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ABSTRACT : A systematic procedure is proposed for the design of multivariable feedback 
control systems. For an N x N multivariable control system, the desirable overall compensator 
is decomposed into N cascaded sub-compensators to be determined in each step. The stability- 
equation method is used to find the desirable sub-compensators. After step N, the overall 
closed-loop system can be designed diagonal dominant and have a desirable performance 
closely related to the characteristic roots of each subsystem. A 4 x 4 boiler furnace system is 
chosen as an example, and comparisons are made with methods in the current literature. 

I. Introduction 

The concept of diagonal dominance plays a central role in the analysis and 
design of a multi-input multi-output system (1,2). In this paper, a systematic design 
procedure is proposed for the analysis and design of multivariable feedback control 
systems. The diagonal dominance of the overall system is achieved column by 
column (i.e. step by step), by closing only one loop of the considered system at 
each step. For an N x N multivariable feedback system, the desirable overall 
compensator matrix is decomposed into N cascaded subcompensator matrices to 
be determined in each step. The general configuration of the system is shown in 
Fig. 1. 

In order to find the desirable sub-compensator in each step, the stability-equation 
method is used (3,4). The ratios of the parameters of the subcompensators can be 
determined by some criteria and the optimization procedure for the diagonal 
dominance of each column (5-8). The desirable values of parameters are found by 
inspecting the constant-w curves and the stability boundaries generated by the 
stability-equation method. The relative differences among the constant-o curves 
will show the relative damping characteristics (3,4). 
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FIG. 1. System configuration of an N x N multivariable feedback control system. 

Since the stability-equation method is highly capable of handling systems with 
adjustable parameters, the overall compensator for achieving a desirable per- 
formance can be easily designed. 

II. Sequential Design for Diagonal Dominance and System Performance 

The basic structure of the overall compensator for an Nx N multivariable 
feedback control system is implemented by cascading the determined columns 
P&(S) (i = 1, 2, 3,. . ., N) in each step. The general form of the compensator at 
stepj (i.e. k = j) can be represented as 

Kj((s) = P,(S)P,(S). . . P,(S) 

= 

P,, 0 . . . 0 

Pz, 1 . . . 0 

p3, 0 . 0 

P ,?$, 0 . . . 1 

(step 1) 

1 P,* . . . 0 

0 P22 . . . 0 

0 Pj2 . . . 0 

0 PN2 . . . 1 

(step 2) 

1 0 . . P,j . . . 0 

0 1 . . . P, . . . 0 

0 0 . . . PXi . . . 0 
. . . 

0 0 . . . P, . . . 1 

(stepj) 

(1) 

where P,k = Pjk(S) (i = 1, 2,. . . , N, k = 1, 2,. . . ,j) are called sub-compensators; 
P,(S) (j= 1, 2 )...) N) are called sub-compensator matrices; K,(S) are called 
cascaded compensators and KN(S) is the overall compensator implemented in step 
N . Two typical block diagrams of control systems with this kind of structure are 
shown in Figs 2(a) and (b). 

In step j, the loop-j with Pq(S) (i = 1, 2,. . . , N) and with subcompensators 
Pik(S) (i = 1, 2,. . . , N, k = 1, 2,. . . ,j- 1) found in step j- 1, is closed; the 
remaining loops are open. The transfer function matrix T(j)(S) of this subsystem 
is 
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FIG. 2. Block diagram of (a) a 2 x 2 and (b) a 3 x 3 multivariable feedback control system. 

0 0 . . floj(S) 2 ,fJ(dp "(S)Pij(S) 0 
I= I 

0 0 . . . Poj(8 ,c, & "(s)pij(s) O 

0 0 ,,. PO,(S) E s!& “Cm,(S) 0 
y-(j)(s) = - 

i= I 

PO,(~) [ 1 + 5 !$ “(s)pij(s) 1 i= I 

where gi;‘- “(S) is the (i,j) element of the compensated plant G”- ‘j(S) with the 
sub-compensator matrices found in step j- I, and p,(S) is the open-loop charac- 
teristic equation of the compensated plant G (IF ‘j(S) with the sub-compensators 
P,(S) (i = 1, 2,. . . , N). Proper forms of P,(S) (i = 1,2, . . . , N) are chosen by the 
designer to satisfy the desirable performance and diagonal dominance of T(j)(S) 
(1, 2, 58). The compensated plant G(j)(S) with the subcompensators, is in the 
form of 

