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雙耳特徵差異分佈模版於非靜態聲源之

定位研究 

研究生：劉維瀚        指導教授：胡竹生 博士 

國立交通大學電機與控制工程學系(研究所)博士班 

摘要 

 在現實聲源定位的應用環境中，自然聲源之統計特性通常為非靜態

（nonstationary），而環境則會造成複雜的迴響（reverberation）。因此，非靜

態聲源於迴響環境中之定位，即成為工程學上重要的研究議題。本篇論文探討非

靜態聲源與雙耳特徵差異（IPD、ILD）間之關係。在本篇論文中，採用移動極點

模型的概念，提出以指數多項式建立非靜態聲源的強度波動模型。根據此模型，

本論文提出利用 IPD、ILD 的分佈模版做為聲源定位之充分條件，並解釋分佈模

版中多重峰值出現出原因。此外，本論文亦提出以高斯混合模型為基礎之「高斯

雙耳特徵差異分佈模型」(GMBRDM)，作為非靜態聲源定位之演算法。此部分所提

出之理論與演算法，皆有模擬或實驗結果加以討論與驗證。 

 除此之外，本論文將研究之非靜態聲源定位之方法應用於機器人室內定位環

境，提出一創新之機器人位置與方向偵測系統。此系統適用於迴響複雜度高之環

境，並具有對雜訊穩健之特性。實驗結果顯示，本系統可以用於近場與遠場環境，

亦可在機器人與麥克風間無直接傳導路徑時使用。由於本系統可以執行機器人之

全域定位，因此適合與其他定位方式整合，作為提供初始化參數或補償之用。 
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Binaural room distribution pattern for 

nonstationary sound source localization 

Graduate Student: Wei-Han Liu          Advisor: Dr. Jwu-Sheng Hu 

Department of Electrical and Control Engineering 
National Chiao-Tung University 

Abstract 

Nature sound sources are usually nonstationary and the real environment 

contains complex reverberations. Therefore, nonstationary sound source localization 

in a reverberant environment is an important research topic. This dissertation 

discusses the relationships between the nonstationarity of sound sources and the 

distribution patterns of interaural phase differences (IPDs) and interaural level 

differences (ILDs) based on short-term frequency analysis. The level fluctuation of 

nonstationary sound sources is modeled by the exponent of polynomials from the 

concept of moving pole model. According to this model, the sufficient condition for 

utilizing the distribution patterns of IPDs and ILDs to localize a nonstationary sound 

source is suggested and the phenomena of multiple peaks in the distribution pattern 

can be explained. Simulation is performed to verify the proposed analysis. 

Furthermore, a Gaussian-mixture binaural room distribution model (GMBRDM) is 

proposed to model distribution patterns of IPDs and ILDs for nonstationary sound 

source localization. The effectiveness and performance of the proposed GMBRDM 

are demonstrated by experimental results. 

 The proposed nonstationary sound source localization algorithm is adopted for 
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robot localization application. A novel and robust robot location and orientation 

detection method based on sound field features is proposed. Unlike conventional 

methods, the proposed method does not explicitly utilize the information of direct 

sound propagation path from sound source to microphones, nor attempt to suppress 

the reverberation and noise signals. Instead, the proposed method utilizes the sound 

field features obtained when the robot is at different location and orientation in an 

indoor environment. The experimental results show that the proposed method using 

only two microphones can detect robot’s location and orientation under both 

line-of-sight and non-line-of-sight cases and can be applied to both near-field and 

far-field conditions. Since this method can provide global location and orientation 

detection, it is suitable to fuse with other localization methods to provide initial 

conditions for reduction of the search effort, or to provide the compensation for 

localizing certain locations that cannot be detected using other localization methods. 
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Chapter 1 

Introduction 

1.1 Sound Source Localization Using Binaural Information 

The task of localizing a sound source using multiple microphones has been 

developed for years [1]. Among various kinds of techniques, methods that are based 

on the auditory system of humans or other animals using two microphones are one of 

the most popular approaches in this research field. 

Sound perceived by humans is influenced by the torso, pinna, shape of human 

head, and acoustic environment. To identify how the human body affects perceived 

sound waveforms, head-related transfer function (HRTF), or head-related impulse 

response (HRIR) were proposed [2 - 4]. Generally, HRIR is a measure of impulse 

response from the sound source to eardrums in an anechoic room [5]—HRTF is 

considered the Fourier transform of HRIR [6]. Since HRTF varies with the sound 

source location, many localization cues were discussed based on HRTF. For example, 

the interaural level differences (ILDs) and the interaural time differences (ITDs) are 

utilized as the major cues for localizing a sound source, especially for azimuth 

localization [7].  
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1.1.1 Azimuth Localization Using Binaural Localization Cues 

Brungart et al. concluded that ILDs play an important role in localizing sound 

sources near the head [8]. The ITD, or interaural phase difference (IPD), which is the 

frequency domain representation of ITD, can be estimated by cross-correlation 

functions [9] or generalized cross-correlation (GCC) methods [10, 11]. Although IPDs 

and ILDs have been studied for a long time, they have limitations. Based on an 

assumption that head and ears are symmetrical, the sound source presented at a 

median plane should produce no interaural difference. Therefore, interaural difference 

cues are insufficient for localizing the elevation of a sound source in the medium 

plane. Moreover, any sound source falls on a “cone of confusion,” as Woodworth 

called it [12], may lead to constant IPDs or ILDs. 

1.1.2 Elevation Localization Using Binaural Localization Cues 

Cues of spectral modification are very important for elevation localization and 

front-back discrimination [13]. As the sound is filtered by the pinna before reaching 

the eardrum, “pinna notch” was investigated [14]. The influence of head diffraction 

and torso reflection was also examined [15]. Therefore, the elevation of a sound 

source can be estimated by comparing the incoming spectrum with the stored HRTF 

[16, 17]. These elevation estimation methods typically assume a flat sound spectrum 

or one that is known in advance. In practice, natural sounds are highly nonstationary 

and localization systems have no a priori knowledge of the spectrum shape of the 

nature sound [16]. Although most research results showed that spectral modification 

cues are significant for elevation localization, it remains unclear how the human 

auditory system localizes the elevation of nonstationary sound [16]. 
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1.1.3 Distance Localization Using Binaural Localization Cues 

Another significant localization ability of the human auditory system is distance 

localization. Research works indicated that many possible cues exist for distance 

localization (e.g., overall sound source intensity and energy ratio of direct to 

reverberant sound [7] [18]). However, overall sound source intensity can only be 

employed for relative distance localization and the energy ratio of direct to 

reverberant sound is strongly influenced by the reflections within an application 

environment [7]. Therefore, sound source localization in three-dimensional 

environments using binaural information remains an open research topic. 

1.2 An Overview of Microphone-Array-Based Direction of 

Arrival Estimation 

Besides HRTF based approaches, methods based on multiple microphones or 

microphone array are proposed. Figure 1-1 shows the physical layout of a uniform 

linear microphone array.  

 

Figure 1-1  Physical layout of a uniform linear microphone array. 
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where x  denotes the sound source, ( ) ( )nyny ML1  denotes the signal received by 

M  microphones, ( )nyref  denotes the signal received by the reference microphone, 

AL  is the size of the microphone array and xd , xθ  are the distance and azimuth 

from the sound source to the reference microphone. Based on the relation between 

AL  and xd , the received signals can be regard as plane waves (far-field) or spherical 

waves (near-field). The definition of far-field and near field can be found in [19]. 

Generally, existing microphone-array-based sound source localization algorithms 

may be divided into three categories: steer-beamformer-based algorithms, 

eigen-structure-based direction of arrival (DOA) estimation algorithms, and 

time-delay of arrival (TDOA) based algorithms. 

1.2.1 Steer-Beamformer-Based Algorithms 

Steer-beamformer-based sound source localization algorithms [20 - 22] utilize 

beamformer algorithms to form beams for spatial filtering and steer the formed beam 

to the interested directions to obtain the spatial response. The power of the spatial 

response is then computed and the most possible sound source direction is decided by 

finding the direction with maximum power. The performance of 

steer-beamformer-based algorithm depends mainly on the resolution of the 

beamformer and the steer-beam algorithm adopted. Therefore, the performance of 

steer-beamformer-based sound source localization algorithms is limited by the 

resolution of beamformer. Raising the resolution of beamformer and increasing the 

steered beam direction result in higher computational load. 



 5

1.2.2 Eigen-Structure-Based DOA Estimation Algorithms 

The eigen-structure-based DOA estimation algorithms [23 - 34] are proposed for 

high-resolution multiple sound source localization. This kind of sound source 

localization algorithms derive the data correlation matrix from the signals obtained 

from the microphone array and compute the eigenvectors. The eigenvectors are 

separated into two subspaces, signal subspace and noise subspace, according to the 

importance of eigenvalue. Based on the theory in [24], the array manifold vector (or 

the steering vector), ( )θa , corresponds to the sound source localization and is 

orthogonal to the noise subspace. Consequently, the projection of ( )θa  to the noise 

subspace must be zero theoretically when θ  consists the direction of sound source. 

Figure 1-2 is a three-dimensional example of the relation between signal 

subspace, noise subspace and manifold vectors, where 1E  and 2E  are the 

eigenvectors that span signal subspace, and 3E  is the eigenvector that span noise 

subspace. Therefore, the manifold vector ( )θa  is orthogonal to 3E  when 

21 or  θθθ = . According to this relation, the location of sound sources can be estimated. 

The drawbacks of eigen-structure-based DOA estimation algorithms are the ability of 

dealing with reverberant signal and the requirement of eigenvalue decomposition. 

When the environment is reverberant, the eigen-structure of the data correlation 

matrix would break the assumption above and result in an un-robust estimation result. 

