=
| L
=
=

* oA R 2 o SR R T

An Embedded:Image Processing Platform for a

Mobile'Manipulator

(RN IR 1R
T S EE I o E

R B



PR E R G SR LT o

An Embedded Image Processing Platform for a Mobile

Manipulator

L AN Student: Andrian, Henrry

?ﬁﬁf’srab’; : %L'F'ﬁj%‘f\ %‘:j Advisor: Dr. Kai-Tai Song

SRS
R AL A T 5
g

A Thesis
Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao-Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electrical and Control Engineering
July 2004

Hsinchu, Taiwan, Republic of China

Pl S [g8 2004 & 7 F|



Ve AN A

b
H\
&=
[a iy
(w

PR Y A7

TR U R

B SRy P R A

W P DR R R R AR LR A B 5N AT i)
ol g s TR w R e AT R 6 ¢ F- (MOS #

.
-3;?
Tk

2k — %ﬁe? lF’ PR 2N

ALk E COALE i AT 2 din AT B

2
v

ST o ST 52 Bt AR SIS 1 K R
RS o AHHE IS G A R AT BEAN T L RN

So LR A B 2 SRR Sl R AT -



An Embedded Image Processing Platform for a Mobile

Manipulator

Student: Andrian, Henrry Advisor: Dr. Kai-Tai Song

Department of Electrical and Control Engineering
National Chiao-Tung University

Abstract

This thesis aims to construct a hardware and software implementation that provides a
control scheme for a mobile manipulator. The control scheme uses visual information as
feedback. The hardware implementation consists of a CMOS image board and a Tl DSP
DSK board which uses Cb416_as-the main processor. The merits of using these two
boards are the construction of a low cost-embedded platform with high performance.
Meanwhile the software implementation proposed a visual servoing using a
behavior-based approach to solving the control scheme of the mobile manipulator

problem.
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1. Introduction

1.1. Motivation

There are many existing mobile robots with a manipulator such as XR4000 platform
[1][2], Stanford mobile platform [3], COSMOS system [4], YAMABICO Type-Ten[5] and our
previous self-constructed guide-robot mobile manipulator[6] and etc. These existing mobile
manipulators somehow use a personal computer (PC) as the main processor for computation
and control of the mobile manipulator. There are fewer researchers who focus on embedded

platform for control of the mobile manipulator.

So it motivates us in this study to develop an embedded platform for controlling mobile
manipulation that are less expensive. using low cost components, and can operate
independently like a module. This module has its main processor, operate together and also
communicate directly with other module such as motion control board or PC. This embedded

platform will have built-in vision board, so there is no need for an additional vision system.

Later, the functional of this embedded platform can be used to control the mobile
manipulator to locate certain object and grasp it; meanwhile the robot can also move
autonomously to avoid obstacles. Therefore by using this embedded platform, the
computational load of the main processor (PC) of the manipulator robot can be reduce and the
robot can do any other task such as face recognition, localization and etc. Also these tasks can

also interact or combine with the manipulation task to complete a more complex task.



1.2. Background and related work

The advances of robotics research in the last two decades have led to new generations of
robotics system and new scenarios for applications. The successful introduction of robots into
human environments will depend on the development of competent and practical systems that
are dependable, safe and easy to use. To work, cooperate, assist, and interact with human, this
new generation of robots need mechanism that accommodates interaction while fitting into

our unstructured, sizeable and unpredictable environments.

Many methodologies and techniques have been proposed by many researchers to address
this challenge. Many robots have also been developed into the human environment to help
human for doing tasks such as cleaning (Roomba which is produced by iRobot Corporation),
elderly-care (Wakamaru, which is-produced-by-Mitsubishi Heavy Industries) and the extreme
one is humanoid robots (Asimo [7], which'is produced by Honda) which is able to accurately
understand and respond to a range of human motions. Another kind of a new application of
robots is personal-assistant robots. This robotic capability to aid human is in the
accomplishment of a variety of physical operations and presents various control strategies

developed for vehicle-arm coordination.

Like a common personal assistant robot, our lab also introduced a new kind application of
a personal-assistant which is so-called Easybot (Easy is pronunciation of ISCI Lab, while bot
is Robot). Easybot is a personal assistant robot which is equipped with manipulator that can

interact with people and environment autonomously. The term interact here means that the



robot can recognize people, locate certain object and grasp it and move autonomously in

dynamic environment with its manipulator attached on it.

This new emerging application involved a depth study of mobile manipulation research
area. Because it is not just a mobile robot but there is a manipulator attached onto the mobile
robot the system introduces a new control scheme problem in the scope of the mobile

manipulation robotics area.

1.2.1. Behavior-based controller

In the early stage of the mobile manipulator research, J. H. Connel introduced a
behavior-based arm controller [8].<The goalef.the system is to locate and retrieve empty soda
cans in an unstructured environment using a variety of local sensors. The arm controller
consists of 15 independent behaviors which each of these behaviors contains some grain of
expertise concerning the collection task and cooperates with the other to accomplish its goal.
The structure of the arm controller is based on a subsumption architecture [9], which is

proposed by Brooks (see figure 1.1).

—] Level 3 —
4>| Level 2 I
4>| Level 1 I
Sensors Actuators
>| Level O I -

Figure 1.1 subsumption architecture which introduced by Brooks [9]



Each of the 15 independent behaviors run concurrently, in real time, on a set of eight loosely
coupled on-board 8-bit microprocessors. In the experimental result, the arm controller work
well in practice and can be used in many different environment. The advantage of this control
scheme is that the control problem of mobile manipulator can be solved by behavior-based

controller that can relax the kinematic of manipulator and the motion control problem.

Later work that also used behavior-based but combined with fuzzy logic [10] and a
hierarchical behavior based [11] as the control scheme is introduced by Wasik and Saffioti.
However but their implementation is limited to the control of a robot manipulator of 5 DOF
(degree of freedom) to do a pick and place task. In the behavior-based design, they introduced
a hierarchical behavior-based design thatyeensists-of a simple behavior that implement a
simple control strategy and complex behavior by combining these simple behaviors.

Meanwhile the fuzzy logic is usedto fuse behaviors:in the control scheme.

1.2.2. Visual servoing controller

Recent advances in vision sensor technology and image processing allow the effective
use of vision data in the control of a robot. Based on this fact, many researchers are focusing
to use vision sensor data as the feedback control for their control scheme. This kind of
controller is called visual servoing controller. In the tutorial on visual servo control [12], the
problem of the visual servoing control scheme and configuration of the vision sensor on the

robot is described.
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1.2.2.1. Position-based visual servo (PBVS) control

In the position-based visual servoing control (see figure 1.2), features (f) are extracted
from the image and used to estimate the pose of the target with respect to the camera. Using
these values, an error between the current (cx,) and desired pose (cxq) of the robot is defined
in task space (Cartesian coordinate). These errors are then given to the control law to correct
the current position to the desired position and still in the task space (Cartesian coordinate).
Finally the result of control law in Cartesian coordinate is transformed to the joint controller

coordinate by computing the inverse kinematics for each joint of the manipulator.

The advantage of this configuration is that'the Cartesian control law is easy to design.
Respectively, the disadvantage over this configuration is that the camera need calibration
related to the camera and the manipulator-pesition-that introduce some camera calibration

error, and somehow the pose estimation can waste the time because of the computing delay.

Figure 1.2 Position-based visual servo (PBVS) structures [12]



1.2.2.2. Image-based visual servo (IBVS) control

In image-based visual servo control (see figure 1.3), feature (f) of desired object is
extracted from the image, and will be compared with the desired feature in the image plane (fg)
by subtracting the desired feature in the image with the current feature in the image plane.
Usually the desired feature is the center (x,y) of image, for example: an image with 160 x 120

res. the center of the image is at (80, 60).

Later the error between the current features with the desired feature will be given to
the feature space control law to transform the feature into each joint controller of the

manipulator, after that the position of the manipulator will change to the new desired position.

The advantage of this eonfiguration Is the computational delay may be reduced
because there is no need to estimation the pose of the object. Also it can eliminate errors due
to camera calibration because in this scheme there is no need to do a camera calibration. The

challenge of this configuration is to design the feature space control law.

=
O Feature space > ﬂ% P/Q:
+ 3 control law > [ ] '
- v | [
Joint Power
a - actual controllers amplifiers
d : desired
fa
Feature |
extraction

Figure 1.3 Image-based visual servo (IBVS) structures [12]



1.2.2.3. Camera Configuration

The choice of the camera mounting position can cause drastic changes in the basic
system design. Camera poisoning in visual servoing technique involves a choice between
statically mounted camera (see figure 1.4) and robot mounted camera (eye-in-hand

configuration) (see figure 1.5).

In a robotic manipulator with fixed bases, the statically mounted camera means the
camera position is not in the body of the robot so the camera will act like an observer because

the working space of the space already defined.

Static camera

Object Possible camera

T -
% locations

Figure 1.4 static camera mounted for robotic manipulator [13]




In this case the static camera must observe both the manipulator and the object that want
to be grasped. Since the camera position is static and it is assumed that any motion energy in

the view of the camera is the object to be grasped.

A static camera simplifies the control algorithms, but raises a calibration issue for precise
camera-to-manipulator coordinate system transformation. The second configuration of camera
positioning is the camera mounted in the manipulator (eye-in hand configuration). In this
configuration, the camera does not have to observe the manipulator; it just observes the
desired object to be grasped. The choice of an eye-in-hand configuration reduces the need for

a calibrated camera-to-manipulator coordinate transformation.

Eye-in-hand
camera
configuration

Figure 1.5 eye-in-hand camera configurations



It also closed the control loop by providing visual feedback (robot motion causes camera
motion) without requiring the vision system to track the end-effector, as would have been the
case with the static camera. The movements of the manipulator were predefined and no details
of the control algorithm required implementing the motion nor were the vision algorithms

required to track the given object’s position.

1.3. Problem statements

This study aims to construct hardware and software implementation that solves a

mobile manipulator problem.

The strategy of hardware implementation 1S to develop an embedded platform with a
less expensive vision system built-in. The design allows to use low cost components and
construct a stand-alone module because it has its.main processor and accomplish real-time
image processing including acquiring image from vision sensor, and communication directly
with other modules such as motion control DSP-board and PC (main processor of the mobile

manipulator) to receive and sending commands.

The second strategy on software implementation is to propose an arm controller that
can do a specific task such as to locate a specific object and grasp it. Also the robot needs to

autonomously to avoid obstacles.

Therefore, by combining the hardware and software implementation, we develop a
stand-alone arm controller for a mobile manipulator that can do a basic task of manipulator

and navigation by combining this stand-alone arm controller with other controller that already



provided for the mobile manipulator such as localization and face recognition.

