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以序的最佳化理論為基礎的多重使用者正交分頻多工系統的適應

性次載波指定與位元分配方法 
 

 

研究生：黃榮壽           指導教授：林心宇  博士 
 

 

國立交通大學電機與控制工程學系 
 

摘要 

    下一世代的無線通信系統被期望能夠在無須考慮使用者移動情況與使用者所在位置

的情況下，提供高的資料傳輸率的能力，以符合提供數位影音廣播與無線網際網路等資料

存取服務的需求。要達到此目的會面臨的主要挑戰有幾項: (1)惡劣的無線通道環境，(2) 

服務品質，例如資料錯誤率與使用者的資料需求量，(3)通信系統中資源的配置，例如功

率消耗與頻帶資源的管理問題，(4)因為使用者的可移動特性所造成的通信系統狀態變

化。最近，正交分頻多工系統受到熱切的關注且被認為適合被用於下一世代無線通信系統

之中，因為它能夠有效率地傳輸資料，同時能夠抵抗各種傳播通道破壞並克服符間干擾問

題。這個需求趨使我們去發展聰明且有效的資源管理方法，使得在滿足多重使用者的服務

品質需求下，能夠即時的調配整個無線通信系統的功率與頻譜配置，以達到通信系統整體

最有效率的運用。因此在本論文中，我們將提出兩個以序的最佳化理論為基礎的多重使用

者正交分頻多工系統的適應性次載波指定與位元分配方法。 

  第一個方法採用序的最佳化理論為基礎的四層次演算法來求解一個足夠好的解。在

前三個層次中，我們採用較粗略的模型來從候選的解空間中篩選出一些近似足夠好的可

行解，直到選出 l (=3)個足夠好的解為止。之後的第四個層次中，採用精確的模型來從
這 l 個足夠好的解之中篩選出最佳的那一個當做我們所要尋找的足夠好的解。這個四層
次演算法保證能夠獲得一個足夠好的解，但是其中的第一層次耗費很多的計算時間於求

解連續性問題的最佳解，因此我們提出可以採用硬體電路為輔助的方法與架構，利用深

次微米的技術優勢來快速計算出連續性問題最佳解。 

  在大維度多重使用者正交分頻多工系統問題之中，採用硬體電路來實現第一層次時

會有晶片面積太大的問題，因此在我們提出的第二個以序的最佳化理論為基礎的演算法

中，我們採用一個近似目標函數值的計算模型，配合遺傳演算法來從可能的解空間中，

快速地搜尋出 I (=200)個足夠好的解。 
 經由數值模擬以及與其他現行的方法做比較的結果可知，我們所提出的兩個方法在

解的優質性與計算效率上都很成功，除了有效改善通信系統的功率效益之外，其中的一

個方法可藉由硬體電路的輔助來達到即時應用之需求，而第二個方法很適合用於大維度

多重使用者正交分頻多工系統問題之中。 
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Abstract 
 

The next generation wireless communication systems are expected to provide high rate 
transmission in the applications of digital audio broadcast, digital video broadcast and 
wireless internet access but regardless to the users’ mobility and location. The major 
challenges we are confronted with include the harsh channel conditions, QoS (Quality of 
Services) requirements such as BER (Bit Error Rate) and users’ data rate request, scarce 
resources such as power and spectrum, and the knowledge of the most updated state of the 
mobile users or devices. Orthogonal frequency-division multiplexing (OFDM) technology is 
recently recognized as one of the leading candidates for supporting the next generation 
wireless communication systems due to its ability to combat inter-symbol-interference (ISI) 
over harsh channel conditions. This stimulates the development of both intelligent and 
efficient resource management algorithms to achieve efficient utilization of power and 
spectrum while providing QoS requirements in the multiuser OFDM communication system. 
Therefore in this dissertation, we will present two computationally efficient methods to solve 
the Adaptive Subcarrier Assignment and Bit Allocation (ASABA) problem of multiuser 
OFDM system using Ordinal Optimization (OO) approach.  

Our first method consists of four OO stages to find a good enough solution to the ASABA 
problem. In the first three stages, we use surrogate models to select a subset of estimated good 
enough feasible solutions from the candidate solution set so as to reduce the search space of 
subcarrier assignment until l (=3) good enough subcarrier assignment patterns are obtained. 
Then in the fourth stage, we use the exact objective function to evaluate the l subcarrier 
assignment patterns, and the best one associated with the corresponding optimal bit allocation 
is the good enough solution that we seek. The four-stage OO approach ensures the quality of 
the obtained solution, however at the cost of solving a continuous version of the considered 
problem in the first stage. To resolve this computational complexity problem, we propose a 
hardware implementable Dual Projected Gradient (DPG) method to exploit deep submicron 
technology so as to obtain the optimal continuous solution extremely fast.  

Due to the large dimension of the ASABA problem, implementing the first stage in 
hardware is almost impossible for area concern. Therefore in the first stage of our second 
method, we develop an approximate objective function to evaluate the performance of a 
subcarrier assignment pattern and use a genetic algorithm to efficiently search through the 
huge solution space to find I (=200) good solutions.  

Numerical results and comparisons with various existing algorithms are provided to 
demonstrate the potential of the proposed techniques. It is shown that the proposed resource 
allocation methods substantially improve the system’s power efficiencies and are more 
computationally efficient. Moreover, the first method can meet the real-time application 
requirement and the second method is suitable for large dimensional ASABA problems.   



 iii

誌  謝 

     

    首先要感謝我的指導教授林心宇博士在論文研究上給予的細心指導及

鼓勵，且提供優良的研究環境，使我能順利完成博士學位。林心宇教授學

問淵博、涵養深厚，在學術研究上見解精闢、邏輯縝密，研究認真精神與

嚴謹程度實在值得效法。對於本論文的完成，除了林教授的指導外，也要

非常感謝諸位口試委員在百忙之中能抽空指導並給予寶貴的意見，使得本

論文能更臻完善。 

    其次，要感謝我的學長林啟新博士、林謝興博士與洪士程博士，實驗

室的學弟張紹興、林成梓與詹庭瑜。多年來，因為有你們的參與，使我在

交通大學的求學過程之中，添增了一些多采多姿的回憶。 

    同時也要感謝我的服務單位，義隆電子公司的長官與同事們多年來的

協助，使我得以順利完成此論文。 

    最後，感謝作者的父母與妻兒，在求學期間的支持與陪伴，讓我可以

全心全力的專注於論文研究上。僅以此論文獻給我的家人與關心我的師長

與朋友們。 

 
 
 



 iv

Contents 
Abstract (Chinese)                                             i 
Abstract (English)                                             ii 
Acknowledgement (Chinese)                                    iii 
Contents                                                    iv 
List of Tables                                                vi 
List of Figures                                               vii 
 
1 Introduction  ……………………………………………………………………….1 

1.1 Motivation …………………………………………………………………….1 

1.2 Problem Statement …………………………………………………………….2 

1.3 Dissertation Outline…………………………..………………………………..2 

2 Preliminaries   …………………………………………………………………….5 

2.1 Multiuser Orthogonal Frequency Division Multiplexing System ……..……..5 

2.2 Adaptive Subcarrier Assignment and Bit Allocation (ASABA) Problem …....6 

2.3 Review of Ordinal Optimization Theory ………..……..……..………..……..9 

2.4 Review of Genetic Algorithm .……..……..…..……………..……..………..10 

2.5 Review of Artificial Neural Network …..…..……..……..……..……..……..11 

3 A Real-Time Method for Adaptive Subcarrier Assignment and Bit Allocation 

 problem of Multiuser OFDM System  .…………………….…………………….13 

3.1 The Dual Projected Gradient Method and Its Hardware Architecture ……....14 

3.1.1 Reformulation …..……..……..……..…..……..……..……..……..….14 

3.1.2 The Dual Projected Gradient (DPG) Method for Solving (3.2) ….......15 

3.1.3 Hardware Implementable Algorithm of the DPG Method …...............17 

3.1.4 Hardware Computing Architecture of the DPG Algorithm ….............19 

3.1.5 Computation Complexity of the DPG Algorithm ……….…...............26 

3.2 The Ordinal Optimization Theory Based Four-Stage Approach …….............27 

3.2.1 Stage 1: Reduce the Search Space of Subcarrier Assignment Using  

Continuous Optimal Solution Based Model ……..….……..……..….27 

3.2.2 Stage 2: Choose s Estimated Good Enough Subcarrier Assignment  

Patterns Using an Approximate Model .….……..……..…..……....….29 

3.2.3 Stage 3: Choose l  Estimated Good Enough Subcarrier Assignment  

Patterns from the SS ……..……..…..……..……..……..……..……....30 



 v

3.2.4 Stage 4: Determine the Good Enough Subcarrier Assignment  

and Bit Allocation  ……..……..…..……..……..……..…….…...….32 

3.3 Test Results and Comparisons ……..……..…..……..……..……..…......….32 

3.4 Concluding Remarks……..……..…..……..……..……..…………….…….38 

4 A Computationally Efficient Method for Large Dimension Subcarrier  

Assignment and Bit Allocation Problem of Multiuser OFDM System …….….39 

4.1 Reformulation ..……..…..……..……..…….. ………………………..…….41 

4.2. The Three-Stage Ordinal Optimization (OO) Approach …………….…….43 

4.2.1 Stage 1: Using GA to Select Top s Subcarrier Assignment Patterns  

Based on an Easy-to-Evaluate Approximate Objective Function ..….43 

4.2.2 Stage 2: Choose Top l Subcarrier Assignment Patterns From the s  

Based on an ANN Model .……..…..……..……..…………….….….46 

4.2.3 Stage 3: Determine the Good Enough Subcarrier Assignment 

 and Bit Allocation  .……..…..……..…………..……………..…….48 

4.3 Test Results and Comparisons …..………...…………..……………..…….48 

4.4 Concluding Remarks…..……..…………..…………………………...……53 

5 Conclusions and Future Work ………………………………………….………55 

5.1 Conclusions…..……..…………..…………..............………………...……55 

5.2 Future Work…..……..…………..………………….………………....……56 

References…..……..……………………………..……………………….…...……57 

List of Publication…..……..……………………..……………………….…..……61 

Vita…..……..…………..………........................................……………….…..……62 



 vi

List of Tables 
 
Table 3.1   The characteristics of PEs …..……..…………..………………..……22 
Table 3.2   Average computation time (ms) for obtaining an )( iabSNR α  for  

various number of users. …..……..…………..………………..……36 

Table 3.3   The average %100×−
d

Dd  for each set of N , K  and ABPS ……….38 



 vii

List of Figures 
 

Figure 2.1   Block diagram of a multiuser OFDM system with subcarrier  

assignment and bit allocation. ………………………………………...5 

Figure 2.2   An example of channel gain. …………………..……………………...7 

Figure 2.3   The GA procedure to the proposed …………………………………..10 

Figure 2.4   Diagram of a simple feed-forward ANN with a single hidden layer. ..11 

Figure 3.1   The three types of registers for storing the temporary computed  

values of the DPG algorithm.………………………..………………..20 

Figure 3.2   The three counters.…………………………………..………………..23 

Figure 3.3   The hardware architecture of the DPG algorithm.…..………………..25 

Figure 3.4   The abSNR  for K=2, 4, 8, 16, and 32 obtained by the five methods....34 

Figure 3.5   Comparison of the performance of the five methods with respect  

to various eP  for the case of K=7.…………………..………………...35 

Figure 4.1   The abSNR  for K=10, 20, 30, 40 and 50 obtained by the five  

algorithms.……………..…………………………..………………...50 

Figure 4.2   The average computation time for obtaining an abSNR by the five  

algorithms in cases of K=10, 20, 30, 40 and 50.………..…………...51 

Figure 4.3   Comparison of the five algorithms for various Pe in the case of 

 K=40………………..…………………………………………….…..53 

 



 1

Chapter 1     

Introduction 

1.1 Motivation 

  Due to the increase of mobile users and devices in the wireless communication system, 

various resource management techniques such as the dynamic channel allocation [1] and the 

dynamic fair resource allocation scheme [2] had been studied. One of the difficulties for such 

kind of techniques is to keep track of the most updated state of the mobile users or devices 

caused by their mobility and portability and provide them the appropriate resources. Therefore, 

the computational efficiency is the premise of the wireless network resource management 

methods so as to deal with the high mobility of the dynamic behaviors of mobile users and 

devices. Among the existing dynamic resource management problem in wireless networks, 

Adaptive Subcarrier Assignment and Bit Allocation (ASABA) of Orthogonal Frequency 

Division Multiplexing (OFDM) system is a very fundamental issue in mobile communication. 

There are two types of formulations on this issue. One is the Margin Adaptive (MA) 

optimization, which minimizes the total consumed power under a data rate constraint [3], and 

the other is the Rate Adaptive (RA) optimization, which maximizes the data rate under a 

power constraint [4]. Kim et al. had shown in [5] that the RA optimization problem can be 

solved via recursive MA optimization. Therefore, in this dissertation we will focus on the 

adaptive subcarrier assignment and bit allocation problem of MA optimization with emphasis 

on the solution quality and the computational efficiency.  

In general, to obtain a better solution of a hard optimization problem such as the resource 

management problem in the wireless communication system usually requires a sophisticated 

but computationally intensive algorithm. In this dissertation, we will revolt this seemingly 

correct argument by proposing two methods that will not only obtain a good enough feasible 

solution but also be computationally efficient. The first method can meet the real-time 

application requirement while with the assistance of hardware. The second method is purely a 

software but still computationally efficient for solving the large dimension ASABA problem 

of multiuser OFDM system.  
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1.2 Problem Statement 

The adaptive subcarrier assignment and bit allocation of multiuser OFDM system has been 

studied for a number of years. This issue is initialized by Wong et al. in [3] and is formulated 

as a nonlinear integer programming problem to minimize the total power consumption while 

satisfying the users’ data communication request and system’s constraints. Wong et al. 

employed a Lagrangian relaxation method in [3] to solve the continuous version of the 

adaptive subcarrier assignment and bit allocation problem. They then rounded the optimal 

continuous subcarrier assignment solution off to the closest integer solution. Although the 

algorithm dramatically enhances the power efficiency, the prohibitively high computational 

complexity renders it impractical. Since then, various methods, ranging from the more 

computation-time consuming and global-like mathematical programming based approach [5] 

to the less computation-time consuming and more local-like schemes [6]-[9] were proposed to 

cope with this NP-hard constrained combinatorial optimization problem. In [5], Kim et al. 

had converted the adaptive subcarrier assignment and bit allocation problem formulated in [3] 

into a linear integer programming problem and employed a suboptimal approach to separately 

perform the subcarrier assignment and bit allocation. To claim for computational efficiency by 

not using mathematical programming approach, Ergen et al. had proposed in [6] a heuristic 

two-module scheme, both Kivanc et al. and Zhang had proposed two-step subcarrier 

assignment approaches in [7] and [8], respectively, and Han et al. had proposed in [9] an 

iterative grouping scheme to improve the performance by exchanging subcarrier assignment 

sets. As a consequence, these approaches cannot yield a better solution while using limited 

computation time due to the nature of nonlinear optimization. 

