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Abstract

Nature sound sources are usually nonstationary and the real environment
contains complex reverberations. Therefore, nonstationary sound source localization
in a reverberant environment .is an important tesearch topic. This dissertation
discusses the relationships between the nonstationarity of sound sources and the
distribution patterns of interaural phase-differences (IPDs) and interaural level
differences (ILDs) based on short-term' frequency analysis. The level fluctuation of
nonstationary sound sources is modeled by the exponent of polynomials from the
concept of moving pole model. According to this model, the sufficient condition for
utilizing the distribution patterns of IPDs and ILDs to localize a nonstationary sound
source is suggested and the phenomena of multiple peaks in the distribution pattern
can be explained. Simulation is performed to verify the proposed analysis.
Furthermore, a Gaussian-mixture binaural room distribution model (GMBRDM) is
proposed to model distribution patterns of IPDs and ILDs for nonstationary sound
source localization. The effectiveness and performance of the proposed GMBRDM

are demonstrated by experimental results.

The proposed nonstationary sound source localization algorithm is adopted for

v



robot localization application. A novel and robust robot location and orientation
detection method based on sound field features is proposed. Unlike conventional
methods, the proposed method does not explicitly utilize the information of direct
sound propagation path from sound source to microphones, nor attempt to suppress
the reverberation and noise signals. Instead, the proposed method utilizes the sound
field features obtained when the robot is at different location and orientation in an
indoor environment. The experimental results show that the proposed method using
only two microphones can detect robot’s location and orientation under both
line-of-sight and non-line-of-sight cases and can be applied to both near-field and
far-field conditions. Since this method can provide global location and orientation
detection, it is suitable to fuse with other localization methods to provide initial
conditions for reduction of the search effort, ot to provide the compensation for

localizing certain locations that €annot be detected.using other localization methods.
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Chapter 1

Introduction

1.1 Sound Source Localization Using Binaural Information

The task of localizing a sound source using multiple microphones has been
developed for years [1]. Among various kinds of.techniques, methods that are based
on the auditory system of humans oriotheranimals using two microphones are one of

the most popular approaches in this research field:

Sound perceived by humans is influenced by the torso, pinna, shape of human
head, and acoustic environment. To identify how the human body affects perceived
sound waveforms, head-related transfer function (HRTF), or head-related impulse
response (HRIR) were proposed [2 - 4]. Generally, HRIR is a measure of impulse
response from the sound source to eardrums in an anechoic room [5]—HRTF is
considered the Fourier transform of HRIR [6]. Since HRTF varies with the sound
source location, many localization cues were discussed based on HRTF. For example,
the interaural level differences (ILDs) and the interaural time differences (ITDs) are
utilized as the major cues for localizing a sound source, especially for azimuth

localization [7].



1.1.1 Azimuth Localization Using Binaural Localization Cues

Brungart et al. concluded that ILDs play an important role in localizing sound
sources near the head [8]. The ITD, or interaural phase difference (IPD), which is the
frequency domain representation of ITD, can be estimated by cross-correlation
functions [9] or generalized cross-correlation (GCC) methods [10, 11]. Although IPDs
and ILDs have been studied for a long time, they have limitations. Based on an
assumption that head and ears are symmetrical, the sound source presented at a
median plane should produce no interaural difference. Therefore, interaural difference
cues are insufficient for localizing the elevation of a sound source in the medium
plane. Moreover, any sound source falls on a “cone of confusion,” as Woodworth

called it [12], may lead to constant [PDs or ILDs.

1.1.2 Elevation Localization 'Using Binaural Localization Cues

Cues of spectral modification ‘are.very.important for elevation localization and
front-back discrimination [13]. As the sound is filtered by the pinna before reaching
the eardrum, “pinna notch” was investigated [14]. The influence of head diffraction
and torso reflection was also examined [15]. Therefore, the elevation of a sound
source can be estimated by comparing the incoming spectrum with the stored HRTF
[16, 17]. These elevation estimation methods typically assume a flat sound spectrum
or one that is known in advance. In practice, natural sounds are highly nonstationary
and localization systems have no a priori knowledge of the spectrum shape of the
nature sound [16]. Although most research results showed that spectral modification
cues are significant for elevation localization, it remains unclear how the human

auditory system localizes the elevation of nonstationary sound [16].



1.1.3 Distance Localization Using Binaural Localization Cues

Another significant localization ability of the human auditory system is distance
localization. Research works indicated that many possible cues exist for distance
localization (e.g., overall sound source intensity and energy ratio of direct to
reverberant sound [7] [18]). However, overall sound source intensity can only be
employed for relative distance localization and the energy ratio of direct to
reverberant sound is strongly influenced by the reflections within an application
environment [7]. Therefore, sound source localization in three-dimensional

environments using binaural information remains an open research topic.

1.2 An Overview of Microphone-Array-Based Direction of

Arrival Estimation

Besides HRTF based approaches, methods based on multiple microphones or
microphone array are proposed. Figure 1-1 shows the physical layout of a uniform

linear microphone array.

wln) Verlrt) V)

[ >

Figure 1-1 Physical layout of a uniform linear microphone array.



where x denotes the sound source, y,(n)---y, (n) denotes the signal received by
M microphones, y,, (n) denotes the signal received by the reference microphone,

L, is the size of the microphone array and d_, €  are the distance and azimuth
from the sound source to the reference microphone. Based on the relation between
L, and d_, the received signals can be regard as plane waves (far-field) or spherical

waves (near-field). The definition of far-field and near field can be found in [19].

Generally, existing microphone-array-based sound source localization algorithms
may be divided into three categories: steer-beamformer-based algorithms,
eigen-structure-based direction of arrival (DOA) estimation algorithms, and

time-delay of arrival (TDOA) based algorithms.
1.2.1 Steer-Beamformer-Based Algorithms

Steer-beamformer-based sound ssource-localization algorithms [20 - 22] utilize
beamformer algorithms to form beams-for spatial filtering and steer the formed beam
to the interested directions to obtain the spatial response. The power of the spatial
response is then computed and the most possible sound source direction is decided by
finding the direction with maximum power. The performance of
steer-beamformer-based algorithm depends mainly on the resolution of the
beamformer and the steer-beam algorithm adopted. Therefore, the performance of
steer-beamformer-based sound source localization algorithms is limited by the
resolution of beamformer. Raising the resolution of beamformer and increasing the

steered beam direction result in higher computational load.



1.2.2 Eigen-Structure-Based DOA Estimation Algorithms

The eigen-structure-based DOA estimation algorithms [23 - 34] are proposed for
high-resolution multiple sound source localization. This kind of sound source
localization algorithms derive the data correlation matrix from the signals obtained
from the microphone array and compute the eigenvectors. The eigenvectors are
separated into two subspaces, signal subspace and noise subspace, according to the
importance of eigenvalue. Based on the theory in [24], the array manifold vector (or
the steering vector), a(@), corresponds to the sound source localization and is
orthogonal to the noise subspace. Consequently, the projection of a(@) to the noise

subspace must be zero theoretically when € consists the direction of sound source.

Figure 1-2 is a three-diménsional’jexample.of the relation between signal
subspace, noise subspace and manifold “vectors,” where E, and E, are the
eigenvectors that span signal subspace, and“E, is the eigenvector that span noise
subspace. Therefore, the manifold ' vector " a(@) is orthogonal to E, when
0 =06, or 6, . According to this relation, the location of sound sources can be estimated.
The drawbacks of eigen-structure-based DOA estimation algorithms are the ability of
dealing with reverberant signal and the requirement of eigenvalue decomposition.
When the environment is reverberant, the eigen-structure of the data correlation
matrix would break the assumption above and result in an un-robust estimation result.
On the other hand, the requirement of eigenvalue decomposition makes

eigen-structure-based DOA estimation algorithms need more processing power.



Figure 1-2 An illustration of signal subspace; noise subspace and manifold vectors.

1.2.3 Time-Delay of Arrival Based-Algorithms

The TDOA based algorithms [35 - 39, 10, 11] measure the time delay using
phase difference between microphone pairs. Cross-correlation methods and GCC
methods discussed in 1.1.1 can also be classified in this category. The time delay is
then combined with the geometric relation between sound source and microphones to
estimate the most possible sound source location. Basically, TODA based algorithms
require lower computation power then methods in the other two categories. However,
TODA based algorithms are sensitive to the weights of processed frequencies. Works

on how to select a set of optimal weight are proposed and discussed in this research

field.