1.4. Organizations of the thesis

In the following chapters, we present the details of the selected problem, our proposed
algorithm, and the experimental results that demonstrate the validity of our approach. We
begin by presenting hardware implementation of our embedded platform including the
choosing selected low cost components and hardware design of our embedded platform in the
chapter 2. After presenting the hardware implementation, next we will present the software
implementation that run on our embedded platform. The software implementation is divided
into two chapters (chapter 3 and chapter 4). In chapter 3 we begin explanation our proposed
behavior-based algorithm that combined with visual sérvoing. In the same chapter, we present
the use of this algorithm for grasping a certain-object: In the following chapter (chapter 4), we
present the use of this algorithm for mobile navigation. Experimental results of grasping and
vision-based navigation are included in the chapter 5. Finally we summarize the thesis and
detail contributions of the thesis in chapter 6. We also discuss what we believe should be the

next future work in the research beyond the content of the thesis.

10



2. Embedded Image Processing

Platform

2.1. System Overview

In this chapter, we introduced the proposed embedded image processing platform. The
components of the embedded image processing platform include a CMOS sensor board from
IC Media as the sensor board and the DSK6416 board from Texas Instrument as the main
processor unit. The selection of the CMOS sensor as the sensor is based on that the image
quality of the CMOS sensor is good enough' and. the. price of CMOS sensor less expensive
compared with CCD sensors. The term-geed-eneugh means here is the image produce by the
CMOS sensor still can be used for*further processing for machine vision applications.
Meanwhile the selection of the DSK6416 board as the main image processing board which is
based on that C6416 has highest-performance fixed-point Digital Signal Processors (DSPs)
with 600 MHz clock rate, can do instruction for 4800 MIPS with 1.67-ns instruction cycle

time.

In the interface design, the C6416 offers an interface called EMIF (External memory
interface) which supports glueless memory architecture interface such as FIFO or SDRAM. In
the memory controller, C6416 offers EDMA (Enhanced DMA) controller that can be used to

move a block of memory from current address memory into desire address memory.

11



2.1.1. Stand-alone

The first criterion of our developed embedded image processing platform is stand-alone.
The term stand-alone means that the embedded image processing can run independently
without any devices such as PC, so even there is no PC in the robot, the embedded image

processing platform still can control the mobile manipulator robot.

2.1.2. Communication directly with other modules

The second criterion of our developed embedded image processing platform is that it can
communicate directly with other modules. The selection of the communication link is
important. The available communicationlink:.on module is RS232 communication line.
Unfortunely, C6416 does not support UART (RS232 communication standard) standards
natively. To solve this problem,-we emulate-the; UART signal by using the available GP1O
(General Purpose Input Output) in the C6416. The implementation of the UART emulation is
using software implementation. The description how to create the UART emulation is

described in the section 2.3.2 in this chapter.

The hardware and software architecture of our embedded imaging processing platform is
illustrated in figure 2.1 and 2.2. There are three boards in the architecture of embedded
platform. The first board is the main board, which is the DSK6416. The second board is the
vision sensor board, which has CMOS sensor that using ICM205B as the main vision sensor.
The third board is the DSK6416 daughter board which is a supporting board for DSK6416

board. The DSK6416 daughter board consists of two sub-boards.
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The first sub-board is the temporary storage board which consists of frame buffer
(AL422B) and FPGA (Field Programmable Gate Array) which use Flex10K70RC240 from
Altera. The second DSK6416 daughter board is the RS232 communication lines which have 4

COM ports to communicate with other modules or PC.

Next, the embedded imaging processing platform has one input, which comes from the
first DSK6416 daughter board and have four outputs to the 4 COM ports to communicate
with three DSP motion control card, which is controlling ELBOW and SHOULDER motor
(COM1), FOOT motor (COM2), GRIPPER motor (COM4) and one to communicate with PC

for receiving or sending command (COM3).

The image acquired from CMOS sensor-is first stored in the frame buffer for certain time,
after that it is sent to the DSK6416 for-storing in the SDRAM. When the image frame is
already in the SDRAM, the C6416 Dbegins to process the image. After processing the image,
the obtained information is used to control the motor by sending a command to the COM port.
In the following section, we will discuss each component of the embedded image processing

platform.

2.2. CMQOS sensor board

The used CMOS sensor board is EVT202. EVT202 specification:

e Number of Active Pixels: 640 x 480
e  Number of Physical Pixels: 650 x 490
e Main Clock Frequency: 3 to 24 MHZ

e  Frame rate: from 1 to 30 fps

15



e  Output data format: 8/16-bit YCbCr, 24-bit RGB, 16-bit RGB and 8-bit raw data

e Input/ output interface: SIF

EVT202 is a CMOS sensor boards with an ICM205B vision chip from IC media Corp
[18]. Figure 2.3 Hllustrates the EVT202 CMOS sensor board. The ICM205B sensor chip is a
single-chip digital color imaging device. It incorporates a 640 x 480 sensor array operating at
1 - 30 frames per second in progressive manner. Each pixel is covered by a color filter which

formed a so-called Bayer pattern.

There are several module built in the sensor that can be used for enhanced the image

quality, such as the brightness of the scene by adjusting the digital gain for all pixels, color

e, . . _
“balance “circuit, image sharpening by correcting the

correctness by using automatic Whij;@

value of the sharpening functioniﬁh‘q gamma Gr(gpti'pir'a to boost darker signal by selecting the
=1 ‘ | ) | :.;

appropriate gamma value. The mﬁ‘gjﬁul_éé;ﬁhafla\}aiﬁlqp!‘;ifz;i.nside the chip are described as below:

ICM205B CMOS
Sensor chip

Figure 2.3 EVT202 and its specification

16



Real time color interpolation

The functionality of this module is to reconstruct each pixel that covered by a color
filter that form so-called Bayer pattern into complete set of RGB values.
Programmable / Automatic exposure control

The Automatic Exposure (Auto Exposure) module is to control the Exposure time,
Digital gain and Anti-flickering function automatically.

Programmable / Automatic white balancing and color correction

The Automatic white balance is to perform white balancing when the lighting is
suddenly changed in the environment by changing the R (Red), G (Green) and B
(Blue) to produce a new, value of white-color. When this function is disabled, the
value of the red gain, green gain andblue-gain is set manually.

Programmable sharpening control

The functionality of this module is to sharpening the edge of the image. The edge
will sharpen according to the weighting value that given to the CMOS sensor.
Programmable gamma correction

The gamma correction module is to boost the image from darker. The gamma

1
correction function of the CMOS sensor isV, =V,”, where V; is normalized (ranged

from 0 to 1) R, G, or B signal coming from the white balancing module and V, is

normalized final output. So by adjusting the » value we can adjust gamma

correction.
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e  Programmable brightness correction
The brightness correction is to increase / decrease the brightness level of the CMOS
sensor.

e Programmable anti-flickering (50 Hz, 60 Hz or off, like outdoor)

The functionality of this module is to prevent flicker that can occur from light
source by making the flicking stable at 50 Hz / 60 Hz.

All of these modules can be changed or activated via serial bus control which known as
I12C by changing the value of the register in each modules. Although these feature are
available inside the chip, but not of these entire feature are activated or changed. It is because
some of available function can affect the image that want to be process, such as sharpening
function, auto exposure and auto*white balance function. The sharpening function can sharpen
the edge of the image by changing its value-but because the inconsistency of the sharpening
edge between image at time t and time t+1, so it can make false motion detection for our
optical flow algorithm so we disabled the sharpening module.

Another function that we disabled is the auto exposure time function, by disabling this
function the frame rate of the image will be fix although there is any changes of the
environment such as lighting changes that coming from the light source so by fixing the frame
rate, we can acquire the image from CMOS sensor with a fix frame rate for all the time.

The last function that we disabled is auto white balance function. Activated the function
of auto white balance function can also make false motion detection for our optical flow

algorithm. It is because when there are any suddenly changing in environment from dark to

18



white the auto white balance function will try to adapt by changing the R, G and B value to
make a new white color for several image frames. In this time, there will be false motion
detection even there is no any motion in the image. Generally, the need of motion detection
algorithm is that the image must be consistently same for all the time without any suddenly
changes so it will be clearly detect motion occur in the image instead of the changing of the
environment. Instead of the above module, we also change the gamma correction from the
gamma=1 to gamma=1.5 for boosting the darker signal so the image will be brighter.
Meanwhile the brightness correction will not be change; it is no necessary to change the value
of brightness correction after changing the gamma correction value. The value of the module

that has been changed or disabled can be seen in‘the table 2.1.

Another configuration of the CMOS sensor. that should be considered is data output
format and data output mode. ThefCM205B CMOS sensor offer a various data output format
such as: 8/16 bit YCbCr, 24-bit RGB, 16-bit RGB and 8-bit raw data and also output modes

such as VGA and its sub-sampling QVGA/QQVGA.

Table 2.1 list of CMOS sensor built in function module that has been changed

No Module name Default value New value

1 Auto exposure Automatic Disable

2 Auto white balance Automatic Disable

3 Sharpening Sharpen weight = 2 Disable sharpening
4 Gamma correction Gamma =1 (no gamma) Gamma =15

5 | Brightness correction 0 No changes
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In our embedded image processing platform, we configure the output data as 16-bit YCbCr
with the 8-bit low output data is Y and the next 8-bit high output data is sequential output of
Cb/Cr which we are just using the 8-bit low output data (YY), so we doesn’t use the 8-bit high
output data (Cb/Cr). And for the output data mode, we are using VGA data output mode. The
YCbCr data format itself is a similar with YUV color space format which is used in European

TVs.

2.3. DSK6416 daughter board

The DSK6416 daughter board consists of two kind interfaces for embedded image processing
platform. The first daughter board interface uses for temporary 8-bit image data storage of
CMOS sensor data before the image data send to:the SDRAM in DSK6416 board. DSK6416
daughter board specification:

e Frame buffer (AL422B): 384 Khytes

e 7 ports GPIO of DSK6416 for 4 port RS232 emulation

This daughter board uses AL422B from Averlogic Corp [21]. There are several reasons
why we choose this frame buffer (AL422B). First, the frame buffer has enough capacity (384
Kbytes) that can store image data up to one image frame (640x480). Second, the speed of the
frame buffer is fast enough to operate at 50 MHZ, so it can match with our embedded image
processing platform speed that run at 3 MHZ. Third, the control signal of the frame buffer is
simple comparable with other similar frame buffer which provide by other company. So the

AL422B match with our criteria for temporary image data storage for CMQOS sensor data.
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The second daughter board consists of 4 COM ports of RS232 interfaces. The need of
these 4 COM port of RS232 interfaces are to communicate with other module such as motion
card to control motor and IPC. So by having these interfaces, the embedded image processing
can run independently to control motor or to communicate with any other module directly.
These 4 COM ports of RS232 interfaces emulate from 7 ports GPIO (General Input Output)
of the C6416 chip [20]. The emulation use software emulation that writing in the C6416 chip.
The software emulation can emulate two ports of GPIO to generate signal RX and TX for one
COM port RS232 interfaces signal.

In order to emulate 4 COM ports we need at least 8 ports GP10, because there are only 7
ports GP1O available so one of the 4COM portswill have no RX signal which means that one
of the 4 COM ports will only have transmit-signal (TX) while the other 3 COM ports will
have both TX and RX signal. The software'emulation can also emulate several baud rates for
the COM port RS232 interfaces. The baud rates speed that can emulate by the software
emulations are 2400, 4800, 9600, 14400, 19200 and 57600 bps. So within this various baud
rate configuration, software emulation can emulate COM port RS232 for several COM port

configurations.

