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學生：趙文鴻     指導教授：陳右穎 博士 
 

國立交通大學電機與控制工程學系 博士班 
 

 

摘    要 

 
本文研究之目的主要是運用決策樹以增進腦部核磁共振影像於組織分割的準確度

達到一個高品質的腦部組織分割為目標，首先，此研究提出用一個多階層仿視覺 

(Multiscale retinex) 演算法來校準核磁共振影像之不均勻度 (Inhomogeneity)，此實驗之

核磁共振影像含有假體核磁共振影像與老鼠之腦部核磁共振影像，經此演算法校準後可

獲得較好的影像品質與清清晰的深層腦部結構影像，此外也用訊號峰值對雜訊比 

(Peak-signal-to-noise) 與  (Contrast-to-noise) 對比度對雜訊比來評估校準後的影像品

質。進一步實驗為得到腦部不同組織解剖結構，我們提出用分類與迴歸決策樹 (CART) 

來分割模擬之假體核磁共振影像與模擬之腦部核磁共振影像，進行組織分割實驗後得到

良好的腦部解剖組織影像。接下來更進一步實驗為增加腦部組織分割的準確度以提供神

經解剖應用性，我們提出用一個促進式之決策樹 (Boosted decision tree) 分割模擬之假體

核磁共振影像與模擬之腦部核磁共振影像與人體實體之腦部核磁共振影像，進行組織分

割實驗後得到更準確之腦部解剖組織影像。以上兩個實驗之分割結果並且都用準確率 

(Accuracy rate) 與 k 指標 (k index) 來量化評估其影像分割之表現。最後一個實驗是要得

到腦部核磁共振影像之高品質分割影像，我們提出用一個促進式之決策樹為基礎結合以

一個多階層仿視覺演算法為影像前處理之不均勻度校準分析，接著用促進式之決策樹來

分割模擬之腦部核磁共振影像進行組織分割，除了能成功地對模擬之腦部核磁共振影像

進行組織分割之外，經實驗分析後得到非常準確之腦部解剖組織影像，大大地改善了核

磁共振影像之不均勻度與雜訊對影像分割之準確度所造成之影響，更加提高了組織分割

的準確率，最後結果得到高品質的腦部組織分割，結果將對於腦部神經解剖之應用性有

很大的幫助。 
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ABSTRACT 
 
 

The purpose of this research is to achieve the high quality of brain tissue segmentation 

by using decision trees from magnetic resonance (MR) images. First, we proposed a 

multiscale retinex algorithm to correct the intensity inhomogeneity of brain MR images which 

include phantom data and animal data to obtain better image quality and clearer deep brain 

structures. The intensity inhomogeneity often occurs in MR images which are received by 

surface coils. The peak-signal-to noise (PSNR) and contrast-to- noise (CNR) were both used 

to evaluate the correction performance. Second, we used a classification and regression tree 

(CART) to segment brain MR images, including simulated phantom MR (SPMR) images and 

simulated brain MR (SBMR) images, to successfully segment brain tissues. Third, we 

proposed a boosted decision tree combined with fuzzy threshold to segment brain MR images, 

including SPMR images, SBMR images, and a real data, to achieve higher accuracy rate of 

brain tissue segmentation. The accuracy rate and k index were better when we used the 

boosted decision tree algorithm combined with a fuzzy threshold to classify gray matter (GM), 

white matter (WM), or cerebral-spinal fluid (CSF) in brain. Finally, we used the boosted 

decision tree through preprocessing procedure by the multiscle retinex algorithm to greatly 

improve the brain tissue segmentation from SBMR images. The accuracy rate was the best 

when we used the boosted decision tree algorithm combined with a multiscale retinex 

algorithm as a preprocessing procedure to classify GM, WM, or CSF in brain MR images. 
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The results shows that a boosted decision tree combined with preprocessing by the multiscale 

retinex algorithm can successfully improve the accuracy rate of MR brain tissue segmentation 

and can achieve a high quality of tissue segmentation in brain MR images. 
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Chapter 1  Introduction 

 

1.1. The overview of the magnetic resonance imaging 

Magnetic resonance imaging (MRI) has been used to diagnose various diseases for a 

long time and represented an important diagnostic technique in medicine for the effective and 

noninvasive detection of objects such as cancers, tumors, edema, infarctions, organs, blood 

vessels, and brain tissues. MRI can also obtain soft anatomical tissues of high quality in 

medical image application. It has become a well-known medical image equipment and 

well-used technique in neurological diagnosis and clinical applications. The advantages of 

MRI are more obvious than other medical image equipments such as CT, ultrasound, and 

X-ray. 

Bloch et al. has discovered the phenomenon of nuclear magnetic resonance (NMR) 

through a nuclear induction experiment in 1946 [1–3]. Purcell et al. also independently 

discovered the NMR in liquids and in solids in 1946 [4]. Many discoveries and developments 

about NMR founded the MRI technique. Magnetic resonance (MR) image is constructed with 

the bases of the NMR phenomenon. The principles of NMR are described as below. In 

general, nuclei consist of protons and neutrons. In quantum mechanical property, the particles 

(electronics, protons, and neutrons) of atom rotates around their own axis and the rotating 

motion is called spin. The phenomena of spin exist in all the charged particles which are 

similar to small magnets. The magnetic dipole exists in all of the particles. The phenomenon 

of spin is more exhibited in nuclei with odd number of protons and neutrons. One of these is 

hydrogen. Hydrogen which has only one proton and is contained in water or fat can create the 

strongest magnetic moment. More than 63% of the human body is composed of water or fat. 

Thus, magnetic dipole variations of the hydrogen are widely applied in imaging for human 

body. In MRI procedure, the directions of magnetic field ( 0B , 1B , and M ) and three axes are 
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shown in Figure 1.1. Three axes are defined in MR imaging domain which are x axis (from 

back to front), y axis (from left arm to right arm), and z axis (from head to feet). The spin of 

proton in hydrogen can also create a tiny magnet. A collection of the magnetic dipole 

directions of spin of protons in hydrogen are arranged in the same direction of the magnetic 

field when all of them are located in a high external static magnet ( 0B ). The magnetic dipole 

directions of them are random orientations in the absence of an external magnetic field. The 

direction of the high external static magnet is usually called z direction (z axis). The units 

used to measure the strength of magnetic field are Tesla and gauss. An example to evaluate 

the magnetic strength is that the strength of the earth is 0.5 gauss. One Tesla equals to 10,000 

gauss. 

The protons with spin axes in a high external static magnet also has precession 

phenomenon whose direction is parallel or anti-parallel to the magnetic field ( 0B ). The 

precession orientation which is a collection component ( M ) of magnetic dipole of all protons 

is around the magnetic field 0B . The precession phenomenon also exist frequency. The 

frequency of precession is called Larmor frequency which is the product of the gyromagnetic 

ratio and the magnetic field ( 0B ). The precession frequency is linearly proportional to the 

strength of the high external magnetic field ( 0B ). The gyromagnetic ratio of Hydrogen 

nucleus is 42.58 MHz/Tesla. Larmor frequency of hydrogen nucleus is 63.86 MHz when in a 

1.5 Tesla of an external magnetic field ( 0B ). Larmor frequency of Hydrogen nucleus is 

127.74 MHz when in a 3 Tesla of an external magnetic field ( 0B ). 

The precession direction of proton of hydrogen in human body is along z axis and its 

precession frequency also exists in a strong external magnetic field ( 0B ) for aligning the 

protons. In order to acquire the signals of magnetic dipole variations from hydrogen nuclei, 

the energy of a radio frequency (RF) pulse must be used to generate the signals and then the 

RF pulse coil transmitter will be turned off. When the same precession frequency of a RF 

pulse emits to protons, the nuclear magnetic resonance (NMR) phenomenon is generated. The 
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RF pulse is created from RF coils to construct a RF magnetic field (called 1B  field). The 

strength of 1B  field is smaller than that of external magnetic field ( 0B ) along the x-y plane. 

The energy transmitted from the RF pulse and 1B  field is absorbed into protons of hydrogen 

in human body to force the proton precession with a perpendicular direction ( x yM − ) to z axis. 

The energy of protons absorbed from 1B  field begins to release and the direction of the 

component x yM −  will realign to the z direction (direction of 0B  field) after the RF pulse is 

turned off. The protons will release the energy absorbed from the RF pulse in the original 

direction of a collection component of magnetic dipole of all protons ( M ) during the 

realigning time. The realigning time is called relaxation time and the realigning procedure is 

called free induce decay (FID). The released energy (radio frequency energy) can be received 

by a RF receiver coil to obtain the RF signals which can be transmitted to a computer to 

construct the MR images. 

 

Figure 1.1 Three axes systems and the directions of magnetic field ( 0B , 1B , and M ) in MR 

imaging systems. 

 

Two important parameters existing in FID procedure are T1 and T2. Two kinds of 

relaxation processes are: T1 relaxation time (longitudinal relaxation time) and T2 relaxation 
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time (transverse relaxation time). T1 relaxation time is the period while the protons release the 

energy absorbed from the RF pulse as heat to their surrounding environment (lattice) and the 

direction of a collection of magnetic dipole of all protons return to their equilibrium position 

(the original direction of component M , z direction, or longitudinal plane). T1 relaxation 

time is also called spin-lattice relaxation time. T2 relaxation time is the period while the 

protons release the energy absorbed from the RF pulse to their surrounding protons (spin) and 

the procedure causes a decrease in transverse magnetization ( x yM −  in x-y plane) . T2 

relaxation time is also called spin-spin relaxation time. Three types of MRI image are: 

T1-weighted image, T2-weighted image and PD-weighted image. T1-weighted image is 

constructed with the measurement of the T1 relaxation times for different tissues. 

T2-weighted image is obtained with calculation of the measured T2 relaxation times in 

different tissues. PD-weighted image which is the proton density image is acquired with the 

evaluation of the number of protons in a unit for different tissues. An example of MRI system 

is shown in Figure 1.2. 

 

Figure 1.2 An example of MRI system (MRI/MRS Lab, National Taiwan University). 
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1.2. Brain MR image quality and segmentation problem 

In this dissertation, we investigate some problems about MR image inhomogeneity and 

noise that might affect the image quality and decrease the accuracy of segmentation for 

diagnosis application. We address these problems to improve the brain MR image quality, to 

increase the segmentation accuracy of brain MR image, and to achieve the high quality of 

segmentation for brain MR anatomical structure. 

MR image intensities acquired from homogeneous tissue are often inhomogeneities due 

to bad radio frequency coil uniformity, gradient-driven eddy currents, and human anatomy 

both inside and outside the field of view. The noise existing in MR image also decreases the 

image quality due to the body movements, acquiring procedure, and receiver coils.  

Several factors make brain MR image segmentation difficult, including similar imaging 

intensities in different regions of the brain, overlapping intensity distributions, background 

noises, and radio-frequency (RF) inhomogeneities. The accuracy of segmenting the cortical 

surface for analyzing the volumes of different tissues such as gray matter (GM) and white 

matter (WM) significantly affects clinical diagnoses, but this is difficult to be achieved due to 

the presence of imaging noise and inhomogeneities. Furthermore, it is more difficult to 

improve the segmentation accuracy of brain MR image to achieve high quality of 

segmentation for anatomical structure. 

 

1.3. Literature reviews 

For MR image anatomical structure quality, the image intensity inhomogeneity and 

segmentation are two main problems. In this Section, we will review the literatures about 

inhomogeneity correction, segmentation approaches, and inhomogeneity correction prior to 

segmentation approaches for MR images. 
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1.3.1. Reviews of the MR image inhomogeneity correction approaches 

One of these factors is RF inhomogeneities of MR images. It often occurs in MR images 

obtained by receiving with surface coils during scanning on MR imaging. Several techniques 

were urged on improvements of surface coils to increase the MR image quality to help the 

clinical diagnosis [5–11]. It is more expensive to decrease effects of RF inhomogeneities by 

improving surface coils through the hardware technique. Therefore, an easy way through 

software methodology with low cost is helpful to decrease the effects of RF inhomogeneities. 

Many approaches have been recently proposed to correct MR image to improve the detection 

and diagnosis capabilities [12–20]. Haiguang et al. addressed the performances of enhancing 

hybrid MR images that were decreased by T2-weighted effects and measurement noise [11]. 

They reduce the imaging time using hybrid imaging sequences such that the T2 effects act as 

a distortion filter which will damage image quality and detection and which can be estimated 

and used in Wiener filter for global T2 amplitude restoration. The linear prediction was also 

used to predict the local signal and phase to estimate the frequency response of the T2 filter. 

These combined techniques successfully correct T2 distortion and reduce the measurement 

noise to demonstrate both phantoms and human data. 

Sled et al. corrected the MR image intensity inhomogeneity to achieve high performance 

without requiring a model of tissue classes present [13]. They used a nonparametric 

nonuniform intensity normalization to estimate both the multiplicative bias field and the 

distribution of true tissue intensity. They successfully corrected the simulated and real data to 

reduce intensity nonuniform and tissue intensity variation to obtain uniform image. The 

relative segmentation approaches are to correct the inhomogeneous image prior to the 

segmentation. Ahn et al. [14] proposed a method of local adaptive template filtering for 

enhancing the signal-to-noise ratio (SNR) in MRI without reducing the resolution. Moreover, 

Styner et al [15] showed that a parametric bias-field correction method could correct bias 

distortions that are much larger than the image contrast. Likar et al. [16] proposed a 
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model-based correction method to adjust inhomogeneity in the intensity of an MR image. 

They applied an inverse image-degradation model where parameters were optimized by 

minimizing the information content of simulated and real MR data. Lin et al. [17] used a 

wavelet-based algorithm to approximate surface-coil sensitivity profiles. They corrected 

image intensity in homogeneities acquired by surface coils, and used a parallel MRI method 

to verify the spatial sensitivity profile of surface coils from the images captured without using 

a body coil. It has also been shown [18, 19] that contrast enhancement can be used to improve 

the quality of MR images. More researches [20–25] were also urged to correct the RF 

inhomogeneity and to model bias field of MR images to improve the image quality. These 

proposed researches exhibit the importance of MR image inhomogeneity correction. In 

addition, the study of brain structure through MR image correction is very important for 

neurological applications. However, the correction of MR image intensity inhomogeneity is 

also a problem to improve the image quality with better visualization.  

 

1.3.2. Reviews of the brain MR image segmentation approaches 

Segmentation is one of the techniques used to classify the brain tissues in MR images, 

which is a basic problem for identifying anatomical structures in MR image processing. 

Several segmentation methods have been applied in the analysis of anatomical structures 

involving three-dimensional (3D) reconstruction, tissue-type contour definition, and clinical 

diagnosis [26, 27], and in cortical surface segmentation, volume assessment of brain tissue, 

tissue classification, tumor segmentation, and characterization of various brain diseases such 

as sclerosis, epilepsy, stroke, cancer, and Alzheimer’s disease [28, 29]. The accuracy of 

segmenting the cortical surface for analyzing the volumes of different tissues such as gray 

matter (GM) and white matter (WM) significantly affects clinical diagnoses, but this is 

difficult to be achieved due to the presence of imaging noise and inhomogeneities. Several 

segmentation techniques have been proposed for improving the detection of brain structures 
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in MR images in diagnostic and neuroanatomical applications. Both manual and automatic 

segmentation methods are used to segment brain MR images. Manual segmentation such as 

thresholding is a traditional method used to distinguish different tissues in MR brain images 

[30–32], but this is difficult in the presence of a low contrast-to-noise ratio, low 

signal-to-noise ratio (SNR), and overlapping of tissues in the gray-level distributions, and it is 

also very labor-intensive and time-consuming [33]. Therefore, several studies have 

investigated automatic segmentation methods for distinguishing brain MR images structures 

and improving the efficiency of segmentation and tissue classification [27, 34–41]. Marroquin 

et al. presented an automatic segmentation method based on an accurate and efficient 

Bayesian algorithm [42]. Automatic segmentation based on a constrained Gaussian mixture 

model framework employed an expectation-maximization algorithm to determine parameters 

and segment both simulated and real three-dimensional, T1-weighted noisy MR images [43]. 

Some of these automatic segmentation methods were used to classify the tissues (GM, WM, 

and cerebrospinal fluid (CSF)) in brain MR images. An automatic segmentation method has 

also been used to segment WM lesions in brain MR images [44]. Zoroofi et al. [27] 

demonstrated favorable segmentation performance using an automatic segmentation 

technique combined with region growing, gray morphological dilation, filtering, and 

thresholding to assess the necrotic formal head area. Admiraal-Behloul et al. [39] used a fully 

automatic segmentation method combined with adaptive and reasoning levels to perform 

white matter hyperintensity (WMH) segmentation for volume qualification and similarity on 

older MR images. Dou et al. [45] proposed a framework of fuzzy information fusion 

combined with registration operation, feature extraction, fuzzy feature fusion operation, and 

fuzzy region growing to automatically segment brain tumor tissues on MR images. Xia et al. 

[41] proposed a knowledge-driven algorithm for automatically delineating the caudate 

nucleus (CN) region in MR-imaged human brains. MR image tissue segmentation is 

important to accurately distinguish gray matter (GM), white matter (WM), and cerebral-spinal 
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fluid (CSF) in the brain [34, 35, 42, 46, 47], while automatic MR image segmentation is often 

used to classify brain tissue. Many automatic segmentation techniques use probabilistic 

classification to segment brain tissues [34, 43, 44, 48], while others use wavelet coefficients 

as spatial features of voxels in three-dimensional (3D) imaging for clustering the GM, WM, 

and CSF with fuzzy theory. Fuzzy logical models have been used to test phantom, normal, 

and Alzheimer’s brain MR images in order to reduce the difference of partial volume 

averaging on the boundary of the ventricles [49]. Another wavelet application has been used 

to design attribute vectors as spatial features of voxels for determining correspondence in 3D 

brain MR images [50]. Segmentation applications include tissue volume quantification and 

3D spatial structure reconstruction, which greatly aid in disease diagnosis [26, 27, 31, 33, 36, 

51–56]. However, it remains necessary to increase the accuracy of automatic segmentation of 

the GM, WM, and CSF in brain MR images to obtain clearer anatomical structures. 

