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Ito evaluate the

(CART) to segment

> used the
oste o tree C oray matter (GM),

white m: we used the boosted
decision tree thro altiscle retinex algorithm to greatly
improve the brain tissue segmenta S ages. The accuracy rate was the best

when we used the boosted decision tree algorithm combined with a multiscale retinex

algorithm as a preprocessing procedure to classify GM, WM, or CSF in brain MR images.

il



The results shows that a boosted decision tree combined with preprocessing by the multiscale

retinex algorithm can successfully improve the accuracy rate of MR brain tissue segmentation

and can achieve a high quality of tissue segmentation in brain MR images.
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Chapter 1  Introduction

1.1. The overview of the magnetic resonance imaging

Magnetic resonance imaging ( as bee ed to diagnose various diseases for a
long timerand : importa C tec edicinefor the effective and

organs, blood

quality in

Idiscovered the NMR

about NMR founded

the bases of

cnomenon

of spin is more auclei with odd number of trons. One of these is

hydrogen. Hydrogg i : n and is contained in“water or fat can create the

Viore than 63% of the human body is composed of water or fat.

strongest magnetic moment.
Thus, magnetic dipole variations of the hydrogen are widely applied in imaging for human

body. In MRI procedure, the directions of magnetic field (B,,B,, and M ) and three axes are



shown in Figure 1.1. Three axes are defined in MR imaging domain which are x axis (from
back to front), y axis (from left arm to right arm), and z axis (from head to feet). The spin of

proton in hydrogen can also create a tiny magnet. A collection of the magnetic dipole

directions of spin of protens in k y anged insthe same direction of the magnetic

field when al he ; . The magnetic dipole
direction “magnetic field. The

he units

aluate

0,000

II’X-III-I-

para

is around t

frequency of precess

ratio and the magne

U§.iS 42.58 M

p

a o.f an exte magnetic field (B,). Larmor frequency of Hyd

tion of proton of hydrogen in hu 1g z axis and its
precession ency als etic field (B,) for aligning the
protons. In order to acquire signals agnetic dipol¢ variations from hydrogen nuclei,
the energy of a radio frequency (RF) pulse must be used to generate the signals and then the

RF pulse coil transmitter will be turned off. When the same precession frequency of a RF

pulse emits to protons, the nuclear magnetic resonance (NMR) phenomenon is generated. The

_2-



RF pulse is created from RF coils to construct a RF magnetic field (called B, field). The
strength of B, field is smaller than that of external magnetic field (B, ) along the x-y plane.

The energy transmitted from the RF pulse and B, field is absorbed into protons of hydrogen

in human body to force pendicular direction (M,_, ) to z axis.

The energy of pro F eld R d

he direction of the

7 .Will ?ealign to the z direction (direction%f “B, e RF pulse is
||

he original

Eand M) in MR

imaging systems.

Two important parameters existing in FID procedure are T1 and T2. Two kinds of

relaxation processes are: T1 relaxation time (longitudinal relaxation time) and T2 relaxation

-3-



time (transverse relaxation time). T1 relaxation time is the period while the protons release the
energy absorbed from the RF pulse as heat to their surrounding environment (lattice) and the

direction of a collection of magnetic dipole of all protons return to their equilibrium position

(the original direction of compone z directi orglongitudinal plane). T1 relaxation

time is also ¢alled ‘spin ion ti the period while the

|
protons re gy absorbed from the RF pulse to their: g protons (spin) and

"y

¢ causes a decrease in transverse magnetization

|
(M, ane) . T2

"

on time is also called s
| | |

n
types of M

|| | | r |
-weighted. image, T2-weightec T1-weighte age i
| |
| | | | |
constructed differen

mage is obta

T2-weighted axation t
[ ||

Id gired wi

eva i ample of MRI s
i

is shown in Figure

Figure 1.2 An example of MRI system (MRI/MRS Lab, National Taiwan University).

4.



1.2. Brain MR image quality and segmentation problem

In this dissertation, we investigate some problems about MR image inhomogeneity and

noise that might affect the¢ image quality and decreasesthe accuracy of segmentation for

diagnosis applicatio MR image quality, to

increa > the high quality of

outside the f

e to the bods

utions, backg

noises, and

| |
of segmlqing the

surface for analyzing s gray matter (GM) and

n
matter (WM) significan ects clinical diagnoses, but this is difficult to be achieve

For MR image te inhomogeneity and

segmentation are two main proble Se , we will review the literatures about

inhomogeneity correction, segmentation approaches, and inhomogeneity correction prior to

segmentation approaches for MR images.



1.3.1. Reviews of the MR image inhomogeneity correction approaches
One of these factors is RF inhomogeneities of MR images. It often occurs in MR images

obtained by receiving with surface coils during scanning on MR imaging. Several techniques

were urged on improvement e coils to increasesthe MR image quality to help the

L

clinical diagn uE effects of RF inhomogeneities by
improving through the hardware technique. easy way through

geneities.

(¢ d the
d real data to

reduce in i i n uniform image. The

relative seg ati mogeneous image prior to the

segmentation. Ahn et al. [14] proposed a method of local adaptive template filtering for
enhancing the signal-to-noise ratio (SNR) in MRI without reducing the resolution. Moreover,

Styner et al [15] showed that a parametric bias-field correction method could correct bias

distortions that are much larger than the image contrast. Likar et al. [16] proposed a

-6-




model-based correction method to adjust inhomogeneity in the intensity of an MR image.
They applied an inverse image-degradation model where parameters were optimized by

minimizing the information content of simulated and real MR data. Lin et al. [17] used a

wavelet-based algorithms to oroximate S e sensitivity profiles. They corrected

image intensi ( used a parallel MRI method

sitivity profile of surface coils from the ptured without using

) improve

€S

ical

brain tissue,

tissue cl egmentation, and characterizati us brain diseases such

as sclerosis, ep S % 28, 29]. The accuracy of
segmenting the cortical surface for analyzing the v¢ es of different tissues such as gray
matter (GM) and white matter (WM) significantly affects clinical diagnoses, but this is

difficult to be achieved due to the presence of imaging noise and inhomogeneities. Several

segmentation techniques have been proposed for improving the detection of brain structures

-7-



in MR images in diagnostic and neuroanatomical applications. Both manual and automatic
segmentation methods are used to segment brain MR images. Manual segmentation such as

thresholding is a traditional method used to distinguish different tissues in MR brain images

[30-32], but this is diffic in| the | presence awlow contrast-to-noise ratio, low

signal-to-noisg ratio (SNR e gray- distributions, and it is

also ~ve !‘

e and time-consuming [33]. erals_studies have

structures
roquin
icient
Bayesian alg

model frame

ally
form
e imilarity on

olde '*:

combined with registrati sion operation, and

ormation fusion

fuzzy region growing to automatic segment brai or tissues on MR images. Xia et al.
[41] proposed a knowledge-driven algorithm for automatically delineating the caudate
nucleus (CN) region in MR-imaged human brains. MR image tissue segmentation is

important to accurately distinguish gray matter (GM), white matter (WM), and cerebral-spinal

-8-



fluid (CSF) in the brain [34, 35, 42, 46, 47], while automatic MR image segmentation is often
used to classify brain tissue. Many automatic segmentation techniques use probabilistic

classification to segment brain tissues [34, 43, 44, 48], while others use wavelet coefficients

as spatial features of voxels in three-dimensic imaging for clustering the GM, WM,
and CSF wit #A% en used to' test phantom, normal,

of partial volume

been used

I[dll-li-

0 the anatomical
structures of human body . is still a difficult problem.
Therefore, many researche eproces intensity “inhomogeneity correction and then
segmented MR images to achieve the better image quality. Zhou et al. presented a method of
RF inhomogeneity correction for brain tissue segmentation in MRI [46]. They proposed a

correction method to model image intensity variation to correct inhomogeneity of MR images

-9.




from both phantom and physical data to improve the segmentation. The results showed a
significant improvement of MR image segmentation through preprocessing by this

inhomogeneity correction. Andersen et al. proposed a robust and comprehensive approach for

automatic segmentation-an ti e tissue vol neasure of normal brain composition

[34]. They used sta finite re model to partition

R in vivo data. RF inhomogeneity ¢ ¢ images were also

ctral MR

or
>d bias field
ere also
used to { ity 1 1 image ore correction
approaches of intensity segmentation were also studied
[66—68]. These studies demonst i of segmentation for neurological
applications. However, the increasing accuracy of segmentation is more important in

classifying different brain tissues for improving anatomical structures in real applications.

-10 -



1.4. Motivations
Although there were many researches of MR image inhomogeneity correction as

mentioned in the literature review, the better image quality through image inhomogeneity

correction still needs tosbe achieve noise and intensity inhomogeneity are two
main factors ffe e¢p brain structures of MR
images are be recognized and are very importan tomiceal applications.
proposed
image

" Both the hardware i

transmitter ices to red
I

F

o'impro
& p

|
re st i better MR

[ |
structures is p ementatiT 'method th

software technique o

and CSF) of brain

S.

ation
ructures.
Similarl ing i age and achieving high

quality of segmenta : combine the intensity

inhomogeneity correction algorith d the proposed segmentation method to increase the

segmentation accuracy of the GM, WM, and CSF in brain MR images to achieve the high

quality of segmentation for anatomical structures.

-1l -



1.5. The goals of this research
The goals of this research address these problems described in Section 1.2, 1.3, and 1.4.