On the other hand, the requirement of eigenvalue decomposition makes 

eigen-structure-based DOA estimation algorithms need more processing power. 
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Figure 1-2  An illustration of signal subspace, noise subspace and manifold vectors. 

1.2.3 Time-Delay of Arrival Based Algorithms 

The TDOA based algorithms [35 - 39, 10, 11] measure the time delay using 

phase difference between microphone pairs. Cross-correlation methods and GCC 

methods discussed in 1.1.1 can also be classified in this category. The time delay is 

then combined with the geometric relation between sound source and microphones to 

estimate the most possible sound source location. Basically, TODA based algorithms 

require lower computation power then methods in the other two categories. However, 

TODA based algorithms are sensitive to the weights of processed frequencies. Works 

on how to select a set of optimal weight are proposed and discussed in this research 

field. 
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1.3 Known Problems in Sound Source Localization 

Early experimental results for HRTF were principally obtained in anechoic 

rooms using maximum-length sequence (MLS) method [40]. Since this approach is 

based on stationary sound sources in anechoic rooms, conventional studies of HRTF 

mainly concentrated on the steady-state response from a sound source to the eardrums 

caused by human body. Only a few studies addressed the issue of localizing a sound 

source in a reverberant room [14] [41]. In a real enclosure, the relation between a 

sound source and microphones is very complicated and is almost impossible to 

characterize with a finite-length data and short-term analysis method such as 

short-term Fourier transform (STFT). According to the investigation of room 

acoustics [42], the number of eigen-frequencies with an upper limit of 2/sf Hz can 

be obtained by the following equation: 

3

23
4

⎟
⎠
⎞

⎜
⎝
⎛Ψ=

ν
π sfL       (1-1) 

where sf  denotes the sampling frequency, ν  represents the sound velocity 

( m/s 340≈ν  ) and Ψ  is the geometrical volume. This equation indicates that the 

number of poles is too high when the frequency is high, and that the transient 

response occurs in almost any processing duration when the input signal is a 

nonstationary sound. For example, the number of poles is about 96435 when the 

sampling frequency is 8000 Hz and the volume is 14.1385 m3. Hence, the 

nonstationary characteristic of nature sound source makes the IPDs and ILDs between 

the signals received by two microphones from a fixed sound source vary among data 

sets.  
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In practice, reverberant sounds can significantly influence the localization cues. 

Gustafsson et al. analyzed how reverberation can distort time-delay estimation [43]. 

Shinn-Cunningham et al. showed that HRTFs are altered by reverberant sound in a 

classroom [44, 45] and the reverberation can cause temporal fluctuation in short-term 

IPDs and ILDs [44]. These studies suggest that the performance of general methods of 

sound source localization based on a set of HRTFs measured in anechoic rooms with 

stationary sound sources can be limited because of the nonstationary property of 

natural sound, reverberation, and short-term frequency analysis. Based on the 

precedence effect, some sound source localization methods excluded reverberant 

sound by detecting sound source onset [46]. However, as mentioned above, 

reverberation actually helps listeners judge the distance of sound source. Excluding 

reverberant sound can restrict the ability for distance localization. 

Besides reverberation and nonstationarity of sound source, there are still other 

non-ideal issues such as the non-line-of sight condition and microphone mismatch 

problem. When only two microphones are used, the methods mentioned above 

estimate mainly the difference between microphones. It means that the methods 

cannot distinguish between different sound sources, which are aligned relative to the 

array under far-field condition. Furthermore, barriers may exist between microphones 

and sound source (so-called the non-line-of sight condition) in real applications. 

Under these circumstances, these methods estimate only the directions of reflection or 

diffraction, and cannot determine the real source direction. In practice, microphone 

mismatch is also an important issue, since the methods above assume that 

microphones are mutually matched. Pre-matched microphones are relatively 

expensive and the microphone calibration procedure is not always reliable because the 

characteristic of microphone changes with sound direction and is hard to measure 
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precisely. 

1.4 Contribution of this Dissertation 

This work focuses on localizing sound source in complex indoor environment. 

Unlike traditional works that try to eliminate the influence of the temporal fluctuation 

caused by reverberations, this work attempts to model these fluctuations using 

statistical models for sound source localization.  

In the first part of this work, the relation between the nonstationarity of sound 

source and the distribution patterns of IPDs and ILDs when short-term frequency 

analysis is utilized for analysis is discussed. The level fluctuation of nonstationary 

sound source is modeled by the exponential of polynomials based on the concept of 

moving pole model. Accordingly, the sufficient condition for utilizing the distribution 

patterns of IPDs and ILDs to detect the location of nonstationary sound source is 

suggested and the phenomena of multiple peaks in the distribution patterns can also 

be explained. Furthermore, a Gaussian mixture based model, called Gaussian-mixture 

binaural room distribution model (GMBRDM) is proposed to model the distribution 

patterns of IPDs and ILDs for nonstationary sound source localization. 

In the second part, the related research is applied to robot’s location and 

orientation detection. An indoor sound field feature matching method is proposed and 

is applied to detect a mobile robot’s location and orientation. The sound field feature, 

captured from a sound source to a pair of microphones, contains the dynamic of the 

propagation path. Because of the complexity of indoor environment, the features from 

different path can be distinguished using appropriate models. Gaussian mixture 
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models (GMMs) [53] are utilized in this work to characterize the phase difference and 

magnitude ratio distributions between the microphone pair in consecutive data frames. 

The application provides an alternative thinking compared with traditional methods 

such as DOA estimation using propagation delay. They usually suffer from 

reverberation, non-line-of-sight and microphone mismatch problems. 

1.5 Organization of this Dissertation 

This dissertation is organized as follows. This chapter provides a brief 

introduction to the general sound source localization algorithms, including methods 

which follow the auditory system of human and methods based on microphone array. 

Moreover, this chapter also discusses the main contribution and the organization of 

this dissertation. In the next chapter, the binaural room distribution pattern and related 

GMBRDM are introduced. In Chapter 3, sound based robot’s location and orientation 

detection system is proposed and discussed. The related experiments are shown in 

Chapter 4. Chapter 5 gives some conclusion remarks and avenues for future research. 
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Chapter 2 

Nonstationary Sound Source 
Localization Using Binaural Room 
Distribution Pattern 

2.1 Introduction 

As discussed in the first chapter, localizing a nonstationary sound source in a 

reverberant environment can face temporal fluctuation of interaural cues. Recent 

research results for sound source localization revealed the importance of temporal 

fluctuation phenomenon of IPDs and ILDs. Rather than eliminate the influence of 

these fluctuations, these studies attempted to describe these fluctuations using 

statistical models for sound source localization [56]. The work in [48] investigated 

localization cues of IPDs and ILDs exhibiting temporal fluctuation phenomena when 

sound sources are nonstationary and short-term frequency analysis, such as short-term 

Fourier transform (STFT), is utilized. In [48], distribution patterns of IPDs and ILDs 

were calculated from the superposition of sound sources recorded in an anechoic 

room and spatially distributed noise recorded in real environments. The distribution 
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patterns were applied to estimate the azimuth and elevation of a sound source using 

Bayesian maximum a posteriori estimation. The experiments demonstrated good 

results in both quiet and noisy conditions. Further, Smaragdis and Boufounos [49] 

also used the Gaussian model to model the empirical features in a reverberant room. 

In their work, the fluctuation of relative magnitude and phase of the cross spectra is 

modeled for sound source localization and the wrapping effect is solved using the 

proposed wrapped Gaussian model. 

This study attempts to probe further the cause of IPD and ILD distribution 

patterns when a sound source is nonstationary and STFT is utilized. To simplify the 

description, distribution patterns of IPDs and ILDs are called binaural room 

distribution patterns (BRDPs) in the remainder of this work. The idea of moving pole 

model is employed to model the nonstationary sound sources; consequently, the level 

fluctuation is modeled as an exponent of polynomial. Based on this model, it can be 

shown that BRDPs depend on the content of the nonstationary source signals. The 

dependency is analyzed to explain the phenomenon of multiple peaks in the BRDPs. 

In real environment, more than one peak can exist in the measured BRDPs. For 

example, Fig. 2-1 illustrates the IPDs and ILDs measured at the location marked “A” 

in Fig. 2-2.  
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(a) 

 

 

(b) 

Figure 2-1  The histograms of IPDs and ILDs measured at location the marked “A”. 
(a) The histogram of IPDs at the location marked “A”. (b) The histogram of ILDs at 
the location marked “A”. 
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Figure 2-2  The recording environment. 
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As shown in Fig. 2-1, the IPD and ILD contain multiple peaks. This phenomenon can 

be explained with the proposed model. 

Since the BRDPs can contain multiple peaks, a modeling method that deals with 

complicated distribution patterns is needed. Although the work in [48] utilized 

normalized histograms to model distribution patterns, the memory requirement is 

considerable when histogram resolution is high. Therefore, this work adopts GMMs 

to model BRDPs and proposes a GMBRDM to parameterize them. Because the 

proposed GMBRDM is a linear combination of the phase difference GMM and the 

magnitude ratio GMM, a method is proposed to obtain the optimal weights of the 

linear combination to enhance the localization ability. Additionally, because BRDPs 

contain information on direct paths and reflections, localizing a sound source in the 

azimuth, elevation and distance using the proposed GMBRDM is possible. 