Several studies have improved coil sensitivities and the performance of transmitter 

devices [57–60], but it remains difficult and expensive to reduce imaging noise and 

inhomogeneity through hardware improvements. Therefore, it is valuable to find an easy way 

with a low cost technique to obtain better MR brain structures. Furthermore, it is important to 

increase the ability through software improvements to discriminate different tissue 

characteristics of brain structures. 

 

1.3.3. Reviews of MR image inhomogeneity correction prior to segmentation 

Although many studies on segmentation of MR images aimed to obtain the anatomical 

structures of human body, the more precise analysis of MR images is still a difficult problem. 

Therefore, many researches preprocessed intensity inhomogeneity correction and then 

segmented MR images to achieve the better image quality. Zhou et al. presented a method of 

RF inhomogeneity correction for brain tissue segmentation in MRI [46]. They proposed a 

correction method to model image intensity variation to correct inhomogeneity of MR images 
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from both phantom and physical data to improve the segmentation. The results showed a 

significant improvement of MR image segmentation through preprocessing by this 

inhomogeneity correction. Andersen et al. proposed a robust and comprehensive approach for 

automatic segmentation and quantitative tissue volume measure of normal brain composition 

[34]. They used statistical recognition methods based on a finite mixture model to partition 

GM, WM, and CSF of MR in vivo data. RF inhomogeneity effects on the images were also 

removed using a recursive method to support heterogeneous data with multispectral MR 

images. They segmented T1-weighted, T2-weighted, and PD-weighted MR images from 

non-human and human data.  Therefore, several studies have been investigated on automatic 

segmentation methods for distinguishing brain MR images structures and improving the 

efficiency of segmentation and tissue classification [2, 9–16]. Chard et al. [61] used 

reproducibility and sensitivity of brain tissue volume measurement to correct low spatial 

frequency image nonuniformity, which was assumed as artifacts. They used SPM99 to 

segment GM, WM, and CSF of brain MR images. Shufeng et al. [62] used a background 

removing method to correct MR image intensity nonuniformity. The MR images were filtered 

in advance. The MR images were then segmented by region growing method. Chen et al. [63] 

proposed a fuzzy c-means (FCM) algorithm based on intensity inhomogeneity correction and 

segmentation of MR images. Pan et al. [64] proposed an efficient automatic framework for 

segmentation of brain MR images. They removed the non-brain tissue and estimated bias field 

to correct intensity inhomogeneity for preprocessing. Other bias field methods [65] were also 

used to correct intensity inhomogeneity for MR image segmentation. More correction 

approaches of intensity variation in MR images for tissue segmentation were also studied 

[66–68]. These studies demonstrate the importance of segmentation for neurological 

applications. However, the increasing accuracy of segmentation is more important in 

classifying different brain tissues for improving anatomical structures in real applications. 
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1.4. Motivations 

Although there were many researches of MR image inhomogeneity correction as 

mentioned in the literature review, the better image quality through image inhomogeneity 

correction still needs to be achieved. The image noise and intensity inhomogeneity are two 

main factors to affect brain MR images quality. Besides, the deep brain structures of MR 

images are difficult to be recognized and are very important in neuroanatomical applications. 

Therefore, we will improve the image quality with better visualized rendition by a proposed 

inhomogeneity correction method to correct the intensity inhomogeneity of brain MR image 

and to improve the detection and diagnosis capabilities. 

Both the hardware improvement through coil sensitivities and the performance of 

transmitter devices to reduce imaging noise and inhomogeneity are more expensive. 

Furthermore, the studies of literature review showed that the clear anatomical structures also 

remain difficult to be obtained. However, a low cost technique to obtain better MR brain 

structures is worth studying. Thus, we will propose an easy implementation method through 

software technique of automatic segmentation algorithm for classifying the tissues (GM, WM, 

and CSF) of brain MR images to obtain clearer anatomical structures. Moreover, the 

increasing accuracy of segmentation demonstrated in the literature reviews is more important 

in classifying different brain tissues for improving anatomical structures in real applications. 

We will propose another automatic segmentation method to improve the segmentation 

accuracy of the GM, WM, and CSF in brain MR images to improve anatomical structures. 

Similarly, greatly increasing the segmentation accuracy of brain MR image and achieving high 

quality of segmentation are also very important. Consequently, we will combine the intensity 

inhomogeneity correction algorithm and the proposed segmentation method to increase the 

segmentation accuracy of the GM, WM, and CSF in brain MR images to achieve the high 

quality of segmentation for anatomical structures. 
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1.5. The goals of this research 

The goals of this research address these problems described in Section 1.2, 1.3, and 1.4. 

The whole image processing procedures of this research is shown in Figure 1.3 which will 

match the goals of this research. According to the problems described in literature reviews 

and motivations, we will solve the problems with the whole image processing procedures of 

Figure 1.3. The goals of this research are: to obtain better image quality, to obtain better 

anatomical structures, to obtain more segmentation accuracy, and to achieve high quality of 

segmentation for brain MR images. 

We first proposed a multiscale retinex algorithm to correct the intensity inhomogeneities 

of brain MR images which include phantom data and animal data to obtain clearer deep brain 

structures and better image quality. Secondly, we used an automatic segmentation of 

classification and regression tree (CART) to segment brain MR images and to obtain better 

brain anatomical structures. Thirdly, we proposed a boosted decision tree combined with 

fuzzy threshold to segment brain MR images which include simulated phantom MR (SPMR) 

images, simulated brain MR (SBMR) images, and a real data to obtain higher accuracy of 

segmentation and much better brain anatomical structures. Finally, we used the boosted 

decision tree combined with the multiscle retinex algorithm as a preprocessing procedure to 

greatly improve the segmentation accuracy from SPMR images and SBMR images. 

    The final objective of this dissertation is to propose a segmentation method based on a 

boosted decision tree through preprocessing by a multiscale retinex algorithm for correcting 

intensity inhomogeneity to achieve high quality of segmentation of GM, WM, and CSF from 

brain MR images for anatomical structures. 
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Figure 1.3 The whole image processing procedures of this research. 

 

1.6. The main contributions 

    In this dissertation, we address the MR image quality and segmentation problems to 

improve the quality of brain MR image segmentation by focusing on four experiments which 

are correction of inhomogeneous MR images using multiscale retinex algorithm, 

segmentation of brain MR images using a CART decision tree, segmentation of brain MR 

images using a boosted decision tree, and segmentation of brain MR images based on boosted 

decision tree through preprocessing by the multiscale retinex algorithm to achieve the goals of 

this research. 

    A new method for enhancing the contrast of magnetic resonance (MR) images by retinex 

algorithm was proposed. It can correct the blurring in deep anatomical structures and 

inhomogeneity of MRI. Multiscale retinex (MSR) employed single scale retinex (SSR) with 
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different weightings to correct inhomogeneities and enhance the contrast of MR images. An 

automatic segmentation method based on a CART decision tree was then proposed to classify 

the brain tissues of MR images. Next, a boosted decision tree segmentation algorithm 

combined with fuzzy threshold algorithm was proposed to improve the accuracy rate of brain 

tissue segmentation from brain MR images. Finally, the high segmentation quality of brain 

tissue (GM, WM, and CSF) from brain MR images were performed based on a boosted 

decision tree combined with a preprocessing by the multiscale retinex (MSR) algorithm. 

    The main contributions of this dissertation are: 

1. A multiscale retinex (MSR) algorithm is used to successfully correct the intensity 

inhomogeneity of brain MR images that can adjust different weighting with combined 

three scale of single scale retinex (SSR) and to perform the best trade off between 

peak-signal-to-noise- ratio (PSNR) and contrast-to-noise-ratio (CNR). 

2. A multiscale retinex (MSR) algorithm is used to clear the deep brain structures 

(medical forebrain bundle: MFB) of rat brain and to obtain better image quality.  

3. An automatic segmentation of classification and regression tree (CART) with a 

supervised method is proposed to effectively segment the brain tissues of simulated 

phantom MR (SPMR) images and simulated brain MR (SBMR) images. 

4. A boosted decision tree combined with fuzzy threshold and an appropriate boost trial 

number is also proposed to more accurately segment brain tissues of SPMR, SBMR 

images, and a real data. The segmentation performances are also successfully 

evaluated by a 3D reconstruction method. 

5. Two kinds of evaluation index, accurate rate and k index, are effectively used to 

investigate the segmentation performance from brain MR images. 

6. A high quality of segmentation of gray matter (GM), white matter (WM), and cerebral 

spinal fluid (CSF) from brain MR images is improved based on the boosted decision 

tree (BDT) through preprocessing by a MSR algorithm. 
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1.7. The organization of this dissertation 

The rest of this dissertation is organized as follows: Chapter 2 declares the proposed 

multiscale retinex algorithm to correct the brain MR image intensity inhomogeneity. Chapter 

3 presents an automatic segmentation method with classification and regression tree (CART) 

to segment brain MR images. Chapter 4 presents a boosted decision tree combined with fuzzy 

threshold to segment brain MR images. Chapter 5 presented the boosted decision tree to 

segment brain MR images through preprocessing by multiscale retinex (MSR) algorithm. 

Finally, the conclusion and future works are discussed in Chapter 6. 
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Chapter 2  Correction of Inhomogeneous MR Images Using 

Multiscale Retinex (MSR) 

 

2.1. Introduction 

Due to the importance of MR image inhomogeneity correction, it is a valuable to 

investigate how to reduce imaging noise and inhomogeneity and to improve the MR image 

quality. Therefore, we proposed a multiscale retinex (MSR) algorithm to correct the intensity 

inhomogeneity of MR image, to improve the image quality, and to help the detection and 

diagnosis capabilities. 

Stretching the pixel dynamic range of certain objects in an image is a widely adopted 

approach for enhancing the contrast [69]. The image contrast-enhancement techniques can be 

divided into two types: global and local histogram enhancement [70, 71]. The (global) 

histogram equalization technique improves the uniformity of the intensity distribution of an 

image [70, 71] by equalizing the number of pixels at each gray level. The disadvantage of this 

method is that it is not effective in improving poor localized contrasts [72]. Local histogram 

enhancement [71, 73] used an equalization method to improve the detailed histogram 

distribution within small regions of an image, and also preserved the gray-level values of the 

image. The obtained histogram is updated in neighboring regions at each iteration, then local 

histogram equalization is applied. However, the visual perception quality of a processed 

image is subjective, and it is known that both global and local histogram equalization do not 

result in the best contrast enhancement [71–76].  

For image processing, the presence of the nonuniformity of an MR image caused by the 

inhomogeneity of the magnetic intensity is very similar to that of a normal image resulted 

from bad illumination sources and environmental conditions. To address the nonuniformity 

problem of an image, Land [77], inspired by the psychological knowledge about the brain’s 
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processing of image information from retinas, developed a concept named retinex as a model 

for describing the color constancy in human visual perception. His idea is that the perception 

of human is not completely defined by the spectral character of the light reaching the eye from 

scenes. It includes the processing of spatial-dependant color and intensity information of the 

retina of an eye, which can be realized by the computation of dynamic-range compression and 

color rendition [78–81]. Moreover, Jobson et al. [82] found in his study that the selection the 

parameters of surrounding function can greatly affect the performance of the retinex. He then 

balanced the dynamic compression and color rendition by using multi-scale retinex (MSR). 

Although hardware techniques can be utilized to correct the image inhomogeneity and to 

enhance image contrast, they are costly and inflexible. Hence, it is promising to develop easy 

and low-cost software-based techniques to address the inhomogeneity problem in MR images. 

In this Chapter, we introduced a software-based retinex algorithm for contrast enhancement 

and dynamic-range compression that improve image quality by decreasing image 

inhomogeneity. 

 

2.2. Materials and methods 

 

2.2.1. Retinex algorithm 

In general, the human visual system is better than machines when processing images. 

Observed images of a real scene are processed based on brightness variations. The images 

captured by machines are easily affected by environmental lightening conditions, which tend 

to reduce its dynamic range. On the contrary, the human visual system can automatically 

compensate the image information by psychological mechanism of color constancy. Color 

constancy, an approximation process of human perception system, makes the perceived color 

of a scene or objects remain relatively constant even with varying illumination conditions. 

Land [77] proposed a concept of the retinex, formed from "retina" and "cortex", suggesting 
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that both the eye and the brain are involved, to explain the color constancy processing of 

human visual systems. After the human visual system obtain the approximate of the 

illuminating light, the illumination is then discounted such that the "true color" or reflectance 

can be determined. More details about subject color constancy can be found in [83–84].  

Hurlbert and Poggio [80] and Hurlbert [81] applied the retinex properties and luminosity 

principles to derive a general mathematical function. Differences arose when images from 

various center/surround functions in three scales of gray-level variations were shown. 

Hurlbert [80, 81] applied a center/surround function to solve the brightness problem, using the 

learning mechanism of neural networks and a general solution to evaluate the relative 

brightness in arbitrary environments. 

Although Jobson et al. proposed a single-scale retinex (SSR) algorithm that could support 

different dynamic-range compressions [82, 85], the multi-scale retinex (MSR) can better 

approximates human visual processing, verified by experiments [82, 85–87], by transforming 

recorded images into a rendering which is much closer to the human perception of the original 

scene. 

 

2.2.2. Single-scale retinex 

The basics of an SSR [77] were briefly described as follows. A logarithmic 

photoreceptor function that approximates the vision system was applied, based on a 

center/surround organization [77, 85]. The SSR was given by 

)],(*),(log[(),(log),( yxFyxIyxIyxR iii −= ,              (2.1) 

where ),( yxRi  was the retinex output, ),( yxI i  was the image distribution in the ith 

spectral band, and “*” represented the convolution operator. In addition, ),( yxF  was 

represented as 
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∫∫ = 1),( dxdyyxF ,                        (2.2)
 

which was the normalized surround function. The purpose of the logarithmic manipulation 

was to transform a ratio at the pixel level to a mean value for a larger region. We selected MR 

images for our implementation with this form in Equation (2.5) proposed by Land [77]. 

This operation was applied to each spectral band to improve the luminosity, as suggested 

by Land [77]. It was independent from the spectral distribution of a single-source illumination 

since 

),(),(),( yxryxSyxI iii = ,                        (2.3) 

where ),( yxSi  was the spatial distribution on an illumination source, and ),( yxri  was 

the reflectance distribution in an image, so 
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where S  represented the spatially weighted average value, as long as 
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This approximate equation was the reflectance ratio, and was equivalent to illumination 

variations in many cases. 

 

2.2.3. The surround function 

Several types of surround function were implemented. First, an inverse-square spatial 

surround function proposed by Land [77] was formed as  

2/1),( ryxF = ,                           (2.7) 

where 

22 yxr +=                             (2.8) 

could be changed to another surround function as 
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where 1c  was a space constant. 

Moore et al. [78–79] used a surround function on an exponential function with the 

absolute value r as 

2/||),( creyxF −=                            (2.10) 

to approximate the spatial response, where 2c  was a space constant. 

Hurlbert and Poggio [80] and Hurlbert [81] used the Gaussian surround function  

2
3

2 /),( crKeyxF −=                          (2.11) 

to reconcile natural and human vision, where 3c  was a space constant. For a given space 

constant, the inverse-square surround function accounted for a greater response from the 

neighboring pixels than the exponential and Gaussian functions. The spatial response of 

the exponential surround function was larger than that of the Gaussian function at distant 

pixels. Therefore, the inverse-square surround function was more commonly used in 

global dynamic-range compression, and the Gaussian surround function was generally 

used in regional dynamic-range compression [82]. 

The exponential and Gaussian surround functions were able to produce good 

dynamic-range compression over neighboring pixels [78, 81–82]. From the proposed surround 

functions [78–81], the Gaussian surround function exhibited good performance over a wider 

range of space constants, so it was used to enhance contrasts and to solve the inhomogeneity of 

MR images in the present study. 

 

2.2.4. Adjustment of single-scale retinex output 

The final process output was not obvious from the center/surround retinex proposed by 
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Land [77]. Moore et al. [78] also offered an automatic gain and offset operation, in which the 

triplet retinex outputs were regulated by the absolute maximum and minimum values of all 

scales in a scene. In this study, a constant gain and offset technique (as shown in Figure 2.1) 

was used to select the best rendition.  

 

Figure 2.1 A histogram distribution plot that illustrated the gain and offset values of an MR 

image, which underwent the single-scale retinex (SSR) to enhance its contrast.  

 

Figure 2.1 described how to choose the transferred output interval of both the highest- 

and lowest-scale rendition scene for each SSR. The offset value can be directly determined by 

the lower bound. Furthermore, the gain can be computed according to the range between the 

upper and lower bounds. The selection of a larger upper bound leaded to minor contrast 

improvement but prevents heavy distortion caused by truncation. The lower bound functions 

in a similar way as explained previously. Adjustments to the gain and offset result in the 

retinex outputs caused little information lost, and the constant gain and offset of retinex was 
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independent of the image content. We evaluated the effects of variations in the histogram 

characteristics in a gray-level scene. The gain and offset were constant between images in 

accordance with the original algorithm proposed by Land [77], and also demonstrated that it 

can be applied as a common manipulation to most types of images.  

 

2.2.5. Multiscale retinex 

It was our intention to select the best value of scale factor c in the surround function 

),( yxF  based on the dynamic-range compression and brightness rendition for every SSR. 

We also intended to maximize the optimization of the dynamic-range compression and 

brightness rendition. MSR was a good method for summing a weighted SSR according to  

∑
=

=
N

n
niiMSRi RR

1
ω ,                               (2.12) 

where N represented a scaling parameter, niR  represented the ith component of the nth scale, 

iMSRR  was the nth spectral component of the MSR output, and nω  represented the 

multiplication weight for the nth scale. The differences between ),( yxR  and ),( yxRn  

resulted in surround function ),( yxFn  became  

22 /),( ncr
n KeyxF −= .                               (2.13) 

MSR combined various SSR weightings [82, 85], selecting the number of scales used for 

the application and evaluating the number of scales that can be merged. Important issues to be 

concerned were the number of scales and scaling values in the surround function, and the 

weights in the MSR. MSR was implemented by a series of MR images, based on a trade-off 

between dynamic-range compression and brightness rendition. Also, we needed to choose the 

best weights in order to obtain suitable dynamic-range compression at the boundary between 

light and dark parts of the image, and to maximize the brightness rendition over the entire 

image. We verified the MSR performances on visual rendition with a series of MR images 

scanned by MR systems. Furthermore, we compared the efficacy of the MSR technique in 



 

- 23 - 
 

enhancing the contrast of these MR images with other image processing techniques. 

