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Abstract

The next generation wireless communication systems are expected to provide high rate
transmission in the applications of digital audio broadcast, digital video broadcast and
wireless internet access but regardless to the users’ mobility and location. The major
challenges we are confronted with include the harsh channel conditions, QoS (Quality of
Services) requirements such as BER (Bit Error Rate) and users’ data rate request, scarce
resources such as power and spectrum, and the knowledge of the most updated state of the
mobile users or devices. Orthogonal frequency-division multiplexing (OFDM) technology is
recently recognized as one of the leading candidates for supporting the next generation
wireless communication systems due to its ability to combat inter-symbol-interference (ISI)
over harsh channel conditions. This stimulates the development of both intelligent and
efficient resource management algetrithms to'achieve efficient utilization of power and
spectrum while providing QoS requirementsrin‘the multiuser OFDM communication system.
Therefore in this dissertation, we'will present two.computationally efficient methods to solve
the Adaptive Subcarrier Assignment and Bit Allocation (ASABA) problem of multiuser
OFDM system using Ordinal Optimization-(OO)-approach.

Our first method consists of four OO stages to find a good enough solution to the ASABA
problem. In the first three stages, we use surrogate models to select a subset of estimated good
enough feasible solutions from the candidate solution set so as to reduce the search space of
subcarrier assignment until / (=3) good enough subcarrier assignment patterns are obtained.
Then in the fourth stage, we use the exact objective function to evaluate the / subcarrier
assignment patterns, and the best one associated with the corresponding optimal bit allocation
is the good enough solution that we seek. The four-stage OO approach ensures the quality of
the obtained solution, however at the cost of solving a continuous version of the considered
problem in the first stage. To resolve this computational complexity problem, we propose a
hardware implementable Dual Projected Gradient (DPG) method to exploit deep submicron
technology so as to obtain the optimal continuous solution extremely fast.

Due to the large dimension of the ASABA problem, implementing the first stage in
hardware is almost impossible for area concern. Therefore in the first stage of our second
method, we develop an approximate objective function to evaluate the performance of a
subcarrier assignment pattern and use a genetic algorithm to efficiently search through the
huge solution space to find / (=200) good solutions.

Numerical results and comparisons with various existing algorithms are provided to
demonstrate the potential of the proposed techniques. It is shown that the proposed resource
allocation methods substantially improve the system’s power efficiencies and are more
computationally efficient. Moreover, the first method can meet the real-time application
requirement and the second method is suitable for large dimensional ASABA problems.
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Chapter 1

Introduction

1.1 Motivation

Due to the increase of mobile users and devices in the wireless communication system,
various resource management techniques such as the dynamic channel allocation [1] and the
dynamic fair resource allocation scheme [2] had been studied. One of the difficulties for such
kind of techniques is to keep track of the most updated state of the mobile users or devices
caused by their mobility and portability and provide them the appropriate resources. Therefore,
the computational efficiency is the premise of the wireless network resource management
methods so as to deal with the high mobility of the dynamic behaviors of mobile users and
devices. Among the existing dynamic resource management problem in wireless networks,
Adaptive Subcarrier Assignment and Bit Allocation (ASABA) of Orthogonal Frequency
Division Multiplexing (OFDM) system is a very fundamental issue in mobile communication.
There are two types of formulations on ‘this issue. One is the Margin Adaptive (MA)
optimization, which minimizes the total consumed power under a data rate constraint [3], and
the other is the Rate Adaptive (RA) optimization,” which maximizes the data rate under a
power constraint [4]. Kim et al. had shown in [5] that the RA optimization problem can be
solved via recursive MA optimization. Therefore, in this dissertation we will focus on the
adaptive subcarrier assignment and bit allocation problem of MA optimization with emphasis
on the solution quality and the computational efficiency.

In general, to obtain a better solution of a hard optimization problem such as the resource
management problem in the wireless communication system usually requires a sophisticated
but computationally intensive algorithm. In this dissertation, we will revolt this seemingly
correct argument by proposing two methods that will not only obtain a good enough feasible
solution but also be computationally efficient. The first method can meet the real-time
application requirement while with the assistance of hardware. The second method is purely a
software but still computationally efficient for solving the large dimension ASABA problem

of multiuser OFDM system.



1.2 Problem Statement

The adaptive subcarrier assignment and bit allocation of multiuser OFDM system has been
studied for a number of years. This issue is initialized by Wong et al. in [3] and is formulated
as a nonlinear integer programming problem to minimize the total power consumption while
satisfying the users’ data communication request and system’s constraints. Wong et al.
employed a Lagrangian relaxation method in [3] to solve the continuous version of the
adaptive subcarrier assignment and bit allocation problem. They then rounded the optimal
continuous subcarrier assignment solution off to the closest integer solution. Although the
algorithm dramatically enhances the power efficiency, the prohibitively high computational
complexity renders it impractical. Since then, various methods, ranging from the more
computation-time consuming and global-like mathematical programming based approach [5]
to the less computation-time consuming and more local-like schemes [6]-[9] were proposed to
cope with this NP-hard constrained_combinatorial optimization problem. In [5], Kim et al.
had converted the adaptive subcartierfassignment.and.bit allocation problem formulated in [3]
into a linear integer programming problem and employed a suboptimal approach to separately
perform the subcarrier assignmentand-bit allocation. To claim for computational efficiency by
not using mathematical programming approach; Ergen et al. had proposed in [6] a heuristic
two-module scheme, both Kivanc et al. and Zhang had proposed two-step subcarrier
assignment approaches in [7] and [8], respectively, and Han et al. had proposed in [9] an
iterative grouping scheme to improve the performance by exchanging subcarrier assignment
sets. As a consequence, these approaches cannot yield a better solution while using limited

computation time due to the nature of nonlinear optimization.
1.3 Dissertation Outline

The dissertation introduces two computationally efficient methods to solve the ASABA
problem of multiuser OFDM system using Ordinal Optimization (OO) approach. Since both
methods are multi-stage OO based approaches, there are some overlap. For the sake of
completeness in presenting each individual method, the overlapping part will be duplicated.
Therefore, we organize this dissertation in the following manner.

In chapter 2, some preliminaries are stated to assist the presentation of the dissertation.
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These include OFDM architecture based communication system, adaptive subcarrier
assignment and bit allocation for multiuser OFDM, OO theory, Artificial Neural Network
(ANN), and Genetic Algorithm (GA). The OFDM is a promising technology for high data rate
transmission in wide band wireless systems due to its ability to mitigate the effects of
frequency selective and combat Inter-Symbol Interference (ISI). The adaptive subcarrier
assignment and bit allocation for multiuser OFDM communication system can be formulated
as a nonlinear integer programming problem to minimize the total power consumption while
satisfying the users’ data communication request and system’s constraints. The OO theory is a
new methodology designed to cope with hard optimization problems such as the considered
problem. The GA acts as a heuristic method to select a representative set for the search space
of the considered problem. The ANN is trained as an easily computed crude model to roughly
evaluate the performance of the considered problem.

In chapter 3, we present an OO theory based-four-stage approach to deal with the subcarrier
assignment and bit allocation problem,'of multiuser OFDM system. The four-stage OO
approach ensures the quality of the obtained solution, however at the cost of solving a
continuous version of the considered problem-inthe first stage. To resolve this computational
complexity problem, we propose a hatdware implementable Dual Projected Gradient (DPG)
method to exploit deep submicron technology. Therefore, our approach can meet the real-time
application requirement through the assistance of hardware.

In chapter 4, we present another OO theory based three-stage approach to deal with the
large-dimension ASABA problem of multiuser OFDM system. First of all, we reformulate the
considered problem to separate it into subcarrier assignment and bit allocation problem such
that the objective function of a feasible subcarrier assignment pattern is the corresponding
optimal bit allocation for minimizing the total consumed power. Then in the first stage, we
develop an approximate objective function to evaluate the performance of a subcarrier
assignment pattern and use a genetic algorithm to search through the huge solution space and
select s best subcarrier assignment patterns based on the approximate objective values. In the
second stage, we employ an off-line trained ANN to estimate the objective values of the s

subcarrier assignment patterns obtained in stage 1 and select the / best patterns. In the third



stage, we use the exact objective function to evaluate the / subcarrier assignment patterns
obtained in stage 2, and the best one associated with the corresponding optimal bit allocation
is the good enough solution that we seek.

Some conclusions for the dissertation are drawn in Chapter 5. We also suggest some

possible future research issues concerning the methods developed in this dissertation.



Chapter 2

Preliminaries

2.1 Multiuser Orthogonal Frequency Division Multiplexing System

The basic idea of OFDM is to divide the available spectrum into several subcarriers so that
the information symbols are transmitted in parallel on the subcarriers over the wireless
channel. This allows us to design a system as shown in Figure 2.1 to support high data rates
transmission.

We assume that the system has K users to share N subcarriers. Each user’s data rate request
will be allocated to a nonoverlapping set of subcarriers and distributed among them. The
allocating period in this model is a time interval consisting of several OFDM symbols and is
assumed to be short enough so that users’ channel gains will stay approximately constant. It is

also assumed that a subcarrier cannot be shared by more than one user.

Base station transmitter

1 1
1 1
1 1
1 1
1 1
' Data of user 1 > —>|Adaptive modulator 1 |—> Add '
1 ) T > _ | Subcarrier e lator 2 !
! ata of user | assignment —>|A aptivermodutator |—> Guard :
! : and bit : IFFT Interval !
' . allocation . '
! Data of user K |— | —}lAdaptive modulator NI—P '
1 1

1

(FRRPRRIY RSP T ______________________________________________________

Frequency Selective
_ _ The resource Fading Channel for
Channel information | 5| allocation module the kth user
from K users
Pt e e
| v ! User k receiver !
! 1
1
i 4—|Adaptive demodulator 1 !
' Tantive domodul > |<_ Remove |
! Extract bits 4_|A aptive demodulator |4_ Guard |
! <—  forthe : FFT [« Interval [¢ :
| kth user : !
' 4—|Adaptive demodulator N|<— !
! 1
1

Figure 2.1. Block diagram of a multiuser OFDM system with subcarrier assignment
and bit allocation.

In the transmitter part of Figure 2.1, the serial data from K users are fed into the block
represented by the proposed adaptive subcarrier assignment and bit allocation algorithm. The

algorithm will be executed in every allocating period to assign the set of subcarriers to each



user and the number of bits to be transmitted on each assigned subcarrier based on the updated
channel information of all users. For each subcarrier, the adaptive modulator will apply a
proper modulation scheme to each symbol depending on the number of bits assigned to the
subcarrier, and the modulated symbols are transformed into time domain samples by an
Inverse Fast Fourier Transform (IFFT) as indicated in Figure 2.1. The guard interval is then
added to ensure orthogonality between the subcarriers provided that the maximum time
dispersion is less than the guard interval. Finally, the transmitted signals pass through different
frequency selective fading channels to different users.

We assume the subcarrier assignment and bit allocation information is sent to the receivers
via a separate control channel. For the sake of simplicity, we only show the receiver part of
one user in Figure 2.1. At the kth user’s receiver part, the guard interval is removed to
eliminate the ISI, and the time sample of the kth user is transformed into modulated symbols
using the Fast Fourier Transform (FFT),sFThe:modulation information is then used to configure
the demodulators while the subearrier@sSignment information is used to extract the

demodulated bits from the subcarriers assigned to the kth user.

2.2 Adaptive Subcarrier Assignment and Bit Allocation (ASABA) Problem
In OFDM communication system, the power level needed for transmitting ¢ bits from

Si(©)

2
ak,n

transmitter to user k receiver using subcarrier n is , where f,(c) denotes the required

transmission power for c¢ bits of user & when the channel gain is equal to unity and ¢,
denotes the magnitude of the channel gain of the nth subcarrier as seen by the kth user. Just as

an example, we assume that M-ary QAM is used in the communication system, then the

required power f,(c) in S 50) to transmit ¢ bits/symbol can be derived from [3]":
k,n
N, P X
i@ == EOr e D 2.1)

where 07'(x) is the inverse function of

! The formula (2.1) is directly borrowed from [3, Sec. V, p.1725], which is an approximation based on the
bit-error probability, 40(y/d 2 /(2N,)) , and the average energy, (M —1)d 2/6, of a MQAM symbol, where d is

the minimum distance between the points in the signal constellation.
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0(x) =ﬁfe2dt (2.2),

Ny denotes the noise Power Spectral Density (PSD) level, and P, denotes the BER.