Vol. 325, No. 4, pp. 4X5-503, 1988 
Printed in Great Entam 487 



Tain-Sou Tsay and Kuang- Wei Han 

G”‘(S) = G(S)P,(S)P,(S) . . . P,(S) 

1 

P”,(S) 

P,,(S) s’i7 ‘) (S) . . . poj(s) f Si:~- “(s)pt,(s) . Poj(8 S’,G “(9 
i= 1 

Po,Cs) g(?ll “Cs) P,;(S) $J giip "(S)Pjj(S) . . . PO,(S) ss!i “(9 
,= I 

P”,(S) & “6s) p,,(S) f g$;- “(S)Pi,(S) . . . ~o,(S> ski ‘) (S) 
I= I 

which can be written as 

1 

sY1 (S) s’l’l (S) . . gy?(S) . . . g(&S) 

gVj(S) g’zi’(S) . . g(z/;)(S) gYh(S) 
G”‘(S) = _ _ ._ _ _ _ _ _ _ _ _ _ _ _ _ ._ . _ _ _ 

1 

(3b) 

g$(S) g#J(S) . g&yS) . . . g!&(S) 

From Eqs (2) and (3a), it can be seen that the numerators of thejth column of 
T”‘(S) are the same as those of the ,jth column of G”‘(S). Therefore, if the 
subsystem T”‘(S) is diagonal dominant then the jth column of G”‘(S) is also 
diagonal dominant, leaving the remaining columns unchanged. This property 
makes the compensated plant achieve the diagonal dominance column by column 
(i.e. step by step). In other words, in step j the columns denoted equal to or less 
thanj are diagonal dominant while the remaining columns are unchanged. 

The characteristic equation of the subsystem with transfer function matrix 
T”‘(S) is 

F,(S) = p,(S) I+ 2 gJ!- “(S)P,(S) [ i=l 1 (4) 

Since the compensated plant obtained at step N is diagonal dominant, the 
performance of each subsystem (i.e. each loop) after all loops are closed, will be 
closely related to the characteristic roots of F,(S) (j = 1, 2, 3,. . , N) assigned 
at each corresponding step. Therefore, the desirable performance and diagonal 
dominance can be achieved simultaneously from step 1 to step N. This is the main 
approach of the paper. 

ZZZ. Basic Method for Choosing the Values of Parameters in Compensators 

Assume that the characteristic equation of a system is F(S) which can be 
decomposed into two parts concerning even and odd exponents of S; i.e. 

F(S) = F,(s)+F”(s) = 0. (9 

Let S = jw then the stability-equations are (3,4) 
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and 

L(o) = F,(jw)ljo. (7) 

From Ref. (3), one has the following stability criterion. 
Stability Criterion : The system with the characteristic equation F(S) is stable if 

the roots wei and woj (i, j = 1, 2,. . .) of the stability-equations fe(o) = 0 and 
A(o) = 0, respectively, are all real and alternating in sequence. 

For a system with two parameters (m, and mz), the stability-equations can be 
written as 

and 

A(o) = i$0aiw2i = 0 

fO(o) = i bjo? = 0 
j=O 

where the coefficients ais and bj’s are assumed in the form of 

(8) 

(9) 

ai = A,i + B,im I+ C,im2 (IO) 

and 

bj = &,j+B,jm, +C,jm, (11) 

where A’s, B’s and C’s are constants. By inserting Eqs (10) and (11) into Eqs (8) 
and (9), the result can be arranged as 

(12) 

for the even stability-equation, and 

j$o A,jw2’+ml j$o B0j02’+m,j$o CojW’j = 0 (13) 

for the odd stability-equation. From these two equations the following two kinds 
of curves can be plotted. 

(1) The Stability-boundary Curves : By solving Eqs (12) and (13) for a sufficient 
number of suitable values of o, the simultaneous solutions of m, and m2 can be 
used to sketch a number of curves in the m, vs m2 plane. Then the curves for 
wei = ooj which constitute the stability-boundaries can be determined. 