An algorithm for MSR as applied to human vision has been described in past literature 

[82, 85]. The MSR worked by compensating for lighting variations to approximate the human 

perception of a real scene. There were two methods to achieve this: (1) compare the 

psychophysical mechanisms between the human visual perceptions of a real scene and a 

captured image, and (2) compare the captured image with the measured reflectance values of 

the real scene. 

To summarize, our method involved combining specific features of MSR with processes 

of SSR, in which the center/surround operation was a Gaussian function. A narrow Gaussian 

distribution was used for the neighboring areas of a pixel (which was regarded as the center). 

Space constants for Gaussian functions with scales of 15, 80, and 250 pixels in the 

surrounding area, as proposed by Jobson et al. [82, 85], were adopted in this study. The 

logarithm was then applied after surround function processing (i.e., two-dimensional spatial 

convolution). Next, appropriate gain and offset values were determined according to the 

retinex output and the characteristics of the histogram. These values were constant for all the 

images. This procedure yielded the MSR function. 

 

2.2.6. Phantom and animal magnetic resonance imaging (MRI) 

All experiments were performed at the Nuclear Magnetic Resonance (NMR) Center, and 

were carried out in accordance with the guidelines established by the Animal Care and 

Utilization Committee. 

A single adult male Wistar rat weighing 275 g (National Laboratory Animal Center, 

Taiwan) was anesthetized using 2 % isoflurane and positioned on a stereotaxic holder. The 

body temperature of the animal was maintained using a warm-water circulation system. 

For MR experiments, images were captured on a Bruker BIOSPEC BMT 47/40 

spectrometer (Bruker GmBH, Ettlingen, Germany), operating at 4.7 Tesla (200 MHz), 



 

- 24 - 
 

equipped with an actively shielded gradient system (0 ~ 5.9 G/cm in 500 ms). A 20-cm 

volume coil was used as the RF transmitter, and a 2-cm linear surface coil and the above 

volume coil were used separately as the receiver. Coronal T2-weighted images of the 

phantom – comprising a 50-ml plastic centrifuge tube filled with water and an acrylic rod – 

and the rat brain were acquired using RARE sequences with a repetition time of 4000 ms, an 

echo time of 80 ms, a field of view of 3 cm, a slice thickness of 1.5 mm, 2 repetitions, and an 

acquisition matrix of 256 × 256 pixels. 

 

2.2.7. Peak Signal-to-Noise Ratio and Contrast-to-Noise Ratio Analysis 

The PSNR [88] and contrast-to-noise ratio (CNR) were commonly used performance 

indices in image processing [12, 14]. The PSNR was given by 
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where y(k, l) and m(k, l) were the enhanced and original images of size K and L respectively, 

and Ipeak was the maximum magnitude of images [88]. The CNR was given by  
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where d
jkP  and u

jkP  were the gray levels, ][ d
jkPE  and ][ u

jkPE  were the means, and 

)( d
jkPVar  and )( u

jkPVar  were the variances of the (j, k)th pixel in the enhanced and original 

images, respectively [12, 14]. 
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2.3. Experimental results 

 

2.3.1. Results of phantom image 

The performance of our retinex algorithm was assessed by determining the parameters 

for a test series of MR images of the phantom, with dimensions of 256 × 256 pixels and 16-bit 

quantization. The dynamic-range compression and brightness constancy were determined in 

the MR images of the test series, based on postprocessing by the retinex method.  

Figure 2.2 showed the results of using SSR and MSR to correct for the inhomogeneity of 

an MR image of the phantom. The original MR image was shown in Figure 2.2(a), which 

exhibited inhomogeneity, nonuniformity, low brightness, and a large dynamic range. SSR 

with a scale of every 10 pixels between 0 and 255 was used to analyze the series of phantom 

images. SSR with a scale of 15 pixels was also applied in this test. Figure 2.2(b), (c), and (d) 

illustrated the successful reductions in intensity inhomogeneity of the phantom images using 

SSR with scales of 15, 80, and 250 pixels respectively. The images in Figure 2.2(b), (c), and 

(d) showed dynamic-range compressions and brightness were large, moderate, and small, 

respectively, which indicated the dynamic-range compression increased when the SSR scale 

decreased. Figure 2.2(e) showed the image obtained from MSR by combining three scales of 

SSR weightings ( nω = 1/3, n = 1, 2, and 3), where the three scales of SSR were 15, 80, and 

250 pixels as used by Jobson et al. [82, 85]. The images obtained from the retinex algorithms 

were of higher quality than the original phantom image. Also, Figure 2.2(f) showed an MR 

image captured by a volume coil as a receiver with the same MR imaging procedures and 

parameters. Comparison of Figure 2.2(e) and (f) revealed that MSR successfully corrected the 

original MR phantom image. 
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Figure 2.2 Corrected MR images of a phantom demonstrating the performance of retinex. (a) 

The original MR image. (b) Image obtained from SSR with scale of 15 pixels. (c) Image 

obtained from SSR with scale of 80 pixels. (d) Image obtained from SSR with scale of 250 

pixels. (e) Image obtained from MSR with three combined scales of SSR weightings ( nω = 

1/3, n = 1, 2, and 3). (f) MR image captured by a volume coil. 

 

 

 

2.3.2. Results of animal image 

In Figure 2.3, results of applying SSR and MSR to adjust a rat brain MR image were 

shown. Figure 2.3(a) showed the original MR image, which was one of 28 coronal brain slices. 

Figure 2.3(b), (c), and (e) showed the images obtained from SSR with scales of 15, 80, and 

250 pixels respectively, with dynamic-range compressions that are large, moderate, and small; 

and brightness variations that are small, moderate, and large respectively. The images 

obtained from retinex demonstrated better visual rendition than that of the original MR image 

in Figure 2.3(a). The background of the original brain MR image was blurred, and its 

brightness contrast and dynamic range were poor. Figure 2.3(d) was the image obtained from 

MSR, displaying its strength of combining small, moderate, and large scales of SSR with the 

same weightings of nω = 1/3 (n = 1, 2, and 3). Figure 2.3(f) showed an MR image captured 

by a volume coil with the same MR imaging procedure, it had better homogeneity than the 

image obtained by surface coils, yet the resolution was lower. Figure 2.3(g) was enlarged (× 5) 

from dotted-line block of the original image in Figure 2.3(a), showing the deep brain structure 

subimage, the details in the medial forebrain bundle (MFB) and mammillothalamic tract (MT) 

regions were not clear and inhomogeneous. Figure 2.3(h) shows the MR image enlarged (× 5) 

from dotted-line block of Figure 2.3(d) from MSR, regions (MFB and MT) circled with 

dotted-curve demonstrated better homogeneity and clarity. Figure 2.3(h) exhibits clearer deep 
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anatomical structures from MSR than Figure 2.3(g) from original image.  

The MSR clearly improved the quality, relative to that of the original MR image. 

Comparing among the original MR image, the image captured by a volume coil and the image 

obtained from the retinex algorithm revealed that the last method showed the best 

performance in terms of brightness, dynamic-range compression, and overall visual rendition. 
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Figure 2.3 Performance of the retinex was demonstrated with adjusted MR images of a 

coronal section of the rat brain. (a) The original MR image. (b) Image obtained from SSR 

with scale of 15 pixels. (c) Image obtained from SSR with scale of 80 pixels. (d) Image 

obtained from MSR with three combined scales of SSR weightings ( nω = 1/3, n = 1, 2, and 3). 

(e) Image obtained from SSR with scale of 250 pixels. (f) MR image captured by a volume 

coil. (g) A 500% enlargement form the dotted-line block area in (a). The enlargement exhibits 

areas of tissue inhomogeneity within the deep brain structures. (h) The enlarged medical 

forebrain bundle (MFB), from dotted-line block of (d). The MFB was more clearly 

differentiated from other structures and the homogeneity of the circled region can be 

guaranteed. 

 

 

2.3.3. Comparisons of histogram equalization, local histogram equalization, and a 

wavelet-based algorithm with multiscale retinex 

The effectiveness of the retinex algorithm was compared with a phantom image captured 

by MR imaging systems, using histogram equalization, local histogram equalization, and a 

wavelet-based algorithm. 

In Figure 2.4(a), the image was obtained with histogram equalization, and Figure 2.4(b) 

showed the image obtained from local histogram equalization with a local region of 128×128 

pixels. Both techniques resulted in blurred edges and poor contrast. A large amount of noise 

was still present in Figure 2.4(a) and (b), with the performance of local histogram equalization 

being worse than that of histogram equalization. Figure 2.4(c) showed the image processed by 

the wavelet-based algorithm [17, 18], indicating the presence of some noise. In Figure 2.4(d) 

and (e), the images were obtained from MSR with combined 15-pixel small-scale SSR 

weightings of ω1 = 3/5 and 4/6; 80-pixel moderate-scale SSR weightings of ω2 = 1/5 and 1/6; 

and 250-pixel large-scale SSR weightings of ω3 = 1/5 and 1/6 respectively. Figure 2.4(f) 
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showed the image obtained from MSR with combined 10-pixel small-scale SSR weightings of 

ω1 = 3/5; 60-pixel moderate-scale SSR weightings of ω2 = 1/5; and 220-pixel large-scale SSR 

weightings of ω3 = 1/5. All phantom figures in Figure 2.4 displayed clear deep structures and 

edges. The MSR algorithm exhibited better visual rendition than histogram equalization, local 

histogram equalization, and the wavelet-based algorithm. The performance of MSR was also 

compared with those of histogram equalization, local histogram equalization, and the 

wavelet-based algorithm on an MR image of rat brain. 
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Figure 2.4 Corrected MR images of a phantom, obtained via four methods. (a) MR image 

obtained from histogram equalization. (b) MR image obtained from local histogram 

equalization. (c) MR image obtained with the wavelet-based algorithm. (d) and (e) MR 

images from MSR with 15-pixel, 80-pixel, and 250-pixel; ω1 = 3/5 and 4/6, ω2 = 1/5 and 1/6, 

and ω3 = 1/5 and 1/6 respectively. (f) MR image from MSR with 10-pixel, 60-pixel, and 

220-pixel; ω1 = 3/5, ω2 = 1/5, and ω3 = 1/5 respectively. 

 

Figure 2.5(a) showed the corrected image obtained with histogram equalization, and 

Figure 2.5(b) showed the image obtained from local histogram equalization with a local 

region of 128×128 pixels. Both techniques resulted in blurred edges and poor contrast. A large 

amount of noise was still present in Figure 2.5(a) and (b), with the performance of local 

histogram equalization being worse than that of histogram equalization. In Figure 2.5(c), the 

image was processed by the wavelet-based algorithm [17, 18], resulting in many artifacts. 

Figure 2.5(d) showed the image corrected by MRS with configuration of 15-pixel small-scale 

SSR weightings of ω1 = 2/4 (high brightness), 80-pixel moderate-scale SSR weightings of ω2 

= 1/4 (moderate brightness), and 250-pixel large-scale SSR weightings of ω3 = 1/4 (low 

brightness). Figure 2.5(e) showed the image corrected by MRS with configuration of 10-pixel 

small-scale SSR weightings of ω1 = 1/3 (high brightness), 60-pixel moderate-scale SSR 

weightings of ω2 = 1/3 (moderate brightness), and 220-pixel large-scale SSR weightings of ω3 

= 1/3 (low brightness). Figure 2.5(f) showed the image corrected by MRS with configuration 

of 10-pixel small-scale SSR weightings of ω1 = 2/6 (high brightness), 60-pixel moderate-scale 

SSR weightings of ω2 = 3/6 (moderate brightness), and 220-pixel large-scale SSR weightings 

of ω3 = 1/6 (low brightness). The dynamic compression, brightness variation, and overall 

rendition were better for MSR that combined three scales of SSR weightings than those for 

histogram equalization, local histogram equalization, or the wavelet-based algorithm alone. 

All rat brain figures in Figure 3.5 displayed clear deep anatomy structures and edges. 



 

- 34 - 
 

 

 

Figure 2.5 Corrected MR images of a rat brain obtained from four algorithms. (a) MR image 

obtained from histogram equalization. (b) MR image obtained from local histogram 

equalization. (c) MR image obtained from the wavelet-based algorithm. (d) MR image 

obtained from MSR, with 15-pixel, 80-pixel, and 250-pixel; ω1 = 2/4, ω2 = 1/4, and ω3 = 

1/4 respectively. (e) and (f) MR images obtained from MSR with 10-pixel, 60-pixel, and 

220-pixel; ω1 = 1/3 and 2/6, ω2 = 1/3 and 3/6, and ω3 = 1/3 and 1/6 respectively. 

 

 

2.3.4.  Results of peak signal-to-noise ratio and contrast-to-noise ratio analysis 

    Obtaining MR images of the highest possible clarity is crucial to effective structural 

brain imaging. The quality of images obtained from histogram equalization, local histogram 

equalization, the wavelet-based algorithm, and retinex can be quantified using appropriate 
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indices. The values of PSNR and CNR for the phantom images obtained in the present study 

with the four correction methods were listed in Table 2.1, where higher values indicate images 

of higher quality. As shown on the table, the use of SSR increased PSNR but decreased CNR. 

In Tables 2.1 and 2.2, MSR showed combined small-, moderate-, and large-scale weightings 

of 15, 80, and 250 pixels respectively, and MSR2 indicated combined small-, moderate-, and 

large-scale weightings of 10, 60, and 220 pixels respectively. In Table 1, MSR with ω1 = 3/5, 

ω2 = 1/5, and ω3 = 1/5; MSR with ω1 = 4/6, ω2 = 1/6, and ω3 = 1/6; and MSR2 with ω1 = 2/4, 

ω2 = 1/4, and ω3 = 1/4, and MSR2 with ω1 = 3/5, ω2 = 1/5, and ω3 = 1/5 resulted in higher 

values of  PSNR and CNR than histogram equalization, local histogram equalization, and the 

wavelet-based algorithm. 

The values of PSNR and CNR for animal images were listed in Table 2.2. Whilst 

histogram equalization and local histogram equalization resulted in high CNR values, the low 

PSNR values resulted in many noise artifacts. The wavelet-based algorithm resulted in some 

noise, as indicated by the lower CNR value. MSR with ω1 = 1/3, ω2 = 1/3, and ω3 = 1/3; MSR 

with ω1 = 2/4, ω2 = 1/4, and ω3 = 1/4; MSR with ω1 = 1/4, ω2 = 2/4, and ω3 = 1/4; MSR with 

ω1 = 1/5, ω2 = 3/5, and ω3 = 1/5; MSR2 with ω1 = 1/3, ω2 = 1/3, and ω3 = 1/3; MSR2 with ω1 = 

1/4, ω2 = 2/4, and ω3 = 1/4; and MSR2 with ω1 = 2/6, ω2 = 3/6, and ω3 = 1/6 resulted in higher 

values of  PSNR and CNR than  histogram equalization, local histogram equalization, and 

the wavelet-based algorithm. 
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Table 2.1 Comparisons of PSNR and CNR for phantom images obtained from retinex 

algorithms with those obtained from histogram equalization, local histogram equalization, and 

the wavelet-based algorithm. 

Algorithm PSNR (dB) CNR 

SSR (scale = 15 pixels) 8.4850 2.4007 

SSR (scale = 80 pixels) 17.7173 0.6783 

SSR (scale = 250 pixels) 27.1259 0.1848 

MSR (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 15.0569 1.0086 

MSR (ω1 = 2/4, ω2 = 1/4, ω3 = 1/4) 12.9146 1.3437 

MSR (ω1 = 1/4, ω2 = 2/4, ω3 = 1/4) 15.6836 0.9224 

MSR (ω1 = 1/4, ω2 = 1/4, ω3 = 2/4) 17.0583 0.7798 

MSR (ω1 = 3/5, ω2 = 1/5, ω3 = 1/5) 11.8356 1.5544 

MSR (ω1 = 4/6, ω2 = 1/6, ω3 = 1/6) 11.1821 1.6973 

SSR (scale = 10 pixels) 7.7921 2.6780 

SSR (scale = 50 pixels) 14.1465 1.0492 

SSR (scale = 60 pixels) 14.6290 1.0056 

SSR (scale = 120 pixels) 22.4192 0.3782 

SSR (scale = 200 pixels) 26.5111 0.2121 

SSR (scale = 220 pixels) 26.8245 0.1987 

MSR2 (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 13.7010 1.2132 

MSR2 (ω1 = 2/4, ω2 = 1/4, ω3 = 1/4) 11.8239 1.5718 

MSR2 (ω1 = 3/5, ω2 = 1/5, ω3 = 1/5) 10.8591 1.7957 

Histogram equalization 7.7978 1.5199 

Local histogram equalization 7.4683 1.5236 

Wavelet-based algorithm 6.0785 1.1225 
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Table 2.2 Comparisons of PSNR and CNR for animal images obtained from retinex 

algorithms with those obtained from histogram equalization, local histogram equalization, and 

the wavelet-based algorithm. 