1.3 Dissertation Outline 

The dissertation introduces two computationally efficient methods to solve the ASABA 

problem of multiuser OFDM system using Ordinal Optimization (OO) approach. Since both 

methods are multi-stage OO based approaches, there are some overlap. For the sake of 

completeness in presenting each individual method, the overlapping part will be duplicated. 

Therefore, we organize this dissertation in the following manner. 

In chapter 2, some preliminaries are stated to assist the presentation of the dissertation. 



 3

These include OFDM architecture based communication system, adaptive subcarrier 

assignment and bit allocation for multiuser OFDM, OO theory, Artificial Neural Network 

(ANN), and Genetic Algorithm (GA). The OFDM is a promising technology for high data rate 

transmission in wide band wireless systems due to its ability to mitigate the effects of 

frequency selective and combat Inter-Symbol Interference (ISI). The adaptive subcarrier 

assignment and bit allocation for multiuser OFDM communication system can be formulated 

as a nonlinear integer programming problem to minimize the total power consumption while 

satisfying the users’ data communication request and system’s constraints. The OO theory is a 

new methodology designed to cope with hard optimization problems such as the considered 

problem. The GA acts as a heuristic method to select a representative set for the search space 

of the considered problem. The ANN is trained as an easily computed crude model to roughly 

evaluate the performance of the considered problem.   

In chapter 3, we present an OO theory based four-stage approach to deal with the subcarrier 

assignment and bit allocation problem of multiuser OFDM system. The four-stage OO 

approach ensures the quality of the obtained solution, however at the cost of solving a 

continuous version of the considered problem in the first stage. To resolve this computational 

complexity problem, we propose a hardware implementable Dual Projected Gradient (DPG) 

method to exploit deep submicron technology. Therefore, our approach can meet the real-time 

application requirement through the assistance of hardware.  

In chapter 4, we present another OO theory based three-stage approach to deal with the 

large-dimension ASABA problem of multiuser OFDM system. First of all, we reformulate the 

considered problem to separate it into subcarrier assignment and bit allocation problem such 

that the objective function of a feasible subcarrier assignment pattern is the corresponding 

optimal bit allocation for minimizing the total consumed power. Then in the first stage, we 

develop an approximate objective function to evaluate the performance of a subcarrier 

assignment pattern and use a genetic algorithm to search through the huge solution space and 

select s best subcarrier assignment patterns based on the approximate objective values. In the 

second stage, we employ an off-line trained ANN to estimate the objective values of the s 

subcarrier assignment patterns obtained in stage 1 and select the l best patterns. In the third 
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stage, we use the exact objective function to evaluate the l subcarrier assignment patterns 

obtained in stage 2, and the best one associated with the corresponding optimal bit allocation 

is the good enough solution that we seek. 

Some conclusions for the dissertation are drawn in Chapter 5. We also suggest some 

possible future research issues concerning the methods developed in this dissertation.  
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Chapter 2  

Preliminaries  

2.1 Multiuser Orthogonal Frequency Division Multiplexing System 

The basic idea of OFDM is to divide the available spectrum into several subcarriers so that 

the information symbols are transmitted in parallel on the subcarriers over the wireless 

channel. This allows us to design a system as shown in Figure 2.1 to support high data rates 

transmission.  

We assume that the system has K users to share N subcarriers. Each user’s data rate request 

will be allocated to a nonoverlapping set of subcarriers and distributed among them. The 

allocating period in this model is a time interval consisting of several OFDM symbols and is 

assumed to be short enough so that users’ channel gains will stay approximately constant. It is 

also assumed that a subcarrier cannot be shared by more than one user. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the transmitter part of Figure 2.1, the serial data from K users are fed into the block 

represented by the proposed adaptive subcarrier assignment and bit allocation algorithm. The 

algorithm will be executed in every allocating period to assign the set of subcarriers to each 
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user and the number of bits to be transmitted on each assigned subcarrier based on the updated 

channel information of all users. For each subcarrier, the adaptive modulator will apply a 

proper modulation scheme to each symbol depending on the number of bits assigned to the 

subcarrier, and the modulated symbols are transformed into time domain samples by an 

Inverse Fast Fourier Transform (IFFT) as indicated in Figure 2.1. The guard interval is then 

added to ensure orthogonality between the subcarriers provided that the maximum time 

dispersion is less than the guard interval. Finally, the transmitted signals pass through different 

frequency selective fading channels to different users. 

We assume the subcarrier assignment and bit allocation information is sent to the receivers 

via a separate control channel. For the sake of simplicity, we only show the receiver part of 

one user in Figure 2.1. At the kth user’s receiver part, the guard interval is removed to 

eliminate the ISI, and the time sample of the kth user is transformed into modulated symbols 

using the Fast Fourier Transform (FFT). The modulation information is then used to configure 

the demodulators while the subcarrier assignment information is used to extract the 

demodulated bits from the subcarriers assigned to the kth user.  

2.2 Adaptive Subcarrier Assignment and Bit Allocation (ASABA) Problem  

In OFDM communication system, the power level needed for transmitting c bits from 

transmitter to user k receiver using subcarrier n is 2
,

)(

nk

k cf
α

, where )(cfk  denotes the required 

transmission power for c bits of user k when the channel gain is equal to unity and nk ,α  

denotes the magnitude of the channel gain of the nth subcarrier as seen by the kth user. Just as 

an example, we assume that M-ary QAM is used in the communication system, then the 

required power )(cf k  in 2
,

)(

nk

k cf
α  

to transmit c bits/symbol can be derived from [3]1:  

         )12()]
4

([
3

)( 210 −= − ce
k

P
Q

N
cf                       (2.1) 

where )(1 xQ −  is the inverse function of 
                                                 
1 The formula (2.1) is directly borrowed from [3, Sec. V, p.1725], which is an approximation based on the 

bit-error probability, ))2/((4 0
2 NdQ , and the average energy, 6/)1( 2dM − , of a MQAM symbol, where d is 

the minimum distance between the points in the signal constellation.  
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                     dtexQ
x

t

∫
∞ −

= 2

2

2
1)(
π

                        (2.2), 

N0 denotes the noise Power Spectral Density (PSD) level, and Pe denotes the BER. 

In general, wireless link capacity is generally a scarce resource that needs to be used 

efficiently. The channel-gain conditions of wireless links between transmitter and mobile 

users vary in the time domain, and different subcarriers experience different channel gains. 

Therefore, the subcarriers which appear in deep fade to one user may not be in deep fade for 

other users. A typical example of channel gains, nk ,α ’s, in 2
,

)(

nk

k cf
α

 can be shown in Figure 2.2, 

and a lower magnitude of the channel gain represents a deeper fade channel condition.  

 

Figure 2.2. An example of channel gain. 

Therefore, multiuser OFDM communication system can take the advantage of channel 

diversity among users in different locations to adaptively assign subcarriers and allocate 

modulation levels. In particular, large subcarrier gains result in higher order modulation to 

carry more bits/symbol, while subcarriers in deep fade carry one or even zero bits/symbol. 
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Hence power consumption can be greatly reduced under a good resource allocation scheme. 

Then, the adaptive subcarrier assignment and bit allocation for multiuser OFDM system can 

be formulated as a nonlinear integer programming problem as shown in (2.3) to minimize the 

total power consumption while satisfying the users’ data communication request and system’s 

constraints2. In this dissertation, we focus on proposing an efficient and effective algorithm to 

solve (2.3) for a good enough feasible solution. 

))((min
1 1

,2
,

,

, ,,
∑∑
= =

=
N

n

K

k
nkk

nk

nk
Tc

cfP
nknk α

ρ
ρ

 

subject to                KkcR
N

n
nkk ,...,1  ,

1
, ==∑

=

 

Nn
K

k
nk ,...,1  ,1

1
, ==∑

=
ρ  

k,nDc nk  allfor  ,, ∈               

                          k,n
ck,n

nk  allfor   ,
otherwise    1

0 if    0
,

⎩
⎨
⎧ =

=ρ            (2.3) 

where TP  denotes the total transmission power to be minimized; nk ,ρ  is an indicator 

variable, and a subcarrier can be occupied by at most one user as described by the equality 

constraint on nk ,ρ ; kR  (bits per OFDM symbol) denotes the requested data rate of the 

thk user; nkc ,  denotes the number of bits of the thk  user assigned to the thn subcarrier, and 

M}2,..., ,1 ,0{=D  denotes the set of all possible values for nkc , , thus the first equality 

constraint in the problem formulated in (2.3) implies that the subcarrier assignment and bit 

allocation should meet the user’s data rate request.  

  Clearly, (2.3) is a nonlinear integer programming problem or a constrained combinatorial 

optimization problem, because nk ,ρ  and nkc ,  are integers for all k, n, and PT is nonlinear. To 

cope with the computational complexity of this problem, we will employ the OO theory based 

algorithms to efficiently seek a good enough solution with high probability instead of 

searching the optimal solution.  

                                                 
2 Notation employed here is followed from [3]. 
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2.3 Review of Ordinal Optimization Theory  

The Ordinal Optimization theory [10]-[12] is a new methodology designed to deal with 

hard problems such as the lack of structure problems, problems with uncertainties, or 

problems with huge sample space that grows exponentially with respect to the problem size. 

The problem considered in this dissertation is of the latter kind. There are two basic tenets of 

the OO theory. The first is that of order versus value in decision making. Obviously, to 

determine whether ),(),( 2211 cPcP TT ρρ <  is much easier than to determine 

?),(),( 1122 =− cPcP TT ρρ . In other words, consider the intuitive example of determining which 

of the two boxes in two hands is heavier versus identifying how much heavier one is than the 

other. The second tenet is the goal softening. Instead of asking the best for sure in 

optimization, it settles for the good enough with high probability. A conclusion drawn from 

the OO theory is the following. 

 Suppose we simultaneously evaluate a large set of alternatives very approximately and 

order them according to the approximate evaluation. Then there is high probability that we 

can find the actual good alternatives if we limit ourselves to the top n% of the observed good 

choices.  

Firstly, we use only a very rough model to order the goodness of a solution relying on the 

robustness of ORDER against noise and model error to separate the good from the bad. 

Second, we soften the goal of the problem and look for a good enough solution, which is 

among the top n% of the search space, with high probability. These two steps greatly reduce 

the computational burden and search difficulties of the problem. A summary of these search 

procedures for obtaining a good enough feasible solution of ASABA problem with high 

probability can be described in the following: i) Using either a uniform selection or a heuristic 

method to select a feasible representative set I with size I for the search space. ii) Using an 

easily computed crude model to roughly evaluate and order the performance of each sample 

in I and collect the top s samples to form a selected subset (SS), which is the estimated good 

enough subset. The OO theory guarantees that SS consists of actual good enough solutions 

with high probability. iii) Evaluating the exact objective value for each sample in SS to obtain 

the good enough solution. 
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2.4 Review of Genetic algorithm 

Genetic algorithm [13]-[16] is population-based searching technique based on the idea of 

“survival of the fittest”, which repeats evaluation, selection, crossover, mutation and repair 

after initialization until a stopping criterion is satisfied. In a GA, a set of solutions are analyzed 

and modified by genetic operations simultaneously, where selection operator can select some 

“good” solutions as seeds, crossover operator can generate new solutions hopefully retaining 

good features from parents, mutation operator can enhance diversity and provide a chance to 

escape from local optima, and repair operator can avoid infeasible solutions during the 

evolving processes. 

In this dissertation, GA is used in the second method to select I good solutions from the 

search space of the considered problem. The flow chart of the GA used in our approach is 

shown in Figure 2.3. 

 

 

Generate an initial generation 

Set g=0  

Start  

Calculate estimated objective value using crude 
model for each population in the generation 

 Crossover 

Roulette wheel 
selection

Mutation 

pc 

pm

Repair 

 g=g+1 

if g<60

Output the evolved generation as the 
representative set 

Figure 2.3. The GA procedure to the proposed method. 

Evolution 
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2.5 Review of Artificial Neural Network  

An Artificial Neural Network [17]-[19] is a mathematical model or computational model 

based on biological neural networks, which learns from previously prepared input/output data 

then to determine the output data for a given input data. The key element of ANN is the novel 

structure of the information processing system. It is composed of a large number of highly 

interconnected processing elements (neurons) working in unison to solve specific problems. 

Through a learning process, various types of ANN models can be effectively used for many 

applications, such as pattern recognition, function approximation or data classification. In this 

dissertation, a simple feed-forward ANN is employed as a crude model to roughly evaluate 

the objective value of the considered problem, (2.3). 

 

        Figure 2.4. Diagram of a simple feed-forward ANN with a single hidden layer. 

 

A diagram of a simple feed-forward ANN with a single hidden layer is shown in Figure 

2.4. The ANN consists of one input layer, one hidden layer, and one output layer. Each 

layer contains neurons (circles in the figure), and the neurons in each layer are fully 

connected to the nearest layers above or below by the lines. A weight is associated with 

each arc line. The neurons in the input layer receive the input vectors, and neurons in the 

output layer produce the output vectors in response to the input vectors. The layers are 

connected through the weighted arcs. Neurons in hidden layers and the output layer 

perform two operations: they sum the products of arc weights and the signals from the 

previous layer, and pass that sum through a transfer function—often a sigmoid, hyperbolic 

∑
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∑
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∑
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Input #3
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Output 



 12

tangent sigmoid, or linear function. 

