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摘要 

在本文中，我們提出以三種不同的縱向車隊控制器，包括模糊控制

器，滑動模式控制器，以及以滑動模式觀測器為基礎的滑動模式控制器，

並搭配非直接適應性模糊類神經網路近似器及 概念來滿足系統的強健

性及表現。對於一列直線行進的車隊，已知隨著前車動態的變化，譬如由

低速前進到高速前進，車隊中車輛間的相對距離也將隨之變動，此一車距

的改變將被用來改變車隊中後方車子的行進行為。我們的控制策略是施加

合理的油門控制力迫使車隊中每部車子之間相對於前方車輛保持適當的

安全距離，並以舒適的加減速追隨前方的車子的行進行為。在此假設在車

輛行進的過程中，車間相對位置是可量測的。 

∞H

在縱向車隊行進控制上，模糊控制器可呈現良好的控制效果，而滑

動模式控制器提供了更穩定且可信賴的控制效果。在引入模糊類神經網路

近似器及 概念後維持了系統的強健性及改善了系統控制輸入的切跳現

象。為了更符合真實車隊系統的效益，我們假設僅能量測到車間的相對距

離。在此限制下，以滑動模式觀測器為基礎的滑動模式控制器亦保證對前

車位置的追蹤是全域穩定的。由模擬的結果，可以證明三種控制器的正確

性和穩定性。 

∞H

關鍵字：適應性控制、模糊控制、模糊類神經網路、滑動模式控制、

非線性系統、滑動模式觀測器。 
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Abstract 

In this Thesis, three different controllers for the longitudinal car 
following system, including a fuzzy logic controller, a sliding mode 
controller , and a sliding-observer-based sliding mode controller with   
indirect adaptive fuzzy neural network approximator and performance, 
are proposed. For a longitudinal control of a platoon of a vehicles in a 
straight line, as the speed of the preceding vehicle increases or decreases, 
the relative distance of vehicles changes. This will be used to act the 
throttle ( or brake) of the follow vehicle. The main control strategy is to 
force the follow vehicle tracking the lead one with a safety distance. We 
assume that the relative distance is measurable and measured by the 
follow vehicle. 

∞H

     The fuzzy logic controller for a longitudinal car-following system 
provides a good performance for the follow vehicle to track the lead one. 
The sliding mode controller provides more stable and reliable 
performance. After associating with the fuzzy neural network 
approximator and  performance, the controller performs as well as 
the sliding mode controller and meanwhile smooth the control actions. 
Under the assumption that only the relative distance is measurable, the 
sliding observer is combined with the former controller. It also guarantees 
the overall system is globally stable. Simulation results will show the 
validity and effectiveness of the proposed controllers. 

∞H

Keywords：car-following, adaptive control, sliding mode control, sliding 
observer, fuzzy logic control, fuzzy-neural network 
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Chapter 1  Introduction 

 

1.1 Motivations 

      Recently, collision prevention and high traffic flow are the key technologies 

for the intelligent vehicle highway system (IVHS) to control traffic congestion. In 

order to achieve these goals, much effort has been spent on various control laws for 

automated highway system (AHS) in which high traffic flow rates may be safely 

achieved. One way to carry out these objectives in the car-following system of the 

AHS is to decrease the inter-vehicular spacing and keep it in a safety distance, that is, 

we are concerned about the safe separation of automatic vehicles in a platoon of 

vehicles when the preceding vehicle is accelerating or decelerating. Moreover, 

because of the variation of vehicle mass – the sum of curb mass and passengers’ mass, 

and of the variant properties of different types of vehicles, passengers may take a lot 

of risks in the car-following period. Thus, a stable and reliable controller is needed. 

1.2 Literatures Survey 

Up to now, many researches are studied for longitudinal control of vehicle 

systems [1, 7-8, 12, 14-15, 18]. Among these researches, a more detailed discussion of 

the vehicle model is to be found in section 2.1 and 2.2 adopted from [1]. 
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Over the past decade, fuzzy logic controller (FLC) has been successfully 

applied to many control problems [20-21, 28]. Because FLC contains linguistic 

information to model the qualitative aspects of human knowledge, it can be designed 

based on deficient knowledge about the complex controlled system. Since FLC can 

overcome the environmental variation during the movements of vehicles, many FLC 

are developed and implemented in many autonomous vehicle control systems [22-23, 

34-36]. Besides, the control actions are smoothed through the well-built control rules. 

However, the global stability of FLC has also been questioned.  

Sliding mode control method is frequently used in many control systems 

because of its capability of dealing with uncertain systems, robustness under 

parameter variations, fast convergence speed, etc. In order to ensure global stability of 

the vehicle systems, we propose the controlled plant using a sliding mode controller in 

the thesis. However, there are two disadvantages – system dynamics must be exactly 

known and the control chattering occurs. 

To solve the disadvantage of the former, we adopt a fuzzy neural network 

approximator to approach the nonlinear unknown part of dynamics. Parallel to the 

development of FLC, neural networks are also applied to several control problems. 

Because both the neural network and fuzzy logic system are universal approximators, 

researches have been conducted to derive various fuzzy neural network controllers. A 

 2



direct and indirect adaptive control schemes using fuzzy systems and neural networks 

for nonlinear systems is proposed [19]. Moreover, researches augmented the sliding 

mode method with fuzzy logic systems or neural network or both are proposed 

[29-31]. 

To solve the disadvantage of the latter in this thesis, one way is to use the 

boundary layer [11], and the other way is to adopt  tracking design technique 

[9-10].  

∞

∞ ∞

H

In reality, however, utilizing some detecting sensors may be difficult or 

expensive to obtain accurate information of system states. Thus, the estimations of 

states from system output are required. Some kinds of observers are proposed [24, 

32-33]. 

