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Abstract

In this Thesis, three different controllers for the longitudinal car
following system, including a fuzzy logic controller, a sliding mode
controller , and a dliding-observer-based sliding mode controller with
indirect adaptive fuzzy neural network-approximator andH , performance,
are proposed. For a longitudinal control of a platoon of a vehicles in a
straight line, as the speed of the preceding vehicle increases or decreases,
the relative distance of vehicles changes. This will be used to act the
throttle ( or brake) of the follow wehicle: The main control strategy is to
force the follow vehicle tracking the lead one with a safety distance. We
assume that the relative distance is measurable and measured by the
follow vehicle.

The fuzzy logic controller for a longitudinal car-following system
provides a good performance for the follow vehicle to track the lead one.
The dliding mode controller provides more stable and reliable
performance. After associating with the fuzzy neural network
approximator and H_ performance, the controller performs as well as
the dliding mode controller and meanwhile smooth the control actions.
Under the assumption that only the relative distance is measurable, the
gliding observer is combined with the former controller. It also guarantees
the overal system is globaly stable. Simulation results will show the
validity and effectiveness of the proposed controllers.

Keywords car-following, adaptive control, sliding mode control, sliding
observer, fuzzy logic control, fuzzy-neural network
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Chapter 1 Introduction

1.1 Motivations

Recently, collision prevention and high traffic flow are the key technologies
for the intelligent vehicle highway system (IVHS) to control traffic congestion. In
order to achieve these goals, much effort has been spent on various control laws for
automated highway system (AHS) in which high traffic flow rates may be safely
achieved. One way to carry out these objectives in the car-following system of the
AHS is to decrease the inter-vehicular spacing and keep it in a safety distance, that is,
we are concerned about the safejseparation’of automatic vehicles in a platoon of
vehicles when the preceding vehicle is accelerating or decelerating. Moreover,
because of the variation of vehicle mass — the sum of curb mass and passengers mass,
and of the variant properties of different types of vehicles, passengers may take a lot
of risksin the car-following period. Thus, a stable and reliable controller is needed.
1.2 Literatures Survey

Up to now, many researches are studied for longitudinal control of vehicle
systems|[1, 7-8, 12, 14-15, 18]. Among these researches, a more detailed discussion of

the vehicle model isto be found in section 2.1 and 2.2 adopted from [1].



Over the past decade, fuzzy logic controller (FLC) has been successfully
applied to many control problems [20-21, 28]. Because FLC contains linguistic
information to model the qualitative aspects of human knowledge, it can be designed
based on deficient knowledge about the complex controlled system. Since FLC can
overcome the environmental variation during the movements of vehicles, many FLC
are developed and implemented in many autonomous vehicle control systems [22-23,
34-36]. Besides, the control actions are smoothed through the well-built control rules.
However, the global stability of FLC has also been questioned.

Sliding mode control method is frequently used in many control systems
because of its capability of “dealing with'-uncertain systems, robustness under
parameter variations, fast convergence speed,‘ etc.dn order to ensure global stability of
the vehicle systems, we propose the controlled plant using a sliding mode controller in
the thesis. However, there are two disadvantages — system dynamics must be exactly
known and the control chattering occurs.

To solve the disadvantage of the former, we adopt a fuzzy neura network
approximator to approach the nonlinear unknown part of dynamics. Parallel to the
development of FLC, neural networks are also applied to severa control problems.
Because both the neural network and fuzzy logic system are universal approximators,

researches have been conducted to derive various fuzzy neural network controllers. A



direct and indirect adaptive control schemes using fuzzy systems and neural networks
for nonlinear systems is proposed [19]. Moreover, researches augmented the sliding
mode method with fuzzy logic systems or neural network or both are proposed
[29-31].

To solve the disadvantage of the latter in this thesis, one way is to use the
boundary layer [11], and the other way is to adopt H_ tracking design technique
[9-10].

In reality, however, utilizing some detecting sensors may be difficult or
expensive to obtain accurate information of system states. Thus, the estimations of
states from system output are required. Some kinds of observers are proposed [24,
32-33].

1.3 Thesis Organizations

The remainder of the thesis is organized as follows. In Chapter 2, the vehicle
model and the configuration of a platoon of vehicles are described. Chapter 3
introduces the fuzzy logic controller followed by the simulation results. In Chapter 4,
four classes of controllers — a sliding mode controller, a sliding mode controller based
on fuzzy neura approach, a sliding mode controller with the fuzzy neural approach

and H_ performance, and H_ -observer-based sliding mode controller with the



fuzzy neural approximator are introduced respectively and the simulation results are

shown in the section 4.6. Lastly, conclusions are included in Chapter 5.




Chapter 2 Descriptions of Vehicle Model and a Platoon

of Vehicles

In this chapter, the platoon model and the longitudinal vehicle model will be
introduced. Incorporated with different controllers proposed in the following chapters,
the model is conducive to evaluate the performance of the designed longitudinal car
following collision prevention system.

Thereinafter, we will illustrate a platoon of vehicles with no communication of
lead vehicle, and then make a deseription about.the transformation from a tracking
problem to a regulator problem. Considering the vehicle engine power is limited in
reality, we mention the reasonable range of the'thrattle of the vehicle finally.

2.1 A Platoon of N Vehicles

Consider a platoon of N automotive vehicles on a straight lane of a highway,

described in Fig. 2-1 [1]. The platoon is assumed to move from left to right. The

abscissa of the rear bumper of the ith vehicle with respect to a fixed reference point O

on the road is denoted by x . The position of the lead vehicle's rear bumper with

respect to the same fixed reference point is denoted by x . Safety distance between

every two vehicles is assigned a slot of length L along the road. As Shown, for

i=1,2,...,N, A, denotes the deviation of ith vehicle position from its assigned



position. The subscript i isused because A, ismeasured by the sensors located in the
ith vehicle. Given the platoon configuration in Fig. 2-1, elementary geometry shows
that :

A= X =% —L

A= x,-x—L ,i=23,...N (2.1)
We assume that A, is measured in the vehicle i and , together with its first and
second derivatives, is used in the ith vehicle's control law. The behavior of ith vehicle
is related to the preceding vehicle's information via sensors but not with
communication. It is safer in the longitudinal eontrol for collision prevention because
it is unconcerned about loss of communication between the lead vehicle and the other

vehiclesin the platoon.