Supervised learning can be used to train an appropriately configured ANN to implement 

a mapping. In our methods, an ANN is off-line trained and is employed as a surrogate 

model to estimate the objective value of the considered problem. 
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Chapter 3  

A Real-Time Method for Adaptive Subcarrier Assignment and Bit 

Allocation problem of Multiuser OFDM System 

To deal with the high mobility of the dynamic behaviors of mobile users and devices, the 

real-time application requirement is the premise of the wireless network resource management 

solution methods. Therefore, in this chapter we will present an OO theory based four-stage 

approach for the subcarrier assignment and bit allocation problem of multiuser OFDM system 

with emphasis on the solution quality and the computational efficiency to meet the real-time 

application requirement.  

In the first three stages, we will use surrogate models to select a subset of estimated good 

enough feasible solutions from the candidate solution set so as to reduce the search space of 

subcarrier assignment until l (=3) good enough subcarrier assignment patterns are obtained. 

The surrogate models in these three stages are refined from stage to stage, because the 

required computation time has become less as the size of the candidate solution set diminishes. 

Then in the fourth stage, we will employ a greedy algorithm [20] for single user on each of the 

l subcarrier assignment patterns to obtain the corresponding optimal bit allocation, and the one 

achieving the smallest power consumption will be the good enough feasible solution that we 

seek. The most computationally intensive stage among the four lies in the first stage, in which 

we need to solve a continuous version of the considered problem. To cope with the 

computational complexity caused by the nonlinear programming algorithm, we propose a 

hardware implementable numerical method to exploit the merit of nowadays integrated circuit 

technology so as to obtain the optimal continuous solution extremely fast. Therefore, our OO 

theory based four-stage approach not only obtains a good enough feasible solution but also 

meets the real-time application requirement. 

 We organize chapter 3 in the following manner. In Section 3.1, we will present the Dual 

Projected Gradient (DPG) method to solve the continuous version of the considered problem. 

In the meantime, we will also present the hardware architecture of the DPG method. In 
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Section 3.2, we will present the OO theory based four-stage approach for finding a good 

enough feasible solution. In Section 3.3, we will present some test results and compare our 

approach with some existing methods in the aspects of power consumption and computation 

time. In Section 3.4, we will make a conclusion. 

3.1 The Dual Projected Gradient Method and Its Hardware Architecture 

3.1.1 Reformulation  

Since problem (2.3) is a computationally intractable combinatorial problem, Wong et al. 

introduced the variable nknknk cr ,,, ρ=  to transform (2.3) into the following 

continuous-variable convex optimization problem over a convex set.  
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,
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where both nk ,ρ  and nkr ,  are continuous variables, satisfying 10 , ≤≤ nkρ , and 

nknk Mr ,,0 ρ≤≤ , respectively. Note: when 0, =nkρ , then 0, =nkr , and 
0
0  becomes undefined, 

therefore, we define )
0
0(f  in (3.1) as )0(f .  

If we apply a typical Lagrangian relaxation method to solve (3.1), there will be a singularity 

problem in the variable nk ,ρ  just like that shown in [3]. In order to develop a hardware 

implementable dual-type method, we need to eliminate this singularity problem by adding 

extra terms in the objective function of (3.1) to strictly convexify nk ,ρ , for every nk , , as 

follows: 
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subject to               KkrR
N

n
nkk ,...,1  ,

1
, ==∑

=

 

                         Nn
K

k
nk ,...,1  ,1

1
, ==∑

=
ρ                          (3.2) 

If ,0>σ  (3.2) is a convex programming problem with strictly convex objective function.   

Remark 3.1: (i) Adding the extra terms ∑∑
= =

N

n

K

k
nk

1 1

2
,2

ρσ  will help us build the surrogate model 

in Stage 1 of our OO theory based four-stage approach as will be shown later. (ii) The optimal 

solution of (3.2) is a good approximate solution of (3.1) provided that σ  is small enough. 

3.1.2 The Dual Projected Gradient (DPG) Method for Solving (3.2) 

The DPG method will solve the dual problem of (3.2), as shown in (3.3), instead of solving 

(3.2) directly.  

                          )(max λφ                               (3.3) 

where T
N

r
K

r ),...,,,...,( 11
ρρ λλλλλ =  is the Lagrange multiplier vector such that r

kλ  corresponds 

to the thk  user’s data rate request constraint, and ρλn  corresponds to the thn  subcarrier 

assignment constraint, and the dual function )(λφ  is defined by 
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By suitably rearranging the terms, (3.4) can be rewritten in a more compact form as 
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 (3.5) 

The DPG method employs the following iterations to solve (3.3): 

))(()()()1( tttt λφβλλ ∇+=+                    (3.6) 

where t  denotes the iteration index, )(tβ  is a positive step-size and 

T

N
r
K

r

ttttt )))((,...,))((,))((,...,))((())((
11

ρρ λ
λφ

λ
λφ

λ
λφ

λ
λφλφ

∂
∂

∂
∂

∂
∂

∂
∂=∇ is the gradient of  ))(( tλφ  evaluated at 

)(tλλ = , which can be calculated by the following formula [21] 
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KkrRt N

n
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,...,1,ˆ))((
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, =−=
∂
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λφ                  (3.7)  

Nnt K

k
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,...,1,1ˆ))((
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, =−=
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ρ
λ
λφ
ρ                   (3.8)  

The )ˆ,...,ˆ,ˆ,...,ˆ()ˆˆ( ,1,1,1,1 NKNK
TT rrρ,r ρρ=  in (3.7) and (3.8) is the solution of the 

minimization problem on the RHS of (3.5) for a given )(tλ . Therefore to obtain ))(( tλφ∇ , 

we need to solve for r̂ and ρ̂  first, and the key for making the DPG method hardware 

implementable is we use a two-phase strategy to fulfill this task.  

The first phase is to solve the minimization problem on the RHS of (3.5) without the 

inequality constraints on nkr ,  and nk ,ρ , which is shown in (3.9) and will be called the 

unconstrained minimization problem. 
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We denote the optimal solution of the unconstrained minimization problem (3.9) by 

)~,...,~,~,...,~()~~( ,1,1,1,1 NKNK
TT rrρ,r ρρ= . )~~( TT ρ,r can be obtained from solving the first order 

necessary conditions, which can be fully decomposed into KN ⋅  independent 2x2 equations 

as shown below: For ,,...,1 Nn= ,,...,1 Kk =  
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For each n  and each k , the simple 2x2 equations shown in (3.10) and (3.11) can be solved 

analytically by 

))((~~ 2
,

1
,, nk

r
kknknk tfr αλρ −′=                          (3.12) 
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where 1−f  is the inverse function of f , which can be derived once f  is given, for example 
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the f  given in (2.1). 

The second phase is to handle the inequality constraints disappearing in (3.9) by projecting 

( nkr ,
~ , nk ,

~ρ ) onto the range ]1,0[],0[ , ×nkMρ , for each k  and each n . The projection can be 

calculated based on simple geometry as shown in (3.14). 
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The resulted projection will be the optimal solution, )ˆ,...,ˆ,ˆ,...,ˆ()ˆ,ˆ( ,1,1,1,1 NKNK
TT rrr ρρρ = , of 

the minimization problem on the RHS of (3.5) as had been proven in [22] and [23].    

Convergence of the DPG method using a positive constant step-size β̂  (i.e. setting 

)(tβ = β̂  for every t) can be proved like that of the Dual Projected Pseudo Quasi Newton 

method in [22] and [23]. A typical value of β̂  is 0.5. 

As indicated previously, the optimal solution of (3.2) will be an approximate solution of 

(3.1) if σ  is sufficiently small. However, larger σ  will speed up the convergence of the 

DPG method. Thus, we let 
max

,...,),1( 10 jσσσ =  be a decreasing sequence of σ  such that 

jj ησσ =+1 , where )1(<η  is a reducing factor, and maxj  is a positive integer that makes 

)( max

max

j
j ησ =  small enough. Then, we can initially set 0σσ =  in (3.2) and use the obtained 

optimal solution as the initial guess to solve (3.2) again with 1σσ = . Repeating this process 

until 
maxjσσ = , and the corresponding optimal solution of (3.2) will be a very good 

approximate solution of (3.1).   

3.1.3 Hardware Implementable Algorithm of the DPG Method 

To enhance the computation speed further, we will propose a hardware architecture to 
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implement the DPG method. To do so, we need to put the DPG method in algorithmic steps 

that can be mapped into the operations of the arrays of Processing Elements (PEs), which are 

defined as the hardware for carrying out the arithmetic operations in the DPG method. First of 

all, we should modify the convergence criteria of the DPG method by setting a large enough 

number of iterations, say maxt , such that if maxtt ≥ , we assume the DPG method converges. 

Furthermore, we should predetermine the value of maxj  , which is the number of times that 

σ  will be reduced.  

It can be observed that all the computation formulae of the DPG method, (3.7), (3.8), (3.12), 

(3.13), and (3.14), achieve a complete decomposition property, that is the computations for 

each k  and each n  can be carried out independently. Furthermore, all these computations 

consist of simple arithmetic operations only. These facts imply that the DPG method is very 

suitable for hardware implementation. However, it is not wise to assign a PE to calculate each 

individual component, for example calculating nk ,
~ρ  for every k  and every n  in (3.13), 

because this will make the size of the integrated circuit chip too big to be implemented. 

Therefore, to render the difficulty of chip size we can use N  arrays of PEs such that the 

thn  PE array will take care of all the K  computations corresponding to one n  in (3.7), 

(3.8), (3.12)-(3.14). Although such arrangement seems to degrade the computational speed, in 

fact it will not affect the purpose of real-time application as shown in Section 3.3. On the basis 

of using N  PE arrays, we can put the DPG method in the following parallel-computation 

algorithmic steps:   

Step 0: Set the values of )0(λ , )0(σ , )1(  <η , maxt , maxj ; set 0=j  and 0=t . 

Step 1: Set 1=k , 1)))((( −=
∂

∂
ρλ
λφ

n

tR  for each n . (Note: )))((( ρλ
λφ

n

tR
∂

∂  represents a 

temporary memory for the term ρλ
λφ

n

t
∂

∂ ))(( ). 

Step 2: Compute in parallel )~,~( ,, nknkr ρ  by calculating (3.12) and (3.13) for each n . 

Step 3: Project in parallel )~,~( ,, nknkr ρ  onto the range ])1,0[],,0([ ,nkMρ  for each n using 

(3.14) to obtain )ˆ,ˆ( ,, nknkr ρ  for each n . 
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Step 4: Compute ∑
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Step 7: If k=K, go to Step 8; otherwise, set 1+= kk  and return to Step 2. 

Step 8: Update in parallel ρ
ρρ
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∂+=+ ))((ˆ)()1(  for each n . (Note: the value of 
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λφ
ρ  is stored in )))((( ρλ

λφ
n
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Step 9: If maxtt ≥ , go to Step 10; otherwise set 1+= tt  and return to Step 1. 

Step 10: Set )()1( jj ησσ =+ . 

Step 11: If maxjj ≥ , go to Step 12; otherwise, set 1+= jj , )()0( tr
k

r
k λλ =  for each k, 

)()0( tnn
ρρ λλ =  for each n , 1=k , 1=t , and return to Step 1. 

Step 12: Stop. 

Remark 3.2: The reason why we execute Step 5 for K  iterations to calculate ρλ
λφ

n

t
∂

∂ ))((  

for each n  is because we use N  instead of KN ⋅  PE arrays. 

3.1.4 Hardware Computing Architecture of the DPG Algorithm 

Mapping the DPG algorithm into a hardware architecture needs to consider the following 

four parts: (i) the data storage, (ii) the computations, (iii) the iteration count and the 

convergence detection for branching the data flow, and (iv) the interconnections between PEs 

and data storage elements. In the following, we will present the details of each part. 

(i) Regarding the data storage, we employ registers to store the constants, η , maxt , maxj , 

β̂ , kR , 2
,nkα , and 2

,/1 nkα , of the algorithm, and the temporary values of the variables, 

),(tn
ρλ  )))((( ρλ

λφ
n

tR
∂

∂ , ,,...,1  ),( Kktr
k =λ ),( jσ  ,,...,1  ),ˆ,ˆ( ,, Kkr nknk =ρ  generated in the 
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algorithm. For the sake of simplicity in interconnection, the registers for storing the constants 

are embedded in the PE responsible for the computations that need the constants. However, 

there are three types of registers denoted by )(R ∆ for storing the temporary computed-values 

of the variables ∆  as shown in Figure 3.1. For example, )(R ρλn  denotes the register for 

storing the computed value of ρλn . The type 1 registers are for storing the computed values of 

ρλn  and σ ; ρλn  is updated when ,Kk =  and σ  is updated when both Kk =  and maxtt =  

as indicated in Steps 7-8 and Steps 9-10, respectively. Therefore, a write enable controlled by 

the value of k and t are needed as shown in Figure 3.1. The type 2 registers are K-bank 

registers for storing the computed values of ,,...,1 , Kkr
k =λ  or ,,...,1  ),ˆ,ˆ( ,, Kkr nknk =ρ  such 

that the kth bank will store the value of r
kλ  or ).ˆ,ˆ( ,, nknkr ρ  Since the iteration index of the 

innest loop of the DPG algorithm is k, we need a register indicator k to point to the 

corresponding register bank as shown in Figure 3.1.  Furthermore, r
kλ  and )ˆ,ˆ( ,, nknkr ρ  are 

computed for every k, thus type 2 registers are always write enabled. The type 3 register is for 

storing the value of 1ˆ
1

, −∑
=

k

l
nlρ ; therefore type 3 register is always write enabled, however its 

value has to be reset to -1 when 1=k  as shown in Figure 3.1. It should be noted that the 

action of writing data into the registers occurs at the end of the clock pulse (i.e. at the positive 

edge of the next clock pulse) when write enable is active. For example, jσ  in )(R σ  is 

updated to 1+jσ  at the end of the clock pulse corresponding to both Kk =  and maxtt = . 

 

Figure 3.1. The three types of registers for storing the temporary computed values of the 
DPG algorithm. 
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(ii) Regarding the computations, we employ seven types of PE to carry out all the 

arithmetic operations required in the DPG algorithm. These PEs are named as 1
nPE , 2

nPE , 

3
nPE , 4PE , 5PE , 6

nPE , and 7PE , where the superscript denotes the type of PE, the subscript 

denotes the index of the array, and the PE without any subscript means it is single in the N PE 

arrays. Each type of PE consists of different hardware components needed for calculating a 

specific step in the DPG algorithm and yields the results needed in other step or steps. We will 

state the hardware components in a PE and its corresponding algorithmic step in the following. 