1.3 Thesis Organizations 

The remainder of the thesis is organized as follows. In Chapter 2, the vehicle 

model and the configuration of a platoon of vehicles are described. Chapter 3 

introduces the fuzzy logic controller followed by the simulation results. In Chapter 4, 

four classes of controllers – a sliding mode controller, a sliding mode controller based 

on fuzzy neural approach, a sliding mode controller with the fuzzy neural approach 

and   performance, and -observer-based sliding mode controller with the H H
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fuzzy neural approximator are introduced respectively and the simulation results are 

shown in the section 4.6. Lastly, conclusions are included in Chapter 5. 
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Chapter 2  Descriptions of Vehicle Model and a Platoon 

of Vehicles 

 

In this chapter, the platoon model and the longitudinal vehicle model will be 

introduced. Incorporated with different controllers proposed in the following chapters, 

the model is conducive to evaluate the performance of the designed longitudinal car 

following collision prevention system.  

Thereinafter, we will illustrate a platoon of vehicles with no communication of 

lead vehicle, and then make a description about the transformation from a tracking 

problem to a regulator problem. Considering the vehicle engine power is limited in 

reality, we mention the reasonable range of the throttle of the vehicle finally. 

2.1 A Platoon of N Vehicles 

Consider a platoon of N automotive vehicles on a straight lane of a highway, 

described in Fig. 2-1 [1]. The platoon is assumed to move from left to right. The 

abscissa of the rear bumper of the ith vehicle with respect to a fixed reference point O 

on the road is denoted by .ix  The position of the lead vehicle’s rear bumper with 

respect to the same fixed reference point is denoted by . Safety distance between 

every two vehicles is assigned a slot of length L along the road. As Shown, for 

i=1,2,…,N,  denotes the deviation of ith vehicle position from its assigned 

lx

i∆
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position. The subscript i is used because i∆  is measured by the sensors located in the 

ith vehicle. Given the platoon configuration in Fig. 2-1, elementary geometry shows 

that : 

1∆ = lx  – 1x  – L 

i∆ = – x1−ix i – L    , i=2,3,…,N                    (2.1) 

We assume that i∆  is measured in the vehicle i and , together with its first and 

second derivatives, is used in the ith vehicle’s control law. The behavior of ith vehicle   

is related to the preceding vehicle’s information via sensors but not with 

communication. It is safer in the longitudinal control for collision prevention because 

it is unconcerned about loss of communication between the lead vehicle and the other 

vehicles in the platoon.  

 

 

 
xN                 x3               x2               x1               xl 
 

 

 

 

lead vehicle

L               L       N∆ 3∆       L       2∆       L      ∆  1

Fig. 2-1 Configuration of A Platoon of N Vehicles 
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2.2 Vehicle Model 

We assume that the road is horizontal, there is no wind gust, and all the 

vehicles travel in the same direction at all times. Fig. 2-2 shows the simplified vehicle 

model of  the ith vehicle in the platoon. The block ( ) specifies the force due to 

the air resistance, where  denotes the aerodynamic drag coefficient for the ith 

vehicle 

2
idi xK &

diK

2/diiCAρ , ρ  denotes the specific mass of air,  denotes the 

cross-sectional area of the ith vehicle, and  denotes the ith vehicle’s drag 

coefficient; F

iA

diC

i denotes the driving force produced by the ith vehicle’s engine; mi 

denotes the mass of the ith vehicle; ui denotes the throttle command input to the ith 

vehicle’s engine; and kmi denotes the ith vehicle’s mechanical drag. The longitudinal 

dynamics of the ith vehicle in the platoon are modeled as follows (for i=1,2,…,N) [1]: 

)()( ii

i

ii

i
i x

u
x

FF
&&

&
ττ

+−=                         (2.2) 

miidiiii kxKFxm −−= 2&&&                        (2.3) 

where iτ (.) denotes the engine time lag for the ith vehicle. Equation (2.2) described 

by a nonlinear differential equation represents the ith vehicle’s engine dynamics, and 

(2.3) represents Newtons’s second law applied to the ith vehicle modeled as a particle 

of mass mi. 

      Differentiating both sides of (2.3) with respect to time, we have 

iidiiii xxKFxm &&&&&&& 2−=                          (2.4) 
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Substituting the expression for  by (2.2), (2.4) becomes  iF&

iidi
ii

i

ii

i
ii xxK

x
u

x
Fxm &&&

&&
&&& 2

)()(
−+−=

ττ
                 (2.5) 

from (2.3) and (2.5) we obtain 

i
iii

ii
i

di

i

mi
i

i

di
i

ii
i u

xm
xx

m
K

m
kx

m
Kx

x
x

)(
12

)(
1 2

&
&&&&&&

&
&&&

ττ
+−








++−=             (2.6) 

where  denotes the variation of the ith vehicle’s acceleration. ix&&&

Let , , and ii ii iipx = vx =& ax =&& . The longitudinal ith vehicle dynamics can 

be written as 









+=
=
=

iiiiiii

ii

ii

uvgavfa
av
vp

)(),(&

&

&

                                (2.7) 

where    

 =),( iii avf ii
i

di

i

mi
i

i

di
i

ii

av
m
K

m
kv

m
Ka

v
2

)(
1 2 −








++−

τ
   and 

      =)( ii vg  
)(

1

iii vm τ
 

      The control objective is to keep ith vehicle follow it’s preceding vehicle and 

hold on a secure distance L, that is, ,1 Lxxl =−  ,21 Lxx =− …, and . 

Namely, to input throttle command u

Lxx NN =−−1

i such that i∆  can be driven to zero. At the same 

time,  and  are driven to zero, too. Meanwhile, we have changed a tracking 

problem to a regulator problem. 

i∆& i∆&&
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engine dynamics
im

1
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1

s
1

mik

2
idi xK &

−

−+
iu iii mF ξ= ix

 

Fig. 2-2 Simplified model of the ith vehicle in the platoon 

 

2.3 Power-Limited Acceleration 

      Maximum performance in longitudinal acceleration of a motor vehicle is 

determined by lots of limits; engine power is one of the most important factors of 

these limits. Fig. 2-3 [4] shows the performance characteristics of gasoline engine. 