(2) The Constant-w Curves : By assigning a sufficient number of values of o to 
Eqs (12) and (13) the constant-o curves for even and odd stability-equations can 
be plotted in the m, vs m2 plane. 

From Refs (3) and (4), it has been shown that the differences among the mag- 
nitudes of the real roots (wei and woi) can be used as indications of damping 
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characteristics; therefore, the desirable values of parameters (m, and m2) can be 
chosen by inspecting the relative differences among these constant-o curves. 

The design procedure and application of the stability-equation method in each 
step are explained along with the following numerical example. 

IV. Example 

Consider the boiler furnace control system with transfer function matrix (2,9) 

1 0.7 0.3 0.2 

1+4s 1+5s 1+5s 1+5S 

0.6 1 0.4 0.35 

1+5s 1+4s 1+5s 1+5s 

G(S) = 0.35 0.4 1 0.6 

1+5s 1+5s 1+4s 1+5s 

0.2 0.3 0.7 1 

1+5s 1+5s 1+5s 1+4s 

0.05+0.25S 0.035+0.14S 0.015+0.06S 0.01 +O.O4S 

1 0.03+0.12s 0.05 +0.25S 0.02 + 0.08s 0.0175 +O.O7S 

= Po(s) 0.0175+0.073 0.02+0.08S 0.05+0.25S 0.03+0.12S 

0.01 +O.O4S 0.015+0.06S 0.035+0.143 0.05+0.25S 

where p,(S) = 0.05 +0.45S+ S* 
For the compensation of G(S), 
3,4) are chosen in the form of 

K,(S) = f’,(W,(W’,(W’@) 

= 

is the open-loop characteristic equation of G(S). 
the lead/lag sub-compensators PII (i, j = 1, 2, 

S+bll - 
S+d, “’ 

0 0 0 

S+b*, _ 

S+d, p21 
1 0 0 

S+&, _ 
S+dlP31 0 1 0 

S+b4, 
S+d, 

J741 0 0 1 

I S+b,2 _ 3qPl2 0 0 

0 S+b22 _ S+d2P22 0 0 

0 S+bu _ s+d2P32 1 0 

0 
S-i-b42 _ 
s+d2P42 0 1 

(step 1) 

490 
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X 

S+b,3 _ o 
1 0 ~ 

S+dJ p” 

0 1 S+L _ S+d3p23 O 

S+& _ o 
0 0 ~ 

S+d3 “’ 

0 0 S+bu _ 
S+d3p43 l 

(step 3) 

1 0 0 S+b,4 _ 

S+d4P’4 

0 1 0 

S+L _ 

~ S+d, p24 

0 0 1 

S+L _ 

~ S+d4 p34 

0 0 0 
S+bu _ 
~ S+d, p44 

(step 4) 

(15) 

where dj, b, and iij (i, j = 1, 2, 3, 4) are adjustable parameters. In order to 
determine these adjustable parameters, four steps are required ; i.e. the parameters 
4, b, and pij (i = 1, 2, 3, 4) are determined in step j (j = 1, 2, 3, 4). The ratios of 
b, and pijs’ (i = 1, 2, 3, 4) are first determined by consideration of diagonal 
dominance and then the desirable values of these parameters are found by inspect- 
ing the constant-o curves generated by the stability-equation method. The details 
of each step are shown below. 

Step 1. Assume that loop-l with Pi,(S) (i = 1,2,3,4) is closed and the remaining 
loops are open. The transfer function matrix of this subsystem is 

r 

p,(S) i (S+bt,)g,i(S)FzI 0 0 0 
i= I 

P,(S) i (S+bil)gZi(S)Pil 0 0 0 

i= I 

p,(S) i (S+b;l)g3i(SlFi, 0 0 0 

i= I 

p,(S) i (S+bil)g4i(SlPil 0 0 0 
i= I 

(S+dl)+ i (S+bil)gli(S)Fil 
i= I 1 

_ (16) 

where p,(S) is the open-loop characteristic equation of G(s) ; and g,(S) are the 
(i, j) elements of G(S). In order to make the subsystem have low-interactions in 
both high and low frequencies, one may let the coefficients of the highest order and 
lowest order exponents of the off-diagonal terms of T(‘)(S) approach zero. 