1.3 Known Problems in Sound Source Localization

Early experimental results for HRTF were principally obtained in anechoic
rooms using maximum-length sequence (MLS) method [40]. Since this approach is
based on stationary sound sources in anechoic rooms, conventional studies of HRTF
mainly concentrated on the steady-state response from a sound source to the eardrums
caused by human body. Only a few studies addressed the issue of localizing a sound
source in a reverberant room [14] [41]. In a real enclosure, the relation between a
sound source and microphones is very complicated and is almost impossible to
characterize with a finite-length data and short-term analysis method such as
short-term Fourier transform (STFT). According to the investigation of room
acoustics [42], the number of eigen-fréquencies with an upper limit of f, /2Hz can

be obtained by the following equation:

A o £ ]
L= = \P(2v) (1-1)

where f, denotes the sampling frequency, v represents the sound velocity
( v=340m/s )and ¥ is the geometrical volume. This equation indicates that the
number of poles is too high when the frequency is high, and that the transient
response occurs in almost any processing duration when the input signal is a
nonstationary sound. For example, the number of poles is about 96435 when the
sampling frequency is 8000 Hz and the volume is 14.1385 m’. Hence, the
nonstationary characteristic of nature sound source makes the IPDs and ILDs between
the signals received by two microphones from a fixed sound source vary among data

sets.



In practice, reverberant sounds can significantly influence the localization cues.
Gustafsson ef al. analyzed how reverberation can distort time-delay estimation [43].
Shinn-Cunningham et al. showed that HRTFs are altered by reverberant sound in a
classroom [44, 45] and the reverberation can cause temporal fluctuation in short-term
IPDs and ILDs [44]. These studies suggest that the performance of general methods of
sound source localization based on a set of HRTFs measured in anechoic rooms with
stationary sound sources can be limited because of the nonstationary property of
natural sound, reverberation, and short-term frequency analysis. Based on the
precedence effect, some sound source localization methods excluded reverberant
sound by detecting sound source onset [46]. However, as mentioned above,
reverberation actually helps listeners judge the distance of sound source. Excluding

reverberant sound can restrict the ability for distance localization.

Besides reverberation and:nonstationarity of sound source, there are still other
non-ideal issues such as the non-line-of sight eondition and microphone mismatch
problem. When only two microphones are used, the methods mentioned above
estimate mainly the difference between microphones. It means that the methods
cannot distinguish between different sound sources, which are aligned relative to the
array under far-field condition. Furthermore, barriers may exist between microphones
and sound source (so-called the non-line-of sight condition) in real applications.
Under these circumstances, these methods estimate only the directions of reflection or
diffraction, and cannot determine the real source direction. In practice, microphone
mismatch is also an important issue, since the methods above assume that
microphones are mutually matched. Pre-matched microphones are relatively
expensive and the microphone calibration procedure is not always reliable because the

characteristic of microphone changes with sound direction and is hard to measure



precisely.

1.4 Contribution of this Dissertation

This work focuses on localizing sound source in complex indoor environment.
Unlike traditional works that try to eliminate the influence of the temporal fluctuation
caused by reverberations, this work attempts to model these fluctuations using

statistical models for sound source localization.

In the first part of this work, the relation between the nonstationarity of sound
source and the distribution patterns of IPDs and ILDs when short-term frequency
analysis is utilized for analysis is discussed. The level fluctuation of nonstationary
sound source is modeled by theexponential of polynomials based on the concept of
moving pole model. Accordingly, the sufficient condition for utilizing the distribution
patterns of IPDs and ILDs to détect the location: of nonstationary sound source is
suggested and the phenomena of multiple peaks in the distribution patterns can also
be explained. Furthermore, a Gaussian mixture based model, called Gaussian-mixture
binaural room distribution model (GMBRDM) is proposed to model the distribution

patterns of IPDs and ILDs for nonstationary sound source localization.

In the second part, the related research is applied to robot’s location and
orientation detection. An indoor sound field feature matching method is proposed and
is applied to detect a mobile robot’s location and orientation. The sound field feature,
captured from a sound source to a pair of microphones, contains the dynamic of the
propagation path. Because of the complexity of indoor environment, the features from

different path can be distinguished using appropriate models. Gaussian mixture



models (GMMSs) [53] are utilized in this work to characterize the phase difference and
magnitude ratio distributions between the microphone pair in consecutive data frames.
The application provides an alternative thinking compared with traditional methods
such as DOA estimation using propagation delay. They usually suffer from

reverberation, non-line-of-sight and microphone mismatch problems.

1.5 Organization of this Dissertation

This dissertation is organized as follows. This chapter provides a brief
introduction to the general sound source localization algorithms, including methods
which follow the auditory system of human and methods based on microphone array.
Moreover, this chapter also discusses the main ¢ontribution and the organization of
this dissertation. In the next chapter, the binaural room distribution pattern and related
GMBRDM are introduced. In Chapter-3;-sound-based robot’s location and orientation
detection system is proposed and discussed.-The related experiments are shown in

Chapter 4. Chapter 5 gives some conclusion remarks and avenues for future research.

10



Chapter 2

Nonstationary Sound Source
Localization Using Binaural Room
Distribution Pattern

2.1 Introduction

As discussed in the first chaptet, localizing a nonstationary sound source in a
reverberant environment can face temporal fluctuation of interaural cues. Recent
research results for sound source localization revealed the importance of temporal
fluctuation phenomenon of IPDs and ILDs. Rather than eliminate the influence of
these fluctuations, these studies attempted to describe these fluctuations using
statistical models for sound source localization [56]. The work in [48] investigated
localization cues of IPDs and ILDs exhibiting temporal fluctuation phenomena when
sound sources are nonstationary and short-term frequency analysis, such as short-term
Fourier transform (STFT), is utilized. In [48], distribution patterns of IPDs and ILDs
were calculated from the superposition of sound sources recorded in an anechoic

room and spatially distributed noise recorded in real environments. The distribution

11



patterns were applied to estimate the azimuth and elevation of a sound source using
Bayesian maximum a posteriori estimation. The experiments demonstrated good
results in both quiet and noisy conditions. Further, Smaragdis and Boufounos [49]
also used the Gaussian model to model the empirical features in a reverberant room.
In their work, the fluctuation of relative magnitude and phase of the cross spectra is
modeled for sound source localization and the wrapping effect is solved using the

proposed wrapped Gaussian model.

This study attempts to probe further the cause of IPD and ILD distribution
patterns when a sound source is nonstationary and STFT is utilized. To simplify the
description, distribution patterns of IPDs and ILDs are called binaural room
distribution patterns (BRDPs) in the rémainder of this work. The idea of moving pole
model is employed to model thé¢'nonstationary. sound sources; consequently, the level
fluctuation is modeled as an exponent of polynomial; Based on this model, it can be
shown that BRDPs depend on the content of the nonstationary source signals. The

dependency is analyzed to explain the phenomenon of multiple peaks in the BRDPs.

In real environment, more than one peak can exist in the measured BRDPs. For
example, Fig. 2-1 illustrates the IPDs and ILDs measured at the location marked “A”

in Fig. 2-2.
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Figure 2-1 The histograms of IPDs and ILDs measured at location the marked “A”.
(a) The histogram of IPDs at the location marked “A”. (b) The histogram of ILDs at

the location marked “A”.
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As shown in Fig. 2-1, the IPD and ILD contain multiple peaks. This phenomenon can

be explained with the proposed model.

Since the BRDPs can contain multiple peaks, a modeling method that deals with
complicated distribution patterns is needed. Although the work in [48] utilized
normalized histograms to model distribution patterns, the memory requirement is
considerable when histogram resolution is high. Therefore, this work adopts GMMs
to model BRDPs and proposes a GMBRDM to parameterize them. Because the
proposed GMBRDM is a linear combination of the phase difference GMM and the
magnitude ratio GMM, a method is proposed to obtain the optimal weights of the
linear combination to enhance the localization ability. Additionally, because BRDPs
contain information on direct paths,and reflections, localizing a sound source in the

azimuth, elevation and distance @sing the proposed GMBRDM is possible.

The remainder of this chapter is-organized as follows. The next section discusses
how the nonstationary sound source can‘influence the IPD and ILD. A simulation of a
simplified environment is performed to verify the discussion in Section 2.3. Section
2.4 presents the formulation of the proposed GMBRDM. The summary is given in

Section 2.5.
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2.2 The Relation between the Nonstationary Sound Source

and the BRDP
2.2.1 IPDs and ILDs of Stationary Sound Source

A linear time-invariant (LTI) room acoustic channel is represented by a K

K-1
tapped finite impulse response (FIR) model A(n)= Zbké'(n —k) as,

y(n)=>"bx(n—k) (2-1)

where x(n) denotes sound signal emitted into the channel, y(n) denotes the signal

received by the ear, and b, is the coefficients of the FIR model for the room impulse

response (RIR) from sound source to an'ear, Without lost of generality, the stationary
input signal is assumed to be a complex exponential signal with frequency @ and

constant level A:

x(n)= Ae’™ (2-2)
L2k .
where @ = Y which is the sampled frequency of an N-point STFT.