In general, wireless link capacity is generally a scarce resource that needs to be used
efficiently. The channel-gain conditions of wireless links between transmitter and mobile
users vary in the time domain, and different subcarriers experience different channel gains.
Therefore, the subcarriers which appear in deep fade to one user may not be in deep fade for

Si(©)

2

other users. A typical example of channel gains, «, ’s, in
: o

can be shown in Figure 2.2,

N

and a lower magnitude of the channel gain represents a deeper fade channel condition.

boundary
of the cell

Base Slalion

Figure 2.2. An example of channel gain.

Therefore, multiuser OFDM communication system can take the advantage of channel
diversity among users in different locations to adaptively assign subcarriers and allocate
modulation levels. In particular, large subcarrier gains result in higher order modulation to

carry more bits/symbol, while subcarriers in deep fade carry one or even zero bits/symbol.



Hence power consumption can be greatly reduced under a good resource allocation scheme.
Then, the adaptive subcarrier assignment and bit allocation for multiuser OFDM system can
be formulated as a nonlinear integer programming problem as shown in (2.3) to minimize the
total power consumption while satisfying the users’ data communication request and system’s
constraints®. In this dissertation, we focus on proposing an efficient and effective algorithm to

solve (2.3) for a good enough feasible solution.

min P (=332 £ e, )

Ck,n>Pk,n n=l k=1 O},

N
subject to R.=> ¢, k=1..K
n=1

K
> Pin=1ln=1L.,N
k=1

.. € D, forallk,n

0 if =0
e £5 e “forallkn (2.3)
| 1 |;otherwise

where P, denotes the total tramsmission” power to' be minimized; p,, is an indicator

variable, and a subcarrier can be oceupied by at most one user as described by the equality

constraint on 0, ; R, (bits per OFDM symbol) denotes the requested data rate of the
kthuser; c,, denotes the number of bits of the kth user assigned to the nth subcarrier, and

D ={0,1,2,..,M} denotes the set of all possible values for ¢,,, thus the first equality

constraint in the problem formulated in (2.3) implies that the subcarrier assignment and bit
allocation should meet the user’s data rate request.

Clearly, (2.3) is a nonlinear integer programming problem or a constrained combinatorial
optimization problem, because 0, and c,, are integers for all k, n, and Pr is nonlinear. To
cope with the computational complexity of this problem, we will employ the OO theory based

algorithms to efficiently seek a good enough solution with high probability instead of

searching the optimal solution.

? Notation employed here is followed from [3].



2.3 Review of Ordinal Optimization Theory

The Ordinal Optimization theory [10]-[12] is a new methodology designed to deal with
hard problems such as the lack of structure problems, problems with uncertainties, or
problems with huge sample space that grows exponentially with respect to the problem size.
The problem considered in this dissertation is of the latter kind. There are two basic tenets of

the OO theory. The first is that of order versus value in decision making. Obviously, to

determine  whether P, (p,,¢))<Pr(05,c,) 18 much easier than to determine
P, (py,¢5) = Py (p,¢;) =?. In other words, consider the intuitive example of determining which

of the two boxes in two hands is heavier versus identifying how much heavier one is than the
other. The second tenet is the goal softening. Instead of asking the best for sure in
optimization, it settles for the good enough with high probability. A conclusion drawn from
the OO theory is the following.

Suppose we simultaneously evaluate a large set of alternatives very approximately and
order them according to the approximate evaluation. Then there is high probability that we
can find the actual good alternatives if we limit ourselves to the top n% of the observed good
choices.

Firstly, we use only a very rough model:to order the goodness of a solution relying on the
robustness of ORDER against noise and model error to separate the good from the bad.
Second, we soften the goal of the problem and look for a good enough solution, which is
among the top n% of the search space, with high probability. These two steps greatly reduce
the computational burden and search difficulties of the problem. A summary of these search
procedures for obtaining a good enough feasible solution of ASABA problem with high
probability can be described in the following: 1) Using either a uniform selection or a heuristic
method to select a feasible representative set I with size / for the search space. ii) Using an
easily computed crude model to roughly evaluate and order the performance of each sample
in I and collect the top s samples to form a selected subset (SS), which is the estimated good
enough subset. The OO theory guarantees that SS consists of actual good enough solutions
with high probability. iii) Evaluating the exact objective value for each sample in SS to obtain

the good enough solution.



2.4 Review of Genetic algorithm

Genetic algorithm [13]-[16] is population-based searching technique based on the idea of
“survival of the fittest”, which repeats evaluation, selection, crossover, mutation and repair
after initialization until a stopping criterion is satisfied. In a GA, a set of solutions are analyzed
and modified by genetic operations simultaneously, where selection operator can select some
“good” solutions as seeds, crossover operator can generate new solutions hopefully retaining
good features from parents, mutation operator can enhance diversity and provide a chance to
escape from local optima, and repair operator can avoid infeasible solutions during the
evolving processes.

In this dissertation, GA is used in the second method to select / good solutions from the
search space of the considered problem. The flow chart of the GA used in our approach is

shown in Figure 2.3.

Generate an initial generation

»
»

Calculate estimated objective value using crude
model for each population in the generation

v

Roulette wheel
selection

Crossover

Output the evolved generation as the
representative set

Figure 2.3. The GA procedure to the proposed method.



2.5 Review of Artificial Neural Network

An Artificial Neural Network [17]-[19] is a mathematical model or computational model
based on biological neural networks, which learns from previously prepared input/output data
then to determine the output data for a given input data. The key element of ANN is the novel
structure of the information processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in unison to solve specific problems.
Through a learning process, various types of ANN models can be effectively used for many
applications, such as pattern recognition, function approximation or data classification. In this
dissertation, a simple feed-forward ANN is employed as a crude model to roughly evaluate

the objective value of the considered problem, (2.3).

Input #1

Input #2

Input #3

Input #4

Figure 2.4. Diagram of a simple feed-forward ANN with a single hidden layer.

A diagram of a simple feed-forward ANN with a single hidden layer is shown in Figure
2.4. The ANN consists of one input layer, one hidden layer, and one output layer. Each
layer contains neurons (circles in the figure), and the neurons in each layer are fully
connected to the nearest layers above or below by the lines. A weight is associated with
each arc line. The neurons in the input layer receive the input vectors, and neurons in the
output layer produce the output vectors in response to the input vectors. The layers are
connected through the weighted arcs. Neurons in hidden layers and the output layer
perform two operations: they sum the products of arc weights and the signals from the

previous layer, and pass that sum through a transfer function—often a sigmoid, hyperbolic

11



tangent sigmoid, or linear function.
Supervised learning can be used to train an appropriately configured ANN to implement
a mapping. In our methods, an ANN is off-line trained and is employed as a surrogate

model to estimate the objective value of the considered problem.

12



Chapter 3
A Real-Time Method for Adaptive Subcarrier Assignment and Bit

Allocation problem of Multiuser OFDM System

To deal with the high mobility of the dynamic behaviors of mobile users and devices, the
real-time application requirement is the premise of the wireless network resource management
solution methods. Therefore, in this chapter we will present an OO theory based four-stage
approach for the subcarrier assignment and bit allocation problem of multiuser OFDM system
with emphasis on the solution quality and the computational efficiency to meet the real-time
application requirement.

In the first three stages, we will use surrogate models to select a subset of estimated good
enough feasible solutions from the candidate solution set so as to reduce the search space of
subcarrier assignment until / (=3) good enough subcarrier assignment patterns are obtained.
The surrogate models in these ‘three stages' are.refined from stage to stage, because the
required computation time has become less-as the size-of the candidate solution set diminishes.
Then in the fourth stage, we will employ a greedy algorithm [20] for single user on each of the
[ subcarrier assignment patterns to obtain the corresponding optimal bit allocation, and the one
achieving the smallest power consumption will be the good enough feasible solution that we
seek. The most computationally intensive stage among the four lies in the first stage, in which
we need to solve a continuous version of the considered problem. To cope with the
computational complexity caused by the nonlinear programming algorithm, we propose a
hardware implementable numerical method to exploit the merit of nowadays integrated circuit
technology so as to obtain the optimal continuous solution extremely fast. Therefore, our OO
theory based four-stage approach not only obtains a good enough feasible solution but also
meets the real-time application requirement.

We organize chapter 3 in the following manner. In Section 3.1, we will present the Dual
Projected Gradient (DPG) method to solve the continuous version of the considered problem.

In the meantime, we will also present the hardware architecture of the DPG method. In

13



Section 3.2, we will present the OO theory based four-stage approach for finding a good
enough feasible solution. In Section 3.3, we will present some test results and compare our
approach with some existing methods in the aspects of power consumption and computation

time. In Section 3.4, we will make a conclusion.

3.1 The Dual Projected Gradient Method and Its Hardware Architecture

3.1.1 Reformulation

Since problem (2.3) is a computationally intractable combinatorial problem, Wong et al.

introduced the variable 7, =c¢;,0;, to transform (2.3) into the following

continuous-variable convex optimization problem over a convex set.

mln Zzpknfk kn

e EOM/Jk

Pr€l0, =t & eon
N
subject to Ri= Zrk’n, k=l,.0K
n=1
K
t= Y pii=1s.... N (3.1)
k=1

where both p,, and 1, are continuous variables, satisfying 0<p, <1, and

0<r., <Mp,,, respectively. Note: when p,, =0, then r,, =0, and % becomes undefined,

therefore, we define f (%) in(3.1)as f(0).

If we apply a typical Lagrangian relaxation method to solve (3.1), there will be a singularity

problem in the variable p, , just like that shown in [3]. In order to develop a hardware

implementable dual-type method, we need to eliminate this singularity problem by adding

extra terms in the objective function of (3.1) to strictly convexify o, ,, for every k,n, as

follows:

N

pl’l N
min ZZ : fkp" Z pkn

Tkn
1 k=1 n=1 k
JC (2] ’”’ ko
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subject to R, Zrkn, =1L...K

1= P, n= (3.2)

k=1
If 0>0, (3.2)isaconvex programming problem with strictly convex objective function.

K

N
Remark 3.1: (1) Adding the extra terms ZZ% ,f will help us build the surrogate model
k=1

in Stage 1 of our OO theory based four-stage approach as will be shown later. (ii) The optimal

solution of (3.2) is a good approximate solution of (3.1) provided that o is small enough.

3.1.2 The Dual Projected Gradient (DPG) Method for Solving (3.2)
The DPG method will solve the dual problem of (3.2), as shown in (3.3), instead of solving
(3.2) directly.

max ¢(A) (3.3)
where A=(A,.., A, A,..,A%)" is the Lagrange multiplier vector such that A, corresponds
to the kth user’s data rate request comstraint,-and A7 corresponds to the nth subcarrier

assignment constraint, and the dual function ¢@(A)."is defined by

N
o=, B, X L.y S ﬂkn+Z%<RA ISV <Zm G4

E[Ol] n=1 k=1 kn Jl nlkl n=l n=1

By suitably rearranging the terms, (3.4) can be rewritten in a more compact form as

N K
loz 1 . 1
A= min Plen o Jhny (O 52 L arp gry s, L
Pp(A) = . EE)MIO’ Z::,kZ: k” pk’n 5 Pien ¥ Al = Akl A Pen = nt (3.5
Pk

The DPG method employs the following iterations to solve (3.3):
At +1) = A(@) + )V (A1) (3.6)
where ¢ denotes the iteration index, B(t) is a positive step-size and

Vo) = (2240 | 99(AW) 99AW)  I9UAM)\ris the gradient of  P(A()) evaluated at
Y AV RV . V /4

A = A(t), which can be calculated by the following formula [21]
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994D _ p _ifm,k =1,...K 3.7)

oA,

0p(A(1) ~ .