2.3.1. Frame buffer (AL422B)

The frame buffer (AL422B) is a video frame buffer consists of DRAM that work like a
FIFO which long enough to hold up to 393,216 bytes (384 Kbytes) of picture information and
fast enough to operate at 50 MHz [21]. AL422B specification (see figure 2.4):

- 384K (393,216) x 8 bits FIFO organization
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- Independent read/write operations (different 1/O data rates acceptable)
- Read/write cycle time: 20ns
- Output enable control (data skipping)
- 5o0r3.3.V power supply
From the functional block diagram in figure 2.5, we can see that the frame buffer

consists of two kind of separating part that are writing part and reading part. The writing part
and reading part have three control signals to be able to write and read data in and out.
These control signals are described as below:
1. Writing part

In the writing part, there are thrée contrél ‘si‘gnals that control the data from outside that

p ‘ | A i
connected to the DIO ... DI7:tosbe written-in torthe memory cell array in the frame buffer.

These control signal are WCK, /WRST and /WE. The functional of each control signal
are:
- WCK (Write Clock)
This control signal is to give a periodic clock to the frame buffer, because the frame
buffer memory cell uses DRAM as the storage memory so it required a periodic
clock to refresh its data for certain time so the data will still available in

DO0 DO1 DO DO3 J/RE GND (OE /RRST RCK DEC DO4 DO5 DOS§ DOT

ERRRERNRRRRNNN bR nNANGE

. AVERLOGIC
: AL422B

) QP xxxxx

XXX

O
I EERERERERERRER EEERERERuREERERE RPN

D0 D DZ DI3 WE GND TST 'WRSTWCK VDD Di4 DIS DI DI7

Figure 2.4 frame buffer (AL422B) [21]
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DI7~
DIO

the memory cell array. Instead of refreshing the data in the memory cell, this control
signal is used to synchronizing incoming data from DIO ... DI7 to be writing into the
memory cell array and will increase the internal counter address memory of the
frame buffer.

/WRST (Write Reset)

This control signal is used to reset the internal counter from current address memory
into beginning address memory and active low. Its mean that if we want to write the
memory cell array from beginning address, we must to use this control signal to reset
the current memory address into the beginning memory address.

/WE (Write Enable)

This control signal is usedito enable the writing operation and active low, so that the

data coming from DIO ..%-DI7 can‘write into-memory array cell.

e Write 384k x8 Read Output

P —»| Dala |—m» MemoryCell ——» Data i P —-
Buffer . : Buffer

Register Array Register

e Ay Timing Generator Repd e
{WRST —» Address [—im & Arbiter f— Address (e—— /RRST

WE Counter Counter IRE

Refresh Address
Counter AL422-03 Block Diagram

Figure 2.5 AL422B Functional block diagram [21]
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2. Reading part

In the reading part, there are four control signals that use to read the data out from

memory array cell into DOO ... DO7. For the first three control signals, the functional of

these control signals will be same as the control signal in the writing part. These three

control signals are RCK (Read clock) similar with WCK (Write clock), /RRST (Read

Reset) similar with /WRST and /RE similar with /WE. The other control signal that is

different with the writing part is /OE (Output Enable).

The functional of the reading part control signal are described as below:

- RCK
This control signal is to give a periodic ¢clock to the frame buffer, so the data memory
still remains for certain“time in the memory tell array, also used to synchronize the
data read out from memaory ‘cell array-into-DO0 ... DO7 and to increased internal
counter address. So when there is an incoming clock into RCK, the data will readout
from memory cell array into DOO ... DO7 and after that will increase the internal
memory address.
- IRRST

This control signal is used to reset the current internal counter address into beginning
address memory and active low. Its mean that if we want to read out the data from
beginning address of the memory cell array we must to use this control signal to reset
the current memory address back to the starting memory address.

- IRE
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This control signal is used to enable the data to read out from the memory cell array
into DOO ... DO7 and active low.

- /OE
This control signal is used to enable reading the data that already available in the
DOO0 ... DO7 and active low. If this control signal is disabling, the output data of the
DOO ... DO7 will be in high impendence state.

According to above description of the frame buffer control signal, it is important to give

a correct timing for the control signal to write data into frame buffer or to read data out from

frame buffer. For this part, we already design the correct timing and it will describe in the

kL F_'r',' X
i "

following section while descrlblng tlﬁ FPGA|

! ol

2.3.2. Seven ports GFFIObg DS 6416 for emulating four

L

4 .-J

COM1 COM2 COM3 COM4

Figure 2.6 daughter boards for 4 COM ports RS232 interfaces
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The COM ports RS232 interface in our embedded image processing platform is very
important for communication with other modules such as motion control module and PC
directly. The C6416 itself does not provide COM port or RS232 interface that support UART
standard, but the C6416 provides so-called multichannel buffered serial port (McBSP) that
have seven ports that can be configured for General Input Output (GPIO) function [20].
Figure 2.6 shows daughter board for four COM ports RS232 interfaces. So we need to
emulate these seven ports GP10 to work as COM port RS232 that supporting UART standard.
One way to emulate these GPIO port are using software to emulate it. The software need to
emulate two ports of GPIO to act like RX and TX as part of the COM port RS232 interfaces
signal which RX for receive signal and TX for transmit signal. To configure the McBSP pins
as GPIO, we must configure two registers of ‘the McBSP. These registers are SPCR (Serial
Port Control Register) and PCR (Pin Control-Register).

The configuration of the McBSP pins as GPIO can be seen at table 2.2 and the block
diagram of the McBSP configuration as GPIO can be seen in the figure 2.7. After configuring
the seven ports of the GPIO into for four COM ports RS232 interfaces, next we will explain
about the software implementation to emulate the TX and RX signal. The software
implementation itself has four functions to emulate the COM port RS232 interface. Below is
the description of these three functions:

1.) void HR_Initiate_ GPIO(void);

This function sets the McBSP in GPIO mode by setting the SPCR and PCR registers

according to the table 2.2.
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Table 2.2 configuration of McBSP pins as GP10 [20].

Pins GPIO enabled When ... | Selected as Output | Selected as Input
(SPCR register) When ... When ...
(PCR register) (PCR register)
CLKX CLKXM =1
IXRST =0,
FSX FSXM =1
XIOEN =1
DX Always Never
CLKR CLKRM =1
FSR /IRRST =0, FSRM =1
DR RIOEN=1 Never Always
CLKS Never Always
UART McBSP UART McBSP
RX » CLKS
COM1 COM2
UART McBSP UART McBSP
RX » FSR X » DR
COM3 COoM4

Configuration of McBSP pins as GP1O for 4 COM ports RS232 interface

Figure 2.7 block diagram of McBSP pins configuration for 4 COM ports
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2.) unsigned int HR_SoftUartSpeedDetect(void);

This function of HR_SoftUartSpeedDetect performs Auto-Baud rate detection by
measuring the length of the Start bit, plus the length of the first data bit (logic high) by
using character <cr> (carriage return = 0x0d). So while this function tries to detect the
baud rate, users need to ensure (in software) that the first character sent is <cr> or any
other character that the first data bit has to be a logical one. This is shown in figure 2.8.
The time T is determined by this function that using a software counter incremented by
one until the second transition from high to low is detected (D0) by reading the serial data
input (RX). T represent twice the time of the time of a bit length. This measurement is
required because the RX signal from JART is not always very clean. Simply measuring
the length of the Start bit to determine the baud rate is not accurate enough so we need to
use the first data bit which must be at logic high to fix the accuracy. The time reference
value UART speed = T/2 is returned from HR_SoftUartSpeedDetect function which

this value will use as reference for the Baud rate speed.

The return value of this baud rate will depend on the clock speed of the main processor. In
our case, we are using C6416 with 600 MHz, and the return value of this function
according to its baud rate speed can be seen in the table 2.3.

T = UART speed X 2

|
|
i |
\I,Start bit Do \ Stop bit
\ Carriage return character <cr> /

Figure 2.8 UART Auto Baud rate detection [20]
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Table 2.3 baud rate value detect from HR_SoftUartSpeedDetect function

Baud rate speed Return value from

No (bps) HR_SoftUartSpeedDetect function
1 2400 0x144E (5198)

2 4800 OxA27 (2599)

3 9600 0x513 (1299)

4 14400 0x362 (866)

5 19200 0x289 (649)

6 57600 0xD8 (216)

This result is obtaining by transmitting character <cr> from PC to each of the COM ports.
3.) char HR_SoftUartinChar(int BaudRate,.int COM_Port);

The HR_SoftUartinChar takes the value of -the Baud-rate speeds detected from
HR_SoftUartSpeedDetect and select which COM Port that use for receiving the serial
data input (RX). Every single 8-bit character read from the serial data input returned from
this function. This function parses bit-by-bit the UART data on the serial data input and
detects the Start bit by poling the first transition from inactive (logic 1) to active (logic 0)

state.

Serial data input (RX)

—\Sta”bi% po X b1 X b2 X b3 X

T
|<—>:<—>'<—>

'p;21 P L P Where P = UART speed value
Wait Sample data

Figure 2.9 HR_SoftUartinChar UART data fetch in [20]

29



The 8 data bits are transmitted by the UART device immediately after the Start bit. The
best time to fetch the right value of each data bit is in the middle of the data bit waveform.
Figure 2.9 shows how HR_SoftUartinChar function read out the serial data input. Firstly,
it waits for half of the UART speed (P/2) which detected from
HR_SoftUartSpeedDetect function during the Start bit. Then for each of the eight valid
data bits, it samples the serial data input in the middle of the data bit waveform. Finally

this function shifts each binary bit result into a single 8-bit character

4.) void HR_SoftUartOutChar(int BaudRate,char Buffer, int COM_Port);

The HR_SoftUartOutChar function..is based on the same mechanism as the
HR_SoftUartinChar function. 1t has-had three.input arguments, which are Baud-rate
speed that detected from HR_SoftUartSpeedDetect function, the single 8-bit character
to be sent via serial data output’ (TX) and last argument is to specify the COM port that
one wants to use. At the beginning of a transfer, HR_SoftUartOutChar function writes a
logic low (“0’) to the serial data output as Start bit. Subsequently, it transmits each data bit
until 8-bit already send to serial data output. The transmit character is first placed into the

least significant 8 bits (LSB) in a register padded with three stop bits (0x00000700).

Serial data output (TX) Where P = UART speed value
| | - T~ TT-===- -~ l ! !
HT»:‘T»: |«—— Stop bit ——
| | |

Figure 2.10 HR_SoftUartOutChar UART data fetch out

30



For example, the character ‘A’ with ASCII code is 0x41 will be placed in the padded
register to become 0x00000741. Figure 2.10 shows how HR_SoftUartOutChar function

sends out the serial data out.