For such input, the corresponding output is

=3, Ao (2-3)
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Take the N-point STFT at frequency @:

n=0 \ k=0

N-1( K-l - - -
Y(0)= 2(2 bke_“’kJAe“‘"e_W

. (2-4)
= NAY be ™
k=0

By denoting y, (n) and yR(n) as the signals received by left and right ears,
respectively, and Y, (@) and Y,(®) are the STFT of y,(n) and y,(n), the IPD,

P(®),and ILD, M(®),between Y, (®) and Y,(&) are

K-1 o
2 buye™
P(@)=4 B——

—jok
2 by
k=0

and

K=l i
ZbL,ke_’“’k
M(d) = Ini i (2-5)

—_]CA(X(
Z by e
k=0

where b,, and by, are the coefficients of FIR channel models, %, and #,, from

K-1
the sound source to the left ear and the right ear, #, :sz,ké‘(n—k),

k=0

K-1
hy :ZbR’ké‘(n—k) and Z(-) denotes the phase value. Note that the operation of
k=0

nature logarithm is taken for computing the magnitude ratio. As shown in (2-5), the

IPD and ILD between Y, (@) and Y,(®) depend only on the frequency responses

of the channels and the measured frequency, as discussed in related research.
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2.2.2 IPDs and ILDs of Nonstationary Sound Source

Although the nonstationarity of a sound source can be tested in many different
domains [50], this work only considers time domain variation. To model time domain
variation of a sound source, the level of the complex exponential signal in (2-2) is

assumed as time varying:

x(n)= A4 e’*e’™ (2-6)

where 4, is a time-varying sound level. Accordingly, the output y(n) can be

formulated as:

y{a) =3 Bex(n ~ k)

- W) st (2-7)

Y(n,@)=" y(n+1)e /"

bk e*ja“)ke./rﬁe./c?)(nﬁ)e*ja?(%f) (2-8)

Hence, the ratio between Y, (n,@) and Y,(n,®) is
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A An+ — b eijé)k
YL (l’l, a)) — ; k=0 e (2-9)
YR (n’ (D) N-1 K1 ik
An+r—kbR,ke A
7=0 k=0

N—1 K—1
y
Z A, by e
A\ 7=0 k=0
P(n,w)=4 -5 , and
—jok
An+r—kbR,ke
7=0 k=0
N—1 K—1
_I‘zi(
An+r—kbL,ke
A\ 7=0 k=0
M (n,@)=1n oy (2-10)
An+r—kbR,ke
7=0 k=0

As shown in (2-10), the phage difference “and ‘'magnitude ratio become content

dependent when STFT is utilized and | 4, 1S nonstationary.

2.2.3 Modeling the Nonstationary Sound Source Using Moving Pole

Model

To analyze how nonstationarity of a sound source influences the IPD and ILD, a
parameterized model for nonstationary sound is needed. Based on the discussion in

[51] and [52], a nonstationary sound source in an analysis window can be expressed

as a sum of moving pole models. In this work, the idea in [52] that approximate A,

as an exponent of polynomial is utilized. In [52],

4 :ez(/J (2-11)

n
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where N, is the degree of the polynomial, a, is the coefficient of the polynomial
and f, denotes the sampling frequency. To simplify the analysis, we omit the terms

of t=2,asin [30]; hence, 4, is modeled as:

A4 =e © (2-12)

n n+l n+2 n+N-1
. ao+[7]”1 ao‘*{ f ]‘11 “0‘*’[ 1 ]"1 a0+[f7,]!l1 —-j@0 _jé
Y (n,o)=le " +e ‘77 +e 77 4-te ‘ b, e’ e’

n+l n+N-2
a0+[ 7 ]“1 ao{if jal Zjol o
o tete . b, e ’"e’

n n+N-3
agH 7 a agH 7 a o2 s
/. e ; b, e’ e

+[ =(K=3) n+(N-K)

a+wa a a agt ——— |a
0 f 1 0 f 1 0 f 1 —jé)(K—l) j¢
+e +--t+e : b, ._e e

L,K-1

‘ (2-13)
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This equation can be rearranged as:

n 1 2 (N-1)
R apt—a - - —q k0 i
Y,(n,@)=e L 1+el ++els +-4e b b, e’ e’?

N—
A g ta ! 2 W=,

1 -9 v N .
fs 1+ef\ ++ef\ +.te S5 bLle_.la)le/¢

a n 1 2 (N-1)

-2—- ayt—q a — 4 a 02 i
+e Te I |1+el +4el +-te b, e 'e’?
1 2 (N-1)
(K1) g+ —a —a —a . )
+e e L l14+el ++el +--te bL,K_le’-""(K’l)e"p
N
ag+—a, l—e I ka1 24 o
= e s bLk A P
a >
k=0
1-e”
Through the same procedure, wé-have
N
aOJrfla1 l—e Js [ K= —%k - ”
Yi(n,)=e ' ——— Ze by e le?
- =0
1-eh

and the ratio between Y, (n,&) and Y,(n,®) becomes:
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Consequently, the IPD and ILD are

K-1 _%k -
s -J
e’ b, e
P(n,®) =4 = and
K-1 -4
/ —jdk
e’ by,
k=0
K-1 _%k -
s -J
e’ b, e
M (n,®») = In*= (2-17)
K-1 7%/( -
J
e’ bye
k=0

By observing (2-17), this study finds that the IPD and ILD values depend on the
coefficient of the FIR models and thé'value of _a,, which is the slope of the nature

logarithm of 4, .

2.3 Simulation Verification and Discussion of Proposed
Model

2.3.1 Content Dependency of BRDPs Obtained from Nonstationary

Sound Source

To verify the proposed analysis, a simplified simulation environment (Fig. 2-3) is
assumed (Although the simplified environment is utilized as an example here, the
following discussion of the relationship between BRDPs and nonstationary sound

sources can be applied to general cases).
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Figuré-2-3=" Simulation configuration.

As depicted in Fig. 2-3, the only cause of reflection is the only cause of
reflection is the infinite wall located at x =0. The two microphones are located at
(x,,7,2,)=(48m,0.5m,0m) and (x,,y,,2,)=(52m,0.5m,0m) and the sound
source is located at (x,,y;,z,)=(5m,0m,0m). The models from the sound source to
the microphones are simulated by the image method introduced in [47] with sound

speed ¢=340m/s and sampling rate f, = 8000 Hz. The wall is assumed to be rigid.

The simulated model is depicted in Fig. 2-4.
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Figure 2-4  Simulated modelfrom-sound source to the microphones.

Two different sources are input into the simulation model to show the content
dependency of IPD and ILD histograms. For the first source, the value of a, in the
measured frames is uniformly distributed between [— 500,0]. The IPDs and ILDs at a
frequency of 140.625 Hz are computed 1000 times. Fig. 2-5 presents the histograms,
which can represent the probability distribution, of IPDs and ILDs. The second source
is similar to the first, except the value of a, is uniformly distributed between

[— 500,200] in the measured frames. The histograms are illustrated in Fig. 2-6.
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Figure 2-5 The histograms of IPDs and ILDs of the first sound source. (a) The
histogram of IPDs of the first sound source. (b) The histogram of ILDs of the first

sound source.
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Figure 2-6 The histograms of IPDs and ILDs of the second sound source. (a) The
histogram of IPDs of the second sound source. (b) The histogram of ILDs of the

second sound source.
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The simulation results in Figs. 2-5 and 2-6 demonstrate that when the sound sources
are nonstationary, the IPD and ILD histograms depend on the content of the source
signal. Therefore, conditions of the nonstationary sound source must be designed such
that the BRDPs can be utilized for localization. In view of the aforementioned
discussion, the sufficient condition is that the distribution of a, of the sound source
must be stationary to make the sound source applicable for localization. Care must be
exercised when using IPDs and ILDs obtained from nonstationary sound sources for

sound source localization to avoid performance degradation.

2.3.2 The Formation of Peaks in the Distribution Patterns of IPDs

As shown by the simulation in Section 2.3.1, the distribution patterns of IPDs
exhibit multiple peaks. This phedomenofialse appéars in the empirical results in real
environment. The derivation -result of (2-17) can be adopted to explain this

phenomenon.

According to (2-17), there are several possible reasons to form peaks in the
distribution patterns of IPDs. First, if a, of a sound source is concentrated at a
certain value, a peak in the histogram will result. An obvious example is a stationary
sound source. For a stationary sound source, a, =0 for all measured frames, which
makes IPD a fixed value, results in a peak in the distribution pattern.

;alk

Secondly, the term e’ in (2-17) decreases as k increases when a, is
positive. This means the weights of the reflection part in the channel model is reduced
and the influence of the direct path are increased. Hence, when a, exceeds a certain

level, the measured IPDs can be approximated as:
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e’ by, e (2-18)

where k,, and k,, are propagation delay of the direct path from the sound source

to microphones. Based on (2-18), the phase difference between direct paths from a
sound source to microphones is emphasized and can dominate the measured IPDs.
Since the IPDs are approximately the same for all a, exceed a certain level, a peak
can be formed in the distribution pattern. This derivation explains why some previous
research results of IPD-based time delay estimation suggested utilizing speech source

onset to improve the accuracy [24]. On the contrary, when a, is negative, the value

;alk

s

of e increases with k& . In this'case, the' influence of the direct path is suppressed

and the reflections can dominate'the measured-IPDS:

The second simulation in Section 2.3.1 is utilized to interpret the relationship

between a, and the IPD (Fig. 2-7).
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Figure 2-7 Relation between-the value of a, and the IPD.