For making the coefficients of the highest order exponents approach zero, one 
has 

O.l2p,, +0.25~,,+0.08p3,+0.07~4, = 0 (17a) 

O.O7p,, +0.08&, +0.25p3, +O.l2p,, = 0 (17b) 

O.O4j?,, +0.06&, +0.14~?,, +0.05p4, = 0. (17c) 

For making the coefficients of the lowest order exponents approach zero, one has 
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0.036,#,, +0.05bz,j2,+0.02b3,~3, +0.0175b4,jf,, = 0 (18a) 

O.O175b,,P,, +O.O2bz&, +0.05b3#,, +0.03b4,P,, = 0 (18b) 

O.Olb,,p,, +0.01562@,, +0.035b3,p,, +O.O5bz,@,, = 0. (18~) 

From Eqs (17a-c), the ratio of P,,(S) (i = 1,2, 3,4) can be found as 

p,, :p2, :p3, :p4* = j,, $2, :y3, :y4, = 31.089: -13.663: -4.813: -1 

where PI, = k$,, (i = 1, 2, 3, 4). By use of the ratios, the ratios of bi, (i = 1, 2, 3, 
4) can be found from Eqs (18a-c) ; i.e. 

b,,:bZ,:b~,:b4,=b=,,:b=2,:b=3,:64,=1:1.275:1.1887:3.0127 

where bi, = k2& (i = 1, 2, 3, 4). Then the characteristic equation of T(‘)(S) can 
be written. as 

I;,,(S) = (S+d,)p,(S)+p,(S) t (S+&b)g,i(SIi,kl = 0 
I= I 

= (S+dl)po(S)+ S~o(s) i gli(S>P’i kl 
i= 1 1 

+ P,(S) i glt(S);ild<l 
1 
klkz = 0 (19) 

i= 1 

where k, and k,kz are considered as two adjustable parameters to be analysed for 
a specified value of d,. 

Note that one may use other criteria and optimization procedures (58) to 
determine the ratios ofpi and bjl (i = 1,2,3,4) for achieving diagonal dominance 
(1,2). It will be seen that the setting of the lowest and highest order exponents of 
the off-diagonal terms of each subsystem to approach zero is sufficient for making 
the considered system diagonal dominant. 

Equation (19) can be decomposed into two stability-equations as shown in 
Section III, then the constant-o curves can be plotted in the k, vs k,k;! plane. 
Figure 3 shows the results for d, = 1. The constant-X curves represent the negative 
sum of the characteristic roots. Generally, the larger the value of X, the better the 
damping characteristics of the system will be. By inspecting these curves, a suitable 
choice is made at Q, (0.8, 1.6), for which the roots of the stability-equations are 
at 

0 el = 0.498 and o,, = 3.08033. 

Since these roots are alternating in sequence and the differences among them are 
large, it can be predicted that the subsystem is stable and has adequate damping 

(394). 
Corresponding to the ratios b;, and p’,, (i = 1, 2, 3, 4) found above and the 

choice of (k,, k,k,) = (0.8, 1.6), the sub-compensator matrix P,(s) is in the form 
of 
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FIG. 3. Parameter plane analysis of the subsystem with the transfer function matrix T(‘)(S). 

24.871% 0 0 

- 10.93s+2.55 
s+1 

1 0 

P,(S) = -3.85 S+2.377 

s+1 

o 1 

0.8 
S+ 6.026 

s+1 
0 0 

1.423 + 8.988S+ 4.488S2 

1 
- 1.25693 

T”‘(S) = FC,(s) 

I 

- 0.4096s 

0.231s 

The transfer function matrix is 

where F,,(S) = S3+5.9386S2+9.4884S+ 1.4725. The 
r(i)(S) are found at 

- 0.1135, - 2.8825 f j0.4235. 

0 

0 

0 . 