The whole image processing procedures of this research is shown in Figure 1.3 which will

match the goals of this sesea According ¢ problems described in literature reviews
and motivatio bcessing procedures of

lity, to obtain better

quality of

ages which i

better image
HEEE

»f brain MR

structures a

' brz
|
' fuzzy threshold

images, simulated b 1 to obtain higher accu

segmentation

d er brain anatomical s es. Finally, we used the

or ‘correcting

, and CSF from
brain MR 1

-12-



Multiscale retinex
for
inhomogeneity correction

To obtain
better image quality

¥y

With combined

Segmentation with R To obtain better
CART | anatomical structures

To achieve
high quality of
segmentation

Segmentation with To obtain more
BDT segmentation accuracy

Figure 1.3 The whole image processing procedures of this research.

1.6. The main contributions

In this dissertation, weraddress the MR image quality and segmentation problems to
improve the quality of brain MR image segmefitation by focusing on four experiments which
are correction of imhomogeneous MR images using multiscale retinex algorithm,
ségmentation of brain MR images using a CART decision tree, segmentation of brain MR
images using a boosted decision tree, and segmentation of brain'/MR images based on boosted
decision tree through preprocessing by-the multiscale retinex algorithm to achieve the goals of
this research.

A new method for enhancing the contrast of magnetic resonance (MR) images by retinex
algorithm was proposed. It can correct the blurring in deep anatomical structures and

inhomogeneity of MRI. Multiscale retinex (MSR) employed single scale retinex (SSR) with

- 13 -



different weightings to correct inhomogeneities and enhance the contrast of MR images. An
automatic segmentation method based on a CART decision tree was then proposed to classify

the brain tissues of MR images. Next, a boosted decision tree segmentation algorithm

combined with fuzzy thresho 00 as proposed tosimprove the accuracy rate of brain
tissue segme on gh segmentation quality of brain

tissu VI, W e based_on a boosted

inhomogeneity of b
three le_of m&le

brain strug

| |
(medica / ra better imlg quality.

3. An automati oression tree (CART)
n

supe proposed to effectively segment the brain tissues of sit

.é boo S & f i 0 ial

VIR, SBMR

phantor

successfully

5. Is x, are effectively used to
investigate the segmentatio formance from brain MR images.
6. A high quality of segmentation of gray matter (GM), white matter (WM), and cerebral

spinal fluid (CSF) from brain MR images is improved based on the boosted decision

tree (BDT) through preprocessing by a MSR algorithm.

-14 -




1.7. The organization of this dissertation
The rest of this dissertation is organized as follows: Chapter 2 declares the proposed

multiscale retinex algorithm to correct the brain MR image intensity inhomogeneity. Chapter

3 presents an automatic-se t1¢

i Ii ssification and regression tree (CART)
to segment br lecisio e combined with fuzzy

|
brain MR images. Chapter 5 presente ed decision tree to

lgorithm.

-15-



Chapter 2 Correction of Inhomogeneous MR Images Using

Multiscale Retinex (MSR)

2.1. Introductic

¢ of MR image inhomogene is a valuable to
R image

tensity
and

rocessed

ation do not

result in the best co

For image processi he presence of the nos of an MR image caused by the
inhomogeneity of the magnetic intensity is very similar to that of a normal image resulted
from bad illumination sources and environmental conditions. To address the nonuniformity

problem of an image, Land [77], inspired by the psychological knowledge about the brain’s

-16 -



and low-cost
I

IIn

processing of image information from retinas, developed a concept named retinex as a model
for describing the color constancy in human visual perception. His idea is that the perception

of human is not completely defined by the spectral character of the light reaching the eye from

scenes. It includes the precess dant coler and intensity information of the
retina of an e hic a ange compression and

color rend 5 that the selection the

. He then

nhance image contrast, the

and

inhomogeneit

.2. Materials and methods

g images.

e images

ed e casily affected by environmenta onditions, which tend
to reduce its dynan 1 system can automatically
compensate the image info ot psychological mechanism of color constancy. Color
constancy, an approximation process of human perception system, makes the perceived color

of a scene or objects remain relatively constant even with varying illumination conditions.

Land [77] proposed a concept of the retinex, formed from "retina" and "cortex", suggesting

-17 -




that both the eye and the brain are involved, to explain the color constancy processing of
human visual systems. After the human visual system obtain the approximate of the

illuminating light, the illumination is then discounted such that the "true color" or reflectance

can be determined. Moresdetails about subject ancy can be found in [83—84].

Hurlbert Po ex properties and luminosity
principle : > when images from

e shown.

[Sﬁ, 81] applied a cente ng the

O U W Q dl U | C ative

iﬂtg me

orightness in arbitrary envir:

Although Jobson et al. prop

d

app

recorded 1

scene.

@.1)

where R, (X,y) was the retine> : s the image distribution in the ith
spectral band, and “*” represented the convolution operator. In addition, F(X,y) was

represented as

-18 -



F(x,y)dxdy =1, (2.2)
I

which was the normalized surround function. The purpose of the logarithmic manipulation

was to transform a ratio at the pixel level to a mean value for a larger region. We selected MR

images for our impleme proposed by Land [77].

or
This operati dto each s band £ inosity, as suggested

e 1llumination

oL

:-Il-

This app
| ]
ariations in ma

are spatial

2.7)

r=+x’+y’ (2.8)

could be changed to another surround function as

-19-



1

F(x,y)= m ) (2.9)

where C, was a space constant.

Moore et al. [78-79] used a ound function on an exponential function with the

absolute value r as

(2.10)

patial response, where C, was a space consta

rt!n.(; Poggio [80] and Hurlbert [81] used the Gau: ':1:1-5&( U

constant, the mnverse-squa

I n
|
“the e
| |

Ipixels. Therefore, tk

an { netion at dista
| |
ore comIIu!nly used

global dynamic-rang d function was gener

used in regio

=

] und
r a wider

mogeneity of

2.2.4. Adjustment of single-scale retinex output

The final process output was not obvious from the center/surround retinex proposed by

-20 -



Land [77]. Moore et al. [78] also offered an automatic gain and offset operation, in which the
triplet retinex outputs were regulated by the absolute maximum and minimum values of all

scales in a scene. In this study, a constant gain and offset technique (as shown in Figure 2.1)

was used to select the binmn .
+ =

| |
The Highest E‘-Dundl

Mumber of Prxels

The Lowest Bound

Gray Lewel

Figure 2.1 A

B
nage, which u

; 'Zi..described how to choose the transferred output integ&l. ' e highest-

dition scene for each SSR. The offset value car

ermined by

the lowe e, the gain can be comp

g to the range between the
upper and lower bounds oper bound“leaded to minor contrast
improvement but prevents heavy distortion caused by truncation. The lower bound functions
in a similar way as explained previously. Adjustments to the gain and offset result in the

retinex outputs caused little information lost, and the constant gain and offset of retinex was

-21 -



independent of the image content. We evaluated the effects of variations in the histogram
characteristics in a gray-level scene. The gain and offset were constant between images in

accordance with the original algorithm proposed by Land [77], and also demonstrated that it

can be applied as a co ip 0 5 ofiimages.

function

tion. MSR

rightness re

RMSRi

Imultiplication weigk

or

o be

ce & 1on, and the

u
weights i : ISR was implemented by a series of , based on a trade-off

between dynamic- ] 0, we needed to choose the
best weights in order to obtain suitable dynamic-range compression at the boundary between
light and dark parts of the image, and to maximize the brightness rendition over the entire
image. We verified the MSR performances on visual rendition with a series of MR images

scanned by MR systems. Furthermore, we compared the efficacy of the MSR technique in

-22 -



enhancing the contrast of these MR images with other image processing techniques.
An algorithm for MSR as applied to human vision has been described in past literature

[82, 85]. The MSR worked by compensating for lighting variations to approximate the human

perception of a real scene. ere Wert * ethods ste: achieve this: (1) compare the

psychophysic ec : tions "of a real scene and a

captured compare the captured image with the reflectance values of

uﬂ?marize, our method ecif . ‘ cesses

listribution was used for th

Space constants for Gauss
I

S

log:

convolutio
retinex output and t

images. This procedure y

Utilizatic

A singl u : D aboratory Animal Center,

Taiwan) was anesthetized using 2 a d poesitioned on a stereotaxic holder. The
body temperature of the animal was maintained using a warm-water circulation system.
For MR experiments, images were captured on a Bruker BIOSPEC BMT 47/40

spectrometer (Bruker GmBH, Ettlingen, Germany), operating at 4.7 Tesla (200 MHz),

-23 -



equipped with an actively shielded gradient system (0 ~ 5.9 G/cm in 500 ms). A 20-cm
volume coil was used as the RF transmitter, and a 2-cm linear surface coil and the above

volume coil were used separately as the receiver. Coronal T2-weighted images of the

phantom — comprising agS0-ml plastic centrif filled with water and an acrylic rod —

and the rat br: er petition time of 4000 ms, an

echo time of & eld of view of 3 cm, a slice thickne repetitions, and an

The PSNR [88] and cc

; Brocessing [

indices in 1
| |

Iwhere y(k, 1) and m( C ¢ Y,

and Ipeak was t

ans, and

nced and original

images, resp
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2.3. Experimental results

2.3.1. Results of phantom image

The performance of:our retine s assessed by determining the parameters
for a test series of 0 f 256 256 pixels and 16-bit

e determined in

e

il

" SSR with scale

intom images

ges in Fig.l[' 2.2(b), (

(d) showed dynamic e large, moderate, and

respectively, which indicated the dynamic-range compression increased when the S

image ca : ] e Sa ag procedures and
parameters. Comp: successfully corrected the

original MR phantom image.

-25-






Figure 2.2 Corrected MR images of a phantom demonstrating the performance of retinex. (a)
The original MR image. (b) Image obtained from SSR with scale of 15 pixels. (c) Image

obtained from SSR with scale of 80 pixels. (d) Image obtained from SSR with scale of 250

pixels. (e) Image obtained®ftc th combined scales of SSR weightings (@, =

1/3,n=1,2, and3).