In Fig. 2-7, as a, >100, the value of IPD-approaches 0, which is the phase difference
caused by the direct paths from the¢+sound source to microphones. On the other hand,
when a, <-300, the value converges to 1.1, representing the phase difference
influenced by wall reflection. It is then easy to understand why there are two peaks at
0 and 1.1 in Fig. 2-6 (a). Generally, reflections appear later in the propagation model
than direct paths, meaning that a negative value of a, is required to emphasize the
effect of reflections. Consequently, the more the wall or boundary absorbs the energy
of sound source, the smaller value of negative q, is required to emphasize the effect

of reflections.
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2.3.3 The Formation of Peaks in the Distribution Patterns of ILDs

Similar to the discussion of IPDs, the a, of a sound source is concentrated at a
certain value, results in a peak in the ILD distribution pattern. However, ILDs behave
quite different than IPDs when a, is either large or small. When q, is larger than a

certain level, M (n,@) can be approximated by

M (n,@)=1n

e’ Lk
=ln -t (2-19)
—ﬂku,z
e Rkp.3
_ al(kD,l kpa) Wi, Likp,,
£ Rikp»

Therefore, the relationship between ILDs and @, is approximately linear (with a

- (kD,l - kD,z)

N

slope of ) when aq, is larger than a certain level. Hence, if the slope is

0 (meaning k,, =k, ,), it will cause a peak in the ILD histogram. Similar to IPDs,

when g, is smaller than a certain level, the influence of the direct path is
de-emphasized and the reflection part starts dominating the measured ILDs. The
second simulation in Section 2.3.1 is again utilized as an example of the discussion

above. Figure 2-8 shows the simulation results for the relationship between the value

of a, and the ILD.
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Figure 2-8 Relation betweenthe value of a, and the ILD.

In Fig. 2-8, when q, >100, the-measured ILD is about 0 because the simulation sets
kp,—kp,=0 and b,, =b,, . Thissresults'in a peak at 0 in the histogram, as

shown in Fig. 2-6 (b). In addition, when a, <-300, the measured ILDs change

linearly with the value of q,, resulting in a flat area in Fig. 2-6 (b).

2.3.4 Localization of Nonstationary Sound Source Using BRDPs

As mentioned in Chapter 1, detecting the location of sound sources presented at
median plane or on a “cone of confusion” is difficult when only IPDs and ILDs of
direct paths are utilized. However, sound sources at different locations can propagate
through different reflections and with the property of nonstationary sound source
discussed above, the nonstationary sound can result in distinguishable distribution

patterns. Consequently, it is possible to detect the location of the sound sources in the
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azimuth, elevation, and distance using BRDPs.

2.4 GMBRDM for Nonstationary Sound Source Localization

As discussed in Section 2.3.1, if the environment and head position are
unchanged and the distribution of g, of the sound source is stationary, using BRDPs
for sound source localization is possible. Sections 2.3.2 and 2.3.3 also show that
BRDPs can be non-Gaussian and contain multiple peaks. Consequently, modeling
these distribution patterns as a simple distribution pattern (such as a single Gaussian
distribution) can eliminate important details. Utilizing a high-resolution normalized
histogram to model the distribution pattern requires considerable computational of
memory. In this work, GMMs are €mployed to model BRDPs (called the GMBRDM)

to reduce the memory requirement,through parameterization.

2.4.1 The Training Procedure of the Proposed GMBRDM

Let P, (nf,a)b) and M (nf,a)b) denote the phase difference and magnitude

ratio obtained at frame n, respectively for constructing GMM at frequency @,

be {1,...,3}, which means B frequencies are utilized to construct the model. The
phase difference and magnitude ratio GMMs are defined as the weighted sum of N,

and N, mixtures of Gaussian component densities:

6(P,(1,)12.))= 2 prse .o, 220)
G o)1)= 2P 01, o) @2
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Wherer(nf):[])x(nf’wl) Px(nfaa)B)]Ta
Mx(nf):[Mx(nf,a)l) Mx(nf,a)B)]T . pp; and p, . are the weights of i"

mixture, and g, (Px (nf )) and g, (M . (nf )) are the Gaussian density functions.

Notably, the mixture weights must satisfy the constraints:

N,

Ny
D> pp,=1and > p,, =1 (2-22)

i=1 i=1

The terms A, and A, represent the parameters of N, and N, component

densities.

Ap :{pP’uP’ZP} and A, :{pM:uMaZM} (2-23)
where
pPpr = [ppwl pP’N]J denotes the phase difference mixture weight vector with
dimensions 1XxN,.
Py = LoM’l pM’NZJ denotes the magnitude ratio mixture weight vector with
dimensions 1xN,.
n, = |_/l Py M P’N]J denotes the phase difference mean matrix with dimensions
BxN;.
n, = LuM’l ,uM,NZJ denotes the magnitude ratio mean matrix with dimensions
BXN,.
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X, = lE Py Z P,NIJ denotes the phase difference covariance matrix with

dimensions BX BN, .

X, = l): M1 X M’sz denotes the magnitude ratio covariance matrix with

dimensions BX BN, .

The parameters A, and i, in (2-23) can be estimated by the iterative EM

algorithm [53] which guarantees a monotonic increase in the model’s log-likelihood

value. By denoting the training sequence length as N, the iterative procedure can be

divided into the expectation step and maximum step:

Expectation step:

612 )0 )2 e B> e (., @24
Gli | M (n )y, )= py 200, ) ipM,igi (v, (/) (2-25)

where G(i | P, (n 7 ), A p) and G(i | M (nf ), Ay ) are a posteriori probabilities.

Maximization step:

(1). Estimate the mixture weights:

Py =N, 2G| P.n, )2 ,) (2-26)

ny=1
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= UN, G, )0y (2-27)

n,=l
(ii). Estimate the mean vector:

:uP,i:an (|P nj ”f /Z”r i|P, ”1))" ) (2-28)

Mars = 2 Gl M o, )0 )M, )30 GlaI M, 0y, ) - (2229)
(ii1). Estimate the variances:

o1, (0,)= (2, Gl P, }2, )20, ) 0 Gl P Lo ) 1, (@)
(230)

0, @)= (2 Gl Mo ) W (o )3 G M (o M -1 ()
(2-31)

The EM algorithm is sensitive to the choice of initial model. A good choice of
initial model results in a lower number of iterations of the EM algorithm. K-means
related approaches are known to be effective in finding a suitable initial model [54].
This work utilizes an accelerated K-means algorithm proposed by Elkan [55], which

can significantly reduce the computational power requirement.

The proposed GMBRDM at location / is defined as the linear combination of

the phase difference GMM and the magnitude ratio GMM obtained at location /:
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GMBRDM (1)=t,G(P. (1, ) 3., (D), GOV, )12, 1) 232)

where o, and «,, represent the weighting factors. The values of ¢, and ¢,,
can be chosen based on the sum of the correlation values among trained locations of
the phase difference GMM and magnitude ratio GMM. The GMM with higher
correlation summation would be assigned a lower weight, since the ability to
discriminate is considered lower under this circumstance, and vice versa. Under this

principle, ¢, and «,, are determined by the following formula:

mln{ZOtP{ (4,)UC, (g, ) }+ ZaM{ (¢,,)UC (qM)T}}

st. o, xa,, =lLa, >0,0,, >0 (2-33)

where ¢,€ O, and ¢, € Q,, arc the B dimensional random vectors in the

operation ranges, O, and Q,,.

CP(qP):[C(qu)“P(l)) C(qu)“P(z)) C(qP|)“P(L))]:

Cy (qM ): [C(qM | Ay (1)) C(qM | &y (2)) e C(qM | Ay (L))] , and

0 1 1 1
0 1 1 1
0 0 | ) )
U= with dimension L X L.
0 1 1
: 0 1
00 0 0 0 0]
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In addition,

Clg, | 2p(1)= Higp |1, /\/ZH (g, 12, () (2-34)

Clgy 12y, (1))=Hgyy 1, ( / > H2(q,, %, (1)) (2-35)

L'4%

H(q, |%,(1))=Glg, |2, (ZGqPIX /N(qp]

Hq, |2, (1))=Glg, 1%, [ZGqMM )/N(qM)J

(2-36)
where N(q,)and N(q,,) denote the total seleeted numbers of ¢, and g¢q,,.
The values of «a,and «,, can be obtained by solving (2-33) as:
%c 4, )UC,, (g, /Zc ¢,)UC,(g,) (2-37)
n = |2 Crlar)UC, a) /ZC 4, )UC,, (q,, )" (2-38)

The proofs of (2-37) and (2-38) are shown in the appendix.