So by emulating the GPIO into COM port RS232 interfaces, there will have more
additional COM port RS232 interfaces which will depend on the availability of the GPIO
itself. In our case, we can emulate up to four COM ports. But by emulating the GPIO into
COM port RS232 interface, the way to receive serial data from other module is not supporting
serial port interrupt, so we can just use polling method to receive serial data from other

module.

2.4. FPGA (Altera UP2)

Altera UP2
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EPM27128S (MAX7000S) Altera configuration device (EPC1) EPF10K70RC240 (Flex10K)

-Gate count : 2500 -Gate count : 70,000
-Max 1/0 : 104 -Max 1/0 : 358
-EEPROM-based programmable -SRAM-based programmable

Figure 2.11 Altera UP2 board and its specification [22]
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The Altera UP2 board (see figure 2.11) consists of two FPGA chips that have different
gate counts, and number of 1/0O (Input and output) [22]. The first FPGA chip (EPM27128S)
has 2,500 gate count, max 104 I/0O and EEPROM-based programmable. Meanwhile the
second chip (EPF10K70RC240) has 70,000 gate counts, max 358 /O and SRAM-based
programmable.

We choose the second chip (EPF10K70RC240) because of the larger gate count and have
more available 1/0. But this chip (EPF10K70RC240) needs additional boot ROM (EPC1)
because of the architecture is SRAM-based

The use of FPGA (Field Programmable Gate Array), Altera UP2 board (see figure 2.11) in
our embedded image processing platform is to generate control signals for CMOS sensor,
Frame buffer and DSK6416. The design of control signal in FPGA consists of three modules

(see figure 2.12). These three modules-are 12C;‘Buffer controller and 8bit_to_32bit_clk.

2.4.1. 12C module

The 12C module is used to generate SDA and SCL signal (12C signal) in bidirectional input

port SDA and SCL to initiate the CMOS sensor (see figure 2.13).

PCLK
SDA l
12C interface
SCL

l

Start

Figure 2.13 12C module
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Table 2.4 configuration of the CMOS sensor

No Feature name Status

1 Auto white balance Disabled

2 Image sharpening Disabled

3 Auto exposure Disabled

4 Gamma correction Gamma=15

5 Data output format 16-bit 4:2:2 YCbCr
6 Data frame rate 30 fps

As we already mentioned in the previous section (section.2.2) the feature of the CMOS
sensor can be disabled or enabled by using this 12C module. After completion initiation the
CMOS sensor, this module generates a “high” signal in the output port Start to the next
module (buffer controller module) to starting to work. The complete configuration of the

CMOS sensor that initiates this module,isishown in table 2.4.

2.4.2. Clock divider module

The clock divider module (see figure'2.14) that.divides the input port CLK_IN by four and
the output can be taken from CLK_OUT and Ext_Int7 output port. Later, “high” signals on

Start_conversion will active this module.

2.4.3. Buffer _controller module

T

8bit to 32bit clk

Figure 2.14 clock divider
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The Buffer_controller module (see figure 2.15) is the main module of the three other
modules in the FPGA design. The functional of this module (see figure 2.12) is to read out the
correct 8-bit image data from CMQOS sensor according to the PCLK, HSYNC and VSYNC
control signal. The correct 8-bit image data is then first stored in the frame buffer by
generating a correct write control signal (/WE, /WRST, WCK).

After the correct 8-bit image data are stored for a certain time in the frame buffer, the
Buffer_controller generates a correct read control signal (/RE, /OE, /RRST, RCK) to read out
the 8-bit image data from the Frame Buffer and stored the data in the FPGA. When the 8-bit
image data already stored in the FPGA, it is then converted to the 32-bit image data by

shifting the 8-bit image data four times.

l PCLK
SDA

SCL 12C interface

A 4

PCLK
HSYN
IVSYN

WCK
/WE
/WRST D31..D0

RCK | Buffer controller |
/RE
JOE Ext_Int6

JRRST ’

D7..D0

Data_shift_clk
A

CLK_OuT

Ext_Int7
_ PCLK Ireikmw | =xtintr

8bit_to_32bit_clk
IRE

——— | Start_conversion

Figure 2.15 buffer controller modules
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After completing shifting the 8-bit image data for four times, the CLK_OUT control signal,
that comes from Clock divider module, (see section 2.4.2) tells the Buffer_controller to shift

the 32-bit image data [D31 ... D0] out from the FPGA.

At the same time, the Clock divider module generates an interrupt signal to C6416 using
Ext_Int7 control signal (see figure 2.14) to tell C6416 to fetch 32-bit image data out from

FPGA. The last control signal of Buffer_controller is Ext_int6 control signal.

The Ext_Int6 control signal is used to interrupt C6416 that there is an incoming one
frame image data. So after receiving this interrupt the C6416 open an EDMA channel to

starting fetch the 32-bit image data out from FPGA

2.4.4. Implementationtof the Buffer _controller

The implementation of Buffer_controller module is successful that we can acquire image
from CMOS sensor for 15 fps and 30 fps. The acquiring methods for 15 fps and 30 fps are
different especially in controlling the timing diagram of frame buffer. Next we will discuss

these two methods for acquiring images.

2.4.4.1. Acquired image for 15 fps

In the earlier implementation of the Buffer_controller, the way of controlling the frame
buffer is divided into two stages; namely, writing stage and reading stage (see figure 2.16). So
in the first incoming /VSYNC, the writing stage is active while the reading stage is not active

and the next incoming /VSYNC it switches to the reading stage while the writing stage is not
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active (see figure 2.16).

SR ot e i )

IVSYNC D8]
EXT INT6 D71
EXT INT7 D31 e ——e|
/RRST [D6] e M
IRE or /OE [D5]
Data Out [DO]

/IWRST [D21

/WE [D11 i B
Data In [D101 - I I 7 T

. W] IMeasurement
Pixel Clock D91 F - nay: =0.0Hs '—_'

Frequency

Period Peak-Peak

= -.5.";.. 1t m_
The first incoming /VSYNC; and the response of
T_INT6

/VVSYNC D81
EXT INT6 D71
EXT INT7ID31

/RRST ID61
/IRE or /OE D51
Data Out [DO]

/WRST D21

/WE [D1]
Data In D101
Pixel Clock D91

FRINT_QOO

Starting to write an 8-bit image-data into frame
buffer

Figure 2.17 timing diagram of Frame Buffer in the writing stage
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The writing stage here means that the Buffer_controller enables the writing part control
signal of frame buffer to stored 8-bit image data from CMOS sensor for 640x480 pixels (see
figure 2.17) by asserting the control signal /WE (/WE=LOW), and disserting /WRST
(/WRST=HIGH) which are active low. Meanwhile the reading part of the frame buffer is
disabled by disserting the control signal /RE (/RE=HIGH), /OE (/OE=HIGH) and asserting

/RRST (/RRST=LOW).

On the other hand, the reading stage here means that in the second incoming /VSYNC, the
buffer controller enabled the reading part control signal of the frame buffer to read out 8-bit
image data that already stored in frame buffer for 640x480 pixels (see figure 2.18) by
asserting the /RE (/RE = LOW), /QE (/OE = LOV\/)‘and disserting the /RRST (/RRST = HIGH)
control signal. Meanwhile the Writing part‘ of the frame buffer is disabled by disserting the

control signal of /WE (/WE = HIGH) and asserting /RRST (/RRST = LOW).

/VSYNC [D8]
EXT INT6 [D71
EXT INT7 [D31
/RRST D61
/RE or /OE [D5]
Data Out [DO]
/WRST [D2]
/WE [D11 . -
Data In [D10]1 =
Pixel Clock D91

L |
l’ N
an®
n =

L IIIIIIIII‘:

| N | IIIIIIIIIIII
I

8-bit image-data is read out from frame buffer
(Reading stage)

Figure 2.18 timing diagram for Frame Buffer in the reading stage
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It is because the Buffer_controller needs two /VSYNC signal to write the 8-bit image data
into frame buffer, read it out from frame buffer and move it to the FPGA before it is moved to
DSK6416, Therefore the acquire image speed from CMOS sensor until the DSK6416 is

Framerate = /VS;NC = 3—20 =151ps

From figure 2.18, we also can see that in the reading stage, the incoming one image
frame (/VSYNC = LOW), will active EXTINT6 (EXTINT6 = HIGH) signal. Since The
EXTINTG signal is connected to the interrupt of the C6416 (see figure 2.12) so the active
EXTINT®6 signal will interrupt the C6416 to tell for an incoming one image frame. Therefore
the C6416 enable EDMA channel and open. its channel to begin to move 32-bit image data

from FPGA to the SDRAM until 640 x 480 by counting EXTINT7 signal.

2.4.4.2. Acquired image for-30 fps

In the second implementation of the Buffer_controller time delay that caused by the
switching mode between writing stage and reading stage is reduced that two /VSYNC signals
is reduced to one /VSYNC signal. It means that in the same /VYSNC signal, the switching

mode between writing stage and reading stage occurs (see figure 2.19).

The time difference between writing stage occurs and the following reading stage in one
IVSYNC signal (see figure 2.20) is 192 ns or 5.2 KHz. So at the first stage, the
Buffer_controller will first store 8-bit image data from CMOS sensor (writing stage) up to 3 X

640 image data into frame buffer by asserting the /WE and disserting /WRST control signal,
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An incoming EXT_INT6 C6416 response the EXT_INTG6 signal by enabled EDMA
signal, to tell C6416 to read channel, then 32-bit is read out using EMIF channel 2
out 32-bit from FPGA

L e e e e e e e e
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"Hsync T,
Vsync i
DO-D7 ' & Z :
1 i | 7
v fFreqiDl14): 3.95MHz  Qbregi(D10): 4.0°MHz | 4(El~ll-lz
i) Clez o

U 2
D10

EDMA speed EXT_INT7 speed

b ARRE NS .

Figure 2.19 fullj=t}m'iﬁgdragrdﬁ§"of writing and reading stage
& Bl R
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CoT
Writing stage and reading stage in one
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/VSYNC [D8]
EXT INT6 [D71]
EXT INT7 [D3]

/RRST [D61
/IRE or /OE [D5] : o). 1
Data Out [DO] -
/WRST [D2] ce 01 1 1 & F F 1 0 1
/WE [D11

Data In [D10]

Pixel Clock [D9] I E e T T

Figure 2.20 full timing diagram of 30 fps configuration
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after that the Buffer_controller activates the reading stage by asserting the /RE, /OE control
signal and disserting /RRST control signal to read the 8-bit image data out from the frame
buffer to move into FPGA, (before it moves to DSK6416). So at the instant of 192 ns (see
figure 2.21), the writing stage and reading stage will run concurrently to write and read the
8-bit data image in the Frame Buffer. According to this new configuration method, the frame

rate speed of the acquiring image from CMOS sensor is

Framerate = /VSINC = 3—10 =30fps.

The 30 fps frame speed can be reach because there is no additional delay between the

writing stage and reading stage in the Frame Buffer.