."Resu OT 8 a
e

" In Figure 2.3, results ¢

shown. Figu .3! a) showed

F

.25 i derate, and s

| |
and brightness o¢ respectile.y. The i

obtained from retine hat of the original MR
n

eround of the original brain MR image was blurred,

neity than the

image ot e coils, yet the resolution was lowe as enlarged (x 5)

from dotted- block o S ng the deep brain structure
subimage, the details in the al brain bundle (MFB) and mammillothalamic tract (MT)
regions were not clear and inhomogeneous. Figure 2.3(h) shows the MR image enlarged (x 5)
from dotted-line block of Figure 2.3(d) from MSR, regions (MFB and MT) circled with

dotted-curve demonstrated better homogeneity and clarity. Figure 2.3(h) exhibits clearer deep

-27 -



anatomical structures from MSR than Figure 2.3(g) from original image.
The MSR clearly improved the quality, relative to that of the original MR image.

Comparing among the original MR image, the image captured by a volume coil and the image

obtained from the retinex ) < he- last method showed the best

performance i rms i » a erall visual rendition.
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Figure 2.3 Performance of the retinex was demonstrated with adjusted MR images of a
coronal section of the rat brain. (a) The original MR image. (b) Image obtained from SSR

with scale of 15 pixels. (c) Image obtained from SSR with scale of 80 pixels. (d) Image

obtained from MSR withgthree combine ales o eightings (w,=1/3,n=1, 2, and 3).
(e) Image obtained f captured by a volume

enlargement exhibits
1 medical

on, and a

| |
ji

The effectivene e reti alg vith a phantom image ca

n

by MR imag ystems g histogram equalization, local histogram equalization

b)
%128

ount of noise

was still ; ¢ 2.4(a) and (b), with the performar ram equalization

being worse that o ) showed the image processed by
the wavelet-based algorithm [17, 18], indicati e presence of some noise. In Figure 2.4(d)
and (e), the images were obtained from MSR with combined 15-pixel small-scale SSR
weightings of o; = 3/5 and 4/6; 80-pixel moderate-scale SSR weightings of m, = 1/5 and 1/6;

and 250-pixel large-scale SSR weightings of w; = 1/5 and 1/6 respectively. Figure 2.4(f)
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showed the image obtained from MSR with combined 10-pixel small-scale SSR weightings of
o) = 3/5; 60-pixel moderate-scale SSR weightings of w, = 1/5; and 220-pixel large-scale SSR

weightings of w3 = 1/5. All phantom figures in Figure 2.4 displayed clear deep structures and

edges. The MSR algorithm ex ed better vi itiomsthan histogram equalization, local

histogram eq at 7 ance of MSR was also

|
compared of histogram equalization, loce : Jualization, and the

algorithm on an MR image of rat brain.

S5
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Figure 2.4 Corrected MR images of a phantom, obtained via four methods. (a) MR image
obtained from histogram equalization. (b) MR image obtained from local histogram

equalization. (¢) MR image obtained with the wavelet-based algorithm. (d) and (¢) MR

images from MSR with D1 e d 250-pixel =3/5 and 4/6, @, = 1/5 and 1/6,
and ws = 1/5 and S 0-pixel, 60-pixel, and

220-pixel;

SSR

of w3
onfiguration
of 10-pixe \ ig 0-pixel moderate-scale
SSR weightings o D1 arge-scale SSR weightings
of w3 = 1/6 (low brightness). The dynamic compression, brightness variation, and overall
rendition were better for MSR that combined three scales of SSR weightings than those for
histogram equalization, local histogram equalization, or the wavelet-based algorithm alone.

All rat brain figures in Figure 3.5 displayed clear deep anatomy structures and edges.
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Figure 2.5 Corrected MR images of a rat,brain obtained from four algorithms. (a) MR image

obtained from. histogram 'equalization. (b) MR 1image obtained from local histogram
equalization. (¢) MR image obtained from the wavelet-based algorithm. (d) MR image
obtained from MSR, with 15-pixel, 80-pixel, ‘and 250-pixel;“®; = 2/4, @, = 1/4, and @3 =
1/4 respectively. (e) and (f) MR images obtained from MSR with 10-pixel, 60-pixel, and

220-pixel; @ = 1/3 and 2/6, @, = 1/3 and 3/6, and w3 = 1/3 and 1/6 respectively.

2.3.4. Results of peak signal-to-noise ratio and contrast-to-noise ratio analysis
Obtaining MR images of the highest possible clarity is crucial to effective structural
brain imaging. The quality of images obtained from histogram equalization, local histogram

equalization, the wavelet-based algorithm, and retinex can be quantified using appropriate
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indices. The values of PSNR and CNR for the phantom images obtained in the present study
with the four correction methods were listed in Table 2.1, where higher values indicate images

of higher quality. As shown on the table, the use of SSR increased PSNR but decreased CNR.

In Tables 2.1 and 2.2 erate-, and large-scale weightings

of 15, 80, and'250 p combi small-, moderate-, and

large-scale > MSR ith @, = 3/5,

w] = 2/4,
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Table 2.1 Comparisons of PSNR and CNR for phantom images obtained from retinex

algorithms with those obtained from histogram equalization, local histogram equalization, and

the wavelet-based algorithm.

CNR

2.4007

SSR (sca 15

SSR (scale = 50

SSR (scale = 60

SSR (sca 20 pi

| |
SSR (scale

) (01 =1/3, 0= 1/3, 03 = 1/3) 13.7010

o = 1/4, 03 = 1/4) 11.8232 "

2/

VISR /5, @3 = 1/5)

Histogram equalizati 1.5199

Local histogram equalizat 1.5236

Wavelet-based algorithm 6.0785 1.1225
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Table 2.2 Comparisons of PSNR and CNR for animal images obtained from retinex
algorithms with those obtained from histogram equalization, local histogram equalization, and
the wavelet-based algorithm.

Algorithm I l- NR CNR

SSR (sca 15

SSR (scale = 60

14.4219

=

11.7580

Local hist

Wavelet-based algo 0.8571
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2.4. Discussions
The inhomogeneity and anatomic-structure blurring found in images captured by surface

receiving coils was due to variations in image brightness. The inhomogeneities of MR images

were very low frequencyscompon i y ainof images. The retinex algorithm
[82, 85] espec - omponents of images by an

estimato S i imi 3 urround function as

we proposed an easy, low-co

(&

non - arified the

| |
and MT areas by surfac' coils (see

2.3).

n
For evaluatiing

(ﬂges, PSNR R

|
cq'(.)n ofh) dgeneou

rrespondingly

higher PS R values. Similar results were foune ges, except that
PSNR increased whereas a .2). This may indicate that
retinex processing of animal should combine with appropriate reference objects.

For comparison, consider the approach proposed by Jobson et al. [82, 85]. The MR
images obtained with the retinex algorithm were also better than those obtained with

histogram equalization, local histogram equalization, and the wavelet-based algorithm, in
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terms of dynamic-range compression, brightness constancy, and overall visual rendition. The
PSNR and CNR values were also higher for retinex than for the other correction algorithms.

Furthermore, the advantages of the retinex were that the weightings of MSR and scales of

SSR could be modulatedsto in ' 1ag€ CO i ndeontrast enhancement performance.

The optimal h . ee eightings of MSR and

ScalesS C

-39 .-



Chapter 3 ~ Segmentation of Brain MR images Using a

Classification and Regression Tree (CART)

3.1. Introductio

e performance of

sive and clear

jups | | |

of automatic
H I Es
atomical s

I-alllt']lm

as
WE1re

e easily

ing to the attributes of a subset in the-enti and - provide rapid
analysis. Decis ide ed ymbolic data sets, and also
to classify EEG spatial patterns . he different regions of digital images sensed
remotely [90]. The present study compared with the performance of segmentation based on an

automatic decision tree with different types of spatial information— the general gray level (G),

spatial gray level (S), and two-dimensional wavelet transform (W) — to improve the accuracy
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of segmentation in MR images.
Several studies have improved coil sensitivities and the performance of transmitter

devices [57-60], but it remains difficult and expensive to reduce imaging noise and

inhomogeneity through:-hardware ro « For thespurpose of these studies was to

obtain better om >cl e to obtain MR brain

orovements  to

n 1 ance.

Spatial informati

and used as

Pd tlal

bined in

ing."Noise and RF

inhomogeneities o i hat their impact on

segmentation accurac ded to be reduced b age manipulation.
The general gray level represents the intensity of each pixel for MR image segmentation.
The use of more spatial features in an image is considered to improve the accuracy of image

segmentation. The spatial gray (S) level is given as
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Sy =Y a8 ). 3.1)

which is the sum of combined weighting @ and gray level ¢,(X,y) of pixel i on the

neighboring area. The neighboring arearis sl in_Figure 3.1(a), which depicts the five

neighbor systems i S : eighting.at the center pixel with

the nearest fous

where the

(34)

(3.5)

where theW, (j,,m,n) coefficients defi roximation of g(X,y) at scale j,.

The W,;(jo, m,n) coefficients add horizontal, vertical, and diagonal details for scales j 2> j,

[72]. The obtained coefficients were transferred by wavelet from the local area to represent

-40 -



the spatial features of the central pixel. Local areas were generated from every nine pixels in

each MR image, as shown in Figure 3.1(b).

(@) (b)

Figure 3.1 Local area of each spatial feature. (a) Local area of the spatial gray level. (b) Local

area of the wavelet transforms.