2.4.2 The Testing Procedure of the Proposed GMBRDM

The location is determined by finding the maximum a posteriori location

probability for a given observation sequence:
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[ = argmax GMBRDM (1) = argrlgalfaPG(lP(m P, )+a, G(h, ()|M,)

I<I<L

=argmaxa, (G(P, |1, (1)p(, (1)) p(P, )+ e, (GM, | &, (1)p (2, (1)) p(M, )

I<I<L

(2-39)

where P, ={P,(1),---,P,(N,)} and M, ={Mm,(1),--,M,(N,)} are the phase
difference and magnitude ratio computed from the testing sequences denoted as
Y (w) and Y,(w), and N, denotes the testing sequence length. The probabilities
p(h,(1)) and p(n, (7)) can be selected as 1/L since the probability in each
location is equally likely for a blind search. Moreover, because the probability

densities p(P,) and p(M,) are the:samefor.all location models, the detection rule

can be recast as:

P = argmax a, [[G(Pn) [ 1, () 4 T] GO, (1) (1) (2-40)

1<I<L
n,=l1

2.5 Summary

In this chapter, the relation between the nonstationary sound source and the
BRDPs are discussed. Moreover, based on the discussion, a model, named GMBRDM
is proposed for nonstationary sound source localization. Theoretically, the GMBRDM
is capable of localizing sound source in azimuth, elevation, and distance. The

performance of the proposed method is examined in Chapter 4.
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Appendix

Proofs of (2-37) and (2-38):

The problem is formulated as

mm{Za{ (¢,)UC,(g,) }+ Za {c., (g, uc (qM)T}}

st. o, =La,>0,a, >0 (A-1)

According to the constraint, set ¢,, =l/@p:Then, the cost function becomes,

mm{z o { qP UC (qP) } Zai {CM (qM )UCM (qM )T }} (A-2)

Im P

Setting the first derivative with respectto ¢, be zero gives

ZC 4,)UC,(q,)" Za “C,(4,,)UC,(9,]) =0 (A-3)
Therefore,
Z Cy (qM )UCM (qM )T
o, = | - (A-4)
z CP(qP )UCP(qP)

q,
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P UCP(qP)T
| %Cp(q ) s
o, =—

@, \>.C, (0, )UC, (a, )

Im
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Chapter 3

Indoor Sound Field Feature Matching
for Robot's Location and Orientation
Detection

3.1 Introduction

Indoor robot localization is an important issue in the field of robotics. Various
equipments, such as camera, radio frequency identification (RFID), infrared (IR),
ultra sonic sensor, laser, wireless LAN based methods and inertial navigation sensor

have been adopted to provide different solutions [57 - 64].

For indoor robots, audio devices such as loudspeakers and microphones are
becoming basic equipments. These sound-related devices can generally provide a
more nature way for robots to communicate with human. Additionally, some
researchers believe that these devices can be utilized for robot localization [65, 66].
The BRDPs introduced in Chapter 2 are treated as sound field features and this

chapter. Therefore, this chapter investigates the feasibility of using sound field feature
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matching for robot’s location and orientation detection and proposes a robust

sound-based indoor robot’s pose detection system utilizing two microphones.

3.1.1 Traditional Sound Based Robot Localization Methods and

Known Problems

The idea of using multiple microphones to localize sound sources has been
developed for a long time. Among various kinds of sound source localization methods,
generalized cross correlation (GCC) based methods [10, 11, 67, 68] were discussed
for robot localization application [65]. In general, sound-based robot localization
system uses a loudspeaker mounted on the robot to produce sound and estimates the
location of the sound source, which is the robet’s location, by a set of microphone
array installed in the room [65,-66].' The main difficulty for indoor robot localization
using sound wave is the complex: propagation jbehavior such as reflection and
diffraction. Theoretically, the values of phase difference and magnitude ratio among
microphones are directly related to the sound wave arrival direction and the distance
between a sound source and microphones. However, these straightforward relations
only exist in free space or environments with simple geometry. In real environments,
these values exhibit stochastic phenomena due to the distributed nature of the
propagation path dynamics and the limitation of finite-length data, as discussed in
Chapter 2. Furthermore, complex boundary conditions, near-field effect, and local
sound scattering make these values hard to correlate with the source location. These
variations generally result in uncertain estimation errors and make sound-based
localization methods unreliable. Moreover, for indoor applications, the robot may
move to a location that is non-line-of-sight to the sensors, i.e., without direct paths

between the robot and microphones. Under this circumstance, traditional methods
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cannot locate the robot accurately.

Another well-known problem of sound-based robot localization methods is the
microphone mismatch problem. If the microphones are not mutually matched, then
the phase difference information among microphones may be distorted. However,
pre-matched microphones are relatively expensive and mismatched microphones are
difficult to calibrate accurately since the characteristics of microphones change with
the sound directions. Consequently, the estimation accuracy varies from different

microphone pairs and is difficult to be evaluated.

3.1.2 The Proposed Method

Traditional sound source localization algorithms attempt to suppress the effects
of complex propagation behavier, as'well as estimate-the direction of the direct sound
source. Instead of trying to eliminate the-influence of reflection and diffraction, this
work treats the distribution patterns-of phase difference and magnitude ratio as a local
feature and uses it to detect the robot’s location and orientation. As discussed in
Chapter 2, the complex propagation behaviors of a sound source result in location or
orientation dependent phase difference and magnitude ratio distributions. This work
adopts GMMs to model these distributions and proposes two models, robot
localization model (RLM) and robot orientation model (ROM). The first model (RLM)
is used for robot’s location detection and the second model (ROM) is used for robot’s
orientation detection. The unique advantage of the proposed method is the detection
of location and orientation in non-line-of-sight cases, i.e., when no direct path is
available between the robot and the microphones. To adapt to the environmental
noises and enhance the robustness of the feature identification, an on-line calibration

procedure is also proposed.
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The remainder of this chapter is organized as follows. The Section 3.2 introduces
the overall system architecture. Section 3.3 describes the design of the directional
sound pattern for orientation detection. Section 3.4 presents the formulations of the

proposed RLM and ROM. Finally, a summary is drawn in Section 3.5.

3.2 System Architecture

As shown in Fig. 3-1, the proposed system contains two loudspeakers on the
robot and a robot’s location and orientation detection agent (RLODA) with two
microphones. The RLODA can be placed in any part of the room as long as the
reception of sound from the robot is clear enough. The sound patterns generated by
Speaker 1 (SP1) are received by.'the RLODA and the RLMs can be obtained by
location dependent phase difference and magnitude: ratio distributions between the
two microphones. When the system jattempts-to build the ROMs, both SP1 and SP2
are used to generate a directional sound pattern."Note that the detail of generating a
directional sound pattern is described in Section 3.3. Because the sound pattern
generated by SP1 and SP2 is directional, the sound field features change with the

robot’s orientation and can be utilized for orientation detection.

~
Two M1uuphonu
Speaker 1 (SP1)
A
|
|
Robot ||
[
. o -
I
N 1 7
J ; J
Speaker 2 (SP2)
RLODA
. J

Figure 3-1 Speaker and microphone configuration of the proposed system.
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Figure 3-2 depicts the overall system architecture. Stage I in Fig. 3-2 is the
pre-recording stage, in which the robot moves and changes its orientation in the
environment when the environment is quiet, and produces sound through the
loudspeakers to obtain a pre-recorded database. Since the sound is recorded by the
two microphones, the information of the sound field features and microphone

response can be obtained by this database.
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RLODA \ ' J
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Figure 3-2  Overall system architecture.

Once the pre-recording stage is finished, the system enters Stage II called silent
stage. In this stage, the robot remains silent and the RLODA records the
environmental noises. Assuming that noise signals are additive, the sound recorded in
real application can be considered as the linear combination of robot’s sound and
environmental noises. Therefore, this stage adds the environmental noises to the
pre-recorded database to construct the training features, phase difference and

magnitude ratio distributions, and then utilizes these features to trains the parameters
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of RLMs and ROMs. Through this process, the effect of environmental noises is

adapted in this stage.

When the robot needs to know its location or orientation, the system then
switches to the sounding stage, in which the robot produces a sound into the room for
the RLODA to detect the robot’s location or orientation. If the robot’s location is
required, the SP1 is used to generate sound; conversely, both SP1 and SP2 are excited
if the robot’s orientation is needed. Because the microphones used in these three
stages are the same, the mismatched characteristics between microphones are
collected in the pre-recorded database and would not influence the detection results of
proposed system. The sounding and the silent stages can be switched to each other
iteratively for location or orientation ‘detectionsand environmental noises adaptation.

Figure 3-3 illustrates the flowchart of proposed system.

Start

v

Stage I - Pre-recording Stage

v

v

Stage 1II - Silent Stage

v

Robot Location and
Orientation required

* Yes

Stage III - Sounding Stage

Mo

Return the estimated localization
and orientation

No

Figure 3-3  Flowchart of the proposed system.
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3.3 Directional Sound Pattern Design for Robot Orientation

Detection

To detect the robot’s orientation by the sound field features, the sound pattern
generated by the robot should be correlated with the robot’s orientation. However, a
general omni-directional sound pattern may lead to the same sound fields when the
robot changes its orientation because the emitted sound has the same characteristics in
all directions. Therefore, a directional sound emission approach must be designed. To
realize a directional sound pattern, the idea of speaker array beamforming [69, 70] is
adopted in this work to guarantee the directivity of the generated sound pattern.
Besides directivity, another constraint on the generated sound pattern is the number of
symmetric axes ( £ ) in the horizontal plane. Figure 3-4 shows an example of how /3
affects the orientation detection, where.the solid line denotes the generated sound
pattern, the dotted line denotes the symmetric axes, and the arrow denotes the robot’s

orientation.