Algorithm PSNR (dB) CNR 

SSR (scale = 15 pixels) 7.5729 3.8213 

SSR (scale = 80 pixels) 16.7675 0.9751 

SSR (scale = 250 pixels) 21.3775 0.3568 

MSR (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 13.8641 1.5566 

MSR (ω1 = 2/4, ω2 = 1/4, ω3 = 1/4) 11.8648 2.0922 

MSR (ω1 = 1/4, ω2 = 2/4, ω3 = 1/4) 14.5375 1.4031 

MSR (ω1 = 1/4, ω2 = 1/4, ω3 = 2/4) 15.5348 1.2157 

MSR (ω1 = 1/5, ω2 = 3/5, ω3 = 1/5) 14.9590 1.3135 

SSR (scale = 10 pixels) 7.0382 4.2851 

SSR (scale = 60 pixels) 13.6414 1.5104 

SSR (scale = 220 pixels) 21.2816 0.3752 

MSR2 (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 12.6385 1.8747 

MSR2 (ω1 = 1/4, ω2 = 2/4, ω3 = 1/4) 12.8957 1.7817 

MSR2 (ω1 = 1/4, ω2 = 1/4, ω3 = 2/4) 14.4219 1.4399 

MSR2 (ω1 = 2/6, ω2 = 3/6, ω3 = 1/6) 11.7580 2.1157 

Histogram equalization 6.4478 1.8631 

Local histogram equalization 6.3042 1.8807 

Wavelet-based algorithm 11.8304 0.8571 
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2.4. Discussions 

The inhomogeneity and anatomic-structure blurring found in images captured by surface 

receiving coils was due to variations in image brightness. The inhomogeneities of MR images 

were very low frequency components in frequency domain of images. The retinex algorithm 

[82, 85] especially performed to remove the very low frequency components of images by an 

estimator constructed with a similar lowpass filter from a Gaussian surround function as 

described in Equation (2.11) for the purpose of correction of the inhomogeneous MR images. 

The variations of inhomogeneity in MR images received with surface coils were shown in 

Figure 2.2(a) and Figure 2.3(a). Hence, MR postprocessing techniques were crucial in 

improving the structural details and homogeneity of such brain images. In the present study, 

we proposed an easy, low-cost software-based method to solve these problems, also avoiding 

expensive charges to the imaging hardware. Our retinex algorithm successfully corrected a 

nonuniform grayscale, enhanced contrast, corrected inhomogeneity, and clarified the MFB 

and MT areas in deep brain structures of MR images captured by surface coils (see Figure 

2.3). 

For evaluatiing the performance of correction of inhomogeneous MR images, the two 

indices, PSNR and CNR [12, 14, 88], were proposed to compare the performance of 

correction of inhomogeneous MR images using retinex algorithm with other correction 

algorithms. The retinex algorithm improved the quality of phantom images in terms of visual 

rendition and dynamic range compression, with reduced errors and noise, and correspondingly 

higher PSNR and CNR values. Similar results were found for animal images, except that 

PSNR increased whereas CNR decreased (see Table 2.1 and Table 2.2). This may indicate that 

retinex processing of animal data should combine with appropriate reference objects. 

For comparison, consider the approach proposed by Jobson et al. [82, 85]. The MR 

images obtained with the retinex algorithm were also better than those obtained with 

histogram equalization, local histogram equalization, and the wavelet-based algorithm, in 



 

- 39 - 
 

terms of dynamic-range compression, brightness constancy, and overall visual rendition. The 

PSNR and CNR values were also higher for retinex than for the other correction algorithms. 

Furthermore, the advantages of the retinex were that the weightings of MSR and scales of 

SSR could be modulated to improve image correction and contrast enhancement performance. 

The optimal weightings of MSR and the best combination between weightings of MSR and 

scales of SSR may be further studied in the future. 
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Chapter 3  Segmentation of Brain MR images Using a 

Classification and Regression Tree (CART) 

 

3.1. Introduction 

Since the hardware improvement through coil sensitivities and the performance of 

transmitter devices to reduce imaging noise and inhomogeneity are more expensive and clear 

anatomical structures remain difficult to be obtained, a low cost technique to obtain better MR 

brain structures is worth studying. In this Chapter, we will therefore propose an easy 

implementation of automatic segmentation of the GM, WM, and CSF in brain MR images to 

obtain clearly anatomical structures. The brain tissue segmentation method in this experiment 

is a classification and regression tree (CART). 

In image processing, spatial features (also called spatial information) defined as the 

combination of image intensities and in-plane information in two coordinate systems 

(Euclidean coordinates (x, y) or polar coordinates (r, θ)) in images have generally been used 

to extract the spatial features of MR images [43, 44]. The spatial gray information was 

defined in the present study by combining neighboring pixel intensities, as described in 

Section 3.2.1. The wavelet-transform spatial information obtained from each local area was 

also used in the present study. The performances of the three types of spatial information were 

compared by using decision tree algorithms in this study. Decision trees are easily 

implemented according to the attributes of a subset in the entire data set, and provide rapid 

analysis. Decision trees have been widely used in the analysis of symbolic data sets, and also 

to classify EEG spatial patterns [89] and the different regions of digital images sensed 

remotely [90]. The present study compared with the performance of segmentation based on an 

automatic decision tree with different types of spatial information– the general gray level (G), 

spatial gray level (S), and two-dimensional wavelet transform (W) – to improve the accuracy 
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of segmentation in MR images. 

Several studies have improved coil sensitivities and the performance of transmitter 

devices [57–60], but it remains difficult and expensive to reduce imaging noise and 

inhomogeneity through hardware improvements. For the purpose of these studies was to 

obtain better anatomical structures of MR images. A low cost technique to obtain MR brain 

structures is valuable to study. Thus, the ability through software improvements to 

discriminate different tissue characteristics of brain structures is increasing in importance.  

 

3.2. Materials and methods 

 

3.2.1. Image preprocessing for spatial information 

Noise and RF inhomogeneities often reduce the quality of MR images, and so their bad 

effects need to be reduced by image preprocessing manipulation to increase the segmentation 

accuracy.  

Spatial information (Spatial features) were extracted from every MR image pixel location 

and used as the input for the segmentation algorithm for image preprocessing. The spatial 

features used in the present study were: G, S, W, x, y, r, and θ, where G represents the gray 

level intensity of every pixel, S the spatial gray level of every pixel, W the coefficients of the 

wavelet transform, (x, y) Euclidean coordinates, and (r, θ) polar coordinates. The spatial 

features of the general gray level, spatial gray level, and wavelet transform were combined in 

Euclidean coordinates (x, y) or polar coordinates (r, θ) by image preprocessing. Noise and RF 

inhomogeneities often reduced the quality of MR images, such that their impact on 

segmentation accuracy needed to be reduced by image manipulation. 

The general gray level represents the intensity of each pixel for MR image segmentation. 

The use of more spatial features in an image is considered to improve the accuracy of image 

segmentation. The spatial gray (S) level is given as 
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1
( , ) ( , )

n

i i
i

S x y g x yω
=

= ∑ ,                            (3.1) 

which is the sum of combined weighting iω  and gray level ( , )ig x y  of pixel i  on the 

neighboring area. The neighboring area is shown in Figure 3.1(a), which depicts the five 

neighbor systems used in this study, wherein the gray level weighting at the center pixel with 

the nearest four pixels produced n = 5 and 1
5iω = . 

The wavelet transform (W) of the spatial features used in this study was the coefficient 

of the wavelet transform transferred from nine gray levels of each local area to represent the 

wavelet spatial features of the center pixel for every location. The scaled and translated basis 

functions are defined as 

/2
, , ( , ) 2 (2 ,2 )j j j

j m n x y x m y nϕ ϕ= − − ,                         (3.2) 

/2
, , ( , ) 2 (2 ,2 )j j j

j m n x y x m y nψ ψ= − − , { , , }i H V D= ,             (3.3) 

 

where the index i identifies the directional wavelets in ( , ) ( ) ( )H x y x yψ ψ ϕ= , 

( , ) ( ) ( )V x y x yψ ϕ ψ= , and ( , ) ( ) ( )D x y x yψ ψ ψ= . The discrete wavelet transform of function 

( , )g x y  of size M N×  is then 
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where the 0( , , )W j m nϕ  coefficients define an approximation of ( , )g x y  at scale 0j . 

The 0( , , )iW j m nψ  coefficients add horizontal, vertical, and diagonal details for scales 0j j≥  

[72]. The obtained coefficients were transferred by wavelet from the local area to represent 
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the spatial features of the central pixel. Local areas were generated from every nine pixels in 

each MR image, as shown in Figure 3.1(b). 

 
Figure 3.1 Local area of each spatial feature. (a) Local area of the spatial gray level. (b) Local 

area of the wavelet transforms. 

 

3.2.2. Segmentation 

The proposed automatic decision-tree segmentation method used in this study was the 

classification and regression tree (CART) presented by Breiman et al. [91] to model the 

prediction tree by statistical analysis, considering outcome variables and decision questions to 

assess the prediction accuracy. The method protocol is described below. 

 

3.2.3. Decision tree classification 

In a classification tree, the decision tree classification structure is constructed so as to 



 

- 44 - 
 

distinguish different classes through statistical analysis [89, 92]. Decision trees can classify 

multidimensional spatial data through recursive partitioning steps. Each vector consisting of N 

sampled data in an M-dimensional space is given by 

{ }mx , m =1,…, M,                            (3.6) 

where M represents the dimension of the data space, and the class label in the data space is  

{ }1,...,j J∈ .                                (3.7) 

The subspaces can be illustrated easily to maximize the overall class separation for the 

M-dimensional spatial data set. The class separation is maximized during the partitioning step, 

and can be subsequently processed as the basis for further partitioning to the M-dimensional 

spatial data set. A two-space and two-class example is described as follows for decision-tree 

classification. The distributions of the two spatial data sets are shown in Figure 2.2. The first 

partitioning step can perfectly partition the entire data set along horizontal line 1x  with 

vertical dashed line '
1 1x x=  into the first two subspaces: subspace 1 is 1 4S S∪ , and subspace 

2 is ( 2 3 5S S S∪ ∪ ). Subspace 1 can also be partitioned along vertical line 2x  with horizontal 

dashed line ''
2 2x x=  into two subspaces 1S  and 4S . Data set classes 1 and 2 can be 

maximally segmented from subspaces 1S  and 4S . Subspace 2 can then be partitioned along 

horizontal line 1x  with vertical dashed line ''
1 1x x=  into two subspaces 2S  and 3 5S S∪ . 

Next, data set class 1 can be maximally segmented from subspace 2S  with vertical dashed 

lines '
1 1x x=  and ''

1 1x x= . Finally, subspace 3 5S S∪  can be partitioned along vertical line 

2x  with horizontal dashed line '
2 2x x=  into two subspaces 3S  and 5S . Data set classes 1 

and 2 can be maximally segmented from subspaces 3S  and 5S . Figure 3.2(a) clearly shows 

the entire partition of the two spatial data sets. The partitioning procedure can be displayed as 

a decision-tree structure of a binary tree due to the maximal class separation of the partitioning 



 

- 45 - 
 

steps. The decision-tree structures of the two spatial data sets are shown in Figure 3.2(b). A 

root node is displayed at the top of the tree graph for the first level, and is connected to other 

leaf nodes and branches. The root node of the decision tree corresponds to the entire data 

space, and the two spatial data sets are decided with a condition '
1 1x x≤  that is similar to a 

binary or “yes/no” question for partitioning, which yields subspace 1 ( 1 4S S∪ ) and subspace 2 

( 2 3 5S S S∪ ∪ ). Next, partitions of the space are associated with descendant nodes of the root 

node in level 1. Subspace 1 in node 2 is partitioned by applying condition ''
2 2x x≤  to decide 

terminal node 4 for class 1 and node 5 with condition ''
2 2x x>  for class 2. Next, partitioning 

for subspace 2 3 5S S S∪ ∪  is decided by the condition '
1 1x x> , which yields leaf node 3. 

Terminal node 6 for subspace 2S  is decided by the condition ''
1 1x x> . The next partition for 

subspace 3 5S S∪  in leaf node 7 is applied with condition '
2 2x x≤  to decide terminal node 8 

for class 2 in subspace 5S  and terminal node 9 with condition '
2 2x x>  for class 1 in 

subspace 3S . 
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Figure 3.2 Decision tree configuration: (a) example of the distribution of two subspaces from 

an entire space, and (b) structure of the corresponding decision-tree graph. 
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The connection mechanism is constructed using a Gini impurity function from the root 

node until the tree reaches the terminal nodes. Classification of decision-tree processes 

determines the condition of attributes in a top-down manner in the tree structure. The 

classification of a pattern begins at the root node, deciding the condition of the main attribute 

of the pattern. The connection mechanism then follows a similar link mechanism to the 

descendent nodes. All of these linking mechanisms are binary, and together they form the tree 

graph. This connection mechanism proceeds continuously until all the nodes are determined, 

when the class of each terminal node of the test pattern is decided. 

 

3.2.4. Decision tree construction 

Descendant nodes of greater purity are desired when constructing a decision tree, which 

is achieved by maximizing an impurity function. Descendant nodes have greater purity than 

ancestor nodes, and an impurity function φ  is defined based on a node N defined as [89] 

1( ) ( ( | ),..., ( | )),Ji N p N p Nφ ω ω=                      (3.8) 

where ( | )Jp Nω  is the conditional probability for class Jω  of node N. Impurity ( )i N  is 

maximal when a node N has an equal number of cases for all classes. In other words, a node is 

maximally pure when the node comprises a single category. The impurity function [91, 92] 

can be interpreted as a general variance impurity for two or more classes, which is the Gini 

impurity given by 

( ) ( | ) ( | ) 1 ( | ) ( | )i j j j
i j j

i N p N p N p N p Nω ω ω ω
≠

= = −∑ ∑ ,             (3.9) 

where ( | )ip Nω  and ( | )jp Nω  are the proportions of patterns for classes iω  and jω  at 

node N, respectively. The Gini impurity is 0 if all the patterns are of the same class. At the 

beginning of the root node, the CART calculates the node impurity with the Gini impurity 

function. All decision-tree nodes are decided by determining the best change in the impurity 

from the root node down to the terminal node, as shown in Figure 2.2. A node consisting of a 
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single class has the largest purity. Thus, the terminal node is then selected when the impurity 

of the node is 0. The largest impurity value is 1. The best change in impurity [28] is the 

difference between ( )i N  and a sum of the impurities of LN  and RN  that is given by 

( ) ( ) ( ) ( )L L R Ri N i N p i N p i NΔ = − − ,                       (3.10) 

where LN  and RN  are the left and right descent nodes, ( )Li N  and ( )Ri N  are their 

impurities, and Lp  and Np  are their fractions of patterns at node N, respectively. The 

CART employs an iterative approach to decide the split at node N based on the best numerical 

change in the Gini impurity, which corresponds to the maximal class separation. At the 

beginning from the root node, the CART estimates the node impurity using the Gini impurity 

function of Equation (3.9). Each of these nodes is decided by maximizing ( )i NΔ  and 

minimizing ( )i N . This iterative approach produces the partitioning step with the highest 

purity at the terminal nodes. In other words, maximal class separation is equivalent to 

minimizing the misclassification of classes in the decision tree at node N [91, 92]. The Gini 

impurity function of Equation (3.9) evaluates the probability of misclassification at node N. A 

class in node N can be estimated through the rule of Equation (3.9) with conditional 

probability ( | )ip Nω  and ( | )jp Nω . The conditional probability of node N can also be 

quantified using the rules of Equation (3.9). Finally, the entire decision-tree structures can be 

decided from the data set of the entire space by algorithmically applying these rules for 

constructing the decision tree. 

 

3.2.5. Simulated data 

Two types of simulated data were used in this study were: phantom MR images and 

simulated brain MR images. The phantom MR images were obtained from IBSR 

(http://www.cma.mgh.harvard.edu/ibsr). The phantom MR images comprised the circle center, 

circle ring, and background region, as shown in row 1 of Figure 3.3, with noise variations of 
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15 or 30 gray levels. We also added RF inhomogeneities of 20% and 40% to the two SNR 

phantom images. The variations in the gray levels due to noise and inhomogeneities that were 

added to a gold-standard phantom image are designated in Table 3.1. The simulated MR 

images obtained from BrainWeb were T1-weighted 3-mm-thick images with noise levels of 

3%, 5%, 7%, 9%, and 15%. Furthermore, images with these noise levels combined with RF 

inhomogeneities of 20% and 40% were also obtained from BrainWeb to examine the 

performance of segmentation with spatial information of different qualities. An expert 

manually derived a gold-standard brain MR image with no noise or inhomogeneity from the 

original image. All of the simulated data were preprocessed to extract the spatial information 

and then segmented using the automatic decision-tree algorithm. 

 

 

 

 

Table 3.1 Designations of the original phantom images obtained by combining the noise 

levels and inhomogeneities parameters. 

Designation Combined noise level and inhomogeneities parameter 

Var15 Noise variation = 15 gray levels 

Var30 Noise variation = 30 gray levels 

Var15RF20 Noise variation = 15 gray levels and 20% RF inhomogeneities 

Var30RF20 Noise variation = 30 gray levels and 20% RF inhomogeneities 

Var15RF40 Noise variation = 15 gray levels and 40% RF inhomogeneities 

Var30RF40 Noise variation = 30 gray levels and 40% RF inhomogeneities 
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Table 3.2 Designations of the original simulated MR images obtained by combining the noise 

levels and inhomogeneities parameters. 

Designation Combined noise level and inhomogeneities parameter 

T1n3 Noise level = 3% 

T1n5 Noise level = 5% 

T1n7 Noise level = 7% 

T1n9 Noise level = 9% 

T1n15 Noise level = 15% 

T1n3RF20 Noise level = 3% and 40% RF inhomogeneities 

T1n5RF20 Noise level = 5% and 20% RF inhomogeneities 

T1n7RF20 Noise level = 7% and 20% RF inhomogeneities 

T1n9RF20 Noise level = 9% and 20% RF inhomogeneities 

T1n15RF20 Noise level = 15% and 20% RF inhomogeneities 

T1n3RF40 Noise level = 3% and 40% RF inhomogeneities 

T1n5RF40 Noise level = 5% and 40% RF inhomogeneities 

T1n7RF40 Noise level = 7% and 40% RF inhomogeneities 

T1n9RF40 Noise level = 9% and 40% RF inhomogeneities 

T1n15RF40 Noise level = 15% and 40% RF inhomogeneities 

 

 

3.2.6. Accuracy rate of segmentation 

The accuracy rate was used to evaluate the performance of segmentation in the present 

study and was calculated based on the overlap of the standard reference image (manually 

labeled by an expert) and a collection of segmentation results obtained with the proposed 

method. The accuracy rate was quantified as the overlap fraction [28, 44, 57, 55] and is 

defined as: 
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( ) ( )
( )

Ref k Seg kAccuracy rate
Ref k

∩
= ,                      (3.11) 

which represents the accuracy rate of the segmented area in class k  relative to the area in the 

standard reference image [44, 57]. Three classes of phantom MR images (circle center, circle 

ring, and background) and four classes of simulated brain MR images (GM, WM, CSF, and 

background) were segmented in this study. The numerator in Equation (3.11) represents the 

number of classified or intersection areas of voxels of class k  between the segmented image 

and the standard image, while the denominator represents the area of voxels in class k  in the 

standard image. 