1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

(20) 

1 (21) 

characteristic roots of 

It can be seen that T(‘)(S) is diagonal dominant for all frequencies. 
With the sub-compensator matrix P,(S) found in Eq. (20), the open-loop transfer 

function matrix of the plant is 
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G”‘(S) = G(S)P,(S) 

- I 

1.423+8.988S+4.4886S (S+ 1) x (0.035+0.143) 

.l 
- 1.2569s (S+ 1) x (0.05 +0.25S) 

PO I 69 
- 0.4096s (S+ 1) x (0.02 + 0.08s) 

0.231s (S+ 1) x (0.015+0.06S) 

(S+ 1) x (O.OlS+O.O6S) (S+ 1) x (0.01+0.04s) 

(S+ 1) x (0.02+0.08S) (S+ 1) x (0.0175+O.O7S) 

x (S+ 1) x (0.05 +0.25S) (S+ 1) x (0.03+0.12S) 1 (224 
(S+ 1) x (O.OlS+O.OSS) (S+ 1) x (0.05 + 0.25s) 

1 

g\:‘(S) g\:‘(S) g\:‘(S) g\Y(S) 

g(z’?(S) gU(S) 9%) (S) g/Y(S) 

= g\?(S) gl:‘(S) g\:)(S) gU(S) 

1 

(22b) 

9(4?(S) gU(S) SLY(S) g’,?(S) 

where p,,(S) = (S+ l)p,(S) which is the open-loop characteristic equation of 
G”‘(S). From Eqs (14), (21) and (22a), it can be seen that the sub-compensators 
make the first column diagonal dominant while the remaining columns (i.e. columns 
2, 3,4) are unchanged. Note that the numerators of the first column of T”‘(S) are 
the same as those of the first column of G”‘(S). 

Step 2. In this step, loop-2 with the sub-compensators Pi,(S) (i = 1, 2, 3, 4) 
found in step 1 and with the sub-compensators Pi*(S) (i = 1, 2, 3, 4) is closed. 
The remaining loops are open. The transfer function matrix of this subsystem is 

T’*‘(S) = 

0 Pal(S) i (S+bz2)Sll'(s)Pi2 O O 

i= I 

0 PO*(S) i (S+bi*)d3i)(WBi* O O 

i= 1 

O POT i (s+bi2) 9(4?(sIPi2 O O 
i= I 

PO I(S) (S+dl) + i (S+ bid &)(S)Pi2 
i= 1 1 . 

(23) 

As in step 1, the ratios of pi2 and b,, (i = 1, 2, 3,4) are found as 

p,* :p2* :p3* :p42 = j,2 1~5~ :y,* :j4* = 1 : -37.446: 10.488 : 3.1136 
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w, - ,y _ _ _ _ _ _ _ _ 
w,--- 

FIG. 4. Parameter plane analysis of the subsystem with the transfer function matrix T’*‘(S). 

and 

b,2 : bz2: b32 : b42. . =b=,2:&2:&2:i442 = -1.8386: -2.4114: -3.2656:-l, 

respectively. The characteristic equation of the subsystem with the transfer function 
matrix T’*‘(S) can be written as 

+ p,,(S) i gl:‘(S)bi2ji2 klk2 = 0. (24) 
i= I 1 

The constant-w curves are plotted for d2 = 1.25 as shown in Fig. 4. By inspecting 
these curves, a suitable choice is made at Q2( -0.5, 0.375), for which the roots of 
the stability-equations are at 

WC1 = 0.3123, o,* = 3.893 and o,, = 1.2738. 

It can be seen that the differences among o,r, o,, and we2 are large enough for 
having adequate damping. 

Corresponding to the ratios ii2 and ji2 (i = 1, 2, 3, 4) found above and the 
choice of (k,, klk2) = (-0.5, 0.375), the sub-compensator matrix P2(S) is in the 
form of 
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Pz(S) = 

The transfer function matrix is 

1 -0 . 5s+1.379 
S+1.25 

0 0 

0 18 . 723 S+ 
1.809 

s+ 1.25 
0 0 

0 _ 5 . 244 S+2.449 
S+ 1.25 

1 0 

0 _ 15 ’ 57s+0.75 
S+1.25 

0 1 

0 - 1.44S- 0.8605s’ 

0 
1.4157+ 10.442s 

+12.941S2+4.152S3 

0 -0.2943S-0.3719s’ 

-0 -0.19823-0.1544s’ 

0 0 

0 0 

0 0 

0 0 

(25) 

(26) 

where Fc2(S) = 1.4782 + ll.l173S+ 15.2532S2+ 6.8522S3 + S4. The characteristic 
roots of the subsystem with the transfer function matrix T”‘(S) are found at 

-0.1694, -1.0829, -2.8kjO.4659. 