3.2.2. Segmentation

The proposed automatic decision-tree segmentation method used. in this study was the
classification and regression tree (CART) presented by Breiman et al. [91]°to model the
prediction tree by statistical analysis,.considering outcome variables and decision questions to

assess the prediction accuracy. The method protocol is described below.

3.2.3. Decision tree classification

In a classification tree, the decision tree classification structure is constructed so as to
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distinguish different classes through statistical analysis [89, 92]. Decision trees can classify
multidimensional spatial data through recursive partitioning steps. Each vector consisting of N

sampled data in an M-dimensional space is given by

(3.6)
where M S sion o ace, el insthe data space is

(3.7)

1 dashed

lines X, X, .-Finally, subspace S,US, can be ong vertical line
u

X, with horizontal dash pa S; and S;. Data set classes 1

and 2 can be maximally seg ed from subspaces 'S; and S;. Figure 3.2(a) clearly shows
the entire partition of the two spatial data sets. The partitioning procedure can be displayed as

a decision-tree structure of a binary tree due to the maximal class separation of the partitioning
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steps. The decision-tree structures of the two spatial data sets are shown in Figure 3.2(b). A
root node is displayed at the top of the tree graph for the first level, and is connected to other

leaf nodes and branches. The root node of the decision tree corresponds to the entire data

space, and the two spatiél data sets i ith 2 lition X <X that is similar to a
binary o , ) and subspace 2

les of the root

X, .to decide

- 45 -



X2 A

Tevel 1 I

Level 2
| |
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The connection mechanism is constructed using a Gini impurity function from the root
node until the tree reaches the terminal nodes. Classification of decision-tree processes

determines the condition of attributes in a top-down manner in the tree structure. The

classification of a patternsbegins at the rc ecidingsthe condition of the main attribute
of the pattert The a similar link mechanism to the
ey form the tree

termined,

LN = ply | N)p(@, [N) =1-3 plaoy [ N)p(@) (3.9)

asses w, and o; at

node N, respectively. T i ' ) 1 pa s are of the same class. At the
beginning of the root node, the CART calculates the node impurity with the Gini impurity

function. All decision-tree nodes are decided by determining the best change in the impurity

from the root node down to the terminal node, as shown in Figure 2.2. A node consisting of a
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single class has the largest purity. Thus, the terminal node is then selected when the impurity

of the node is 0. The largest impurity value is 1. The best change in impurity [28] is the

difference between i(N) and a sum of the impurities of N, and N thatis given by

Ai(N) =i | (3.10)
where N, and N C and i(Ny) are their
impurities, anc 5 , respectively. The

umerical

3.2.5. Simulz

Two types o d : dy were: phantom MR images and
simulated brain MR images. phantom MR images were obtained from IBSR
(http://www.cma.mgh.harvard.edu/ibsr). The phantom MR images comprised the circle center,

circle ring, and background region, as shown in row 1 of Figure 3.3, with noise variations of
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15 or 30 gray levels. We also added RF inhomogeneities of 20% and 40% to the two SNR
phantom images. The variations in the gray levels due to noise and inhomogeneities that were

added to a gold-standard phantom image are designated in Table 3.1. The simulated MR

images obtained from Bre W veighted ick images with noise levels of

3%, 5%, 7%, , ar : se levels combined with RF

inhomogeneiti 0% and 40% were also obtained fic /eb, to_ examine the
H u
" : . L . !

egmentation with spatial information of di expert

(fe.rived a gold-standar R or inh ( om the

"=

the spatial 1ation

nﬂ 1mag

) U.t:len seg

ted using t

” B

Table 3.1 Designati heOriginal ained by combining the
n

levels and in ogeneities parameters. N

*_ Designa E- I nc ﬂ g OMOg S parameter -
" " E‘
..Varll

Var30 Noise variation = 30 gray levels
n
\ F20 Noise variation = 15 gray levels and 200/2 RI-....
|
var Noise variation = 30 gray levels arﬂi 0 pgeneities
|

Varl5RE iC ' !’1 homogeneities

S

Var30RF40 015¢ n é .ﬁ s and 40% RF inhomogeneities
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Table 3.2 Designations of the original simulated MR images obtained by combining the noise

levels and inhomogeneities parameters.

Designation Combined noise level and inhomogeneities parameter

T1n3 I [ ise level=3%

<

Noise leve
||

u
Noise level = 9%'-_..

el =

1] ogene?ﬂes

eneities =

T1n5RF40 i jl omogeneli!s

T1n7RF40 c Sl nhomogeneities |

T1n9R Noise level = 9% and 40% RF inhomogeneities

. TInl5RE ove m EE‘I BE:_ seneities
H Il oeall™ "Hall™

"

"

=

-,

ate of segmentation o
|

| |
The 113 s used to evaluate the perfo \ai entation in the present

eference image (manually

study and was calculated bas standa
labeled by an expert) and a colle segmenta results obtained with the proposed
method. The accuracy rate was quantified as the overlap fraction [28, 44, 57, 55] and is

defined as:
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Ref (k) ™ Seg (k)
Ref (k)

Accuracy rate = , (3.11)

which represents the accuracy rate of the segmented area in class k relative to the area in the

standard reference image [44, 57]. Three classes of phantom MR images (circle center, circle

ring, and background) and fo lasses of simulate ain MR.images (GM, WM, CSF, and

backgro quation;(3.11) represents the

d or intersection areas of voxels of class k- b

. ."r. “
a o X

ented image

in the

RF20, Varl5RF40, Var30RF20, and Var30RE C s 1 to 6,
| - - |
respecti , as ble 3.1. The images in ro ; orrespond to those in

row 1 segmented using the autc is spatial information (S, X, V).
Euclidean coordinates (X, y) and po ina r, 8) were also used for spatial information
in this study. The images in row 3 of Figure 3.3 correspond to those in row 1 segmented using

automatic decision tree with spatial information (S, X, y, r, ). The images in row 4 of Figure
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3.3 correspond to those in row 1 segmented using a decision tree with spatial information (G,

X, Y).

The images segmented with spatial information (S, X, y) and (S, X, Y, r, 6) (rows 2 and 3

of Figure 3.3) show better performance e segmented with spatial information (G, X,

y). Images with a no ; j,_ ygeneities constituted a

he source phantom images. The perfo “images with Var30,

Iﬁ!l'-l;-

2]

ge

ges with

] information.

racy rates of segmentation are gure 3.4 for phantom

images with SRF40 3 accuracy rates of phantom

images with Var30 and Var30RF20 ‘ ed decision tree for spatial information (G, X,
Y. 1 0, (G, x,y), (G, xy,571 0,6 Xy, WXYy,G,r,6),and (W, X, y, G, , 6, 3) were
moderate, ranging from 0.9164 to 0.9872. The average accuracy rates of phantom images with

Var30 and Var30RF20 segmented by a decision tree for spatial information (S, X, y, r, &) and
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(S, X, y) were also near to the highest values. Segmenting images with Var30RF40 with spatial
information (G, X, y, I, ), (G, X, ¥), (G, X, ¥, S, 1, 6), (W, X, y, G, r, 6),and (W, X, y, G, 1, 6,S)
produced the lowest average accuracy rates, although segmentation with spatial information
S, X, ¥y, r, & and_(S;eX, y) produced a higher average accuracy rate of 0.9461. The
segmentation fesults shown in Figure 3.3 indicate that the automatic decision tree successfully

segmented phantom images with different noise variations and RF inhomogeneities.

Figure 3.3 Segmentation of phantom images from IBSR. Row 1 contains the eoriginal
phantom images with Varl5, Var30, Var15SRF20, Varl5RF40, Var30RF20, and. Var30RF40.
Images in rows 2, 3, and 4 represent the corresponding results of segmentation with spatial

information (S, X, ¥), (S, X, ¥, I, ), and (G, X, Y), respectively.
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. Iel' .
using a C1s10n  treg

ifferent noise variatio

'Iﬂule.lted MR brain images with different noise levels arad'i gities (see

able ribed in Section 2 were also segmented using' ecision tree
| |
| |

with different s nation (G, X, Y), (S, X, Y V. 1,0, (G, XY, S,

r, 0), (Wa XY G, ), @ 2 J OwWS thhe Original simulated MR
images obtained from BrainWeb per row )’ @ ¢ images resulting from segmentation

with spatial information (G, X, y, r, 6) (lower row). The OF index was used to assess the

performance of segmentation using the automatic decision tree with different spatial
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information. Figure 3.6 shows the average accuracy rates of segmentation with different
spatial information for simulated MR images with noise levels of T1n3, T1nS, TIn7, T1n9,
and T1nl5. All of the average accuracy rates were calculated for the GM, WM, CSF, and
background of simulatedsbrain MR images. The average aecuracy rates decreased as the noise
levels increased from TIn3 to TlnlS for most of the segmentations with this spatial
information. Figure 3.6 shows that segmenting these MR images with spatial information (G,
X, ¥,-Is 6) produced the highest average accuracy rates (0.9374—0.9598), with"the resulting
images shown in Figure 3.5. Segmenting these MR images'with spatial information (G, X, v, S,
r, &)"and (W, X,y, G, r, ) produced moderate and low average accuracy rates of
0.9132-0.9626 and 0.8920-0.9297, respectively. Figure 3.5 shows that all of the simulated
brain MR images with these noise levels were successfully segmented with the automatic

decision tree with spatial information (G, x, y, I, 6), (G, X, V), (S, X, ¥, I, 6), (G, X, Y, S, 1, 6), (S,

XY, (W, x,y,G,r, 6,5),and (W, x,y, G, , 6).

Figure 3.5 Results of segmentation using a decision tree for simulated MR images obtained

from BrainWeb. Upper row contains the original MR images with noise levels of T1n3, T1nS,
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Tln7, TIn9, and T1nl5. Lower row contains the corresponding images resulting from

segmentation with spatial information (G, X, Y, I, 0).