 

 

3.3. Experimental results 

 

3.3.1. Results of phantom image 

All simulated phantom MR images with different SNRs and inhomogeneities (see 

Table3.1) obtained from the IBSR website were segmented with spatial information (G, x, y), 

(S, x, y), (G, x, y, r, θ), (S, x, y, r, θ), (G, x, y, S, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S). 

Figure 3.3 shows the original phantom images with different SNRs and inhomogeneities, and 

the segmentation results obtained using a decision tree algorithm. The images in row 1 of 

Figure 3.3 are the original phantom images with noise variations and RF inhomogeneities of 

Var15, Var30, Var15RF20, Var15RF40, Var30RF20, and Var30RF40 (in columns 1 to 6, 

respectively), as listed in Table 3.1. The images in row 2 of Figure 3.3 correspond to those in 

row 1 segmented using the automatic decision tree with spatial information (S, x, y). 

Euclidean coordinates (x, y) and polar coordinates (r, θ) were also used for spatial information 

in this study. The images in row 3 of Figure 3.3 correspond to those in row 1 segmented using 

automatic decision tree with spatial information (S, x, y, r, θ). The images in row 4 of Figure 



 

- 52 - 
 

3.3 correspond to those in row 1 segmented using a decision tree with spatial information (G, 

x, y). 

The images segmented with spatial information (S, x, y) and (S, x, y, r, θ) (rows 2 and 3 

of Figure 3.3) show better performance than those segmented with spatial information (G, x, 

y). Images with a noise variation of 30 gray levels and 40% RF inhomogeneities constituted a 

very large fraction of the source phantom images. The performance for images with Var30, 

Var30RF20, and Var30RF40 (row 4 of Figure 3.3) segmented with spatial information (G, x, y) 

is not clear. The segmentation of phantom MR images with Var15, Var30, Var15RF20, 

Var15RF40, Var30RF20, and Var30RF40 using a decision tree with spatial information (G, x, 

y, r, θ), (G, x, y), (G, x, y, r, θ), (G, x, y, S, r, θ), (S, x, y), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, 

S) produced better performance. Figure 3.4 shows the average accuracy rate of phantom 

images with different SNRs and inhomogeneities segmented by a decision-tree algorithm with 

different spatial information. The average accuracy rates were averaged across all phantom 

image regions (circle ring, circle center, and background). The accuracy rate was evaluated by 

the OF index as described in Section 3.2.6. The average accuracy rates of segmentation for 

phantom images with Var15, Var30, Var15RF20, Var15RF40, Var30RF20, and Var30RF40 

and segmentation spatial information (G, x, y, r, θ), (G, x, y), (G, x, y, r, θ), (G, x, y, S, r, θ), (S, 

x, y), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S), are shown in Figure 3.4. The highest average 

accuracy rates of segmentation are in the range 0.9819–0.9999 for phantom images with 

Var15 and Var15RF20 segmented using a decision tree for all of the used spatial information. 

The higher average accuracy rates of segmentation are shown in Figure 3.4 for phantom 

images with Var15RF40 for all of the used spatial information. The accuracy rates of phantom 

images with Var30 and Var30RF20 segmented by a decision tree for spatial information (G, x, 

y, r, θ), (G, x, y), (G, x, y, S, r, θ), (S, x, y), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) were 

moderate, ranging from 0.9164 to 0.9872. The average accuracy rates of phantom images with 

Var30 and Var30RF20 segmented by a decision tree for spatial information (S, x, y, r, θ) and 
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(S, x, y) were also near to the highest values. Segmenting images with Var30RF40 with spatial 

information (G, x, y, r, θ), (G, x, y), (G, x, y, S, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) 

produced the lowest average accuracy rates, although segmentation with spatial information 

(S, x, y, r, θ) and (S, x, y) produced a higher average accuracy rate of 0.9461. The 

segmentation results shown in Figure 3.3 indicate that the automatic decision tree successfully 

segmented phantom images with different noise variations and RF inhomogeneities. 

 

 

 

Figure 3.3 Segmentation of phantom images from IBSR. Row 1 contains the original 

phantom images with Var15, Var30, Var15RF20, Var15RF40, Var30RF20, and Var30RF40. 

Images in rows 2, 3, and 4 represent the corresponding results of segmentation with spatial 

information (S, x, y), (S, x, y, r, θ), and (G, x, y), respectively. 
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Figure 3.4 Average accuracy rates of segmentation obtained using a decision tree with 

different spatial information from original phantom images with different noise variations and 

inhomogeneities. 

 

3.3.2. Results of simulated brain MR image 

All simulated MR brain images with different noise levels and inhomogeneities (see 

Table 3.2) as described in Section 2 were also segmented using the automatic decision tree 

with different spatial information (G, x, y), (S, x, y), (G, x, y, r, θ), (S, x, y, r, θ), (G, x, y, S, 

r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S). Figure 3.5 shows the original simulated MR 

images obtained from BrainWeb (upper row) and the images resulting from segmentation 

with spatial information (G, x, y, r, θ) (lower row). The OF index was used to assess the 

performance of segmentation using the automatic decision tree with different spatial 
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information. Figure 3.6 shows the average accuracy rates of segmentation with different 

spatial information for simulated MR images with noise levels of T1n3, T1n5, T1n7, T1n9, 

and T1n15. All of the average accuracy rates were calculated for the GM, WM, CSF, and 

background of simulated brain MR images. The average accuracy rates decreased as the noise 

levels increased from T1n3 to T1n15 for most of the segmentations with this spatial 

information. Figure 3.6 shows that segmenting these MR images with spatial information (G, 

x, y, r, θ) produced the highest average accuracy rates (0.9374–0.9598), with the resulting 

images shown in Figure 3.5. Segmenting these MR images with spatial information (G, x, y, S, 

r, θ) and (W, x, y, G, r, θ) produced moderate and low average accuracy rates of 

0.9132–0.9626 and 0.8920–0.9297, respectively. Figure 3.5 shows that all of the simulated 

brain MR images with these noise levels were successfully segmented with the automatic 

decision tree with spatial information (G, x, y, r, θ), (G, x, y), (S, x, y, r, θ), (G, x, y, S, r, θ), (S, 

x, y), (W, x, y, G, r, θ, S), and (W, x, y, G, r, θ). 

 

 

Figure 3.5 Results of segmentation using a decision tree for simulated MR images obtained 

from BrainWeb. Upper row contains the original MR images with noise levels of T1n3, T1n5, 
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T1n7, T1n9, and T1n15. Lower row contains the corresponding images resulting from 

segmentation with spatial information (G, x, y, r, θ). 

 

 
Figure 3.6 Average accuracy rates of segmentation with different spatial information from the 

original MR images with noise levels of T1n3, T1n5, T1n7, T1n9, and T1n15. 

 

Figure 3.7 shows original simulated brain MR images with different noise levels and an 

RF inhomogeneity of 20% obtained from BrainWeb (upper row) and the images resulting 

from segmentation with spatial information (G, x, y, r, θ) (lower row). The segmented images 

show better visual rendition. Figure 3.8 shows the average accuracy rates of segmentation 

with different spatial information from the simulated brain MR images shown in Figure 3.7. 

The average accuracy rates decreased as the noise level increased from T1n3RF20 to 
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T1n15RF20 for most of the segmentations with this spatial information. The average accuracy 

rates do not differ greatly between Figure 3.6 and 3.8, ranging from 0.96 to 0.89. The 

presence of 20% RF inhomogeneities had little effect on segmentation of these simulated 

brain MR images. The average accuracy rates of segmentation of these brain MR images 

(Figure 3.8) with spatial information (G, x, y, r, θ), (G, x, y, S, r, θ), and (W, x, y, G, r, θ) were 

0.9376–0.9587, 0.9144–0.9538, and 0.8865–0.9285, respectively. All of the simulated brain 

MR images with these noise levels and inhomogeneities were successfully segmented with 

this spatial information for all of the accuracy rates of automatic decision-tree segmentation. 

 

 

Figure 3.7 Results of segmentation using a decision tree for simulated MR images. Upper 

row contains the original MR images with noise parameters of T1n3RF20, T1n5RF20, 

T1n7RF20, T1n9RF20, and T1n15RF20. Lower row contains the corresponding images 

resulting from segmentation with spatial information (G, x, y, r, θ). 
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Figure 3.8 Average accuracy rates of segmentation with different spatial information from 

MR images with noise parameters of T1n3RF20, T1n5RF20, T1n7RF20, T1n9RF20, and 

T1n15RF20. 

 

Figure 3.9 shows original simulated brain MR images with different noise levels and an 

RF inhomogeneity of 40% from BrainWeb (upper row) and the images resulting from 

segmentation with spatial information (G, x, y, r, θ) (lower row). The segmented images show 

better visual rendition. Figure 3.10 shows the average accuracy rates of segmentation with 

different spatial information from the simulated brain MR images shown in Figure 3.9. The 

average accuracy rates decreased as the noise level increased from T1n3RF40 to T1n15RF40 

for most of the segmentations with this spatial information. The average accuracy rates do not 

differ greatly between Figure 3.8 and 3.10 except in lower values of the range. The 40% RF 
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inhomogeneities have a greater effect on the segmentation than that shown for the 20% RF 

inhomogeneities in Figure 3.7 and 3.8. The average accuracy rates of segmentation of these 

MR images with spatial information (W, x, y, G, r, θ) as shown in Figure 3.10 changed from 

0.8810 to 0.9261, and were also lower than that in brain MR images with T1n3RF20 to 

T1n15RF20 because of the larger fraction of the combined inhomogeneities. A higher average 

accuracy rate of segmentation with spatial information (G, x, y, r, θ) for simulated brain MR 

images made it easier to classify the GM, WM, and CSF in simulated MR brain images with 

different noise levels and inhomogeneities, as shown in Figure 3.11. Figure 3.11(a) shows the 

accuracy rates of segmentation with spatial information (G, x, y, r, θ) for simulated brain MR 

images with T1n3, T1n5, T1n7, T1n9, and T1n15; Figure 3.11(b) shows the rates for 

T1n3RF20, T1n5RF20, T1n7RF20, T1n9RF20, and T1n15RF20; and Figure 3.11(c) shows 

the rates for T1n3RF40, T1n5RF40, T1n7RF40, T1n9RF40, and T1n15RF40. Figure 3.11 

shows that the accuracy rates of segmentation with spatial information (G, x, y, r, θ) 

decreased with increasing noise level, but were not affected by RF inhomogeneities. The 

accuracy rates were higher, moderate, and lower for segmentation with spatial information (G, 

x, y, r, θ) of GM, WM, and CSF in brain MR images, respectively. The higher and lower 

accuracy rates for CSF in Figure 3.10 and 3.11 were attributable to it representing larger and 

smaller regions, respectively, in brain MR images for training and testing. Together our results 

indicated that GM, WM, and CSF in simulated brain MR images with the investigated noise 

levels and inhomogeneities were all successfully segmented using this proposed automatic 

decision-tree algorithm, irrespective of the accuracy rates, with the described spatial 

information. 
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Figure 3.9 Results of segmentation using a decision tree for simulated MR images. Upper 

row contains the original MR images with noise parameters of T1n3RF40, T1n5RF40, 

T1n7RF40, T1n9RF40, and T1n15RF40. Lower row contains the corresponding images 

resulting from segmentation with spatial information (G, x, y, r, θ). 
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Figure 3.10 Average accuracy rates of segmentation with different spatial information from 

MR images with noise parameters of T1n3RF40, T1n5RF40, T1n7RF40, T1n9RF40, and 

T1n15RF40. 
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Figure 3.11 Accuracy rates of GM, WM, and CSF in simulated MR images segmented using 

a decision tree with spatial information (G, x, y, r, θ) for T1n3, T1n5, T1n7, T1n9, and T1n15 

(a); T1n3RF20, T1n5RF20, T1n7RF20, T1n9RF20, and T1n15RF20 (b); and T1n3RF40, 

T1n5RF40, T1n7RF40, T1n9RF40, and T1n15RF40. 
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3.4. Discussions 

A proposed automatic segmentation method using a decision tree was used in the present 

study to classify different tissue types in brain MR images. The phantom and simulated MR 

images obtained from IBSR and BrainWeb, respectively, were both successfully segmented 

by the proposed decision-tree algorithm. The performance of the proposed segmentation 

technique was evaluated using a previously described index [44, 93]. The gray-level 

distributions in the phantom MR images differed more between the various regions. The 

spatial gray-level information had a greater effect on the performance of phantom image 

segmentation. The gray-level distributions of each tissue overlapped more in different regions 

in simulated brain MR images than in the phantom MR images. Therefore, the spatial 

gray-level information is useful for assessing the performance of segmentation, with local 

features of the spatial information being more suitable for assessing the accuracy of 

segmentation by a decision tree of a simulated MR image. The average accuracy rates were 

higher with spatial information (S, x, y, r, θ) and (S, x, y) for the simulated phantom MR 

images with all the used noise levels and inhomogeneities, which was due to the gray levels 

of the spatial information being the main factor affecting segmentation of the phantom images. 

The average accuracy rates were lower for all the used spatial information when the simulated 

phantom MR images were combined with a noise variation of 30 gray levels. Furthermore, 

the average accuracy rates were highest with spatial information (G, x, y, r, θ) for simulated 

brain MR images with all the used noise levels and inhomogeneities due to the location 

attribute of the spatial information being more important than the gray-level information. The 

average accuracy rates were lowest for all the used spatial information when the simulated 

brain MR images contained 15% noise, which represented the largest fraction of images. The 

best results of segmentation were obtained in this study for simulated and brain MR images 

with the lowest noise levels. 

The noise level is the main factor responsible for overlapping of the gray-level 
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distribution in MR images. Also, the gray level is the main spatial feature that affects the 

performance of segmentation in phantom MR images, and hence it is the main decision 

attribute of tree structures. These characteristics were confirmed in both phantom and 

simulated MR images. The average accuracy rates of segmentation with spatial information 

(G, x, y, r, θ) were highest for phantom images with Var15, Var15RF20, and Var15RF40 

(0.9999, 0.9990, and 0.9908, respectively), and were lowest for phantom images with Var30, 

Var30RF20, and Var30RF40 (0.9388, 0.9164, and 0.8778). The decrease (0.06) in the average 

accuracy rate for phantom images with Var15 and Var30 was more than that (0.0009) for 

phantom images with Var15 and Var15RF20 (see Figure 3.4). The noise variation was the 

main factor affecting the accuracy rate of phantom image segmentation. In simulated MR 

images, the average accuracy rates of segmentation with spatial information (G, x, y, r, θ) 

were highest for simulated MR images with T1n3 and T1n15 (0.9598 and 0.9374, respectively) 

(Figure 3.6), and lowest for simulated MR images with T1n3RF40 and T1n15RF40 (0.9582 

and 0.9371, respectively). The decrease (0.0224) in the average accuracy rate for simulated 

images with T1n3 and T1n15 was more than that (0.0016) for phantom images with T1n3 and 

T1n3RF40 (see Figure 3.10). The noise level was also the main factor affecting the accuracy 

rate of simulated MR image segmentation. Noise had similar effects on the trends in the 

performance of tissue (GM, WM, and CSF) segmentation of simulated MR images (see 

Figure 3.11), and those on GM and WM segmentation were similar to those of previously 

reported approaches [42, 43, 53]. The accuracy rates of our segmentation method increased 

with decreasing noise level, which is consistent with previous results for tissues or the overall 

cortical surface [42, 43, 53, 94]. Our method was also suitable for segmenting MR images, 

although its performance decreased as the noise level in the images increased.  

For comparison, consider the spatial information approach proposed by Anbeek et al. 

[44]. In phantom images (see Figure 3.4), the average accuracy rates of segmentation for 

phantom images with Var15 were 0.9999 and 0.9973 with spatial information (G, x, y, r, θ) 
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and (S, x, y, r, θ), respectively, 0.9999 and 0.9973 with spatial information (G, x, y) and (S, x, 

y), and 0.9999 and 0.9819 with spatial information (G, x, y, S, r, θ) and (W, x, y, G, r, θ). In 

simulated MR images (see Figure 3.6), the average accuracy rates of segmentation for 

simulated MR images with T1n5 were 0.9532 and 0.9439 with spatial information (G, x, y, r, 

θ) and (S, x, y, r, θ), respectively, 0.9480 and 0.9369 with spatial information (G, x, y) and (S, 

x, y), and 0.9446 and 0.9287 with spatial information (G, x, y, S, r, θ) and (W, x, y, G, r, θ). 

The overlapping of gray levels of noise was greater for spatial information (S) obtained from 

five neighboring pixels (see Figure 3.1(a)) in a local region than for spatial information (G) 

obtained from a single gray-level intensity. Therefore, the accuracy rates of segmentation with 

spatial information (S, x, y) and (S, x, y, r, θ) were lower than those of segmentation with 

spatial information (G, x, y) and (G, x, y, r, θ). The overlapping of gray levels of noise was 

greater for spatial information (W) obtained from nine neighboring pixels (see Figure 3.1(b)) 

in a local region than for spatial information (G) obtained from a single gray-level intensity. 

Thus, the accuracy rates of segmentation with spatial information (W, x, y, G, r, θ) were lower 

than those of segmentation with spatial information (G, x, y, S, r, θ). 