As shown in Fig. 3-4, the sound patterns generated when the robot’s orientation

is 0°, 90°, 180", and 270" are exactly the same when [ =4. A sound pattern
generated when the robot points at a certain direction (0° in the example) would have

B —1 identical sound patterns.
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Figure 3-4 Relations between [ -and the sound pattern.

Therefore, the generated sound can only be symmetrical along one axis (S =1)
to avoid confusion in orientation detection. Consequently, this work proposes a
method that utilizes two loudspeakers to generate the sound pattern that conforms to

the constraint by:

Jsp1(n) =J(n)

Jgpy (1) =0.5% J(n) (3-1)

where J(n) is the original sound source and J, (n) and J,,(n) are the sound

emitted by SP1 and SP2. The distance between two loudspeakers is set to 0.2 m.
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Figure 3-5 depicts the simulation of the generated sound pattern of the proposed
system based on the sound propagation theories in [71] when the robot’s orientation is
0°, where the sound power is measured at 1 m away from the SP1 with the same
height. The solid lines in the circle depict the relative sound power in dB. As shown in
Fig. 3-5, the generated sound pattern is symmetric along only one axis and is suitable

for robot’s orientation detection.

24

24

24
270 270
Frequency = 2000 Hz Frequency = 2500 Hz

24

Figure 3-5 Simulation of generated sound pattern.
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3.4 Robot Localization Model (RLM) and Robot Orientation
Model (ROM)

3.4.1 A Description of the Proposed RLM and ROM

To establish both RLMs and ROMs, the RLODA needs to construct models for

the sound fields at different locations and orientations. P (nf,a)b) and Mg (nf,a)b)

denote the phase difference and magnitude ratio at frame n, respectively for

constructing RLM (S=L) or ROM (§=0) at frequency w,, be {1,...,3}. The
GMMs are defined as the weighted sum of N, and N, mixtures of Gaussian

component densities shown below,
Ny
G(PSx(nf)l )“Sp)zzpsp,igi(PSx(nf)) (3-2)
=l
Ny
G(MSX (n/)| ;“SM)Z ZpSM,igi(MSx (nf )) (3-3)
=1

Where SZ{L’ 0}’PSx(nf):[PSx(nf’a)l) PSx(”f’wB)]Ta
M (nf ) = [MSX (nf, a)l) e Mg, (nf, Wy )]T . Pgp; and pg, . are the ™ mixture
weights, and g, (PSx (n s )) and g, (M S (n s )) are the Gaussian density functions.

Notably, the mixture weights must satisfy the constraints:

N, N,
Zpsp,,- =1 and szM,i =1 (3-4)
i=1

i=1

The terms Ay and A, represent the parameters of N, and N, component

densities.
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Agp :@SPJLSP’ZSP} and Ag, :bSM’uSM’ZSM} (3-5)

where

Psp = [pSP’l pSP’NlJ denotes the phase difference mixture weight vector with

dimensions 1xN,.

Psy = [pSM’l P N2J denotes the magnitude ratio mixture weight vector with

dimensions 1xN,.

g = [;4 seq  Msp, J denotes the phase difference mean matrix with dimensions
BXN;.
R, = Lu swq T My NzJ denotes | the' magnitude ratio mean matrix with

dimensions BXN,.

X, = l): sp1 X SP’NIJ denotes the phase difference covariance matrix with

dimensions BXBN,

o = [Z swan X SM’NZJ denotes the magnitude ratio covariance matrix with

dimensions BX BN,

The parameters Ay and A, in (3-5) can be estimated by the iterative EM

algorithm, which guarantees a monotonic increase in the model’s log-likelihood value.

The iterative procedure can be divided into the following two steps:
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Expectation step:

G121, Vi )= o)) s P

Gli| M, Ly )= o8, (M () ZpSMg( wln/)

(3-6)

(3-7)

where G(i|PSX( ) SP) and G( | M, ( )lSM) are a posteriori probabilities.

Maximization step:

(1). Estimate the mixture weights:

=1/N, %F‘,G(iIPSx(”f)a;“SP)

n/:]

M ZI/NF %G(i|MSx(nf)ﬂ}"SM)

ny=l

(i1). Estimate the mean vector:

”SP,i:Z (‘Ps(”f SP anf /Z

Hsyi = Z,]:F:l G(i | MSx( /Z
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(L)

(3-8)

(3-9)

(3-10)

(3-11)



(ii1). Estimate the variances:

O';P,i (a)/; ) = (Z://F_l G(i | Py, (n r )a Agp )P sz (nf > W, )/ Z,]:F:l G(i | Py, (nf )> Agp )) - II’lSP,iz (wb )

(3-12)

G, (@,) = (20 Gl M n Vg W0, ) 20 Gl M (o, Vg - 2,7 (@)

(3-13)

An accelerated K-means algorithm proposed in [55] is again utilized to reduce the

computational power requirement.

The proposed RLM and ROM at location / ‘and orientation o are defined as
the linear combination of the phase difference GMM and the magnitude ratio GMM at

location / and orientation o :

From (1) = aLPG(PLx (nf )l Aop (Z))+ aLMG(MLx (n/‘ )| Aoy (l)) (3-14)
From (0) = aOPG(POx (nf )| Aop (0))+ aOMG(MOx (nf )| Aoy (O)) (3-15)

where «,,, ., &, and @, represent the weighting factors. The values of

o, and o, can be chosen based on the sum of the correlation values among

trained locations of the phase difference GMM and magnitude ratio GMM. The GMM
with higher correlation summation would be assigned a lower weight, since the ability

to discriminate is considered lower under this circumstance, and vice versa. Under
this principle, a, and «y, are determined by the following formula:
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min{zaﬂ) {C SP (qSP )UCSP (qSP )T }+ z gy {C SM (qSM )UCSM (qSM )T }} (3-16)

qsp 9smu

where ¢, € Oy, and ¢, € O, are the B dimensional random vectors in the

operation ranges, Q,, and 0O, .

CSP(qSP): [C(qSP “"SP(I)) C(qSP |)\‘SP(2)) C(qSP |)\‘SP(L))],

Cov (qSM ) = [C(qSM | Ay (1)) C(qSM | Ay (2)) C(qSM | Ay (L))],

0 1 1
0 01 1 1
and U= 0 g . 1 with dimension LXx L.
: 0 1
00 0 0 0 O0f

In addition,

Clagp |1 (1) = L1 [ (1)

S H g 12 ()

qsp

Clge |2y (1) =—2 (53 1 %50, (1)

S H (ggy 1hg (1)

Ism

Z G(qSP | Agp (Z))

H(qSP “\'SP(I)): G(qSP “"SP(I))_ o Ngo) )
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ZG(qSM | A pr (l))

Hlas 1 ()= Glasy 1 )=

where N(qg) and N(gqg,) denote the total selected numbers of g, and ¢, .

The values of ¢, and g, can be obtained by solving (3-16) as:

ZCSM (qSM )UCSM (qSM )T
o, = | (3-17)
> z Cy (qSP )UC sP (qsp )T
qsp
Z Csp (qSP )UC sP (qSP )T
o — qsp (3- 1 8)
> z Cgy (qSM )UC M (qSM )T

Ism

3.4.2 Location and Orientation Detection

The location and orientation are determined by finding the maximum a

posteriori location probability and a posteriori orientation probability for a given

observation sequence:

[ = argmax F (l) =argmax aLPG(;"LP (l)| P,y )+ &y G(;"LM (l)| M,, )

I<ISL I<ISL

= argmax G(PLY | App (l))p()‘LP (l)) ‘o GM,y [ Ay (1))p(hyy, (l))
EEA p(PLY ) " p(MLY )

(3-19)
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G(POY | Aop (0 ))p (;" oP (0 ))

6=argmax F,,, (0) =argmaxa,,

12050 12020 p(Poy )
g Gy (2o (0)p(2oy (0))
. pMyy)

(3-20)

where Pg, :{PSY(I),-~-,PSY(NV)} and Mg, :{MSY(I),---,MSY(N,,)} are the phase

difference and magnitude ratio computed from the testing sequences denoted as

Yo, (w) and Y,,(w),and N, denotes the testing sequence length. The probabilities

p(h,,(1) and p(k,, (7)) can be selected as 1/L and p(h,,(0)) and p(r,,, (0))

can be selected as 1/0 since the probability in each location and orientation is

equally likely for a blind search. Moreover; because the probability densities p(PSY)

and p(M, ) are the same for all location models, the detection rule can be recast as:

[ = rgmaXOtLPHG () [, +0(LMHG )| %y (1))

I<I<SL

(3-21)

=arg maanPHG( OY( )| ;“OP ))+0‘0M11L111G<M0Y(n‘f‘)| Aoy (0))

1<0<0 1

(3-22)

3.5 Summary

A robot’s location and orientation detection method based on sound field features

utilizing two microphones is proposed in this chapter. The proposed method treats
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phase difference and magnitude ratio distributions between the microphones as sound
field features. Based on this idea, RLMs and ROMs are introduced for robot’s
location and orientation detection. The system architecture presented contains a
RLODA that can provide adaptation to environmental noises. Moreover, with the
pre-recorded database, the non-ideal issues of non-line-of-sight condition and
microphone mismatch problem can be solved. The related experimental results are

shown in Chapter 4.
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Chapter 4

Experimental Results

4.1 Experimental Results of the Proposed GMBRDM
4.1.1 The Experimental Environment

The experiment is perfornied in a‘laberatory filled with common furniture and
equipment. Fig. 4-1 shows the layout of the environment. The laboratory area is
10.5x7.1 m> and room height is 3 m. The recording equipment comprises two B&K
4935 array microphones, a B&K 2694 conditioning amplifier, and an Azova

DAQP-16 analog-to-digital converter.