Power and torque are related by the speed. Specifically, 

HorsePower(hp)=Torque(ft-lb)×Speed(rpm)÷5252             (2.8) 

Also,   

Power(kw)=0.746 HorsePower(hp)                         (2.9) ×

Thus, we obtain the reasonable range of ui is within 4000 N. Practically, with the 

advance of science and technology, maximum engine power limit is higher today. 

 

 9



   

 

 

 

 

 

 

 

Fig. 2-3 Performance characteristics of gasoline engine [4] 
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Chapter 3  Fuzzy Logic Control 

 

Fuzzy logic control is a useful methodology for system control in the presence 

of uncertainties and disturbances. The independence of expert knowledge of the 

controlled plants is a remarkable advantage in fuzzy logic controller (FLC) design. 

Besides, the control actions are usually smoothed through the well-built control rules. 

The basic principles of fuzzy logic were introduced by Zadeh in 1965, and the first 

application to the control of a dynamical process was reported by Mamdani in 1975. 

Because of the advantages such as easy implementation, suitability for complex 

dynamic systems, and high flexibility and robust nature, fuzzy controllers have been 

implemented in many fields [24-26]. 

The characteristic of FLC is that it adopts the linguistic control strategy to 

control plants without realizing their mathematical models. The linguistic control 

strategy of FLC is constructed according to the operator experience and/or expert 

knowledge. Experiences show that the FLC yields results superior to those obtained 

by traditional control algorithm in the complex situation where the system model or 

parameters are difficult to obtain. 

Typically, fuzzy controllers are based on four well-known stages: a 

fuzzification interface, a rule base, an inference engine, and a defuzzification interface 

as shown in Fig. 3-1. More detail descriptions for each stages are stated below. 
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X in U

Fuzzy Rule Base

Fuzzifier DefuzzifierFuzzy Inference

Fuzzy sets 
in U

Fuzzy sets 
in V

Y in VX in U

Fuzzy Rule Base

Fuzzifier DefuzzifierFuzzy Inference

Fuzzy sets 
in U

Fuzzy sets 
in V

Y in V

Fuzzy Rule Base

Fuzzifier DefuzzifierFuzzy Inference

Fuzzy sets 
in U

Fuzzy sets 
in V

Y in V

Fig. 3-1 Fuzzy System Architecture 

3.1 Fuzzy Set and Set-Theoretical Operators 

Definition 3.1 Fuzzy Set: Let U be a collection of objects, for example, , and 

be called the universe of discourse. A fuzzy set F in U is characterized by a 

membership function 

nRU =

]1,0[: →UFµ , with )(uFµ representing the grade of 

membership of U∈µ in the fuzzy set F.  

Definition 3.2 Support, Fuzzy Singleton: The support of a fuzzy set F is the point(s) 

at which Uu∈ )(uFµ achieves its maximum value. If the support of a fuzzy set F is a 

single point in U at which 1=Fµ , the F is called a fuzzy singleton. 

Definition 3.3 Intersection, Union, and complement: Let A and B be two fuzzy sets in 

U. The intersection A B of A and B is a fuzzy set in U with a membership function 

defined for all  by 

∩

Uu∈

BABA )}(),(min{)( uuu µµµ =∩

Uu∈

                  (3.1) 

The union of A B of A and B is a fuzzy set in U with the membership defined for all 

 by 

∪
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)}(),(max{)( uuu BABA µµµ =∪                      (3.2) 

Usually, the intersection and union operators are denoted by∧ and , respectively. The 

complement 

∨

A  of A is a fuzzy set in U with the membership function defined for all 

 by Uu∈

)(1)( uu AA µµ −=                           (3.3) 

3.2 Fuzzifiers 

The fuzzifier stage transforms crisp input from real values into fuzzy sets. 

Here we introduce three fuzzifiers as following: 

1. Singleton fuzzifier: the singleton fuzzifier maps a real valued point  into 

the fuzzy singleton A in U, in which the membership value is 1 at  and 0 at other 

points in U, i.e., 

Ux ∈*

*x



 ==

otherwise0
1)(

*xxxAµ                          (3.4) 

2. Triangular fuzzifier: the triangular fuzzifier maps into the fuzzy set A in U, 

in which the membership function is written as: 

Ux ∈*








=<−

−
−⊗⊗

−
−

=

otherwise0

,2,1,||if)
||

1()
||

1(
)(

*
*

1

*
11 nibxx

b
xx

b
xx

x i
n

nn

A

KL
µ      (3.5) 

where are positive parameters and symbol ib ⊗  is often chosen as algebraic product 

or minimum. 

3. Gaussian fuzzifier: the Gaussian fuzifier maps  into the fuzzy set A in U, in Ux ∈*
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which the membership function is written as: 

2
*

2

1

*
11 )()(

)( n

nn xxxx

A eex δδµ
−

−
−

−

⊗⊗= L              (3.6) 

where iδ are positive parameters and symbol ⊗  is often chosen as algebraic product 

or minimum. 

Finally, we summarize the above fuzzifiers. The singleton fuzzifier greatly 

simplifies the computation involved in the fuzzy inference engine for all membership 

functions. And the Gaussian and triangular fuzzifiers do, too. The Gaussian and 

triangular fuzzifiers can restrain noise in the input, but the singleton fuzzifier cannot. 

3.3 Deffuzzifiers  

The defuzzifier is defined as a mapping from a fuzzy set D in  to a 

crisp point  Hence, the task of the defuzzifier is to specify a point in V that 

represents the fuzzy set D. There are three types of defuzifiers introduced below. 

RV ⊂

.* Vy ∈

1. Center of gravity Defuzzifier 

The center of gravity defuzzifier specifies as the center of the area covered 

by the membership function of D. 