The remainder of this chapter is organized as follows. The next section discusses 

how the nonstationary sound source can influence the IPD and ILD. A simulation of a 

simplified environment is performed to verify the discussion in Section 2.3. Section 

2.4 presents the formulation of the proposed GMBRDM. The summary is given in 

Section 2.5. 
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2.2 The Relation between the Nonstationary Sound Source 

and the BRDP 

2.2.1 IPDs and ILDs of Stationary Sound Source 

A linear time-invariant (LTI) room acoustic channel is represented by a K  

tapped finite impulse response (FIR) model ( ) ( )∑
−

=

−=
1

0

K

k
k knbnh δ  as, 

( ) ( )∑
−

=

−=
1

0

K

k
k knxbny       (2-1) 

where ( )nx  denotes sound signal emitted into the channel, ( )ny  denotes the signal 

received by the ear, and kb  is the coefficients of the FIR model for the room impulse 

response (RIR) from sound source to an ear. Without lost of generality, the stationary 

input signal is assumed to be a complex exponential signal with frequency ω̂  and 

constant level A : 

( ) njAenx ω̂=        (2-2) 

where 
N

k̂2ˆ πω = , which is the sampled frequency of an N-point STFT. 

For such input, the corresponding output is 
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Take the N-point STFT at frequency ω̂ : 
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By denoting ( )nyL  and ( )nyR  as the signals received by left and right ears, 

respectively, and )ˆ(ωLY  and )ˆ(ωRY  are the STFT of ( )nyL  and ( )nyR , the IPD, 

)ˆ(ωP , and ILD, )ˆ(ωM , between )ˆ(ωLY  and )ˆ(ωRY  are 
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where kLb ,  and kRb ,  are the coefficients of FIR channel models, Lh  and Rh , from 

the sound source to the left ear and the right ear, ( )∑
−

=

−=
1

0
,

K

k
kLL knbh δ , 

( )∑
−

=

−=
1

0
,

K

k
kRR knbh δ  and ( )⋅∠  denotes the phase value. Note that the operation of 

nature logarithm is taken for computing the magnitude ratio. As shown in (2-5), the 

IPD and ILD between )ˆ(ωLY  and )ˆ(ωRY  depend only on the frequency responses 

of the channels and the measured frequency, as discussed in related research. 
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2.2.2 IPDs and ILDs of Nonstationary Sound Source 

Although the nonstationarity of a sound source can be tested in many different 

domains [50], this work only considers time domain variation. To model time domain 

variation of a sound source, the level of the complex exponential signal in (2-2) is 

assumed as time varying: 

( ) njj
n eeAnx ωφ ˆ=       (2-6) 

where nA  is a time-varying sound level. Accordingly, the output ( )ny  can be 

formulated as: 
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Take the STFT at frequency ω̂ : 
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Hence, the ratio between )ˆ,( ωnYL  and )ˆ,( ωnYR  is 



 19

∑∑

∑∑
−

=

−

=

−
−+

−

=

−

=

−
−+

= 1

0

1

0

ˆ
,

1

0

1

0

ˆ
,

)ˆ,(
)ˆ,(

N K

k

kj
kRkn

N K

k

kj
kLkn

R

L

ebA

ebA

nY
nY

τ

ω
τ

τ

ω
τ

ω
ω      (2-9) 

and )ˆ,( ωnP  and )ˆ,( ωnM  between )ˆ,( ωnYL  and )ˆ,( ωnYR  are 
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As shown in (2-10), the phase difference and magnitude ratio become content 

dependent when STFT is utilized and nA  is nonstationary. 

2.2.3 Modeling the Nonstationary Sound Source Using Moving Pole 

Model 

To analyze how nonstationarity of a sound source influences the IPD and ILD, a 

parameterized model for nonstationary sound is needed. Based on the discussion in 

[51] and [52], a nonstationary sound source in an analysis window can be expressed 

as a sum of moving pole models. In this work, the idea in [52] that approximate nA  

as an exponent of polynomial is utilized. In [52], 

∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛aN

t

t

s
t f

na
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where aN  is the degree of the polynomial, ta  is the coefficient of the polynomial 

and sf  denotes the sampling frequency. To simplify the analysis, we omit the terms 

of 2≥t , as in [30]; hence, nA  is modeled as: 

10 a
f
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n
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+
=        (2-12) 
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This equation can be rearranged as: 
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Through the same procedure, we have 
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and the ratio between )ˆ,( ωnYL  and )ˆ,( ωnYR  becomes: 
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Consequently, the IPD and ILD are 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∠=

∑

∑
−

=

−
−

−

=

−
−

1

0

ˆ
,

1

0

ˆ
,

1

1

)ˆ,(
K

k

kj
kR

k
f
a

K

k

kj
kL

k
f
a

ebe

ebe
nP

s

s

ω

ω

ω  and  

∑

∑
−

=

−
−

−

=

−
−

=
1

0

ˆ
,

1

0

ˆ
,

1

1

ln)ˆ,(
K

k

kj
kR

k
f
a

K

k

kj
kL

k
f
a

ebe

ebe
nM

s

s

ω

ω

ω      (2-17) 

By observing (2-17), this study finds that the IPD and ILD values depend on the 

coefficient of the FIR models and the value of 1a , which is the slope of the nature 

logarithm of nA . 

 

2.3 Simulation Verification and Discussion of Proposed 

Model 

2.3.1 Content Dependency of BRDPs Obtained from Nonstationary 

Sound Source 

To verify the proposed analysis, a simplified simulation environment (Fig. 2-3) is 

assumed (Although the simplified environment is utilized as an example here, the 

following discussion of the relationship between BRDPs and nonstationary sound 

sources can be applied to general cases). 
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Figure 2-3  Simulation configuration. 

 

As depicted in Fig. 2-3, the only cause of reflection is the only cause of 

reflection is the infinite wall located at 0=x . The two microphones are located at 

( ) ( )m 0,m 5.0,m 8.4,, 111 =zyx  and ( ) ( )m 0,m 5.0,m 2.5,, 222 =zyx  and the sound 

source is located at ( ) ( )m 0,m 0,m 5,, 333 =zyx . The models from the sound source to 

the microphones are simulated by the image method introduced in [47] with sound 

speed sm 340=c  and sampling rate 8000=sf Hz. The wall is assumed to be rigid. 

The simulated model is depicted in Fig. 2-4. 
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Figure 2-4  Simulated model from sound source to the microphones. 

 

Two different sources are input into the simulation model to show the content 

dependency of IPD and ILD histograms. For the first source, the value of 1a  in the 

measured frames is uniformly distributed between [ ]0,500− . The IPDs and ILDs at a 

frequency of 140.625 Hz are computed 1000 times. Fig. 2-5 presents the histograms, 

which can represent the probability distribution, of IPDs and ILDs. The second source 

is similar to the first, except the value of 1a  is uniformly distributed between 

[ ]200,500−  in the measured frames. The histograms are illustrated in Fig. 2-6. 
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(a) 

 

(b) 

Figure 2-5  The histograms of IPDs and ILDs of the first sound source. (a) The 
histogram of IPDs of the first sound source. (b) The histogram of ILDs of the first 
sound source. 
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(a) 

 

 

(b) 

Figure 2-6  The histograms of IPDs and ILDs of the second sound source. (a) The 
histogram of IPDs of the second sound source. (b) The histogram of ILDs of the 
second sound source. 
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The simulation results in Figs. 2-5 and 2-6 demonstrate that when the sound sources 

are nonstationary, the IPD and ILD histograms depend on the content of the source 

signal. Therefore, conditions of the nonstationary sound source must be designed such 

that the BRDPs can be utilized for localization. In view of the aforementioned 

discussion, the sufficient condition is that the distribution of 1a  of the sound source 

must be stationary to make the sound source applicable for localization. Care must be 

exercised when using IPDs and ILDs obtained from nonstationary sound sources for 

sound source localization to avoid performance degradation. 

2.3.2 The Formation of Peaks in the Distribution Patterns of IPDs 

As shown by the simulation in Section 2.3.1, the distribution patterns of IPDs 

exhibit multiple peaks. This phenomenon also appears in the empirical results in real 

environment. The derivation result of (2-17) can be adopted to explain this 

phenomenon. 

According to (2-17), there are several possible reasons to form peaks in the 

distribution patterns of IPDs. First, if 1a  of a sound source is concentrated at a 

certain value, a peak in the histogram will result. An obvious example is a stationary 

sound source. For a stationary sound source, 01 =a  for all measured frames, which 

makes IPD a fixed value, results in a peak in the distribution pattern. 

Secondly, the term 
k

f
a

se
1−

 in (2-17) decreases as k  increases when 1a  is 

positive. This means the weights of the reflection part in the channel model is reduced 

and the influence of the direct path are increased. Hence, when 1a  exceeds a certain 

level, the measured IPDs can be approximated as: 
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where 1,Dk  and 2,Dk  are propagation delay of the direct path from the sound source 

to microphones. Based on (2-18), the phase difference between direct paths from a 

sound source to microphones is emphasized and can dominate the measured IPDs. 

Since the IPDs are approximately the same for all 1a  exceed a certain level, a peak 

can be formed in the distribution pattern. This derivation explains why some previous 

research results of IPD-based time delay estimation suggested utilizing speech source 

onset to improve the accuracy [24]. On the contrary, when 1a  is negative, the value 

of 
k

f
a

se
1−

 increases with k . In this case, the influence of the direct path is suppressed 

and the reflections can dominate the measured IPDs. 

The second simulation in Section 2.3.1 is utilized to interpret the relationship 

between 1a  and the IPD (Fig. 2-7). 
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Figure 2-7  Relation between the value of 1a  and the IPD. 