B\

=1
"1

s pertiiinh

|
[
|
|
[
IVSYNC [D8] —
EXT INT6 ID7] L ARENNNNENNERRRRRNRNEN
EXT INT7ID3] ::::::::::::::::::::_.-i--i-—E:::::::::::::::::
/RRST [D6] S BT o e frnnnnume oo
/RE or /OE [D5] WING Stage «——1, .,
Data Out [DO] T TR
/WRST [D2] _.2t [ =T = __J reading stage _
/WE [D1] pastt’ 8 L LD L]
Data In[D10] & ottt Il 11} (] I I
Pixel Clock D91 {Hier— g5 aus 1/AX = 5.20000kHz
a Mode Source | X XI JO_X2 JOyg xo
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The different time between writing stage and reading stage

Figure 2.21 timing diagram for reading and writing stage in 30 fps configuration

41



Line In Headphone

Mic In Line Qut

Power USB DIP LEDs Reset Config External Hurricane
Jack FPort Switches Switch Switch JTAG Header

SN2
Figure 2.22 DSK6416 board Wlth |ts mam list components [19]

Table 2.5 DSK6416 board specification

No. Feature name Details
1 TMS320C6416 DSPs 600 MHz, fixed point, 1 Mbytes internal RAM
2 External RAM 16 Mbytes, 64-bit interface
3 External Flash 512 Kbytes, 8-bit interface
4 Daughter card Expansion Allows users to enhance functionality with add-on

daughter cards

5 HPI Expansion Interface Allows high speed communication with another DSPs

6 Embedded JTAG Emulator Provides high speed JTAG debug through widely

accepted USB host interface
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The DSK6416 is a standalone platform which is equipped with a high-performance DSP
chip (C6416), external RAM for a bigger storage solution, external Flash for booting process,
daughter card expansion which enabled the DSK6416 to communicate with daughter card /
daughter board, with HPI expansion interface to communicate with other DSPs and last
Embedded JTAG emulator which enabled the DSK6416 to communicate to Code Composer
studio (CCS) while in the development process (see table 2.5) [19]. In our proposed
embedded image processing platform, DSK6416 is the main processing platform including
acquiring image from CMOS sensor.  Next, we will discuss about software implementation
acquiring image from CMOS sensor into DSK6416 which need a basic understanding about
EMIF for interfacing to FPGA that holds 32-bit image data and EDMA controller for selecting

an appropriate transfer mode according to the control signal from FPGA.

2.5.1. EMIF (External Memory Interface)

Setup Strobe Hold

| | |
ECLKOUTL |le—»! «—»

| |
| |
| |
| |
| | |
ICE ! : !
| | !
/OE ! : !
i | |
IARE | ! !
l F\ L/
| | |
ED [31..0] | : /—'—\R i
{ " ead data
| |

\ "/

Figure 2.23 basic EMIF asynchronous control signal [23]
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The EMIF is designed for a flexible interface to a wide variety of external memory
devices [23]. We use the EMIF as interface to FPGA to read 32-bit image data from FPGA.
We treat the FPGA as an asynchronous external memory device which is equivalent to FIFO
memory architecture. Figure 2.23 showed the basic asynchronous control signal of EMIF.

In order to read 32-bit data through asynchronous interface from FPGA (see figure 2.12),
the timing of the EMIF asynchronous control signal must be chosen carefully. The design of
required timing can be done by setting the correct setup time, strobe time and hold time for
the EMIF timing diagram. In our implementation we choose the correct setup time, strobe

time and hold time for the EMIF asynchronous control signal shown in table 2.6.

An incoming EXT_INT6 C6416 response the EXT_INTG6 signal by enabled EDMA
signal, to tell C6416 to read channel, then 32-bit is read out using EMIF channel 2
out 32-bit from FPGA ‘ =

¢ L L L u I_ d U L Ul U L
//COEEZ ; UfU U]l U g0 g U g U N
/ARE T T TV T i 1
EXT_INT6 n 5 gl giigl iyl y T
EXTZINT? o e T e T T T L T
“Hsync :
Vsync IO | :
— ; |
- s c | :
D0-D7 — [ 1 -—_ —
: : [ : [
t = T | ] LT [

fFreqiDl4): 3.90MHz FreqlD10): 4.0°MHz
ik ] Cleaz .

U CE
D10

EDMA speed EXT _INT7 speed

Figure 2.24 EMIF control signal
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Table 2.6 lists of setup time, strobe time and hold time

No Timing diagram Value (ns)
1 Setup time 60
2 Strobe time 60
3 Hold time 20

In the figure 2.24, the EXT_INT7 control signal shift out the 32 bit image data from
FPGA. We can see that every EMIF control signal (/CE, /OE and /ARE) matches with the
EXT_INT7 control signal. So the correct 32-bit image data are successfully read out from

FPGA and will be stored in the SDRAM.

2.5.2. EDMA (Enhanced DMA):controller

The EDMA provides two types of data transfer,=1-dimensional (1D) and 2-dimensional
(2D) transfer. The number of dimensions.a. transfer has determines the makeup of a frame of

data. In a 1-D transfer, frames are made up of a number individual element.

Enabled EDMAT £\ ot Trigaered (EXT INT?)
Channel

ExtInt6 Occured Start _addr |o (o [o | & |o|o
1 2 3 633 | 639 | B840
—»| o |—» / i K
1 2 639 | &40
2

32-bit FPGA data output  0xA0000000 SDRAM ! =

L1211 02 0 ::} Video Input > ' —

477 477

478|478 478_ | 478

1 5 “ N e | ean

End ad ress 479|479 | 479 479 |479_ | 479
- 1 2 3 638 | 639 | &40

Figure 2.25 the configuration of the EDMA controller [24]
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In a 2-D transfer, blocks are made up of a number of arrays, each of which is made up a
number of elements. According to our previous implementation of Buffer_controller, the
control signal that provided from Buffer_controller is similar to 1-dimensional (1D) transfer.
It is because that the output of the Buffer_controller are made up of a number individual
which is a individual 32-bit image data with following two control signal that are EXT_INT6
and EXT_INTY7. In the figure 2.25, we can see that an incoming EXT_INT6 will tell the CPU
that there is one incoming image frame. The CPU then will open EDMA channel 7 that is

already directly mapping with the EXT_INT7 signal.

;

Initial DSK6416 Ext Int7 trigger
i EDMA channel 7 to
capture 4 pixels
Enable interrupt 6 i
Y EDMA channel 7

Initial EDMA for capture 4 pixels

Element Sync

;]4
Bl

Enable interrupt 6
A

Disable Int6 & enable Disable EDMA channel 7

EDMA Channel 7 +

Figure 2.26 the flow chart of the implementation of the EDMA transfer
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So for every incoming EXT_INT7 interrupt will trigger the EDMA to read out an individual
32-bit image data from the FPGA. And this is repeated until 640 x 480 image data been read
out from FPGA. The flowchart of the implementation of EDMA transfer is shown in the

figure 2.26.

2.6. Experimental result Image processing

In this section, we show experiment results of acquiring image from the embedded image
processing platforms. After acquiring image from the embedded image processing platform,
we do a simple processing with the acquired image by using simple algorithm. In the first
processing of the image, we use sobel mask to find an edge detection of the image. Later we
use image threshold to make a binary image.-The embedded image processing platform uses

the second configuration with a frame-rate 0f-30-fps: The image resolution is 640 x 480 pixels.

The first experiment is acquired one image frame with 640 x 480 pixels, from the
embedded image processing platform. Figure 2.27 show the original image acquired from
CMOS sensor. Figure 2.28 shows the original image while applying the sobel mask. Figure

2.29 shows the binary image from thresholding.
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Figure 227 brigiriet'i iirimajge"of-ihe CMOS sensor

Figure 2.28 applying sobel mask operation in the original image
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Figure 2.29 applying binary operation in the original image
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3. Visual Servoing

3.1. System architecture

In the early stage of the mobile manipulator research, Connel introduced a
behavior-based arm controller in his paper [8]. In his research, Connel combined a multi
sensor feedback with the eight loosely-coupled on-board 8-bit microprocessors using
behavior-based arm controller. Similar with the work, we propose a motion control for mobile
manipulator by combining a behavior-based controller that does not use multiple sensor
feedback but only use one visual sensory feedback: The proposed behavior-based algorithm is
based on subsumption architecture ‘which is introduced by Brooks [9] (see figure 1.1). The
subsumption architecture, control is layered with-higher layers subsuming the roles of lower
level layers when they wish to take control. The system can be partitioned at any level, and

the layers below form a complete operational control system.

In the design of the visual servoing, we choose hand-in-eyes camera configuration to
reduced the need for calibrated camera-to-manipulator coordinate transform, and it closed the
control loop by providing visual feedback (robot motion caused camera motion) without

requiring the vision system to track the end-effector’s (see figure 3.1).

Our proposed algorithm is implemented in the embedded image processing platform for
controlling the mobile manipulator robot. The architecture of visual servoing design can be

seen in the figure 3.2.
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The visual servoing based on behayjﬁr;baSed aréhitecture is divided into three layers.

R -1l

These three layers are navigation I:z;iyér.,-;vi_siorLgujidé'-layer, and grasping layer. The navigation
layer uses mixed optical flow algorithm [14] to navigate the robot to avoid obstacles in
dynamic environments. The second layer is vision-guided layer; the functional of this layer is
to guide the manipulator approaching certain object with barcode-like print on the body of the
object. The third layer is grasping layer that has functional to gasp the object while the object
is already detected in the gripper of the mobile manipulator. Based on the subsumption
architecture, the higher level of the visual servoing based on behavior-based (Grasping layer)
will subsuming the lower layer (Vision-guided layer and navigation layer) example: if there

are already detected the object in the gripper so the gripper will closed and the robot will stop.
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Later, the communication line between each behavior uses priority request. Behavior
module with high priority request will suppress the low behavior priority request (see figure
3.3). The lower priority request behavior module can only pass the communication line if
there is no any request from higher priority behavior module. Using this communication line,

it will guarantee the high level behavior can always pass the communication line.

3.2. Switching mode

In order to choose which layer that will active at certain time, the grasping mode (see
figure 3.4) and the navigation are allocated in the same communication line but the grasping
mode can suppress the navigation mode (see figure 3.3). It is because the grasping mode is
put in the higher request priority line. Meanwhile the navigation mode is put in the lower

request priority line.

If the navigation mode is activated and the grasping mode is not activated, the mobile
manipulators will activate the navigation layer. If the grasping mode is activated, the mobile
manipulators will activate the vision-guide layer and grasping layer to grasp a barcode-like

object.

High Request

Low Request
ACTION

Figure 3.3 communication lines between each behavior module
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This selection mode behavior is sent by main processor of robot (IPC) to the embedded
image processor platform whether to switch which one of the modes to be activated although
the navigation mode is still active because of the priority of the grasping mode is higher than

the navigation layer.