= E 0, —Ln=1,.. .
oA k=1 n ~Ln =L N (3.83)

The (F'.0") = (7 seos P n> Prpos Pxy) in (3.7) and (3.8) is the solution of the
minimization problem on the RHS of (3.5) for a given A(¢). Therefore to obtain V@(A(r)),

we need to solve for 7 and p first, and the key for making the DPG method hardware

implementable is we use a two-phase strategy to fulfill this task.

The first phase is to solve the minimization problem on the RHS of (3.5) without the

inequality constraints on r, , and 0, ,, which is shown in (3.9) and will be called the

unconstrained minimization problem.

N K

. Pin Tien lo} 1 ., , 1

mmzkz{ai fk(,Ok )+3:013,n +Fﬂ'kRk = ATen + A0 Pr _Eﬂf} (3.9
n=1 k=1 N R

We denote the optimal solution of the unconstrained minimization problem (3.9) by
(FT B )= (T seees P s Py seees Oy Yo (7 p%) can. be ‘obtained from solving the first order

necessary conditions, which can be fully decomposed into N - K independent 2x2 equations

as shown below: For n=1...N, k=1,....K,

1 ’ r]{,}’l r
_2fk(~_)_ﬁk(t):0 (3.10)
ak,n k,n

1 Tk on s Tk Tk on ~

() = () 24 0Py, + AL (1) =0 (3.11)
ak,n k,n pk,n pk,n

For each n and each £, the simple 2x2 equations shown in (3.10) and (3.11) can be solved

analytically by
Fon =D f (A0, (3.12)

A (1) = alz[f T RO ) - A O, [T (A O,)]

i, = (3.13)
O

where f7' is the inverse function of £, which can be derived once f is given, for example
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the f givenin (2.1).
The second phase is to handle the inequality constraints disappearing in (3.9) by projecting

(7.,,> Or.,) onto the range [0,Mp, ,1x[0,1], for each k and each n. The projection can be

calculated based on simple geometry as shown in (3.14).

o~ - 1 1 -
(M,l) if rk,n >M, rk,n >M+H_ﬁpk’"
M M 1 1 1 1
My, +p, ) ——— 7, +— P ifr, >Mp,,, —p,, <r. <M+———p
(M2 +1( k.n pk,n) M2 +1( k,n M pk,n)) k.n pk,n M pk,n k,n M Mpk,n
(P> Prn) if 0<0, <1, 0<%, <Mpy;,
(;k,n’pk,n)z (ink,n) if ngk,ngl’ 7/{,’1<O
FenD) if o, >1 0<%, <M (3.14)
(0,1) if o, >L 7, <0
o~ ~ 1 -
(050) lfpk,n <0’rk,n <_H pk,n
The resulted projection will be the optimal solution, (7", 0") = (7. Fg y> D110 Pxy ) » OF

the minimization problem on the RHS of (3!5) as.had-been proven in [22] and [23].

Convergence of the DPG method using a positive constant step-size ,5’ (i.e. setting
L= ,5’ for every ¢) can be proved like that“of the Dual Projected Pseudo Quasi Newton

method in [22] and [23]. A typical value of '/ is 0.5.

As indicated previously, the optimal solution of (3.2) will be an approximate solution of
(3.1) if o 1is sufficiently small. However, larger o will speed up the convergence of the

DPG method. Thus, we let o,(=1),0,,...,0, be a decreasing sequence of o such that

Jmax
0,,=n0;, where 7n(<1) is a reducing factor, and j . 1is a positive integer that makes
o, (= n’=) small enough. Then, we can initially set o =0, in (3.2) and use the obtained
optimal solution as the initial guess to solve (3.2) again with o =0, . Repeating this process

until o=0, , and the corresponding optimal solution of (3.2) will be a very good

approximate solution of (3.1).

3.1.3 Hardware Implementable Algorithm of the DPG Method

To enhance the computation speed further, we will propose a hardware architecture to
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implement the DPG method. To do so, we need to put the DPG method in algorithmic steps
that can be mapped into the operations of the arrays of Processing Elements (PEs), which are
defined as the hardware for carrying out the arithmetic operations in the DPG method. First of
all, we should modify the convergence criteria of the DPG method by setting a large enough

number of iterations, say ¢, , such that if s>/ ., we assume the DPG method converges.
Furthermore, we should predetermine the value of ;  , which is the number of times that

o will be reduced.

It can be observed that all the computation formulae of the DPG method, (3.7), (3.8), (3.12),
(3.13), and (3.14), achieve a complete decomposition property, that is the computations for
each £ and each n can be carried out independently. Furthermore, all these computations
consist of simple arithmetic operations only. These facts imply that the DPG method is very
suitable for hardware implementation. However, it is not wise to assign a PE to calculate each

individual component, for exampleyealculating: 0, , for every k and everyn in (3.13),

because this will make the size-of the integrated circuit chip too big to be implemented.
Therefore, to render the difficulty of chip'size. we can use N arrays of PEs such that the
nth PE array will take care of all the K computations corresponding to one » in (3.7),
(3.8), (3.12)-(3.14). Although such arrangement seems to degrade the computational speed, in
fact it will not affect the purpose of real-time application as shown in Section 3.3. On the basis
of using N PE arrays, we can put the DPG method in the following parallel-computation
algorithmic steps:

Step 0: Set the values of A(0), o(0), 7 (<1), ¢ ;set j=0 and t=0.

max 2 .]max s

Step 1: Set k=1, R(M)z—l for each n. (Note: R(M(—/ut))) represents a
oA oA

dP(A(1))
G

temporary memory for the term

).

Step 2: Compute in parallel (7;,,0,,) by calculating (3.12) and (3.13) for each n.
Step 3: Project in parallel (7,,0,,) onto the range ([0,Mp, ,1.[0,1]) for each nusing

(3.14) to obtain (#,,,0,,) foreach n.
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. P (A(t X .
Step 4: Compute % =R, - F,-

k n=1

G0, _ p 2OG0)

Step 5: Compute in parallel R( )+ P, foreachn.

Step 6: Update A (t+1) = A (1) + B%.
k

Step 7: If k=K, go to Step 8; otherwise, set k =k +1 and return to Step 2.

Step 8: Update in parallel A2(r+1)=A7(¢) + V;; 99(A(1) for each . (Note: the value of

oA
0PAM) 5y : dP(A(1))
o —;pkﬂ 1 isstored in R( o ).)

Step 9: If ¢>¢_, , go to Step 10; otherwise set ¢ =¢+1 and return to Step 1.

Step 10: Set o(j+1)=no(j).

Step 11: If j > j __ , go to Step12; otherwise; set j= j+1, A,(0)= A (¢) for each £,
A?(0) = A (¢t) foreach. n, k=1, t=1I,and return to Step 1.

Step 12: Stop.

dP(A())
Y%

Remark 3.2: The reason why we execute Step 5 for K iterations to calculate
for each n is because weuse N instead of N-K PE arrays.

3.1.4 Hardware Computing Architecture of the DPG Algorithm

Mapping the DPG algorithm into a hardware architecture needs to consider the following
four parts: (i) the data storage, (ii) the computations, (iii) the iteration count and the
convergence detection for branching the data flow, and (iv) the interconnections between PEs
and data storage elements. In the following, we will present the details of each part.

(1) Regarding the data storage, we employ registers to store the constants, 77, ¢

max ? J max ?

A

b, R, a,f,n, and 1/ a,in, of the algorithm, and the temporary values of the variables,

(1), R(%), A@), k=1..,K, 0(j), (7, 0c,) k=1..,K, generated in the
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algorithm. For the sake of simplicity in interconnection, the registers for storing the constants
are embedded in the PE responsible for the computations that need the constants. However,

there are three types of registers denoted by R(A) for storing the temporary computed-values
of the variables A as shown in Figure 3.1. For example, R(A?) denotes the register for
storing the computed value of A7. The type 1 registers are for storing the computed values of

A? and o; A? is updated when k=K, and o is updated when both k=K and ¢=¢

as indicated in Steps 7-8 and Steps 9-10, respectively. Therefore, a write enable controlled by

the value of k& and ¢ are needed as shown in Figure 3.1. The type 2 registers are K-bank

registers for storing the computed values of A,k =1,....K, or (7,,0;,), k=1..,K, such
that the kth bank will store the value of A, or (7,,0,,). Since the iteration index of the

innest loop of the DPG algorithm is_k, ,we need a register indicator k£ to point to the

corresponding register bank as shown inFigufe 3.1. Furthermore, A, and (7, 0,,) are

computed for every k, thus type 2 registers are always write enabled. The type 3 register is for

k
storing the value of z 0,,, —1; therefore type 3 register is always write enabled, however its
=1

value has to be reset to -1 when k£ =1 as shown in Figure 3.1. It should be noted that the

action of writing data into the registers occurs at the end of the clock pulse (i.e. at the positive

edge of the next clock pulse) when write enable is active. For example, o, in R(o) is

updated to o ,,, at the end of the clock pulse corresponding to both k=K and r=¢_,,.

write data write data write data write data write data

Vo ' ' I
. s [ k k. LRG,A0. | k=1 0000)
== PR(Y R(o DRUALLA) | Y 5D R

@) | k[ RO (&) ler D) Py

read data read data read data read data read data

Type 1 Type 2 Type 3

[> : write enable [ : register indicator D : reset

Figure 3.1. The three types of registers for storing the temporary computed values of the
DPG algorithm.
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(i) Regarding the computations, we employ seven types of PE to carry out all the

arithmetic operations required in the DPG algorithm. These PEs are named as PE., PEZ,

PE’

n?d

PE', PE’, PE’, and PE’, where the superscript denotes the type of PE, the subscript

denotes the index of the array, and the PE without any subscript means it is single in the N PE
arrays. Each type of PE consists of different hardware components needed for calculating a
specific step in the DPG algorithm and yields the results needed in other step or steps. We will

state the hardware components in a PE and its corresponding algorithmic step in the following.

In the nth PE array, PE, performs Step 2 and outputs the computed (7 ,,0,,) to PE;
its hardware components depend on the function f, (¢). In addition, PE! consists of registers
for storing ¢, and 1/}, for all kand a register indicator k used to choose the
corresponding register. PE’ consists of six multipliers, four adders, and several comparators

to perform Step 3 and output theyeomputed (7 ,,0,,) to PE! , PE*, and

R((7,, b,m ),k=1,.,K); PE’ econsists of aregister for storing the constant ,5’ , one adder and

one multiplier to perform Step “8 and output the computed A°(t+1) to R(A’); PE’

consists of one adder to perform Step 5 and output the computed i o, —1 to R(%’ip(t)))
k=1 n

and PE]. The single PE*consists of log,(N +1) adders to perform Step 4 and output the

computed ‘ME()’;O)) to the single PE’. In addition, PE* consists of registers for storing R,

k

for all k& and a register indicator k for choosing the corresponding register. The single PE’
consists of a register for storing the constant /3, one adder and one multiplier to perform Step
6, PE’ outputs the computed A, (t+1) to R(A,..,4;). The single PE’ consists of a
register for storing the constant # and a multiplier to perform Step 10; PE’ outputs the

computed o(j+1) to R(c). We summarize the characteristics of these PEs in Table 3.1 to

indicate the corresponding algorithmic step, embedded constant, input data [from], output data
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[to], and the computation complexity of a PE, which is shown in the last column and will be
analyzed later.

Table 3.1
The characteristics of PEs

Algorith  Embedded Computation
mic Step  Constant Input Data [from] Output Data [to] Complexity
A (O [R(A)],
PE! swp2 of,.l/c;, o())[R()], (% > P,.0) [PEZ] 5©&2® & 1rRoM'

VAGILIZ )

) - 1 Fin [PE*1, O [PE ],
PE. Step3 - (Fens ) [PEL] o o 2 &1®
s Pen) R(Gy s Py )k = 1K)

- _ 6
PE] Step8 Vi ;p”" HPE. At +1)[R(A)] 1I®& 1@
A () [R(A])]
PE* Step4 R, 7y [PE; ],...o7i v [PEX] %[PES] log,(N +1) ®
k
IP(A(1)) [PEY]
PE’ Step6 Y ox . A+ R ..., X)] 1®& 1@
A @RS 4]
< dP(A(1))
> o RE =Y |
6 1=1 : a//{f AN a¢(/1(t)) 3
PE’ Steps - b ) g‘pﬁn 1[R(—a/15 ),PE}] 1@
PE’ Step 10 n o(j)[R(o)] o(j+1)[R(0)] 1®

$® : operation of a multiplication; @ : operation of an addition; ROM: operation of accessing data of a ROM.