XN X3 X2 X1 X
lead vehicle
e P s o |
g P So—or : : : Sa—tr : So—or—
> «—> «—> «—>
L Ay L A, L A, L Ay

Fig. 2-1 Configuration of A Platoon of N Vehicles



2.2 Vehicle M odel

We assume that the road is horizontal, there is no wind gust, and al the
vehicles travel in the same direction at all times. Fig. 2-2 shows the simplified vehicle
model of theith vehiclein the platoon. The block (KX, ?) specifies the force due to
the air resistance, where K, denotes the aerodynamic drag coefficient for the ith
vehicle pAC, /2, p denotes the specific mass of air, A denotes the
cross-sectional area of the ith vehicle, and C, denotes the ith vehicle's drag
coefficient; F; denotes the driving force produced by the ith vehicle's engine; m
denotes the mass of the ith vehicley 't denotes the throttle command input to the ith
vehicle's engine; and ky denotes the ith vehicle's mechanical drag. The longitudinal

dynamics of theith vehicle in the.platoon are modeled as follows (fori=1,2,...,N) [1]:

== Fi. ok (2.2)
7, (%) 7(%)
mx =F _Kdi)-(iz_km‘ (2.3)

where 7, (.) denotes the engine time lag for the ith vehicle. Equation (2.2) described
by a nonlinear differential equation represents the ith vehicle’'s engine dynamics, and
(2.3) represents Newtons's second law applied to the ith vehicle modeled as a particle
of mass m.

Differentiating both sides of (2.3) with respect to time, we have

mx = Iii _2Kdi).(ixi (2-4)



Substituting the expression for F, by (2.2), (2.4) becomes

F u
| oK, %X 25
200 Try T eRS @3)

m¥ =-

from (2.3) and (2.5) we obtain

(2.6)

5,Q+|<di).§2+ﬁ}_2l<di)_Q,H 1,
m mz, (%)

Xi:_Ti(Xi){ m m

where X denotes the variation of theith vehicle's acceleration.

Let x =p, %=V, and X =a . Thelongitudinal ith vehicle dynamics can

be written as
pi =V
v =a (27)
& = fi(vi,a)+g (v)u
where
1 Ky 2K .
f(v,a)=- { A+ —2V +ﬂ}——d‘vi . and
M wl T T, e
gi(vi):
mz; (v;)

The control objective is to keep ith vehicle follow it's preceding vehicle and

hold on a secure distance L, that is, x, —x =L, X—-X =L,...,and X,,—X,=L.
Namely, to input throttle command u; such that A, can bedriven to zero. At the same
time, A, and A, are driven to zero, too. Meanwhile, we have changed a tracking

problem to aregulator problem.
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Fig. 2-2 Simplified model of theith vehiclein the platoon

2.3 Power-Limited Acceleration
Maximum performance” in-longitudinal acceleration of a motor vehicle is

determined by lots of limits; engine power is one ‘of the most important factors of
these limits. Fig. 2-3 [4] shows the performance characteristics of gasoline engine.
Power and torque are related by the speed. Specifically,

HorsePower(hp)=Torque(ft-1b) x Speed(rpm) + 5252 (2.8)
Also,

Power(kw)=0.746 x HorsePower(hp) (2.9)
Thus, we obtain the reasonable range of u; is within 4000 N. Practically, with the

advance of science and technology, maximum engine power limit is higher today.
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Fig. 2-3 Performance of gasoline engine [4]
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Chapter 3 Fuzzy Logic Control

Fuzzy logic control is a useful methodology for system control in the presence
of uncertainties and disturbances. The independence of expert knowledge of the
controlled plants is a remarkable advantage in fuzzy logic controller (FLC) design.
Besides, the control actions are usually smoothed through the well-built control rules.
The basic principles of fuzzy logic were introduced by Zadeh in 1965, and the first
application to the control of a dynamical process was reported by Mamdani in 1975.
Because of the advantages such as easy implementation, suitability for complex
dynamic systems, and high flexibility and robust nature, fuzzy controllers have been

implemented in many fields [24=26].

The characteristic of FL.C.is that it adopts the linguistic control strategy to
control plants without realizing their mathematical models. The linguistic control
strategy of FLC is constructed according to the operator experience and/or expert
knowledge. Experiences show that the FLC yields results superior to those obtained
by traditional control algorithm in the complex situation where the system model or
parameters are difficult to obtain.

Typically, fuzzy controllers are based on four well-known stages. a
fuzzification interface, arule base, an inference engine, and a defuzzification interface

as shown in Fig. 3-1. More detail descriptions for each stages are stated below.

11
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XinU Fuzzy sets Fuzzy sets YinV
inU inVv

Fig. 3-1 Fuzzy System Architecture
3.1 Fuzzy Set and Set-Theoretical Operators
Definition 3.1 Fuzzy Set: Let U be a collection of objects, for example, U =R", and
be caled the universe of discour%.,‘A.‘fuz_lz:y.set F in U is characterized by a

membership function g, :U a—>{01],rilv\\thpF(u) representing the grade of

membership of xeU inthefui_z.y‘set F_ - _»_;f"l

1

. 53 i

Definition 3.2 Support, Fuzzy Si.r;él'l'lét'on:The si:ch.)IpJort of afuzzy set F is the point(s)
ueU at which g, (u) achieves its maximum value. If the support of afuzzy set F isa
singlepoint in U at which x. =1, the F iscalled afuzzy singleton.