*y

           
∫
∫=

V D

V D

dyy
dyyy

y
)(
)(*

µ
µ

,                         (3.7) 

where is the conventional integral. ∫V

2. Center Average Defuzzifier 

Let ly be the center of the lth fuzzy set and be its height. The center lw
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average defuzzifier presents as *y

(Dµ

∑

∑

=

== M

l
l

M

l
l

l

w

wy
y

1

1*                            (3.8) 

3. Maximum Defuzzifier 

The maximum defuzzifier chooses as the point in V, at which  

achieves its maximum value. Define 

*y )( yµD

          )}(sup)|{)( yyVyDhgt D
Vy
µ

∈
=∈= .                 (3.9) 

hgt(D) is a set of all point in V, at which  achieves its maximum value. The 

maximum defuzzifier  is defined as an arbitrary element in hgt(D), i.e., 

)( yDµ

*y

*y =any point in hgt(D).The mean of maximum defuzzifier is defined as: 

∫

∫
=

hgt D

hgt D

dyy

dyyy
y

)(

)(
*

µ

µ
                       (3.10) 

where is an integration for the continuous part of hgt(D) and it is a summation 

for the discrete part of hgt(D). 

∫hgt D)(

3.4 Fuzzy Rule Bases 

The fuzzy rule base consists of fuzzy IF-THEN rules. It is the core of the 

fuzzy system in a sense. And all other stages are used to implement these rules in a 

reasonable and efficient manner. Hence, the fuzzy rule base comprises the following 

fuzzy IF-THEN rules: 

Rule i: IF  is  and …and  is  THEN y is l 1 n nx iA x iA iD        (3.11) 
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The canonical fuzzy IF-THEN rules in the form of (3.11) includes the following 

ones: 

(1) Partial rules: 

IF  is  and …and  is  THEN y is 1 1 m mx iA x iA iD                (3.12) 

(2) Or rules 

IF  is  and …and  is  or  is  and …  is THEN y is 1x iA1 mx i
mA 1+mx i

mA 1+ nx i
nA

iD                                 (3.13) 

(3) Singles fuzzy statement 

y is iD                                                    (3.14) 

3.5 Fuzzy Inference 

The fuzzy inference is a reasoning method using the fuzzy theory, and whereby the 

expert knowledge is presented using linguistic rules. The fuzzy inference introduced 

as following. 

Product Inference:    (3.15) ∏
∈=

= ))]()()((sup[max)(
1

yxxy DiAA
Ux

M

lD l
i

µµµµ

Minimum Inference:     (3.16) ))](),()...,(),(min(sup[max)( 11 1
yxxxy ll

n
l DnAAA

Ux

M

lD µµµµµ
∈=

=

The product inference and minimum inference are the most commonly used fuzzy 

inference in the fuzzy system and other fuzzy applications. In the Fig.3-2 shows the 

product inference and minimum inference [25-26]. 
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Fig. 3-2 (a) Minimum inference (b) Product inference 

  

3.6 Longitudinal Fuzzy Logic Control of a Platoon of Vehicles 

      In this section, we design a FLC by imitating a PD controller [6] for a platoon 

of vehicles. Design procedures are stated below. 

Step 1) Define  and ∆  from Eq.(2.1) as two input variables of ith FLC; and i∆ i
&

iu  as an output variable of ith FLC; the membership functions for input ,∆ and 

output  are shown in Fig. 3-3. 

i∆ i
&

iu
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Fig. 3-3 Membership function for input and output variables 

Step 2) The main idea is : “ if 0>∆ i , input positive net force to decrease the space 

of two vehicles; if , input negative net force to increase the space of two 

vehicles;  is used to amend the strategy above”  Table. 3-1 is the rule base we 

obtain. 

0<∆ i

i∆&

Step 3) Select one type of the fuzzifiers, defuzzifiers, and fuzzy inferences. The most 

frequently used triangular membership, the center-of-gravity defuzzification, and the 

“max-min” reasoning method are adopted here to carry out the algorithm. 
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Table. 3-1 Rule Base of the Fuzzy Logic Controller 

 

3.7 Simulation Results 

      To examine the behavior of a platoon of vehicles under the above controller, 

we run simulations for a platoon consisting of 3 different types of vehicles. Three 

types of vehicles with their relevant parameters referring to [7][8] are shown in the 

Table. 3-2 and used in the simulations. In the simulation conducted, all the vehicles 

are assumed to be initially traveling at the steady-state velocity of v0 = 17.9 m/s (i.e., 

40 mph). Beginning at time t = 0 s, the lead vehicle’s velocity is increased from its 

steady-state velocity value of 17.9 m/s until it reaches its final value of 21.9 m/s (i.e., 

50 mph): the maximum jerk and the peak acceleration values corresponding to this 

velocity time profile are 0.5 m/s3 and 1m/s2 , respectively (see Fig. 3-4 and Fig. 3-5). 

Take three following vehicles as a simulation example, the order of vehicles in the 
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platoon followed the lead vehicle is as follows: Daihatsu Charade CLS followed by 

Buick Regal Custom followed by BMW 750iL. Consider the vehicle loading, total 

mass of each following vehicle is conditioned by adding vehicle curb mass and 

passengers’ mass. Fig. 3-6 ~ Fig. 3-9 show the simulation results  : 

 

Type  Daihatsu Charade 

CLS 

Buick Regal 

Custom 

BMW 750iL 

Vehicle i 1 2 3 

Curb mass(kg) 916 1464 1925 

Passengers’ mass(kg) 91, 91, 91 64, 64 75 

Vehicle mass mi(kg) 1189 1592 2000 

Kdi(kg/m) 0.44 0.49 0.51 

)(siτ  0.2 0.25 0.2 

kmi(N) 352 392 408 

Table. 3-2 Simulation Model Parameters of Fuzzy Logic Control 
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Fig. 3-4 Lead Vehicle’s velocity time profile: vl versus t 
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Fig. 3-5 Lead Vehicle’s acceleration time profile: al versus t 
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Chapter 4  H∞Observer-based Sliding Mode Control 

with Adaptive Fuzzy Neural Approach 

 
4.1 Fundamental Conceptions of Sliding Control 

Model imprecision, which is a common trouble in system control, can have 

strong adverse effects on nonlinear control systems. Therefore, any practical design 

must address it explicitly. A simple approach to robust control is the so-called sliding 

mode control (SMC) methodology. It allows an nth-order problem to be replaced by an 

equivalent 1st-order problem, which is intuitively easier to be addressed. For the class 

of systems to which it applies, sliding controller design provides a systematic 

approach to the problem of maintaining stability and consistent performance in the 

face of modeling imprecision. 