(ii1) There are three loops in the DPG algorithm, and the number of iterations in each loop
has been set fixed. A branching will occur when completing the iterations of a loop as
described in Steps 7, 9, and 11. Therefore, we need three counters to count the number of
iterations consumed in each loop so as to control the branching of the DPG algorithm.

The three counters are the k-counter, -counter and j-counter, denoted by CT &, CT ¢ and
CT J, respectively, and represented by the square blocks shown in Figure 3.2. The values of
CT k and CT ¢ will be fed into the corresponding registers for proper operation. For
example, the value k& of CT k will be used to indicate the iteration index of the innest loop,

Steps 1-7, to point to the corresponding register bank in the Type 2 registers. When k=K,

there will be a branching at Step 7, such that the output data of PE’, which performs Step 8,
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will be written into the register R(A?). Similar reason applies to CT ¢ that when ¢=¢

max?

there will be a branching at Step 9, such that the output data of PE’, which performs Step

10, will be written into the register R(o). Furthermore, when the value of CT k changes

IP(A(1))

from K to 1, the value of the register R( Y0

) will be reset to -1 to perform Step 1. The

value of CT j will be used to detect the convergence of the DPG algorithm. Thus, when
J=J..» the DPG algorithm will be stopped and output the approximate solution of (3.1),
thatis (7,,0,),k=1,...,K,n=1,...,N.

The counters are designed such that CT k will circulate from 1 to K and increase by 1 for

every clock pulse, CT ¢ will circulate from 1 to 7 and increase by 1 for every K clock

pulses, and CT ; will increase by 1 for every K-t clock pulses.

CT k _-If-, CT ¢ B R ° CTj |- 9_c>£1vergence

Figure-3.2. The three counters.

(iv) Now, we are ready to interconnect thearray PEs, registers and counters so as to execute
the DPG algorithm. From the columns of the input data [from] and the output data [to] in
Table 3.1, we can use solid lines with arrow heads to indicate the direction of the data flow to
interconnect the PEs and registers as shown in Figure 3.3, in which we assume N=3 and do
not show the system clock for the sake of simplicity.

The three counters, CT k, CT ¢ and CT j, as described previously, are used to count the
number of iterations and control the branching of data flow. Therefore, to distinguish from the
regular data flow, we use the dashed lines with arrow heads to indicate the flow of counter
values to the corresponding registers as shown in Figure 3.3.

For the sake of simplicity, we will illustrate how the hardware architecture executes the

DPG algorithm for one array as follows.

We initialize the values of registers R(%) (Step 1: R(%):—l), R(A)
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(Step 0: A2 =0), R(A,., A)(Step 0: A, =0,k=1..,K), R(o)(Step 0: o,=1), the
counter values of CT k& (Step 1: &=1), CT ¢ (Step 0: +=1), CT j (Step 0: j=1), and command
PE, to start execution. ThenPE, will perform Step 2 and output the resulted (7,,0,,) to
PE! as shown in Figure 3.3. Then PE: will perform Step 3 and output the resulted
(Fens Pr,) to PES, PE*, and R((%,,0,).k=1,..,K). It should be noted that the data
(s Pr,) Will be written into the kth register bank of R((7,,0,,).k =1..,K) as selected

by the value k of the counter CT k as shown in Figure 3.3. Once PE* receives the computed

¢ 2900

Fewsn=1..,N from the N PE;'s, it will perform Step 4 and output the value o Y
k

to the single PE’. Then PE’ will perform Step 6 to update A (¢), and the updated value

”

will be sent to register banks R(A[,..., 4, ). In the meantime, PE® will perform Step 5 using

k-1
the computed data 0, , from PEZ and thedata ). 0, —1 in R(8¢(/1(z))

o) then output the
=1 aﬂn

r B9

k
resulted data Z,&,,n to )~and .PE] -as shown in Figure 3.3. The above
=1

calculations and data flow complete ‘one iteration of the innest loop, Steps 1-7, and should be
done in one clock pulse, whose period need be long enough such that the output data of all
PEs can reach steady states. The counter CT k will increase by 1 for each activation of a
clock pulse (Step 7). As k increases by 1, the output of the register R(A],..., A) willbe A,
instead of A, thus next iteration of the innest loop starts.

The above process will repeat and a branching will occur when the value of CT k reaches
K. When k=K the write enable of the register R(A”) will be active, and the output data of
PE;, which performs Step 8 with input data from PE’ and R(A?) as shown in Figure 3.3,
will be written into R (A7) . After this clock pulse, the value of CT_k will start from 1 again,
and the value of CT ¢ will be increased by 1 (Step 9). As ¢ increases by 1, the value of
A.n=1..,N, as well as A, ,k=1,.,K, have been updated, then next iteration of the

middle loop starts.
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Figure 3.3. The hardware architecture of the DPG algorithm.

The above process will repeat and a branching will occur when the value of CT ¢ reaches

tmax

performs Step 10 with input data from R(o) as shown in Figure 3.3, will be written into
R(0). In the meantime, the value of CT k will start from 1 again, and CT ¢ also starts from 1
while the value of CT j will be increased by 1 (Step 11). As j increases by 1, the above

process start all over with a new o (=0,,,). This process will proceed until CT_j reaches

Jmax» Which implies the DPG algorithm converges (Step 12), then as shown in Figure 3.3, the
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(Step 9), which will activate the write enable of R(o), and the output data of PE’, which




buffer will be activated to output the data (7, ,,0,,) .k =1..,K, n=1,.,N, the solution of
(3.2) when o=0;  or the approximate solution of (3.1). This completes the description of

the execution of the DPG algorithm for one PE array.

From Figure 3.3, we see that the structure is very regular, modular, and locally
interconnected; hence it is hardware implementable.

Remark 3.3: Exploiting the merits of hardware computation and parallelism of the DPG
algorithm, the computation time estimated based on the hardware architecture is almost
independent of the N, however at the cost of large area when N is large. Taking N=128 for
example, we need 1666 multipliers in the hardware architecture, which is huge indeed.
Manufacturing an integrated circuit with large gate counts is a challenging issue, however it

can be resolved due to the advancement of semiconductor manufacturing technology.

3.1.5 Computation Complexity of the DPG Algorithm

As indicated previously, the clo¢k periodjsheuld be long enough such that the outputs of all
PEs can reach steady states during an iteration. In other words, the clock period should be
longer than the computation time.of the eriticalpath i.e. the most time consuming path of the
DPG hardware architecture. To identify the critical path, we need to analyze the computation

complexity of each PE first. The computation complexity of a PE can be directly derived from

its corresponding arithmetic operations. For example, PE* performing Step 4 of the DPG

algorithm requires log,(N +1) stages of adders, therefore, it takes log,(N +1)@®, where

@ denotes an arithmetic operation of addition. Similar reasoning applies to PE2, PE., PE’,
PE’ and PE. However, the hardware component of PE! depends on f,(c). A typical

f,(c) canbe B-(2°—1),where B is a constant, then we may use six multipliers, three adders,

and one Read Only Memory (ROM) to perform Step 2, though the details of which are
omitted here. We have reported the computation complexity of all PEs in the last column of
Table 3.1. The data propagation time between PEs and registers are negligible compared with
addition or multiplication, and the actions of writing data into or reading data from a register

consumes the time no more than that of one addition. We let T

clock

denote the to be designed
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clock period. Identifying the critical path in Figure 3.3, we have

T

clock

=T

1
PE!

+T

2
PE2

+7 . +T . +T ., +2T

PE* PE’ PE’ @

(3.15)
where TPEin and T, ; denotes the time complexity of executing PE; and PE’, respectively,

and 2T, represents the time needed for writing data into and reading data from registers.

Note that the action of writing data into the three registers in the critical path occurs

simultaneously. Therefore, writing data into three registers only counts for one T . Similar

reasoning applies to reading data from these registers. Hence, the computation time of the
proposed DPG algorithm is

K-t T

clock

(3.16)

max : Jmax ’

3.2 The Ordinal Optimization Theory Based Four-Stage Approach

To obtain a good enough solution of the considered problem, (2.3), while using limited
computation time to meet the real-time application requirement in the OFDM system, we
employ an OO theory based four=stage approach as presented in the following.

3.2.1 Stage 1: Reduce the Search Spage of-Subcarrier-Assignment Using Continuous Optimal
Solution Based Model

Intuitively, a true solution that is neighboring to the optimal solution of the continuous

version of the considered problem may be a good enough solution. However, all the possible

subcarrier assignment p, ., k=1,.,K, n=1,., N,are neighboring to the optimal continuous
solution, which is denoted by p, ,. Wong et al. in [3] chose the closest one, which, however,

may cause infeasibility, and even if it is feasible, there is no guarantee that it is a good enough
subcarrier assignment. Thus, in this stage, we will reduce the subcarrier assignment patterns
by excluding all the ineffective subcarrier assignments based on our solution process for
obtaining the approximate continuous optimal solution of (3.1). As indicated previously,

o,(=1),0,,..,0;

;. 1s a decreasing sequence of o such that o, =50, . Welet p, (o))

denote the optimal continuous o, of (3.2) when o = o, . Then we claim that subcarrier n

is inappropriate to be assigned to user kif p,,(c;) =0for every j=0,L,..., ... The reason
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for this is simple as stated in the following.

We let p,., (o)denote the largest p, (o) among all k=1,..,K for the given n. The

N K o
term in the objective function of (3.2) regarding o is ;;50@ . The sensitivity of this term
with respect to p, (o) is op,, (o). Suppose we increase o by Ao, then the decrease of
Py, (o) by the amount —Ap, ., where we assume Ap, , >0, will cause an approximate

extra-reduction of the objective value due to the increase of o by - p, (0)AcAp,,. Thus,

decreasing p,., (o), will be most beneficial if we increase o. This implies that increasing

K
oin (3.2) will force p,. (o) to decrease. Then by the constraint ; Pen =1 fora given n,
if p,. (o) decreases, there must be at least one k"€ {l,..,K},k” # k", such that p,. (o)
will increase. Among p; ,(0),k=1...K,n=1..,N, the ones with p,/  (o)=0are the most
possible candidates to be p,. (0); because therincrease of such p, (o) will cause an

approximately zero increment in the objective value due to p, ,(c)AcAp,, = 0. Thus, if

they don’t, it simply implies that it is‘inappropriate to assign subcarrier # to those users with

P;,(0)=0 and keeping 0 while ‘o, jincreases. We have solved a sequence of (3.2) with
0,,j=0l..j.,. and obtained p, (c,), j=0,L..,j,,.for all k and n. Then based on the

above argument, we have that p, (0,)=0, j=0,1, implies subcarrier n is not

o s
suitable to be assigned to user k, because when o, increases to o, (o; >0, ) but
pr,(0,) isstill 0.

Therefore, our crude model for selecting roughly good subcarrier assignment patterns in

this stage can be stated as follows. We first set o, , =0 for the (k,n)’s whose corresponding
optimal continuous ,OZ,H (0)=0 forall o0=0,,0,.,0, . Wedenote y, as the number of

O.,'s that are not set to be 0 for a given n. Then there will be y, possible subcarrier

assignment patterns for a given n, that means these y, nonzero p,,'s take turns to be 1.

N
Subsequently, we will choose feasible subcarrier assignment patterns from the Hn possible

28



patterns and form the set of roughly good subcarrier assignment patterns resulted in this stage.

It should be noted that checking the feasibility of a pattern, say (0, ;,.... 0k 15O xs-+sP% x ) » 1S

simply checking whether Mi P 2R, hold for every k.

n=l1
Remark 3.4: The reduction of the search space of subcarrier assignments had been reduced

from K" (which is considered to be the worst case and may include the infeasible patterns)
N
to Hn . Based on our simulation experience, a lot of y, 's are .