Definition 3.3 Intersection, Union, and complement: Let A and B be two fuzzy setsin
U. Theintersection AnB of A and B isafuzzy set in U with a membership function
defined for all ueU by

Hpns (U) = min{ e, (U), 25 (U)} (3.1)

The union of AuB of A and B isafuzzy set in U with the membership defined for all

ueU by

12



Hpoe (U) = max{ 2, (U), 25 (U)} (3.2)
Usually, the intersection and union operators are denoted by A andv , respectively. The
complement A of A isafuzzy set in U with the membership function defined for all
ueU by

1 (U) =1 2, (u) (3.3)
3.2 Fuzzifiers

The fuzzifier stage transforms crisp input from real values into fuzzy sets.

Here we introduce three fuzzifiers as following:
1. Singleton fuzzifier: the singleton fuzzifier maps a real valued point x" eU into
the fuzzy singleton A in U, in which the membership valueis1a x* and O at other
pointsin U, i.e.,
”’A(X):{(l) )étié(r:/vise (34)
2. Triangular fuzzifier: the triangular fuzzifier maps x €U into the fuzzy set Ain U,

in which the membership function is written as:

|X1_X;| |Xn_X:1| : * :
1-—)®---0(1-——) if [ X=X <bi’| =12,...n
ua =4 g OO ) e 35)

0 otherwise

where b, are positive parameters and symbol & is often chosen as algebraic product
or minimum.

3. Gaussian fuzzifier: the Gaussian fuzifier maps x" eU into thefuzzy set Ain U, in

13



which the membership function is written as:

* *
_ X=X \2 _ Xn—Xny2

u(x)=e * ®---Qe (3.6)

where ¢, are positive parameters and symbol ® is often chosen as algebraic product
or minimum.

Finally, we summarize the above fuzzifiers. The singleton fuzzifier greatly
simplifies the computation involved in the fuzzy inference engine for all membership
functions. And the Gaussian and triangular fuzzifiers do, too. The Gaussian and
triangular fuzzifiers can restrain noise in the input, but the singleton fuzzifier cannot.
3.3 Deffuzzifiers

The defuzzifier is definedias a mapping from a fuzzy set D in VcR to a
crisp point y* eV. Hence, the task "of thedefuzzifier is to specify a point in V that
represents the fuzzy set D. There are three types of defuzifiers introduced below.

1. Center of gravity Defuzzifier
The center of gravity defuzzifier specifies y’ as the center of the area covered

by the membership function of D.

o Loyuo (y)dy

_ , 3.7
[, 45 (y)dy 37

where |, istheconventional integral.

2. Center Average Defuzzifier

Let y'be the center of the Ith fuzzy set and w, be its height. The center

14



average defuzzifier presents y' as

Sy'w,
e (3.9)
Sw

1=1

3. Maximum Defuzzifier
The maximum defuzzifier chooses y' as the point in V, at which u,(y)
achievesits maximum vaue. Define
hgt(D) ={y &V 45 (y) =Sup 5 (y)} - (39
hgt(D) is a set of al point in V, at which x,(y) achieves its maximum vaue. The
maximum defuzzifier y* isdefined as an arbitrary element in hgt(D), i.e.,
y" =any point in hgt(D).The mean ofmaximum defuzzifier is defined as:

o g Yo (Y)dy

- 3.10
Y () dy (310

where jhgt (D)isan integration for the continuous part of hgt(D) and it is a summation

for the discrete part of hgt(D).
3.4 Fuzzy Rule Bases

The fuzzy rule base consists of fuzzy IF-THEN rules. It is the core of the
fuzzy system in a sense. And all other stages are used to implement these rules in a
reasonable and efficient manner. Hence, the fuzzy rule base comprises the following
fuzzy IF-THEN rules:

Rulei: IF x, is A and...and x, is A\ THENyis D' (3.11)

15



The canonical fuzzy IF-THEN rules in the form of (3.11) includes the following
Ones:
(1) Partid rules:

IF x, is A and...and x,k is A, THENyis D' (3.12)
(2) Or rules

IF x, is A and ...and x_, is A or x_, is A, and ...x, iSATHEN Yy is

D' (3.13)
(3) Singles fuzzy statement

yis D' (3.14)

3.5 Fuzzy Inference

The fuzzy inference is a reasoning method using-the fuzzy theory, and whereby the

expert knowledge is presented using linguistic rules. The fuzzy inference introduced

asfollowing.
Product Inferencer 15 (y) = max{sup(us (O] T 1, (%) (V) (3.15)
Minimum Inference: , (y) = Max{sUpMin(ie, (), a1, (). (%) ip (D] (316)

The product inference and minimum inference are the most commonly used fuzzy

inference in the fuzzy system and other fuzzy applications. In the Fig.3-2 shows the

product inference and minimum inference [25-26].

16



output u, areshowninFig. 3-3.

(b)

Fig. 3-2 (&) Minimum inference (b) Product inference

3.6 Longitudinal Fuzzy L ogic Control of a Platoon of Vehicles

In this section, we design a FLC by imitating a PD controller [6] for a platoon
of vehicles. Design procedures are stated below.
Step 1) Define A, and A, from Eq.(2.1) astwo input variables of ith FLC; and

u, as an output variable of ith FLC; the membership functions for input A, ,A, and

17
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Fig. 3-3 Member ship function for input and output variables

Step 2) The mainideais: “ if A, >0, input positive net force to decrease the space
of two vehicles; if A, <0, input negative net force to increase the space of two
vehicles; A, is used to amend the strategy above” Table. 3-1 is the rule base we
obtain.