__ 'Im mmT mmt

0.98

0.96 -

0.94 -

Average accuracy rate

T original simulated brain MR images with dif] 101s€ levels and an
_ u

RF inho obtained from BrainWeb d the images resulting

from segmentatio - tic ( G ,r 6 ver row). The segmented images
.- 3.8 sho

show better visual rendition. he average accuracy rates of segmentation
with different spatial information from the simulated brain MR images shown in Figure 3.7.

The average accuracy rates decreased as the noise level increased from TIn3RF20 to
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TIn15RF20 for most of the segmentations with this spatial information. The average accuracy
rates do not differ greatly between Figure 3.6 and 3.8, ranging from 0.96 to 0.89. The
presence of 20% RF inhomogeneities had little effect on segmentation of these simulated
brain MR images. Theraverage accuracy rates of segmentation of these brain MR images
(Figure 3.8) with spatial information (G, X, Y, I, 0), (G, X, ¥, S, r, 6),;and (W, X, y, G, r, 6) were
0.9376--0.9587, 0.9144-0.9538, and 0.8865-0.9285, respectively. All of the simulated brain
MR images with these noise levels and inhomogeneities were successfully segmeénted with

this spatial information for all of the accuracy rates of automatic decision-tree segmentation.

Figure 3.7 Results of segmentation using a decision tree for simulated. MR images. Upper

row contains the original MR images with noise parameters of TIn3RF20, T1n5RF20,
T1n7RF20, T1n9RE20, and.T1n15RF20. Lower rowscontains the corresponding images

resulting from segmentation with spatial information (G, X, Y, I, 6).
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RE. ogenleity of 40% from BrainWeb (upper row) and the .nB;

an

ing from

segmentati ith Lpatial information (G, X, Y, r, 6) (lower row). Tl en nages show
| - - |
better vi re e 3.10 shows the average

of 'segmentation with
different spatial in 3 . : ain MR images shown in Figure 3.9. The
average accuracy rates decreased as the noise level increased from T1n3RF40 to TIn15RF40

for most of the segmentations with this spatial information. The average accuracy rates do not

differ greatly between Figure 3.8 and 3.10 except in lower values of the range. The 40% RF
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inhomogeneities have a greater effect on the segmentation than that shown for the 20% RF
inhomogeneities in Figure 3.7 and 3.8. The average accuracy rates of segmentation of these

MR images with spatial information (W, X, y, G, r, 6) as shown in Figure 3.10 changed from

0.8810 to 0.9261, and were alsc er tha at in brainn MR images with TIn3RF20 to

TIn15RF20 b se 0 ogeneities. A higher average

ntation with spatial information (G, X, ‘simulated brain MR
ages with
s the

R

Its

oise

ed “automatic

decision rrespective of the accuracy

escribed spatial

information.
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Figure 3.9 Results-of-segmentation using a decision tree for simulated MR images. Upper

row contains the“original MR" images with noise parameters of TIn3RF40, TInSRF40;
T1n7RF40, T1n9RF40, and T1n15RF40. Lower row contains the corresponding images

resulting from segmentation with spatial information (G, X, y, I, 6).
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Spatial information (G, x, y, r, )
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o
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°
n
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Figure 3.11 Accuracy rgs- l\m hIrmEed MR images segmented using

a decision tree with spatial information (G, X, Y, r, 6) for TIn3, T1n5, TIn7, TIn9, and T1n15

(a); TIn3RF20, TIn5RF20, TIn7RF20, T1n9RF20, and TInl15RF20 (b); and T1n3RF40,

T1n5RF40, TIn7RF40, TIn9RF40, and T1n15RF40.
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3.4. Discussions

A proposed automatic segmentation method using a decision tree was used in the present

study to classify different tissue types in brain MR images. The phantom and simulated MR

images obtained from IBSR B pectivel ere both successfully segmented

by the propo de e the proposed segmentation

3 e gray-level

technique ' ed using a previously described in

gions. The

re,
y lated

the location

attribute of the information being more important tha nformation. The
average accuracy : 1 ation when the simulated
brain MR images contained 1 , ch esented the largest fraction of images. The
best results of segmentation were obtained in this study for simulated and brain MR images

with the lowest noise levels.

The noise level is the main factor responsible for overlapping of the gray-level
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distribution in MR images. Also, the gray level is the main spatial feature that affects the
performance of segmentation in phantom MR images, and hence it is the main decision

attribute of tree structures. These characteristics were confirmed in both phantom and

simulated MR images. The average accuracy rates of segmentation with spatial information

(G, X, y, r, ) were high 15, Varl5RF20, and Varl5RF40

(0.9999, 0.999 9908, respectively), and were lowes images with Var30,

and Var30RF40 (0.9388, 0.9164, and 0.8778). The dEErﬁ 6) in the average

TN

’ \
n GM and WM segmentation were similar .go th " previously

aches [42, 43, 53]. The accuracy rates of our segment hod“increased

with dec e lous [0 1es or the overall

cortical surface [42, 43, ble for segmenting MR images,

although its performance decreased as the noise level in the Tmages increased.
For comparison, consider the spatial information approach proposed by Anbeek et al.
[44]. In phantom images (see Figure 3.4), the average accuracy rates of segmentation for

phantom images with Varl5 were 0.9999 and 0.9973 with spatial information (G, X, Y, I, 6)
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and (S, x, y, r, 6), respectively, 0.9999 and 0.9973 with spatial information (G, X, y¥) and (S, X,
y), and 0.9999 and 0.9819 with spatial information (G, X, Y, S, r, €) and (W, X, y, G, r, 6). In

simulated MR images (see Figure 3.6), the average accuracy rates of segmentation for

simulated MR images with T InS were 0.953 d 0.9439awith spatial information (G, X, Y, I,
0) and (S, X, 0), ) 1 nation (G, X, y) and (S,
XY, G, 1, ).

ned from

he
ages

formation (G,

XY, 40 were 0.9532,
0.9527, and es ))." The accuracy rates of
segmentation with spatial in a of simulated MR images with
T1n3, TIn3RF20, and TIn3RF40 were 0.8241, 0.8222, and 0.8185, respectively (see Figure

3.11). The accuracy rates of segmentation with spatial information (G, X, Y, r, ) of GM of

simulated MR images with TIn3, TIn3RF20, and T1n3RF40 were 0.9251, 0.9211, and
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0.9214, respectively (see Figure 3.11). The accuracy rates of segmentation with spatial
information (G, X, y, r, 6) of WM of simulated MR images with T1n3, TIn3RF20, and

T1n3RF40 were 0.9077, 0.9054, and 0.9038, respectively (see Figure 3.11). These data

indicated the large difference ere also ab i e accuracy rates of segmentation of

tissues in ME ag esence nhomogeneity in MR

case the accuracy rates of segmentatior om MR images

SIorm

b

.ﬂie..accuracy rate of our segmentation method affected by
||
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Chapter 4  Segmentation of Brain MR images Using a Boosted

Decision Tree (BDT)

4.1. Introductic

sing accuracy of

ving-anatomical

omatic

of a

and alternative

a healthy control

ents were conducted

subject and 1 Su rt di e p
including classifications basec y sses. This system was successfully used to
classify bundle branch block, card 10myopathy arrhythmia, healthy control, hypertrophy,
myocarditis, and myocardial infraction with good accuracy [102]. We used a decision tree in

our study because it has several advantages in biomedical applications. Specifically, it can be

-67 -



effectively used to classify any data structure, it can perform with good prediction accuracy for
non-linear problems, it is easy to interpret rules in a rule set of the decision tree, and it

effectively eliminates outliers [96]. Therefore, we propose a boosted decision tree algorithm

combined with fuzzy threshold fc i 0 brain tissues, such as GM, WM, and

CSF, with the o mage segmentation.

IL'..III-I-

I

images with each
n

exemplar brain MR ima 0 ¢ original image with no noise and inhomogenei

D3 pants

aukesha, WI)

using a st ead motion. The
3D T;-weight e-of-1 q on in steady state (FSPGR,
TR/TE =13.4/2.7 msec, NE ( 260 mm; 51 256 matrix, slice thickness = 2 mm)

pulse sequence was used. 144 axial slices were acquired encompassing the whole brain.
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4.2.2. Image preprocessing
Spatial features were extracted from every MR image pixel location and used as the

input for the segmentation algorithm for image preprocessing which were the same as in

Chapter 3. The spatial features used in the pre y were: G, S, W, X, y, I, and 6, where G

represents thefigray level 2 y 1 of every pixel, W the

coefficie * clet transform, (X, y) Euclidean coordine ~0) polar coordinates.
H |

"
res were preprocessed from the same procedure b

dictio

O
trained using

and RF inhomogene e tl

structures. The operation escribed as follows.

1896
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Standard _ Image | Training with

image preprocessing | decision tree
Calculating
segmentation
accuracy
Images with _ Image | Testing with
noise and RF | | preprocessing | decision tree

||
image segmentatic

using boost

1856 WY .

1d four classe* decision tree, respectively. A schematic diagran lecision

o
e 15 shown in Figure 4.2. A decision tree is a tree structure
|| |

nod 5 1 toward internal nodes, and terminates _a

m a root

e leaf nodes
represent the class, ifier is a n aining dataset and is
applied to predict class values in a tes aset. In tree structure, each internal node is
divided by a condition related to a feature, and each branch denotes the outcome of attribute

splitting. Each node (root node and internal node) is split into two or more branch nodes.