In the thn  PE array, 1
nPE  performs Step 2 and outputs the computed )~,~( ,, nknkr ρ  to 2

nPE ; 

its hardware components depend on the function )(cfk . In addition, 1
nPE  consists of registers 

for storing 2
,nkα  and 2

,/1 nkα  for all k and a register indicator k used to choose the 

corresponding register. 2
nPE  consists of six multipliers, four adders, and several comparators 

to perform Step 3 and output the computed )ˆ,ˆ( ,, nknkr ρ  to 6
nPE , 4PE , and 

),...,1),ˆ,ˆ((R ,, Kkr nknk =ρ ; 3
nPE  consists of a register for storing the constant β̂ , one adder and 

one multiplier to perform Step 8 and output the computed )1( +tn
ρλ  to )(R ρλn ; 6

nPE  

consists of one adder to perform Step 5 and output the computed ∑
=

−
K

k
nk

1
, 1ρ̂  to )))((( ρλ

λφ
n

tR
∂

∂  

and 3
nPE . The single 4PE consists of )1(log2 +N  adders to perform Step 4 and output the 

computed 
r
k

t
λ
λφ
∂

∂ ))((
 
to the single 5PE . In addition, 4PE  consists of registers for storing kR  

for all k  and a register indicator k for choosing the corresponding register. The single 5PE  

consists of a register for storing the constant ,β̂  one adder and one multiplier to perform Step 

6; 5PE  outputs the computed )1( +tr
kλ  to ),...,(R 1

r
K

r λλ . The single 7PE  consists of a 

register for storing the constant η  and a multiplier to perform Step 10; 7PE outputs the 

computed )1( +jσ  to ).(R σ We summarize the characteristics of these PEs in Table 3.1 to 

indicate the corresponding algorithmic step, embedded constant, input data [from], output data 
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[to], and the computation complexity of a PE, which is shown in the last column and will be 

analyzed later. 

Table 3.1 
The characteristics of PEs 

PE Algorith
mic Step 

Embedded 
Constant Input Data [from] Output Data [to] Computation 

Complexity 

1
nPE  Step 2 2

,nkα , 2
,/1 nkα  

)],(R[ )( ρρ λλ nn t  
)],(R[ )( σσ j  

)],...,(R[ )( 1
r
K

rr
k t λλλ  

]PE[ )~,~( 2
n,, nknkr ρ   5⊗ & 2⊕ & 1ROM

§

2
nPE  Step 3 - ]PE[ )~,~( 1

n,, nknkr ρ  
],PE[ ˆ],PE[ ˆ 6

n,
4

, nknkr ρ  

),...,1),ˆ,ˆ((R[ )ˆ,ˆ( ,,,, Kkrr nknknknk =ρρ  
2⊗ &1⊕  

3
nPE  Step 8 β̂  

)](R[ )(

],PE[ 1ˆ 6
n

1
,

ρρ λλ

ρ

nn

K

l
nl

t

∑
=

−
 )](R[ )1( ρρ λλ nn t +  1⊗ & 1⊕  

4PE  Step 4 kR  ]PE[ ˆ],...,PE[ ˆ 2
N,

2
11, Nkk rr ]PE[  ))(( 5

r
k

t
λ
λφ
∂

∂
 )1(log2 +N ⊕  

5PE  Step 6 β̂  
)],...,(R[ )(

],PE[ ))((

1

4

r
K

rr
k

r
k

t

t

λλλ
λ
λφ
∂

∂
)],...,(R[ )1( 1

r
K

rr
k t λλλ +  1⊗ & 1⊕  

6
nPE  Step 5 - 

]PE[ ˆ

)],))((([ 1-ˆ

2
n,

1

1
,

nk

k

l n
nl

tR

ρ
λ
λφρ ρ∑

−

= ∂
∂

 

]PE),))((([ 1ˆ 3
n

1
, ρλ

λφρ
n

k

l
nl

tR
∂

∂−∑
=

 1⊕  

7PE  Step 10 η  )](R[ )( σσ j  )](R[ )1( σσ +j  1⊗  
§⊗ : operation of a multiplication; ⊕ : operation of an addition; ROM: operation of accessing data of a ROM. 

 

(iii) There are three loops in the DPG algorithm, and the number of iterations in each loop 

has been set fixed. A branching will occur when completing the iterations of a loop as 

described in Steps 7, 9, and 11. Therefore, we need three counters to count the number of 

iterations consumed in each loop so as to control the branching of the DPG algorithm.  

The three counters are the k-counter, t-counter and j-counter, denoted by CT_k, CT_t and 

CT_j, respectively, and represented by the square blocks shown in Figure 3.2. The values of 

CT_k and CT_t will be fed into the corresponding registers for proper operation. For 

example, the value k of CT_k will be used to indicate the iteration index of the innest loop, 

Steps 1-7, to point to the corresponding register bank in the Type 2 registers. When ,Kk =  

there will be a branching at Step 7, such that the output data of 3
nPE , which performs Step 8, 
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will be written into the register )(R ρλn . Similar reason applies to CT_t that when maxtt = , 

there will be a branching at Step 9, such that the output data of 7PE , which performs Step 

10, will be written into the register ).(R σ  Furthermore, when the value of CT_k changes 

from K to 1, the value of the register )))((( ρλ
λφ

n

tR
∂

∂  will be reset to -1 to perform Step 1. The 

value of CT_j will be used to detect the convergence of the DPG algorithm. Thus, when 

,maxjj =  the DPG algorithm will be stopped and output the approximate solution of (3.1), 

that is .1,..., ,1,..., ),ˆ,ˆ( NnKkr nn ==ρ   

The counters are designed such that CT_k will circulate from 1 to K and increase by 1 for 

every clock pulse, CT_t will circulate from 1 to maxt  and increase by 1 for every K clock 

pulses, and CT_j will increase by 1 for every maxtK ⋅  clock pulses.  

 

 

(iv) Now, we are ready to interconnect the array PEs, registers and counters so as to execute 

the DPG algorithm. From the columns of the input data [from] and the output data [to] in 

Table 3.1, we can use solid lines with arrow heads to indicate the direction of the data flow to 

interconnect the PEs and registers as shown in Figure 3.3, in which we assume N=3 and do 

not show the system clock for the sake of simplicity.  

The three counters, CT_k, CT_t and CT_j, as described previously, are used to count the 

number of iterations and control the branching of data flow. Therefore, to distinguish from the 

regular data flow, we use the dashed lines with arrow heads to indicate the flow of counter 

values to the corresponding registers as shown in Figure 3.3.  

For the sake of simplicity, we will illustrate how the hardware architecture executes the 

DPG algorithm for one array as follows.  

We initialize the values of registers )))((( ρλ
λφ

n

tR
∂

∂  (Step 1: 1)))((( −=
∂

∂
ρλ
λφ

n

tR ), )(R ρλn  

Figure 3.2. The three counters.

CT_k k CT_t t CT_j convergence 
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(Step 0: 0=ρλn ), ),...,(R 1
r
K

r λλ (Step 0: Kkr
k ,...,1,0 ==λ ), )(R σ (Step 0: 10 =σ ), the 

counter values of CT_k (Step 1: k=1), CT_t (Step 0: t=1), CT_j (Step 0: j=1), and command 

1
nPE  to start execution. Then 1

nPE  will perform Step 2 and output the resulted )~,~( ,, nknkr ρ  to 

2
nPE  as shown in Figure 3.3. Then 2

nPE  will perform Step 3 and output the resulted 

)ˆ,ˆ( ,, nknkr ρ  to 6
nPE , 4PE , and ),...,1),ˆ,ˆ((R ,, Kkr nknk =ρ . It should be noted that the data 

)ˆ,ˆ( ,, nknkr ρ  will be written into the kth register bank of ),...,1),ˆ,ˆ((R ,, Kkr nknk =ρ  as selected 

by the value k of the counter CT_k as shown in Figure 3.3. Once 4PE  receives the computed 

Nnr nk ,...,1,ˆ , =  from the N s'PE 2
n , it will perform Step 4 and output the value of r

k

t
λ
λφ
∂

∂ ))((
 

to the single 5PE . Then 5PE  will perform Step 6 to update )(tr
kλ , and the updated value 

will be sent to register banks ),...,(R 1
r
K

r λλ . In the meantime, 6
nPE  will perform Step 5 using 

the computed data nk ,ρ̂  from 2
nPE  and the data 1ˆ

1

1
, −∑

−

=

k

l
nlρ  in )))((( ρλ

λφ
n

tR
∂

∂ , then output the 

resulted data  ∑
=

k

l
nl

1
,ρ̂  to )))((( ρλ

λφ
n

tR
∂

∂  and 3
nPE  as shown in Figure 3.3. The above 

calculations and data flow complete one iteration of the innest loop, Steps 1-7, and should be 

done in one clock pulse, whose period need be long enough such that the output data of all 

PEs can reach steady states. The counter CT_k will increase by 1 for each activation of a 

clock pulse (Step 7). As k increases by 1, the output of the register ),...,(R 1
r
K

r λλ  will be r
k 1+λ  

instead of r
kλ , thus next iteration of the innest loop starts.  

The above process will repeat and a branching will occur when the value of CT_k reaches 

K. When k=K the write enable of the register )(R ρλn  will be active, and the output data of 

3
nPE , which performs Step 8 with input data from 6

nPE  and )(R ρλn  as shown in Figure 3.3, 

will be written into )(R ρλn . After this clock pulse, the value of CT_k will start from 1 again, 

and the value of CT_t will be increased by 1 (Step 9). As t increases by 1, the value of 

,,...,1, Nnn =ρλ  as well as ,,...,1, Kkr
k =λ  have been updated, then next iteration of the 

middle loop starts.  
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The above process will repeat and a branching will occur when the value of CT_t reaches 

maxt (Step 9), which will activate the write enable of )(R σ , and the output data of 7PE , which 

performs Step 10 with input data from )(R σ  as shown in Figure 3.3, will be written into 

)(R σ . In the meantime, the value of CT_k will start from 1 again, and CT_t also starts from 1 

while the value of CT_j will be increased by 1 (Step 11). As j increases by 1, the above 

process start all over with a new σ  )( 1+= jσ . This process will proceed until CT_j reaches 

,maxj  which implies the DPG algorithm converges (Step 12), then as shown in Figure 3.3, the 

4PE

5PE

),...,(R 1
r
K

r λλ

3
1PE  

)(R 1
ρλ  

1
1PE  

2
1PE  

6
1PE  

))ˆ,ˆ(...,
),ˆ,ˆ((R
1,1,

1,11,1

KKr
r

ρ
ρ

CT_k 

)))(((
1
ρλ
λφ
∂

∂ tR

3
2PE  

)(R 2
ρλ

1
2PE  

2
2PE  

6
2PE  

))ˆ,ˆ(...,
),ˆ,ˆ((R
2,2,

2,12,1

KKr
r

ρ
ρ

CT_k 

)))(((R
2
ρλ
λφ
∂

∂ t

3
3PE  

)(R 3
ρλ  

1
3PE  

2
3PE  

6
3PE  

))ˆ,ˆ(...,
),ˆ,ˆ((R
3,3,

3,13,1

KKr
r

ρ
ρ

 

CT_k 

)))(((R
3
ρλ
λφ
∂

∂ t

CT_k 

CT_t 

CT_j 

7PE  

)R(σ  

Figure 3.3. The hardware architecture of the DPG algorithm. 
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)ˆ,ˆ( ρr  
to OO 

 stage 1 
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buffer will be activated to output the data )ˆ,ˆ( ,, nknkr ρ ,,...,1, Kk =  ,,...,1 Nn =  the solution of 

(3.2) when 
maxjσσ =  or the approximate solution of (3.1). This completes the description of 

the execution of the DPG algorithm for one PE array.  

From Figure 3.3, we see that the structure is very regular, modular, and locally 

interconnected; hence it is hardware implementable. 

Remark 3.3: Exploiting the merits of hardware computation and parallelism of the DPG 

algorithm, the computation time estimated based on the hardware architecture is almost 

independent of the N, however at the cost of large area when N is large. Taking N=128 for 

example, we need 1666 multipliers in the hardware architecture, which is huge indeed. 

Manufacturing an integrated circuit with large gate counts is a challenging issue, however it 

can be resolved due to the advancement of semiconductor manufacturing technology. 

3.1.5 Computation Complexity of the DPG Algorithm 

As indicated previously, the clock period should be long enough such that the outputs of all 

PEs can reach steady states during an iteration. In other words, the clock period should be 

longer than the computation time of the critical path i.e. the most time consuming path of the 

DPG hardware architecture. To identify the critical path, we need to analyze the computation 

complexity of each PE first. The computation complexity of a PE can be directly derived from 

its corresponding arithmetic operations. For example, 4PE  performing Step 4 of the DPG 

algorithm requires )1(log2 +N  stages of adders, therefore, it takes ⊕+  )1(log2 N , where 

⊕  denotes an arithmetic operation of addition. Similar reasoning applies to 2
nPE , 3

nPE , 5PE , 

6
nPE  and 7PE . However, the hardware component of 1

nPE  depends on )(cfk . A typical 

)(cfk  can be ),12( −⋅ cB where B is a constant, then we may use six multipliers, three adders, 

and one Read Only Memory (ROM) to perform Step 2, though the details of which are 

omitted here. We have reported the computation complexity of all PEs in the last column of 

Table 3.1. The data propagation time between PEs and registers are negligible compared with 

addition or multiplication, and the actions of writing data into or reading data from a register 

consumes the time no more than that of one addition. We let clockT  denote the to be designed 
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clock period. Identifying the critical path in Figure 3.3, we have  

⊕+++++= TTTTTTT 27542
n

1
n PEPEPEPEPEclock         (3.15) 

where i
nPE

T and jPET  denotes the time complexity of executing i
nPE  and jPE , respectively, 

and ⊕T2  represents the time needed for writing data into and reading data from registers.  

Note that the action of writing data into the three registers in the critical path occurs 

simultaneously. Therefore, writing data into three registers only counts for one ⊕T . Similar 

reasoning applies to reading data from these registers.  Hence, the computation time of the 

proposed DPG algorithm is  

clockmaxmax TjtK ⋅⋅⋅                        (3.16) 

3.2 The Ordinal Optimization Theory Based Four-Stage Approach 

To obtain a good enough solution of the considered problem, (2.3), while using limited 

computation time to meet the real-time application requirement in the OFDM system, we 

employ an OO theory based four-stage approach as presented in the following. 