Step 3) Select one type of the fuzzifiers, defuzzifiers, and fuzzy inferences. The most
frequently used triangular membership, the center-of-gravity defuzzification, and the

“max-min” reasoning method are adopted here to carry out the algorithm.

18



NG | ZR PO

NG | NB NS | ZR

ZR NS | ZR PS

PO | ZR | PS PB

Table. 3-1 Rule Base of the Fuzzy L ogic Controller

3.7 Simulation Results

To examine the behavior of ‘@ platoon of vehicles under the above controller,
we run simulations for a platoon consisting of 3 different types of vehicles. Three
types of vehicles with their relevant parameters referring to [7][8] are shown in the
Table. 3-2 and used in the simulations. In the simulation conducted, al the vehicles
are assumed to be initially traveling at the steady-state velocity of vo= 17.9 m/s (i.e,,
40 mph). Beginning at timet = 0 s, the lead vehicle’'s velocity is increased from its
steady-state velocity value of 17.9 m/s until it reaches its final value of 21.9 m/s (i.e,,
50 mph): the maximum jerk and the peak acceleration values corresponding to this
velocity time profile are 0.5 m/s® and 1m/s” , respectively (see Fig. 3-4 and Fig. 3-5).

Take three following vehicles as a simulation example, the order of vehicles in the

19



platoon followed the lead vehicle is as follows: Daihatsu Charade CLS followed by

Buick Rega Custom followed by BMW 750iL. Consider the vehicle loading, total

mass of each following vehicle is conditioned by adding vehicle curb mass and

passengers mass. Fig. 3-6 ~ Fig. 3-9 show the simulation results

Type Daihatsu Charade Buick Regd BMW 750iL
CLS Custom
\ehiclei 1 2 3
Curb mass(kg) 916 1464 1925
Passengers mass(kg) 91,91, 91 64, 64 75
\ehicle mass m(kg) 1189 1592 2000
Kai(kg/m) 0.44 0.49 0.51
7,(s) 0.2 0.25 0.2
kni(N) 352 392 408

Table. 3-2 Smulation M odel Parameters of Fuzzy L ogic Control

20
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Fig. 3-4 Lead Vehicle' s velocity timeprofile: v versust
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Fig. 3-5 Lead Vehicle'sacceleration time profile: a versust
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Chapter 4 HwObserver-based Sliding Mode Control

with Adaptive Fuzzy Neural Approach

4.1 Fundamental Conceptions of Sliding Control

Model imprecision, which is a common trouble in system control, can have
strong adverse effects on nonlinear control systems. Therefore, any practical design
must address it explicitly. A simple approach to robust control is the so-called sliding
mode control (SMC) methodology. It allows an n"™-order problem to be replaced by an
equivalent 1¥-order problem, which is intuitively easier to be addressed. For the class
of systems to which it applies, sliding controllér design provides a systematic
approach to the problem of maintaining stability and consistent performance in the
face of modeling imprecision.

Take a single-input dynamic system for example:

x" = f(x)+b(X)u 4.1)
where the scalar x is the output of interest, the scalar u is the control input, and
x=[x % - x""]" is the state vector. In equation (4.1), f(x) (in general
nonlinear) is not exactly known, but the extent of the imprecision on f(x) is upper
bounded by a known continuous function of x; similarly, the control gain b(x) is
not exactly known, but is of known sign and bounded by a known, continuous

function of x. The control problem is to get the state x to track a specific
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time-varying state x, =[x, %, --- x,”]" in the presence of model impression
on f(x) and bH(x).
Let X =x—x, be the tracking error, and let
X=x-x,=[x ¥ - X" (4.2)
be the tracking error vector. Furthermore, let us define a time-varying surface s(¢) in

the state-space R” by the scalar equation s(x;¢) =0, where

J n-1
s(x;t) = (E + /1) X, (4.3)
and A is a strictly positive constant. The problem of tracking x=x, is equivalent
to that of remaining on the surface s(t;) for ali t>0; indeed s=0 represents a
linear differential equation whose unique sqlution is X=0 as t— . Thus, the
problem of tracking the n-dimensionalveetor] x, ,‘i.e., the original n"-order tracking
problem in x, can be replaced by a 1*-order problem of keeping the scalar quantity
s at zero [11]. This simplified 1%-order problem of keeping s at zero can be
achieved by choosing the control law u such that outside of s(7)
1d

EESZ < —77|S

, (4.4)

where 7 is a strictly positive constant [11]. Eq. (4.4) is called sliding condition.

Essentially, (4.4) states that the squared “distance” to the surface, as measured by s°,

decreases along all system trajectories.
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However, in order to account for the presence of modeling imprecision and
disturbances, the control has to be discontinuous across s(¢) . Since the
implementation of the associated control switching is necessarily imperfect, this leads
to chattering.

In general, chattering must be eliminated for the controller to perform properly.
This can be achieved by smoothing out the control discontinuity in a thin boundary
layer neighboring the switching surface

B() = {x,[s(x;0)[< @} >0, (4.5)
where ¢ is a boundary layer thicknéss, and &&¢/1"" is the boundary layer width,

as Fig. 4-1 illustrates for the case m= 2. In other wotds, outside B(¢), we choose

X
A
\ i
Boundary < & —»
p X
s=0
<« & —

Fig. 4-1 Boundary layer
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<

Fig. 4-2 Control interpolation in boundary layer

control u satisfying sliding condition (4.4), which’guarantees that the boundary layer

is attractive - hence invariant: all trajectories starting-inside B(#=0) remain inside B(¢)

for all > 0. Then, we interpolate % inside B(), as'illustrated in Fig. 4-2. This leads to

tracking within a guaranteed precision & (rather than “perfect” tracking), and in the

meantime eliminates the chattering.