A comparison of inhomogeneity revealed that the average accuracy rates of segmentation 

with spatial information (G, x, y, r, θ) from phantom MR images with Var15, Var15RF20, and 

Var15RF40 were 0.9999, 0.9990, and 0.9908, respectively (see Figure 3.4), indicating the 

absence of large differences in the accuracy rates of segmentation of phantom MR images 

with inhomogeneity. The average accuracy rates of segmentation with spatial information (G, 

x, y, r, θ) for simulated MR images with T1n5, T1n5RF20, and T1n5RF40 were 0.9532, 

0.9527, and 0.9527, respectively (see Figure 3.6, 3.8, and 3.10). The accuracy rates of 

segmentation with spatial information (G, x, y, r, θ) of CSF of simulated MR images with 

T1n3, T1n3RF20, and T1n3RF40 were 0.8241, 0.8222, and 0.8185, respectively (see Figure 

3.11). The accuracy rates of segmentation with spatial information (G, x, y, r, θ) of GM of 

simulated MR images with T1n3, T1n3RF20, and T1n3RF40 were 0.9251, 0.9211, and 
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0.9214, respectively (see Figure 3.11). The accuracy rates of segmentation with spatial 

information (G, x, y, r, θ) of WM of simulated MR images with T1n3, T1n3RF20, and 

T1n3RF40 were 0.9077, 0.9054, and 0.9038, respectively (see Figure 3.11). These data 

indicated the large differences were also absent in the accuracy rates of segmentation of 

tissues in MR images with inhomogeneity. Thus, the presence of inhomogeneity in MR 

images might not decrease the accuracy rates of segmentation for both phantom MR images 

and simulated MR images. 

The performance of segmentation in the present study might have been affected by the 

gold standard being segmented by an expert as a standard reference. Other approaches could 

also be used to determine the gold-standard reference image. A more sophisticated method [95] 

is for a group of experts to construct the reference gold-standard image, which might improve 

the accuracy of segmentation. 

    In conclusion, our segmentation method based on a decision-tree algorithm represents a 

useful way to perform automatic segmentation for both phantom and tissue (GM, WM, and 

CSF) regions in brain MR images. The accuracy rates of segmentation were highest for both 

simulated phantom and brain MR images with the lowest noise levels, due to this reducing the 

amount of overlap in gray levels in the images. The accuracies of segmentation were higher 

when the spatial information included the general gray level (G) than when it included the 

spatial gray level (S), which in turn were higher than when it included the wavelet transform 

(W). Finally, the accuracy rate of our segmentation method was not affected by 

inhomogeneity in MR images. 
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Chapter 4  Segmentation of Brain MR images Using a Boosted 

Decision Tree (BDT) 

 

4.1. Introduction 

The studies of literature review demonstrated that the increasing accuracy of 

segmentation is more important in classifying different brain tissues for improving anatomical 

structures in real applications. In this Chapter, we will propose another automatic 

segmentation method of decision tree to improve the segmentation accuracy of the GM, WM, 

and CSF in brain MR images and to obtain clear anatomical structures. The segmentation 

method is a boosted decision tree combined with fuzzy threshold. 

Decision trees can be constructed from many specific algorithms. A classification and 

regression tree (CART) can be applied for classification analysis while also acting as a 

regression tree. CART is a binary tree that has been utilized in many studies [89, 90, 96]. The 

C4.5 learning method proposed by Quinlan et al. in 1993 is another decision tree that was 

reformed from the ID3 learning system proposed by Quinlan in 1986 [97] and used in a 

supervised classification problem. The C4.5 was advanced to the See5/C5.0 to improve 

decision tree performance [98–100]. The ID3, C4.5, and C5.0 have been used for classification 

in many studies. The C4.5 learning system was used to determine the optimal subset of a 

control system for selecting attributes among continuous attributes, noise data, and alternative 

measures [101]. The C5.0 was used to classify electrocardiograms (ECG) in a healthy control 

subject and in a subject with a heart disorder, wherein three experiments were conducted 

including classifications based on 2, 3, and 7 classes. This system was successfully used to 

classify bundle branch block, cardiomyopathy, arrhythmia, healthy control, hypertrophy, 

myocarditis, and myocardial infraction with good accuracy [102]. We used a decision tree in 

our study because it has several advantages in biomedical applications. Specifically, it can be 
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effectively used to classify any data structure, it can perform with good prediction accuracy for 

non-linear problems, it is easy to interpret rules in a rule set of the decision tree, and it 

effectively eliminates outliers [96]. Therefore, we propose a boosted decision tree algorithm 

combined with fuzzy threshold for the classification of brain tissues, such as GM, WM, and 

CSF, with the goal of improving accuracy rates of brain MR image segmentation. 

 

4.2. Materials and methods 

 

4.2.1. MR data 

Two types of simulated data were used in this study, including simulated phantom MR 

(SPMR) images and simulated brain MR (SBMR) images. The SPMR images were the same 

as described in Table 3.1. The SBMR images obtained from BrainWeb were T1-weighted 

3-mm-thick images with noise levels of 3%, 5%, 7%, and 9% and the same as described in 

Table 3.2. Furthermore, RF inhomogeneities of either 20% or 40% were also added to the 

images with each noise level as described in Table 3.2. An expert manually labeled an 

exemplar brain MR image from the original image with no noise and inhomogeneities; this 

was used as our standard image. All of the simulated data were preprocessed to obtain spatial 

features and then segmented using the decision tree algorithm. 

Real data of brain MR images were also used for this experiment. Healthy participants 

were scanned with a 1.5T MRI system (Signa NV/i, GE Medical Systems, Waukesha, WI) 

using a standard head coil and an adjustable padded head holder to minimize head motion. The 

3D T1-weighted time-of-flight fast spoiled gradient recalled acquisition in steady state (FSPGR, 

TR/TE =13.4/2.7 msec, NEX=1, FOV = 260 mm; 512 × 256 matrix, slice thickness = 2 mm) 

pulse sequence was used. 144 axial slices were acquired encompassing the whole brain. 
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4.2.2. Image preprocessing 

Spatial features were extracted from every MR image pixel location and used as the 

input for the segmentation algorithm for image preprocessing which were the same as in 

Chapter 3. The spatial features used in the present study were: G, S, W, x, y, r, and θ, where G 

represents the gray level intensity of every pixel, S the spatial gray level of every pixel, W the 

coefficients of the wavelet transform, (x, y) Euclidean coordinates, and (r, θ) polar coordinates. 

The spatial features were preprocessed from the same procedure described in Section 3.2.1. 

 

4.2.3. Segmentation 

A decision tree combined with boost trials and a fuzzy threshold was used in this study. 

This method was shown by Quinlan to model the prediction tree using a statistical analysis 

that considered outcome variables to make an accurate prediction [100]. The image 

segmentation processing procedures are summarized in Figure 4.1. A standard image was 

trained using the boosted decision tree with a fuzzy threshold, while images with noise levels 

and RF inhomogeneities were then tested by the decision tree constructed from the trained 

structures. The operation is described as follows. 
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Figure 4.1 A flow diagram of image processing procedures for MR image segmentation. 

 

4.2.4. Decision tree classification 

The decision tree builds a classifier form that can be integrated using boosting and a 

fuzzy threshold [98, 100, 103]. Regions and tissues in the SPMR images were divided into 

three and four classes of the decision tree, respectively. A schematic diagram of the decision 

tree structure is shown in Figure 4.2. A decision tree is a tree structure that grows from a root 

node, flows outward toward internal nodes, and terminates at leaf nodes. The leaf nodes 

represent the class, wherein the classifier is a model derived from the training dataset and is 

applied to predict class values in a test dataset. In the tree structure, each internal node is 

divided by a condition related to a feature, and each branch denotes the outcome of attribute 

splitting. Each node (root node and internal node) is split into two or more branch nodes. 

Examples of splitting conditions include “A>a,” “B>b,” or “C>c” for each node in every 
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attribute, as shown in Figure 4.2. Branch splitting is determined by the condition of each node. 

The leaf nodes depict classification by these splitting conditions, and the class is labeled on 

the leaf node. The decision tree structure can be transferred into a set of rules. 

 
Figure 4.2 Schematic diagram of the decision tree structure. 

 

4.2.5. Decision tree construction with gain ratio 

The proposed decision tree is constructed from a data set S  by the training criteria, Gain 

Ratio, which is a measure of incorporated entropy [98, 103–106]. The procedures of Gain 

Ratio are defined as follows. For simulated MR data, assume that a training data set 

S consists of C  class examples. The function ( , )p S r  is the ratio for the class number of an 

MR data set belonging to class r  of the total class number S  of an MR data set S , where 

1 r C≤ ≤ . The entropy is defined as 
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21
( ) ( , ) log ( , )C

r
Entropy S p S r p S r

=
= − ×∑ .                     (4.1) 

Suppose that T  is a feature whose total partitions are v . The value i  is any specific 

value of v , while iS  is a subset of the MR data set S  corresponding to the value i  of T . 

The information gain, ( , )Gain S T , corresponding to the partitioning of S  from feature T , 

is calculated by: 

1
( , ) ( ) ( )v i

ii

S
Gain S T Entropy S Entropy S

S=
= − ×∑ ,             (4.2) 

where iS  is the number of subsets iS  in the MR data, and ( )iEntropy S  is calculated 

similarly as ( )Entropy S . In order to obtain a good generation by reducing bias, the gain ratio 

( , )GainRatio S T  was calculated, wherein the SplitInfo  (Equation 8) is first provided as:  

21
( , ) log ( )v i i

i

S S
SplitInfo S T

S S=
= − ×∑ .                (4.3) 

The function ( , )Gain S T  is very sensitive to the value of v , so the ratio of information gain 

is calculated as: 

( , )( , )
( , )

Gain S TGainRatio S T
SplitInfo S T

= .                    (4.4) 

The feature T satisfies: 

arg max( ( , ))
T

GainRatio S TΓ =                        (4.5) 

and is selected as the reference for this step of partitioning. The decision tree is 

constructed by splitting all of the features and maximizing the gain ratio ( Γ ). 

 

4.2.6. Boosting 

The addition of boosting to a decision tree as a means to improve prediction accuracy is 

know as adaptive boosting, and was proposed by Freund and Schapire [98, 100, 107–109]. 

Adaptive boosting is based on a learning algorithm of a decision tree classifier over a repeated 
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series of trials: 1,..., .t T=  One possible approach is to select a best weight and tree structure 

from the distribution of weights over the training set. For a training set ( , )...( , )i i m mx y x y , ix  

belongs to X  and iy  belongs to label set Y . This generates the weak hypothesis 

( ) : { 1, 1}th i X → − + , as ( )tD i is the weight distribution on training instance i  at trial t . The 

error of the hypothesis is given as 

~
: ( )

Pr [ ( ) ] ( ),
t

t i i

t i D t i i t
i h x y

h x y D iε
≠

= ≠ = ∑                    (4.6) 

where the ~Pr [.]
ti D  is the probability with respect to the distribution ( )tD i  when the weak 

learner was trained. The parameter of weight will be chosen as  

11 ln
2

i
t

i

εα
ε

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
,                           (4.7) 

 where tα  increases when tε  decreases. After updating ( )tD i , the final hypothesis H  

measures the confidence in the boosting prediction, and is given as 

1
( ) ( )

T

t t
t

H x sign h xα
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .                       (4.8) 

The final hypothesis H is a majority vote in 1...t T= , where tα  is the weight of th . 

Many classifiers are constructed from a single training dataset for boosting. Each 

classifier is constructed to form a single decision tree structure or a rule set using the training 

data. New classifications are based on votes from many classifiers, while the predicted and 

final classes are decided from the votes. The first step of this boosting procedure is to build a 

single decision tree structure or a rule set from the training data. This classifier will usually 

contribute to the errors for some cases in the data. The first decision tree structure generates 

the wrong class for some cases in the training data. Next, the second classifier is constructed 

with greater attention to correct classification. The second classifier will consequently be 

different from the first classifier. The third classifier construction step is comparatively even 

more focused, although it also will make mistakes in some cases. By setting the boost trial 

number in advance, the boosting process continues iteratively by updating ( )tD i . The final 
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step of the boosting process is stopped when the most recent classifier is either extremely 

accurate or inaccurate. 

 

4.2.7. Fuzzy threshold 

In a fuzzy threshold process [98, 100], the threshold for each feature partition is divided 

into three ranges, including a lower bound, lb; an upper bound, ub; and a central value, t. If 

the feature value (or attribute value of the tree) in a node is below lb or above ub, the 

classification is partitioned using single branches corresponding to the conditions “<=” or “>”, 

respectively. If the feature value is between lb and ub, both branches probabilistically decide 

the partition results. The lower and upper bounds are calculated by approaching the apparent 

classification sensitivity. The fuzzy threshold can resist the effects of noise and improve the 

accuracy rate of classification on training and testing. 

 

4.2.8. Pruning 

Decision tree construction consists of two phases [97, 98, 110]. The growth phase is 

generated first, followed by processing in the pruning phase. The pruning phase is used to 

optimize the decision tree structures. Global pruning was selected in the decision tree 

algorithm. Subtree replacement is performed in the pruning step when the subtree error rates 

for the training set are reduced. If the error rate is below the CF (25%), the nodes of the tree 

structure are trimmed to replace the subtree by a leaf node. The CF is the probability of a 

binary distribution, as defined in Equation (14), and is calculated from the training set. The 

class label of the leaf node is then defined as a simplified tree consisting of a class of 

attributes in a subtree. The function of pruning is to reduce the risk of overfitting the tree. 

Overfitting occurs when the tree is overspecialized to the training set. The pruning phase was 

developed to improve classification accuracy by removing subtrees that are predicted to have 

high error rates.  
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When replacing the leaf node of a tree, statistical analysis is used to obtain confidence by 

manipulating the posterior probability of misclassification. For example, assume an event 

happens M  times in N  trials. The estimated probability p of the event is the ratio /M N . 

The confidence limits for p  can then be calculated. For the confidence CF  given in 

Equation (4.9), the estimated probability p can be calculated as 1-CF  such that rp p≤ . The 

upper limit rp  [111] is satisfied as 

0

(1 ) , 0

(1 ) , 0

N
r

M
i N i
r r

i

p for M
CF N

p p for M
i

−

=

⎧ − =
⎪= ⎛ ⎞⎨

− >⎜ ⎟⎪
⎝ ⎠⎩

∑
,                 (4.9) 

where CF-pruning is set to 25% as default. 

 

4.2.9. Three-dimensional reconstruction 

Each segmented image was exported separately as a distinct .mat (MATLAB) file to 

Amira 4.1 (Mercury Computer Systems Inc., Chelmsford, MA) for surface rendered 3D 

models. Surface reconstruction from the images yields triangulated surfaces with a stepped 

structure due to the anisotropy of the voxels. To obtain a superior representation of the true 

anatomical 3D-shape the labelings are interpolated by inserting intermediate slices between 

each two consecutive slices of the original image stack, such that the resulting voxel size is 

nearly isotropic. All these steps are performed with the help of the visualization and modeling 

software Amira [112] and Amira User’s Guide, Reference Manual and Amira Programmer’s 

Guide are available at the Website http://www.amiravis.com/. 

 

4.2.10. The evaluation index of segmentation 

Two kinds of indexes to evaluate the segmentation performance were mainly used in this 

Chapter. One is the accuracy rate which is the same as the index in Section 3.2.6 of Chapter 3. 

The other is the k index (also called the Dice coefficient) described as below. Another 
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evaluation indexes referred from other approaches are also used to compare the performance 

of segmentation from brain MR images. 

The k index as given in Equation (4.10), which is another means of segmentation 

evaluation, was also used to quantify the performance of segmentation.  The k index is 

ordinarily used to measure the similarity of two images [41–43, 44, 48, 53, 113]. Given two 

images, 1S  denotes all tissues of the standard reference image, while 2S  denotes all tissues 

of the segmented image. The k index is defined as: 

1 2
1 2

1 2

2
( , )

S S
k S S

S S
∩

=
+

,                        (4.10) 

where 1 2S S∩  denotes the intersection area between 1S  and 2S . The k index, running 

from 0 to 1, was applied to compare the segmented image and standard image (manually 

labeled by an expert). 

 

4.3. Experimantal results 

 

4.3.1. Segmentation of SPMR images 

As shown in Figure 4.3, we examined the accuracy rates of SPMR image region 

segmentation with several levels of noise and inhomogeneities (see Table 3.1) using various 

spatial features. The accuracy rates of circle center and circle ring segmentation using spatial 

features (G, x, y), (S, x, y), (W, x, y, G, r, θ), (W, x, y, G, r, θ, S), (G, x, y, r, θ), and (S, x, y, r, θ) 

and at different levels of noise and inhomogeneity are shown in Figures 4.3(a)-(b). Using the 

decision tree algorithm and six spatial features, the accuracy rates for circle center 

segmentation were greater than 0.9720, while the accuracy rates for circle ring segmentation 

were greater than 0.9309. The highest accuracy rate came from phantom region segmentation. 

The lowest accuracy rates were obtained when SPMR images were segmented using this 
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decision tree with spatial features (W, x, y, G, r, θ) or (W, x, y, G, r, θ, S). Figure 4.4 shows 

images segmented using this decision tree algorithm with spatial features (G, x, y, r, θ), (S, x, y, 

r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) from SPMR images with noise and 

inhomogeneity levels of Var15, Var15RF20, Var15RF40, Var30, Var30RF20, and Var30RF40. 

The segmentation performance was evaluated by averaging the accuracy rates of all the 

phantom image regions in SPMR images with noise and inhomogeneity levels of Var15, 

Var15RF20, Var15RF40, Var30, Var30RF20, and Var30RF40, and segmented with spatial 

features (G, x, y, r, θ), and (S, x, y, r, θ). 
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Figure 4.3 Accuracy rates of region segmentation obtained using different spatial features 

from simulated phantom MR images. (a) Accuracy rates of circle center segmentation with 

different spatial features. (b) Accuracy rates of circle ring segmentation with different spatial 

features. 
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Figure 4.4 Images segmented from simulated phantom MR images with different spatial 

features and various noise and inhomogeneity levels. 