In Fig. 2-7, as 1001 >a , the value of IPD approaches 0, which is the phase difference 

caused by the direct paths from the sound source to microphones. On the other hand, 

when 3001 −<a , the value converges to 1.1, representing the phase difference 

influenced by wall reflection. It is then easy to understand why there are two peaks at 

0 and 1.1 in Fig. 2-6 (a). Generally, reflections appear later in the propagation model 

than direct paths, meaning that a negative value of 1a  is required to emphasize the 

effect of reflections. Consequently, the more the wall or boundary absorbs the energy 

of sound source, the smaller value of negative 1a  is required to emphasize the effect 

of reflections. 
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2.3.3 The Formation of Peaks in the Distribution Patterns of ILDs 

Similar to the discussion of IPDs, the 1a  of a sound source is concentrated at a 

certain value, results in a peak in the ILD distribution pattern. However, ILDs behave 

quite different than IPDs when 1a  is either large or small. When 1a  is larger than a 

certain level, )ˆ,( ωnM  can be approximated by 
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     (2-19) 

Therefore, the relationship between ILDs and 1a  is approximately linear (with a 

slope of 
s

DD

f
kk )( 2,1, −−

) when 1a  is larger than a certain level. Hence, if the slope is 

0 (meaning 2,1, DD kk = ), it will cause a peak in the ILD histogram. Similar to IPDs, 

when 1a  is smaller than a certain level, the influence of the direct path is 

de-emphasized and the reflection part starts dominating the measured ILDs. The 

second simulation in Section 2.3.1 is again utilized as an example of the discussion 

above. Figure 2-8 shows the simulation results for the relationship between the value 

of 1a  and the ILD. 
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Figure 2-8  Relation between the value of 1a  and the ILD. 

In Fig. 2-8, when 1001 >a , the measured ILD is about 0 because the simulation sets 

02,1, =− DD kk  and 
2,1, ,, DD kLkL bb = . This results in a peak at 0 in the histogram, as 

shown in Fig. 2-6 (b). In addition, when 3001 −<a , the measured ILDs change 

linearly with the value of 1a , resulting in a flat area in Fig. 2-6 (b). 

2.3.4 Localization of Nonstationary Sound Source Using BRDPs 

As mentioned in Chapter 1, detecting the location of sound sources presented at 

median plane or on a “cone of confusion” is difficult when only IPDs and ILDs of 

direct paths are utilized. However, sound sources at different locations can propagate 

through different reflections and with the property of nonstationary sound source 

discussed above, the nonstationary sound can result in distinguishable distribution 

patterns. Consequently, it is possible to detect the location of the sound sources in the 
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azimuth, elevation, and distance using BRDPs. 

2.4 GMBRDM for Nonstationary Sound Source Localization 

As discussed in Section 2.3.1, if the environment and head position are 

unchanged and the distribution of 1a  of the sound source is stationary, using BRDPs 

for sound source localization is possible. Sections 2.3.2 and 2.3.3 also show that 

BRDPs can be non-Gaussian and contain multiple peaks. Consequently, modeling 

these distribution patterns as a simple distribution pattern (such as a single Gaussian 

distribution) can eliminate important details. Utilizing a high-resolution normalized 

histogram to model the distribution pattern requires considerable computational of 

memory. In this work, GMMs are employed to model BRDPs (called the GMBRDM) 

to reduce the memory requirement through parameterization. 

2.4.1 The Training Procedure of the Proposed GMBRDM 

Let ( )bfx nP ω,  and ( )bfx nM ω,  denote the phase difference and magnitude 

ratio obtained at frame fn  respectively for constructing GMM at frequency bω , 

{ }Bb ,...,1∈ , which means B  frequencies are utilized to construct the model. The 

phase difference and magnitude ratio GMMs are defined as the weighted sum of 1N  

and 2N  mixtures of Gaussian component densities: 

( )( ) ( )( )fxi

N

i
iPPfx ngnG PP ∑

=

=
1

1
,| ρλ      (2-20) 

( )( ) ( )( )fxi

N

i
iMMfx ngnG MM ∑

=

=
2

1
,| ρλ     (2-21) 
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where ( ) ( ) ( )[ ]TBfxfxfx nPnPn ωω ,, 1 L=P , 

( ) ( ) ( )[ ]TBfxfxfx nMnMn ωω ,, 1 L=M  . iP ,ρ  and iM ,ρ  are the weights of ith 

mixture, and ( )( )fxi ng P  and ( )( )fxi ng M  are the Gaussian density functions. 

Notably, the mixture weights must satisfy the constraints: 

1
1

1
, =∑

=

N

i
iPρ  and 1

2

1
, =∑

=

N

i
iMρ      (2-22) 

The terms Pλ  and Mλ  represent the parameters of 1N  and 2N  component 

densities. 

{ }PPPP Σμλ ,,ρ=  and { }MMMM Σμλ ,,ρ=        (2-23) 

where 

[ ]
1,1, NPPP ρρ L=ρ  denotes the phase difference mixture weight vector with 

dimensions 11 N× . 

[ ]
2,1, NMMM ρρ L=ρ  denotes the magnitude ratio mixture weight vector with 

dimensions 21 N× . 

[ ]
1,1, NPPP μμ L=μ  denotes the phase difference mean matrix with dimensions 

1NB × . 

[ ]
2,1, NMMM μμ L=μ  denotes the magnitude ratio mean matrix with dimensions 

2NB× . 
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[ ]
1,1, NPPP ΣΣΣ L=  denotes the phase difference covariance matrix with 

dimensions 1BNB × . 

[ ]
2,1, NMMM ΣΣΣ L=  denotes the magnitude ratio covariance matrix with 

dimensions 2BNB × . 

The parameters Pλ  and Mλ  in (2-23) can be estimated by the iterative EM 

algorithm [53] which guarantees a monotonic increase in the model’s log-likelihood 

value. By denoting the training sequence length as FN , the iterative procedure can be 

divided into the expectation step and maximum step: 

Expectation step: 

( )( ) ( )( ) ( )( )fxi

N

i
iPfxiiPPfx ngngniG PPP ∑

=

=
1

1
,,,| ρρλ     (2-24) 

( )( ) ( )( ) ( )( )fxi

N

i
iMfxiiMMfx ngngniG MMM ∑

=

=
2

1
,,,| ρρλ    (2-25) 

where ( )( )Pfx niG λ,| P  and ( )( )Mfx niG λ,| M  are a posteriori probabilities. 

Maximization step: 

(i). Estimate the mixture weights: 

( )( )∑
=

=
F

f

N

n
PfxFiP niGN

1
, ,|1 λPρ      (2-26) 
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( )( )∑
=

=
F

f

N

n
MfxFiM niGN

1
, ,|1 λMρ      (2-27) 

(ii). Estimate the mean vector: 

( )( ) ( ) ( )( )∑∑ ==
= F

f

F

f

n

n Pfx
N

n fxPfxiP niGnniG
11, ,|,| λλ PPPμ   (2-28) 

( )( ) ( ) ( )( )∑∑ ==
= F

f

F

f

N

n Mfx
N

n fxMfxiM niGnniG
11, ,|,| λλ MMMμ  (2-29) 

(iii). Estimate the variances: 

( ) ( )( ) ( ) ( )( )( ) ( )biP
N

n Pfx
N

n bfxPfxbiP
F

f

F

f
niGnPniG ωμωωσ 2

,11
22

, ,|,,| −= ∑∑ ==
λλ PP   

(2-30) 

( ) ( )( ) ( ) ( )( )( ) ( )biM
N

n Mfx
N

n bfxMfxbiM
F

f

F

f
niGnMniG ωμωωσ 2

,11
22

, ,|,,| −= ∑∑ ==
λλ MM  

                (2-31) 

The EM algorithm is sensitive to the choice of initial model. A good choice of 

initial model results in a lower number of iterations of the EM algorithm. K-means 

related approaches are known to be effective in finding a suitable initial model [54]. 

This work utilizes an accelerated K-means algorithm proposed by Elkan [55], which 

can significantly reduce the computational power requirement. 

The proposed GMBRDM at location l  is defined as the linear combination of 

the phase difference GMM and the magnitude ratio GMM obtained at location l : 
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    ( ) ( ) ( )( ) ( ) ( )( )lnGlnGlGMBRDM MfxMPfxP λλ || MP αα +=   (2-32) 

where Pα  and Mα  represent the weighting factors. The values of Pα  and Mα  

can be chosen based on the sum of the correlation values among trained locations of 

the phase difference GMM and magnitude ratio GMM. The GMM with higher 

correlation summation would be assigned a lower weight, since the ability to 

discriminate is considered lower under this circumstance, and vice versa. Under this 

principle, Pα  and Mα  are determined by the following formula: 

( ) ( ){ } ( ) ( ){ }
⎭
⎬
⎫

⎩
⎨
⎧

+∑∑
MP

T
MMMMM

T
PPPPP

qq
qqqq UCCUCC ααmin  

0,0,1  .. >>=× MPMPts αααα         (2-33) 

where PP Q∈q  and MM Q∈q  are the B  dimensional random vectors in the 

operation ranges, PQ  and MQ . 

( ) ( )( ) ( )( ) ( )( )[ ]LCCC PPPPPPPP λλλC |2|1| qqqq L= , 

( ) ( )( ) ( )( ) ( )( )[ ]LCCC MMMMMMMM λλλC |2|1| qqqq L= , and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎢
⎢

⎣

⎡

=

000000
10
110
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11100
1110

MMMM

OMM
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LL

U with dimension LL × . 
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In addition, 

( )( ) ( )( ) ( )( )∑=
P

lHlHlC PPPPPP
q

qqq λλλ ||| 2     (2-34) 

( )( ) ( )( ) ( )( )∑=
M

lHlHlC MMMMMM
q

qqq λλλ ||| 2    (2-35) 

( )( ) ( )( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ )(||| PPPPPPP NlGlGlH

P

qqqq
q

λλλ , and 

( )( ) ( )( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ )(||| MMMMMMM NlGlGlH

M

qqqq
q

λλλ   

              (2-36) 

where )( PN q and )( MN q denote the total selected numbers of Pq  and Mq . 