3.2.1 Stage 1: Reduce the Search Space of Subcarrier Assignment Using Continuous Optimal 

Solution Based Model 

Intuitively, a true solution that is neighboring to the optimal solution of the continuous 

version of the considered problem may be a good enough solution. However, all the possible 

subcarrier assignment ,,nkρ ,,...,1  ,,...,1 NnKk == are neighboring to the optimal continuous 

solution, which is denoted by *
,nkρ . Wong et al. in [3] chose the closest one, which, however, 

may cause infeasibility, and even if it is feasible, there is no guarantee that it is a good enough 

subcarrier assignment. Thus, in this stage, we will reduce the subcarrier assignment patterns 

by excluding all the ineffective subcarrier assignments based on our solution process for 

obtaining the approximate continuous optimal solution of (3.1). As indicated previously, 

max
 ,..., ),1( 10 jσσσ =  is a decreasing sequence of σ  such that jj ησσ =+1  . We let )(*

, jnk σρ  

denote the optimal continuous nk ,ρ  of (3.2) when jσσ =  . Then we claim that subcarrier n 

is inappropriate to be assigned to user k if 0)(*
, =jnk σρ for every max,...,1,0 jj = . The reason 



 28

for this is simple as stated in the following.   

We let )(*
, σρ nk ′ denote the largest )(*

, σρ nk  among all Kk ,...,1=  for the given n . The 

term in the objective function of (3.2) regarding σ  is ∑∑
= =

N

n

K

k
nk

1 1

2
,2

ρσ
. The sensitivity of this term 

with respect to )(*
, σρ nk  is ).(*

, σσρ nk  Suppose we increase σ  by σ∆ , then the decrease of 

)(*
, σρ nk  by the amount ,,nkρ∆−  where we assume ,0, >∆ nkρ  will cause an approximate 

extra-reduction of the objective value due to the increase of σ by .)( ,
*

, nknk ρσσρ ∆∆−  Thus, 

decreasing )(*
, σρ nk ′ , will be most beneficial if we increase .σ  This implies that increasing 

σ in (3.2) will force )(*
, σρ nk ′  to decrease. Then by the constraint 1

1
, =∑

=

K

k
nkρ  for a given n , 

if )(*
, σρ nk ′  decreases, there must be at least one kkKk ′≠′′∈′′  },,...,1{ , such that )(*

, σρ nk ′′  

will increase. Among ,,...,1,,...,1),(*
, NnKknk ==σρ  the ones with 0)(*

, =σρ nk are the most 

possible candidates to be ),(*
, σρ nk ′′  because the increase of such )(*

, σρ nk  will cause an 

approximately zero increment in the objective value due to .0)( ,
*

, =∆∆ nknk ρσσρ  Thus, if 

they don’t, it simply implies that it is inappropriate to assign subcarrier n to those users with 

0)(*
, =σρ nk  and keeping 0 while σ  increases. We have solved a sequence of (3.2) with 

,jσ ,,...,1,0 maxjj =  and obtained ),(*
, jnk σρ ,,...,1,0 maxjj = for all k and n. Then based on the 

above argument, we have that ,0)(*
, =jnk σρ  ,,...,1,0 maxjj =  implies subcarrier n is not 

suitable to be assigned to user k, because when 1+jσ  increases to jσ  ( 1+> jj σσ ) but 

)(*
, jnk σρ  is still 0.  

Therefore, our crude model for selecting roughly good subcarrier assignment patterns in 

this stage can be stated as follows. We first set 0, =nkρ for the s),( ′nk  whose corresponding 

optimal continuous 0)(*
, =σρ nk  for all . ,..., ,

max10 jσσσσ =  We denote nγ  as the number of 

s',nkρ  that are not set to be 0 for a given n. Then there will be nγ  possible subcarrier 

assignment patterns for a given n, that means these nγ  nonzero s',nkρ  take turns to be 1. 

Subsequently, we will choose feasible subcarrier assignment patterns from the ∏
=

N

n
n

1

γ  possible 
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patterns and form the set of roughly good subcarrier assignment patterns resulted in this stage. 

It should be noted that checking the feasibility of a pattern, say ),...,,...,,...,( ,,11,1,1 NKNK ρρρρ , is 

simply checking whether ∑
=

≥
N

n
knk RM

1
,ρ  hold for every k .  

Remark 3.4: The reduction of the search space of subcarrier assignments had been reduced 

from NK  (which is considered to be the worst case and may include the infeasible patterns) 

to ∏
=

N

n
n

1

γ . Based on our simulation experience, a lot of s'nγ  are 1.  

3.2.2 Stage 2: Choose s Estimated Good Enough Subcarrier Assignment Patterns Using an 

Approximate Model 

To evaluate the estimated performance of the feasible subcarrier assignment patterns 

obtained in Stage 1, we will employ an approximate model to estimate the total power 

consumption of each pattern as follows. For a given feasible pattern 

),...,,...,,...,( ,,11,1,1 NKNK ρρρρ , we let ∑
=

=
N

n
nkkN

1
,

ˆ ρ  and 
k

N

n
nknk

k N̂
ˆ 1

,,∑
==

αρ
α  denote the total number of 

subcarriers assigned to and the average power consumption coefficient of user k, respectively. 

We assume the requested data rate kR of user k are distributed equally to the assigned 

subcarriers, then the approximate power consumed by user ,k  denoted by ,k̂P  can be 

calculated by  ).ˆ/(
ˆ

ˆˆ
2 kkk
k

k
k NRfNP

α
=  Consequently, the estimated total consumed power for 

the given pattern, denoted by TP̂ , will be ∑
=

=
K

k
kT PP

1

ˆˆ . We apply the above estimation process 

to each feasible pattern obtained in Stage 1 and pick the s (=50) patterns with smallest TP̂  to 

form the estimated good enough subset denoted by SS. 

Remark 3.5: Based on the surrogate model with modeling noise w, the selected s patterns 

will contain at least y actual top x% patterns among the ∏
=

N

n
n

1

γ with probability 0.95. There 

exists a quantitative relationship between the values of s, y, x, w and ∏
=

N

n
n

1

γ  as indicated in 

[12]. In general, larger s can have more y and smaller x but it will take more time for further 
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evaluation. Therefore, for the real-time application consideration, we set 50=s .     

 

3.2.3 Stage 3: Choose l  Estimated Good Enough Subcarrier Assignment Patterns from the 

SS 

To evaluate the s (=50) subcarrier assignment patterns using exact model is still too time 

consuming to meet the real-time application requirement. Therefore, we will employ a more 

refined model than the one used in Stage 2 to select l (=3) estimated good enough patterns 

from SS. The more refined model we employ here is a supervised learning Artificial Neural 

Network (ANN) used to evaluate the estimated consumed power of user k for a given 

subcarrier assignment pattern ( NKNK ,,11,1,1 ,...,,....,,..., ρρρρ ). This ANN model is constructed 

off-line using 5000 input/output pairs, and the details are described below.  

The data associated with user k is the data rate request kR , the power consumption 

coefficient nk ,α , ,,...,1 Nn =  and the subcarrier assignment pattern regarding user k, i.e. 

),...,( ,1, Nkk ρρ . For such a given data vector T
NkkNkkkR ),...,,,...,,( ,1,,1, ρραα , an optimal bit 

allocation algorithm or the so called greedy algorithm [20] can be used to optimally allocate 

the bits to the assigned subcarrier to meet the data rate request while minimizing the power 

consumption of user k3. However, the dimension of the vector T
NkkNkkkR ),...,,,...,,( ,1,,1, ρραα is 

too large. Thus, we will employ T
kkkk dNR ),ˆ,ˆ,( αα  to characterize user k, and serve as the 

input vector to the ANN, where kN̂  and kα̂  had been defined in Stage 2, and 

nknnknk
nknk

d ,1,,1,
   min     max

,,

ααα
ρρ ==

−≡ . Consequently, the 5000 input/output pairs used to train the ANN 

can be obtained as follows.  We uniformly select 5000 pairs of ( kR , kN̂ ) from the following 

ranges: ]150,5[∈kR , ]2,[ˆ
M
R

M
RN kk

k ∈ . For each ,ˆ
kN  we randomly select distinct 

kNnn ˆ1 ,...,  

from {1,…,N}, and randomly select 
ink ,α from the range [0,1.5] for each kNi ˆ,...,1= . The kα̂  

                                                 
3 This optimal bit allocation for each subcarrier assignment pattern is what we mean the exact model, and it 

is used for the ANN’s off-line training.  
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and kdα  can be computed accordingly. Thus, we have 5000 input vectors of the form 

T
kkkk dNR ),ˆ,ˆ,( αα . Now for each ),...,,ˆ,(

ˆ1 ,,
kNnknkkk NR αα , we can use the greedy algorithm to 

compute the corresponding minimum consumed power of user k denoted by kP~ . Thus, 

),ˆ,ˆ,( kkkk dNR αα  and kP~  form an input/output pair. We then use the obtained 5000 

input/output pairs to train a three-layer ANN. The input layer consists of four neurons, which 

correspond to kR , kN̂ , kα̂ , and kdα . We use 15 neurons in the hidden layer, and each 

neuron uses hyperbolic tangent sigmoid [17] as the transfer function to calculate the output 

from the summed value of its inputs.  There is only 1 neuron in the output layer 

corresponding to the consumed power kP~  of user k , and we use linear [17] as the transfer 

function. Using the above mentioned 5000 input/output pairs, we train this ANN by the 

Levenberg-Marquardt method proposed in [18] and [19].  

Remark 3.6: In general, the more neurons, if not too many, in the hidden layer, the more 

accurate the ANN will be. Even though our ANN is trained off-line, more neurons in the 

hidden layer will increase the dimension of the arc weights thus increase the computation time 

for obtaining the output of ANN, which may hurt our purpose of real-time application. Since 

what we care here is the performance orders rather than the performance values of the tested 

input vectors, perfect accuracy is not necessary. Therefore, to save computation time, we 

select a moderate number of neurons, that is 15, in the hidden layer. In addition, there exist 

various activation functions such as step function, hard limiter, ramp, hyperbolic tangent 

sigmoid, linear,..., etc.[17]. Which function to be used really depends on the application. In 

our problem, we found hyperbolic tangent sigmoid and linear are the most suitable activation 

functions for the hidden layer and output layer, respectively. Furthermore, we found that the 

Levenberg-Marquardt method converges fast in training our ANN. 

Once the ANN is trained, we can estimate kP~  of each subcarrier assignment pattern in SS 

by setting up the corresponding input ),,ˆ,ˆ,( kkkk dNR αα  feeding it into the ANN, and the 

output will be the estimated kP~ . Thus, the estimated total consumed power of a subcarrier 
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assignment pattern, denoted by ,~
TP  in SS will be ∑

=

=
K

k
kT PP

1

~~ , and the l  (=3) patterns with 

smallest estimated TP~  among the s will be the estimated good enough subcarrier assignment 

patterns determined in this stage. 

Remark 3.7: In [24], we have simulated that using a more accurate surrogate model to 

evaluate s (=50) candidate solutions, the top l (=3) solutions will contain the actual best 

among the s with probability 0.99.  

3.2.4 Stage 4: Determine the Good Enough Subcarrier Assignment and Bit Allocation  

Since there are only l  (=3) subcarrier assignment patterns left, we can use the exact model, 

i.e. greedy algorithm, to calculate the optimal consumed power TP  for each pattern with very 

limited computation time. The subcarrier assignment associated with the optimal bit allocation 

corresponding to the smallest TP  among the three will be the good enough solution of (2.3) 

that we look for.  

3.3 Test Results and Comparisons 

In this section, we will test the performance of the proposed approach in the aspects of 

solution quality and computational efficiency. We will also compare with the existing 

subcarrier assignment and bit allocation algorithms such as the algorithm proposed by Wong 

et al. in [3], the linear programming approach proposed by Kim et al. in [5], the iterative 

algorithm proposed by Ergen et al. in [6], and Zhang’s approach in [8]. 

   As depicted in Figure 2.1, we assume the OFDM system has 128 subcarriers (i.e. 

128=N ) over a 5 MHz band. The system uses M-ary quadrature amplitude modulation 

(MQAM) such that the square signal constellations 4-QAM, 16-QAM, and 64-QAM carry 

two, four, and six bits/symbol, respectively; therefore in this system }6,4,2,0{=D  and 

6=M . We adopt the approximate formula in (2.1) for the fk(c) in the transmission power 

2
,

)(

nk

k cf
α

 shown in the objective function of (2.3). 

Remark 3.8: The )(cfk  in our hardware implementation is not limited to the formula given 

in (2.1), which is simply an example formula for the purpose of comparisons. However, we 
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have to admit that once a function or a form of )(cfk , which may correspond to certain coding 

and modulation schemes, is assumed, changing hardware is not as easy as the software. 

In all simulations presented in this section, we set 410−=eP  for each user, and the wireless 

channel is modeled as a frequency-selective channel consisting of six independent Rayleigh 

multipaths. Each multipath is modeled by Clark’s flat fading model [25]. We assumed the 

delays and the corresponding gains of the six paths are  100 p⋅ nanosecond and 

pe 2− (exponentially decay), respectively, where p =0, 1, 2, 3, 4 and 5 denote the multipath 

index. Hence, the relative power of the six multipath components are 0dB, -8.69 dB, -17.37 dB, 

-26.06 dB, -34.74 dB, and -43.43dB. We also assume the average subcarrier channel gain 

2
,nkEα  is unity for all k  and n . Based on the above assumptions, we generate power 

consumption coefficients ,,...,1 ,,...,1 ,, NnKknk ==α  using MATLAB for our simulations.  

We consider various number of users by setting K=2, 4, 8, 16, and 32. For each K, we 

randomly generate 500 sets of ,,...,1  ,,...,1  ,, NnKknk ==α  based on the above mentioned 

power consumption coefficient generation process and denote iα  as the ith set in the 500. 

We assume a fixed total requested data rate TR  (=512 bits/symbol) and randomly generate 

,,...,1  , KkRk =  based on the constraint T

K

k
k RR =∑

=1
. By the above test setup, we have run our 

approach for each K, each set of  ,,...,1  ,, Kknk =α ,,...,1 Nn =  and each set of 

.,...,1  , KkRk =  We also apply the four methods mentioned at the beginning of this section to 

the same test.  