3.2.2 Stage 2: Choose s Estimated Good Enough Subcarrier Assignment Patterns Using an
Approximate Model

To evaluate the estimated performance of the feasible subcarrier assignment patterns

obtained in Stage 1, we will employ an approximate model to estimate the total power

consumption of each pattern as follows. For a given feasible pattern
A N a
(D115 ok 5+-osO1 -0k ) » WE let &N =Zpk,n and P M denote the total number of
=

subcarriers assigned to and the average power consumption coefficient of user &, respectively.

We assume the requested data rate R, of user /& -are distributed equally to the assigned

subcarriers, then the approximate power consumed by userk, denoted by P, can be

A

~ N . .
calculated by B, =—% f,(R,/N,). Consequently, the estimated total consumed power for
ak

K
the given pattern, denoted by P, , willbe P, = ZPk . We apply the above estimation process
k=1

to each feasible pattern obtained in Stage 1 and pick the s (=50) patterns with smallest PT to

form the estimated good enough subset denoted by SS.

Remark 3.5: Based on the surrogate model with modeling noise w, the selected s patterns

will contain at least y actual top x% patterns among the Hh with probability 0.95. There

v
exists a quantitative relationship between the values of s, y, x, w and []7. as indicated in

n=1

[12]. In general, larger s can have more y and smaller x but it will take more time for further
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evaluation. Therefore, for the real-time application consideration, we set s =50.

3.2.3 Stage 3: Choose [/ Estimated Good Enough Subcarrier Assignment Patterns from the
SS

To evaluate the s (=50) subcarrier assignment patterns using exact model is still too time

consuming to meet the real-time application requirement. Therefore, we will employ a more

refined model than the one used in Stage 2 to select / (=3) estimated good enough patterns

from SS. The more refined model we employ here is a supervised learning Artificial Neural

Network (ANN) used to evaluate the estimated consumed power of user k& for a given

subcarrier assignment pattern (o, ... 0y, Py yses P )- LIS ANN model is constructed

off-line using 5000 input/output pairs, and the details are described below.

The data associated with user k is the data rate request R,, the power consumption
coefficient ¢, ,,n=1,.,N, and the subcarrier assignment pattern regarding user £, i.e.
(015 Pry) - For such a given data veetor' (R.e,,....o y.0;,.P.y) » an optimal bit

allocation algorithm or the so called greedy-algorithm [20] can be used to optimally allocate
the bits to the assigned subcarrier to meet the data rate request while minimizing the power

consumption of user &°. However, the dimension of the vector (R s Oy yeees Xy s Pprseeos Py ) 18
too large. Thus, we will employ (Rk,Nk,o?k,dak)T to characterize user k, and serve as the

input vector to the ANN, where N ., and ¢, had been defined in Stage 2, and

do, = max ¢, — min ¢,. Consequently, the 5000 input/output pairs used to train the ANN
1,0 =1 ’ 1,0 =1 ’

can be obtained as follows. We uniformly select 5000 pairs of (R, , N . ) from the following

2R,

]. For each N x» we randomly select distinct n,,...,n,
k

ranges: R, € [5,150], N, € [%,

from {1,...,N}, and randomly select ¢, , from the range [0,1.5] for each i= l..,N,. The @&,

3 This optimal bit allocation for each subcarrier assignment pattern is what we mean the exact model, and it
is used for the ANN’s off-line training.
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and da, can be computed accordingly. Thus, we have 5000 input vectors of the form

(Rk,Nk,O?k,dak)T. Now for each (Rk,Nk,akn -0, ), we can use the greedy algorithm to
S MR

compute the corresponding minimum consumed power of user k denoted by fN’k Thus,

(R,,N,,é,,dey,)) and P, form an input/output pair. We then use the obtained 5000
input/output pairs to train a three-layer ANN. The input layer consists of four neurons, which
correspond to R,, N,, &,, and do,. We use 15 neurons in the hidden layer, and each

neuron uses hyperbolic tangent sigmoid [17] as the transfer function to calculate the output

from the summed value of its inputs. There is only 1 neuron in the output layer
corresponding to the consumed power fN’k of user k, and we use linear [17] as the transfer

function. Using the above mentioned 5000 input/output pairs, we train this ANN by the
Levenberg-Marquardt method proposed in [18] and [19].

Remark 3.6: In general, the mor¢ neurons, if not too many, in the hidden layer, the more
accurate the ANN will be. Even though our ANN'is trained off-line, more neurons in the
hidden layer will increase the dimension of the arc weights thus increase the computation time
for obtaining the output of ANN, which may hurt' our purpose of real-time application. Since
what we care here is the performance orders rather than the performance values of the tested
input vectors, perfect accuracy is not necessary. Therefore, to save computation time, we
select a moderate number of neurons, that is 15, in the hidden layer. In addition, there exist
various activation functions such as step function, hard limiter, ramp, hyperbolic tangent
sigmoid, linear,..., etc.[17]. Which function to be used really depends on the application. In
our problem, we found hyperbolic tangent sigmoid and linear are the most suitable activation
functions for the hidden layer and output layer, respectively. Furthermore, we found that the

Levenberg-Marquardt method converges fast in training our ANN.

Once the ANN is trained, we can estimate 13k of each subcarrier assignment pattern in SS
by setting up the corresponding input (Rk,N 0, ,da,), feeding it into the ANN, and the

output will be the estimated P,. Thus, the estimated total consumed power of a subcarrier
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~ ~ K ~
assignment pattern, denoted by P,, in SS will be P, = ZPk , and the / (=3) patterns with
k=1

smallest estimated ]3T among the s will be the estimated good enough subcarrier assignment

patterns determined in this stage.

Remark 3.7: In [24], we have simulated that using a more accurate surrogate model to
evaluate s (=50) candidate solutions, the top / (=3) solutions will contain the actual best
among the s with probability 0.99.

3.2.4 Stage 4: Determine the Good Enough Subcarrier Assignment and Bit Allocation

Since there are only [/ (=3) subcarrier assignment patterns left, we can use the exact model,
i.e. greedy algorithm, to calculate the optimal consumed power P, for each pattern with very
limited computation time. The subcarrier assignment associated with the optimal bit allocation

corresponding to the smallest P, among the three will be the good enough solution of (2.3)

that we look for.

3.3 Test Results and Comparisons

In this section, we will test the performance of the proposed approach in the aspects of
solution quality and computational  ¢fficiency.- We will also compare with the existing
subcarrier assignment and bit allocation algorithms such as the algorithm proposed by Wong
et al. in [3], the linear programming approach proposed by Kim et al. in [5], the iterative
algorithm proposed by Ergen et al. in [6], and Zhang’s approach in [8].

As depicted in Figure 2.1, we assume the OFDM system has 128 subcarriers (i.e.
N =128) over a 5 MHz band. The system uses M-ary quadrature amplitude modulation
(MQAM) such that the square signal constellations 4-QAM, 16-QAM, and 64-QAM carry

two, four, and six bits/symbol, respectively; therefore in this system D ={0,2,4,6} and
M =6. We adopt the approximate formula in (2.1) for the fi(c) in the transmission power

Ji(©)
2

ak,n

shown in the objective function of (2.3).

Remark 3.8: The f, (c) in our hardware implementation is not limited to the formula given

in (2.1), which is simply an example formula for the purpose of comparisons. However, we
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have to admit that once a function or a form of f, (¢), which may correspond to certain coding
and modulation schemes, is assumed, changing hardware is not as easy as the software.

In all simulations presented in this section, we set P, = 10™* for each user, and the wireless
channel is modeled as a frequency-selective channel consisting of six independent Rayleigh
multipaths. Each multipath is modeled by Clark’s flat fading model [25]. We assumed the
delays and the corresponding gains of the six paths are 100-p nanosecond and
e~*” (exponentially decay), respectively, where p =0, 1, 2, 3, 4 and 5 denote the multipath

index. Hence, the relative power of the six multipath components are 0dB, -8.69 dB, -17.37 dB,

-26.06 dB, -34.74 dB, and -43.43dB. We also assume the average subcarrier channel gain
E‘ak,n‘z is unity for all & and ». Based on the above assumptions, we generate power

consumption coefficients ¢ ,,k=1,...K,n=1...,N, using MATLAB for our simulations.

We consider various number of users by setting K=2, 4, 8, 16, and 32. For each K, we

randomly generate 500 sets of &, ,,[k=L..,K,n=l,.,N, based on the above mentioned

power consumption coefficient generation process and denote ¢ as the ith set in the 500.

We assume a fixed total requested data rate R, (5512 bits/symbol) and randomly generate

K
R, k=1..,K, based on the constraint ;Rk =Ry By the above test setup, we have run our
approach for each K, each set of ¢, k=1...K, n=1.,N, and each set of

R,, k=1,..,K. We also apply the four methods mentioned at the beginning of this section to
the same test.

For each K associated with the data rate request R, k =1....,K, we denote abSNR(c')

% _

, abSNR (')

as the average bit SNR* when ¢ is used and calculate = the average abSNR,
500

* 1t is noted that the average required transmit power (in energy per bit) is defined as the ratio of the overall
transmit energy per OFDM symbol, the P, in (2.1), to the total number of bits transmitted per OFDM symbol,

which consists of 512 bits in our test case. Moreover, we define the average bit Signal-to-Noise Ratio (SNR) as
the ratio of the average transmit power, %, to the noise PSD level N, . As we have assumed that all the data
rates per symbol are fixed at 512, and the N is just a constant, thus the P, is proportional to the average bit

SNR. Therefore, for the purpose of comparison, we can use the average bit SNR to replace P, .
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resulted from the 500 ¢'s using our approach and the other four methods and report them in
500 )
> abSNR(&t')

Figure 3.4. We can see thatthe === obtained by our approach, which are marked by
500

"

" in Figure 3.4, is smallest among all methods. Moreover, the performance of our approach

is even better as the number of users increases as can be observed from Figure 3.4.

19.5
Our approach
: —+ —Wong et al.
19l —<—Ergenetal. |
& Kim et al.
—*— Zhang
% 18.5+ .
0N
Q9
@
S
g
()
18+ f
I
17.5+ f
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0 5 10 15 20 25 30 35

Number of users in the system

Figure 3.4. The abSNR for K=2,4,8,16, and 32 obtained by the five methods.

In previous comparisons, we have set P, =107, It would be interesting to know how will
the QoS requirement affect the performance of our approach. Therefore, we have tested the
performance of the five methods for various K and various P, ranging from 10 to 107
using randomly generated 500 sets of ¢, ,,k=1,...,K,n=1,..,128, for each K and each P,.

The conclusions on the performance for various K are similar. A typical one is shown in
Figure 3.5, which corresponds to K=7. The average of the 500 average bit SNR for various

P obtained by our approach is marked by " " in Figure 3.5. We can see that the
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performance of our approach is the best among the five, and when the QoS level is required

higher (i.e. the value of P, 1is smaller), the performance of our approach is even better (i.e.

smaller average of the average bit SNR compared with the other four methods).

10 3
| & Our approach H
+: Wang et al. |]
10kl | < Emgenetal {]
== g Kim et al.
10°
@
o
10
10°
10° e

10 12 14 16 18 2 22
The average of average bit SRR (in dB)

Figure 3.5. Comparison of the performance of the five methods with respect to various P,
for the case of K=7.

To investigate the computational efficiency of our approach and the other four methods, we
need to report the average computation time for obtaining the abSNR(<'). However, as we
have previously indicated that the DPG method will be implemented by integrated circuits, the
computation time of our approach is partly real and partly estimated, and its details are stated
in the following.