Take a single-input dynamic system for example: 

ubfx n )()()( xx +=                               (4.1) 

where the scalar x  is the output of interest, the scalar  is the control input, and 

 is the state vector. In equation (4.1),  (in general 

nonlinear) is not exactly known, but the extent of the imprecision on  is upper 

bounded by a known continuous function of ; similarly, the control gain  is 

not exactly known, but is of known sign and bounded by a known, continuous 

function of . The control problem is to get the state  to track a specific 

u

Txxx ][ )1= L&x n( − )(xf

f )(x

x )(xb

x x
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time-varying state  in the presence of model impression 

on  and b .  

Tn
dddd xxx ][ )1( −= L&x

)

dx

)(xf (x

x −=

n
d xxx ~~~[~ 1( −=−= L&xxx

nR ;( ts x

x
dt
dts

n
~);(

1−







 += λx

λ

)(ts

x

u

ss
dt
d η−≤2

2
1

η

Let x~  be the tracking error, and let  

T])                        (4.2) 

be the tracking error vector. Furthermore, let us define a time-varying surface  in 

the state-space 

)(ts

 by the scalar equation 0) = , where 

,                                (4.3) 

and  is a strictly positive constant. The problem of tracking dxx ≡  is equivalent 

to that of remaining on the surface  for all t ; indeed  represents a 

linear differential equation whose unique solution is 

0> 0≡s

0~ ≡x

s

 as . Thus, the 

problem of tracking the n-dimensional vector , i.e., the original n

∞→t

s

)t

d
th-order tracking 

problem in , can be replaced by a 1x st-order problem of keeping the scalar quantity 

 at zero [11]. This simplified 1s st-order problem of keeping  at zero can be 

achieved by choosing the control law  such that outside of   (

,                                    (4.4) 

where  is a strictly positive constant [11]. Eq. (4.4) is called sliding condition. 

Essentially, (4.4) states that the squared “distance” to the surface, as measured by , 

decreases along all system trajectories. 

2s
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However, in order to account for the presence of modeling imprecision and 

disturbances, the control has to be discontinuous across . Since the 

implementation of the associated control switching is necessarily imperfect, this leads 

to chattering. 

)(ts

In general, chattering must be eliminated for the controller to perform properly. 

This can be achieved by smoothing out the control discontinuity in a thin boundary 

layer neighboring the switching surface 

,0     }|);(|,{)( >≤= φφxx tstB                         (4.5) 

where φ  is a boundary layer thickness, and  is the boundary layer width, 

as Fig. 4-1 illustrates for the case 

1/ −= nλφε

2=n . In other words, outside , we choose  )(tB

 

ε

ε

φ

Boundary 

x&

x  

0=s

 

 

 

 

 

 

 

 
Fig. 4-1 Boundary layer 
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 Fig. 4-2 Control interpolation in boundary layer 

control u satisfying sliding condition (4.4), which guarantees that the boundary layer 

is attractive - hence invariant: all trajectories starting inside B(t=0) remain inside B(t) 

for all t≥ . Then, we interpolate u inside B(t), as illustrated in Fig. 4-2. This leads to 

tracking within a guaranteed precision 

0

ε  (rather than “perfect” tracking), and in the 

meantime eliminates the chattering. 

4.2 Sliding Mode Control 

Let’s consider the first two vehicles in the forefront of the platoon. We will 

discuss the first couple of vehicles for detail thereinafter since the behavior of other 

couples of vehicles are similar. By rearranging (2.7) the first follow vehicle dynamic 

is written as  
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And, the lead vehicle dynamic is stated as 
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where , , , and  is the variation of acceleration of the lead 

vehicle for increasing its velocity from  to  in a period of time. Substituting 

Eq. (4.6) and (4.7) to Eq. (2.1), we have  

ll xp = ll xv &= ll xa &&= Va

v0 fv

111111

1 l

)(),()( uvgavftVa −−=∆&&&                 (4.8) 

where =∆ Lxx −− 1 1 1 11 1 1

11 11

. Let = , , and = e , (4.8) is rewritten 

as 

∆ )1(e )2(e=∆& ∆&& )3(
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where  is a nonlinear function which depends on  and , and 

 stands for the control input. Let =  and 

= . Therefore, (4.8) and (4.9) become 

),()( 111 avftVa −

)(vg−

1v

1f

1a

)11u

G

),( 111 avF ,()( 1 avtVa −

)(v
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Let e 1= . The control target of this case is to find an appropriate 

control law  such that the tracking error e

[ Teee )3(  )2(  )1( 111

1u

)(ts

]

1

1 is zero. Furthermore, let the sliding 

surface  be expressed in the state-space  by the scalar equation  

as 

3R 0);( =ts e

)1()2( 2)3()1();( 1
2

111

2

eeee
dt
dts λλλ ++=






 +=1e , 0>λ    (4.12) 

From (4.11), (4.12), and following similar derivations in [5], we can use the sliding 

mode control method and obtain a control law derived in Lemma 1. 

Lemma 1: Consider the nonlinear system (4.11) with given nonlinear function 

. Suppose that control input is chosen as ),( avF 111

12212111111111 1 ))];(( )2()1()3(2)2(),([)( 21 tssignkepepeeavFvGu e−−−−−−= − λλ               

(4.13) 

and that P is positive definite symmetric matrix, P ∈   satisfies the Lyapunov 

matrix equation 

2x2R

                                                (4.14) QPAPA −=+T
11
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Proof: 
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Consider a Lyapunov function candidate as following: 

2
1

2
1 2 += sv 11 ePe T                               (4.16) 

here P is positive definite symmetric matrix. 