For each K associated with the data rate request ,,...,1  , KkRk =  we denote )( iabSNR α  

as the average bit SNR4 when iα  is used and calculate 
500

)(
500

1
∑
=i

iabSNR α
, the average abSNR , 

                                                 
4 It is noted that the average required transmit power (in energy per bit) is defined as the ratio of the overall 
transmit energy per OFDM symbol, the TP  in (2.1), to the total number of bits transmitted per OFDM symbol, 
which consists of 512 bits in our test case. Moreover, we define the average bit Signal-to-Noise Ratio (SNR) as 
the ratio of the average transmit power, 

512
TP , to the noise PSD level .0N  As we have assumed that all the data 

rates per symbol are fixed at 512,  and the 0N is just a constant, thus the TP  is proportional to the average bit 
SNR. Therefore, for the purpose of comparison, we can use the average bit SNR to replace TP . 
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resulted from the 500 s'iα  using our approach and the other four methods and report them in 

Figure 3.4. We can see that the 
500

)(
500

1
∑
=i

iabSNR α
 obtained by our approach, which are marked by 

"△" in Figure 3.4, is smallest among all methods. Moreover, the performance of our approach 

is even better as the number of users increases as can be observed from Figure 3.4.  
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Figure 3.4. The abSNR  for K=2,4,8,16, and 32 obtained by the five methods. 

 

In previous comparisons, we have set .10 4−=eP  It would be interesting to know how will 

the QoS requirement affect the performance of our approach. Therefore, we have tested the 

performance of the five methods for various K and various eP  ranging from 110−  to 610−  

using randomly generated 500 sets of ,128,...,1 ,,...,1 ,, == nKknkα  for each K and each eP . 

The conclusions on the performance for various K are similar. A typical one is shown in 

Figure 3.5, which corresponds to K=7. The average of the 500 average bit SNR for various 

eP  obtained by our approach is marked by "△" in Figure 3.5. We can see that the 
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performance of our approach is the best among the five, and when the QoS level is required 

higher (i.e. the value of eP  is smaller), the performance of our approach is even better (i.e. 

smaller average of the average bit SNR compared with the other four methods). 

 

   
Figure 3.5. Comparison of the performance of the five methods with respect to various eP  
for the case of K=7.  

 

To investigate the computational efficiency of our approach and the other four methods, we 

need to report the average computation time for obtaining the )( iabSNR α . However, as we 

have previously indicated that the DPG method will be implemented by integrated circuits, the 

computation time of our approach is partly real and partly estimated, and its details are stated 

in the following.  

All the computation time of our OO theory based four-stage approach except for the DPG 

algorithm are recorded in the employed Pentium 2.4 GHz processor and 512 Mbytes RAM PC, 

and we denote it by RT . For K=2, 4, 8, 16, and 32 in the test results shown in Figure 3.4, the 

corresponding average RT  for obtaining an )( iabSNR α  are 1.214 ms, 1.686 ms, 3.386 ms, 

5.366 ms, and 11.136 ms, respectively. To estimate the computation time of the DPG method, 

we base on 90-nm CMOS integrated circuit technology and denote this estimated computation 
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time as ET . We let ⊗ , ⊕  and ROM denote the operations of a multiplication, addition, 

and accessing the data of a ROM, respectively, and define )(⋅T  as the computation time for 

performing the operation )(⋅ .  Referring to the work of Hsu, S.K. et al. [26] and Kanan R. et 

al. [27], ns 1.0=⊗T  for a 16x16 bit multiplication5, and it takes ns 1.2 for accessing the data 

of a ROM. In practical designs, the circuit complexity of a 16x16 bit multiplication is five 

times greater than a 16+16 bit addition [28, Ch. 5, p. 113, and Ch. 13, p. 433], thus we can set 

ns. 0.2≈⊕T Then, based on the last column of Table 3.1, we have ns 6.61
nPE =T , 

ns 2.22
nPE =T , ns 1.64PE =T , ns 1.25PE

=T , and .ns 0.17PE
=T  In our simulations, the values 

of  maxmax jt ×   are set to be 8000, 10000, 12000, 15000, and 18000 for cases of =K 2, 4, 8, 

16, and 32, respectively. Thus based on (3.15) and (3.16), the estimated computation time, ET , 

of the DPG method is 0.208 ms, 0.52 ms, 1.248 ms, 3.12 ms, and 7.488 ms for cases of =K 2, 

4, 8, 16, and 32, respectively. Summing up RT  and ET , the estimated average computation 

time of our approach for obtaining an )( iabSNR α  for various K are reported in the second 

row of Table 3.2. We also report the average computation time of the other four methods on 

the same test case in rows 3-6 of Table 3.2. The method proposed by Wong et al. is most 

computation-time consuming as have been indicated in [5]-[9]. Considering that the frame 

length of a wideband OFDM is 20 ms [29], the proposed approach can meet the real-time 

application requirement for high mobility circumstances.   

Table 3.2 
Average computation time (ms) for obtaining an )( iabSNR α for various number of users 

 Computation       
time (ms)        K 

 
Method 

2 4 8 16 32 

Our approach 1.42 2.21 4.63 8.49 18.63 
Wong et al. 103.32 185.3 371.3 701.2 1507.1 
Ergen et al. 10.18 14.9 18.8 31.1 53.2 
Kim et al. 24.95 30.5 40.6 96.6 225.9 
Zhang  26.81 42.5 45.3 60.3 88.1 

 
                                                 
5 A question may be raised that whether 16-bit data type has enough precision for implementation. The answer is 
yes, because the resulted *

,nkρ  that we need from the hardware computation is whether *
,nkρ  is zero or 

nonzero but not how accurate the nonzero value is. 
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As demonstrated above, our approach outperforms the other four methods in the aspect of 

power consumption, and we can obtain the results in real-time.  

Remark 3.9: It seems not fair that the computation time of our algorithm are partly 

estimated from hardware performance, while the computation time of other algorithms are 

entirely from the computer simulation. In fact, what we want to assert is we can achieve the 

best performance among all methods (the comparisons resulted in Figure 3.4) in real-time (the 

data shown in the second row of Table 3.2). 

Remark 3.10: As we have indicated in Remark 3.2 that the DPG method is simple, hence it 

takes more iterations to converge. However, the key that it can help speed up our approach is 

its hardware implementability, and this is the reason why we estimate its computation time 

based on the hardware architecture rather than the commonly adopted expression. 

Remark 3.11: In the deep submicron technology, the effect of the wire delay is prominent, 

especially in the design of large area or complicated routing. There are two types of wire 

delay in our hardware architecture, the intra and inter wire delay. The intra wire delay is the 

wire delay inside the hardware component of a PE, such as the multiplier. The inter wire delay 

is the wire delay between PEs and registers of the hardware architecture shown in Figure 3.3. 

The intra wire delay plays a dominant role in the overall wire delay, however they had been 

taken into account in our estimation of computation time. Since our hardware architecture is 

very regular and modular, the inter wire delay can at most be a small fraction of ET , the 

estimated computation time of the DPG algorithm, and will not affect the real-time 

application.  

To evaluate the actual goodness of the obtained good enough solutions, we should compare 

with the optimal solution of (2.3) using extensive simulations. To cover more system 

conditions in our simulations, we consider the cases of N=32, 64, and 128 and take four 

various K for each N. We define Average Bit Per Subcarrier (ABPS) as 
N

R
K

k
k∑

=1   to denote the 

congestion condition of the system. We set M=6 and consider three cases of ABPS, ABPS=3, 

4 and 5, for each N and each K. For each (N, K, ABPS), we randomly generate 250 sets of 

,,...,1 , KkRk =  based on the constraint on ABPS, and randomly generate a set of 
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,,...,1 ,,...,1 ,, NnKknk ==α  for each set of .,...,1 , KkRk =  We employ (2.1) for the )(cf  but 

set 410−=eP  and 10 =N . Table 3.3 shows the average of 250 %100×−
d

Dd  for each (N, K, 

APBS), where D and d denote the actual optimal power consumption of (2.3) and the power 

consumption of good enough solution obtained by our approach, respectively. For each ABPS, 

the average of the average %100×−
d

Dd  of various N and K is shown in the last row of Table 

3.3, which indicates the average deviation of d  from D  is around 1.0% in various 

congestion condition of the system. This shows that the good enough solutions we obtained 

are really good enough.   

      Table3.3 

         The average %100×−
d

Dd
 for each set of N , K  and  ABPS 
Average %100×−

d
Dd  

N K 
ABPS =3 ABPS =4 ABPS =5 

32 4 0.246 0.300 0.283 
32 6 0.646 1.260 0.874 
32 8 1.606 1.634 1.115 
32 10 1.837 1.778 1.568 
64 4 0.198 0.114 0.131 
64 8 0.557 0.422 0.241 
64 12 1.872 1.663 1.295 
64 16 2.227 2.328 2.090 
128 4 0.056 0.081 0.080 
128 8 0.131 0.110 0.144 
128 16 0.501 0.863 0.852 
128 32 2.572 2.842 2.793 

Average 1.037 1.116 0.956 

3.4 Concluding Remarks 

In this chapter, we have proposed an OO theory based four-stage approach to solve the 

adaptive subcarrier assignment and bit allocation problem of multiuser OFDM system for a 

good enough feasible solution. To resolve the computational complexity problem caused by 

the DPG method in our approach, we propose a hardware architecture to implement the DPG 

method so as to exploit deep submicron technology. Comparing with some existing methods, 

the quality of the good enough feasible solution obtained by our approach is excellent, and the 

estimated computation time meets the real-time application requirement. 
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Chapter 4  

A Computationally Efficient Method for Large Dimension Subcarrier 

Assignment and Bit Allocation Problem of Multiuser OFDM System 

In multiuser OFDM communication system, the increasing dimension will (i) adverse the 

computational complexity of the already time consuming mathematical programming based 

approaches [3], [5] and (ii) enlarge the discrete solution space, which will degrade the quality 

of the solutions obtained by the more local-like approaches [6]-[9] as well as the 

corresponding computation time. Although the method presented in chapter 3 can result a 

good enough solution and can meet real-time application requirement, however, implementing 

the first stage in hardware is almost impossible for area concern due to the large-dimension 

ASABA problem. Thus, dealing with large-dimension ASABA problem based on 

software-like method is a challenging issue in wireless communication, and the purpose of 

our proposed second method is proposing a computationally efficient method to solve the 

considered problem for a good enough solution for large-dimension ASABA problem.  

The quality of the solution obtained by the mathematical programming based approach [3] 

is considered to be one of the best so far. However, they arbitrarily round the optimal 

continuous subcarrier assignment pattern off to the closest discrete values may cause 

infeasibility problem and not guarantee to be a good solution, if feasible. To avoid the 

undesirable effect caused by rounding off, we will handle the discrete solution space directly 

and use a global-like approach. However, the global searching techniques [30] such as 

Genetic Algorithm (GA), Simulated Annealing method, Tabu Search method and Evolutionary 

Programming are not adequate here because of their tremendous computation time, which is 

even worse than the mathematical programming based approach due to (i) evaluating the 

objective value of a feasible subcarrier assignment pattern is time consuming, (ii) handling the 

constraints is not an easy task and (iii) the size of the discrete solution space is huge. 

Evaluating the exact performance (i. e. the objective value) of a feasible subcarrier assignment 

pattern is a conventional “value” concept. However, it is indicated in OO theory that the 

performance order of discrete solutions is likely preserved even evaluated by a surrogate 
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model. In other words, the OO theory claims that there is high probability that we can find the 

actual good discrete solutions if we limit ourselves to the top n% of the estimated good 

discrete solutions evaluated by a surrogate model [12]. Thus, to retain the merit of global 

searching technique while avoiding the cumbersome conventional performance evaluation of 

a discrete solution, our approach is based on OO theory to solve the considered problem for a 

good enough solution with high probability using limited computation time.  

   The approach consists of three OO stages. First of all, we will reformulate the considered 

problem to separate it into subcarrier assignment and bit allocation problem such that the 

objective function of a feasible subcarrier assignment pattern is the corresponding optimal bit 

allocation for minimizing the total consumed power. Then, in the first stage, we will develop 

an easy-to-evaluate approximate objective function to estimate the objective value of a 

subcarrier assignment pattern and employ a GA to search through the huge discrete solution 

space to find the top s subcarrier assignment patterns based on the estimated objective values. 

In the meantime, a subtle representation scheme and a repair operator for GA need be 

designed to handle the constraints of the considered problem. In the second stage, we use an 

off-line trained ANN to estimate the objective values of the s subcarrier assignment patterns 

obtained in stage 1 and pick the top l patterns based on the estimated objective value. In the 

third stage, we use the exact objective function to evaluate the l subcarrier assignment patterns 

obtained in stage 2, and the best one associated with the corresponding optimal bit allocation 

is the good enough solution that we seek. In the proposed three-stage approach, the models 

employed to evaluate a solution are varying from very rough (stage 1) to exact (stage 3). In 

the meantime, the candidate solution space is reduced from the original huge solution space 

(stage 1) to only l candidate solutions (stage 3). In general, a more accurate approximate 

objective function will take more time to evaluate a solution; however as can be seen from our 

three-stage approach, when a more accurate approximate objective function is used, the 

search space is already reduced considerably, and the computation time is largely reduced 

accordingly.  

We organize Chapter 4 in the following manner. In Section 4.1, we will reformulate the 

considered problem. In Section 4.2, we will present our three OO stages to solve the 
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considered problem. In Section 4.3, we will apply our algorithm to numerous large-dimension 

ASABA cases and compare with some existing algorithms in the aspects of solution quality 

and computation time. Finally, we will draw a conclusion in Section 4.4. 

4.1 Reformulation 

    We assume the solution of (2.3) exists, which is equivalent to the following assumption: 

there are enough subcarriers to meet the data rate request of all users, i.e. the following 

inequality hold 

                             N
M
RK

k

k ≤⎥⎥
⎤

⎢⎢

⎡∑
=1

                           (4.1) 

because a subcarrier cannot be shared by more than one user. Notation ⎡ ⎤y  in (4.1) denotes 

the integer closest to y on the right-hand side. 