All the computation time of our OO theory based four-stage approach except for the DPG
algorithm are recorded in the employed Pentium 2.4 GHz processor and 512 Mbytes RAM PC,

and we denote it by 7 . For K=2, 4, 8, 16, and 32 in the test results shown in Figure 3.4, the

corresponding average T, for obtaining an abSNR(a') are 1.214 ms, 1.686 ms, 3.386 ms,

5.366 ms, and 11.136 ms, respectively. To estimate the computation time of the DPG method,
we base on 90-nm CMOS integrated circuit technology and denote this estimated computation
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time as 7,. We let ®, @ and ROM denote the operations of a multiplication, addition,
and accessing the data of a ROM, respectively, and define 7 as the computation time for
performing the operation (-). Referring to the work of Hsu, S.K. et al. [26] and Kanan R. et
al. [27], T, =1.0ns fora 16x16 bit multiplication’, and it takes 1.2 ns for accessing the data
of a ROM. In practical designs, the circuit complexity of a 16x16 bit multiplication is five

times greater than a 16+16 bit addition [28, Ch. 5, p. 113, and Ch. 13, p. 433], thus we can set

Ty = 0.2 ns. Then, based on the last column of Table 3.1, we have T, =6.6ns,

=16ns, T

PE’

TPEg =22ns, T

- =1.2ns, and 7, =1.0ns. In our simulations, the values

of ¢, . XJ.. aresettobe 8000, 10000, 12000, 15000, and 18000 for cases of K =2, 4, 8,

16, and 32, respectively. Thus based on (3.15) and (3.16), the estimated computation time, T,
of the DPG method is 0.208 ms, 0.52 ms, 1.248 ms, 3.12 ms, and 7.488 ms for cases of K =2,
4, 8, 16, and 32, respectively. Summing up 7, “and 7., the estimated average computation
time of our approach for obtaining.an abSNR(a'). for various K are reported in the second
row of Table 3.2. We also report-the average-computation time of the other four methods on
the same test case in rows 3-6 of Table 3.2. The ‘'method proposed by Wong et al. is most
computation-time consuming as have been indicated in [5]-[9]. Considering that the frame
length of a wideband OFDM is 20 ms [29], the proposed approach can meet the real-time

application requirement for high mobility circumstances.

Table 3.2
Average computation time (ms) for obtaining an «bSNR(c/') for various number of users
Computation
fime (ms) 2 4 8 16 32
Method

Our approach 1.42 2.21 4.63 8.49 18.63
Wong et al. 103.32 185.3 371.3 701.2] 1507.1
Ergen et al. 10.18 14.9 18.8 31.1 53.2
Kim et al. 24.95 30.5 40.6 96.6 225.9
Zhang 26.81 42.5 45.3 60.3 88.1

® A question may be raised that whether 16-bit data type has enough precision for implementation. The answer is
yes, because the resulted ,OZ,” that we need from the hardware computation is whether ,OZ,” is zero or

nonzero but not how accurate the nonzero value is.
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As demonstrated above, our approach outperforms the other four methods in the aspect of
power consumption, and we can obtain the results in real-time.

Remark 3.9: It seems not fair that the computation time of our algorithm are partly
estimated from hardware performance, while the computation time of other algorithms are
entirely from the computer simulation. In fact, what we want to assert is we can achieve the
best performance among all methods (the comparisons resulted in Figure 3.4) in real-time (the
data shown in the second row of Table 3.2).

Remark 3.10: As we have indicated in Remark 3.2 that the DPG method is simple, hence it
takes more iterations to converge. However, the key that it can help speed up our approach is
its hardware implementability, and this is the reason why we estimate its computation time
based on the hardware architecture rather than the commonly adopted expression.

Remark 3.11: In the deep submicron technology, the effect of the wire delay is prominent,
especially in the design of large area,ericomplicated routing. There are two types of wire
delay in our hardware architecture; the intra and inter wire delay. The intra wire delay is the
wire delay inside the hardware component of-a PE, such as the multiplier. The inter wire delay
is the wire delay between PEs and registersiof the hardware architecture shown in Figure 3.3.
The intra wire delay plays a dominantirole in the overall wire delay, however they had been
taken into account in our estimation of computation time. Since our hardware architecture is

very regular and modular, the inter wire delay can at most be a small fraction of 7}, the

estimated computation time of the DPG algorithm, and will not affect the real-time
application.

To evaluate the actual goodness of the obtained good enough solutions, we should compare
with the optimal solution of (2.3) using extensive simulations. To cover more system

conditions in our simulations, we consider the cases of N=32, 64, and 128 and take four

various K for each N. We define Average Bit Per Subcarrier (ABPS) as J to denote the
N

congestion condition of the system. We set =6 and consider three cases of ABPS, ABPS=3,
4 and 5, for each N and each K. For each (N, K, ABPS), we randomly generate 250 sets of

R, ,k=1,.,K, based on the constraint on ABPS, and randomly generate a set of
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.. k=1..,K,n=1,.,N, foreachsetof R,,k=1,.,K. Weemploy (2.1) for the f(c) but

set P,.=10" and N,=1. Table 3.3 shows the average of 250 9=D ;100 for each (N, K,
d

APBS), where D and d denote the actual optimal power consumption of (2.3) and the power

consumption of good enough solution obtained by our approach, respectively. For each ABPS,

D ) ) )
y x100% of various N and K is shown in the last row of Table

the average of the average

3.3, which indicates the average deviation of d from D 1is around 1.0% in various
congestion condition of the system. This shows that the good enough solutions we obtained

are really good enough.

Table3.3
x100% for each set of N,K and ABPS

The average

Average 2=D 1400,
N K d
ABPS =3 | ABPS=4 | ABPS=5

32 4 0.246 0.300 0.283
32 6 0.646 1.260 0.874
32 8 1.606 1.634 1.115
32 10 1.837 L.778 1.568
64 4 0.198 0.114 0.131
64 8 07557 0.422 0.241
64 12 1.872 1.663 1.295
64 16 D=L 2.328 2.090
128 4 0.056 0.081 0.080
128 8 0.131 0.110 0.144
128 16 0.501 0.863 0.852
128 32 2.572 2.842 2.793
Average 1.037 1.116 0.956

3.4 Concluding Remarks

In this chapter, we have proposed an OO theory based four-stage approach to solve the
adaptive subcarrier assignment and bit allocation problem of multiuser OFDM system for a
good enough feasible solution. To resolve the computational complexity problem caused by
the DPG method in our approach, we propose a hardware architecture to implement the DPG
method so as to exploit deep submicron technology. Comparing with some existing methods,
the quality of the good enough feasible solution obtained by our approach is excellent, and the

estimated computation time meets the real-time application requirement.
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Chapter 4

A Computationally Efficient Method for Large Dimension Subcarrier

Assignment and Bit Allocation Problem of Multiuser OFDM System

In multiuser OFDM communication system, the increasing dimension will (i) adverse the
computational complexity of the already time consuming mathematical programming based
approaches [3], [5] and (i1) enlarge the discrete solution space, which will degrade the quality
of the solutions obtained by the more local-like approaches [6]-[9] as well as the
corresponding computation time. Although the method presented in chapter 3 can result a
good enough solution and can meet real-time application requirement, however, implementing
the first stage in hardware is almost impossible for area concern due to the large-dimension
ASABA problem. Thus, dealing with large-dimension ASABA problem based on
software-like method is a challenging . issue in .wireless communication, and the purpose of
our proposed second method is proposinig a computationally efficient method to solve the
considered problem for a good enough solution for large-dimension ASABA problem.

The quality of the solution obtained by the-mathematical programming based approach [3]
is considered to be one of the best so.far. However, they arbitrarily round the optimal
continuous subcarrier assignment pattern off to the closest discrete values may cause
infeasibility problem and not guarantee to be a good solution, if feasible. To avoid the
undesirable effect caused by rounding off, we will handle the discrete solution space directly
and use a global-like approach. However, the global searching techniques [30] such as
Genetic Algorithm (GA), Simulated Annealing method, Tabu Search method and Evolutionary
Programming are not adequate here because of their tremendous computation time, which is
even worse than the mathematical programming based approach due to (i) evaluating the
objective value of a feasible subcarrier assignment pattern is time consuming, (ii) handling the
constraints is not an easy task and (iii) the size of the discrete solution space is huge.
Evaluating the exact performance (i. e. the objective value) of a feasible subcarrier assignment
pattern is a conventional “value” concept. However, it is indicated in OO theory that the

performance order of discrete solutions is likely preserved even evaluated by a surrogate
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model. In other words, the OO theory claims that there is high probability that we can find the
actual good discrete solutions if we limit ourselves to the top n% of the estimated good
discrete solutions evaluated by a surrogate model [12]. Thus, to retain the merit of global
searching technique while avoiding the cumbersome conventional performance evaluation of
a discrete solution, our approach is based on OO theory to solve the considered problem for a
good enough solution with high probability using limited computation time.

The approach consists of three OO stages. First of all, we will reformulate the considered
problem to separate it into subcarrier assignment and bit allocation problem such that the
objective function of a feasible subcarrier assignment pattern is the corresponding optimal bit
allocation for minimizing the total consumed power. Then, in the first stage, we will develop
an easy-to-evaluate approximate objective function to estimate the objective value of a
subcarrier assignment pattern and employ a GA to search through the huge discrete solution
space to find the top s subcarrier assignment patterns based on the estimated objective values.
In the meantime, a subtle representation’|scheme and a repair operator for GA need be
designed to handle the constraints of the considered problem. In the second stage, we use an
off-line trained ANN to estimate.the objective values of the s subcarrier assignment patterns
obtained in stage 1 and pick the top*/ patterns based on the estimated objective value. In the
third stage, we use the exact objective function to evaluate the / subcarrier assignment patterns
obtained in stage 2, and the best one associated with the corresponding optimal bit allocation
is the good enough solution that we seek. In the proposed three-stage approach, the models
employed to evaluate a solution are varying from very rough (stage 1) to exact (stage 3). In
the meantime, the candidate solution space is reduced from the original huge solution space
(stage 1) to only / candidate solutions (stage 3). In general, a more accurate approximate
objective function will take more time to evaluate a solution; however as can be seen from our
three-stage approach, when a more accurate approximate objective function is used, the
search space is already reduced considerably, and the computation time is largely reduced
accordingly.

We organize Chapter 4 in the following manner. In Section 4.1, we will reformulate the

considered problem. In Section 4.2, we will present our three OO stages to solve the
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considered problem. In Section 4.3, we will apply our algorithm to numerous large-dimension
ASABA cases and compare with some existing algorithms in the aspects of solution quality

and computation time. Finally, we will draw a conclusion in Section 4.4.

4.1 Reformulation

We assume the solution of (2.3) exists, which is equivalent to the following assumption:
there are enough subcarriers to meet the data rate request of all users, i.e. the following
inequality hold
K
AR @1
k=1 M

because a subcarrier cannot be shared by more than one user. Notation [y] in (4.1) denotes

the integer closest to y on the right-hand side.
Remark 4.1: (1) The situation that the solution of (2.3) does not exist, i.e. assumption (4.1)

does not hold is beyond the scope of this dissertation. (ii) For the extreme case that
K

;[%W =N and the spectrum is:fixved for each user, (2.3) becomes a very simple optimal bit

allocation problem and can be readily solved by the-existing greedy algorithm [20]. However,

methods proposed in this dissertation and [3-9] aim to solve ASABA problem, (2.3), which is

much more complicated than the above mentioned extreme case.