58



7.1 m

Sound Source
|
' ¥
l.( e
| A,Jml.l'ﬂ'\ e
|
|
|
|

v, I
L,
s

: - rf
2 Dummy Head
— | 33 m

E = = =

N

v

= = =

N

Figure 4-1 The layout of the experimental environment.

The microphones are mounted in the ears of a dummy head, as depicted in Fig.
4-2. The distance between the dummy head’s ears is 0.16 m. Fig. 4-1 illustrates the
location of the dummy head. The ears of the dummy head are placed 1 m above the

floor.
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we assume the distribution of a, of the speech signal is stationary during training
and testing procedure.). The sound source is played by a loudspeaker. Received
signals are sampled at 8000 Hz, and the STFT window is 512 samples. For each
experiment, the sound source is played at each tested location to obtain the training
sequence to establish the GMBRDM. Training sequence length, N, , is set to 400 and
testing sequence length, N, , is set to 100, with a shift of 80 samples between each
frame. Hence, 4-second data are utilized for training, and 1-second data are utilized
for testing. Six significant frequencies of the sound source are selected in this
experiment; therefore, each Gaussian model has six dimensions, B=6. For each

location, testing is performed 100 times to acquire the correct rate.
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4.1.2 The Experimental Results

The first experiment tests the ability of azimuth localization. In this experiment,
distances between the sound source and ears are fixedat I m, 1.2 m, 1.4 m, 1.6 m, 1.8
m, and 2 m. For each distance, the azimuth of sound source moves from -60°, -30°, 0°,
30°, to 60° to test the average correct rate of azimuth localization. The elevation of
sound source is set the same as that of the ears (1 m). Different mixture numbers are
utilized. Table 4-1 shows the average correct rate of azimuth localization at each

distance.

Table 4-1 Average correct rates of azimuth localization at each distance

Mixture Distance ()

Number 1.0 1.2 1.4 1.6 1.8 2.0
1 97 % 83 % 40 % 67 % 70 % 67 %
5 98 % 84 % 59 % 81 % 85 % 72 %
10 99 % 89 % 31 % 87 % 88 % 73 %
15 99 % 91 % 83 % 87 % 89 % 83 %
20 99 % 88 % 83 % 86 % 89 % 85 %
25 99 % 91 % 88 % 87 % 89 % 91 %

As shown in Table 4-1, when the distance between the sound source and ears is 1 m,
meaning that the sound source close to the dummy head, the performance of mixture
number of 1 is roughly the same as those of high mixture numbers. When the sound
source is close to the dummy head, the influence of direct path propagation is much
more significant than that of reverberations. Consequently, the BRDPs are influenced
less by the reflections and can be modeled using a single Gaussian distribution model.
However, as distance between the sound source and ears increases, the influence of
reflection is becoming significant and leads to complex BRDPs. The benefit of

61



adopting multiple mixtures is apparent at a long distance, such as 2 m, where the

correct rate increases with the mixture number.

The second experiment tests the capability of the proposed GMBRDM for
distance localization. In this experiment, the azimuth is fixed at -60°, -30°, 0°, 30°,
and 60°. At each azimuth, the distance between the sound source and ears changes
from 1 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, to 2 m to acquire average correct rates. The
sound source height is adjusted to 1 m. Table 4-2 shows the average correct rates for

distance localization at each azimuth.

Table 4-2  Average correct rates of distance localization at each azimuth

Mixture Azimuth

Number -60° -30° 0° 30° 60°
1 49 % 31 % 48 % 43 % 61 %
5 40 % 47 % 65 % 55% 64 %
10 76 % 68 % 73% 58 % 69 %
15 80 % 76 % 73 % 67 % 72 %
20 79 % 73% 73°% 70 % 74 %
25 86 % 82 % 73 % 73 % 78 %

Because the relationship between the sound source and ears meets the criterion of
far-field, the IPDs of direct path at the same azimuth and different distances are
approximately identical theoretically. The ILDs of direct paths generate only
relatively a slight difference between distant locations. Thus, modeling these BRDPs
using a single Gaussian component can lose important details caused by reflections
and result in poor localization results. As listed in Table 4-2, the average correct rates
when only one mixture is employed are clearly lower than those with a high mixture
number. This experimental finding is because the proposed GMBRDM can represent

the details of the BRDPs for superior modeling results.
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The third experiment tests the elevation localization performance of the proposed
GMBRDM. In this experiment, distance between the sound source and ears is 2 m and
the azimuth is fixed at -60°, -30°, 0°, 30°, and 60°. At each azimuth, the elevation of
the sound source changes from 1 m, 1.25 m, to 1.5 m to acquire average correct rates.
Table 4-3 lists experimental results. Experimental data show that GMBRDM with a

high mixture number can properly model the BRDPs at different elevations.

Table 4-3  Average correct rates of elevation localization at each azimuth

Mixture Azimuth

Number -60° -30° 0° 30° 60°
1 59 % 55% 33% 46 % 59 %
5 83 % 90 % 60 % 80 % 63 %
10 82 % 93 % 55 % 83 % 74 %
15 88 % 94 % 55 % 88 % 74 %
20 89 % 93 % 67 % 86 % 81 %
25 92 % 98 % 84 % 93 % 88 %

4.2 Experimental Results i of the Proposed Robot’s

Localization and Orientation Detection Method
4.2.1 The Experimental Environment

Figure 4-3 shows the experimental platform and the proposed RLODA. In Fig.
4-3 (a), the distance between two loudspeakers is 0.2 m. The distance between the two

microphones of the RLODA is chosen as 0.07 m, as shown in Fig. 4-3 (b).
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(b)

Figure 4-3 The experimental platform and the proposed RLODA. (a) The

experimental platform. (b) The proposed RLODA.

The experiment was performed in an office room filled with furniture, which is
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114 m in length, 473 m in width and 2.8 m in height. Two off-the-shelf,
non-calibrated microphones are utilized on the ROLDA in this experiment and the
RLODA is implemented on a PC with a stereo recording sound card. The sampling
rate is 8000 Hz, and the A/D resolution is 16 bits. The pre-recording is performed
every 0.1 m within the region in which the robot is allowed to travel. For orientation

detection, the robot is rotated in every 30" step to obtain 12 orientations in 360°.

Figure 4-4 depicts the experimental environment and the location of the RLODA.
Note that there is a partition room in the office. Therefore, the robot is completely
under non-line-of-sight case when it is in the partition room. The robot’s moving

trajectories are also shown in Fig. 4-4 with the dotted lines from 1 to 8 in sequence.

The sound source utilized ifi this eXpetithent’mimic the sound of dog barking.
The spectrogram of the sound-source is illustrated in Fig. 4-5. The lengths of the
training sequence and the testing sequence-were set to 300 and 30. In other words, a
three-second length input datum was"set for training, and a 0.3 second length input
datum was set for testing. The major noise in this experiment is speech noise and the
minor noises are electric noise such as air conditioner noise, computer fan noise to

simulate a general indoor environment.
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Figure 4-5 The wavefornrandSpectrogram of barking signal.

4.2.2 The Experimental Results

Table 4-4 lists the average SNRs of all trajectories and the average SNRs of each

trajectory pair. Figure 4-6 shows the location detection results along the robot’s

moving trajectory with a mixture number of 15 and an average SNR of 7.91 dB. As

shown in Fig. 4-6, the location detection results are mostly very close to the actual

location for most of the time.

Table 4-4 Average SNRs of all trajectories and the average SNRs of each trajectory

pair (dB)

Average SNR

Average SNR of

trajectories 1 and 8

Average SNR of

trajectories 2 and 3

Average SNR of

trajectories 4 and 5

Average SNR of

trajectories 6 and 7

19.87

13.94

23.34

16.44

17.69

7.91

2.76

10.93

4.93

6.01
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Figure 4-6 Location detection results alone X and Y axes. (a) Location detection

results alone X-axis. (b) Location detection results alone Y-axis.