Remark 4.1: (i) The situation that the solution of (2.3) does not exist, i.e. assumption (4.1) 

does not hold is beyond the scope of this dissertation. (ii) For the extreme case that 

N
M
RK

k

k =⎥⎥
⎤

⎢⎢

⎡∑
=1

 and the spectrum is fixed for each user, (2.3) becomes a very simple optimal bit 

allocation problem and can be readily solved by the existing greedy algorithm [20]. However, 

methods proposed in this dissertation and [3-9] aim to solve ASABA problem, (2.3), which is 

much more complicated than the above mentioned extreme case. 

To develop an approximate objective function for a subcarrier assignment pattern, we 

need to reformulate (2.3). We let ρ , c , α  and R denote the vectors 

,,...,1,,...,1],[],[],[ ,,, NnKkc nknknk ==αρ  and ,,...,1],[ KkRk = respectively, and define )(ρC , the 

feasible set of bit allocation c for a given ρ , as  

}given  afor  ,,...,1,,...,1, and 0|{)(
1

,,, ρρρ NnKkcRMccC
N

n
nknkknk ===≤≤= ∑

=

  (4.2)         

Now for a given subcarrier assignment pattern ρ  that satisfies Nn
K

k
nk ,...,1  ,1

1
, ==∑

=

ρ  and 

}1,0{, ∈nkρ  for all k and n, (2.3) becomes an optimal bit allocation problem under the given ρ  

that is to find the optimal c  of the following problem: 
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)(min
1 1

,2
,

,∑∑
= =

N

n

K

k
nkk

nk

nk

c
cf

α
ρ  

subject to                    )(ρCc∈  

φρ ≠)(C                          (4.3)          

where the constraint φρ ≠)(C  represents the existence of feasible bit allocation c  for the 

given ρ . Note that the assumption, (4.1), of our problem does not imply φρ ≠)(C  for any 

ρ  that satisfies Nn
K

k
nk ,...,1  ,1

1
, ==∑

=

ρ  and }1,0{, ∈nkρ ; for example, in an extreme case that 

1... ,12,11,1 ==== Nρρρ  and the rest of 0, =nkρ , then if (4.1) is satisfied but 0≠kR  for any 

1≠k , we have φρ =)(C  for the given ρ . However, the assumption (4.1) guarantees that 

there exists ρ  such that φρ ≠)(C . In fact, the constraint φρ ≠)(C  is equivalent to the 

inequality constraints ,
1

,∑
=

≤
N

n
nkk MR ρ  Kk ,...,1= . Thus, we can rewrite (2.3) into the following 

form: 

)}(|)(min{min
1 1

,2
,

, ρ
α
ρ

ρ
Cccf

N

n

K

k
nkk

nk

nk

c
∈∑∑

= =

 

subject to                KkMR
N

n
nkk ,...,1,

1
, =≤ ∑

=

ρ , 

Nn
K

k
nk ,...,1  ,1

1
, ==∑

=

ρ , 

}1,0{, ∈nkρ , for all k and n                    (4.4)           

(4.4) can be viewed as a separation of subcarrier assignment and bit allocation problem, 

because the optimization problem inside the big bracket is the optimal bit allocation problem 

for a given feasible ρ  that satisfies all the constraints in (4.4), and the overall problem is 

finding the best feasible ρ  associated with an optimal bit allocation. Furthermore, the 

optimal bit allocation problem is separable for a given feasible ρ , because its objective 

function )(
1 1

,2
,

,∑∑
= =

N

n

K

k
nkk

nk

nk cf
α
ρ

, as well as the constraints )(ρCc∈  are separable. Thus we can 

decompose it into the following K independent subproblems: For k=1,…,K, 
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)(min ,
1

2
,

,

,..., ,1,
nkk

N

n nk

nk

cc
cf

Nkk
∑
= α
ρ  

subject to                   NnMc nk ,...,1,0 , =≤≤ ,           

                           ∑
=

=
N

n
nkk cR

1
,                              (4.5) 

Clearly (4.4) is a constrained combinatorial optimization problem with (i) hard to evaluate 

objective function, because the objective function )}(|)(min{
1 1

,2
,

, ρ
α
ρ

Cccf
N

n

K

k
nkk

nk

nk ∈∑∑
= =

 itself is an 

optimization problem, (ii) equality and inequality constraints involving integers and (iii) huge 

discrete solution space for ρ  as long as K and N are large. 

Remark 4.2: As indicated previously, the assumption (4.1) is to assume that the solution of 

(2.3) exists. Since (4.4) is equivalent to (2.3), the assumption (4.1) should also apply to (4.4) to 

assume the solution of (4.4) exists. It should be noted that no additional assumption is needed 

to derive (4.4) from (2.3). Furthermore, the decomposition of the objective function of (4.4), i.e. 

the term inside the big bracket of (4.4), into (4.5) has nothing to do with the assumption (4.1). 

This decomposition simply says that for a given feasible ρ , the optimal bit allocation for 

individual user is independent of each other. 

4.2. The Three-Stage Ordinal Optimization (OO) Approach  

The proposed three-stage OO based approach for solving (4.4), or (2.3) equivalently, consists 

of three OO stages as stated in the following. 

4.2.1 Stage 1: Using GA to Select Top s Subcarrier Assignment Patterns Based on an 

Easy-to-Evaluate Approximate Objective Function 

As shown in (4.5) that the objective function of (4.4) for a given feasible ρ  can be 

decomposed into K independent optimal bit allocation subproblems. We let ∑
=

=
N

n
nkkN

1
,ρ  and 

k

nk

N

n
nk

k N

,
1

,

ˆ
αρ

α
∑
==  denote the total number of subcarriers assigned to and the average power 

consumption coefficient of user k, respectively. Then, we use the following to approximate the 

optimal power consumed by user k, i.e. the optimal objective value of (4.5), for the given ρ . 
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We assume the total data rate request Rk of user k are distributed equally to the assigned Nk 

subcarriers, i.e. setting 
k

k
nk N

Rc =,  
for each assigned subcarrier, and assume each of the Nk 

subcarriers has the same power consumption coefficient kα̂  defined above, then the power 

consumed by user k, denoted by ,k̂P  can be computed by ).(
ˆ

ˆ
2

k

k
k

k

k
k N

RfNP
α

=  Consequently, we can 

obtain the approximate total consumed power for the given ρ , denoted by TP̂ , by calculating 

∑
=

=
K

k
kT PP

1

ˆˆ , which will serve as the approximate objective function of (4.4). 

Then, to use GA as a global searching technique, we need to define a representation scheme 

to map all ρ  that satisfy }1,0{, ∈nkρ  and 1
1

, =∑
=

K

k
nkρ  into a set of chromosomes first [30], [31, 

Ch.14]. Let the alphabet of the representation scheme be the set {1,2,…,K}. We define the 

chromosome u as a string of N symbols, Nuuu ,...,, 21 , such that the nth symbol un , which takes 

an element from the alphabet, indicates the user that subcarrier n is assigned to. In other 

words, 1kun =  means 1,1
=nkρ  and 0, =nkρ  for all 1kk ≠ . This representation scheme ensures 

that }1,0{, ∈nkρ  and satisfies∑
=

=
K

k
nk

1
, 1ρ , because nu  taking only one element from the alphabet 

implies that the nth subcarrier can at most be assigned to one user. However not all 

chromosomes u can satisfy the inequality constraints ∑
=

≥
N

n
knk RM

1
,ρ  required in (4.4). The 

required number of subcarriers for user k to meet the inequality constraint is at least ⎥⎥

⎤
⎢⎢

⎡
M
Rk . We 

define 1)( =nk uδ  if kun =  and 0, otherwise. Thus, the number of subcarriers assigned to user 

k in a chromosome u is ∑
=

N

n
nk u

1

)(δ . To meet the inequality constraint, the following has to hold 

                           
⎥⎥

⎤
⎢⎢

⎡≥∑
= M

Ru k
N

n
nk

1

)(δ                      (4.6) 

We define ⎥⎥

⎤
⎢⎢

⎡−=∑
= M

R
uu k

N

n
nkk

1

)()( δσ , then 0)( ≥ukσ  implies the number of subcarriers assigned 

to user k is enough or surplus, and 0)( <ukσ  implies the other way. Therefore, for a given u 

we can compute )(ukσ  for Kk ,...,1=  and order them in an ascending sequence 

)(...)()(
21

uuu
Kkkk σσσ ≤≤≤ , where the ordered indices },...,1{,...,1 Kkk K ∈ , and we have no order 
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preference for the k’s with same values of )(ukσ . Thus 0)(
1

≥ukσ  implies u satisfies (4.6) for 

all k and is feasible. 

Suppose 0)(
1

<ukσ , then u is infeasible. Such an infeasibility problem may occur to any 

newly generated chromosomes, resulted from initial population generation, crossover 

operations, and mutation operations, and can be resolved by a repair operator, which is 

designed to recover the infeasible chromosome to a feasible one as stated in the following. 

Under the assumption that we have enough subcarriers to meet all users’ data rate request, 

(4.1), if 0)(
1

<ukσ , there must exist i such that 0)(...)(
1

<≤≤ uu
ikk σσ , 0)(...)(

1
≥≥≥

+
uu

iK kk σσ , and 

))(...)(()(...)(
11

uuuu
iKi kkkk σσσσ ++−≥++

+
. Thus, we can reassign the surplus subcarriers of users Ki kk ,...,1+  

to users ikk ,...,1  in the following manner. Randomly pick the surplus subcarriers that were 

assigned to user kK to make up the insufficient subcarriers required by k1, that is randomly 

pick an um from all um’s with um=kK, and reset the picked um as um=k1. When all surplus 

subcarriers of user kK are reassigned, we proceed with picking the surplus subcarriers of user 

kK-1 and so forth. Similarly, when the number of insufficient subcarriers of user k1 is made up, 

we proceed with making up the insufficient subcarriers of user k2 and so forth. The above 

process will continue until the number of insufficient subcarriers of user ki is made up. Then 

the resulting u will be feasible. Based on this repair operator, we may describe the employed 

GA to solve (4.4) in the following.  

We randomly generate I, say 200, chromosomes such that each symbol of each 

chromosome is assigned by an element randomly selected from the alphabet, {1,…,K}, and 

apply the repair operator to them. The resulting I feasible chromosomes will serve as the 

initial population of the employed GA. To evaluate the fitness of a chromosome u based on 

the above mentioned approximate total power consumption, we first compute 

∑
=

=
N

n
nkk uuN

1

)()( δ ,
)(

)(
)(ˆ

,
1

uN

u
u

k

nk

N

n
nk

k

αδ
α

∑
== , and )

)(
(

ˆ
)()(ˆ

2 uN
RfuNuP
k

k
k

k

k
k α

=  for every k=1,…,K. Then, the 

fitness of u will be 
)(ˆ

1
uPT

, where ∑
=

=
K

k
kT uPuP

1

)(ˆ)(ˆ . Based on the fitness values of all 

chromosomes in the population pool, we use roulette wheel selection scheme to select 

chromosomes into the mating pool, from which we select chromosomes to serve as the 
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parents for crossover. The probability that a chromosome is selected as a parent is pc, say 0.7.  

We apply a single point crossover scheme to the selected parents, and the generated 

offsprings may be infeasible as indicated previously. Therefore we will apply the repair 

operator to each generated offspring, and the resulting feasible offsprings will replace the 

corresponding parents in the mating pool. Subsequently, we will apply the mutation operation 

to each chromosome in the mating pool with mutation probability pm, say 0.02. Any changed 

chromosome after mutation operation may also be infeasible, and we will apply the repair 

operator to it. Consequently, the resulting chromosomes in the mating pool after the above 

evolution process will be the population pool of next iteration.  

The above process completes one iteration of our GA. We stop the GA when the number 

of iterations exceeds 60. After the applied GA converges, we rank the final I chromosomes 

(i.e. u’s) based on their fitness values and pick the best s (=50) u’s. We can then convert these 

s chromosomes into the subcarrier assignment patterns s'ρ  in the following manner: 

)(, nknk uδρ =  for all k and n. Then these converted s'ρ are the s subcarrier assignment patterns 

determined in this stage, and they are feasible for (4.4).  

Remark 4.3: Based on [12], larger s will consist of more actual good subcarrier 

assignment patterns. However, larger s may cause more computation time for further 

evaluation. Thus, the value of s should be determined based on the available computation 

budget to obtain and the required goodness of the good enough solution. In the current 

application, the computation time is of more concern. 

4.2.2 Stage 2:  Choose Top l Subcarrier Assignment Patterns From the s Based on an ANN 

Model 

Since evaluating the s s'ρ  obtained in Stage 1 using the exact objective function is still too 

time consuming, based on [10], we can trim the candidate solution set further using a more 

accurate approximate objective function. Therefore, we will employ a supervised learning 

ANN [17] to estimate the optimal power consumed by user k and select top l (=3) s'ρ  from 

the s.  

Remark 4.4: The value of l is also determined based on a tradeoff between the 
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computation time required to obtain and the goodness of the good enough solution. 

This ANN is trained off-line using 5000 input/output pairs of data. The input data 

associated with user k is the data rate request kR , the number of subcarriers assigned to user k, 

Nk, and the power consumption coefficient 
ink ,α , kNi ,...,1= , for the assigned Nk subcarriers 

kNnn ,...,1 . However, the dimension of the vector ),..,,( ,, 1 kNnknkkR αα  is large provided that Nk is 

large. A large ANN, i.e. an ANN consisting of large number of neurons in both input and 

hidden layers, will consume more computation time to obtain the output even if it is trained 

off-line. Although larger ANN can serve as a more accurate function approximator, what we 

care here is the performance order rather than the performance value. Therefore, for 

computation-time concern, we favor a simpler ANN. Since the values of kNnknk ,, ,..,
1

αα  may 

have some kind of distribution, to characterize these values without using the details, we may 

use the corresponding mean, kα̂ , and variance, )var( kα  [32]. Thus, to design a simple ANN, 

we will employ ))var(,ˆ,,( kkkk NR αα  to characterize the input data of user k.  

