipulator as well as the robot autonomously. 
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