4.2 Sliding Mode Control

Let’s consider the first two vehicles in the forefront of the platoon. We will

discuss the first couple of vehicles for detail thereinafter since the behavior of other

couples of vehicles are similar. By rearranging (2.7) the first follow vehicle dynamic

1S written as

27



D=V
(4.6)

a, = filv,a)+g (v)u,

where
K k 2K
fiv,a)=—- 1 a, +—= 12"'_7”l -—%va and
7,(v) m, m 1

1
g (v)= ez (v)

And, the lead vehicle dynamic is stated as

P =V
v, =aq, 4.7)
a, =Va(t)

where p, =x,, v, =X%,, a, =X}, and ¥a is the variation of acceleration of the lead

vehicle for increasing its velocity from<w, t0. v, in a period of time. Substituting

Eq. (4.6) and (4.7) to Eq. (2.1), we have
(4.8)

A= Va(t)_.fl(vl’al)_gl(vl)ul

x,—L.Let A;=e/(l), A, =¢/(2),and A ,=¢ (3), (4.8) is rewritten

where A =x, —

as
e (1) =¢/(2)
¢(2)=¢,03) (4.9)
e,(3)=Va(®)- f,(v,a))— g (v)u,

where Va(t)— f,(v,,a,) is a nonlinear function which depends on v, and a,, and

u, stands for the control input. Let F(v,,a,) = Va(t)- f,(v,,a;) and

G,(v,)=—g,(v,). Therefore, (4.8) and (4.9) become
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A =F,(v,a)+G (), (4.10)
and

é()=e(2)
¢(2)=¢,3) (4.11)
e,(3)=F (v,a)+G (),
Let e 1=[el 1) ¢(2) ¢ (3)]T. The control target of this case is to find an appropriate
control law u, such that the tracking error e; is zero. Furthermore, let the sliding

surface s(f) be expressed in the state-space R’ by the scalar equation s(e,;t) =0

as
S(el;t):(%+ﬂ] e,()=e,(3) +24e,(2)+ A (), A>0  (4.12)

From (4.11), (4.12), and following similar derivatioﬁs in [5], we can use the sliding
mode control method and obtain a control-law derived in Lemma 1.
Lemma 1: Consider the nonlinear system (4.11) with given nonlinear function
F,(v,,a,) . Suppose that control input is chosen as

U, = G, (v) '[-F,(v,.a,) ~ e, (2) = 22¢,(3) — paye, (1) — pane, (2) — k sign(s(e,;1)]

(4.13)

and that P is positive definite symmetric matrix, P € R>® satisfies the Lyapunov
matrix equation

AP+PA, =-Q (4.14)
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1 if s(e;;0)>0 0 1
where sign(s(el;t))z{ . 7 os(esn) , A ={

is Hurwitz, ,
if s(e,:t) <0 P —u} Pa

P, areelements of P, and Q >0 is given. Then s — 0 and e, > 0ast — .

O
Proof:
From Eq.(4.12), we have e, (3) =—-A¢,(1)—24e,(2) +s .
Let ¢ =[e,(1) ¢/(2)]",then
- r 0 1 | |0
e =[e@ a®l' =|_, [+ (4.15)
Consider a Lyapunov function candidate as following:
V=%s2 +%éﬁpé, (4.16)

here P is positive definite symmetric matrix.
By using (4.11), (4.12), (4.14), and (4.15); the time derivative of (4.16) is
S T 2 _T 0 I 10
v=ss+e, Pe =s[A¢(2)+24e,3)+F +Gu]+e P( e, +| |
-4 =22 s
0
= s[A%e,(2) +20e,(3) + F, + Gu, ]+ ¢, PA e, + éfp[ }
s
0
= s[A%e,(2) +20e,(3) + F, + Gu, ] + %EIT[PAI +A, Ple, + EITP{ } (4.17)
s
Apply (4.13) to (4.17), we have the following relationship:

v = —ks - sign(s) —%ElTQEI = —k]s| —%EITQEI <0 Vs#Oande, #0 (4.18)

We conclude s -0 and e, -0 (e, = 0) as ¢t — oo. This completes the proof.

Note that if we include the design of (4.5), (4.13) becomes
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u, =G, (Vl)_l [-F, (Vlaal)_ﬂzel (2)-24e,(3) = pye, (1) — ppe (2) —ksat(s(e,;t)/ §)]

$>0 (4.19)

s/ if]s/ g <1

sign(s/ @) otherwise

where sat(s(e,;t)/ @) :{

1 if (s/¢)>0

sign(s/gﬁ):{_l if (s/d)<0

4.3 Sliding Mode Control with Fuzzy Neural Network Approximator

In practical applications, however, F|(v,,a,) is generally uncertain rather
than given. The controller of (4.13) derived above is not always obtainable. Therefore,
a new controller needs to be designed taking into account the unknown nonlinear
function, which will be adequately approximated by‘a fuzzy-neural approximator.

The configuration of the fuzzy-néural network shown in Fig. 4-3 consists of a
fuzzy system and neural network. The fuzzy system can be divided into two parts:
some fuzzy IF-THEN rules and a fuzzy inference engine. The fuzzy inference engine
uses the fuzzy IF-THEN rules to perform a mapping from an input linguistic vector
e, =le,() €2 ¢@3)] €R’ toan output linguistic variable o(e,) e R.