Consequently, the 5000 input/output pairs used to train the ANN can be obtained as 

follows. We uniformly select 5000 sets of (Rk,Nk) from the following ranges: ]150,5[∈kR , 

]
2

,[
M
R

M
R

N kk
k ∈ , which makes kk MNR ≤  to ensure that there are enough subcarriers to meet 

the data rate request. For each Nk, we randomly select 
kNnn ,..,1  from {1,…,N}, then randomly 

generate 
ink ,α from the range [0,2.0] for each kNi ,...,1= . The kα̂  and )var( kα  can be 

computed accordingly. Thus, we have 5000 input vectors of ))var(,ˆ,,( kkkk NR αα . Now for 

each ),...,,,( ,, 1 kNnknkkk NR αα , the corresponding output data for training ANN is the actual 

optimal power consumed by user k denoted by Pk. To compute Pk, we can use the greedy 

algorithm [20] to solve (4.5) by optimally distributing Rk bits to the assigned Nk subcarriers 

one at a time based on the least incremental power consumption criteria. We then use the 

obtained 5000 input/output pairs, ))),var(,ˆ,,(( kkkkk PNR αα , of data to train a three-layer 

ANN whose structure is described in the following. The input layer consists of four neurons 

corresponding to kR , kN , kα̂ , and )var( kα . The hidden layer consists of 15 neurons, and each 

neuron uses hyperbolic tangent sigmoid as the activation function. There is only 1 neuron in 
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the output layer corresponding to Pk, and we use linear as the activation function. Using the 

5000 input/output pairs of data, we train this ANN by adjusting its arc weights using the 

Levenberg-Marquardt method proposed in [18] and [19]. Based on this off-line trained ANN, 

we can estimate the total consumed power corresponding to a ρ  as follows. For a given ρ , 

we can compute ∑
=

=
N

n
nkkN

1
,ρ  and determine 

kNnknk ,, ,..,
1

αα from the gain α  for each k=1,…,K. 

Subsequently, we can set up the input ))var(,ˆ,,( kkkk NR αα , feed into the off-line trained ANN, 

and obtain the estimated kP , denoted by kP~ , from the output of ANN for each k=1,…,K. Then 

we can compute the estimated total consumed power, denoted by ,~
TP  for the given ρ  by 

∑
=

=
K

k
kT PP

1

~~
. Using this off-line trained ANN, the l (=3) s'ρ with smallest TP~  among the s 

feasible s'ρ  obtained in Stage 1 are the subcarrier assignment patterns determined in this 

stage. 

4.2.3 Stage 3: Determine the Good Enough Subcarrier Assignment and Bit Allocation  

  Since there are only l (=3) candidate feasible- s'ρ  left, we can use the exact objective 

function of (4.4) to calculate the objective value of each ρ . That is to solve the optimal bit 

allocation problem (4.5) for the given ρ  using the greedy algorithm mentioned above to 

obtain the optimal power consumption Pk for user k=1,…,K. Then we calculate ∑
=

=
K

k
kT PP

1

 

for the given ρ . Consequently, the ρ  associated with the optimal bit allocation corresponding 

to the smallest TP  among the l feasible s'ρ  will be the good enough solution of (2.3) that 

we look for.  

4.3 Test Results and Comparisons  

In this section, we will demonstrate the performance of the proposed algorithm on solving 

the large-dimension ASABA problem (4.4), which is equivalent to (2.3), in the aspects of 

solution quality and computational efficiency by comparing with other algorithms. We 

assume the OFDM system has 256 subcarriers (i.e. N=256), which can carry two, four, and 

six bits/symbol; therefore in this system M=6. We adopt the approximate formula in (2.1) for 
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the fk(c) in the transmission power 2
,

)(

nk

k cf
α

  shown in the objective function of (2.3), and we set 

Pe = 410−  and =0N 10-12 watt in the following simulations.  

We use a frequency-selective channel consisting of six independent Rayleigh multipaths 

to model the wireless transmission channel, and each multipath is modeled by Clark’s flat 

fading model [25]. We assumed that the power delay profile is exponentially decaying with 

pe 2− , where p =0, 1, 2, 3, 4 and 5 denote the multipath index. Hence, the related power of the 

six multipath components are 0dB, -8.69 dB, -17.37 dB, -26.06 dB, -34.74 dB, and -43.43dB. 

We also assume the average subcarrier channel gain 2
,nkEα  is unity for all k and n. Based on 

the above assumptions, we can generate power consumption coefficients ,,nkα  k=1,…,K, 

n=1,…,N, using MATLAB for our simulations. 

We consider cases of various number of users for K=10, 20, 30, 40, and 50. For each K, 

we assume a fixed total data rate request TR =1024 bits/symbol and randomly generate 

,,...,1  , KkRk =  based on the constraint T

K

k
k RR =∑

=1
. For each K and the associated R, we randomly 

generate 5000 sets of ,,...,1 ,,...,1  ,, NnKknk ==α  based on the above mentioned power 

consumption coefficient generation process and denote iα  as the ith set in the 5000. With the 

above test setup, we apply our algorithm to solve (2.3) on a Pentium 2.4 GHz processor and 

512 Mbytes RAM PC. We also apply the more global-like mathematical programming based 

approaches proposed by Wong et al. and Kim et al. in [3] and [5], respectively, and the more 

local-like two-module scheme and two-step subcarrier assignment approaches proposed by 

Ergen et al. and Zhang in [6] and [8], respectively, to the same test cases on the same PC. For 

the purpose of comparison, we can use the average bit SNR (abSNR) to replace TP , because 

abSNR is defined as the ratio of the average transmit power, 
T

T

R
P , to the noise PSD level N0. 

As we have assumed that all the data rates per symbol are fixed at RT, and the N0 is just a 

constant, thus PT is proportional to abSNR.  

Remark 4.5: As shown in (2.1), PT consists of the term N0. Therefore, the magnitude of N0 

employed in our tests is not relevant to the results of abSNR, because the term N0 will be 

cancelled out as noted in the definition of abSNR. 
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For each K with the associated vector R, we denote )( iabSNR α  as the resulted abSNR 

when iα  is used and calculate 
5000

)(
5000

1
∑
== i

iabSNR

abSNR

α
, where abSNR  denotes the average of the 

5000 abSNR’s for a given K. The resulted abSNR  for each K and each algorithm are shown in 

Figure 4.1. 

 

Figure 4.1. The abSNR   for K=10, 20, 30, 40 and 50 obtained by the five algorithms. 

Form Figure 4.1, we see that the abSNR  obtained by our algorithm, which are marked by 

" ", is smallest among all algorithms. Moreover, the result obtained by our algorithm is even 

better when the number of users increases as can be observed from Figure 4.1.  

Remark 4.6: The quality of the solution obtained by the approach proposed by Wong et al. 

in [3] is excellent and has been used as a comparing standard in most of the literature 

regarding ASABA problems [5], [7], [8]. We also manifest the quality of their solution in our 

simulations as shown in Figure 4.1. The reason that supports their solution’s excellent quality 

is their global-like mathematical programming based approach as indicated previously. They 

first employed a Lagrangian relaxation method to solve the continuous version of the ASABA 
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problem then rounded the optimal continuous subcarrier assignment solution off to the closest 

integer solution. Such an arbitrarily rounding off may cause possible infeasibility and not 

theoretically guarantee to obtain a good solution, especially when the dimension of the 

ASABA problem is large. Dislike their approach, we handle the discrete solution space 

directly. In the first stage of our approach, our specially designed GA, which associates with a 

surrogate model for fast fitness evaluation, search through the whole feasible solution space to 

find some good feasible subcarrier assignment patterns. Thus, our approach is also global-like 

and will not cause any infeasibility problem. Then in the second and third stages, we use the 

ANN and exact models, respectively, to help pinpoint a good enough subcarrier assignment 

pattern associated with optimal bit allocation among the feasible solutions resulted in Stage 1. 

The arbitrarily rounding off technique employed in [3] is lack of theoretical support. However, 

the foundation of our approach is OO theory, which is a theoretically sound general 

methodology [10] and has several successful applications on the combinational optimization 

problems with huge discrete solution space [24], [33]-[34]. 

 

Figure 4.2. The average computation time for obtaining an abSNR by the five algorithms in 
cases of K=10, 20, 30, 40 and 50. 
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We also show the average computation time for obtaining an abSNR for each K and each 

algorithm in Figure 4.2. From this figure, we see that the average computation time obtained 

by our algorithm, which are around 100 milliseconds as marked by " ", is also smallest 

among all algorithms. These results show that our algorithm outperforms the other four in 

both aspects of solution quality and computational efficiency. More importantly, when the 

number of users increases, the performance of our algorithm is even better.  This 

demonstrates that our algorithm is most suitable for large-dimension ASABA problems. 

Remark 4.7: The methods in [5], [6], [8] are proposed to overcome the computational 

complexity of the method in [3]. Indeed, the methods in [6], [8] are more computationally 

efficient than the methods in [3], [5] as shown in Figure 4.2, because the former are local-like 

heuristic methods while the latter are global-like mathematical programming based 

approaches. In fact, the authors of [6] and [8] did not compare the computational efficiency of 

their methods with the method in [3] in their papers, because they take their methods being 

conceptually faster for granted. However, since the methods in [6], [8] are local-like methods, 

the computation time of each solution adjustment step is very short, but the improvement of 

the solution is limited. Hence their convergence rate will be degraded especially when the 

dimension of the ASABA problem is large. On the contrary, the computational complexity of 

our approach is less relevant to the size of the ASABA problem, because (i) the population 

size and number of iterations of the employed GA in stage 1 are fixed, (ii) the parameters s 

and l in stages 1 and 2, respectively, are fixed, and (iii) the structure of the ANN is also fixed. 

This is the reason why the computational efficiency of our algorithm can compete with the 

methods in [6], [8] in solving large-dimension ASABA problems. It is commonly understood 

that the comparisons based on CPU times may not be objective enough, however we can 

hardly obtain any analytical expression of the total consumed number of multiplications and 

additions of the methods in [3], [5], [6], [8]. In fact, the CPU time is a commonly used tool for 

the comparisons of computational efficiency in similar subjects appearing in [7], [35], [36]. 
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Figure 4.3. Comparison of the five algorithms for various Pe in the case of K=40. 

In previous comparisons, we have set the BER, Pe = 410− . It would be interesting to know 

how will the Quality-of-Service (QoS) requirement, i.e. various BER, affect the performance 

of our algorithm. Therefore, we have tested the five algorithms for K=10, 20, 30, 40 and 50 

with various Pe ranging from 210−  to 610−  using randomly generated 5000 sets of nk ,α , 

k=1,…,K, n=1,…,256, for each K. The conclusions on the performance for the five algorithms 

for various K are similar. A typical one is shown in Figure 4.3, which corresponds to K=40. 

The abSNR  obtained by our algorithm is marked by " " in Figure 4.3. We see that the 

performance of our algorithm is the best among the five in all cases of Pe, and when the QoS 

level is required higher (i.e. the value of Pe is smaller), the performance of our algorithm is 

even better (i.e. smaller abSNR  compared with the other four algorithms). This further 

demonstrates the superiority of the solution quality achieved by our algorithm. 

4.4 Concluding Remarks 

In this chapter, we have proposed a computationally efficient three-stage OO approach to 

solve the large-dimension ASABA problem of multiuser OFDM system for a good enough 
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solution. By looking into the insight of the ASABA problem (2.3), we reformulate it into (4.4) 

and develop an approximate objective function as well as a subtle representation scheme and 

a repair operator for the GA employed in Stage 1, which makes our OO approach possible in 

handling the huge discrete solution space as well as the constraints. The easily computed 

surrogate models employed in Stages 1 and 2 help resolve the computation complexity caused 

by the hard-to-evaluate objective function. These factors contribute most to the computational 

efficiency of our algorithm. Furthermore, we have demonstrated the superiority of our 

algorithm by comparing with four existing algorithms through numerous test cases in the 

aspects of solution quality and computational efficiency. More importantly, our approach has 

wide range of applications in resource allocation problems of wireless network and 

communication. 
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Chapter 5  

Conclusions and Future Work 

5.1 Conclusions 

Two multi-stage OO based methods to solve the ASABA problem of the multiuser OFDM 

system for a good enough solution have been presented and discussed. The first method can 

meet the real-time application requirement while with the assistance of hardware. The second 

method is computationally efficient for solving the large dimension ASABA problem of 

multiuser OFDM system. 

The first method presented in Chapter 3 consists of four OO stages to find a good enough 

solution to the ASABA problem. In the first three stages, we use surrogate models to quickly 

evaluate the estimated performance of a solution so as to select an estimated good enough 

subset from the candidate solution set using limited computation time. When the size of the 

solution space is huge, the reduction of the search space can be done in several stages. The 

surrogate models in the stages can range from very rough to more refined ones, and the exact 

model will be employed in the last stage when there are only few solutions left in the 

candidate solution set. The four-stage OO approach ensures the quality of the obtained 

solution, however at the cost of solving a continuous version of the considered problem in the 

first stage. To resolve this computational complexity problem, we propose a hardware 

implementable DPG method to exploit deep submicron technology so as to obtain the optimal 

continuous solution extremely fast.  

Due to the large dimension of the ASABA problem, implementing the first stage in 

hardware is almost impossible for area concern. Therefore in the first stage of our second 

method presented in Chapter 4, we develop an approximate objective function to evaluate the 

performance of a subcarrier assignment pattern and use a genetic algorithm to efficiently 

search through the huge solution space to find I (=200) good solutions.  

Numerical results and comparisons with various existing algorithms are provided to 

demonstrate the potential of our proposed techniques. It is shown that the proposed resource 

allocation methods substantially improve the system power efficiencies. In the meantime, the 
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proposed resource allocation algorithms are more computationally efficient. Moreover, the 

first method can meet the real-time application requirement and the second method is suitable 

for large dimensional ASABA problems. 

5.2 Future Work 

  The proposed algorithms are based on the assumption that perfect channel information is 

available for adaptive resource allocation. In practice, the estimated channel information may 

be not very accurate either because of the estimation error or because of the delay between the 

estimation and the transmission instances. It is therefore worth studying adaptive resource 

allocation schemes while considering channel mismatch. 

  The circuit of the proposed hardware architecture is based on equations (2.1) and (2.3), 

however, it is not general enough to hold for all practical systems. For example, the required 

power )(cf k  in 2
,

)(

nk

k cf
α

 may correspond to certain coding and modulation schemes. Thus, we 

need to modify hardware circuit of the DPG method for other specific )(cf k . Because 

changing hardware is not as easy as the software, it is therefore worth studying the easily 

implemented hardware architecture for different communication system to meet real-time 

application requirement. 
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