By using (4.11), (4.12), (4.14), and (4.15), the time derivative of (4.16) is 
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uGFees
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1])3(2)2([ TTT

11111
2 PeePAPAe 11111λλ      (4.17) 

Apply (4.13) to (4.17), we have the following relationship: 

0 and 0s    0
2
1

2
1)( TT ≠≠∀<−−=−⋅−= 11111 eeQeeQe skssignksv&      (4.18) 

We conclude  and 0→s )0(  0 →→ ee 11  as ∞→t . This completes the proof. 

□ 

Note that if we include the design of (4.5), (4.13) becomes 
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where )/);(( φtssat 1e =
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4.3 Sliding Mode Control with Fuzzy Neural Network Approximator 

In practical applications, however,  is generally uncertain rather 

than given. The controller of (4.13) derived above is not always obtainable. Therefore, 

a new controller needs to be designed taking into account the unknown nonlinear 

function, which will be adequately approximated by a fuzzy-neural approximator. 

),( avF 111

]1111 1

The configuration of the fuzzy-neural network shown in Fig. 4-3 consists of a 

fuzzy system and neural network. The fuzzy system can be divided into two parts: 

some fuzzy IF-THEN rules and a fuzzy inference engine. The fuzzy inference engine 

uses the fuzzy IF-THEN rules to perform a mapping from an input linguistic vector 

 to an output linguistic variable . [ 3)3()2()1( Re ∈= Teee Re ∈)(o

The ith fuzzy IF-THEN rule is written as 

Ri: If  is  and  is  and  is    than  is    (4.20) 

where nd 

)1(1e

i AA1

iA1

iA3,  a

)2(1e

i

iA2 )3(1e iA3
iy iB

i
2 , B  are fuzzy sets with membership functions ))(1 j(ei

jA
µ  

and . And  is the point at which . By using produce inference, 

center-average and singleton fuzzifier, the output of the fuzzy-neural network can be 

)( i
B

yiµ iy 1) =( iy
Biµ
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expressed as 
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Fig. 4-3 Configuration of a fuzzy-neural approximator 
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where ))(( 1 jei
jA

µ  is the membership function value of the fuzzy variable e ,   

h is the total number of the IF-THEN rules ,  is the point at which , 

 is an adjustable parameter vector, and        

 is a fuzzy basis vector, where  is defined as 

)(1 j

1) =iiy (
B

yiµ

Thyy ][ 1=θ

Th ][ ϕϕϕ =

y 2 L

21 ϕ L iϕ
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When the inputs are given into the fuzzy-neural network shown in Fig. 4-3, the truth 

value (layer III) of the antecedent part of the ith implication is calculated by (4.22). 

Among the commonly used defuzzification strategies, the output (layer IV) of the 

fuzzy-neural network is expressed as (4.21). Therefore, the fuzzy logic approximator 

based on the neural network can be established. Fig. 4-3 shows the configuration of 

the fuzzy-neural function approximator. The approximator has four layers. At layer I, 

input nodes stand for the input linguistic variables (1), , and . At layer 

II, nodes represent the values of the membership functions. At layer III, nodes are the 

values of the fuzzy basis vector 

iϕ

1e )2(1e )3(1e

ϕ . Each node of layer III performs a fuzzy rule. The 

links between layer III and layer IV are full connected by the weighting factors 

, i.e., the adjusted parameters. At layer IV, the output stands 

for the value of . 

Thyyy ][ 2 L=θ

)(eo

1

1

1

1 1 1

      To approximate the uncertain nonlinear function  in (4.11), 

adaptive update laws to adjust the parameter vector  in (4.21) of the fuzzy-neural 

approximator need to be developed. Let  be the estimation function for the 

uncertain nonlinear function . That is, 

),( 111 avF

θ

1̂F

F

                                       (4.23) =)|(ˆ θeF )(eθ ϕT
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In order to derive the adaptive update law, the following assumption is required. 

Assumption 1 [27]: 

Let  belongs to a compact set1e { }∞<≤∈=
11 e11e eRe mU :3  and  is 

designed parameter. It is known a prior that the optimal parameter vector 

em

])|(ˆsup[minθ 11
e

*

1

θe1θ
1eθ

FF
UM

−=
∈∈

arg

{

 lies in some convex region 

}θθ θRθ mM ≤∈ :3= , where the radius  is constant.                  θm

□ 

Thus, to approximate the uncertain nonlinear term , Eq. (4.10) becomes  1F

1∆&&& =θ                          (4.24) wuvGT
++ 111

* )()( 1eϕ

where  is the lumped uncertainty. )(*
1 1eθ ϕ

TFw −=

To facilitate the design process of the controller, the lumped uncertainty is generally 

assumed to have an upper bound, 

                  ,uww ≤   is a positive constant                 (4.25) uw

Based on above condition, a control law via fuzzy-neural approximator can be 

obtained from Lemma 2 below. 

Lemma 2: Consider the nonlinear system (4.11) with uncertain nonlinear function 

, which is approximated as (4.24). Suppose Assumption 1 and (4.25) are 

satisfied and control input is chosen as  

),( avF 111
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(4.26) 

where  is the estimate of , and the update law is chosen as θ̂ *θ

                                              (4.27) ϕsΓ=θ&̂

where >0 is the adaptation matrix, , kΓ uwkk += 2>0, and s is the sliding surface. 

Then  and  as 0→s 0→e ∞→t . 