Examples of splitting conditions include “A>a,” “B>b,” or “C>c” for each node in every
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attribute, as shown in Figure 4.2. Branch splitting is determined by the condition of each node.
The leaf nodes depict classification by these splitting conditions, and the class is labeled on

the leaf node. The decision tree structure can be transferred into a set of rules.

Feature B>b

Yes

Decision tree
|

"
osed decision tree is constructed from a data set S by the
|| |

Ratio, whi easure of incorporated entropy [98, 103-10

uction with galn ratio

ia, Gain

ocedures of Gain
Ratio are” defined imulated e a training data set

S consists of C : unction ,IF) | is the ratio for the class number of an

MR data set belonging to class r of the total class number |S| of an MR data set S, where

1<r <C. The entropy is defined as
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Entropy(S) = —z; p(S,r)xlog,p(S,r). 4.1)

Suppose that T is a feature whose total partitions are v. The value i is any specific

value of v, while S, is a subset of the MR data set S corresponding to the value i of T.

The information gai itioning of S from feature T,

is calculated, by

-" v |S| .
=" Gain(S,T) = Entropy(S)- > " xEntropy(§

g

tropy

I

GainRatio(S

I The

Iis calculated as:

Splitinfo(S,T)

is selected as the reference for this step of partitioning.'.

en "tree 1S

itting all of the features and maximizing
| u

P
tile.gal

4.2.6. Boosting

The addition of boosting to a decision tree as a means to improve prediction accuracy is
know as adaptive boosting, and was proposed by Freund and Schapire [98, 100, 107-109].

Adaptive boosting is based on a learning algorithm of a decision tree classifier over a repeated
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series of trials: t=1,...,T. One possible approach is to select a best weight and tree structure
from the distribution of weights over the training set. For a training set (X, Y;)...(X.,, Yy)> X;

belongs to X and Y, belongs to label set Y . This generates the weak hypothesis

h(i): X = {=1,+1}, as .DXi) i is ongtraining instance i at trial t. The

error of the h

(4.6)

he weak

usually

contribu ome cases in the data. The fii cture generates

assifier is constructed

the wrong class fo ; e ¢ d
with greater attention to co classificatio e second classifier will consequently be
different from the first classifier. The third classifier construction step is comparatively even
more focused, although it also will make mistakes in some cases. By setting the boost trial

number in advance, the boosting process continues iteratively by updating D, (i). The final
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step of the boosting process is stopped when the most recent classifier is either extremely

accurate or inaccurate.

4.2.7. Fuzzy thresholc

In a fuzz e : feature partition is divided

into_thre : 1ding a lower bound, Ib; an upper botu 1 central value, t. If
e ub, the

O r ‘G>’?

2

1de

- 4.2.8. Pru

Decision tree co

generated first, followed processing in the pruning phase. The pruning phase i

) ﬁpize the

obability of a
binary di ; r raining set. The
class label of the > onsisting of a class of
attributes in a subtree. The tion of 1 to reduce the risk of overfitting the tree.
Overfitting occurs when the tree is overspecialized to the training set. The pruning phase was

developed to improve classification accuracy by removing subtrees that are predicted to have

high error rates.
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When replacing the leaf node of a tree, statistical analysis is used to obtain confidence by
manipulating the posterior probability of misclassification. For example, assume an event

happens M times in N trials. The estimated probability p of the event is the ratio M /N .

The confidence limits foff p can then be ulated., For the confidence CF given in

Equation (4.9), the such that p<p,. The

upper limit p atisfied as

(4.9)

r . ‘
. where CF-pruning is set
H BN .

I-II“I- N/

- Amira

Imodels. Surface rece 1e

structure due to the aniso of 1l

ngtomical 31

B,

isotropic. All t steps are performed with the help of the visualiz

4.2.10. The evaluation ex lof se

Two kinds of indexes to evaluate the segmentation performance were mainly used in this
Chapter. One is the accuracy rate which is the same as the index in Section 3.2.6 of Chapter 3.

The other is the k index (also called the Dice coefficient) described as below. Another
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evaluation indexes referred from other approaches are also used to compare the performance
of segmentation from brain MR images.

The k index as given in Equation (4.10), which is another means of segmentation

evaluation, was also used to p cesof segmentation. The K index is
ordinarily use 44, 48, 53, 113]. Given two

images ¢ a0 denotes all tissues

where |5, mS,| denote

o
=

R image

1505
s of noise and inhomogeneities (see Ta various
ing spatial
S, X,y,1, 0

s 4.3(a)-(b). Using the

X, yz, W, x,y,Gr,6,WxyGr, 0,.8;,1!

|
and at differen

decision tree algg I“ﬂ nd s atures, the oy rates for circle center

segmentation were greater than 0.9720, le accuracy rates for circle ring segmentation
were greater than 0.9309. The highest accuracy rate came from phantom region segmentation.

The lowest accuracy rates were obtained when SPMR images were segmented using this

-76 -



decision tree with spatial features (W, X, y, G r, &) or (W, X, Yy, G, 1, 6,S). Figure 4.4 shows
images segmented using this decision tree algorithm with spatial features (G, X, y, I, ), (S, X, Y,

nre, WxyGr6,ad W X, y, G r,dS) from SPMR images with noise and

inhomogeneity levels of Var1 : ' 5 0 0, Var30RF20, and Var30RF40.

The segment: racy rates of all the

vels of Varl5,

phantom ity

h spatial

X, Y, I, 0),and (S, X,
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Figure 4.3 Accuracy rates of region segmentation obtained using different spatial features
from simulated phantom MR images. (a) Accuracy rates of circle center segmentation with
different spatial features. (b) Accuracy rates of circle ring segmentation with different spatial

features.
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Figure 4.4 Images segmented from simulated phantom MR images with different spatial

features and various noise and inhomogeneity levels.

4.3.2. Segmentation of SBMR images

SBMR images with différent noise and inhomogeneity levels were segmented using the
boosted decision tree algorithm with spatial features (G, X, ¥), (S, X, ¥), (G, X, ¥, I, ), (S, X, V;'F,
0); W, x,y,G T, 6),and (W, X, ¥, G K 6,5). Image segmentation decision tree performance
was best using spatial features (G, X, y, r, @) and (S, X, Yy, r, ) in SBMR images. Figure 4.5
depicts the average brain tissue segmentation accuracy using the boosted decision tiee. Figure
4.5(a)depicts the average segmentation accuracy using spatial feature (G, X, ¥, I, 6) in SBMR
images with noise and inhemogeneity levels of Tln7; TIn7RE20, and “T1n7RF40. Figure
4.5(b) depicts the average segmentation accuracy with spatial feature (S, x, y, r, ) in SBMR
images with noise and inhomogeneity levels of T1n7, TIn7RF20, and T1n7RF40. Critical
average accuracy rates were obtained using a decision tree with a boost trial number of 20.

Greater boost trials resulted in a longer processing time. Therefore, the decision tree with 20
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boost trials was selected to segment all simulated brain MR images, as shown in Figure 4.5.
Figures 4.6(a)-(c) show the accuracy of segmenting GM, WM, and CSF, respectively, using

spatial feature (G, X, Y, I, €) on SBMR images with different noise levels and inhomogeneities.

The accuracy decreased:for G a vhen segmented with spatial feature (G, X, V, I,

6) and comb es 4.6(d)-(f) show the

) on SBMR

i

T1

segmented 6 . omogeneilz.levels of

T1n7RF20, and T1 performed better cla

brain tissue segmentatiq an that of original images. The inset images in Figure 4

he

images. Thesa'three locations were difficult to segment bec

exity.

2:1:%6 O

shows ar ‘ e gc data, as determined

es. Figure 4.8

by the boosted deci 20, consisting of 181 slices. The
brain was respectively seg d isphere (labeled in yellow) and gray

matter hemisphere (labeled in orange).
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Figure 4.5 Mean accuracy rates of tissue segmentation from simulated brain MR images. (a)
Mean accuracy rates of tissue segmentation using the decision tree and 20 boost trials with
spatial feature (G X, Y, I, &) from simulated MR images with noise and inhomogeneity levels
T1n7, TIn7RF20, and T1n7RF40. (b) Mean accuracy rates of tissue segmentation using the

decision tree combined with 20 boost trials using spatial feature (S X, Y, I, 6) from simulated

MR images with noise and inhomogeneity levels T1n7, TIn7RF20, and T1n7RF40.
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Figure 4.7 Segmentation of simulated brain MR images from BrainWeb. Row 1 depicts the

original, unsegmented image, and rows 2 through 4 show noise and inhomogeneity levels
T1n7, TIn7RF20, and TIn7RF40. Images in column 1 are the original images, images in
column 2 are segmented with spatial feature (G, X, y, I, ), and those in column 3 are
segmented with spatial feature (S, X, y, I, 6). All blown-up images were taken from the

boxed-in region of the shown whole brain horizontal slice and enlarged three times.
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Figure 4.8 A 3D reconstruction of segmented brain image data in axial view. The brain has

been segmented into gray matter (labeled in orange) and white matter (labeled in yellow).

4.3.3. Comparison of segmentation with the other algorithms

The results of segmentation using the boosted decision tree were also compared with
anether two segmentation algorithms. One is in the Medical Imaging. Interaction Toolkit
(MITK, http://www.mitk.org/) whose principle is based on a statistical region-growing (SRG)
algorithm in Insight Toolkit (ITK, http://www.itk.erg/) [114]. The “other is adaptive
segmentation (AS) algorithm for MRI data that uses the knowledge of tissue intensity
properties through the expectation maximization (EM) algorithm to more accurately segment
brain MR images [115]. Table 4.1 shows the accuracy rates of GM, WM, and CSF

segmentation using the boosted decision tree with spatial features (G, X, y, I, 6) and (S, X, y, I,
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0), the SRG, and the AS algorithm from SBMR images with different noise levels and

inhomogeneities. The accuracy rates of GM, WM, and CSF segmentation using the boosted

decision tree with spatial features (G, x, ¥, I, €) and (S, X, y, I, 6) at all noise levels and

inhomogeneities were higher than those of SR d AS algorithm.