The values of Pα and Mα can be obtained by solving (2-33) as: 

( ) ( ) ( ) ( )∑∑=
PM

T
PPPP

T
MMMMP

qq
qqqq UCCUCCα    (2-37) 

( ) ( ) ( ) ( )∑∑=
MP

T
MMMM

T
PPPPM

qq
qqqq UCCUCCα    (2-38) 

The proofs of (2-37) and (2-38) are shown in the appendix. 

2.4.2 The Testing Procedure of the Proposed GMBRDM 

The location is determined by finding the maximum a posteriori location 

probability for a given observation sequence: 
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( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )YMMYMYPPYPLl

YMMYPPLlLl

plplGplplG

lGlGlGMBRDMl

MλλMPλλP

MλPλ

||maxarg   

||maxargmaxargˆ

1

11

αα

αα

+=

+==

≤≤

≤≤≤≤

 

                (2-39) 

where ( ) ( ){ }VYYY NPP ,,1 L=P  and ( ) ( ){ }VYYY NMM ,,1 L=M  are the phase 

difference and magnitude ratio computed from the testing sequences denoted as 

)(1 ωY  and )(2 ωY , and VN  denotes the testing sequence length. The probabilities 

( )( )lp Pλ  and ( )( )lp Mλ  can be selected as L/1  since the probability in each 

location is equally likely for a blind search. Moreover, because the probability 

densities ( )Yp P  and ( )Yp M  are the same for all location models, the detection rule 

can be recast as: 

( ) ( )( ) ( ) ( )( )∏∏
==≤≤

+=
V

v

V

v

N

n
MvYM

N

n
PvYPLl

lnGlnGl
111

||maxarg ˆ λλ MP αα   (2-40) 

2.5 Summary 

In this chapter, the relation between the nonstationary sound source and the 

BRDPs are discussed. Moreover, based on the discussion, a model, named GMBRDM 

is proposed for nonstationary sound source localization. Theoretically, the GMBRDM 

is capable of localizing sound source in azimuth, elevation, and distance. The 

performance of the proposed method is examined in Chapter 4. 
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Appendix 

Proofs of (2-37) and (2-38): 

The problem is formulated as  

( ) ( ){ } ( ) ( ){ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+∑∑
Mp

T
MMMMM

T
PPPPp

qq
qqqq UCCUCC ααmin  

0,0,1  .. >>= MPMPts αααα          (A-1) 

According to the constraint, set PM αα /1= . Then, the cost function becomes, 

( ) ( ){ } ( ) ( ){ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+∑∑
Mp

T
MMMM

p

T
PPPPp

qq
qqqq UCCUCC

α
α 1min   (A-2) 

Setting the first derivative with respect to Pα  be zero gives 

( ) ( ) ( ) ( ) 02 =−∑∑ −

Mp

T
MMMMp

T
PPPP

qq
qqqq UCCUCC α    (A-3) 

Therefore,  

( ) ( )

( ) ( )∑

∑
=

p

M

T
PPPP

T
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q

q

qq
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α       (A-4) 
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Chapter 3 

Indoor Sound Field Feature Matching 
for Robot’s Location and Orientation 
Detection 

3.1 Introduction 

Indoor robot localization is an important issue in the field of robotics. Various 

equipments, such as camera, radio frequency identification (RFID), infrared (IR), 

ultra sonic sensor, laser, wireless LAN based methods and inertial navigation sensor 

have been adopted to provide different solutions [57 - 64]. 

For indoor robots, audio devices such as loudspeakers and microphones are 

becoming basic equipments. These sound-related devices can generally provide a 

more nature way for robots to communicate with human. Additionally, some 

researchers believe that these devices can be utilized for robot localization [65, 66]. 

The BRDPs introduced in Chapter 2 are treated as sound field features and this 

chapter. Therefore, this chapter investigates the feasibility of using sound field feature 
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matching for robot’s location and orientation detection and proposes a robust 

sound-based indoor robot’s pose detection system utilizing two microphones. 

3.1.1 Traditional Sound Based Robot Localization Methods and 

Known Problems 

The idea of using multiple microphones to localize sound sources has been 

developed for a long time. Among various kinds of sound source localization methods, 

generalized cross correlation (GCC) based methods [10, 11, 67, 68] were discussed 

for robot localization application [65]. In general, sound-based robot localization 

system uses a loudspeaker mounted on the robot to produce sound and estimates the 

location of the sound source, which is the robot’s location, by a set of microphone 

array installed in the room [65, 66]. The main difficulty for indoor robot localization 

using sound wave is the complex propagation behavior such as reflection and 

diffraction. Theoretically, the values of phase difference and magnitude ratio among 

microphones are directly related to the sound wave arrival direction and the distance 

between a sound source and microphones. However, these straightforward relations 

only exist in free space or environments with simple geometry. In real environments, 

these values exhibit stochastic phenomena due to the distributed nature of the 

propagation path dynamics and the limitation of finite-length data, as discussed in 

Chapter 2. Furthermore, complex boundary conditions, near-field effect, and local 

sound scattering make these values hard to correlate with the source location. These 

variations generally result in uncertain estimation errors and make sound-based 

localization methods unreliable. Moreover, for indoor applications, the robot may 

move to a location that is non-line-of-sight to the sensors, i.e., without direct paths 

between the robot and microphones. Under this circumstance, traditional methods 
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cannot locate the robot accurately.  

Another well-known problem of sound-based robot localization methods is the 

microphone mismatch problem. If the microphones are not mutually matched, then 

the phase difference information among microphones may be distorted. However, 

pre-matched microphones are relatively expensive and mismatched microphones are 

difficult to calibrate accurately since the characteristics of microphones change with 

the sound directions. Consequently, the estimation accuracy varies from different 

microphone pairs and is difficult to be evaluated. 

3.1.2 The Proposed Method 

Traditional sound source localization algorithms attempt to suppress the effects 

of complex propagation behavior, as well as estimate the direction of the direct sound 

source. Instead of trying to eliminate the influence of reflection and diffraction, this 

work treats the distribution patterns of phase difference and magnitude ratio as a local 

feature and uses it to detect the robot’s location and orientation. As discussed in 

Chapter 2, the complex propagation behaviors of a sound source result in location or 

orientation dependent phase difference and magnitude ratio distributions. This work 

adopts GMMs to model these distributions and proposes two models, robot 

localization model (RLM) and robot orientation model (ROM). The first model (RLM) 

is used for robot’s location detection and the second model (ROM) is used for robot’s 

orientation detection. The unique advantage of the proposed method is the detection 

of location and orientation in non-line-of-sight cases, i.e., when no direct path is 

available between the robot and the microphones. To adapt to the environmental 

noises and enhance the robustness of the feature identification, an on-line calibration 

procedure is also proposed. 
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The remainder of this chapter is organized as follows. The Section 3.2 introduces 

the overall system architecture. Section 3.3 describes the design of the directional 

sound pattern for orientation detection. Section 3.4 presents the formulations of the 

proposed RLM and ROM. Finally, a summary is drawn in Section 3.5. 

3.2 System Architecture 

As shown in Fig. 3-1, the proposed system contains two loudspeakers on the 

robot and a robot’s location and orientation detection agent (RLODA) with two 

microphones. The RLODA can be placed in any part of the room as long as the 

reception of sound from the robot is clear enough. The sound patterns generated by 

Speaker 1 (SP1) are received by the RLODA and the RLMs can be obtained by 

location dependent phase difference and magnitude ratio distributions between the 

two microphones. When the system attempts to build the ROMs, both SP1 and SP2 

are used to generate a directional sound pattern. Note that the detail of generating a 

directional sound pattern is described in Section 3.3. Because the sound pattern 

generated by SP1 and SP2 is directional, the sound field features change with the 

robot’s orientation and can be utilized for orientation detection.  

 

Figure 3-1  Speaker and microphone configuration of the proposed system. 
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Figure 3-2 depicts the overall system architecture. Stage I in Fig. 3-2 is the 

pre-recording stage, in which the robot moves and changes its orientation in the 

environment when the environment is quiet, and produces sound through the 

loudspeakers to obtain a pre-recorded database. Since the sound is recorded by the 

two microphones, the information of the sound field features and microphone 

response can be obtained by this database. 

 
Figure 3-2  Overall system architecture. 

Once the pre-recording stage is finished, the system enters Stage II called silent 

stage. In this stage, the robot remains silent and the RLODA records the 

environmental noises. Assuming that noise signals are additive, the sound recorded in 

real application can be considered as the linear combination of robot’s sound and 

environmental noises. Therefore, this stage adds the environmental noises to the 

pre-recorded database to construct the training features, phase difference and 

magnitude ratio distributions, and then utilizes these features to trains the parameters 
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of RLMs and ROMs. Through this process, the effect of environmental noises is 

adapted in this stage. 

When the robot needs to know its location or orientation, the system then 

switches to the sounding stage, in which the robot produces a sound into the room for 

the RLODA to detect the robot’s location or orientation. If the robot’s location is 

required, the SP1 is used to generate sound; conversely, both SP1 and SP2 are excited 

if the robot’s orientation is needed. Because the microphones used in these three 

stages are the same, the mismatched characteristics between microphones are 

collected in the pre-recorded database and would not influence the detection results of 

proposed system. The sounding and the silent stages can be switched to each other 

iteratively for location or orientation detection and environmental noises adaptation. 

Figure 3-3 illustrates the flowchart of proposed system. 

 

Figure 3-3  Flowchart of the proposed system. 
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3.3 Directional Sound Pattern Design for Robot Orientation 

Detection 

To detect the robot’s orientation by the sound field features, the sound pattern 

generated by the robot should be correlated with the robot’s orientation. However, a 

general omni-directional sound pattern may lead to the same sound fields when the 

robot changes its orientation because the emitted sound has the same characteristics in 

all directions. Therefore, a directional sound emission approach must be designed. To 

realize a directional sound pattern, the idea of speaker array beamforming [69, 70] is 

adopted in this work to guarantee the directivity of the generated sound pattern. 