A simple example scenario of using our proposed algorithm: when the mobile
manipulator does not find the object or the object location is far away from mobile
manipulator, the mobile manipulator robot still can move autonomously in the environment
by activating the navigation layer. Meanwhile, when mobile manipulator robot located near
with the barcode-like object, then by activating the grasping mode (see figure 3.4) so the
mobile manipulator robot can try to jocate the barcode-like object by scanning its
environment, and when the mobtle robot locate the barcode-like object it will approach to the
object by changing its speed and".orientation until'the barcode-like object get in to in the

gripper and then it grasp the object.

3.3. Barcode-like Object
3.3.1. Definition

It is important to define an object that the robot wants to grasp first. By knowing the
object, the mobile manipulator robot then can locate the object and grasp it. To knowing or
identifying an object using visual information, it is required some good feature on the object

over another objects or environment so the object can be identified.
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Figure 3.4 flow chart of grasping mode
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In our proposed embedded vision system, the image data only provide 8-bit gray level
information without any color information so we can not use color information as the feature
of the object. The feature of the object can only extract gray-level information. This however
is not a limitation of our platform, because by using gray-level information the feature of the
object still can be extracted. There are many research has done related on this problem.
Yoon[15] that using 3D geometric model to identify object, Kaneko[16] that using
pyramidal-like objects as the feature to identify the object and Richards[17] using

“figure/ground” approach to identify the object.

Related to this problem, we create a unique feature for our object to be easily identified.

For the unique feature, we choose a barcode-like feature as object feature (see figure 3.5).

The barcode-like feature is-divided-into two kinds of bars which are vertical bar that
located in the middle of the barcode-like and the ‘horizontal bar that located in the top and

bottom of the vertical bar.

Horizontral Bar

Horizontral Bar Vertical Bar

Figure 3.5 barcode-like features as the main feature of our object
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The height (0) and width (n) of each vertical bar is same with other vertical bar. The length of
the horizontal bar somehow is design to cover the vertical bar. The spacing (n) between first
vertical bars with other vertical is same as the width. The spacing (m) between top horizontal

bars and vertical bars is same as the spacing (m) bottom of horizontal bars and vertical bars.

To use the barcode-like feature on the object, the barcode-like must be labeled in the
object. So any object that is labeled with the barcode-like can be identified by our mobile
manipulator robot. The idea of choosing the barcode-like feature is that it is simple to search.
It does not take a long time to identify the barcode-like, unique structure so it can differentiate

the barcode-like features with other object in the environment.

3.3.2. Remarks

The design of the barcode-like have twe-herizontal bars that cover the middle vertical bars
(see figure 3.5). The horizontal bars are used to extract the width of the barcode-like.

Meanwhile the vertical bars are used to extract the height of the barcode-like.

The structure of our barcode-like is different from ordinary barcode structure that uses to
label manufacture product. The ordinary barcode structure is thinner than ours. So when

applying this kind of barcode, it has a weak feature to identify it.

The size of the barcode-like is already well defined (m, n and o). This well defined size is
already matched with the lookup table (see table 3.1), so it can be used to transform to
estimate the real distance of the object. Although the size is already well defined, it still can be

re-defined. When the size of the barcode-like redefined, the lookup table (see table 3.1) also
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has to change according to the new size of the barcode-like.

3.4. Barcode-like identification

If an object in the image frame is labeled with barcode-like, the object will have features
that can be used to identify. In this section, we will discuss our proposed algorithm to identify
the barcode-like features. The algorithm begins by down sampling the acquiring image from

CMOS sensor into 160 x 120 pixels.

After that the image is converted into binary image. The converted binary image is then
filtered by 1D horizontal and vertical filter. This filter is to filter a noise such as a small bar in
the horizontal and vertical direction. After that. it begins to find the barcode-like feature in

vertical direction.

We choose vertical direction because we want to find the horizontal bar first before
finding the vertical bar in the barcode-like feature. It is to prevent a false detection of
barcode-like feature because the horizontal bar is covering the vertical bar. This 1D vertical
search is to find the corner of the barcode-like feature. Meanwhile, the distance of the
barcode-like object can be extracted from barcode-like distance transform. The barcode-like
distance transform is constructed using a look up table (see table 3.1) to extract the distance.
We choose look up table because this method is suitable for hardware implementation and

faster than other method. Figure 3.6 illustrates the flow chart of the proposed algorithm.
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Figure 3.6 the flow chart of barcode-like identification
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The barcode like distance transform uses three kinds of possibilities of the barcode-like
features. The first barcode-like feature is to detect whether the barcode-like still consist of two
horizontal bars, if it so then the possible distance are 80 cm, 60 cm or 40 cm. The second
barcode-like features is to detect whether the bottom horizontal is missing if it is so then the
possible distance are 30 cm or 20 cm. The last barcode-like features is detected when the

object already in the gripper, with the distance is 5 cm.

This transformation distance is then compared with the current barcode-like feature that
was found by 1D vertical search to extract the correct distance of the barcode and the center

mass of the barcode-like object (see table 3.1)

Table 3.1 barcode-like feature to distance transform

Pixel to distance mapping
No Barcode-like Height of Top Estimate Real
features Horizontal Barcode-like distance distance
(pixels) (cm) (cm)
1 1-3 80 70 - 80
4-6 60 50 - 60
7-10 40 30-40
2
11-14 30 20-30
15-20 20 10-20
3
21-90 10 5-10
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The transformation of object distance begins by comparing the top horizontal barcode
feature found by the 1D vertical search. For example: If the current top horizontal barcode
feature found by the 1D vertical search has height about 1 — 3 pixels, according to the look-up
table, the estimate distance of the object is about 80 cm. The difference between estimate
distance and real distance is the estimate distance will be used in the computational for
calculate the speed of the mobile robot while approaching the object while the real distance is

the real distance of the object but in the certain range.

3.5. Foot motion control

The foot motion control behavior is used tgcontrol the orientation and velocity of the
mobile robot while approaching:the barcode-like object. Figure 3.7 show the model of the

mobile robot system. According to the-model;-we can-derivate:

. S
Y-axis
yd ....................... actual ...........................
ose
ay Vv P
6 a
ya """""""""""""""""""""
dX
X, X X-axis

Figure 3.7 the model of non-holonomic mobile robot system
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d — o e
0y =, = A
D
dX=x,-x, .
dY=y,-y. .
Where:
-V, is the actual robot velocity cm/s
- 6, is the actual angular velocity rad/s
- Vyis the desired robot velacity cm/s
- 6, is the desired angular velocity rad/s
- VL is the left motor velocity cm/s
- Vs the right motor velocity cm/s
- D is the diameter of the robot 30cm
- Xais the actual location of the robot in the x-axis cm
- Y, is the actual location of the robot in the y-axis cm
- Xq is the desired location of the robot in the x-axis cm
- Yy is the desired location of the robot in the y-axis cm
- dX s different location between estimate with actual in x-axis cm
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- dY is different location between estimate with actual in y-axis cm

- 0

e

is different between the actual angular speed with estimate angular velocity

rad/s

From equation 3.1 and 3.2, we can derivate the left motor speed and right motor speed:

B 2V, —Da,
V. = 5 e (3.5)
NV, +Dw
Vg = : 2 S (3.6)

The left motor speed (3.5) and the right motor speed (3.6) can be controlled directly by
sending a speed command to the DSP motion card-that controlling the left motor and the right
motor. Figure.3.8 shows the foot:motion control system. The foot motion control is designed
using the concept of image-baséd visual servo (IBVS) control. In this control scheme the
closed loop control scheme uses sensor information is used as the visual feedback which is

the features of the barcode-like.

The features of the barcode consist of two kind’s information which is the barcode-like
distance (cm) and the center-mass of the barcode like in the x-axis (pixels). The difference
between the center mass of the barcode-like in x-axis and center mass of image plane in
x-axis (error in pixels) is then transformed into «, (desired angular velocity — rad/s) by
scaling down the error (pixels) using 1/k scaling factor to desire of the orientation of the robot.
Similarly, extracted barcode-like distance (cm) is also directly transformed into Vq4 (desired

robot velocity — cm/s) by scaling down the distance (cm) using 1/m scaling factor to desire of
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the velocity of the robot. Tables 3.2 show the value of the k and m that are used in the foot

motion control.

The value k in the table 3.2 consists of two values. These two values will depend on the
distance of the barcode-like. The idea behind this is to make the estimate orientation of the
robot can be adaptive. While the object distance is greater than 30 cm the robot orientation
tried to locate in bigger orientation. Meanwhile, the object distance is smaller than 30 which it
means that the robot is approaching the object; the orientation of the robot is made to be

smaller.

On the other hand, the value of m is to.control the velocity of the robot according to the
object distance of the robot. We define the-value:of m is constant to the object distance of the
robot, it is because we want to-make the velocity of: the robot is constant so the robot can

move smoothly while approaching the ebject.

Table 3.2 the scale factor value for foot motion control

No | Scale factor | Value Status
1 K 16 < 30 cm (barcode-like distance)
8 >= 30 cm (barcode-like distance)
2 M 4 —
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4. QObstacle Avoidance Using Optical

Flow

4.1. Introduction to the algorithm

Mixed optical flow algorithm was proposed by an earlier graduate student in our lab [14]
this algorithm features a combination of the conventional correlation-based principle and the
differential-based method for optical flow estimation. By employing image intensity gradients
as features for pattern matching, this-algorithmruses a brightness constraint to configure the
search area. After that using correlation-based principle to search the best match between two

successive images and finally find the'optical-flow field.

The merit of this scheme is that the computation load can be greatly reduced and in the
mean time the possibility of estimation error is decreased. After obtaining the estimated

optical flow field, we can calculate the scene depth and time-to-collision (TTC).

This depth information of object is used as input to an obstacle avoidance algorithm.
This algorithm was implemented using Pentium 233 MMX and took 0.9 second to perform
one calculation of obstacle avoidance. The flowchart of the proposed algorithm can be seen in

figure 4.1[14]
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Range informations
from ultransonic sensors

» Moving ahead

A 4
A

v

Velocity of right wheel .
=Velocity of left wheel ? Optical flow
estimation
Images Safety distribution |
grabbing histogram generation
Smoothing Execution of obstacle |
filter avoidance h
deEt(S(?t(iaon Is turning enough?

Yes

Is range
detection for starting
optical estimation
valid ?

Yes

Figure 4.1 flowchart of mixed optical flow algorithm [14]

4.2. Implementation-of mixed optical flow

algorithm

In this thesis, the mixed optical flow algorithm is implemented in the embedded image
processing platform. We implement the mixed optical flow algorithm as part of our
behavior-based architecture in the navigation layer for navigating our mobile manipulation
robot that already describe in previous section. Figure 4.2 showed the flow chart of

implementation mixed optical flow algorithm in our embedded image processing platform.
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There are several differences between the original mixed optical flow algorithms with
the implementation in our embedded image processing platform. The next following section

will describe the implementation of mixed optical algorithm in our platform.