The k i 0 segmentation performance.

from:SBMR images
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Table 4.1 Segmentation accuracy rates from SBMR images using the boosted decisiomtree, the SRG, and the AS algorithm.

GM WM CSF
GxXynLo (S0 SRG AS GxXYnL0 (S0 SRG AS GXYnLO (S50 SRG AS
Tin3 0.9865 0.9857 | 0.6577 0.9349 09822 0.9819 09726 0.8329 09944 0.9796 0.6958 0.8148
T1n5

0.9822 09794 0.7999  0.8873 09715 09724 " 0.9386 0.8576 0.9898 09731 0.7370  0.8250

T1n7 09794 09722 0.9051 ..0.8254 0.9568 0.9609 0.8250 " 0.8325 09842 09685 0.7610 0.8407

T1n9 09760 09532 0.9125 0.8099 0.9485 0.9319 "0.5909 . 0.7033 09814 09361 [ 0.7824 0.8407

TISRE20 09839 09791  0.7448 09329 09771 09739 10.9636 " 0.8314 09907 09750 [H0.7169 0.7972

TInSRE20 9820 09734 | 07885 0.8986  0.9687 09638 0.9296 08535 09888 0.9648 10.7301  0.8000
TIn7RF20  0.9742 09613 09026 0.8178 09490 09472 08357 08503 09870 09537 0.7625 0.8222

TIn9 RF20 09746 0.9585 0.9625 0.8182 0.9443 09452 0.3962 0.6364 0.9787 0.9592 ©0.7959 0.8463

TIn3RF40 0.9853 09734 0.7761 09514 0.9743 09631 " 0.9471  0.7438 0.9888 09703 0.7112  0.7630

Tin5 RE40 09812 0.9679 0.8705 . 0.8786 09671 0.9474 | 0.8908 *"0.8374 09851 0.9629 0.7424  0.8056
TIn7 RF40 09753 0.9552 ©.0.9470 0.8319 0.9486 09316 0.6601  0.7433 09814 09564 0.7698  0.8333

TIn9 RF40 09721 09511 | 0.9593  0.8077 0.9386 0.9201 0.4859 0.6591 09796 09416 0.7925 0.8333
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Table 4.2 The segmentation k indexes from SBMR images using the boosted decision tree, the SRG, and the AS algorithm.

GM WM CSF
GxXynLo (S0 SRG AS GXYnL0 (S0 SRG AS GxYnLo0 (S XV 0 SRG AS
TIn3 (0839 09814 0.7620 0.8680 . 0.9850 0.9863 0.8671 0.8948 09898 09828 08192 0.7917
TInS 99757 09728 0.8405 —0.8556— 09775 09797 [0.9032 " 0.8941 09861 09790 0.8458 0.7661
TIn7 09663 09632 08495 ~08107" 09683 09721 08767 4 0.8666 009815 09725 [ 0.7427  0.7028
TIn9 09602 09384 0.7973 0.7455 09624 09522 07348 7 07909 09774 09546 T0.7571  0.6442
TIn3RE20 39797 09738 ' 0.8174 08654 09811 09806 ~0.8921 0.8921 0.9879 09804 10.8342  0.7863
TInSRE20 9742 09740 0.8357 0.8585  0.9759 009651 09072 08929 09852  0.9742 ~0.8408 0.7721
TIn7RF20 09834 09503 0.8557 0.8137 =1 09667 009628  0.8846 08761 09691  0.9662 10.7474  0.6815
TIN9RF20 09572  0.9476 0.7729 07252 -« 0.9594  0.9610 MOBSES0™M0T5707 09759  0.9709 0.8745  0.5995
T1n3RF40
0.9787  0.9648  0.8297- 0.8332 © 09801 0.9738 | 0.8943 ™0.8404 09879 09757 0.8294  0.8000
T1n5 RF40
0.9745 09542 ©08613 0.8405 09726 09648 0.8963 0.8801 09847 09733 0.8498  0.7449
TIn7RF40  0.9597 09390  0.8222° 0.7745 09621 09544 07819 082750 09787 09672 0.7505 0.6329
TIn9RF40 09528 09312 | 07804 07270 = 09554 009464 0.6494 077699 09769 0.9594 07634 0.5927
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4.3.4. Segmentation of real data in brain MR images
The boosted decision tree, SRG, and AS algorithm were also used to segment real data

from brain MR images. Two subjects (A and B) of brain MR images were segmented for this

experiment. Table 4.3 summarizes results in te ofithe accuracy rate and kK index for a
real data expetimen i subject A segmented using
the booste ce with (G, x,y, 1, 0, (S, X, ¥, 1, O » O, and (W, X, y, G
es of the

XY

| |
0.9963, 0#%4, and 0

M, WM, and CSF usi

other

ubjects A

of Figure 4.9 show the original MR from subjects A and B.

Images in " 0 0 0 to column 1 that were

segmented using the boosted dec > with sp al features (G, X, ¥, I, 6). Images in
column 3 of Figure 4.9 show images segmented with the SRG algorithm. Images in column 4

of Figure 4.9 show images segmented with the AS algorithm. Clear tissue regions were

identified from real segmented brain image data using the boosted decision tree, whereas
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unclear regions and artifacts existed in the original images and those segmented with the SRG

and AS algorithm. It is, therefore, clear that visually apparent artifacts in MR images of real

brains are reduced when using the boosted decision tree.
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Table 4.3 Segmentation of MR images from two real subjects using the boosted decision tree,

the SRG, and the AS method.

Subject Spatial feature GM WM CSF

G X, Y, T, 6) 0.9974 09979  0.9913
(S, X,y T, 0) 09973  0.9987  0.9897
(W, x,y,Gr,6) 09984 09989  0.9968
W, x,y,Gr,6S) 09982 09988  0.9963

Accuracy

G X, Y, T, 6) 0.9957  0.9978  0.9944
(S, X, Y, I, 6) 09942 09979  0.9932

W, x,y,Gr,0) 09983 09987  0.9977
W, x,y,Gr,6S)  0.9980

G X,y 1, 0) 09973  0.9987  0.9955
(S, X, Y, I, 6) 0.9967 09988 09922 o
W.x,%,Gr 6 09969 09992 09977

W, x, ¥, G, 6,5)

0.9972

G x,yr,0 0.9973
S, x,y,1, 0 0.9963 0.9984 0.9942
W, x,y,Gr, 6) 0.9984 0.9987 0.9979
W, x,y,Gr,8S) 09988 0.9989 0.9982
| om
1195 0.8400 0.2725
0.6231 0.8259 0.7434

A
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Figure 4.9 Segmentation of real brain MR imaging data. Images in_colummn I show the

original brain MR images of subjects A and B. Tmages in column 2 correspond to those in
column 1 and were segmented using the boost decision tree with spatial feature (G, X, y, I, 6).
Images in column 3 correspond to those in column 1 and were segmented with the SRG
algorithm. Images in column 4 correspond to those in column 1 and were segmented with the

AS algorithm.

4.4, Discussions

We found better separation of intensity distributions for each region whén using the
decision tree than in'the original SPMR images, indicating increased aeccuracy. Moreover,
similar accuracies were found when SPMR images were segmented using decision trees with
and without boost trials(data not shown). In all regions, accuracies of segmentation from
SPMR images using decision tree algorithms-with spatial features (G, X, y, r, 6), and (S, X, y, I,
0) as well as Varl5, VarlSRF20, Var15RF40, Var30, Var30RF20, Var30RF40 were the highest
(Figure 4.3). These two spatial features were, therefore, used to segment the SBMR images.
The lowest accuracy rates were obtained with spatial features (W, X, y, G, 1, 6), and (W, X, Yy, G,

I, 6, S) because the overlapping intensity of each region was greater when spatial feature (W)

-91 -



was included (Figure 3.1). Segmentation was poorest when using the decision tree algorithm
on SPMR images with Var30, Var30RF20, and Var30RF40 due to larger noise variations in

phantom images thus leading to increased overlap of image intensity.

The intensity distributio each tissue in the Reimages overlapped more and was

more comple n in the s or RF inhomogeneities of

£

SBMR images

proposed.

Tl ET1Y
—_

W patial

n MR images

increased o els increased in
conjunction v p as no significant difference in
accuracy between SBMR images with 20% ot 40%/imhomogeneity since the overlap in the
intensity distribution was less affected by inhomogeneities. The decrease in accuracy caused
by increased noise was greater than that caused by inhomogeneities.

More complicated statistical analyses or parameter adjustments are often implemented to
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further enhance accuracy. Several studies have examined the accuracy of MR segmentation
[42, 43, 48, 53, 94]. Marroquin et al. [42] studied automatic segmentation of brain MR

images. Their validation was only performed on GM and WM. Archibald et al. [53] stressed

the importance of improving accurac aluated by thesk index; however, their validation

of brain MR et al. [48] performed probability
segmentation c imagi ith similari £ 0.893 for WM, 0.830

of brain

pE I RTl]

es.“Increased

values of the accuracy

were obtained : sion tree combined with a fuzzy
threshold as compared to SRG and AS| for other arch methods (Table 4.1). Thus, the
boosted decision tree algorithm demonstrates improved tissue (GM, WM, and CSF)
segmentation performance in SBMR images, and significantly improves the accuracy therein.