 

4.3.2. Segmentation of SBMR images 

SBMR images with different noise and inhomogeneity levels were segmented using the 

boosted decision tree algorithm with spatial features (G, x, y), (S, x, y), (G, x, y, r, θ), (S, x, y, r, 

θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S). Image segmentation decision tree performance 

was best using spatial features (G, x, y, r, θ) and (S, x, y, r, θ) in SBMR images. Figure 4.5 

depicts the average brain tissue segmentation accuracy using the boosted decision tree. Figure 

4.5(a) depicts the average segmentation accuracy using spatial feature (G, x, y, r, θ) in SBMR 

images with noise and inhomogeneity levels of T1n7, T1n7RF20, and T1n7RF40. Figure 

4.5(b) depicts the average segmentation accuracy with spatial feature (S, x, y, r, θ) in SBMR 

images with noise and inhomogeneity levels of T1n7, T1n7RF20, and T1n7RF40. Critical 

average accuracy rates were obtained using a decision tree with a boost trial number of 20. 

Greater boost trials resulted in a longer processing time. Therefore, the decision tree with 20 
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boost trials was selected to segment all simulated brain MR images, as shown in Figure 4.5. 

Figures 4.6(a)-(c) show the accuracy of segmenting GM, WM, and CSF, respectively, using 

spatial feature (G, x, y, r, θ) on SBMR images with different noise levels and inhomogeneities. 

The accuracy decreased for GM, WM, and CSF when segmented with spatial feature (G, x, y, r, 

θ) and combined with noise levels increased from 3% to 9%. Figures 4.6(d)-(f) show the 

accuracy of segmenting GM, WM, and CSF using spatial feature (S, x, y, r, θ) on SBMR 

images with different noise levels and inhomogeneities. Accuracy rates decreased for GM, 

WM, and CSF when segmented with (G, x, y, r, θ) and including noise levels increased from 

3% to 9%. Row 1 in Figure 4.7 depicts a standard image (manually labeled by an expert). The 

images in column 1 of Figure 4.7 show the original simulated brain MR images using T1n7, 

T1n7RF20, and T1n7RF40. The images in column 2 of Figure 4.7 show simulated brain MR 

images segmented with spatial feature (G, x, y, r, θ) and noise and inhomogeneity levels of 

T1n7, T1n7RF20, and T1n7RF40. The images in column 3 of Figure 4.7 show SBMR images 

segmented with spatial feature (S, x, y, r, θ) and noise and inhomogeneity levels of T1n7, 

T1n7RF20, and T1n7RF40. The boosted decision tree algorithm performed better clarity of 

brain tissue segmentation than that of original images. The inset images in Figure 4.7 show 

the original and segmented SBMR images, and illustrate clear distinctions in the three brain 

tissues. The inset images in rows 1, 2, and 3 are 3x magnifications of boxed-in locations in the 

original images. These three locations were difficult to segment because of their complexity. 

The method was also demonstrated to segment a complete coronal SBMR images. Figure 4.8 

shows an example of a 3D surface rendering using the segmented image data, as determined 

by the boosted decision tree from SBMR data with T1n7RF20, consisting of 181 slices. The 

brain was respectively segmented into white matter hemisphere (labeled in yellow) and gray 

matter hemisphere (labeled in orange). 
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Figure 4.5 Mean accuracy rates of tissue segmentation from simulated brain MR images. (a) 

Mean accuracy rates of tissue segmentation using the decision tree and 20 boost trials with 

spatial feature (G x, y, r, θ) from simulated MR images with noise and inhomogeneity levels 

T1n7, T1n7RF20, and T1n7RF40. (b) Mean accuracy rates of tissue segmentation using the 

decision tree combined with 20 boost trials using spatial feature (S x, y, r, θ) from simulated 

MR images with noise and inhomogeneity levels T1n7, T1n7RF20, and T1n7RF40. 
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Figure 4.6 Accuracy rates of tissue segmentation using a boosted decision tree algorithm on 

simulated brain MR images. (a) Accuracy rates of GM segmentation using spatial feature (G x, 

y, r, θ). (b) Accuracy rates of WM segmentation using spatial feature (G x, y, r, θ). (c) 

Accuracy rates of CSF segmentation with spatial feature (G x, y, r, θ). (d) Accuracy rates of 

GM segmentation with spatial feature (S x, y, r, θ). (e) Accuracy rates of WM segmentation 

using spatial feature (S x, y, r, θ). (f) Accuracy rates of CSF segmentation using spatial feature 

(S x, y, r, θ). 
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Figure 4.7 Segmentation of simulated brain MR images from BrainWeb. Row 1 depicts the 

original, unsegmented image, and rows 2 through 4 show noise and inhomogeneity levels 

T1n7, T1n7RF20, and T1n7RF40. Images in column 1 are the original images, images in 

column 2 are segmented with spatial feature (G, x, y, r, θ), and those in column 3 are 

segmented with spatial feature (S, x, y, r, θ). All blown-up images were taken from the 

boxed-in region of the shown whole brain horizontal slice and enlarged three times. 
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Figure 4.8 A 3D reconstruction of segmented brain image data in axial view. The brain has 

been segmented into gray matter (labeled in orange) and white matter (labeled in yellow). 

 

4.3.3. Comparison of segmentation with the other algorithms 

The results of segmentation using the boosted decision tree were also compared with 

another two segmentation algorithms. One is in the Medical Imaging Interaction Toolkit 

(MITK, http://www.mitk.org/) whose principle is based on a statistical region-growing (SRG) 

algorithm in Insight Toolkit (ITK, http://www.itk.org/) [114]. The other is adaptive 

segmentation (AS) algorithm for MRI data that uses the knowledge of tissue intensity 

properties through the expectation maximization (EM) algorithm to more accurately segment 

brain MR images [115]. Table 4.1 shows the accuracy rates of GM, WM, and CSF 

segmentation using the boosted decision tree with spatial features (G, x, y, r, θ) and (S, x, y, r, 
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θ), the SRG, and the AS algorithm from SBMR images with different noise levels and 

inhomogeneities. The accuracy rates of GM, WM, and CSF segmentation using the boosted 

decision tree with spatial features (G, x, y, r, θ) and (S, x, y, r, θ) at all noise levels and 

inhomogeneities were higher than those of SRG and AS algorithm. 

The k index or similarity index was also used to compare segmentation performance. 

Table 4.2 summarizes the k indices of segmented GM, WM, and CSF from SBMR images 

using the boosted decision tree with spatial features (G, x, y, r, θ) and (S, x, y, r, θ), the SRG 

and the AS algorithm from SBMR with different noise levels and inhomogeneities. The k 

values of segmented GM, WM, and CSF using the boosted decision tree with spatial features 

(G, x, y, r, θ) and (S, x, y, r, θ) were higher than 0.9312, 0.9464, and 0.9547, respectively. The k 

indices of GM, WM, and CSF segmentation using the boosted decision tree and a fuzzy 

threshold were much higher than those using SRG and AS algorithm in several different noise 

levels and inhomogeneities from SBMR images. 
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Table 4.1 Segmentation accuracy rates from SBMR images using the boosted decision tree, the SRG, and the AS algorithm. 

 GM WM CSF 

  (G, x, y, r, θ)  (S, x, y, r, θ)  SRG AS (G, x, y, r, θ) (S, x, y, r, θ) SRG AS (G, x, y, r, θ) (S, x, y, r, θ) SRG AS 

T1n3 0.9865 0.9857 0.6577 0.9349 0.9822 0.9819 0.9726 0.8329 0.9944 0.9796 0.6958 0.8148 

T1n5 0.9822 0.9794 0.7999 0.8873 0.9715 0.9724 0.9386 0.8576 0.9898 0.9731 0.7370 0.8250 

T1n7 0.9794 0.9722 0.9051 0.8254 0.9568 0.9609 0.8250 0.8325 0.9842 0.9685 0.7610 0.8407 

T1n9 0.9760 0.9532 0.9125 0.8099 0.9485 0.9319 0.5909 0.7033 0.9814 0.9361 0.7824 0.8407 

T1n3RF20 0.9839 0.9791 0.7448 0.9329 0.9771 0.9739 0.9636 0.8314 0.9907 0.9750 0.7169 0.7972 

T1n5 RF20 0.9822 0.9734 0.7885 0.8986 0.9687 0.9638 0.9296 0.8535 0.9888 0.9648 0.7301 0.8000 

T1n7 RF20 0.9742 0.9613 0.9026 0.8178 0.9490 0.9472 0.8357 0.8503 0.9870 0.9537 0.7625 0.8222 

T1n9 RF20 0.9746 0.9585 0.9625 0.8182 0.9443 0.9452 0.3962 0.6364 0.9787 0.9592 0.7959 0.8463 

T1n3RF40 0.9853 0.9734 0.7761 0.9514 0.9743 0.9631 0.9471 0.7438 0.9888 0.9703 0.7112 0.7630 

T1n5 RF40 0.9812 0.9679 0.8705 0.8786 0.9671 0.9474 0.8908 0.8374 0.9851 0.9629 0.7424 0.8056 

T1n7 RF40 0.9753 0.9552 0.9470 0.8319 0.9486 0.9316 0.6601 0.7433 0.9814 0.9564 0.7698 0.8333 

T1n9 RF40 0.9721 0.9511 0.9593 0.8077 0.9386 0.9201 0.4859 0.6591 0.9796 0.9416 0.7925 0.8333 

 

 



 

- 87 - 
 

 

Table 4.2 The segmentation k indexes from SBMR images using the boosted decision tree, the SRG, and the AS algorithm. 

 GM WM CSF 

  (G, x, y, r, θ)  (S, x, y, r, θ)  SRG AS (G, x, y, r, θ) (S, x, y, r, θ) SRG AS (G, x, y, r, θ) (S, x, y, r, θ) SRG AS 

T1n3 0.9839 0.9814 0.7620 0.8680 0.9850 0.9863 0.8671 0.8948 0.9898 0.9828 0.8192 0.7917 

T1n5 0.9757 0.9728 0.8405 0.8556 0.9775 0.9797 0.9032 0.8941 0.9861 0.9790 0.8458 0.7661 

T1n7 0.9663 0.9632 0.8495 0.8107 0.9683 0.9721 0.8767 0.8666 0.9815 0.9725 0.7427 0.7028 

T1n9 0.9602 0.9384 0.7973 0.7455 0.9624 0.9522 0.7348 0.7909 0.9774 0.9546 0.7571 0.6442 

T1n3RF20 0.9797 0.9738 0.8174 0.8654 0.9811 0.9806 0.8921 0.8921 0.9879 0.9804 0.8342 0.7863 

T1n5 RF20 0.9742 0.9740 0.8357 0.8585 0.9759 0.9651 0.9072 0.8929 0.9852 0.9742 0.8408 0.7721 

T1n7 RF20 0.9834 0.9503 0.8557 0.8137 0.9667 0.9628 0.8846 0.8761 0.9691 0.9662 0.7474 0.6815 

T1n9 RF20 0.9572 0.9476 0.7729 0.7252 0.9594 0.9610 0.5650 0.7570 0.9759 0.9709 0.8745 0.5995 

T1n3RF40 0.9787 0.9648 0.8297 0.8332 0.9801 0.9738 0.8943 0.8404 0.9879 0.9757 0.8294 0.8000 

T1n5 RF40 0.9745 0.9542 0.8613 0.8405  0.9726 0.9648 0.8963 0.8801 0.9847 0.9733 0.8498 0.7449 

T1n7 RF40 0.9597 0.9390 0.8222 0.7745 0.9621 0.9544 0.7819 0.8275 0.9787 0.9672 0.7505 0.6329 

T1n9 RF40 0.9528 0.9312 0.7804 0.7270 0.9554 0.9464 0.6494 0.7699 0.9769 0.9594 0.7634 0.5927 
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4.3.4. Segmentation of real data in brain MR images 

The boosted decision tree, SRG, and AS algorithm were also used to segment real data 

from brain MR images. Two subjects (A and B) of brain MR images were segmented for this 

experiment. Table 4.3 summarizes the results in terms of the accuracy rate and k index for a 

real data experiment. The accuracies of GM, WM, and CSF from subject A segmented using 

the boosted decision tree with (G, x, y, r, θ), (S, x, y, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, 

r, θ, S) were higher than 0.9973, 0.9979, and 0.9913, respectively. The k indices of the 

segmented GM, WM, and CSF from subject A using the boosted decision tree with (G, x, y, r, 

θ), (S, x, y, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) were higher than 0.9942, 0.9978, and 

0.9932, respectively. The accuracy rates of segmented GM, WM, and CSF from subject B 

using the boosted decision tree with (G, x, y, r, θ), (S, x, y, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, 

r, θ, S) were higher than 0.9967, 0.9987, and 0.9922, respectively. The k indices of segmented 

GM, WM, and CSF from subject B using the boosted decision tree with (G, x, y, r, θ), (S, x, y, 

r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) were higher than 0.9963, 0.9984, and 0.9942, 

respectively. The accuracy rates and k indices of segmented GM, WM, and CSF using the 

boosted decision tree with (G, x, y, r, θ), (S, x, y, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) 

exhibited much higher performance than those using SRG and AS segmentation algorithm 

from real data.  

Figure 4.9 depicts segmented images using the boosted decision tree and the other 

segmentation algorithm. Images in rows 1 and 2 of Figure 4.9 were obtained from subjects A 

and B. Images in column 1 of Figure 4.9 show the original MR images from subjects A and B. 

Images in column 2 of Figure 4.9 show images corresponding to column 1 that were 

segmented using the boosted decision tree with spatial features (G, x, y, r, θ). Images in 

column 3 of Figure 4.9 show images segmented with the SRG algorithm. Images in column 4 

of Figure 4.9 show images segmented with the AS algorithm. Clear tissue regions were 

identified from real segmented brain image data using the boosted decision tree, whereas 
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unclear regions and artifacts existed in the original images and those segmented with the SRG 

and AS algorithm. It is, therefore, clear that visually apparent artifacts in MR images of real 

brains are reduced when using the boosted decision tree. 
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Table 4.3 Segmentation of MR images from two real subjects using the boosted decision tree, 

the SRG, and the AS method. 

Subject  Spatial feature GM WM CSF 

Subject A 

Accuracy 

(G, x, y, r, θ) 0.9974 0.9979 0.9913 

(S, x, y, r, θ) 0.9973 0.9987 0.9897 

(W, x, y, G, r, θ) 0.9984 0.9989 0.9968 

(W, x, y, G, r, θ, S) 0.9982 0.9988 0.9963 

SRG 0.7407 0.8624 0.1508 

AS 0.6364 0.9169 0.6224 

k  

(G, x, y, r, θ) 0.9957 0.9978 0.9944 

(S, x, y, r, θ) 0.9942 0.9979 0.9932 

(W, x, y, G, r, θ) 0.9983 0.9987 0.9977 

(W, x, y, G, r, θ, S) 0.9980 0.9986 0.9975 

SRG 0.6735 0.8004 0.2615 

AS 0.6889 0.7811 0.7432 

Subject B 

Accuracy 

(G, x, y, r, θ) 0.9973 0.9987 0.9955 

(S, x, y, r, θ) 0.9967 0.9988 0.9922 

(W, x, y, G, r, θ) 0.9969 0.9992 0.9977 

(W, x, y, G, r, θ, S) 0.9972 0.9994 0.9980 

SRG 0.6635 0.9085 0.1579 

AS 0.5432 0.9564 0.6223 

k 

(G, x, y, r, θ) 0.9973 0.9987 0.9966 

(S, x, y, r, θ) 0.9963 0.9984 0.9942 

(W, x, y, G, r, θ) 0.9984 0.9987 0.9979 

(W, x, y, G, r, θ, S) 0.9988 0.9989 0.9982 

SRG 0.6195 0.8400 0.2725 

AS 0.6231  0.8259 0.7434 
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Figure 4.9 Segmentation of real brain MR imaging data. Images in column 1 show the 

original brain MR images of subjects A and B. Images in column 2 correspond to those in 

column 1 and were segmented using the boost decision tree with spatial feature (G, x, y, r, θ). 

Images in column 3 correspond to those in column 1 and were segmented with the SRG 

algorithm. Images in column 4 correspond to those in column 1 and were segmented with the 

AS algorithm. 

 

4.4. Discussions 

We found better separation of intensity distributions for each region when using the 

decision tree than in the original SPMR images, indicating increased accuracy. Moreover, 

similar accuracies were found when SPMR images were segmented using decision trees with 

and without boost trials (data not shown). In all regions, accuracies of segmentation from 

SPMR images using decision tree algorithms with spatial features (G, x, y, r, θ), and (S, x, y, r, 

θ) as well as Var15, Var15RF20, Var15RF40, Var30, Var30RF20, Var30RF40 were the highest 

(Figure 4.3). These two spatial features were, therefore, used to segment the SBMR images. 

The lowest accuracy rates were obtained with spatial features (W, x, y, G, r, θ), and (W, x, y, G, 

r, θ, S) because the overlapping intensity of each region was greater when spatial feature (W) 
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was included (Figure 3.1). Segmentation was poorest when using the decision tree algorithm 

on SPMR images with Var30, Var30RF20, and Var30RF40 due to larger noise variations in 

phantom images thus leading to increased overlap of image intensity. 

    The intensity distribution of each tissue in the SBMR images overlapped more and was 

more complex than in the SPMR images. The increased noise levels or RF inhomogeneities of 

SBMR images often cause greater image intensity distribution overlap. The SBMR images 

were more difficult to correctly segment, and as such, the boosted decision tree was proposed. 

The accuracy rates of SBMR tissue segmentation increased when the boost trial numbers were 

increased, but at the expense of a longer process, as depicted in Figure 4.5. In order to limit 

time consumption, we elected to use 20 boost trial numbers in the decision tree algorithm to 

improve the accuracy of SBMR image tissue segmentation (Figure 4.5). The spatial features 

(G, x, y, r, θ) and (S, x, y, r, θ) were selected as inputs to the segmentation algorithm since they 

provided greater accuracy when tested in SPMR images (Figure 4.3). The accuracy rates of 

segmented brain tissues using spatial feature (G, x, y, r, θ) were higher than those using spatial 

feature (S, x, y, r, θ) since the general gray level (G) had less overlap in the intensity 

distribution for each tissue compared to the spatial gray level (S). The local area of spatial 

feature (S) was also larger than that of spatial feature (G), as shown in Figure 3.1. Thus, the 

segmentation accuracy rates were lowest when the spatial features included wavelet transform 

(W). The segmentation accuracy rates using the boosted decision tree algorithm with spatial 

features (G, x, y, r, θ) and (S, x, y, r, θ) decreased when the noise levels in brain MR images 

increased (Figure 4.6). The accuracy rates also decreased when the noise levels increased in 

conjunction with 20% or 40% RF inhomogeneities. There was no significant difference in 

accuracy between SBMR images with 20% or 40% inhomogeneity since the overlap in the 

intensity distribution was less affected by inhomogeneities. The decrease in accuracy caused 

by increased noise was greater than that caused by inhomogeneities.  