4.2.1. Acquired two subsequent images

The first step of the mixed optical flow acquires two subsequent images. These two
images is acquired from CMOS sensor, these two subsequent images resolution are 640 x 480
and just acquired 8-bit Y image data. Although the embedded image processing platform can
acquire image for 30 fps, but we choose to use 15 fps. It is because our robot speed is not fast
enough (15 cm/s) so if we use 30 fps for acquired‘image the mixed optical flow algorithm can
hardly detect motion field because these two subsequent images nearly same so it is not detect
any motion field. We do not increased the‘speed of-our robot instead of reducing the frame
rate, it is because the robot speed is already ideal according to robot heavy and after there is a

manipulator attach on it. So we consider about the safety for the movement of the robot.

4.2.2. Down sampling

The method to do the down sampling from 640 x 480 to 160 x 120 is to fetch original
image data (640x480) out for every 3 pixel (1, 4, 7, 10, ..., 640 x 480 ) and put in the new
address location. After the data already fetch out, the new image data resolution is reduced to
160 x 120. We choose this method because it fit for hardware implementation which can be

done by using EDMA transfer that already available in the C6416 processor. The simplicity
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and need not any computational to do the down sampling that can make this method faster
than other method such as nearest neighbor interpolation or bilinear interpolation [25]. The
result of this method also is good enough and without reduces the feature of the image such as
edge or corner so we use this method instead of other down sampling method. The
implementation of the down sampling method is using two channel of EDMA to move two
images (640 x 480) that located in SDRAM into new location address that locate in L2 Cache
for 160 x 120 res. After the EDMA transfer already done to two subsequent images into L2
Cache, the image 160 x 120 is ready for next processing step. Figure 4.3 showed the EDMA

transfer for this down sampling method.

4.2.3. Smoothness constraint (Pre-processing)

Commonly, the moving objects viewed in the-world are opaque and undergo rigid
motion or deformation. In this case, the neighboring points on the objects have similar
velocities. It is same in the optical flow case; we can assume that the optic flow varies

smoothly in small neighborhoods in the visual field [26].

fetch fetch
fetch —»
cte ; 21314 228 1 ... 160
= 2 ... 160
: 640 > : :
fetch —> : N PV T : - —— -
120 | ... | ... | 160x120
640 | .. | .. | .. ]...| 640 x480
640x480 res. 160x120 res.
(located in SDRAM) (located in L2 Cache)

Figure 4.3 EDMA transfer for down sampling method
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In the mixed optical flow algorithm, this additional constraint is combined with brightness
constraint to provide an additional constraint to the underdetermined system for optic flow

determination in the presence of the aperture problem.

The implementation of the smoothness constraint uses the filter averaging. The reason to
choose the filter averaging is because of this filter can average each pixel of the image within
its neighbor so each pixel is having equivalently gray level value within its neighborhood
boundary and based on this condition, the result of the filter averaging is similar with the
assumption of the smoothness constraint in optic flow. Figure 4.4 illustrate the smoothness

constraint.

It is clearly that by applying‘the smoothness constraint the boundary of an object can be
easily extract so the optical flow-can detect the motion-object using the boundary of the object
and it can be done by applying filter.averaging. The disadvantages by applying the filter
averaging for the smoothness constraint are that the image after applying the averaging filter
is having blurring effect. Although there have blurring effect over the image, the mixed
optical flow algorithm still can detect the motion object so the blurring effect doesn’t affect

the mixed optical flow algorithm.
Y K

4 I’q

444

Image plane

Figure 4.4 smoothness constraint of optical flow
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4.2.4. Calculate the Ex, Ey and Et

121
2] -4]-2
121
1] 01 121
2[0]2 olofo +
1[0 1 1] 2]1
121
2 [ 4] 2

=

Figure 4.5 sobelmaskto caleulate Ex, Ey and Et

The method to calculate Ex, Ey and Etis straight forward by using Sobel mask for
x-direction, y-direction and t-direction. The Sobel mask for these directions can be seen in the

figure 4.5.

4.2.5. Search the (u,v) over brightness constraints

Brightness constraints assume that for a given scene point the intensity (E) at the
corresponding image point remains constant over time. That is, if a scene point P (see figure

4.6) projects onto the image point (x,y) at time t and onto the image point (X + X,y + dy ) at

time (t+ 6t ), we can write
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World
coordiante

Image plane
Rigid
Body
Figure 4.6 the imaging geometry
E(X,y,t) = E(X + &K, y+ Oy, T + ot) 4.1)

We can straight forward derived the (4.1), and we get the brightness constraint formulation is

Ex-u+Ey-v+Et=0 4.2)

The brightness constraints based on (4.2) provide a linear equation of variables u and v.
As the consequence, the velocity vector (u,v) cannot be determined locally without applying
additional constraints. Equation 4.2 also referred to as the motion constraint line, and can be
plotted in uv space, as shown in figure 4.7. In the mixed optical flow algorithm, it applies
correlation constraint for the additional constraint. The next following section will describe

about correlation constraint.
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>

Figure 4.7 the motion constraint line

The implementation of the brightness constraint itself is based on the (4.2). After
calculating the Ex, Ey and Et using sobel mask, it is checked whether the calculated values of

Ex, Ey and Et satisfy for the motion constraint line.

If it satisfies the motion constraint line, it means:that there is no possible flow motion on
the calculated pixel. Alternatively, if it does not satisfy, it means that the calculated pixel have

possibly flow motion. We apply 7x7*window to-configure the search area for the flow motion.

Ui 3| 2|10 )| 1| 2] 3

-3 1100( 71 | 42 | 13 | -16 | 45| -74
-2 18152 |23 | 6 |-35|-64| -93
-1 162 (33| 4 |-25|-54|-83|-112
O |43 | 14 | -15| -44 | -73 | -102 -131
1 24| 5 (-34|-63|-92|-121] -150
2 5 [-24|-53|-82 |-111 -140 -169
3 |-14|-43|-72|-101] -130) -159 -188

Ex=-29, Ey=-19, Et=-44

7x7 window mask

Figure 4.8 Brightness constraints for possibly flow motion
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Figure 4.8 shown an example for searching the (u,v) over the search area for possible flow
motion using brightness constraint. In this example, the Ex, Ey and Et of a pixel is calculated
and checked whether it satisfies the motion constraint line. The result is the values of the EX,
Ey and Et do not satisfy the motion constraint line. So a 7x7 windows is to configure the
search area and the shaded line in the 7x7 windows mask on figure 4.8 is the possible flow
motion (u,v). The searching method to find (u,v) for the possible flow motion is looking for
the transition value between + (positive) and — (negative) in the u or v direction. Below is the

searching method to find the possible flow motions:

(u,v) |JUEx+VEy + Et>0 & (U=1)Ex+VEy+ Et <0

Uy OR UEX+VEYy +Eti<0 & (U—=1)Ex+VEy+Et>0 43)
Ve .
OR UEX+VEy+Et>0 & Ex+ (v=1)Ey+ Et <0

OR UEX +VEy+ Et < 0°& (v=1)Ex+ VEy + Et >0

4.2.6. Correlation constraints

The correlation constraints [27] [28] of optical flow is estimated in terms of the relation
of a pixel (x,y) in one frame to its next frame. It is assumed that the pixel motion in two
successive frames of instant t and (t+ot) will retain in range of -N<u<N and —N<v<N,
where N is the largest possible displacement of u and v, and (u,v) is the optical flow vector.
The optical flow is determined from the correlation match of the patch represented by (2n+1)
X (2n+1) pixels centered at (x,y), out of (2N+1) x (2N+1) possible displacements. The

correlation match equation is given by [28]:
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Figure 4.9 correlation constraint algorithms

SSD, ., (X, y;u,v) = Zn:zn:[lt(x+i,y+ D=l,(x+u+i,y+v+ ... (4.4)

j=—ni=-n

where -N<u<N and —-N<v<N and SSD denotes the sum of squared difference between the
patch and a (2n+1) x (2n+1) window_ around each pixel in (2N+1) x (2N+1) possible

displacement. Figure 4.9 shown the correlation constraint algorithm based on (4.4).

From the (4.4), we can see If the search-area IS increasing it will greatly increase the
computation load. In order to reduce .computational complexity and still hold acceptable
estimation accuracy, the mixed optical algorithm proposes to include the brightness constraint
[26] that already mention in previous section combine with this correlation constraint. So in
the mixed optical flow algorithm, it is using the principle of correlation match of
correlation-based (4.4) technique as the kernel, and adds the brightness constraint (4.2) of

differential-based technique to condense the search area of correlation match.

So the implementation of the correlation constraint in mixed optical flow algorithm is
straight forward. Firstly, we find the motion constraint line which is based on the (4.2). After

we find the motion constraint line, we then perform SSD (sum of squared difference) based
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on the (4.4), to find the displacement of current pixel in the possibly search area that lying the
motion constraint line. After performing SSD search in all pixels that lying in the motion
constraint line, then we look for the minimum value of all SSD value. The displacement of
the pixel which is motion field vector (u,v) is the minimum value of the SSD value. After
finding for one motion field vector, we repeated this step until the entire pixel in the one

image frame already done. In our case, we find the motion field vector for 160 x 120.

4.2.7. Create Depth Histogram

Using the obtained optical flow field, we can calculate the scene depth and
time-to-collision (TTC). This depth information of object is then input to an obstacle
avoidance algorithm which locates in:the navigation-layer in our behavior-based architecture.
As shown in figure 4.10, the camera focuses to the positive Z-axis direction. Let the origin of
the world coordinate O locate at the.camera center. For both the cases that the camera moves
toward the object with a velocity (0,0, W.) or the object moves toward the camera with a

velocity (0,0, Wc), the TTC or depth can be calculated using the equation below [29]:
d D
= 4.5
= (45)

where d is distance between focus of expansion (FOE) to a point p int the image plane (see
Fig. 4.10). f is focal length, D is the distance between an interest point P and the Z-axis, Z is

the depth. Differentiating with respect to time and dividing by d, we can get:
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where V is the flow velocity and z isTTC.
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Figure 4.10 (a) The camera moves toward the object.

(b) The object moves toward the camera.
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The implementation of computing TTC is also straight forward using (4.6), which is for the
condition as the object is still. By modifying the (4.6) with our real implementation in our
program we obtain the computation formula for TTC:
_abs(Est_v_ pos-60)

d
TTC (T)_V_ ESt_V

t

(4.7)

where Est_v_pos is the position (y-axis) for point p of the motion flow field in the image
plane at T (see figure 4.10 (b)). Est_v_pos is subtracted with 60 (the coordinate center of
y-axis with 160x120 res.) and then absolute the result value to get the d value (see figure 4.10
(b)). Meanwhile to compute V (motion field speed) we need Ay (see figure 4.10 (b)) or in this
case Esv_v (the motion field compute by mixed optical flow) and the sampling time of the

image which equivalent with framerate per second:

After we get the TTC (7 ), to‘'compute the Z (depth information) we just multiplying the

TTC (7 ) with W, (robot speed) which is shown by Eq.4.8.

abs(Est _v_ pos—60)
.WC
Est_v
t

Z =TTC(r)-W, = (4.8)

4.2.8. Safety distribution histogram

In order to establish a representation of the environment configuration, we transformed the
calculated depth to a safety distribution histogram. This histogram is established from a
mapping from a 3D space to 2D ZX-plane using the depth information to represent the

obstacle in the environment.
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Figure 4.11 the representation of 3D space to 2D ZX-plane

Figure 4.11 illustrates the idea of safety histogram. From this figure, we see that the
transformation of 3D space to 2D ZX plane can be done by pressing the y-axis value, pressing
the y-axis means that the depth (Z) of the ZX histogram will depend on the y-axis value. This
z-axis value is chosen the minimum value from the y-axis. So the bigger value of the z, the
safer the location. On the other hand, a smaller value of z means that there are obstacles in

front of the robot.
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4.3. Experiment results with mixed optical

flow algorithm

In this section, we show experiment results of implementation mixed optical flow
algorithm and the computation of safety histogram distribution. In figure 4.12 (a) shows the
motion field vector in uv space and figure 4.12 (b) shows the safety histogram distribution
that divide in to the 7 region. The width of the safety histogram distribution is 160 pixels;

with each region of the safety histogram distribution is 20 pixels.