It can be seen that T(‘)(S) is diagonal dominant for all frequencies. 
The open-loop transfer function matrix of the plant with the sub-compensator 

matrices P,(S) and P2(S) is 

G(‘)(S) = G(S)P,(S)P,(S) 

X 

1 

PO2 

Po2g(l? - 1.44S- 0.8605S2 Po29’1:’ po2g114 

po2g(2’] 1.4157+ 10.4423+ 12.941S2+4.152S3p,,g&’ po2g(214) 

! Pozd? -0.2943S-0.3719s’ Po2g(3Y po2g(314 

(1) 
pozg41 -0.19823-0.1544s’ Po29(4:) Po2gU 

I 

gl:‘(S) g\?(S) g\‘)(S) g\?(S) 

g’z:‘(S) SLY(S) g%(S) 90(S) 

= g\:‘(S) g\?(S) gH(S) g!J(S) 

g’4:‘(S) gY2YS) g%)(S) g!??(S) 

WW 

W’b) 
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FIG. 5. Parameter plane analysis of the subsystem with the transfer function matrix 
Tc3’(S). 

where p02 = p02(S) = (S+ 1.25)p,,(S), and g&‘) = g;‘(S) (i, j = 1, 2, 3, 4) which 
are defined by Eq. (22b). From Eqs (22a) and (27a), it can be seen that the first 
and second columns are diagonal dominant while the remaining columns are 
unchanged. 

The same design procedure is extended to the remaining steps. The details of 
steps 3 and 4 are omitted ; only the main results are shown as follows : 

Step 3. In this step, only loop-3 with P,(S) (i = 1, 2, 3, 4 ; j = 1, 2, 3) is closed. 
From Eq. (27a) for diagonal dominance of the third column the ratios pi3 and bi3 
(i = 1, 2, 3,4) are found as 

jj,j :pz3 :j&3:p43 = p’i, :& :hS3 :& = - 1: - 1.173 : 119.377: -66.851 

and 

b 13 :bz3 :b,, : b43 : - 1.0373 : -1.49: -1.862, 

respectively. Figure 5 shows the constant-w curves for d3 = 1.75. By inspecting 
these curves, a suitable choice is made at Q3(0.175, -0.3) for which the roots of 
the stability-equations are found at 

W?l = 0.251, oe2 = 1.98 and o,, = 0.8287, oo2 = 4.9639. 

Corresponding to the selection of Q3(0.175, -0.3) the resulted sub-compensator 
matrix is in the form of 
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10 -0 . 175s+1.714 
s+ 1.75 

0 

01 -0 . 2053 S+ 1.778 
s+ 1.75 

0 

P3(S) = 0 0 20.891 S+ 2.554 0 . V-9 
s+ 1.75 

00 -11 . e99s+3*192 
s+ 1.75 

1 

The characteristic roots of this subsystem with transfer function matrix T(‘)(S) are 
found at 

-0.1701, - 1, - 1.273, -2.9126fj0.9739. 

The open-loop transfer function of the plant with Pj(S) (j = 1, 2, 3) is in the form 
of 

1 

s’l:‘(S) g\?(S) SO(S) 9(134)(S) 

9(2:(S) SYZYS) s’i’l (S) go(S) 
G’3’(S) = CWW, (S)Pz(S)P,(S) = g(331(S) g$?j(S) g’$(S) g(334)(S) . 

d13~W d?(S) sk?(S> da(S) 1 

(29) 

Step 4. In this step, only loop-4 with P,(S) (i, j = 1, 2, 3, 4) is closed. From 
Eq. (29) for diagonal dominance of the 4th column, the ratios of pi4 and bi4 (i = 1, 
2, 3,4) are found as 

~?,,,:j&:p~~:jj~~: =;,4:&4:j34:j44: = 1: 1.8918:3.5261: 112.214 

and 

b,4 : b2z, : b34: bd4 : = 6,4:624:b=34:644: = -1: -1.619: -1.3691: -1.2677, 

respectively. Figure 6 shows the constant-o curves for d, = 2.75. A suitable choice 
is made at Q4( - 0.15, 0.35), for which the roots of the stability-equations are 

O,l = 0.231, w,* = 1.496, oe3 = 6.93 and o,, = 0.6983, o,~ = 2.976. 