□ 

Proof: 

Consider the Lyapunov function 
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2
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where θ~ =θ . θ̂* −

The time derivative of (4.28) is  
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Apply (4.26) and (4.27) to (4.29), and let , we have following 

relationship: 

uwkk += 2

 35



θΓθeQeeeθ 1
T

111
&

& ˆ~))2()1((
2
1]));(( )2()1()(~[ 1

221211122121
−−++−+−−−= TT pepeswtssignkepepsv ϕ

))((~
2
1]));(( )(~[ 1

11
T

111 eΓΓθeQeeeθ ϕϕ swtssignks TT −−−+−=  

12 2
1])()([ eQe T

1−++−= wssignwks u   

0 and 0s      0  
2
1

2 ≠≠∀<−−< 11
T

1 eeQesk                      (4.30) 

We conclude  and e  as 0→s 0→1 ∞→t . This completes the proof. 

□ 

4.4 Sliding Mode Control with Fuzzy Neural Network Approximator and  

performance 

∞

∞

2

H

      As shown in (4.25) and (4.26),  needs to be determined in 

advance to construct the control input , In practical applications, however, the 

exact upper bound  cannot be chosen so as to attenuate the uncertainties, large 

control chattering nevertheless occurs. Simulation with a sliding mode controller 

illustrate this effects for different k selected. To relax the impractical constraint, a new 

control law is designed by using the  tracking design technique based on a much 

relaxed assumption [5], The lumped uncertainty is assumed such that 

uwkk += 2

1u

uw

H

                       ),0[ ],,0[ ∞∈∀∈ TTLw                      (4.31) 

Lemma 3: 

Consider the nonlinear system (4.11) with uncertain nonlinear function ,  ),( avF 111

which is approximated as (4.24). Suppose Assumption 1 ,Eq. (4.25), and Eq. (4.31)  
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are satisfied; the control input is chosen as 
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(4.32) 

and the update law as (4.27), where 0>ρ  is the design constant serving as an 

attenuation level,  is the sliding surface. Then the  tracking performance [9], 

[10] for the overall system satisfies the following relationship: 

s ∞H

∫ ∫+Γ++≤ −T TTTT dwsd
0 0
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2
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2
1 ττρτ θθePeeQe 1111  

(4.33) 

where θθθ ˆ~ * −= . 

□ 

Proof: 

Consider the Lyapunov function 

θΓθePe 11
~~

2
1

2
1

2
1 12 −++= TTsv                     (4.34) 

The time derivative of (4.34) is (see (4.29)) 
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&
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2
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221121111
*
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(4.35) 

Apply (4.27) and (4.32) to (4.35), we have 

22222

2
1

2
1

2
1)(

2
1

2
1 wwwsv TT ρρρ

ρ
+

−
≤+−−

−
= 1111 eQeeQe&             (4.36) 

By (4.31), we integrate (4.36) from t=0 to t=T, and obtain 
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∫∫ +≤
TT T dwvd
0

22

0
)(

2
1)0()()(

2
1 ττρτττ 11 eQe                            (4.37) 

Substituting (4.34) to (4.37), we have the  tracking performance, satisfying 

(4.33) 

∞H

∫ ∫+++≤ −T TTTT dwsd
0 0

2212 )(
2
1)0(~)0(~

2
1)0()0(

2
1)0(

2
1    

2
1 ττρτ θΓθePeeQe 1111  

This completes the proof. 

□ 

Remark: 

If a set of initial condition 0)0( =1e , 0)0( =s ,  can be obtained, and 

Q=I, then control performance of the overall system satisfies 

)0()0(ˆ *θθ =

ρ≤
∈ 2

2sup
2

wLw

1e
                             (4.38) 

where ∫=
T T d
0

2

2
)()( τττ 111 eee , ∫=

T
dww

0

22

2
)( ττ . That is, an arbitrary attenuation 

level can be obtained, if ρ  is adequately chosen. 

4.5 Observer-based Sliding Mode Control with Fuzzy Neural Network 

Approximator and  performance ∞H

Utilizing sensors to obtain the measurements of the parameters in the vehicle 

system, such as the velocity, the acceleration,… etc., is difficult or expensive. 

Considering the technical difficulties and the economic benefits, we adopt an observer 

to estimate the plant output state vector while we assume that only the headway 

information of two vehicles is measurable. Under this constraint, a sliding mode 
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observer is proposed for state estimation [3][37]. The sliding observers offer 

advantages similar to those of sliding controllers such as robustness to parameter 

uncertainty and easy application to important classes of nonlinear systems.  

In this section, our task is to combine the plant and controller with an sliding 

observer which estimates the state vector ; the estimated vector is denoted as  

and used as the input both of the sliding mode controller and of the adaptive 

fuzzy-neural network approximator  instead of state feedback  used before. 

1e 1ê

1

11111

e

Rewrite (4.11) as 

                                                 (4.39) 
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where ),( uGFuH +=1e . 

Consider the following observer [3][37][32]: 

                            (4.40) 
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where  are the observer output states; PTeee )]3(ˆ  )2(ˆ  )1(ˆ[ˆ 111=1e

∈ 2x2R

o is positive definite 

symmetric matrix, Po   satisfies the Lyapunov matrix equation 
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T                              (4.41) 

where Ao =
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 is Hurwitz. Thus, the applied control to (4.39) and (4.40) is 
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solution of (4.32) replacing e  by . Such an observer leads to the error 

(

1 1ê

11 eee ˆ~
1 −= ) dynamic of the form: 
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where , and ),ˆ(),( 11111 uHuHH 11 ee −=∆ ))1(~( 1esign =
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Then, we assume that: 

Assumption 2: 

0~1 1
|)( =⋅∆ eH  is globally Lipschitz continuous in its first argument 

1e3) k≤1e 11 ,( uH∆ . 

□ 

Assumption 3: 

o
2P>

32
1
k

, where  is the 2o
2P nd column of matrix Po solution of (4.41). 

□ 

Theorem 1: Consider the nonlinear system (4.11) with uncertain nonlinear function 

, which is approximated as (4.24). And with control defined as in Lamma 3, 

to which observer (4.40) is associated. Suppose Assumption 1-3, (4.25), and (4.31) are 

satisfied. Then for any initial conditions, the state e  of the observer converges 

toward the state  of the system. 