The proposed method models the phase difference and magnitude ratio
distributions measured from the sounds generated by the robot to perform robot’s
location and orientation detection. However, the sound field features of the noise start
to dominate the phase difference and magnitude ratio distributions with the increment
of noise power. In this circumstance, the RLMs and ROMs may become less
distinguishable and may degrade the performance of the proposed method. In Fig. 4-6,
the detection error occurs most frequently on trajectories 1 and 8, because some area

of these trajectories is completely in the partition room and the average SNR of these
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trajectories is lower than those of other trajectories, as shown in Table 4-4. Although
trajectories 1 and 8 contain locations that are in non-line-of-sight case, the location

dependent sound field features can still be caught by the proposed RLMs.

Several experiments are conducted to access the accuracy of the proposed
method in terms of location and orientation detection error. Table 4-5 lists the
average correct rates of the location detection results where D denotes the distance
between the actual location and the nearest location in the pre-recorded database.
Notably, the pre-recorded locations are discrete and are 0.1 m apart. In this
experiment, if the detected result is the nearest pre-recorded location in the database,
it will be regarded as a correct one. Additionally, the trial numbers for localization
detection and orientation detection aré 1210 and,.332 individually for each condition.
As shown in Table 4-5, if only & single Gaussian component is utilized (M =1), then
the average correct rates are oo low.to be acceptable in both two SNR cases.
However, the average correct ratés are improved to more than 95% when the mixture

number is increased (M =11 and M =15)and 0<D<lcm.

Table 4-5 Average correct rates of location detection results (%)

Average M=1 M=11 M=15
SNR 0<D<1 | 1<D<3 | 3sD<5 | 0<D<1 | 1<D<3 | 3<D<5 | 0<b<1 | 1<D<3 | 3<D<5
(dB) (cm) (cm) (cm) (cm) (em) (cm) (cm) (cm) (cm)

19.87 24.00 20.83 20.41 95.45 95.00 85.45 97.19 95.00 88.35

791 22.98 22.89 17.52 91.98 89.50 84.13 94.38 87.93 81.57

Table 4-6 shows the average correct rates of the orientation detection results,
where A denotes the distance between the actual and the pre-recorded orientations.
If the orientation detection result is the nearest pre-recorded orientation to the actual

orientation, the result will be considered correct. Note that the experiment is
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performed after a correct location is detected. As shown in Table 4-6, when M =1,
the average correct rates are lower than 60%. These results show that a single
Gaussian component is not appropriate for modeling the ROMs. When M =11, the
average correct rates are much higher than those when M =1 in both the SNR cases.

In the condition of 0° < 4 <4°, the average correct rates exceed 99% in both the

SNR cases.

Table 4-6  Average correct rates of orientation detection results (%)

Average M=1 M=11

SNR (dB) | 0'<A<4 | 4<4<8 | 8 <4<12 | 1274<15 | 0°SA<4 | 4£<4<8 | . <4<12 | 127<4<15

19.16 58.43 48.49 45.78 44.28 99.70 88.55 84.04 81.33

7.39 58.13 50.00 50.00 48.19 99.10 84.34 80.12 77.11

Figure 4-7 and 4-8 show the.average.of aposteriori probabilities measured at the
locations “A” and “B”, where location “A” is in a'line-of-sight case and location “B”
is in a non-line-of-sight case, -as illustfatedTin Eig. 4-4. Notably, the a posteriori

location probability is defined as:

a, TTGP,, (0, )10, (0) et TTGM, (1, )12, 1) (1)

n,=l1 n,=l1

and the a posteriori orientation probability is defined as:

o T1 6B 1) 0 0, TT 608 o N 2 0) 02

n,=1
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Figure 4-7 The average of the measured a posteriori location probabilities. (a) The
average a posteriori location probabilities at location “A”. (b) The average a

posteriori location probabilities at location “B”.
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The average SNRs belong to the lowest SNR conditions in Table 4-5 and Table
4-6 individually. The mixture number in Fig. 4-7 is 15, and the mixture number in Fig.
4-8 is 11. Location “A” denotes the 113™ location and location “B” represents the
220™ location. In the case of 0cm< D <1cm, the averages of (4-1) (averages of a
posteriori location probabilities) measured with the correct locations indices (/=113
and /=220) are much higher than those of other location indices, as shown in Fig.
4-7 (a) and (b). However, since the sound field feature varies with the robot’s location
and orientation, the phase difference and magnitude ratio distributions are becoming
less similar while the robot is moving away from the pre-recorded location or
orientation. Therefore, in Fig. 4-7 (a) and (b), the difference between the averages of
(4-1) measured with the correct locations indices and with other location indices are
becoming less obvious with the inctease of D, and then the chance of detection error
rises. This tendency explains why.the average correct rates of location detection in
Table 4-5 degrade with the increase-of-the-distances between the actual and the
pre-recorded locations. Although the averages of (4-1) measured with the correct
locations indices decrease with the increase of D, it is still higher than those
measured with other location indices; as a result, the correct rates listed in Table 4-5

remain above 80% when 3cm<D<5cm.

The same phenomenon appears in the experiment of orientation detection.
Figure 4-8 (a) and (b) depict the average of (4-2) (averages of a posteriori orientation
probabilities) with the correct orientations of 0° for Fig. 4-8 (a) and 270" for Fig.
4-8 (b). The average of (4-2) measured at the correct orientation indices drops with
the increase of A4 in both line-of-sight and non-line-of-sight cases and so does the
average correct rates of the orientation detection in Table 4-6. These experimental

results in this section show that utilizing GMMSs to model the sound field features is a
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feasible method for robot’s location and orientation detection.
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Chapter 5

Conclusions and Potential Research
Topics

5.1 Conclusions

This dissertation has investigatéed the-relationship between nonstationary sound
sources and the BRDPs when STFT is. utilized. First, the level fluctuation of the
nonstationary sound source is modeled as an exponent of polynomial based on the
concept of moving pole model. This model explains the content dependency of the
BRDPs. Moreover, the sufficient condition for utilizing BRDPs to detect the location
of nonstationary sound source is identified. The phenomena of multiple peaks in the
distribution patterns are analyzed. The related derivation shows that using simple
distribution, such as a single Gaussian distribution, is not suitable for modeling these
distribution patterns. Therefore, a GMBRDM is proposed to model the BRDPs for
nonstationary sound source localization. Experimental results display that the
proposed GMBRDM can discriminate between the azimuth, elevation, and distance of
the sound sources. Notably, the correct rates in experimental results do not

monotonically increase with the number of Gaussian mixtures. This experimental
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finding is because the proposed GMBRDM can be influenced by the initial condition

selected and the complexity of BRDPs varies with sound source locations.

Moreover, a novel robot’s location and orientation detection method based on
sound field features utilizing two microphones is proposed. The proposed method
treats phase difference and magnitude ratio distributions between the microphones as
distinct sound field features, and models them by GMMs to detect a robot’s location
and orientation. Since the proposed method makes no assumptions about the spatial
relationship between sound sources and microphones, it can be applied to both
line-of-sight and non-line-of-sight cases. A system architecture is also proposed to
provide robustness to environmental noises. The proposed method is suitable to be
integrated with other robot location®or orientation detection algorithms based on
different sensors to provide initial conditions for reducing the search effort, or to
compensate for localizing certain locations that cannot be detected using other
localization methods to perfornismore robust, more accurate and faster pose and

global location detection.

5.2 Potential Research Topics

5.2.1 The Prediction, Interpolation, or Extrapolation of BRDPs

The relation between the BRDPs and the location of sound source can only be
obtained by empirical data at present state. However, the demand of empirical data
can restrict the application of the proposed localization methods. Consequently, the
studies of room acoustic channel modeling can be combined with this research to

solve this problem and provide a wider application scenario.
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Sometimes, the BRDPs of some points are known in advance. However,
researchers might be interested in the BRDPs at the locations between or near these
points. Therefore, the interpolation or extrapolation of BRDPs is also an important

research topic.

5.2.2 The Influence of Environmental Change to the BRDPs

The proposed localization methods assume that the BRDPs or sound field
features remain unchanged during training and testing procedures. Nevertheless, in
real environment, the configuration of the room can alter with time. The influence of
the environmental change has been roughly discussed in [49]. However, the work in
[49] only considered the basic geometry,change; the detail of the influence needs
further explore. Moreover, the variation of témperature would influence the sound
speed; hence results in difference of propagation model. Therefore, besides the change
of the configuration of the roem, *variation-of ‘temperature would also alter the
measured BRDPs. The relation between ‘the temperature and the room acoustic
transfer function has been discussed in [72]. The related research can be adopted to

compensate the effect of temperature variation.

5.2.3 Robot’'s Location and Orientation Detection Using Hidden

Markov Model

The proposed RLM and ROM utilize only the currently measured IPDs and ILDs
for location and orientation detection. However, for some application, if the relative
displacement of the sound source or the robot is known, the previously measured

IPDs and ILDs also provide important information. The locations and orientations can

be treated as “states” in the hidden Markov model (HMM) [53]. Therefore, instead
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detecting the most possible location of the robot by the proposed RLMs and ROMs,
using HMM can detect the most possible trajectory of the robot. Furthermore, the
state transition matrix in the HMM can be utilized to combine with other sensors or

localization methods.
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