The ith fuzzy IF-THEN rule is written as

R:If ¢(l) is A and ¢/(2) is 4! and e(3) is A than y' is B'  (4.20)
where A4/,A4,,A4; and B' are fuzzy sets with membership functions p (e,(j))

and g, (y').And y' is the point at which s, (y") =1. By using produce inference,

center-average and singleton fuzzifier, the output of the fuzzy-neural network can be
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expressed as

Layer I Layer II Layer 111 Layer IV

Fig. 4-3 Configuration of a fuzzy-neural approximator

ny{ i, G (j))}
o(e,)= - -

nl 3 4.21
Z[H% (e, (,-))} 20

i=1 | j=1

= 9T¢(e1)

where 4, (e,(j)) is the membership function value of the fuzzy variable e, (),

h is the total number of the IF-THEN rules , y' is the point at which u,(y")=1,

0=[»" y»> - »"1" is an  adjustable  parameter  vector, and

p=[p" @ - ¢"]" isafuzzy basis vector, where ¢’ is defined as
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[Tw, 0D
¢'(e)=— [‘ } . (4.22)

[Tx, @0)

i1 | =
When the inputs are given into the fuzzy-neural network shown in Fig. 4-3, the truth
value ¢’ (layer III) of the antecedent part of the ith implication is calculated by (4.22).
Among the commonly used defuzzification strategies, the output (layer IV) of the
fuzzy-neural network is expressed as (4.21). Therefore, the fuzzy logic approximator
based on the neural network can be established. Fig. 4-3 shows the configuration of
the fuzzy-neural function approximator. The approximator has four layers. At layer I,
input nodes stand for the input linguistic variables e, (1), ¢,(2), and e,(3). At layer
I, nodes represent the values of the membership funetions. At layer III, nodes are the
values of the fuzzy basis vector ¢ . Each-node of layer III performs a fuzzy rule. The
links between layer III and layer IV are full connected by the weighting factors
0=[y" »> - »"]",ie., the adjusted parameters. At layer IV, the output stands
for the value of o(e,).

To approximate the uncertain nonlinear function F,(v,,a,) in (4.11),
adaptive update laws to adjust the parameter vector 0 in (4.21) of the fuzzy-neural
approximator need to be developed. Let 1'3’1 be the estimation function for the

uncertain nonlinear function F;. That is,

Fi(e, |8)=0"p(e,) (4.23)
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In order to derive the adaptive update law, the following assumption is required.
Assumption 1 [27]:
Let e, belongs to a compact setU, ={e, eR’:|e,|<m, <o | and m, is

designed parameter. It is known a prior that the optimal parameter vector

0" = argmin[ sup

S
0 elqu

F —F,(e, | 6)‘] lies in some convex region

M, = { 0cR’: ||9|| < m, }, where the radius m, is constant.

Thus, to approximate the uncertain nonlinear term F,, Eq. (4.10) becomes

A,=0"p(e,) +G (v u, +wi (4.24)
where w=F, — B*T(p(el) is the lumped uncertainty.
To facilitate the design process of the contrdller, the lumped uncertainty is generally
assumed to have an upper bound,

|w| <w", w"isa positive constant (4.25)

Based on above condition, a control law via fuzzy-neural approximator can be
obtained from Lemma 2 below.
Lemma 2: Consider the nonlinear system (4.11) with uncertain nonlinear function
F,(v,,a,), which is approximated as (4.24). Suppose Assumption I and (4.25) are

satisfied and control input is chosen as
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u, =G )" [—6T¢(e1) — e, (2)—22e,(3) — p,e,(1) = pye, (2) — k sign(s(e, ;1))]
(4.26)

where @ is the estimate of 6, and the update law is chosen as
0 = Tsp 4.27)

where I >0 is the adaptation matrix, k =k, + w", k>0, and s is the sliding surface.

Then s >0 and e, >0 as t > .

O
Proof:
Consider the Lyapunov function
_ 1 2 l1_r_ 1~T -1
vV=—S +Ee1 Pel+50 ro (428)

= s[A%¢,(1)+22,(2) +é,(3)] + €, P(A & +[0 s]")+ 0T (—é)
= [ Ae,(2)+27e,(3)+0” ple,)+G, (v )y, +w]+éélT(PA1 +A,"Pye, +¢, P[0 5] +0'T"" 0)
= s[2¢,(2) + 22e,(3) + 07 p(e,) + G, (v, )u, + w]—%E,TQEIé

T s(e,(1)py, +€,(2)p,,)—0'T0 (4.29)
Apply (4.26) and (4.27) to (4.29), and let k=k,+w", we have following

relationship:
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V= s[ﬁTgo(el)— pyae(D)—pye (2)—k sign(s(e,;t))+w] —%EITQEI +s(e,(Dp,, +e, (2)p22)—§Tl“’lé
= s[arw(el)—ksign(s(el;t))+w]—%é,TQél -0'T " (sg(e,))
= s[=(ks + W )sign (5) + w] - 3%, Q,
< —k,s —%EITQEI <0 Vsz0ande, #0 (4.30)
We conclude s -0 and e, - 0 as ¢t — oo. This completes the proof.
O

4.4 Sliding Mode Control with Fuzzy Neural Network Approximator and H
performance

As shown in (4.25) and (4:26), k =k, +w" needs to be determined in
advance to construct the controlyinput u;,~In practical applications, however, the
exact upper bound w" cannot be chosen 50 as/fo attenuate the uncertainties, large
control chattering nevertheless occurs. Simulation with a sliding mode controller
illustrate this effects for different & selected. To relax the impractical constraint, a new
control law is designed by using the H  tracking design technique based on a much
relaxed assumption [5], The lumped uncertainty is assumed such that

we L,[0,T],VT €[0,0) (4.31)

Lemma 3:
Consider the nonlinear system (4.11) with uncertain nonlinear function F,(v,,a,),

which is approximated as (4.24). Suppose Assumption 1 ,Eq. (4.25), and Eq. (4.31)
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are satisfied; the control input is chosen as
u, = G,(n)"[-07p(e)) — A, (2) = 24¢,(3) — pyie, (1) =~ pre, (2) —i]

(4.32)
and the update law as (4.27), where p >0 is the design constant serving as an
attenuation level, s is the sliding surface. Then the H_ tracking performance [9],