To develop an approximate objective function for a subcarrier assignment pattern, we

need to reformulate (2.3). We let p , ¢, « and R denote the vectors
(Penllernllog ) k=1.,K,n=1,.,N, and [R,],k=1,.,K, respectively, and define C(0), the

feasible set of bit allocation c for a given p, as

N
C(p)={c|0<c,, <Mand Ry = py ,cp k=1, K,n=1,..,N, foragiven p} ~ (4.2)

n=1

K
Now for a given subcarrier assignment pattern p that satisfies Zpk,n =L n=L.,N and
k=1

Pin€ {01} forall kand n, (2.3) becomes an optimal bit allocation problem under the given p

that is to find the optimal ¢ of the following problem:
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N K
mcinzz%fk (cin)

=t k=1 Cicon
subject to ce C(p)
C(p)#¢ (4.3)
where the constraint C(p)#¢ represents the existence of feasible bit allocation ¢ for the

given p . Note that the assumption, (4.1), of our problem does not imply C(p)#¢ for any

K
o that satisfies Zﬂk,n =L n=L..N and p,,€{01}; for example, in an extreme case that
k=1

P11 =P =..=py =1 and the rest of 4, =0, then if (4.1) is satisfied but R, #0 for any
k#1, we have C(p)=¢ for the given p. However, the assumption (4.1) guarantees that

there exists p such that C(p)#¢. In fact, the constraint C(p)#¢ is equivalent to the

inequality constraints g < Mﬁ: oin, k=L..K. Thus, we can rewrite (2.3) into the following

n=1

form:
e O
mingmin ) > 5L (c )l c € C(p)}
PEl’ n 5 %en
. N
subject to R, SMZ,Ok,n,k=l,...,K,

n=l

K
D Pen=ln=1.,N,
k=1

Pin €101}, forall kand n (4.4)

(4.4) can be viewed as a separation of subcarrier assignment and bit allocation problem,
because the optimization problem inside the big bracket is the optimal bit allocation problem

for a given feasible p that satisfies all the constraints in (4.4), and the overall problem is
finding the best feasible p associated with an optimal bit allocation. Furthermore, the

optimal bit allocation problem is separable for a given feasible p, because its objective
N K 0

function ZZ%/‘}{(C;{,H), as well as the constraints ce C(p) are separable. Thus we can
n=1 k=1 “k,n

decompose it into the following K independent subproblems: For £#=1,...,K,
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. u pk,n
min ZTfk (ckn)

C sl N
kol ChN o O

subject to 0<c;,<M,n=1..,N,
N
Rk = ch,n (45)
n=1
Clearly (4.4) is a constrained combinatorial optimization problem with (i) hard to evaluate

pk,n
0(/3,)1

N K
objective function, because the objective function min) >

n=1 k=1

filee)lee Cpyy itself 1s an

optimization problem, (ii) equality and inequality constraints involving integers and (iii) huge
discrete solution space for p aslong as K and N are large.

Remark 4.2: As indicated previously, the assumption (4.1) is to assume that the solution of
(2.3) exists. Since (4.4) is equivalent to (2.3), the assumption (4.1) should also apply to (4.4) to
assume the solution of (4.4) exists. It should be noted that no additional assumption is needed
to derive (4.4) from (2.3). Furthermorg, the decomposition of the objective function of (4.4), i.e.
the term inside the big bracket of (4.4), into (4.5)-has nothing to do with the assumption (4.1).

This decomposition simply says that for-a given feasible p, the optimal bit allocation for

individual user is independent of each other.

4.2. The Three-Stage Ordinal Optimization (OO) Approach

The proposed three-stage OO based approach for solving (4.4), or (2.3) equivalently, consists
of three OO stages as stated in the following.

4.2.1 Stage 1: Using GA to Select Top s Subcarrier Assignment Patterns Based on an
Easy-to-Evaluate Approximate Objective Function

As shown in (4.5) that the objective function of (4.4) for a given feasible p can be

decomposed into K independent optimal bit allocation subproblems. We let =Y p., and

n=1

N
Zpk,nak,n
=1

=
Nk

denote the total number of subcarriers assigned to and the average power

consumption coefficient of user £, respectively. Then, we use the following to approximate the

optimal power consumed by user £, i.e. the optimal objective value of (4.5), for the givenp.
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We assume the total data rate request R; of user k are distributed equally to the assigned Ny

subcarriers, i.e. setting ck,n:f/" for each assigned subcarrier, and assume each of the N;
k
subcarriers has the same power consumption coefficient &, defined above, then the power
A ~ N R
consumed by user &, denoted by A, can be computed by ~ =df’2‘fk(Nf")- Consequently, we can
k k

obtain the approximate total consumed power for the given o, denoted by P, , by calculating

K

B = % , which will serve as the approximate objective function of (4.4).

k=1

Then, to use GA as a global searching technique, we need to define a representation scheme
K

to map all p that satisfy p,, {0} and X r.=! into a set of chromosomes first [30], [31,
k=1

Ch.14]. Let the alphabet of the representation scheme be the set {1,2,...,K}. We define the

chromosome u as a string of N symbols, u,u,,...,uy , such that the nth symbol u, , which takes

an element from the alphabet, indicates, the, user that subcarrier » is assigned to. In other

words, u, =k means p, ,=1 and. p,  =0yderall k#k. This representation scheme ensures

K
that g, el and satisfies) o, =1, because u, taking; only one element from the alphabet

k=1

implies that the nth subcarrier €am at most be assigned to one user. However not all

N
chromosomes u can satisfy the inequality constraints ») p,,>#, required in (4.4). The

n=1

. . . . .. R
required number of subcarriers for user k£ to meet the inequality constraint is at least [ﬁﬂ . We

define &,(u,)=1 if u, =k and 0, otherwise. Thus, the number of subcarriers assigned to user

N
k in a chromosome u is ) 5., . To meet the inequality constraint, the following has to hold

n=1

REEA (4.6)

n=1

N
We define o,w)=)4, (un)—ﬁ;—ﬂ, then o, (u)>0 implies the number of subcarriers assigned

n=1
to user & is enough or surplus, and &, (u)<0 implies the other way. Therefore, for a given u
we can compute ¢, (u) for k=1.,k and order them in an ascending sequence

o, W) <o, W)<..<0o, u)> Where the ordered indices ki,....kx € {l..,K}, and we have no order
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preference for the &’s with same values of o, (). Thus o, (u)>0 implies u satisfies (4.6) for

all £ and is feasible.

Suppose o, (1) <0, then u is infeasible. Such an infeasibility problem may occur to any

newly generated chromosomes, resulted from initial population generation, crossover
operations, and mutation operations, and can be resolved by a repair operator, which is
designed to recover the infeasible chromosome to a feasible one as stated in the following.
Under the assumption that we have enough subcarriers to meet all users’ data rate request,
4.1), if o,w<0, there must exist 7 such that o w<.<0,w<0, o, W20, 20, and
0, +..+0;, ) 2~0, w)+.+0, ). Thus, we can reassign the surplus subcarriers of users k,,,...kx

to users k,,...k; in the following manner. Randomly pick the surplus subcarriers that were

1

assigned to user kx to make up the insufficient subcarriers required by ki, that is randomly
pick an u, from all u,’s with u,=kg, and reset the picked u,, as u,~=k;. When all surplus
subcarriers of user kx are reassigned, we proceed with picking the surplus subcarriers of user
ki1 and so forth. Similarly, when the numbet of insufficient subcarriers of user k; is made up,
we proceed with making up the-insufficient subcarriers of user &, and so forth. The above
process will continue until the nutaber of insufficient subcarriers of user 4; is made up. Then
the resulting u will be feasible. Based on this repair operator, we may describe the employed
GA to solve (4.4) in the following.

We randomly generate /, say 200, chromosomes such that each symbol of each
chromosome is assigned by an element randomly selected from the alphabet, {1,...,K}, and
apply the repair operator to them. The resulting / feasible chromosomes will serve as the
initial population of the employed GA. To evaluate the fitness of a chromosome u based on

the above mentioned approximate total power consumption, we first compute

N
N Zé‘k(un)ak,n
Ne@) =Y 8, (,) > @ (1) == , and ﬁk(u)=N’i(2“)fk( &, for every k=1,....,K. Then, the

o Ny (u) o Ny ()

1
ﬁT(”)

K
fitness of u« will be , where 13T(u)=213k(u). Based on the fitness values of all
k=1

chromosomes in the population pool, we use roulette wheel selection scheme to select

chromosomes into the mating pool, from which we select chromosomes to serve as the
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parents for crossover. The probability that a chromosome is selected as a parent is p,, say 0.7.

We apply a single point crossover scheme to the selected parents, and the generated
offsprings may be infeasible as indicated previously. Therefore we will apply the repair
operator to each generated offspring, and the resulting feasible offsprings will replace the
corresponding parents in the mating pool. Subsequently, we will apply the mutation operation
to each chromosome in the mating pool with mutation probability p,, say 0.02. Any changed
chromosome after mutation operation may also be infeasible, and we will apply the repair
operator to it. Consequently, the resulting chromosomes in the mating pool after the above
evolution process will be the population pool of next iteration.

The above process completes one iteration of our GA. We stop the GA when the number
of iterations exceeds 60. After the applied GA converges, we rank the final / chromosomes
(i.e. u’s) based on their fitness values and pick the best s (=50) u’s. We can then convert these

s chromosomes into the subcarrier_ assignment patterns p's in the following manner:
Prn =6, for all k and n. Then, these converted p'sare the s subcarrier assignment patterns

determined in this stage, and they are feasible for (4.4).

Remark 4.3: Based on [12}; larger s=will consist of more actual good subcarrier
assignment patterns. However, larger:s may  cause more computation time for further
evaluation. Thus, the value of s should be determined based on the available computation
budget to obtain and the required goodness of the good enough solution. In the current
application, the computation time is of more concern.

4.2.2 Stage 2: Choose Top / Subcarrier Assignment Patterns From the s Based on an ANN
Model

Since evaluating the s p's obtained in Stage 1 using the exact objective function is still too
time consuming, based on [10], we can trim the candidate solution set further using a more
accurate approximate objective function. Therefore, we will employ a supervised learning

ANN [17] to estimate the optimal power consumed by user & and select top / (=3) p's from

the s.

Remark 4.4: The value of [ is also determined based on a tradeoff between the
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computation time required to obtain and the goodness of the good enough solution.
This ANN is trained off-line using 5000 input/output pairs of data. The input data

associated with user k is the data rate request R, , the number of subcarriers assigned to user £,

Ny, and the power consumption coefficient ¢, ,i=1..,N,, for the assigned Nj subcarriers

ny,.ny, . However, the dimension of the vector (Ri>@p %, ) is large provided that Ny is
large. A large ANN, i.e. an ANN consisting of large number of neurons in both input and
hidden layers, will consume more computation time to obtain the output even if it is trained
off-line. Although larger ANN can serve as a more accurate function approximator, what we
care here is the performance order rather than the performance value. Therefore, for
computation-time concern, we favor a simpler ANN. Since the values of @k >+ %k.ny, may
have some kind of distribution, to characterize these values without using the details, we may
use the corresponding mean, ¢,, and variance, var(er;) [32]. Thus, to design a simple ANN,
we will employ (R, N, ,d,,var(e,))« 10 characterize the input data of user 4.

Consequently, the 5000 input/output pairs used to train the ANN can be obtained as
follows. We uniformly select 5000 sets~of (Ry,N;) from the following ranges: R, €[5,150],

R, 2R . .
N, e V",Vk], which makes R, <MNy..to.ensure that there are enough subcarriers to meet

the data rate request. For each N, we randomly select n,,.,ny from {1,...,N}, then randomly
generate ¢, , from the range [0,2.0] for each i=1..,N,. The & and var(;) can be

computed accordingly. Thus, we have 5000 input vectors of (R,,N,,&,var(,;)). Now for
each (R, Ny, oy, - ), the corresponding output data for training ANN is the actual
optimal power consumed by user k denoted by P;. To compute P, we can use the greedy

algorithm [20] to solve (4.5) by optimally distributing Ry bits to the assigned N, subcarriers

one at a time based on the least incremental power consumption criteria. We then use the
obtained 5000 input/output pairs, ((Ry,N;,Q;,var(;)),P,), of data to train a three-layer

ANN whose structure is described in the following. The input layer consists of four neurons

corresponding toR,, N,, ¢&,,and var(e,). The hidden layer consists of 15 neurons, and each
neuron uses hyperbolic tangent sigmoid as the activation function. There is only 1 neuron in
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the output layer corresponding to Py, and we use /inear as the activation function. Using the
5000 input/output pairs of data, we train this ANN by adjusting its arc weights using the
Levenberg-Marquardt method proposed in [18] and [19]. Based on this off-line trained ANN,

we can estimate the total consumed power corresponding to a o as follows. For a given p,

N
we can compute ~, => p,, and determine o, w30 Ckn, from the gain a for each i=1,...,K.
: My,
n=1

Subsequently, we can set up the input (R,,N,,;,var(¢;)), feed into the off-line trained ANN,

and obtain the estimated P, , denoted by 7, from the output of ANN for each £=1,...,K. Then

we can compute the estimated total consumed power, denoted by 7., for the givenp by

K
Pr =;P . Using this off-line trained ANN, the / (=3) p's with smallest 7. among the s

feasible p's obtained in Stage 1 are the subcarrier assignment patterns determined in this

stage.
4.2.3 Stage 3: Determine the Good Enough Subcartier Assignment and Bit Allocation

Since there are only / (=3) Candidate feasible-p's: left, we can use the exact objective
function of (4.4) to calculate the objective value of each o . That is to solve the optimal bit

allocation problem (4.5) for the given. o using the greedy algorithm mentioned above to

K
obtain the optimal power consumption Py for user £=1,...,K. Then we calculate P = ZPk
k=1

for the given p . Consequently, the p associated with the optimal bit allocation corresponding
to the smallest P, among the / feasible p's will be the good enough solution of (2.3) that

we look for.