Besides directivity, another constraint on the generated sound pattern is the number of 

symmetric axes ( β ) in the horizontal plane. Figure 3-4 shows an example of how β  

affects the orientation detection, where the solid line denotes the generated sound 

pattern, the dotted line denotes the symmetric axes, and the arrow denotes the robot’s 

orientation. 

As shown in Fig. 3-4, the sound patterns generated when the robot’s orientation 

is 0°, 90°, 180°, and 270° are exactly the same when 4=β . A sound pattern 

generated when the robot points at a certain direction (0° in the example) would have 

1−β  identical sound patterns.  
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Figure 3-4  Relations between β  and the sound pattern. 

Therefore, the generated sound can only be symmetrical along one axis ( 1=β ) 

to avoid confusion in orientation detection. Consequently, this work proposes a 

method that utilizes two loudspeakers to generate the sound pattern that conforms to 

the constraint by: 

)(5.0)(
)()(

2

1

nJnJ
nJnJ

SP

SP

×=
=

       (3-1) 

where )(nJ  is the original sound source and )(1 nJSP  and )(2 nJ SP  are the sound 

emitted by SP1 and SP2. The distance between two loudspeakers is set to 0.2 m. 
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Figure 3-5 depicts the simulation of the generated sound pattern of the proposed 

system based on the sound propagation theories in [71] when the robot’s orientation is 

0°, where the sound power is measured at 1 m away from the SP1 with the same 

height. The solid lines in the circle depict the relative sound power in dB. As shown in 

Fig. 3-5, the generated sound pattern is symmetric along only one axis and is suitable 

for robot’s orientation detection. 

 

Figure 3-5  Simulation of generated sound pattern. 
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3.4 Robot Localization Model (RLM) and Robot Orientation 

Model (ROM) 

3.4.1 A Description of the Proposed RLM and ROM 

To establish both RLMs and ROMs, the RLODA needs to construct models for 

the sound fields at different locations and orientations. ( )bfSx nP ω,  and ( )bfSx nM ω,  

denote the phase difference and magnitude ratio at frame fn  respectively for 

constructing RLM ( LS = ) or ROM ( OS = ) at frequency bω , { }Bb ,...,1∈ . The 

GMMs are defined as the weighted sum of 1N  and 2N  mixtures of Gaussian 

component densities shown below, 

( )( ) ( )( )fSxi

N

i
iSPSPfSx ngnG PP ∑

=

=
1

1
,| ρλ      (3-2) 

( )( ) ( )( )fSxi

N

i
iSMSMfSx ngnG MM ∑

=

=
2

1
,| ρλ     (3-3) 

where { }OLS ,= , ( ) ( ) ( )[ ]TBfSxfSxfSx nPnPn ωω ,, 1 L=P ,  

( ) ( ) ( )[ ]TBfSxfSxfSx nMnMn ωω ,, 1 L=M  . iSP ,ρ  and iSM ,ρ  are the ith mixture 

weights, and ( )( )fSxi ng P  and ( )( )fSxi ng M  are the Gaussian density functions. 

Notably, the mixture weights must satisfy the constraints: 

1
1

1
, =∑

=

N

i
iSPρ  and 1

2

1
, =∑

=

N

i
iSMρ      (3-4) 

The terms SPλ  and SMλ  represent the parameters of 1N  and 2N  component 

densities. 
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{ }SPSPSPSP Σμλ ,,ρ=  and { }SMSMSMSM Σμλ ,,ρ=      (3-5) 

where  

[ ]
1,1, NSPSPSP ρρ L=ρ  denotes the phase difference mixture weight vector with 

dimensions 11 N× .  

[ ]
2,1, NSMSMSM ρρ L=ρ  denotes the magnitude ratio mixture weight vector with 

dimensions 21 N× . 

[ ]
1,1, NSPSPSP μμ L=μ  denotes the phase difference mean matrix with dimensions 

1NB × . 

[ ]
2,1, NSMSMSM μμ L=μ  denotes the magnitude ratio mean matrix with 

dimensions 2NB× . 

[ ]
1,1, NSPSPSP ΣΣΣ L=  denotes the phase difference covariance matrix with 

dimensions 1BNB×  

[ ]
2,1, NSMSMSM ΣΣΣ L=  denotes the magnitude ratio covariance matrix with 

dimensions 2BNB ×  . 

The parameters SPλ  and SMλ  in (3-5) can be estimated by the iterative EM 

algorithm, which guarantees a monotonic increase in the model’s log-likelihood value. 

The iterative procedure can be divided into the following two steps: 
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Expectation step: 

( )( ) ( )( ) ( )( )fSxi

N

i
iSPfSxiiSPSPfSx ngngniG PPP ∑

=

=
1

1
,,,| ρρλ     (3-6) 

( )( ) ( )( ) ( )( )fSxi

N

i
iSMfSxiiSMSMfSx ngngniG MMM ∑

=

=
2

1
,,,| ρρλ   (3-7) 

where ( )( )SPfSx niG λ,| P  and ( )( )SMfSx niG λ,| M  are a posteriori probabilities. 

Maximization step: 

(i). Estimate the mixture weights: 

( )( )∑
=

=
F

f

N

n
SPfSxFiSP niGN

1
, ,|1 λPρ      (3-8) 

( )( )∑
=

=
F

f

N

n
SMfSxFiSM niGN

1
, ,|1 λMρ     (3-9) 

(ii). Estimate the mean vector: 

( )( ) ( ) ( )( )∑∑ ==
= F

f

F

f

N

n SPfSx
N

n fSxSPfSxiSP niGnniG
11, ,|,| λλ PPPμ     

                (3-10) 

( )( ) ( ) ( )( )∑∑ ==
= F

f

F

f

N

n SMfSx
N

n fSxSMfSxiSM niGnniG
11, ,|,| λλ MMMμ   

                (3-11) 
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(iii). Estimate the variances: 

( ) ( )( ) ( ) ( )( )( ) ( )biSP
N

n SPfSx
N

n bfSxSPfSxbiSP
F

f

F

f
niGnPniG ωμωωσ 2

,11
22

, ,|,,| −= ∑∑ ==
λλ PP  

                (3-12) 

( ) ( )( ) ( ) ( )( )( ) ( )biSM
N

n SMfSx
N

n bfSxSMfSxbiSM
F

f

F

f
niGnMniG ωμωωσ 2

,11
22

, ,|,,| −= ∑∑ ==
λλ MM

                (3-13) 

An accelerated K-means algorithm proposed in [55] is again utilized to reduce the 

computational power requirement. 

The proposed RLM and ROM at location l  and orientation o  are defined as 

the linear combination of the phase difference GMM and the magnitude ratio GMM at 

location l  and orientation o : 

( ) ( ) ( )( ) ( ) ( )( )lnGlnGlF LMfLxLMLPfLxLPRLM λλ || MP αα +=     (3-14) 

( ) ( ) ( )( ) ( ) ( )( )onGonGoF OMfOxOMOPfOxOPROM λλ || MP αα +=    (3-15) 

where LPα , OPα , LMα  and OMα  represent the weighting factors. The values of 

SPα  and SMα  can be chosen based on the sum of the correlation values among 

trained locations of the phase difference GMM and magnitude ratio GMM. The GMM 

with higher correlation summation would be assigned a lower weight, since the ability 

to discriminate is considered lower under this circumstance, and vice versa. Under 

this principle, SPα  and SMα  are determined by the following formula: 
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( ) ( ){ } ( ) ( ){ }
⎭
⎬
⎫

⎩
⎨
⎧

+∑∑
SMSP

T
SMSMSMSMSM

T
SPSPSPSPSP

qq
qqqq UCCUCC ααmin   (3-16) 

where SPSP Q∈q  and SMSM Q∈q  are the B  dimensional random vectors in the 

operation ranges, SPQ  and SMQ . 

( ) ( )( ) ( )( ) ( )( )[ ]LCCC SPSPSPSPSPSPSPSP λλλC |2|1| qqqq L= , 
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In addition, 

( )( ) ( )( )
( )( )∑

=

SP

lH

lH
lC

SPSP

SPSP
SPSP

q
q

qq
λ

λλ
|

|
|

2
 , 

( )( ) ( )( )
( )( )∑

=

SM

lH

lH
lC

SMSM

SMSM
SMSM

q
q

qq
λ

λλ
|

|
|

2
, 

( )( ) ( )( )
( )( )

)(

|
||

SP

SPSP

SPSPSPSP N

lG
lGlH SP

q

q
qq q

∑
−=

λ
λλ , 



 55

( )( ) ( )( )
( )( )

)(

|
||

SM

SMSM

SMSMSMSM N

lG
lGlH SM

q

q
qq q

∑
−=

λ
λλ  

where )( SPN q  and )( SMN q  denote the total selected numbers of SPq  and SMq . 