[10] for the overall system satisfies the following relationship:

L7 1, 1_r — 1~ A1y L o,
> jo ¢,/ Qedr < —s7(0)+ & (P& (0)+ 8" (O 8(0)+_ p L w (r)dr

(4.33)
where 6=0"-9.
O
Proof:
Consider the Lyapunov function
_ 1 2 1_r_ INT -1
v=—s"+—e, Pe,+-0'T"0 (4.34)
2 2 2

The time derivative of (4.34) is (see (4.29))
V= S[/lzel (2) + 2/161 (3) + G*T(/’(el ) + G1 (Vl )ul + W] _%élTQE + S(el (1)p12 +e (2)])22 ) - arrilé
(4.35)

Apply (4.27) and (4.32) to (4.35), we have

N S l s PR I I S 1 5,

v=—rt, Q¢, ——(—— +—p'w' <—e, Qe +—p’w 4.36
21Q1 2(,0 W) 2,0 21Q1 2,0 ( )

By (4.31), we integrate (4.36) from =0 to /=T, and obtain
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1 T_ ¢ _ 1 2 (T >

Ejo &/ (D)QE,(1)dr <v(0)+_p jo w(r)dr (4.37)
Substituting (4.34) to (4.37), we have the H_ tracking performance, satisfying
(4.33)

leéTQéd < L)+ Le T 0)pe, (0)+ 187 (0)r8(0)+ - ijwz(r)dr

2 147 = 5 R 1 5 2:0 )

This completes the proof.

Remark:
If a set of initial condition e,(0)=0,s(0)= 0,6(0) =0°(0) can be obtained, and

Q-=I, then control performance of the overall system satisfies

ull

weLl,

where ||El ||z = J.OT EIT(T)El (r)dr, W”j = LT w’(v)dr . That is, an arbitrary attenuation

level can be obtained, if p is adequately chosen.

4.5 Observer-based Sliding Mode Control with Fuzzy Neural Network

Approximator and H_ performance

Utilizing sensors to obtain the measurements of the parameters in the vehicle

system, such as the velocity, the acceleration,... etc., is difficult or expensive.

Considering the technical difficulties and the economic benefits, we adopt an observer

to estimate the plant output state vector while we assume that only the headway

information of two vehicles is measurable. Under this constraint, a sliding mode
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observer is proposed for state estimation [3][37]. The sliding observers offer
advantages similar to those of sliding controllers such as robustness to parameter
uncertainty and easy application to important classes of nonlinear systems.

In this section, our task is to combine the plant and controller with an sliding
observer which estimates the state vector e, ; the estimated vector is denoted as €,
and used as the input both of the sliding mode controller and of the adaptive
fuzzy-neural network approximator instead of state feedback e, used before.
Rewrite (4.11) as

é (D) = ¢(2)
&) 26(3) ‘ (4.39)
¢,(3) =H(e.u,)
where H (e,,u;)=F +Gu,.
Consider the following observer [3][37][32]:
&)= &)+ 4, sign(e, () =&, (1)
&(2)=603)+ 4, signe, (D =& (1) (4.40)
e, (3)=H,(e,,u,)+ 1, sign(e, (1) —¢,(1)

where €, =[&,(1) ¢,(2) é,(3)]" are the observer output states; P° is positive definite

symmetric matrix, P° € A*® satisfies the Lyapunov matrix equation

A P° +P°A° =1 (4.41)
_% |
where A° = /11 i1s Hurwitz. Thus, the applied control to (4.39) and (4.40) is
3
-— 0
/11
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solution of (4.32) replacing e, by e,. Such an observer leads to the error
(¢, =e, —e,) dynamic of the form:

¢,(1) =2,(2)~ 4, sign(@,(1))

€(2) =¢€,(3) - 4, sign(e (1) (4.42)

&,(3) = AH, — A, sign(&,(1))

where AH, = H, (e ,u —H (e ,u ,and sign(e -
! R e & ! -1 zf el(l)<0 .

Then, we assume that:

Assumption 2:

AH,()|;- 1s globally Lipschitz continuous in its first argument

||AH1 (e, ’”1)” <k, ||eI|| -

O
Assumption 3:
i > ‘Pz" , where P; isthe 2" column of matrix P° solution of (4.41).

O

Theorem 1: Consider the nonlinear system (4.11) with uncertain nonlinear function

F,(v,,a,), which is approximated as (4.24). And with control defined as in Lamma 3,

to which observer (4.40) is associated. Suppose Assumption 1-3, (4.25), and (4.31) are

satisfied. Then for any initial conditions, the state e, of the observer converges

toward the state e, of the system.
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Proof:

Consider  the  partial Lyapunov  function v= %El (1)>  leading to
v =2 (e, (1) =& (D[E,(2) - 4, sign(?,(1))], with the constraint [¢,(2)] <4, we can
obtain v < (Ja ) -4 )- ()] <-ole,()| and &(1)—>0 in finite time (#;). The
remaining estimation error can then be shown to decay exponentially using Filippov’s

work. Taking a convex combination of the dynamics on each side, we have

6 =y@@+4)+(1-7EQ2)-4)
6@ =r@E)+ 1) +1-7)E )~ 1) (4.43)
() =y(AH, + 2,)+ (=) (AH, = ;)

For¢ ¢; eliminatingy from above€quations,(4.43) becomes

& ()=0
&) =g 2 ) (4.44)
ﬂvl

&) =AH, ~=*24(2)

1

Let e} =[¢,(2) ¢ (3)]". This is
¢/ =A% +[0 AH,(e))]" (4.45)
Select Lyapunov functionas V° =e!' P’e/,

Ve =2e,"P°¢; =2¢, P° (A% +[0 AH,(-)]") =2¢, P°A’€e] +2¢," P°[0 AH, ()]