More complicated statistical analyses or parameter adjustments are often implemented to 
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further enhance accuracy. Several studies have examined the accuracy of MR segmentation 

[42, 43, 48, 53, 94]. Marroquin et al. [42] studied automatic segmentation of brain MR 

images. Their validation was only performed on GM and WM. Archibald et al. [53] stressed 

the importance of improving the accuracy evaluated by the k index; however, their validation 

of brain MR was also limited to WM and GM. Anbeek et al. [48] performed probability 

segmentation of brain tissue on MR imaging with similarity indices of 0.893 for WM, 0.830 

for GM, and 0.819 for CSF. Greenspan et al. [43] performed automatic segmentation of brain 

MR images from BrainWeb. The validation of segmentation was performed with maximum 

Dice coefficients of 0.889 for GM, 0.920 for WM, and 0.742 for CSF on T1-weighted MR 

imaging with a noise level of 9%. Yu et al. [94] segmented brain MR images from BrainWeb 

that had been validated with an average overlap metric (AOM) of 0.9 for WM on T1-weighted 

imaging with a noise level of 3% and RF of 0%. These studies addressed the importance of 

improving tissue segmentation accuracy in MR images. In the present study, segmentation 

errors were observed to decrease when the boost number was increased, while correct 

segmentation was not impacted by noise effects on the fuzzy threshold. The boosted decision 

tree algorithm combined with a fuzzy threshold performed well and accurately for SBMR 

image segmentation. The accuracy rates of GM, WM, and CSF segmentation using the 

boosted decision tree with spatial features (G, x, y, r, θ) at all noise levels and inhomogeneities 

were higher than 0.9721, 0.9386, and 0.9787, respectively (Table 4.1). The highest accuracy 

rates were obtained when (G, x, y, r, θ) was used to classify the SBMR images. Increased 

boost trials provided more accurate results for SBMR imaging. Higher values of the accuracy 

were obtained in SBMR images when using the boosted decision tree combined with a fuzzy 

threshold as compared to SRG and AS for other research methods (Table 4.1). Thus, the 

boosted decision tree algorithm demonstrates improved tissue (GM, WM, and CSF) 

segmentation performance in SBMR images, and significantly improves the accuracy therein. 

The k values of segmented GM, WM, and CSF using the boosted decision tree with 
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spatial features (G, x, y, r, θ) were higher than 0.9528, 0.9554, and 0.9769, respectively (Table 

4.2). The k index and accuracy rate were both used to evaluate the performance of the 

decision tree combined with boosting and a fuzzy threshold against SRG and AS algorithm. 

Higher values of the k index were obtained using the boosted decision tree compared to using 

the SRG and AS algorithm (Table 4.2). The observed decrease of these values in the presence 

of increased SBMR noise was greater for the SRG and AS method than for the boosted 

decision tree algorithm. Noise levels and inhomogeneities did not appreciably impact brain 

tissue segmentation using the decision tree combined with boost trials and a fuzzy threshold. 

As a real application, brain MR images from two subjects were segmented using the boosted 

decision tree, the SRG and AS algorithm. The values of the k index and accuracy of 

segmented GM, WM, and CSF from a real data using the boosted decision tree with (G, x, y, r, 

θ), (S, x, y, r, θ), (W, x, y, G, r, θ), and (W, x, y, G, r, θ, S) were greater than 0.99. Higher values 

of the k index and accuracy were produced by the boosted decision tree in comparison to the 

SRG and AS method on real data (Table 4.3). The boosted decision tree successfully 

segmented the tissues in MR-imaged real brains, and exhibited enhanced clarity of brain 

tissue (Figure 3.10). Thus, the boosted decision tree algorithm is equally suitable for brain 

tissue (GM, WM, and CSF) segmentation in real MR images with improved accuracy. 

In conclusion, the present work have demonstrated an automatic method, boosted 

decision tree algorithm, for segmenting MR images. We presented a supervised approach to 

classification-created MR images, wherein structures of interest are precisely addressed by a 

decision tree combined with boost trials and a fuzzy threshold. 

The decision tree successfully segmented the SPMR images, and the boosted decision 

tree algorithm improved the accuracy of tissue segmentation from SBMR images. 

Furthermore, the spatial features (G, x, y, r, θ) and (S, x, y, r, θ) were used to combine the 

general gray level and spatial gray level with Euclidean coordinates (x, y) or polar coordinates 

(r, θ) for image preprocessing. The highest accuracy rates and k indices of brain tissue 
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segmentation were obtained when the spatial feature (G, x, y, r, θ) was used to classify the 

SBMR images. The appreciated boost trials were demonstrated to obtain more accurate results 

on SBMR images. The boosted decision tree algorithm also improved the accuracy of tissue 

segmentation from a real data. Therefore, the boosted decision tree algorithm is suitable for 

tissue (GM, WM, CSF) segmentation of brain MR images and provides improved accuracy 

for brain tissue segmentation. 

.
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Chapter 5  Improving Segmentation of Brain MR images Based 

on a Boosted Decision Tree through Preprocessing by the 

Multiscale Retinex Algorithm 

 

5.1. Introduction 

To improve clinical diagnosis, it is both very important to increase the segmentation 

accuracy of brain MR image and achieve high quality of segmentation. In this Chapter, we will 

propose a segmentation method combined MSR and BDT algorithm through preprocessing by 

the intensity inhomogeneity correction to increase the segmentation accuracy of the GM, WM, 

and CSF in brain MR images and to achieve the high quality of segmentation for anatomical 

structures. 

We have successfully corrected brain MR images from phantom and animal data in 

Chapter 2 and have successfully improved the segmentation accuracy of brain tissues of MR 

image from SPMR images, SBMR images, and a real data in Chapter 3 and Chapter 4. 

Therefore, we proposed a BDT algorithm combined with preprocessing by the MSR 

algorithm MSR algorithm to classify brain tissues as GM, WM, and CSF with the goal of 

improving accuracy rates of brain MR image segmentation. 

 

5.2. Materials and methods 

 

5.2.1. MR data in this experiment 

All the experimental simulated MR data sets are the same as those in Chapter 3 and 

Chapter 4. About the brain MR images, we choose T1-weighted brain MR image with matrix 

size of 181×217 from SBMR images with T1n3, T1n5, T1n7, T1n9, T1n3RF20, T1n5RF20, 

T1n7RF20, T1n9RF20, T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40. 
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5.2.2. Methods 

 

1) Image segmentation procedure 

Figure 5.1 shows the image processing procedures that are image preprocessing and image 

segmentation. The image preprocessing includes two ways: one is RF inhomogeneity 

correction by multiscale retinex and then to extract the spatial features from the MR images, the 

other is to extract spatial features only. The multiscale retinex algorithm in the image 

preprocessing step was applied to enhance tissue contrast of the MR image by correcting the 

inhomogeneity for improving the brain tissue segmentation. The segmentation algorithm, the 

decision trees (CART or BDT), were then used to segment MR images in this study. The 

decision tree was trained from a standard image (an expert manually identified) and then used 

to predict the classes of brain tissues. 

 

Figure 5.1 Image processing procedures in this experiment. 
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2) Multiscale retinex (MSR) correction 

The multiscale retinex (MSR) algorithm was used to correct the intensity inhomogeneity 

from SBMR images in this experiment. The MSR algorithm is the same as the method in 

Chapter 3. It was used to reduce the effect of RF inhomogeneity and noise for improving the 

accuracy of segmentation. 

3) Feature extraction 

Feature extraction step is the same as image preprocessing in Chapter 3 and Chapter 4.  

Spatial features were extracted from every MR image pixel location and used as the input for 

the segmentation algorithm for image preprocessing. The spatial features used in the present 

study were: G, S, W, x, y, r, and θ, where G represents the gray level intensity of every pixel, S 

the spatial gray level of every pixel, W the coefficients of the wavelet transform, (x, y) 

Euclidean coordinates, and (r, θ) polar coordinates.  

4) Segmentation with decision tree 

Two kinds of decision tree were used to segment SBMR images in this experiment which 

are classification and regression tree (CART) and boosted decision tree (BDT). The CART 

decision tree is the same as the segmentation method in Chapter 3 and the BDT decision tree 

is the same as the segmentation method in Chapter 4. 

 

5.3. Experimental results 

 

5.3.1. Results of SBMR images 

In order to find the appropriate boost trial number of the decision tree, the SBMR images 

with T1n9 were tested by using the boosted decision tree with trial number from 0 to 50 but 

the MSR was not used for image preprocessing. Figure 5.2 shows the average accuracy rates 

of segmentation using BDT with spatial feature (G, x, y, r, θ) and (S, x, y, r, θ) from SBMR 

images with T1n9. The more boost trial numbers were applied, the more time was consumed. 
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But the lower boost trial numbers were applied, the lower accuracy rates was segmented. The 

critical average accuracy rates of brain tissue segmentation (GM, WM, and CSF) were 

obtained using the decision tree with boost trial number of 20. Therefore, the decision tree 

combined with 20 boost trials were selected as the BDT to segment all SBMR images, as 

shown in Figure 5.2. 

 
Figure 5.2 Average accuracy rates of all brain tissues segmented using BDT with spatial 

feature (G x, y, r, θ) and (S x, y, r, θ) for different boost trial numbers. 

 

Images in row 1 and 2 of Figure 5.3 are T1n3RF20 and T1n9RF40 of SBMR images, 

respectively. Images in column 1 of Figure 5.3 display the original images. Images in column 

2 of Figure 5.3 show the images corrected with MSR algorithm. The corrected images 

performed more brightness and contrast of brain tissue than the original images. In this 

present study, the weight nω  and scale of MSR were combined with 15-pixel small-scale 

SSR weightings of ω1 = 1/3; 80-pixel moderate-scale SSR weightings of ω2 = 1/3; and 

250-pixel large-scale SSR weightings of ω3 = 1/3 [77–82]. Images in column 3 of Figure 5.3 

show the images segmented from the corrected images in column 2. The segmented images 
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clearly performed the brain tissues (GM, WM, and CSF) using the BDT combined with MSR 

algorithm. 

 

 

Figure 5.3 Images from original, corrected using MSR, and segmented using BDT from 

SBMR with T1n3RF20 and T1n9RF40. 

 

5.3.2. Segmentation of SBMR images 

Figure 5.4 shows the results of segmentation using CART and BDT from SBMR images 

with T1n3RF20, T1n5RF20, T1n7RF20, and T1n9RF20. The spatial features (G, x, y, r, θ) and 

(S, x, y, r, θ) for feature extraction combined with MSR or non MSR were used for image 

preprocessing in this study. Curve plots in row 1, 2, and 3 of Figure 5.4(a) show the accuracy 

rates of GM, WM, and CSF from SBMR images. Curve plots in column 1 and 2 of Figure 
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5.4(a) show the results of brain tissue segmentation using CART with spatial feature (G, x, y, r, 

θ) and (S, x, y, r, θ), respectively. Curve plots in row 1, 2, and 3 of Figure 5.4(b) show the 

accuracy rates of GM, WM, and CSF from SBMR images. Curve plots in column 1 and 2 of 

Figure 5.4(b) show the results of brain tissue segmentation using BDT with spatial feature (G, 

x, y, r, θ) and (S, x, y, r, θ), respectively.  
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Figure 5.4 Accuracy rates of tissue segmentation using a BDT algorithm on SBMR images 

with T1n3RF20, T1n5RF20, T1n7RF20, and T1n9RF20. (a) Row 1, Accuracy rates of GM. 

Row 2, Accuracy rates of WM. Row 2, Accuracy rates of CSF. Column 1, segmentation using 

CART with spatial feature (G x, y, r, θ). Column 2, segmentation using CART with spatial 

feature (S x, y, r, θ). (b) Row 1, Accuracy rates of GM. Row 2, Accuracy rates of WM. Row 2, 

Accuracy rates of CSF. Column 1, segmentation using BDT with spatial feature (G x, y, r, θ). 

Column 2, segmentation using BDT with spatial feature (S x, y, r, θ). 

 

Figure 5.5 shows the results of segmentation using CART and BDT from SBMR images 

with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40. The spatial features (G, x, y, r, θ) and 

(S, x, y, r, θ) for feature extraction combined with MSR or non MSR were used for image 

preprocessing in this study. Curve plots in row 1, 2, and 3 of Figure 5.5(a) show the accuracy 

rates of GM, WM, and CSF from SBMR images with T1n3RF40, T1n5RF40, T1n7RF40, and 

T1n9RF40. Curve plots in column 1 and 2 of Figure 5.5 show the results of brain tissue 

segmentation using CART with spatial feature (G, x, y, r, θ) and (S, x, y, r, θ), respectively. 

Curve plots in row 1, 2, and 3 of Figure 5.5(b) show the accuracy rates of GM, WM, and CSF 

from SBMR images with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40. Curve plots in 

column 1 and 2 of Figure 5.5(b) show the results of brain tissue segmentation using BDT with 

spatial feature (G, x, y, r, θ) and (S, x, y, r, θ), respectively. 
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Figure 5.5 Accuracy rates of tissue segmentation using a BDT algorithm on SBMR images 

with T1n3RF40, T1n5RF40, T1n7RF40, and T1n9RF40. (a) Row 1, Accuracy rates of GM. 

Row 2, Accuracy rates of WM. Row 2, Accuracy rates of CSF. Column 1, segmentation using 

CART with spatial feature (G x, y, r, θ). Column 2, segmentation using CART with spatial 

feature (S x, y, r, θ). (b) Row 1, Accuracy rates of GM. Row 2, Accuracy rates of WM. Row 2, 

Accuracy rates of CSF. Column 1, segmentation using BDT with spatial feature (G x, y, r, θ). 

Column 2, segmentation using BDT with spatial feature (S x, y, r, θ). 

 

5.4. Discussions 

The appropriate boost trial number 20 was selected to successfully construct the BDT 

segmentation algorithm with spatial features (G, x, y, r, θ) and (S, x, y, r, θ) for a series test 

(trial number 0 to 40) from a SBMR with T1n9 (Figure 5.2). Greater image intensity 

distribution overlap is often caused by increased noise levels or RF inhomogeneities of 

SBMR images. The SBMR images were more difficult to be correctly segmented; therefore 

the BDT combined with preprocessing by MSR algorithm for correcting intensity 

inhomogeneity was proposed. The accuracy rates obtained from brain tissue segmentation 

with spatial feature (G, x, y, r, θ) were slightly higher than those of segmentation with spatial 

feature (S, x, y, r, θ) because the general gray level (G) had less overlap in intensity 

distribution for each tissue than that of spatial gray level (S). The accuracy rates of 

segmentation through preprocessing by MSR were not greatly decreasing when the noise 

levels, combined with 20% or 40% RF inhomogeneities, were increased (Figure 5.4, Figure 

5.5). There was also no significant difference of accuracy rate of segmentation of SBMR 

images with 20% or 40% inhomogeneity since the overlap in intensity distribution was less 

affected by inhomogeneities (Figure 5.4, Figure 5.5). Compared with the results of several 

studies [42, 43, 48, 53, 94], the importance of improving brain tissue segmentation accuracy 

is increasing in MR images, the segmentation errors of brain tissue from MR images were 
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much more decreased when the BDT is combined with preprocessing by MSR algorithm. In 

considering the time-consuming, the processing time of segmentation by using CART is very 

less than that of by using BDT from SBMR images. The CART is the better for little 

processing time of segmentation and the BDT is better for higher accuracy of segmentation. 

    In conclusion, the highest accuracy rates of brain tissue segmentation were obtained 

when the spatial features (G, x, y, r, θ) and (S, x, y, r, θ) were used to classify the SBMR 

images and when the BDT is combined with preprocessing by MSR algorithm. Both of the 

processes greatly improve the accuracy rates of brain tissue segmentation from SBMR images 

to achieve high quality of segmentation.  
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Chapter 6  The Summary and Future Works 

In this dissertation, we presented a multiscale retinex (MSR) algorithm to successfully 

correct the intensity inhomogeneity of brain MR images to obtain clearer deep brain structures 

and better image quality. The performance of intensity inhomogeneity correction was also 

evaluated by PSNR and CNR. Next, we proposed two decision trees (CART and BDT) with a 

supervised method and an automatic segmentation to successfully achieve the brain tissue 

segmentation on brain MR images to obtain better brain structures for neuroanatomical 

applications. The results of segmentation were also evaluated with two more indexes 

(accuracy rate, k index, and other published indexes). Finally, we achieved the high quality of 

segmentation with greatly improved accuracy based on BDT through preprocessing by the 

MSR algorithm from SBMR images. The experimental results of a number of simulated and 

in vivo MR data demonstrate that the proposed methods are valuable for brain MR image 

segmentation in neurological applications. 

Although the experimental results are very promising, some aspects are needed to be 

addressed for further improving the performance and other applications. 

1) The retinex algorithm could also be used to increase the SNR and dynamic-range 

compression in other types of medical image, such as those captured by 

computerized tomography (CT), digital X-ray systems, and digital mammography. 

2) These algorithms can be also applied to process the images of other organs such as 

abdomen, chest, and also T2-weight, or PD-weighted MR images. 

3) The method used in this research, together with 3D reconstruction method, might be 

applied for the tissue volume measurements of brain MR image to improve the 

diagnosis in clinical application. It is worth further studies. 

4) A more sophisticated method for a group of experts to construct gold-standard image, 

which might improve the accuracy of segmentation is also an interest research 
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category. 

5) Owing to the complex of brain edge on MR images, the background removing 

research and more tissue classes of brain MR image are worth studying issues. 
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