Corresponding to the selection of Q4( -0.15, 0.35), the sub-compensator matrix 
Pa(S) is 

1 0 0 -0.15 
S+2.333 

S+2.75 

010 _. . 284S+2.711 

S+ 2.75 
P4(S) = (30) 

001 
_. 529S+3.195 . 

. 
S+2.75 

0 0 0 16.832 
S+2.958 

S+2.75 _ 

The characteristic roots of the subsystem with transfer function matrix Tc4)(S) are 
found at 
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4 x _ _ _ _ _ _ _ _ 

w,---- 

FIG. 6. Parameter plane analysis of the subsystem with the transfer function matrix TC4)(S). 

-0.1737, -1.005, -1.2495, -2.2293, -3.375kjO.6531. 

The open-loop transfer function of the plant with P,(S) (j = 1, 2, 3, 4) is of the 
form 

GC4’(S) = G(S)P,(S)P,(S)P,(S)P,(s) 

The overall compensator is 

C(S) = ~l(~)~,(~)~,(~)~,(~). (32) 

The step responses of the closed-loop system with &(S) are shown in Fig. 7. It 
can be seen that the results are satisfactory for the considered system, and that the 
interactions among all the loops are very small. These result from the facts that 
the compensated system is diagonal dominant and the poles of each subsystem are 
well selected in each corresponding step. 

To illustrate the dominance of the plant G(S) and the compensated plant GC4’(S), 
the Gershgorin bands of G(S) and GC4’(S) are plotted, as shown in Figs 8 and 9, 
respectively. It can be seen that the compensated plant GC4’(S) is diagonal dominant 
for all frequencies while the couplings of G(S) are large. Note that the dominance 
is achieved column by column from plant G(S). 

V. Remarks 

(1) For diagonal dominance of each column, the ratios of pij and b, are deter- 
mined by setting the highest and lowest order exponents of the off-diagonal terms 
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FIG. 8. Gershgorin bands of the plant G(S). 

FIG. 9. Gershgorin bands of the plant with the overall compensator J&(S). 
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of each subsystem approach to zero. One may also use some other criteria or 
optimization procedures (58) for choosing the ratios of pij and 6, to achieve 
diagonal dominance. Once the ratios are determined, the constant-o curves and 
the stability boundaries can be plotted by use of the stability-equation method. Then 
a suitable choice of parameters can be made for the fine damping characteristics. 

(2) To use the method proposed in this paper one can achieve high integrity 
against transducer failures. From the Gershgorin bands shown in Fig. 9, it can be 
seen that the compensated plant of the example is diagonal dominant prior to 
feedback loop closure. Therefore, high integrity is achieved. 

(3) The same problem has been solved by Owens and Chotai (9) utilizing the 
diagonal approximated models of the precompensated plant to extend the inverse 
Nyquist array method (1,2), and to apply an optimization procedure for the choice 
of the precompensators. The results obtained in this paper are better than those 
obtained by Owens and Chotai, while the compensators obtained by Owens and 
Chotai are simpler than those obtained by the proposed method. On the other 
hand, by use of the proposed method the compensators can be easily obtained, 
and a numerical overview of all the subsystems can also be obtained ; i.e. one can 
select the locations of the poles by adjusting the parameters in each step. 

(4) Mayne has also developed a sequential design procedure (l&14). Under his 
approach, a constant precompensating matrix is usually selected first to achieve 
the diagonal dominance, and then close the loops step by step with diagonal 
compensators in the diagonal elements. Compared to Mayne’s approach, the 
method proposed in this paper uses a different structure for the overall compen- 
sator, and the compensators need to be in the diagonal elements in each step. 

VI. Conclusions 

A systematic design procedure for multivariable feedback control systems has 
been proposed and illustrated. 

By use of the proposed design procedure together with the stability-equation 
method, it has been shown that the system characteristics, such as damping charac- 
teristics and diagonal dominance, can be achieved simultaneously and clearly 
in each step. In addition, high integrity against transducer failures can also be 
achieved. 

From the example presented in this paper, it can be seen that the proposed 
method can be used to design a very complicated system, and that the design works 
in each step are easy and straightforward. 
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