The values of SPα  and SMα  can be obtained by solving (3-16) as: 
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∑
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3.4.2 Location and Orientation Detection 

The location and orientation are determined by finding the maximum a 

posteriori location probability and a posteriori orientation probability for a given 

observation sequence: 
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               (3-19) 
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                (3-20) 

where ( ) ( ){ }VSYSYSY NPP ,,1 L=P  and ( ) ( ){ }VSYSYSY NMM ,,1 L=M  are the phase 

difference and magnitude ratio computed from the testing sequences denoted as 

)(1 ωSY  and )(2 ωSY , and VN  denotes the testing sequence length. The probabilities 

( )( )lp LPλ  and ( )( )lp LMλ  can be selected as L/1  and ( )( )op OPλ  and ( )( )op OMλ  

can be selected as O/1  since the probability in each location and orientation is 

equally likely for a blind search. Moreover, because the probability densities ( )SYp P  

and ( )SYp M  are the same for all location models, the detection rule can be recast as: 

( ) ( )( ) ( ) ( )( )∏∏
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LMvLYLM
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               (3-22) 

3.5 Summary 

A robot’s location and orientation detection method based on sound field features 

utilizing two microphones is proposed in this chapter. The proposed method treats 
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phase difference and magnitude ratio distributions between the microphones as sound 

field features. Based on this idea, RLMs and ROMs are introduced for robot’s 

location and orientation detection. The system architecture presented contains a 

RLODA that can provide adaptation to environmental noises. Moreover, with the 

pre-recorded database, the non-ideal issues of non-line-of-sight condition and 

microphone mismatch problem can be solved. The related experimental results are 

shown in Chapter 4. 
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Chapter 4 

Experimental Results 

4.1 Experimental Results of the Proposed GMBRDM 

4.1.1 The Experimental Environment 

The experiment is performed in a laboratory filled with common furniture and 

equipment. Fig. 4-1 shows the layout of the environment. The laboratory area is 

2m  1.75.10 ×  and room height is 3 m. The recording equipment comprises two B&K 

4935 array microphones, a B&K 2694 conditioning amplifier, and an Azova 

DAQP-16 analog-to-digital converter. 
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Figure 4-1  The layout of the experimental environment. 

The microphones are mounted in the ears of a dummy head, as depicted in Fig. 

4-2. The distance between the dummy head’s ears is 0.16 m. Fig. 4-1 illustrates the 

location of the dummy head. The ears of the dummy head are placed 1 m above the 

floor. 
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Figure 4-2  The dummy head adopted in the experiment. 

The sound source is a recording of a female reading a book in Mandarin (Here, 

we assume the distribution of 1a  of the speech signal is stationary during training 

and testing procedure.). The sound source is played by a loudspeaker. Received 

signals are sampled at 8000 Hz, and the STFT window is 512 samples. For each 

experiment, the sound source is played at each tested location to obtain the training 

sequence to establish the GMBRDM. Training sequence length, FN , is set to 400 and 

testing sequence length, VN , is set to 100, with a shift of 80 samples between each 

frame. Hence, 4-second data are utilized for training, and 1-second data are utilized 

for testing. Six significant frequencies of the sound source are selected in this 

experiment; therefore, each Gaussian model has six dimensions, 6=B . For each 

location, testing is performed 100 times to acquire the correct rate. 
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4.1.2 The Experimental Results 

The first experiment tests the ability of azimuth localization. In this experiment, 

distances between the sound source and ears are fixed at 1 m, 1.2 m, 1.4 m, 1.6 m, 1.8 

m, and 2 m. For each distance, the azimuth of sound source moves from -60°, -30°, 0°, 

30°, to 60° to test the average correct rate of azimuth localization. The elevation of 

sound source is set the same as that of the ears (1 m). Different mixture numbers are 

utilized. Table 4-1 shows the average correct rate of azimuth localization at each 

distance. 

Table 4-1  Average correct rates of azimuth localization at each distance 
Distance (m) Mixture 

Number 1.0 1.2 1.4 1.6 1.8 2.0 
1 97 %  83 % 40 %  67 % 70 % 67 % 
5 98 % 84 % 59 % 81 % 85 % 72 % 
10 99 % 89 % 81 % 87 % 88 % 73 % 
15 99 % 91 % 83 % 87 % 89 % 83 % 
20 99 % 88 % 83 % 86 % 89 % 85 % 
25 99 % 91 % 88 % 87 % 89 % 91 % 

As shown in Table 4-1, when the distance between the sound source and ears is 1 m, 

meaning that the sound source close to the dummy head, the performance of mixture 

number of 1 is roughly the same as those of high mixture numbers. When the sound 

source is close to the dummy head, the influence of direct path propagation is much 

more significant than that of reverberations. Consequently, the BRDPs are influenced 

less by the reflections and can be modeled using a single Gaussian distribution model. 

However, as distance between the sound source and ears increases, the influence of 

reflection is becoming significant and leads to complex BRDPs. The benefit of 
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adopting multiple mixtures is apparent at a long distance, such as 2 m, where the 

correct rate increases with the mixture number. 

The second experiment tests the capability of the proposed GMBRDM for 

distance localization. In this experiment, the azimuth is fixed at -60°, -30°, 0°, 30°, 

and 60°. At each azimuth, the distance between the sound source and ears changes 

from 1 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, to 2 m to acquire average correct rates. The 

sound source height is adjusted to 1 m. Table 4-2 shows the average correct rates for 

distance localization at each azimuth. 

Table 4-2  Average correct rates of distance localization at each azimuth 
Azimuth Mixture 

Number -60° -30° 0° 30° 60° 
1 49 % 31 % 48 % 43 % 61 % 
5 40 % 47 % 65 % 55 % 64 % 
10 76 % 68 % 73 % 58 % 69 % 
15 80 % 76 % 73 % 67 % 72 % 
20 79 % 73 % 73 % 70 % 74 % 
25 86 % 82 % 73 % 73 % 78 % 

Because the relationship between the sound source and ears meets the criterion of 

far-field, the IPDs of direct path at the same azimuth and different distances are 

approximately identical theoretically. The ILDs of direct paths generate only 

relatively a slight difference between distant locations. Thus, modeling these BRDPs 

using a single Gaussian component can lose important details caused by reflections 

and result in poor localization results. As listed in Table 4-2, the average correct rates 

when only one mixture is employed are clearly lower than those with a high mixture 

number. This experimental finding is because the proposed GMBRDM can represent 

the details of the BRDPs for superior modeling results. 



 63

The third experiment tests the elevation localization performance of the proposed 

GMBRDM. In this experiment, distance between the sound source and ears is 2 m and 

the azimuth is fixed at -60°, -30°, 0°, 30°, and 60°. At each azimuth, the elevation of 

the sound source changes from 1 m, 1.25 m, to 1.5 m to acquire average correct rates.  

Table 4-3 lists experimental results. Experimental data show that GMBRDM with a 

high mixture number can properly model the BRDPs at different elevations. 

Table 4-3  Average correct rates of elevation localization at each azimuth 
Azimuth Mixture 

Number -60° -30° 0° 30° 60° 
1 59 % 55 % 33 % 46 % 59 % 
5 83 % 90 % 60 % 80 % 63 % 
10 82 % 93 % 55 % 83 % 74 % 
15 88 % 94 % 55 % 88 % 74 % 
20 89 % 93 % 67 % 86 % 81 % 
25 92 % 98 % 84 % 93 % 88 % 

4.2 Experimental Results of the Proposed Robot’s 

Localization and Orientation Detection Method 

4.2.1 The Experimental Environment 

Figure 4-3 shows the experimental platform and the proposed RLODA. In Fig. 

4-3 (a), the distance between two loudspeakers is 0.2 m. The distance between the two 

microphones of the RLODA is chosen as 0.07 m, as shown in Fig. 4-3 (b).  
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(a) 

 
(b) 

Figure 4-3  The experimental platform and the proposed RLODA. (a) The 

experimental platform. (b) The proposed RLODA. 

The experiment was performed in an office room filled with furniture, which is 
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11.4 m in length, 4.73 m in width and 2.8 m in height. Two off-the-shelf, 

non-calibrated microphones are utilized on the ROLDA in this experiment and the 

RLODA is implemented on a PC with a stereo recording sound card. The sampling 

rate is 8000 Hz, and the A/D resolution is 16 bits. The pre-recording is performed 

every 0.1 m within the region in which the robot is allowed to travel. For orientation 

detection, the robot is rotated in every 30° step to obtain 12 orientations in 360°. 

 Figure 4-4 depicts the experimental environment and the location of the RLODA. 

Note that there is a partition room in the office. Therefore, the robot is completely 

under non-line-of-sight case when it is in the partition room. The robot’s moving 

trajectories are also shown in Fig. 4-4 with the dotted lines from 1 to 8 in sequence. 

The sound source utilized in this experiment mimic the sound of dog barking. 

The spectrogram of the sound source is illustrated in Fig. 4-5. The lengths of the 

training sequence and the testing sequence were set to 300 and 30. In other words, a 

three-second length input datum was set for training, and a 0.3 second length input 

datum was set for testing. The major noise in this experiment is speech noise and the 

minor noises are electric noise such as air conditioner noise, computer fan noise to 

simulate a general indoor environment. 
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Figure 4-4  Experimental environment. 
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Figure 4-5  The waveform and spectrogram of barking signal. 

4.2.2 The Experimental Results 

Table 4-4 lists the average SNRs of all trajectories and the average SNRs of each 

trajectory pair. Figure 4-6 shows the location detection results along the robot’s 

moving trajectory with a mixture number of 15 and an average SNR of 7.91 dB. As 

shown in Fig. 4-6, the location detection results are mostly very close to the actual 

location for most of the time. 

Table 4-4  Average SNRs of all trajectories and the average SNRs of each trajectory 
pair (dB) 

Average SNR 
Average SNR of 

trajectories 1 and 8 

Average SNR of 

trajectories 2 and 3

Average SNR of 

trajectories 4 and 5

Average SNR of 

trajectories 6 and 7

19.87 13.94 23.34 16.44 17.69 

7.91 2.76 10.93 4.93 6.01 
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(a) 

 

(b) 

Figure 4-6  Location detection results alone X and Y axes. (a) Location detection 
results alone X-axis. (b) Location detection results alone Y-axis. 