&2 Graphical Display M=l Ed| |2 GraphicalDisplay =0 |Mlslpd]

(79, 59) RGE:(180 [Image ] (79, 58) RGB:(1 0 0) Tmage
» pixels
0 160
Optical flow field Histogram of TTC (7 region)
(a) (b)

Figure 4.12 Optical flow field [a] and histogram of TTC (7 regions) [b]
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Next, we divide the seven regions into three sides which are left side, front side and right
side. Figure 4.13 (b) shows the three side of safety histogram distribution that derived from
seven regions and figure 4.13 (a) shows its motion field vector. By using these three regions,
the robot can easily and fast to determine the safety location to avoid obstacle, like in the case
of figure 4.13 (b), the left side of safety histogram distribution is bigger than the right side so

the robot will turn left to avoid the obstacle.

The implementation of mixed optical flow in embedded image processing platform took
0.2 second or 5 Hz to perform one calculation of obstacle avoidance which in the previous

research [14] it took 0.9 second or approx. 1 Hz.

&2 Graphical Display M= I E® Graphical Display _ o] x I

.:Eaiéﬁa::::ql::::::::::: |
E .E............
I

{79, 58y RGE: (180 [Image [ |78, 59) RGE:(0 0 0) [Limage [

, , pixels
10 50 110 150

Left side Front side Right side

Optical flow field Histogram of TTC (7 region)
(a) (b)

Figure 4.13 Optical flow field [a] and histogram of TTC (3 regions) [b]
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5. Experimental Results

5.1. The experimental mobile robot

The experimental mobile robot is equipped with a manipulator. Below is the description

of the mobile robot used in experiments:

® Two independent drive wheels (Foot motors) and two casters for mobility.
® A3 DOF (Degree of freedom) manipulator for grasping.

® Two 12 V and two 6 V batteries.

® APentium Il 1 GHZ IPC (Industrial Personal Computer) for main system control, using

Windows XP as the operating systems
® 12to5V DC - DC converter for power regulation.

® Two DSP motion boards for controlling Foot motor and Head motor, and two DSP

motion boards for controlling 3DOF manipulator

® 4 COM ports RS232 interface that provide communication between the embedded image

processing and DSP motion boards or IPC.

® Embedded image processing platform that using DSK6416 and CMOS sensor board for

controlling the 3DOF manipulator.

83



CMOS Sensor

4 COM Ports I/F
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Figure 5.1 Mobile manipulator (H2) platforms

5.2. Experiment o
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bile manipulator can locate barcode-like
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Object that labeled
with barcode-like

Gripper and
CMOS sensor

Figure 5.2 the robot is faced to the object that put in the top of chair
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In the experiment the object is put in certain place, which in this experiment is put in top
of a chair. Figure 5.2 show the robot faced to the object. The object which labeled with the
barcode-like feature is put at a distance about 115 cm. The object itself is put in the top of

chair which height to the ground is 50 cm.

In the first stage, the mobile manipulator robot scan its environment by turning left about
30° (see figure 5.3 (a)) and right about 30° (see figure 5.3 (b)) to trying to locate the

barcode-like object in front of the mobile manipulator.

Figure 5.3 (a) the mobile robot is turned left about 30°
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according to the barcode-like direction and distance. Figure 5.4 shows the mobile manipulator

robot locates the object and change its orientation and speed according to the object

orientation.

Next, the mobile manipulator robot is approaching the object which adaptively change
the orientation and speed according to the distance and the orientation which compute from
the feature of the barcode-like that get from visual sensory feedback. (See figure 5.5 (a) and

figure 5.5 (b)).
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Figure 5.5 (a) the mobile manipulator is approaching the object
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Figure 5.6 (a) the object is get into the area of the gripper
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distance approximately 5 cm, the mobile manipulator grasps the object and stops (see figure

5.6 (b)).

5.3. Experiment of grasping of an object

from a person

The goal of this experiment is to show how the mobile manipulator robot can locate
barcode-like object as the object is hold by human. A human is standing while holding the

object which is labeled by the barcode-like. The mobile manipulator is faced to the object
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with distance about 90 cm. The object is hold by human with the height of the object to the
ground about 55 cm. Figure 5.7 show the mobile manipulator faced the object that hold by the

human.

Similar with the previous experiment result, the mobile manipulator is tried to scan its
environment by turning left about 30° (see figure 5.8 (a)) and by the time the robot is turn

back to the forward direction, its locate the object that hold by the human (see figure 5.8 (b))

Object that labeled

with barcode-like

Gripper and
CMOQOS sensor

Figure 5.7 the mobile manipulator robot is faced to the human that hold the object
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Figure 5.8 (a) the robot is turned left about 30°

Figure 5.8 (b) the robot has located the object that holds by human

Next, the mobile manipulation is approaching to the object, (see figure 5.9 (a) and (b)), and

when the object already gets in to the gripper, it grasps the object (see figure 5.10 (a) and (b)).
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Figure 5.9 (a) the robot is approaching the object  Figure 5.9 (b) the robot is approaching [cont’d]

a. The mobile manipulator robot trajectory
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Figure 5.11 the trajectory of the mobile manipulator

Figure 5.11 has shown the recorded trajectory of the mobile manipulator. This trajectory
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is drawn using encoder pulses from the motor. The movement of the robot in x-axis is
recorded in X (cm), meanwhile the movement of the robot in y-axis is recorded in Y (cm).
In the figure 5.11, we divided the trajectory into five parts. In the part (a) the robot is
starting from its starting point and is moving forward. Because the mobile manipulator
robot can not find the object, the robot is trying to scan its environment by turning left
side about 30 degree (part b). After turning left about 30 degree, the robot is then back to
the forward position (part c), by the time the robot is turned to the forward position. The
robot locates the object. That is why in part (d), the robot change its orientation, and then

facing forward to approach the object.

In the part (e), the robot is approaching.the object approx 30 — 40 cm, in the last part (f)
the robot is nearly the object that the distance about approx 0 - 20 cm. In this distance the
velocity of the robot is reduced, and when the object get into the gripper it will grasped

the object.

. The orientation of the robot

The orientation of the robot while approaching the object can be seen in the figure 5.12. In
this figure, it plots between the orientation of the robot in radian and time in second. The
total time that is using to grasp the object is approx. 30 second. In the part (a), the robot is
trying to scan its environment by scanning to the minus direction according to the graphic

of the figure 5.12 which turning about 5 seconds. (From 10 second to 15 second).

Next, because the robot does not find the object it then turn to the respectively direction
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back to the forward direction (part b). By the time, the robot want to back to the forward
direction, the robot find the object, it can see in the part (c) where the robot only turn for a
half of its direction. Next in the part (d), the robot already locates the object, and changing
its orientation and direction. As we can see that in the part (d), there is an oscillation to
make the robot stable at its orientation according to the object orientation. Later in the part
(e), the robot is nearly from the object and trying to get the object into its gripper. As we

can see that the trajectory in the part (e) is not changed and stable between -0.15 and -0.1.
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Figure 5.12 the robot orientation (rad - sec)

5.4. Experiment of obstacle avoidance

The goal of this experiment is to show how the mobile robot can avoid objects in front of
it. If there is an obstacle in front of the robot, the robot will try to avoid the obstacle by

determining the safety location between the left side and the right. After selection of the safety
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location, the robot then turns about 30 degree to avoid the obstacle.

Int the navigation mode the mobile manipulator robot works using the navigation layer
in the behavior-based architecture. In the experiment, the mobile manipulator robot is
free-running, if there is an obstacle in front of the mobile manipulator, the robot will try to
find the safe location. Once the robot finds the safe location, the robot will change its

direction and orientation to the safe location so it can avoid the obstacle safely.

Figure 5.13 illustrate the trajectory of this experiment. Point (a) of figure 5.13, the robot
faces the person approximately about 30 cm (see also figure 5.14 (a)). The robot then tries to
find the safe location, once it finds the safe.location the robot starting to turn about 30 degree
to the safe location (see figure 5.14 (b)) At point (@), the robot chooses to turn left about 30

degrees according to the result of safe location estimation.

Point (b) of figure 5.13, the robot faces the person and the wall beside the human (see
figure 5.14 (c)). After calculating the safe location, the robot successfully chooses (see figure
5.14 (d)). Similar with points (a) and (b), at points (c) and (d), the robot finds the safe location
to avoid the obstacle safely. Figure 5.15 illustrate the recorded trajectory of the robot in this

experiment.
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Figure 5.14 (a) Figure 5.14 (b)
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Figure 5.14 (d)

Figure 5.14 (e) ¢, P . Figure 5.14 (f)

Figure 5.14 (9) Figure 5.14 (h)
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Figure 5.15 the trajectory of the mobile navigation mode
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6. Conclusions and Future Work

6.1. Conclusions

This thesis presents a design and implementation of hardware and software to solve a
mobile manipulator problem which is for navigation and grasping. The hardware
implementation develops an embedded image processing platform which is stand-alone and
can communicate directly to other module like DSP motion board and IPC. The embedded
image processing consists of CMOS image sensor and DSK6416 as the main processing
board. The result of this embedded image-processing platform can be used for acquiring

image for 15 fps and 30 fps.

The experiment results of the'wvisual servoing algorithm have shown that the mobile
manipulator can locate a barcode-like object, approaching and grasp the object. The
performance of this algorithm implement in embedded image processing platform to search

the barcode-like object took 0.0667 second or 15 Hz.

Meanwhile, the experiment results of the mixed optical flow algorithm can avoid a
person in real time. The performance of this algorithm implement in embedded image

processing platform for one calculation of obstacle avoidance took 0.2 second or 5 Hz.
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6.2. Future work

The proposed algorithm only has shown the use of the grasping mode and navigation
mode independently without combining these two modes at the same time. In the future, by
combining these two modes at the same time, the mobile manipulator can autonomously
navigate it while the barcode-like object hasn’t detected. And if the barcode-like object

already detect, the mobile manipulator can approach and to grasp it.

In this work we just control the speed and the orientation of the mobile robot. The
proposed algorithm visual servoing algorithm needs to improve by controlling the

manipulator as well as the robot autenemously.
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