The k values of segmented GM, WM, and CSF using the boosted decision tree with
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spatial features (G, X, Y, I, 6) were higher than 0.9528, 0.9554, and 0.9769, respectively (Table
4.2). The k index and accuracy rate were both used to evaluate the performance of the

decision tree combined with boosting and a fuzzy threshold against SRG and AS algorithm.

Higher values of the Kk index e obtained us he boosted decision tree compared to using
the SRG and al g R t values in the presence
of increase han for the boosted

b) vact brain

egmentation using the de i : >shold.

nented using osted

v 9 L C
| W |

‘decision tree, the SRG a

segmented G \ﬂ/[, a& &

a feal a ;.
i p

and acc y of

Iliﬁll-l-

i 1gher

| of (N comparison

SRG and AS ata _(Table 4. d decisionitfee succe

segmented the tissu:

tissue (Figure

0). boosted decision tree algori 1s equally suitable

issue (GM,
.7

Ilh.conclh

1 ddressed by a

approach to

decision tree c«

The de n : and the boosted decision
tree algorithm improved the accura of tissue segmentation from SBMR images.
Furthermore, the spatial features (G, X, y, I, €) and (S, X, y, I, €) were used to combine the

general gray level and spatial gray level with Euclidean coordinates (X, Y) or polar coordinates

(r, ) for image preprocessing. The highest accuracy rates and k indices of brain tissue
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segmentation were obtained when the spatial feature (G, x, Yy, I, €) was used to classify the
SBMR images. The appreciated boost trials were demonstrated to obtain more accurate results

on SBMR images. The boosted decision tree algorithm also improved the accuracy of tissue

segmentation from a real-dat: erefore, the boo deeision tree algorithm is suitable for

tissue (GM, , C D les improved accuracy

for brain
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Chapter 5  Improving Segmentation of Brain MR images Based
on a Boosted Decision Tree through Preprocessing by the

Multiscale Retinex Algori

| |
IChapter 2 and have y it ( uracy of blaﬁ'l tissues

image from SPMR , n Chapter 3 and Che

vith _preprocessing by

1336 B

Therefore, OpC

5.2.1. MR data i

All the experimental simulatc s are the same as those in Chapter 3 and

Chapter 4. About the brain MR images, we choose T1-weighted brain MR image with matrix
size of 181x217 from SBMR images with T1n3, T1n5, T1n7, TIn9, TIn3RF20, T1n5RF20,

T1n7RF20, TIn9RF20, T1n3RF40, TIn5RF40, TIn7RF40, and T1n9RF40.
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5.2.2. Methods

1) Image segmentation procedure

Figure 5.1 shows thesifage processing procedures thatare image preprocessing and image

segmentation ¥ The “1ma ays: one "is RF inhomogeneity

¢ retinex and then to extract the spatial ft the MR images, the

correctio

trac%.spatial features only. The multiscale retinex -

e image

ssﬂ:g step was applied to

Image preprocessing

Multiscale retinex
correction
Segmentation
SBMR | extraction[ | with
images | i | decision Tree F

=y gy e
Figure 5.1 Image processing procedures in this experiment.
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2) Multiscale retinex (MSR) correction
The multiscale retinex (MSR) algorithm was used to correct the intensity inhomogeneity

from SBMR images in this experiment. The MSR algorithm is the same as the method in

Chapter 3. It was used tosred he effe i ogeneity and noise for improving the
accuracy of ségmen
hapter 4.

put for

In orde nd d on tree, the SBMR images
with T1n9 were tested by using the boosted decision tree with trial number from 0 to 50 but
the MSR was not used for image preprocessing. Figure 5.2 shows the average accuracy rates

of segmentation using BDT with spatial feature (G, x, y, I, 6) and (S, X, ¥, I, 6) from SBMR

images with T1n9. The more boost trial numbers were applied, the more time was consumed.
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But the lower boost trial numbers were applied, the lower accuracy rates was segmented. The
critical average accuracy rates of brain tissue segmentation (GM, WM, and CSF) were

obtained using the decision tree with boost trial number of 20. Therefore, the decision tree

combined with 20 boo segment all SBMR images, as
shown in Fig
= =i

1 BDT, T1n9

1.00

0.98 1

0.96 4

0.94 4

|—— (G, x, y,r,0)|

092 4

Average accuracy rates of all brain tissues

0.90 ' ;
10

T

20
Boost trial numbers

Figure 5.2 gerc- rates o! a” Eram !1ssues segmen!ea using BDT with

- S T .

o
tof Figure 5.3 are TIn3RF20 and T1n9R.F.40 g VIR images,

30

50

ges. in row 1
||

nages in column 1 of Figure 5.3 display the original im ses'in column

_ u
2 of Fig he images corrected with MSR alg he corrected images

performed br an the original images. In this

present study, the weight” @ d scale combined with 15-pixel small-scale

SSR weightings of ®; = 1/3; 80-pixel moderate-scale SSR weightings of w, = 1/3; and
250-pixel large-scale SSR weightings of w; = 1/3 [77-82]. Images in column 3 of Figure 5.3

show the images segmented from the corrected images in column 2. The segmented images

-99 -




clearly performed the brain tissues (GM, WM, and CSF) using the BDT combined with MSR

algorithm.

Figure 5.3 Images from original, corrected using MSR, and segmented using [BDT from

SBMR with TIn3RF20 and T1n9RF40.

5.3.2.r Segmentation of SBMR images

Figure 5.4 'shows the results of segmentation using«CART and BDT from SBMR images
with TIn3RF20, TInSRE20, TIn7RF20, and TIn9REF20. The spatial features (G, X, y, I, €) and
(S, X, ¥, 1, O for feature extraction combined with MSR or non MSR were used for image
preprocessing in this study. Curve plots in row 1, 2, and 3 of Figure 5.4(a) show the accuracy

rates of GM, WM, and CSF from SBMR images. Curve plots in column 1 and 2 of Figure
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5.4(a) show the results of brain tissue segmentation using CART with spatial feature (G, X, V, I,
0) and (S, X, Y, I, 6), respectively. Curve plots in row 1, 2, and 3 of Figure 5.4(b) show the

accuracy rates of GM, WM, and CSF from SBMR images. Curve plots in column 1 and 2 of

Figure 5.4(b) show the results of brain tissue s iomusing BDT with spatial feature (G,

X, Y, I, 6) and
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Figure 5.4 Accuracy rates of tissue segmentation using a BDT algorithm on SBMR images
with TIn3RF20, TIn5RF20, TIn7RF20, and TIn9RF20. (a) Row 1, Accuracy rates of GM.

Row 2, Accuracy rates of WM. Row 2, Accuracy rates of CSF. Column 1, segmentation using

CART with spatial feature (C 2, segmentation using CART with spatial
feature (S X, ). ( ) c y rates of WM. Row 2,

e (GX, ¥ 1, 6).

Ac

( m

I'llgure ‘

iﬂ1l.T1n3 RE

, TIn5RF40

r feature ex
I

Ira v
|

" T1n9RF40. Cu

segmentation using

Curve plots i 1,2, and 3 of Figure 5.5(b) show
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Figure 5.5 Accuracy rates of tissue segmentation using a BDT algorithm on SBMR images
with TIn3RF40, TIn5RF40, TIn7RF40, and TIn9RF40. (a) Row 1, Accuracy rates of GM.

Row 2, Accuracy rates of WM. Row 2, Accuracy rates of CSF. Column 1, segmentation using

CART with spatial feature (C n 2, segmentation using CART with spatial

feature (S X, ). ( ) c y rates of WM. Row 2,

Ac e (Gx 1 0.

( m

Discussic
B

" The appropriate boost

segmentatio gorithm wit

o
dist

[ |
SBMR images orrectly seflpnted; the

the BDT combine hm for correcting in

inhomogeneity was proy

on for each iissue than that of spatial gray level (S). -E.he : es of

hen“the noise

gure 5.4, Figure

levels, ¢
5.5). There was also no rate of 'segmentation of SBMR
images with 20% or 40% 1 10genei ‘the overlap in intensity distribution was less
affected by inhomogeneities (Figure 5.4, Figure 5.5). Compared with the results of several

studies [42, 43, 48, 53, 94], the importance of improving brain tissue segmentation accuracy

is increasing in MR images, the segmentation errors of brain tissue from MR images were
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much more decreased when the BDT is combined with preprocessing by MSR algorithm. In
considering the time-consuming, the processing time of segmentation by using CART is very

less than that of by using BDT from SBMR images. The CART is the better for little

rocessing time of segmentation and the e orshigher accuracy of segmentation.
y
In concl | sue ' se ntation were obtained

ssify the SBMR

G
bth of the

mages
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Chapter 6  The Summary and Future Works

In this dissertation, we presented a multiscale retinex (MSR) algorithm to successfully

correct the intensity inhomogeneity of brain MR images to obtain clearer deep brain structures

and better image quali na nt omegeneity correction was also
evaluatediby PSNR $ ed two C ART and BDT) with a

e brain tissue

"

on on brain MR images to obtain better brain ctures panatomical

itions. The results of se 0 indexes

i
index, and other

egmentatio eprocessit

| |
MSR algorit 12 eXp al res of simula

“seg

Although the ¢ me aspectja!e needed

addressed for furthe TOVil DE ations.

1355

Ese.algorithms can be also applied to process the images -af ns such as

1) The X thim NR and dynam

hest, and also T2-weight, or PD-weighted MR
_ u

3) ion method, might be

applied fc e tiss 0 U 0 i R image to improve the

er studies.

diagnosis in clinical application. Itis worth fu
4) A more sophisticated method for a group of experts to construct gold-standard image,

which might improve the accuracy of segmentation is also an interest research
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category.

5) Owing to the complex of brain edge on MR images, the background removing

research and more tissue classes of brain MR image are worth studying issues.
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