),( 111 avF

1ˆ

1e
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Proof: 

Consider the partial Lyapunov function 2
1 )1(~

2
1 ev =  leading to 

))]1(~( )2(~)[1(~)1(~)1(~
111111 esigneeeev λ−== && , with the constraint 1max1 )2(~ λ<e  we can 

obtain ( ) )1(~)1(~)2(~
1111 eeev σλ −<⋅−<&  and 0)1(~ →e  in finite time (t1). The 

remaining estimation error can then be shown to decay exponentially using Filippov’s 

work. Taking a convex combination of the dynamics on each side, we have 
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            (4.43) 

For t＞t1, eliminatingγ  from above equations, (4.43) becomes 
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11 1111111
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and thus ensures that  decreases to zero 1e′

□ 

Remark: 

In many applications, the ))1(~(esign 1  in (4.42) is replaced by a saturation function of 

the form 
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in order to remedy the control chattering [24]. 

Naturally, to prove asymptotic stabilization of the controlled plant plus the 

observer, we use the following Lyapunov function : 
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The time derivative of (4.47) is  
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Apply  

to (4.48), and let , we have following relationship: 
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This completes the proof. 

□ 

4.6 Simulation Results 

      To examine the behavior of a platoon of vehicles under the above controller, 

we run simulations for a platoon consisting of 3 different types of vehicles again. 

Three types of vehicles with their relevant parameters are the same to the ones shown 

in the Table. 3-2 and are used in the simulations. In the simulation conducted, all the 

vehicles are assumed to be initially traveling at the steady-state velocity of v0 = 17.9 

m/s (i.e., 40 mph). Beginning at time t = 0 s, the lead vehicle’s velocity is increased 

from its steady-state velocity value of 17.9 m/s until it reaches its final value of 21.9 

m/s (i.e., 50 mph): the maximum jerk and the peak acceleration values corresponding 

to this velocity time profile are 0.5 m/s3 and 1m/s2 , respectively (also see Fig. 3-4 and 

Fig. 3-5). Take three following vehicles as an simulation example, the order of 

vehicles in the platoon followed the lead vehicle is as follows: Daihatsu Charade CLS 

followed by Buick Regal Custom followed by BMW 750iL. Consider the vehicle 
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loading, total mass of each following vehicle is conditioned by adding vehicle curb 

mass and passengers’ mass. From Fig. 4-5 to Fig. 4-9 are the simulations of the 

application using a sliding mode controller with the boundary layer. From Fig. 4-10 to 

Fig. 4-14, we can see that the fuzzy neural approximator can approximate the 

uncertain nonlinear term of the system. From Fig. 4-15 to Fig. 4-19 , we apply the 

 performance with the control law obtained in section 4.3. It shows that the 

performance is better and the chattering is attenuated, too. From Fig. 4-20 to Fig. 4-24, 

the observer is associated to estimate the system states, it shows that performance is 

still acceptable. 

∞H
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Fig. 4-4 Block Diagram of Overall System 
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symbols parameters(values) 

λ  1 

λ  1 

λ  2 

3λ  1 

 1.2 

ρ  0.3 

P21 0.5 

P22 1.5 

φ  1.0 

01 |ˆ
=∆ t  -0.1 

02 |ˆ
=∆ t  0.2 

03 |ˆ
=∆ t  0.1 

1 50I 

2 40I 

3 40I 

1

2

k

Γ

Γ

Γ

Table. 4-1 Simulation Model Parameters of Modified Sliding Mode Control 
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Fig. 4-5 321   , , ∆∆∆ and versus t 

 
Fig. 4-6 versus t 321   , , , pandpppl
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Fig. 4-7 versus t 321   , , , vandvvvl

 
Fig. 4-8 versus t 321   , , , aandaaal
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Fig. 4-9 versus t 321   , , uanduu

 
Fig. 4-10 321   , , ∆∆∆ and versus t 
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Fig. 4-11 versus t 321   , , , pandpppl

 
Fig. 4-12 versus t 321   , , , vandvvvl
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Fig. 4-13 versus t 321   , , , aandaaal

 
Fig. 4-14 versus t 321   , , uanduu
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Fig. 4-15 321   , , ∆∆∆ and versus t 

 
Fig. 4-16 versus t 321   , , , pandpppl
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Fig. 4-17 versus t 321   , , , vandvvvl

 
Fig. 4-18 versus t 321   , , , aandaaal
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Fig. 4-19 versus t 321   , , uanduu

 
Fig. 4-20 321   , , ∆∆∆ and versus t 
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Fig. 4-21 versus t 321   , , , pandpppl

 
Fig. 4-22 versus t 321   , , , vandvvvl
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Fig. 4-23 versus t 321   , , , aandaaal

 
Fig. 4-24 versus t 321   , , uanduu
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Chapter 5  Conclusions 

 

In this thesis, we modeled mathematically both vehicle and car-following 

systems. In order to gain better performance and ensure the robustness and global 

stability, a sliding mode controller with the fuzzy-neural network approximator and  

performance was proposed. Moreover, considering the technical difficulties and the 

economic benefits, we assumed that only the relative distance of two vehicles was 

measurable. Thus, an observer-based modified sliding mode controller was developed. 

∞H

The control performance of the proposed system were simulated. Simulation 

results demonstrated the validity and effectiveness of the controlled systems. The 

system with the modified sliding mode controller showed a better performance than the 

one controlled by a sliding mode controller did. With these two controllers, the 

robustness and the global stability were both guaranteed during the vehicles-following 

process in the presence of the uncertainties and disturbances. 

In designing the output feedback control law of an observer-based modified 

sliding mode controller, no differentiation of system outputs was performed in order to 

avoid the noise amplification associated with numerical differentiation, and no 

knowledge on nonlinearities of the nonlinear parts of the system was required. This 
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controller is subject to on-line tuning for a nonlinear system. Although the performance 

of the car-following system with an observer is not as good as the one with a modified 

sliding mode controller which were combined with an aprroximator and  

performance conception, it is still satisfying.  

∞H
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