4.3 Test Results and Comparisons

In this section, we will demonstrate the performance of the proposed algorithm on solving
the large-dimension ASABA problem (4.4), which is equivalent to (2.3), in the aspects of
solution quality and computational efficiency by comparing with other algorithms. We
assume the OFDM system has 256 subcarriers (i.e. N=256), which can carry two, four, and

six bits/symbol; therefore in this system M=6. We adopt the approximate formula in (2.1) for
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the fi(c) in the transmission power % shown in the objective function of (2.3), and we set

P.=10"* and N, =10"?watt in the following simulations.

We use a frequency-selective channel consisting of six independent Rayleigh multipaths
to model the wireless transmission channel, and each multipath is modeled by Clark’s flat
fading model [25]. We assumed that the power delay profile is exponentially decaying with
e where p =0, 1, 2, 3, 4 and 5 denote the multipath index. Hence, the related power of the
six multipath components are 0dB, -8.69 dB, -17.37 dB, -26.06 dB, -34.74 dB, and -43.43dB.
We also assume the average subcarrier channel gain £le,,|" is unity for all k£ and n. Based on
the above assumptions, we can generate power consumption coefficients «;,. k=1,....K,
n=1,...,N, using MATLAB for our simulations.

We consider cases of various number of users for k=10, 20, 30, 40, and 50. For each K,

we assume a fixed total data rate request R,=1024 bits/symbol and randomly generate
R, k=1...K, based on the constraint ZK:RA =&, For each K and the associated R, we randomly

generate 5000 sets of ¢, k=1..K, n=1.;N, based on the above mentioned power

consumption coefficient generation process and denote o as the ith set in the 5000. With the
above test setup, we apply our algorithm to-solve (2.3) on a Pentium 2.4 GHz processor and
512 Mbytes RAM PC. We also apply the more global-like mathematical programming based
approaches proposed by Wong ef al. and Kim et al. in [3] and [5], respectively, and the more
local-like two-module scheme and two-step subcarrier assignment approaches proposed by
Ergen et al. and Zhang in [6] and [8], respectively, to the same test cases on the same PC. For

the purpose of comparison, we can use the average bit SNR (abSNR) to replace P, because

abSNR is defined as the ratio of the average transmit power, g—f, to the noise PSD level Ny.
As we have assumed that all the data rates per symbol are fixed at Ry, and the Ny is just a
constant, thus Py is proportional to abSNR.

Remark 4.5: As shown in (2.1), Py consists of the term Ny. Therefore, the magnitude of N

employed in our tests is not relevant to the results of abSNR, because the term Ny will be

cancelled out as noted in the definition of abSNR.
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For each K with the associated vector R, we denote abSNR(c') as the resulted abSNR

5000 )
Z abSNR(a')

when o is used and calculate o G , where abSNR denotes the average of the
5000

5000 abSNR’s for a given K. The resulted a»sSNr for each K and each algorithm are shown in

Figure 4.1.
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Figure 4.1. The apsnk  for K=10, 20, 30, 40 and 50 obtained by the five algorithms.

Form Figure 4.1, we see that the «»SNR obtained by our algorithm, which are marked by
"A", is smallest among all algorithms. Moreover, the result obtained by our algorithm is even
better when the number of users increases as can be observed from Figure 4.1.

Remark 4.6: The quality of the solution obtained by the approach proposed by Wong et al.
in [3] is excellent and has been used as a comparing standard in most of the literature
regarding ASABA problems [5], [7], [8]. We also manifest the quality of their solution in our
simulations as shown in Figure 4.1. The reason that supports their solution’s excellent quality
is their global-like mathematical programming based approach as indicated previously. They

first employed a Lagrangian relaxation method to solve the continuous version of the ASABA

50



problem then rounded the optimal continuous subcarrier assignment solution off to the closest
integer solution. Such an arbitrarily rounding off may cause possible infeasibility and not
theoretically guarantee to obtain a good solution, especially when the dimension of the
ASABA problem is large. Dislike their approach, we handle the discrete solution space
directly. In the first stage of our approach, our specially designed GA, which associates with a
surrogate model for fast fitness evaluation, search through the whole feasible solution space to
find some good feasible subcarrier assignment patterns. Thus, our approach is also global-like
and will not cause any infeasibility problem. Then in the second and third stages, we use the
ANN and exact models, respectively, to help pinpoint a good enough subcarrier assignment
pattern associated with optimal bit allocation among the feasible solutions resulted in Stage 1.
The arbitrarily rounding off technique employed in [3] is lack of theoretical support. However,
the foundation of our approach is OO theory, which is a theoretically sound general
methodology [10] and has several successfulrapplications on the combinational optimization
problems with huge discrete solution space[24].[33]-[34].

10°

—&— Clur algorithm
—HB—"Waong et al. [1]
—&— Ergen et al. [3]
—a—Kim et al. [2]
—4— Zhang [4]

Average cornputation time (millisecond)

10 i i :

10 20 3a 40 50
Mumber of user in the system

Figure 4.2. The average computation time for obtaining an abSNR by the five algorithms in
cases of K=10, 20, 30, 40 and 50.
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We also show the average computation time for obtaining an abSNR for each K and each
algorithm in Figure 4.2. From this figure, we see that the average computation time obtained
by our algorithm, which are around 100 milliseconds as marked by "A", is also smallest
among all algorithms. These results show that our algorithm outperforms the other four in
both aspects of solution quality and computational efficiency. More importantly, when the
number of users increases, the performance of our algorithm is even better. This
demonstrates that our algorithm is most suitable for large-dimension ASABA problems.

Remark 4.7: The methods in [5], [6], [8] are proposed to overcome the computational
complexity of the method in [3]. Indeed, the methods in [6], [8] are more computationally
efficient than the methods in [3], [5] as shown in Figure 4.2, because the former are local-like
heuristic methods while the latter are global-like mathematical programming based
approaches. In fact, the authors of [6] and [8] did not compare the computational efficiency of
their methods with the method in*[3] in their papers, because they take their methods being
conceptually faster for granted. However, since the methods in [6], [8] are local-like methods,
the computation time of each solution adjustment step is very short, but the improvement of
the solution is limited. Hence their ‘convergence rate will be degraded especially when the
dimension of the ASABA problem is large. On the contrary, the computational complexity of
our approach is less relevant to the size of the ASABA problem, because (i) the population
size and number of iterations of the employed GA in stage 1 are fixed, (ii) the parameters s
and / in stages 1 and 2, respectively, are fixed, and (iii) the structure of the ANN is also fixed.
This is the reason why the computational efficiency of our algorithm can compete with the
methods in [6], [8] in solving large-dimension ASABA problems. It is commonly understood
that the comparisons based on CPU times may not be objective enough, however we can
hardly obtain any analytical expression of the total consumed number of multiplications and
additions of the methods in [3], [5], [6], [8]. In fact, the CPU time is a commonly used tool for

the comparisons of computational efficiency in similar subjects appearing in [7], [35], [36].

52



T T T T T T
. : | —=&— Our algorithm
| —B—"vong et al. [1]
| —&— Ergen et al. [3]
| —=—Kim et al. [2]

| —#—Zhang [4]

51[{4 ........... ........... L NERIEE .......... SETERRRRTE BT o
LU ; :
o
1|:|-5 ........... . ........... .......... . ........ i ":"‘E: .... ........... .......... .
1|:|"3 | | i .
a =) 10 11 12 13 14 \-1% 16

abSNF (in dB)

Figure 4.3. Comparison of the five algorithms for various P, in the case of K=40.

In previous comparisons, we have set the BER, P, =107*. It would be interesting to know
how will the Quality-of-Service (QoS) requirement, i.e. various BER, affect the performance
of our algorithm. Therefore, we have'tested the five algorithms for K=10, 20, 30, 40 and 50
with various P, ranging from 107 to 10° using randomly generated 5000 sets of «,,
k=1,....K, n=1,...,256, for each K. The conclusions on the performance for the five algorithms
for various K are similar. A typical one is shown in Figure 4.3, which corresponds to K=40.
The abSNR obtained by our algorithm is marked by "A" in Figure 4.3. We see that the
performance of our algorithm is the best among the five in all cases of P,, and when the QoS
level is required higher (i.e. the value of P, is smaller), the performance of our algorithm is
even better (i.e. smaller abSNR compared with the other four algorithms). This further

demonstrates the superiority of the solution quality achieved by our algorithm.

4.4 Concluding Remarks

In this chapter, we have proposed a computationally efficient three-stage OO approach to

solve the large-dimension ASABA problem of multiuser OFDM system for a good enough
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solution. By looking into the insight of the ASABA problem (2.3), we reformulate it into (4.4)
and develop an approximate objective function as well as a subtle representation scheme and
a repair operator for the GA employed in Stage 1, which makes our OO approach possible in
handling the huge discrete solution space as well as the constraints. The easily computed
surrogate models employed in Stages 1 and 2 help resolve the computation complexity caused
by the hard-to-evaluate objective function. These factors contribute most to the computational
efficiency of our algorithm. Furthermore, we have demonstrated the superiority of our
algorithm by comparing with four existing algorithms through numerous test cases in the
aspects of solution quality and computational efficiency. More importantly, our approach has
wide range of applications in resource allocation problems of wireless network and

communication.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Two multi-stage OO based methods to solve the ASABA problem of the multiuser OFDM
system for a good enough solution have been presented and discussed. The first method can
meet the real-time application requirement while with the assistance of hardware. The second
method is computationally efficient for solving the large dimension ASABA problem of
multiuser OFDM system.

The first method presented in Chapter 3 consists of four OO stages to find a good enough
solution to the ASABA problem. In the first three stages, we use surrogate models to quickly
evaluate the estimated performance of a solution so as to select an estimated good enough
subset from the candidate solution set using limited computation time. When the size of the
solution space is huge, the reduction of thessearch space can be done in several stages. The
surrogate models in the stages cdn range from-very rough to more refined ones, and the exact
model will be employed in the last:stage-when there are only few solutions left in the
candidate solution set. The four-stage. OO approach ensures the quality of the obtained
solution, however at the cost of solving a continuous version of the considered problem in the
first stage. To resolve this computational complexity problem, we propose a hardware
implementable DPG method to exploit deep submicron technology so as to obtain the optimal
continuous solution extremely fast.

Due to the large dimension of the ASABA problem, implementing the first stage in
hardware is almost impossible for area concern. Therefore in the first stage of our second
method presented in Chapter 4, we develop an approximate objective function to evaluate the
performance of a subcarrier assignment pattern and use a genetic algorithm to efficiently
search through the huge solution space to find 7 (=200) good solutions.

Numerical results and comparisons with various existing algorithms are provided to
demonstrate the potential of our proposed techniques. It is shown that the proposed resource

allocation methods substantially improve the system power efficiencies. In the meantime, the
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proposed resource allocation algorithms are more computationally efficient. Moreover, the
first method can meet the real-time application requirement and the second method is suitable

for large dimensional ASABA problems.

5.2 Future Work

The proposed algorithms are based on the assumption that perfect channel information is
available for adaptive resource allocation. In practice, the estimated channel information may
be not very accurate either because of the estimation error or because of the delay between the
estimation and the transmission instances. It is therefore worth studying adaptive resource
allocation schemes while considering channel mismatch.

The circuit of the proposed hardware architecture is based on equations (2.1) and (2.3),
however, it is not general enough to hold for all practical systems. For example, the required

fi(©)
2

ak,n

power f,(c) in may correspond, to certain coding and modulation schemes. Thus, we

need to modify hardware circuit of the DPG .method for other specific f,(c). Because

changing hardware is not as easy as_the software, it'is therefore worth studying the easily
implemented hardware architecture for different'ecommunication system to meet real-time

application requirement.
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