The proposed method models the phase difference and magnitude ratio 

distributions measured from the sounds generated by the robot to perform robot’s 

location and orientation detection. However, the sound field features of the noise start 

to dominate the phase difference and magnitude ratio distributions with the increment 

of noise power. In this circumstance, the RLMs and ROMs may become less 

distinguishable and may degrade the performance of the proposed method. In Fig. 4-6, 

the detection error occurs most frequently on trajectories 1 and 8, because some area 

of these trajectories is completely in the partition room and the average SNR of these 
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trajectories is lower than those of other trajectories, as shown in Table 4-4. Although 

trajectories 1 and 8 contain locations that are in non-line-of-sight case, the location 

dependent sound field features can still be caught by the proposed RLMs. 

Several experiments are conducted to access the accuracy of the proposed 

method in terms of location and orientation detection error.  Table 4-5 lists the 

average correct rates of the location detection results where D  denotes the distance 

between the actual location and the nearest location in the pre-recorded database. 

Notably, the pre-recorded locations are discrete and are 0.1 m apart. In this 

experiment, if the detected result is the nearest pre-recorded location in the database, 

it will be regarded as a correct one. Additionally, the trial numbers for localization 

detection and orientation detection are 1210 and 332 individually for each condition. 

As shown in Table 4-5, if only a single Gaussian component is utilized ( 1=M ), then 

the average correct rates are too low to be acceptable in both two SNR cases. 

However, the average correct rates are improved to more than 95% when the mixture 

number is increased ( 11=M  and 15=M ) and cmD  10 <≤ . 

Table 4-5  Average correct rates of location detection results (%) 
M = 1 M = 11 M = 15 Average 

SNR 
(dB) )(    

 10
cm
D <≤  

)(    
 31

cm
D <≤  

)(    
 53

cm
D <≤

)(    
 10

cm
D <≤

)(    
 31

cm
D <≤

)(    
 53

cm
D <≤

)(    
 10

cm
D <≤  

)(    
 31

cm
D <≤  

)(    
 53

cm
D <≤

19.87 24.00 20.83 20.41 95.45 95.00 85.45 97.19 95.00 88.35

7.91 22.98 22.89 17.52 91.98 89.50 84.13 94.38 87.93 81.57

Table 4-6 shows the average correct rates of the orientation detection results, 

where A  denotes the distance between the actual and the pre-recorded orientations. 

If the orientation detection result is the nearest pre-recorded orientation to the actual 

orientation, the result will be considered correct. Note that the experiment is 
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performed after a correct location is detected. As shown in Table 4-6, when 1=M , 

the average correct rates are lower than 60%. These results show that a single 

Gaussian component is not appropriate for modeling the ROMs. When 11=M , the 

average correct rates are much higher than those when 1=M  in both the SNR cases. 

In the condition of oo 40 <≤ A , the average correct rates exceed 99% in both the 

SNR cases. 

Table 4-6  Average correct rates of orientation detection results (%) 
M = 1 M = 11 Average 

SNR (dB) oo 40 <≤ A  oo 84 <≤ A  oo 128 <≤ A oo 1512 <≤ A oo 40 <≤ A oo 84 <≤ A oo 128 <≤ A  oo 1512 <≤ A

19.16 58.43 48.49 45.78 44.28 99.70 88.55 84.04 81.33 

7.39 58.13 50.00 50.00 48.19 99.10 84.34 80.12 77.11 

Figure 4-7 and 4-8 show the average of a posteriori probabilities measured at the 

locations “A” and “B”, where location “A” is in a line-of-sight case and location “B” 

is in a non-line-of-sight case, as illustrated in Fig. 4-4. Notably, the a posteriori 

location probability is defined as: 
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+
V

v

V

v

N

n
LMfLYLM

N

n
LPfLYLP lnGlnG

11

|| λλ MP αα    (4-1) 

and the a posteriori orientation probability is defined as: 
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(a) 

 

(b) 

Figure 4-7  The average of the measured a posteriori location probabilities. (a) The 
average a posteriori location probabilities at location “A”. (b) The average a 
posteriori location probabilities at location “B”. 
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(c) 

 

(d) 

Figure 4-8  The average of the measured a posteriori orientation probabilities. (a) 
The average a posteriori orientation probabilities at location “A”. (b) The average a 
posteriori orientation probabilities at location “B”. 
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The average SNRs belong to the lowest SNR conditions in Table 4-5 and Table 

4-6 individually. The mixture number in Fig. 4-7 is 15, and the mixture number in Fig. 

4-8 is 11. Location “A” denotes the 113th location and location “B” represents the 

220th location. In the case of cmD cm  10 <≤ , the averages of (4-1) (averages of a 

posteriori location probabilities) measured with the correct locations indices ( 113=l  

and 220=l ) are much higher than those of other location indices, as shown in Fig. 

4-7 (a) and (b). However, since the sound field feature varies with the robot’s location 

and orientation, the phase difference and magnitude ratio distributions are becoming 

less similar while the robot is moving away from the pre-recorded location or 

orientation. Therefore, in Fig. 4-7 (a) and (b), the difference between the averages of 

(4-1) measured with the correct locations indices and with other location indices are 

becoming less obvious with the increase of D , and then the chance of detection error 

rises. This tendency explains why the average correct rates of location detection in 

Table 4-5 degrade with the increase of the distances between the actual and the 

pre-recorded locations. Although the averages of (4-1) measured with the correct 

locations indices decrease with the increase of D , it is still higher than those 

measured with other location indices; as a result, the correct rates listed in Table 4-5 

remain above 80% when cmD cm  53 <≤ . 

 The same phenomenon appears in the experiment of orientation detection. 

Figure 4-8 (a) and (b) depict the average of (4-2) (averages of a posteriori orientation 

probabilities) with the correct orientations of o0  for Fig. 4-8 (a) and o270  for Fig. 

4-8 (b). The average of (4-2) measured at the correct orientation indices drops with 

the increase of A  in both line-of-sight and non-line-of-sight cases and so does the 

average correct rates of the orientation detection in Table 4-6. These experimental 

results in this section show that utilizing GMMs to model the sound field features is a 
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feasible method for robot’s location and orientation detection. 
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Chapter 5 

Conclusions and Potential Research 
Topics 

5.1 Conclusions 

This dissertation has investigateed the relationship between nonstationary sound 

sources and the BRDPs when STFT is utilized. First, the level fluctuation of the 

nonstationary sound source is modeled as an exponent of polynomial based on the 

concept of moving pole model. This model explains the content dependency of the 

BRDPs. Moreover, the sufficient condition for utilizing BRDPs to detect the location 

of nonstationary sound source is identified. The phenomena of multiple peaks in the 

distribution patterns are analyzed. The related derivation shows that using simple 

distribution, such as a single Gaussian distribution, is not suitable for modeling these 

distribution patterns. Therefore, a GMBRDM is proposed to model the BRDPs for 

nonstationary sound source localization. Experimental results display that the 

proposed GMBRDM can discriminate between the azimuth, elevation, and distance of 

the sound sources. Notably, the correct rates in experimental results do not 

monotonically increase with the number of Gaussian mixtures. This experimental 
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finding is because the proposed GMBRDM can be influenced by the initial condition 

selected and the complexity of BRDPs varies with sound source locations.  

Moreover, a novel robot’s location and orientation detection method based on 

sound field features utilizing two microphones is proposed. The proposed method 

treats phase difference and magnitude ratio distributions between the microphones as 

distinct sound field features, and models them by GMMs to detect a robot’s location 

and orientation. Since the proposed method makes no assumptions about the spatial 

relationship between sound sources and microphones, it can be applied to both 

line-of-sight and non-line-of-sight cases. A system architecture is also proposed to 

provide robustness to environmental noises. The proposed method is suitable to be 

integrated with other robot location or orientation detection algorithms based on 

different sensors to provide initial conditions for reducing the search effort, or to 

compensate for localizing certain locations that cannot be detected using other 

localization methods to perform more robust, more accurate and faster pose and 

global location detection. 

5.2 Potential Research Topics 

5.2.1 The Prediction, Interpolation, or Extrapolation of BRDPs 

The relation between the BRDPs and the location of sound source can only be 

obtained by empirical data at present state. However, the demand of empirical data 

can restrict the application of the proposed localization methods. Consequently, the 

studies of room acoustic channel modeling can be combined with this research to 

solve this problem and provide a wider application scenario. 
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Sometimes, the BRDPs of some points are known in advance. However, 

researchers might be interested in the BRDPs at the locations between or near these 

points. Therefore, the interpolation or extrapolation of BRDPs is also an important 

research topic. 

5.2.2 The Influence of Environmental Change to the BRDPs 

 The proposed localization methods assume that the BRDPs or sound field 

features remain unchanged during training and testing procedures. Nevertheless, in 

real environment, the configuration of the room can alter with time. The influence of 

the environmental change has been roughly discussed in [49]. However, the work in 

[49] only considered the basic geometry change; the detail of the influence needs 

further explore. Moreover, the variation of temperature would influence the sound 

speed; hence results in difference of propagation model. Therefore, besides the change 

of the configuration of the room, variation of temperature would also alter the 

measured BRDPs. The relation between the temperature and the room acoustic 

transfer function has been discussed in [72]. The related research can be adopted to 

compensate the effect of temperature variation. 

5.2.3 Robot’s Location and Orientation Detection Using Hidden 

Markov Model 

 The proposed RLM and ROM utilize only the currently measured IPDs and ILDs 

for location and orientation detection. However, for some application, if the relative 

displacement of the sound source or the robot is known, the previously measured 

IPDs and ILDs also provide important information. The locations and orientations can 

be treated as “states” in the hidden Markov model (HMM) [53]. Therefore, instead 
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detecting the most possible location of the robot by the proposed RLMs and ROMs, 

using HMM can detect the most possible trajectory of the robot. Furthermore, the 

state transition matrix in the HMM can be utilized to combine with other sensors or 

localization methods. 
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