= —¢|"Te| +2¢, PP AH, () = —|e}|" +2¢" PYAH, () (4.46)
ve <]+ 2es[esflar o) < —[ei]” + 2es s s e
Ve <—(1-2k [Py e;|” <0
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and thus ensures that e; decreases to zero

Remark:

In many applications, the sign(e, (1)) in (4.42) is replaced by a saturation function of

the form

sign(,(1)) i e, (D] > ¢°
aM)/¢°  ifle()] <o’

sat(@,(1)) = {
in order to remedy the control chattering [24].
Naturally, to prove asymptotic stabilization of the controlled plant plus the
observer, we use the following Lyapunoyv function :
0'r'e (4.47)
where §=0"—0,and e’ =[¢,(1) "&@)Fulet §= 46 (1)+246,(2)+¢,(3).
The time derivative of (4.47) is
W_ AR 1 T g1 1 . yT " 1NT a% lf;T -1n
=ss+—e Pée/+—¢ Pe,+—0 1 0+-010
2 2 2 2
= §[2%6,(1)+226,(2) +¢,(3)] + e/ P(A e +[0 §]7)+0'T" (-0)
_Aar2a A LN ~ 1 nT T ” nT AT Tyl A
=s5[4¢ (2)+216,(3)+0 ¢(e,)+Gu, +w]+§ e; (PA, +A, P)ej+e] P[05s] +0° T (-0)
=§[A%6,(2)+248,(3)+ 0" p(&,)+G,a, +w]—%e'1’TQe;' +5,()p,, +é (2)p22)—6Tr*é
(4.48)
Apply i, =G, [-0"p(&,) — 1°¢,(2) =248, (3) — 5,6, (1) = P»,&, (2) — k sign(8(&,;1))]
to (4.48), and let k =k, + w", we have following relationship:
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' an A n ~ . Ara 1 " "o, oAra N Y JI4
W= S[OT(p(el)—p2161 (D-prpe (2)_kSlgn(s(eﬁt))"‘w]_EelTQel +5(e, (D p,, +e (2)p22)_0Tr '0

=507 p&,)—k sign(ﬁ(él;t))+w]—%e'{TQef -0'T ' (T59(@,))

= §[—(k, + w")sign (§) + w] - %e;’TQef
< —kys —%e;’TQe;’ < —kJ§ < 0 (4.49)

This completes the proof.

4.6 Simulation Results

To examine the behavior of a platoon of vehicles under the above controller,
we run simulations for a platoon .consisting of*3 different types of vehicles again.
Three types of vehicles with their televant patameters are the same to the ones shown
in the Table. 3-2 and are used in'the simulati‘ons. In' the simulation conducted, all the
vehicles are assumed to be initially traveling at the steady-state velocity of vp= 17.9
m/s (i.e., 40 mph). Beginning at time ¢ = 0 s, the lead vehicle’s velocity is increased
from its steady-state velocity value of 17.9 m/s until it reaches its final value of 21.9
m/s (i.e., 50 mph): the maximum jerk and the peak acceleration values corresponding
to this velocity time profile are 0.5 m/s® and 1m/s® , respectively (also see Fig. 3-4 and
Fig. 3-5). Take three following vehicles as an simulation example, the order of
vehicles in the platoon followed the lead vehicle is as follows: Daihatsu Charade CLS

followed by Buick Regal Custom followed by BMW 750iL. Consider the vehicle
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loading, total mass of each following vehicle is conditioned by adding vehicle curb

mass and passengers’ mass. From Fig. 4-5 to Fig. 4-9 are the simulations of the

application using a sliding mode controller with the boundary layer. From Fig. 4-10 to

Fig. 4-14, we can see that the fuzzy neural approximator can approximate the

uncertain nonlinear term of the system. From Fig. 4-15 to Fig. 4-19 , we apply the

H_ performance with the control law obtained in section 4.3. It shows that the

performance is better and the chattering is attenuated, too. From Fig. 4-20 to Fig. 4-24,

the observer is associated to estimate the system states, it shows that performance is

still acceptable.

- A" =F+Gu+d

+

> Observer

. D>

<
<
I
I
>
+
~
~
A
B> B

G
Contrrol | e
G:Fsgp <

F=0"¢p

Fig. 4-4 Block Diagram of Overall System
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symbols parameters(values)
A 1
A 1
Ay 2
A 1
k 1.2
P 0.3
Py 0.5
P2 | 1.5
¢ 1.0
Al | 0.1
A, 0.2
Ayl 0.1
Iy 501
I, 401
I's 401

Table. 4-1 Simulation Model Parameters of Modified Sliding Mode Control
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Chapter 5 Conclusions

In this thesis, we modeled mathematically both vehicle and car-following
systems. In order to gain better performance and ensure the robustness and global
stability, a sliding mode controller with the fuzzy-neural network approximator and H
performance was proposed. Moreover, considering the technical difficulties and the
economic benefits, we assumed that only the relative distance of two vehicles was
measurable. Thus, an observer-based modified sliding mode controller was devel oped.

The control performance.of the propoesed system were simulated. Simulation
results demonstrated the validity and effectiveness:of the controlled systems. The
system with the modified sliding mode controller showed a better performance than the
one controlled by a dliding mode controller did. With these two controllers, the
robustness and the global stability were both guaranteed during the vehicles-following
process in the presence of the uncertainties and disturbances.

In designing the output feedback control law of an observer-based modified
dliding mode controller, no differentiation of system outputs was performed in order to
avoid the noise amplification associated with numerical differentiation, and no

knowledge on nonlinearities of the nonlinear parts of the system was required. This

56



controller is subject to on-line tuning for a nonlinear system. Although the performance
of the car-following system with an observer is not as good as the one with a modified
diding mode controller which were combined with an aprroximator and H

performance conception, it is still satisfying.
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